WO2015146035A1 - 接触検知センサおよび接触検知方法 - Google Patents

接触検知センサおよび接触検知方法 Download PDF

Info

Publication number
WO2015146035A1
WO2015146035A1 PCT/JP2015/001356 JP2015001356W WO2015146035A1 WO 2015146035 A1 WO2015146035 A1 WO 2015146035A1 JP 2015001356 W JP2015001356 W JP 2015001356W WO 2015146035 A1 WO2015146035 A1 WO 2015146035A1
Authority
WO
WIPO (PCT)
Prior art keywords
contact detection
detection sensor
contact
convex structure
reflectance
Prior art date
Application number
PCT/JP2015/001356
Other languages
English (en)
French (fr)
Inventor
達矢 吉弘
慎一郎 園田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2015146035A1 publication Critical patent/WO2015146035A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/24Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/12Optical coatings produced by application to, or surface treatment of, optical elements by surface treatment, e.g. by irradiation

Definitions

  • the present invention relates to a sensor for determining presence / absence of contact, and more particularly to a contact detection sensor for detecting presence / absence of contact based on a change in spectral reflectance of the surface and a contact detection method using the contact sensor.
  • a film in which a color former layer containing a microcapsule containing a color former is applied to a support is overlaid on a film in which a developer is applied to the support,
  • a color developer is adsorbed on a developer by destroying the microcapsules and colored by a chemical reaction (for example, see Patent Document 1).
  • Such a sensor is used to evaluate the smoothness and parallelism of a manufacturing apparatus for optical components and electronic components.
  • Patent Document 2 a fine concavo-convex structure on the surface of anodized alumina is transferred, a fine concavo-convex structure is formed on the surface of the substrate, and scattered light or reflected light accompanying the destruction of the fine concavo-convex structure resulting from the application of pressure, A pressure sensor of the type that detects transmitted light is disclosed.
  • This method is more sensitive than the color development method based on the destruction of the microcapsules, and has an advantage that the pressure distribution in a minute region can be detected.
  • the particle size of the microcapsule needs to be several tens of ⁇ m, and it is difficult to have a position resolution lower than that.
  • the type that detects the destruction of the fine concavo-convex structure such a trade-off regarding sensitivity and size does not occur.
  • Patent Document 3 includes an antireflection structure having a fine concavo-convex structure as a contact detection sensor that can easily detect the presence or absence of contact by a third party, and whether or not there is contact based on a change in reflectance.
  • a contact detection sensor for identifying the above.
  • the contact detection sensor described in Patent Document 3 does not detect a change in reflectance due to the destruction of the fine concavo-convex structure, and adheres to sebum, sweat, dirt on the skin, etc. when the human body contacts the antireflection structure. Thus, the presence or absence of contact is identified by utilizing the increase in reflectance.
  • a contact detection sensor having a fine concavo-convex structure disclosed in Patent Document 2 is manufactured by transferring a fine concavo-convex structure on the surface of an anodized alumina by an imprint method. For this reason, it is necessary to prepare a master, and in addition to the transfer cost, the cost of the master is generated. Moreover, when producing by optical imprinting, the fine concavo-convex structure can be formed only on a transparent substrate capable of optical imprinting.
  • the contact detection sensor disclosed in Patent Document 3 is a base material provided with an antireflection structure on a part of its surface. For example, a pattern is drawn on a quartz glass substrate or the like by a method such as electron beam drawing, and dry etching or the like is performed. After processing and forming a master mold that has been precisely processed into the same shape as the antireflection structure in advance, the master mold is used to press-mold a material such as heat-softened glass material or acrylic resin. An antireflection structure molding die is manufactured, and is further manufactured by press molding a material such as acrylic resin.
  • the manufacturing method described in Patent Document 3 requires the cost of master production and the cost of structure transfer as in the case of Patent Document 2.
  • the present invention has been made in view of the above circumstances, and can be manufactured at low cost, and can be manufactured regardless of whether the substrate is transparent or opaque, and provides a highly sensitive contact detection sensor. To do.
  • the contact detection sensor of the present invention comprises a base material and a fine concavo-convex structure film formed on the surface of the base material,
  • the fine concavo-convex structure film is made of a material mainly composed of alumina hydrate,
  • the reflectance with respect to a predetermined wavelength in the visible light region incident from the surface side of the fine concavo-convex structure film is 4% or more.
  • the reflectance of 4% or more for a predetermined wavelength in the visible light region does not have to be 4% or more over the entire visible light region.
  • the reflectance at a predetermined wavelength 450 nm, 500 nm, or the like. It may be 4% or more.
  • the reflectance here is a reflectance as a contact detection sensor including a fine concavo-convex structure film and a base material. When the base material is a metal or a semiconductor, the reflectance is usually sufficiently high. .
  • an intermediate layer serving as an optical interference layer is provided between the substrate and the fine concavo-convex structure film.
  • the base material may be made of an opaque material.
  • the contact detection method of the present invention detects a region where the fine uneven structure has changed due to pressure applied to the contact detection sensor of the present invention by measuring scattered light, reflected light or transmitted light from the contact detection sensor. This is a contact detection method for identifying the presence or absence of contact.
  • the contact detection sensor of the present invention comprises a base material and a fine concavo-convex structure film formed on the surface of the base material, and the fine concavo-convex structure film is made of a material mainly composed of alumina hydrate. Therefore, the fine concavo-convex structure film can be obtained by an extremely simple process of forming a thin film containing aluminum and performing hot water treatment.
  • the fine concavo-convex structure film made of a material whose main component is alumina hydrate is a highly sensitive sensor because it is very weak to mechanical force, its structure collapses even with a slight force, and its spectral characteristics change. .
  • the reflectance with respect to a predetermined wavelength in the visible light region incident from the surface side of the fine concavo-convex structure film is 4% or more before the pressure is applied, it is easy to identify the change in the spectral characteristics of the reflected light. It can be carried out.
  • the fine concavo-convex structure film made of a material mainly composed of alumina hydrate has high heat resistance, when combined with a heat-resistant substrate, a high pressure can be obtained in a high temperature environment. It is also possible to obtain a pressure sensor that can be detected with positional resolution.
  • FIG. 1 It is a perspective view which shows schematic structure of the contact detection sensor of embodiment of this invention. It is a partially expanded view of the contact detection sensor shown in FIG. It is sectional drawing which shows typically the uneven structure after a pressure is applied to the surface of a contact detection sensor. It is a figure which shows the manufacturing process of a contact detection sensor. It is a figure which shows the wavelength dependence of the reflectance before and behind rubbing of a contact detection sensor.
  • FIG. 1 is a perspective view schematically showing a configuration of a contact detection sensor according to an embodiment of the present invention
  • FIG. 2 is an enlarged view of a part II of the sensor 1 shown in FIG.
  • the contact detection sensor 1 of the present embodiment is formed by laminating an intermediate layer 3 and a fine concavo-convex structure film 4 mainly composed of alumina hydrate on a base material 2 in this order. .
  • the reflectance (spectral characteristics) for light incident from the fine concavo-convex structure film 4 side varies greatly between a normal fine concavo-convex structure and a damaged fine concavo-convex structure.
  • the reflectance (spectral characteristics) for light incident from the fine concavo-convex structure film 4 side varies greatly between a normal fine concavo-convex structure and a damaged fine concavo-convex structure.
  • the reflectance (spectral characteristics) for light incident from the fine concavo-convex structure film 4 side varies greatly between a normal fine concavo-convex structure and a damaged fine concavo-convex structure.
  • the petal-like fine irregularities shown in FIG. 2 have a gentle undulation as shown in FIG. 3, and the spectral characteristics with respect to the irradiated light greatly change with this structural change.
  • the presence or absence of contact can be detected by detecting the change.
  • the fine concavo-convex structure film mainly composed of hydrate of alumina is very sensitive to contact and is broken by a slight pressure. Therefore, it is possible to detect contact due to a slight force with high sensitivity.
  • the contact detection sensor of the present invention has a reflectance of 4% or more with respect to a predetermined wavelength in the visible light region before use.
  • the reflectance does not need to be 4% or more over the entire visible light range, and may be 4% or more at a predetermined wavelength such as 450 nm and 500 nm, for example. Since the reflectance is a reflectance as a contact detection sensor including a fine concavo-convex structure film and a substrate, the reflectance is usually sufficiently high when the substrate is opaque. On the other hand, even if the base material is transparent, if the reflectance is about 4%, it becomes easy to identify a change in reflectance accompanying a subsequent structural change.
  • a contact detection sensor having a reflectance peak of 4% or more at a wavelength of 450 nm and having a reflectance peak of 4% or more at a wavelength of 540 nm as a result of contact is caused by a change in reflection color from blue to green. The presence or absence of contact can be determined visually.
  • the contact detection sensor of the present invention preferably has a reflectance peak of 4% or more with respect to a predetermined wavelength in the visible light region before use.
  • a plate material, a film material, or the like made of any one of glass, resin, metal, and semiconductor can be used.
  • glass quartz glass, soda glass, sapphire glass, and other general glass materials can be used.
  • resin polyethylene terephthalate film, polyethylene naphthalate film, polyimide film and other general resin materials can be used.
  • metal general metal materials such as aluminum, copper, chromium, iron, and stainless steel can be used. Silicon, germanium, or the like can be used as the semiconductor.
  • the fine concavo-convex structure film is a hydrate of alumina, and it is not necessary to irradiate UV light from the back surface of the substrate, which is necessary when producing an imprint method as in Patent Document 2.
  • a base material not only a transparent material but also an opaque material such as a metal can be used.
  • the intermediate layer 3 is a layer that functions as an optical interference layer, and is preferably transparent to the detection wavelength for detecting the presence or absence of contact.
  • the intermediate layer 3 preferably has an optical film thickness of 8 / ⁇ or more at the detection wavelength ⁇ . More preferably, it is 4 / ⁇ or more.
  • the intermediate layer 3 is an optical interference layer composed of one layer or a plurality of layers provided between a base material and a layer of a material containing an aluminum element in order to emphasize a change in optical characteristics due to the presence or absence of a fine uneven structure.
  • oxides and nitrides and oxynitrides containing at least one element of zirconium, tantalum, niobium, aluminum, silicon, and lanthanum are used as known materials used as optical thin films. it can.
  • an organic compound such as a fluororesin can be used.
  • the change in reflectance between the case of the normal fine uneven structure and the case of the damaged fine uneven structure can be increased as compared with the case where the intermediate layer 3 is not provided. If the change in the reflectance before and after the destruction of the fine concavo-convex structure can be increased, the measurement apparatus for detecting the change can be simplified and the cost can be reduced. Also, visual identification is possible.
  • the fine uneven structure film 4 may be formed directly on the substrate 2 without providing the intermediate layer 3. Even if the intermediate layer 3 is not provided, the spectral characteristics with respect to the incident light change before and after the breakage of the fine concavo-convex structure. Therefore, the presence or absence of breakage, that is, the presence or absence of contact can be identified by detecting the change.
  • the fine concavo-convex structure film 4 is mainly composed of alumina hydrate.
  • the alumina hydrate is expressed as boehmite (Al 2 O 3 .H 2 O or AlOOH) which is an alumina monohydrate.
  • Bayerlite represented as Al 2 O 3 .3H 2 O or Al (OH) 3 ), which is alumina trihydrate (aluminum hydroxide).
  • the period (average pitch) of the unevenness of the fine uneven structure film 4 is sufficiently smaller than the shortest wavelength in the used wavelength range that is the wavelength range of incident light.
  • the pitch is the distance between the vertices of the nearest adjacent convex portions across the concave portion
  • the depth is the distance from the convex portion vertex to the bottom of the adjacent concave portion.
  • the period of fine irregularities is on the order of several tens of nm to several hundreds of nm.
  • the fine concavo-convex structure film has a structure that becomes sparser as it gets away from the base material (the width of the void corresponding to the concave portion becomes larger and the width of the convex portion becomes smaller), and the refractive index becomes smaller as it gets away from the base material Become.
  • the average pitch of the unevenness can be obtained by, for example, taking a surface image of a fine uneven structure with an SEM (scanning electron microscope), binarizing the image, and performing statistical processing.
  • the film thickness of the concavo-convex structure film can be obtained by taking a cross-sectional image of the fine concavo-convex structure film and processing the image.
  • the manufacturing method of the contact detection sensor 1 is demonstrated easily.
  • the base material 2 is prepared, and the intermediate layer 3 is formed on the base material 2.
  • the intermediate layer 3 may be a single layer or a multilayer of two or more layers.
  • a thin film of a material containing aluminum is formed on the intermediate layer 3.
  • the material containing aluminum include metal aluminum and aluminum oxide.
  • the thickness is desirably 5 nm or more. In order to increase the reflectance change at the time of use, it is more desirable that the Al 2 O 3 film to be formed has a thickness of 40 nm or more.
  • the intermediate layer 3 When the intermediate layer 3 is not provided, a thin film of a material containing aluminum is directly formed on the base material 2. Moreover, when the base material 2 is aluminum, it is not necessary to form a thin film of a material containing aluminum, and the base material 2 itself may be used in the following processing.
  • the substrate 2 (or the aluminum substrate) on which the thin film 4a of the material containing the aluminum element is formed is subjected to hot water treatment to form a fine relief structure 4 mainly composed of alumina hydrate on the surface. can do.
  • the warm water treatment it is preferable to immerse in warm water in the range of 60 to 100 ° C. for 1 minute or longer. For stabilization of the treatment, it is preferable to immerse for 3 minutes or more.
  • the contact detection sensor of the present invention can be produced by the above procedure.
  • the fine concavo-convex structure mainly composed of alumina can be obtained by a very simple method. Unlike the case of using the imprint method as described in Patent Document 2 described above, irradiation with active energy rays for resist curing is performed. Since it is not necessary, the substrate does not require light transmittance, and can be appropriately selected from a wide range of materials according to the application.
  • the film in order to form the reflectance with respect to the predetermined wavelength ⁇ in the fine concavo-convex structure film to be larger than 4%, one or more intermediate layers having a refractive index larger than the refractive index of the material constituting the fine concavo-convex structure, It is preferable to form the film so that the optical path length is ⁇ / 20 or more with respect to the wavelength ⁇ of interest. Furthermore, it is preferable to form the intermediate layer with a film thickness such that the optical path length of the intermediate layer is about ⁇ / 4 with respect to the wavelength of interest. Since the refractive index of alumina hydrate is about 1.6 in the visible light region, the refractive index of the intermediate layer is preferably larger than 1.6.
  • a region in which the fine uneven structure of the contact detection sensor has changed is detected by measuring scattered light, reflected light, or transmitted light from the contact detection sensor. It is a method of identifying the presence or absence of When the substrate is transparent, the presence or absence of contact can be identified by measuring the scattered light, reflected light or transmitted light. When the substrate is opaque, the scattered light or reflected light can be measured. The presence or absence of contact can be identified. Although human visual detection is also possible, it may be difficult to visually confirm when the change in reflectance is small or when the change is in a minute region.
  • the reflectance can be measured with a film thickness measuring instrument.
  • reflectance measurement by a microspectroscopic method may be performed.
  • a light source having one or more wavelengths may be irradiated to obtain a reflectance map with respect to the position.
  • an LED light source having a wavelength of 650 nm is diffused, irradiated to a contact detection sensor, and received by an optical sensor using an imaging system such as a digital camera, thereby obtaining a luminance distribution of pixels. Whether or not there is a contact or which part of the contact is detected can be detected because the luminance of the contacted part increases.
  • the wavelength to irradiate is not restricted to 650 nm, It is desirable to investigate beforehand the wavelength with a large reflectance difference before and behind a contact, and to use the wavelength with a large reflectance difference.
  • a map of the scattering intensity with respect to the position may be obtained by irradiating light having one or more wavelengths.
  • collimated light of UV laser light having a wavelength of 405 nm is irradiated to a contact detection sensor at an incident angle of 45 °, and received by an optical sensor using an imaging system such as a digital camera immediately above the contact detection sensor, and the luminance distribution of the pixels is determined. get. It is possible to detect the presence or absence of contact and the distribution of contact points by increasing the scattered light intensity because the structure of the fine uneven structure film of the sensor changes before and after contact, and increasing the brightness of the part where the fine unevenness is destroyed. it can.
  • the incident angle and the angle of the imaging system are not limited to the above angles, and can be set as appropriate.
  • the contact detection sensor can irreversibly record whether or not it is in contact, a member of a manufacturing apparatus that comes into contact with these components in the manufacture of optical components (such as optical films) and electronic components (such as semiconductor elements). It can be used as a means for evaluating the smoothness, parallelism, etc., and as a member for mechanical impact analysis. It can also be used for security seals and the like, and can also be used for detecting the presence of contact by a third party by sticking to a sealed letter or a storage case.
  • Example 1 An S-BSL7 glass substrate (25 mm square, thickness 2.5 mm) was used as a base material.
  • an intermediate layer serving as an optical interference layer was formed on the surface of the glass substrate.
  • a ZrO 2 layer was formed as an intermediate layer by 100 nm electron beam evaporation. This intermediate layer makes it easier to visually recognize the change in reflectance when the fine concavo-convex structure is broken.
  • an Al 2 O 3 layer of 80 nm was similarly formed by electron beam evaporation. After that, when the base material on which the ZrO 2 layer and the Al 2 O 3 layer are formed is immersed in warm water at 70 ° C. for 15 minutes, the outermost alumina thin film becomes an aluminum hydroxide, and the concavo-convex structure by fine plate crystals is formed. Obtained.
  • the surface of the produced contact detection sensor was wiped (rubbed) with cotton with a force of 0.2 gram weight / mm 2 .
  • the wavelength dependence of each reflectance was measured before and after this rubbing. The results are shown in FIG. In FIG. 5, the reflectance before rubbing is indicated by a solid line, and the reflectance after rubbing is indicated by a broken line. It is clear that the spectral characteristics change greatly before and after rubbing.
  • a wavelength of 450 nm to 530 nm at which the reflectance greatly increases by rubbing is suitable as a wavelength for measuring the presence or absence of contact.
  • Example 2 Using an A4300 film (Toyobo) (50 mm square, 75 ⁇ m thickness) as a base material, a ZrO 2 layer of 100 nm and then an Al 2 O 3 layer of 80 nm were formed by electron beam evaporation in the same manner as in Example 1. did. Then, when the base material formed into a film was immersed in 70 degreeC warm water for 15 minutes, the alumina thin film of the outermost layer became an aluminum hydroxide, and the uneven structure by a fine plate-like crystal was obtained.
  • A4300 film Toyobo
  • Al 2 O 3 layer of 80 nm were formed by electron beam evaporation in the same manner as in Example 1. did.
  • the base material formed into a film was immersed in 70 degreeC warm water for 15 minutes, the alumina thin film of the outermost layer became an aluminum hydroxide, and the uneven structure by a fine plate-like crystal was obtained.
  • the surface of the produced contact detection sensor was rubbed with cotton with a force of 0.2 gram weight / mm 2 , and the wavelength dependence of the reflectance was measured before and after this rub. As a result, the same change in reflectance as in Example 1 was observed.
  • Example 3 A Si substrate (diameter 50.4 mm, thickness 2.5 mm) was used as the base material. An Al layer of 60 nm was formed on the surface of the Si substrate by RF sputtering. Then, when the base material formed into a film was immersed in 80 degreeC warm water for 10 minutes, the alumina thin film of the outermost layer became an aluminum hydroxide, and the uneven structure by a fine plate-like crystal was obtained. The surface of the produced contact detection sensor was rubbed with cotton with a force of 0.2 gram weight / mm 2 , and the wavelength dependence of the reflectance was measured before and after this rub. As a result, the same change in reflectance as in Example 1 was observed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Surface Treatment Of Optical Elements (AREA)

Abstract

【課題】接触の有無を高感度に検知することができる接触検知センサを低コストで提供する。 【解決手段】基材(2)上にアルミニウムを含む薄膜(4a)を形成し、薄膜が形成された基材(2)を温水処理することにより、アルミナの水和物を主成分とする微細凹凸構造膜(4)を形成する。この構造膜(4)の表面側から入射した可視光域の所定波長に対する反射率は4%以上とする。

Description

接触検知センサおよび接触検知方法
 本発明は、接触の有無を判定するセンサに関し、特には、その表面の分光反射率の変化により接触の有無を検出する接触検知センサおよびその接触センサを用いた接触検知方法に関するものである。
 従来、大面積にわたり圧力分布を測定できるセンサとして、発色剤を入れたマイクロカプセルを含む発色剤層を支持体に塗布したフィルムを、顕色剤を支持体に塗布したフィルムに重ね、加圧部位のマイクロカプセルを破壊させることにより発色剤を顕色剤に吸着させ、化学反応により発色させるものが利用されている(例えば、特許文献1参照)。
 そのようなセンサは、光学部品や電子部品の製造装置の平滑性や平行性を評価するために用いられている。
 一方、特許文献2には陽極酸化アルミナの表面の微細凹凸構造を転写し、基板の表面に微細凹凸構造を形成し、圧力が加わった結果生じる微細凹凸構造の破壊にともなう散乱光や反射光、透過光を検出するタイプの圧力センサが開示されている。この方式はマイクロカプセルの破壊による発色方式よりも感度が高く、微小な領域の圧力分布を検出できるメリットがある。マイクロカプセル方式の場合、低い圧力を検知するためにはマイクロカプセルの粒径を数十μmにする必要があり、それ以下の位置分解能を持たせることが難しい。一方、微細凹凸構造の破壊を検出するタイプではそのような感度とサイズに関するトレードオフは発生しない。
 他方、特許文献3には、第3者による接触の有無を容易に検出することができる接触検知センサとして、微細凹凸構造からなる反射防止構造体を備え、反射率の変化に基づいて接触の有無を識別する接触検知センサが提案されている。特許文献3に記載の接触検知センサは、微細凹凸構造の破壊による反射率の変化を検出するものではなく、反射防止構造体への人体の接触時に皮脂や汗、皮膚についた汚れなどが付着することにより反射率の増大が生じるのを利用して、接触の有無を識別するものである。
特開昭50-126479号公報 特開2009-257946号公報 特開2005-335379号公報
 特許文献2に示される微細凹凸構造を備えた接触検知センサは、陽極酸化アルミナ表面の微細凹凸構造をインプリント法により転写して作製されている。このため、原版作製が必要となり、転写コストに加え原版作製のコストが発生する。また、光インプリントで作製する場合には、微細凹凸構造は光インプリント可能な透明基材にしか形成することができない。
 特許文献3に示される接触検知センサは、表面の一部に反射防止構造を備えた基材であり、例えば、石英ガラス基板などに電子線描画などの方法でパターンを描画してドライエッチングなどの加工を行い、予め反射防止構造体と同一形状に精密加工されたマスター型を形成した後、このマスター型を用いて、加熱軟化したガラス材料やアクリル樹脂などの材料をプレス成型することによって、ガラス製の反射防止構造体成形用型を作製し、さらにアクリル樹脂などの材料をプレス成型して作製される。特許文献3に記載の製造方法は、特許文献2の場合と同様にマスター作製のコスト、構造転写のコストが必要である。
 本発明は、上記事情に鑑みてなされたものであり、安価に製造可能であり、基材の透明、不透明を問わず製造可能であり、かつ高感度の接触検知センサを提供することを目的とする。
 本発明の接触検知センサは、基材と、基材の表面に形成された微細凹凸構造膜とからなり、
 微細凹凸構造膜が、アルミナの水和物を主成分とする材料からなるものであり、
 微細凹凸構造膜の表面側から入射した可視光域の所定波長に対する反射率が4%以上であることを特徴とするものである。
 可視光域の所定波長に対する反射率が4%以上であるとは、可視光域の全域に亘って反射率が4%以上である必要はなく、例えば、450nm、500nmなどの所定波長において反射率4%以上であればよい。なお、ここでいう反射率は、微細凹凸構造膜、基材を含む接触検知センサとしての反射率であり、基材が金属や半導体である場合には、反射率は通常十分に高いものとなる。
 基材と微細凹凸構造膜との間に光学干渉層となる中間層を備えていることが好ましい。
 基材は、不透明な材料からなるものであってもよい。
 本発明の接触検知方法は、本発明の接触検知センサに圧力が加わることによって微細凹凸構造が変化した領域を、接触検知センサからの散乱光、反射光または透過光を測定することにより検知して接触の有無を識別する接触検知方法である。
 本発明の接触検知センサは、基材と、基材の表面に形成された微細凹凸構造膜とからなり、この微細凹凸構造膜が、アルミナの水和物を主成分とする材料からなるものであるので、微細凹凸構造膜は、アルミニウムを含有する薄膜の形成と温水処理という極めて簡便なプロセスで得ることができる。アルミナの水和物を主成分とする材料からなる微細凹凸構造膜は、機械的な力に非常に弱く、僅かな力でも構造が崩れ、分光特性が変化することから、高感度なセンサである。また、圧力が与えられる前の状態で、微細凹凸構造膜の表面側から入射した可視光域の所定波長に対する反射率が4%以上であるので、反射光の分光特性の変化の識別を容易に行うことができる。
 また、アルミナの水和物を主成分とする材料からなる微細凹凸構造膜は、耐熱性が高いものであるから、耐熱性のある基材と組み合わせれば、高温環境下かつ微小な圧力を高位置分解能で検出することができる圧力センサを得ることもできる。
本発明の実施形態の接触検知センサの概略構成を示す斜視図である。 図1に示す接触検知センサの一部拡大図である。 接触検知センサの表面に圧力がかかった後の凹凸構造を模式的に示す断面図である。 接触検知センサの製造工程を示す図である。 接触検知センサの擦り前後の反射率の波長依存性を示す図である。
 以下、図面を参照して本発明の実施の形態を説明する。
 図1は、本発明の実施形態に係る接触検知センサの構成を模式的に示す斜視図であり、図2は、図1に示すセンサ1の一部IIの拡大図である。
 図1および2に示すように、本実施形態の接触検知センサ1は、基材2上に中間層3およびアルミナの水和物を主成分とする微細凹凸構造膜4がこの順に積層してなる。
 微細凹凸構造膜4にヒトが触れた場合、あるいは物が接触すると、表面の微細凹凸が破損する。微細凹凸構造膜4側から入射した光に対する反射率(分光特性)は、正常な微細凹凸構造の場合と破損した微細凹凸構造とでは大きく変化する。例えば、微細凹凸構造膜4の表面を擦ることにより、表面の微細凹凸は、図3に断面模式図な滑らかな表面を有する層4bとなる。図2に示した花弁状の微細凹凸が図3に示すような緩やかな起伏を有するものとなり、この構造上の変化に伴い、照射された光に対する分光特性が大きく変化するので、この分光特性の変化を検出することにより接触の有無を検知することができる。
 アルミナの水和物を主成分とする微細凹凸構造膜は、接触に非常に敏感であり、僅かな圧力で破壊される。従って、僅かな力による接触を高感度に検出することが可能である。
 本発明の接触検知センサは、その使用前において、可視光域の所定波長に対する反射率が4%以上である。可視光域の全域に亘って反射率が4%以上である必要はなく、例えば、450nm、500nmなどの所定波長において反射率4%以上であればよい。反射率は、微細凹凸構造膜、基材を含む接触検知センサとしての反射率であるため、基材が不透明である場合には、反射率は通常十分に高いものとなる。一方基材が透明な場合であっても反射率が4%程度であれば、その後の構造変化に伴う反射率の変化を識別しやすくなる。例えば450nmの波長において4%以上の反射率ピークを持ち、接触にともない540nmの波長で4%以上の反射率ピークの反射を持つようになる接触検知センサは、青色から緑色の反射色の変化により目視で接触の有無を判定することができる。一方、接触前のピーク反射率が4%よりも低いと、接触前の反射色を明確に認識することができず、接触後に反射光を視認できたとしてもそれが接触により生じたものか光源の見え方によるものなのか判別できない。そこで本発明の接触検知センサは、その使用前において、可視光域の所定波長に対する反射率ピークが4%以上であること好ましい。
 基材2としては、ガラスや樹脂、金属、半導体いずれかからなる板材、フィルム材などを用いることができる。具体的には、ガラスとしては石英ガラス、ソーダガラス、サファイアガラスほか一般的なガラス材料を用いることができる。樹脂としてはポリエチレンテレフタラートフィルム、ポリエチレンナフタレートフィルム、ポリイミドフィルムほか一般的な樹脂材料を用いることができる。金属としてはアルミニウム、銅、クロム、鉄、ステンレスほか一般的な金属材料を用いることができる。半導体としてはシリコン、ゲルマニウムなどを用いることができる。本発明の接触検知センサは、微細凹凸構造膜が、アルミナの水和物であり、特許文献2のようなインプリント法作製する場合に必要な基板裏面からのUV光の照射が不要であるため、基材として透明な材料のみならず金属のような不透明な材料を用いることができ、基材選択の幅が広い。
 中間層3は、光学干渉層として機能する層であり、接触の有無を検出する検出波長に対して透明なものが好ましい。中間層3の膜厚は、検出波長λにおける光学膜厚が8/λ以上であることが望ましい。より好ましくは4/λ以上である。また、基材2の屈折率よりも大きい屈折率を有することが望ましい。
 中間層3は、微細凹凸構造の有無による光学特性変化を強調するために、基材とアルミニウム元素を含有する材料の層との間に備えられる1層もしくは複数層からなる光学干渉層である。この中間層としては、光学薄膜として用いられる公知の材料としてジルコニウム、タンタル、ニオブ、アルミニウム、シリコン、ランタン、のうち少なくとも1種以上の元素を含む酸化物および窒化物および酸窒化物を用いることができる。または、フッ素樹脂などの有機化合物を利用することができる。
 この中間層3を備えることにより、正常な微細凹凸構造の場合と、破損した微細凹凸構造の場合とでの反射率の変化を中間層3が無い場合と比較して増加させることができる。微細凹凸構造破壊前後での反射率の変化を大きくすることができれば、その変化を検出する測定装置の簡易化、低コスト化を図ることができる。また、目視による識別も可能となる。
 なお、中間層3を備えず、基材2上に直接微細凹凸構造膜4が形成されていてもよい。中間層3を備えていなくても、微細凹凸構造の破損の前後で入射光に対する分光特性は変化するので、その変化を検出することにより破損の有無、すなわち接触の有無を識別することはできる。
 微細凹凸構造膜4は、アルミナの水和物を主成分とするものであり、アルミナの水和物とは、アルミナ1水和物であるベーマイト(Al23・H2OあるいはAlOOHと表記される。)、アルミナ3水和物(水酸化アルミニウム)であるバイヤーライト(Al23・3H2OあるいはAl(OH)3と表記される。)などである。
 この微細凹凸構造膜4の凹凸の周期(平均ピッチ)は入射する光の波長域である使用波長域のうち最も短い波長より十分に小さい。微細凹凸構造膜4において、ピッチは凹部を隔てた最隣接凸部の頂点同士の距離であり、深さは凸部頂点から隣接する凹部の底部までの距離である。微細凹凸の周期は数10nm~数100nmオーダーである。
 微細凹凸構造膜は、基材から離れるほど疎になる(凹部に相当する空隙の幅が大きくなり、凸部の幅が小さくなる)構造を有しており、基材から離れるほど屈折率は小さくなる。
 凹凸の平均的なピッチは、例えば、SEM(走査型電子顕微鏡)で微細凹凸構造の表面画像を撮影し、画像処理をして2値化し、統計的処理によって求めることができる。同様に、凹凸構造膜の膜厚は、微細凹凸構造膜の断面画像を撮影し、画像を処理することによって求めることができる。
 図4を参照して、接触検知センサ1の製造方法を簡単に説明する。
 まず、基材2を用意して、基材2上に中間層3を成膜する。中間層3は1層であってもよいし2層以上の多層であってもよい。
 その後、中間層3上に、アルミニウムを含有する材料の薄膜を成膜する。アルミニウムを含有する材料としては、例えば、金属アルミニウムやアルミニウム酸化物が挙げられる。
 なお、アルミニウムを含有する材料の薄膜としてAlを成膜する場合には、5nm以上の厚みとすることが望ましい。使用時の反射率変化を大きくするためには成膜するAlを40nm以上とすることがより望ましい。
 なお、中間層3を設けない場合には、基材2上に直接アルミニウムを含有する材料の薄膜を成膜する。また、基材2がアルミニウムの場合はアルミニウムを含有する材料の薄膜を成膜するまでもなく、以下の処理において基材2そのものを用いてもよい。
 その後、アルミニウム元素を含有する材料の薄膜4aを成膜した基材2(もしくはアルミニウム基材)に温水処理を施すことにより、アルミナの水和物を主成分とする微細凹凸構造4を表面に形成することができる。温水処理としては、60~100℃の範囲の温水に1分以上浸漬することが好ましい。処理の安定化のためには、3分以上浸漬することが好ましい。
 以上の手順により、本発明の接触検知センサを作製することができる。アルミナを主成分とする微細凹凸構造は非常に簡単な方法で得ることができ、既述の特許文献2のようなインプリント法を用いる場合と異なり、レジスト硬化のための活性エネルギー線の照射を必要としないため、基材に光透過性を要求せず、幅広い材料から用途に応じて適宜選択することができる。ここで、微細凹凸構造膜における所定波長λに対する反射率を4%より大きく形成するためには、微細凹凸構造を構成する物質の屈折率よりも大きな屈折率を持つ中間層を1層以上、その光路長が着目する波長λに対しλ/20以上になるような膜厚で形成するのが好ましい。さらには、中間層の光路長が着目する波長に対しλ/4程度になるような膜厚で形成するのが好ましい。アルミナの水和物の屈折率は可視光領域でおおよそ1.6程度であるので、中間層の屈折率は1.6より大きいことが好ましい。
 上述の構成の接触検知センサを用いた接触検知方法は、接触検知センサの微細凹凸構造が変化した領域を、接触検知センサからの散乱光、反射光または透過光を測定することにより検知して接触の有無を識別する方法である。基材が透明である場合には、散乱光、反射光または透過光を測定することで接触の有無を識別でき、基材が不透明である場合には、散乱光もしくは反射光を測定することで接触の有無を識別することができる。ヒトの目視による検出も可能であるが、反射率変化が小さい場合、あるいは微小領域の変化である場合には、目視で確認することが困難な場合もある。
 目視で確認することが困難な場合には、反射率は、膜厚測定器により測定することができる。その他、顕微分光法による反射率測定を行ってもよい。また、1つ以上の波長からなる光源を照射し、位置に対する反射率のマップを取得しても良い。
 例えば、波長650nmのLED光源を拡散させ、接触検知センサに照射し、デジタルカメラなどの結像系で光センサに受光させ、画素の輝度分布を取得する。接触があったかどうか、あるいは接触がどの部分であったかは、接触があった部分の輝度が増加することからその有無を検出することができる。なお、照射する波長は、650nmに限るものではなく、接触前後で反射率差の大きい波長を予め調べておき、反射率差の大きい波長を用いることが望ましい。
 また、1つ以上の波長からなる光を照射し、位置に対する散乱強度のマップを取得しても良い。例えば、波長405nmのUVレーザ光のコリメート光を45°の入射角で接触検知センサに照射し、接触検知センサの直上でデジタルカメラなどの結像系で光センサに受光させ、画素の輝度分布を取得する。接触前後でセンサの微細凹凸構造膜の構造が変化するために散乱光強度が増加し、微細凹凸が破壊された部分の輝度が増加することで接触の有無および接触箇所の分布を検出することができる。
 入射角および結像系の角度は上記の角度に限らず、適宜設定することができる。散乱光の変化を測定する場合には、散乱光強度を増加させることができるため550nm以下の短い波長を用いることが望ましい。
 接触検知センサは、接触したか否かを非可逆的に記録することができるため、光学部品(光学フィルム等)や電子部品(半導体素子等)の製造において、これら部品に接触する製造装置の部材の平滑性、平行性等を評価する手段、機械衝撃解析用部材として用いることができる。
 また、セキュリティ用封印などにも使用することができ、封書や保管用ケースなどに貼付し、第三者の接触の有無を検知する際にも利用することができる。
 以下、本発明の実施例の接触検知センサについてその製造方法を説明する。
[実施例1]
 基材としてS-BSL7ガラス基板(25mm角、厚さ2.5mm)を用いた。まず、ガラス基板の表面に光学干渉層となる中間層を成膜した。中間層としてZrO層を100nm電子線蒸着により成膜した。この中間層により微細凹凸構造破壊時の反射率変化をより視認しやすくすることができる。次いでAl層80nmを同様に電子線蒸着により成膜した。
 その後、ZrO層およびAl層が成膜された基材を70℃の温水に15分間浸漬すると、最表層のアルミナ薄膜はアルミニウム水酸化物となり、微細な板状結晶による凹凸構造が得られた。
 作製された接触検知センサの表面をコットンで0.2グラム重/mmの力で拭いた(擦った)。この擦りの前後について、それぞれの反射率の波長依存性を測定した。結果を図5に示す。図5において、こすり前の反射率は実線、擦り後の反射率は破線で示されている。分光特性が擦り前後で大きく変化していることが明らかである。擦りにより反射率が大きく増加する450nm~530nmの波長が接触の有無を測定するための波長として好適である。
[実施例2]
 基材としてA4300フィルム(東洋紡)(50mm角、厚さ75μm)を用い、実施例1と同様に電子線蒸着を用いてZrO層100nm、次いでAl層80nmを電子線蒸着により成膜した。その後、成膜した基材を70℃の温水に15分間浸漬すると、最表層のアルミナ薄膜はアルミニウム水酸化物となり、微細な板状結晶による凹凸構造が得られた。
 作製された接触検知センサの表面をコットンで0.2グラム重/mmの力で擦り、この擦りの前後について、反射率の波長依存性を測定した。その結果、実施例1と同様の反射率変化が認められた。
[実施例3]
 基材としてSi基板(直径50.4mm、厚さ2.5mm)を用いた。Si基板の表面にAl層60nmをRFスパッタリングにより成膜した。その後、成膜した基材を80℃の温水に10分間浸漬すると、最表層のアルミナ薄膜はアルミニウム水酸化物となり、微細な板状結晶による凹凸構造が得られた。
 作製された接触検知センサの表面をコットンで0.2グラム重/mmの力で擦り、この擦りの前後について、反射率の波長依存性を測定した。その結果、実施例1と同様の反射率変化が認められた。

Claims (4)

  1.  基材と、該基材の表面に形成された微細凹凸構造膜とからなり、
     前記微細凹凸構造膜が、アルミナの水和物を主成分とする材料からなるものであり、
     前記微細凹凸構造膜の表面側から入射した可視光域の所定波長に対する反射率が4%以上である接触検知センサ。
  2.  前記基材と前記微細凹凸構造膜との間に光学干渉層となる中間層を備えている請求項1記載の接触検知センサ。
  3.  前記基材が不透明な材料からなるものである請求項1または2記載の接触検知センサ。
  4.  請求項1~3いずれか1項に示す接触検知センサに圧力が加わることによって前記微細凹凸構造が変化した領域を、接触検知センサからの散乱光、反射光または透過光を測定することにより検知して接触の有無を識別する接触検知方法。
PCT/JP2015/001356 2014-03-24 2015-03-12 接触検知センサおよび接触検知方法 WO2015146035A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-059544 2014-03-24
JP2014059544A JP2015184404A (ja) 2014-03-24 2014-03-24 接触検知センサおよび接触検知方法

Publications (1)

Publication Number Publication Date
WO2015146035A1 true WO2015146035A1 (ja) 2015-10-01

Family

ID=54194589

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001356 WO2015146035A1 (ja) 2014-03-24 2015-03-12 接触検知センサおよび接触検知方法

Country Status (2)

Country Link
JP (1) JP2015184404A (ja)
WO (1) WO2015146035A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740081A (zh) * 2018-09-27 2021-04-30 富士胶片株式会社 防反射膜、光学元件、防反射膜的制造方法及微细凹凸结构的形成方法
CN115335089A (zh) * 2020-03-25 2022-11-11 本田技研工业株式会社 功能性材料及其制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7348025B2 (ja) * 2019-10-24 2023-09-20 株式会社日立製作所 検査システム及び検査方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525819A (ja) * 2004-12-29 2008-07-17 スリーエム イノベイティブ プロパティズ カンパニー 圧力指示構造体
JP2009156713A (ja) * 2007-12-26 2009-07-16 Kyodo Printing Co Ltd 接触インジケータ
JP2009222512A (ja) * 2008-03-14 2009-10-01 Hitachi Chem Co Ltd 光学フィルム及びその製造方法
JP2009257946A (ja) * 2008-04-17 2009-11-05 Mitsubishi Rayon Co Ltd 圧力センサおよび圧力検知方法
JP2013228728A (ja) * 2012-03-29 2013-11-07 Canon Inc 光学用部材およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008525819A (ja) * 2004-12-29 2008-07-17 スリーエム イノベイティブ プロパティズ カンパニー 圧力指示構造体
JP2009156713A (ja) * 2007-12-26 2009-07-16 Kyodo Printing Co Ltd 接触インジケータ
JP2009222512A (ja) * 2008-03-14 2009-10-01 Hitachi Chem Co Ltd 光学フィルム及びその製造方法
JP2009257946A (ja) * 2008-04-17 2009-11-05 Mitsubishi Rayon Co Ltd 圧力センサおよび圧力検知方法
JP2013228728A (ja) * 2012-03-29 2013-11-07 Canon Inc 光学用部材およびその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112740081A (zh) * 2018-09-27 2021-04-30 富士胶片株式会社 防反射膜、光学元件、防反射膜的制造方法及微细凹凸结构的形成方法
CN115335089A (zh) * 2020-03-25 2022-11-11 本田技研工业株式会社 功能性材料及其制造方法

Also Published As

Publication number Publication date
JP2015184404A (ja) 2015-10-22

Similar Documents

Publication Publication Date Title
WO2018045813A1 (zh) 一种纹路识别器件及电子设备
JP6059695B2 (ja) 光学体の製造方法
WO2015146035A1 (ja) 接触検知センサおよび接触検知方法
CA2699277C (en) Optical device, laminate and labeled article
US11584151B2 (en) Information display medium and manufacturing method relating thereto
KR102535492B1 (ko) 표시체, 및 표시체의 관찰 방법
CN109471284B (zh) 其中嵌入有光学图像传感器的平板显示器
TW201721492A (zh) 三明治式指紋辨識裝置
US9291756B2 (en) Filter
WO2022071397A1 (ja) 光学フィルムおよび光学フィルムの製造方法
US20160146976A1 (en) Substrate with moth eye structures and method of manufacturing thereof
JP2012021936A (ja) 光導波路型センサチップおよび光導波路型センサ
WO2016021516A1 (ja) 局在型表面プラズモン共鳴センシングチップおよび局在型表面プラズモン共鳴センシングシステム
JP2007024870A (ja) センサ、センシング装置、及びセンシング方法
JP7163303B2 (ja) 映像表示装置、ワイヤグリッド偏光板及びその製造方法、ワイヤグリッド偏光板の観測方法、並びに、ワイヤグリッド偏光板の偏光軸方向の推定方法
JP2014016221A (ja) 光電場増強デバイスおよびその製造方法
WO2017115695A1 (ja) 光学部材、及び、反射防止部材の欠陥検査方法
KR101075718B1 (ko) 광 회절 패턴이 적용된 보안 카드
JP2011163839A (ja) 基板の検査方法及び基板の検査装置
US10585213B2 (en) Optical element and display device
US20160070043A1 (en) Structured polarizer and method for manufacturing the same
JP2005134666A (ja) フォトマスク及び映像デバイスの製造方法
JP2017223786A (ja) 表示体およびその製造方法
TW202136755A (zh) 機能膜之檢查方法、檢查系統及素材捲筒
JP6130718B2 (ja) 光透過性導電性フィルムのパターニング段差の評価方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768872

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15768872

Country of ref document: EP

Kind code of ref document: A1