WO2015145928A1 - Manufacturing method, machining device, and drill - Google Patents

Manufacturing method, machining device, and drill Download PDF

Info

Publication number
WO2015145928A1
WO2015145928A1 PCT/JP2015/000346 JP2015000346W WO2015145928A1 WO 2015145928 A1 WO2015145928 A1 WO 2015145928A1 JP 2015000346 W JP2015000346 W JP 2015000346W WO 2015145928 A1 WO2015145928 A1 WO 2015145928A1
Authority
WO
WIPO (PCT)
Prior art keywords
drill
hole
tip
axial direction
relative position
Prior art date
Application number
PCT/JP2015/000346
Other languages
French (fr)
Japanese (ja)
Inventor
平澤 洋一
Original Assignee
平田機工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 平田機工株式会社 filed Critical 平田機工株式会社
Priority to CN201580014980.3A priority Critical patent/CN106232274B/en
Publication of WO2015145928A1 publication Critical patent/WO2015145928A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B35/00Methods for boring or drilling, or for working essentially requiring the use of boring or drilling machines; Use of auxiliary equipment in connection with such methods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/009Stepped drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/10Bits for countersinking
    • B23B51/108Bits for countersinking having a centering drill
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2260/00Details of constructional elements
    • B23B2260/004Adjustable elements

Definitions

  • the present invention relates to a technique for forming a hole in a workpiece.
  • Patent Documents 1 to 3 have been proposed as a method of machining holes having different diameters into a workpiece.
  • Patent Document 1 discloses a method of machining a stepped hole using a plurality of types of stepped drills.
  • Patent Documents 2 and 3 disclose a method of machining a hole with a drill having a plurality of blades having different diameters.
  • Patent Document 1 Since the method of Patent Document 1 requires exchanging a drill, the processing time may be long. Since the methods of Patent Documents 2 and 3 are drills in which a plurality of blades having different diameters are integrally formed, if the depth of the hole is different, recombination of the drill is required, and the drill must also be replaced. It becomes.
  • An object of the present invention is to manufacture a holed part without exchanging a drill when machining holes having different diameters.
  • the manufacturing method which manufactures components with a hole by forming two types of holes with a cutting tool with respect to a workpiece
  • work Comprising:
  • the said cutting tool is the 1st which forms a 1st hole.
  • a second drill that forms a second hole having a diameter larger than that of the first hole, and the second drill is provided coaxially around the first drill.
  • the first drill and the second drill are slidable in the axial direction so that their relative positions change, and the manufacturing method includes the first drill and the second drill. With the relative position with respect to the drill adjusted to the first relative position where the tip of the first drill protrudes from the tip of the second drill, the first hole is formed in the workpiece by the first drill.
  • a phase of the first drill and the second drill The position of the first drill from the tip of the second drill is compared with the position of the first drill when the tip of the first drill is housed in the second drill or compared to the first relative position.
  • a second machining step for forming the second hole in the workpiece by the drill of (2).
  • the cutting tool includes a first drill for forming a first hole, A second drill that forms a second hole having a diameter larger than that of the first hole, the second drill being provided coaxially around the first drill, and the first drill
  • the first drill and the second drill are slidable in the axial direction so that their relative positions change, and the manufacturing method includes relative positions of the first drill and the second drill.
  • the first drill forms the first hole in the workpiece by the first drill in a state where the tip of the first drill is adjusted to the first relative position protruding from the tip of the second drill.
  • the relative position between the first drill and the second drill An adjustment step of adjusting the second relative position in which the amount of protrusion of the tip of the first drill from the tip of the second drill is small compared to the first relative position; and the first drill and the In a state where the relative position to the second drill is adjusted to the second relative position, the second drill forms the second hole concentric with the first hole, and the stepped hole is And a second processing step to be formed.
  • a processing unit that rotationally drives the cutting tool, and a moving unit that can move the processing unit in an axial direction of the cutting tool, and the cutting tool forms a first hole.
  • a second drill that forms a second hole larger in diameter than the first hole, wherein the second drill is coaxially around the first drill.
  • the first drill and the second drill are slidable in the axial direction so that their relative positions change, and the processing unit includes the first drill and the second drill.
  • a processing apparatus comprising a relative movement mechanism that changes a relative position of the second drill in the axial direction.
  • the drill is disposed inside a predetermined drill, and is formed on one end side in the axial direction, fixed on the processing apparatus, and formed on the other end side in the axial direction.
  • a drill comprising: a blade portion for machining a hole; and a guide portion formed between the mounting portion and the blade portion for guiding the axial movement of the predetermined drill. Is done.
  • the drill is disposed outside a predetermined drill, and is formed on an axially extending through hole through which the predetermined drill is inserted, and one end in the axial direction, and is fixed to a processing apparatus.
  • a drill characterized by comprising a mounting portion and a blade portion that is formed on the other end side in the axial direction and that forms a hole in a workpiece.
  • FIG. 1 is a schematic diagram of a processing system according to an embodiment of the present invention.
  • 2A to 2D are explanatory views of a cutting tool.
  • the perspective view of the processing apparatus which concerns on one Embodiment of this invention.
  • FIG. 6A is an explanatory diagram of an example of detecting a tip of a cutting tool
  • FIG. 6B is a block diagram of a control unit.
  • 7A and 7B are explanatory diagrams of processing examples.
  • 8A and 8B are explanatory diagrams of processing examples.
  • 10A to 10F are explanatory diagrams of other processing examples.
  • 11A to 11F are explanatory diagrams of other processing examples.
  • 12A to 12D are explanatory diagrams of other processing examples.
  • 13A to 13F are explanatory views of other processing examples.
  • X and Y indicate horizontal directions orthogonal to each other, and Z indicates the vertical direction.
  • FIG. 1 is a schematic diagram of a processing system 100 according to an embodiment of the present invention.
  • the processing system 100 is a system for manufacturing a part with a hole by forming a hole in the workpiece W with the cutting tool T, and includes a processing device 1 and a moving device 101 that moves the processing device 1.
  • the workpiece W is a laminate of a plate-like member W1 and a plate-like member W2, and is prepared in a horizontal posture.
  • Various workpieces can be targeted as the workpiece for forming the hole.
  • steel plates, building material panels, structural steel materials or wood, cylinder blocks and cylinder heads of engines, and the like can be given.
  • the moving device 101 includes a pair of column portions 101b and a beam portion 101a installed between the pair of column portions 101b, and the pair of column portions 101b moves along the rail 101c on the rail 101c extending in the Y direction. It is possible.
  • a plurality of processing devices 1 are supported on the beam portion 101a, and the plurality of processing devices 1 can be moved horizontally simultaneously by moving a pair of support columns 101b on the rail 101c. The hole can be processed at the same time in the region.
  • Each processing apparatus 1 may be provided so as to be slidable along the longitudinal direction (X direction in FIG. 1) of the beam portion 101a. Thereby, each separation distance between the processing apparatuses 1 can be set to an arbitrary value.
  • the moving device 101 is a gantry-type robot having a linear motion mechanism that moves a plurality of processing devices 1 simultaneously.
  • the moving device 101 is provided for each processing device 1 and the processing device 1 is three-dimensionally provided.
  • the robot may be an articulated arm type robot that moves in a moving manner.
  • FIGS. 2A to 2D The configuration of the cutting tool T will be described with reference to FIGS. 2A to 2D.
  • 2A is a front view of the cutting tool T
  • FIG. 2B is an enlarged view of a tip side portion of the cutting tool T
  • FIG. 2C is a cross-sectional view taken along the line II in FIG. 2B
  • the cutting tool T is configured by combining two types of drills T1 and T2 having different hole diameters that can be cut.
  • the drill T1 and the drill T2 are in a relationship in which the drill T1 is disposed inside the drill T2 and the drill T2 is disposed outside the drill T1.
  • Drill T1 is a drill that forms a relatively small diameter hole.
  • the drill T1 is a cylindrical member as a whole, and includes a blade portion T11, a mounting portion T12, and a guide portion T13.
  • the blade portion T11 is a portion of the blade that is formed over a certain range from the tip T1a on the front side of the drill T1 and forms a hole in the workpiece W.
  • the tip T1a referred to here means a flank portion at the tip of the drill.
  • the mounting portion T12 is a portion fixed to the processing apparatus 1, and is formed over a certain range from the rear end on the rear side of the drill T1.
  • the drill T1 is fixed to the processing apparatus 1 so that the axial direction thereof is the Z direction, and the tip T1a is positioned at the lower end of the drill T1 during use.
  • the guide portion T13 is formed between the blade portion T11 and the mounting portion T12 and guides the axial movement of the drill T2.
  • the mounting portion T12 and the guide portion T13 have a cylindrical shape with the same diameter, but other shapes (for example, polygons) may be used, and the mounting portion T12 and the guide portion T13 are provided. It may have a cylindrical shape with a different diameter or may have a different shape.
  • Drill T2 is a drill that forms a relatively large diameter hole.
  • the drill T2 is a cylindrical member as a whole, and includes a blade portion T21, a mounting portion T22, and a through hole T23.
  • the blade portion T21 is a portion of the blade that is formed over a certain range from the tip T2a on the front side of the drill T2 and forms a hole in the workpiece W.
  • the tip T2a referred to here means a flank portion at the tip of the drill.
  • the mounting portion T22 is a portion fixed to the processing apparatus 1 and is formed over a certain range from the rear end on the rear side of the drill T2. In the case of this embodiment, the blade part T21 and the mounting part T22 are each formed about half of the total length of the drill T2.
  • the through hole T23 is formed to extend in the axial direction of the drill T2, and penetrates the drill T2 in the axial direction.
  • the drill T2 is fixed to the processing apparatus 1 so that the axial direction thereof is the Z direction, and the tip T2a is positioned at the lower end of the drill T2 during use.
  • the drill T1 is inserted into the through hole T23, and the drill T1 and the drill T2 are provided coaxially so that the drill T2 surrounds the drill T1.
  • the through hole T23 has a hole diameter slightly larger than the outer diameters of the blade part T11 and the guide part T13 of the drill T1.
  • the guide portion T13 and the through hole T23 are in a relationship for guiding the movement in the axial direction of each other.
  • the drill T1 and the drill T2 are slidable in the axial direction so that their relative positions change. As a result, the protruding amount L of the tip T1a of the drill T1 protruding from the tip T2a of the drill T2 can be changed from 0 to a predetermined amount.
  • the peripheral surface of the blade portion T11 of the drill T1 is exposed, and L> the protruding length of the tip portion where the flank surface is formed.
  • L the protruding length of the tip portion where the flank surface is formed.
  • FIG. 3 is a perspective view of the processing apparatus 1 with the cutting tool T mounted
  • FIG. 4 is an exploded perspective view of the processing apparatus 1 with the cutting tool T mounted
  • 5 is a cross-sectional view taken along line III-III in FIG.
  • FIG. 6A is an explanatory diagram of an example of detecting the tip of the cutting tool T.
  • the processing apparatus 1 includes a drive unit 2, a moving unit 3, a multi-function unit 4, and a support unit 5.
  • the drive unit 2 includes a drive mechanism 21, a drill support unit 22, a drill support unit 23, and a relative movement mechanism 24.
  • the drive mechanism 21 outputs a driving force for rotationally driving the cutting tool T.
  • the drive mechanism 21 includes a drive source such as an electric motor, for example, and may be provided with a speed reducer that decelerates the output of the drive source as necessary.
  • a motor capable of speed control is employed, and speed control is performed so as to obtain an optimum processing speed according to the material of the cutting tool T and the workpiece W to be processed.
  • the drill support unit 22 is a unit that supports the drill T1.
  • the drill support unit 22 includes a rotation member 221 and a rotation support member 222 that supports the rotation member 221 so as to be rotatable about the Z axis.
  • the rotation support member 222 is a cylindrical member, and the rotation member 221 is inserted into the internal space of the rotation support member 222.
  • the rotating member 221 includes a connecting portion 221a, a mounting portion 221b, and an engaging portion 221c.
  • the connecting portion 221a is provided at one end (upper side) in the axial direction of the drill T1 (Z direction; the same applies hereinafter).
  • the output shaft of the drive mechanism 21 is connected to the connecting portion 221a, and the rotational force of the drive mechanism 21 is transmitted. Thereby, the rotating member 221 rotates around the Z axis.
  • the mounting portion 221b is provided at the other end (lower side) in the axial direction of the drill T1.
  • the mounting part 221b includes a chuck for fixing the mounting part T12 of the drill T1, and the drill T1 is detachably attached to the mounting part 221b.
  • the engaging portion 221c is provided at a position between the connecting portion 221a and the mounting portion 221b. As will be described later, the engaging portion 221c engages with the engaging portion 231a of the rotating member 231, and transmits the rotational force of the drive mechanism 21 to the rotating member 231.
  • the drill support unit 23 is a unit that supports the drill T2.
  • the drill support unit 23 includes a rotation member 231 and a rotation support member 232 that supports the rotation member 231 so as to be rotatable around the Z axis.
  • the rotation support member 232 is a cylindrical member, and includes a cylindrical cylindrical body portion 232a and a flange portion 232b provided at the other end portion (lower end portion in FIG. 4) of the cylindrical body portion 232a.
  • the rotating member 231 is inserted into the internal space of the cylindrical portion 232a.
  • the rotating member 231 includes an engaging portion 231a and a mounting portion 231b.
  • the engaging portion 231a is provided at one end (upper side) in the axial direction (Z direction, hereinafter the same) of the drill T2.
  • the engaging portion 231a is an opening opened at the upper end surface of the rotating member 231. Is formed.
  • the mounting portion 231b is provided at the other end (lower side) in the axial direction of the drill T2.
  • the mounting portion 231b includes a chuck for fixing the mounting portion T22 of the drill T2, and the drill T2 is detachably attached to the mounting portion 231b.
  • the side of the mounting portion 231b of the rotating member 231 is inserted into the internal space of the cylindrical portion 232a.
  • the rotating member 231 is rotated by the rotational force transmitted from the rotating member 221.
  • the transmission of the rotational force is performed by the engagement between the engaging portion 221c of the rotating member 221 and the engaging portion 231a of the rotating member 231.
  • the rotating member 221 and the rotating member 231 are arranged coaxially.
  • the engaging portion 221c has a substantially quadrangular cross-sectional shape
  • the engaging portion 231a has an opening having substantially the same shape as the engaging portion 221c
  • the engaging portion 221c is Are inserted into and engaged with the engaging portion 231a, and both are in a fitting (clearance fitting) relationship.
  • the relative movement mechanism 24 is a mechanism that relatively moves the rotating member 221 and the rotating member 231 in the Z direction. In the present embodiment, the rotating member 231 side is moved. By relatively moving the rotating member 221 and the rotating member 231, the relative position in the axial direction between the drill T ⁇ b> 1 and the drill T ⁇ b> 2 can be changed, and thus the protrusion amount L described above can be changed.
  • the relative movement mechanism 24 includes a support portion 241 and moving portions 242 and 242 that move the support portion 241 in the Z direction.
  • the support portion 241 is a member that fixes the rotation support member 232, and supports the rotation member 231 via the rotation support member 232 in a freely rotatable manner.
  • the support part 241 includes a support member 241a and a support member 241b that are coupled to each other.
  • the support member 241a includes a recess 241a ′ in which the rotation support member 232 is mounted and a defining portion 241a ′′ that defines the rotation support member 232 in the mounting position in the axial direction.
  • the support member 241b is mounted on the rotation support member 232.
  • the rotation support member 232 is fixed so that the rotation support member 232 is sandwiched between the recesses 241a ′ and 241b ′, and the flange portion 232b is defined by the defining portion 241a ′′ to define the axial position. To do.
  • the moving parts 242 and 242 are moving mechanisms that move the support part 241 in the Z direction.
  • the moving part 242 is an actuator such as an electric cylinder, and is a mechanism for moving the rod 242a extending in the Z direction back and forth in the Z direction.
  • a support portion 241 is connected to the lower end of the rod 242a, and the support portion 241 is moved (lifted / lowered) in the Z direction by synchronously driving the two moving portions 242 to adjust the position of the drill T2 in the Z direction.
  • the propulsive force at the time of drilling with the drill T2 can be optimally controlled.
  • sliders 241c and 241c that engage with rail portions 53 and 53 described later are provided on the back surface of the support member 241a.
  • the support unit 5 is a unit that supports the processing unit 2 and the multifunction unit 4.
  • the support unit 5 includes a base member 50, a support part 51, support parts 52 and 52, rail parts 53 and 53, and a rail part 54.
  • the base member 50 is a plate-like member, and a support portion 51, support portions 52 and 52, rail portions 53 and 53, and a rail portion 54 are fixed to one surface thereof.
  • the support part 51 supports the drive mechanism 21.
  • the support parts 52 and 52 support the moving parts 242 and 242, respectively. Thereby, the relative movement mechanism 24 is supported by the support unit 5.
  • the rail parts 53 and 53 are extended in the Z direction, and guide the movement of the sliders 241c and 241c in the Z direction. Thereby, the support part 241 can be moved up and down smoothly in the Z direction.
  • the rail portion 54 extends in the Z direction and engages with the slider 41 of the multi-function unit 4 to guide the movement of the multi-function unit 4 in the Z direction.
  • a stopper (not shown) that restricts the amount of the descent is provided.
  • the moving unit 3 is a mechanism for moving the support unit 5 in the Z direction. By moving the support unit 5 in the Z direction, the processing unit 2 and the multi-function unit 4 are moved in the Z direction. By lowering the processing unit 2, the cutting tool T can be brought into contact with the workpiece W and processed.
  • the moving unit 3 includes a moving body 31 and a support column 32.
  • the support column 32 incorporates a mechanism for moving the moving body 31 in the Z direction.
  • a mechanism can be composed of, for example, a drive source such as an electric motor and a transmission mechanism (for example, a ball screw mechanism or a belt transmission mechanism) that transmits the driving force of the drive source to the moving body 31.
  • the drive source in the present embodiment employs a servo motor including an encoder, and can control the movement of the moving body 31 to an arbitrary position.
  • the support unit 5 is fixed to the movable body 31, and the support unit 5 is moved by the movement of the movable body 31, the drill T1 is adjusted to a predetermined position in the Z direction, and the propulsive force at the time of drilling by the drill T1 is optimally controlled. can do.
  • the multi-function unit 4 surrounds the portion to be machined in the workpiece W and functions as a suction space forming unit that forms an internal space that is sucked by negative pressure, and detection for detecting the tip position of the cutting tool T with respect to the workpiece W It has a function as a unit.
  • the multi-function unit 4 includes a slider 41, a main unit 42, and a connection mechanism 43. As described above, the slider 41 engages with the rail portion 54 and is slidable in the Z direction, and the multi-function unit 4 is supported by the rail portion 54 so as to be slidable in the Z direction.
  • the connection mechanism 43 is a hinge mechanism that movably connects the main body unit 42 including the suction space forming unit to the slider 41.
  • a contact portion 44 described later is configured to be movable between a work position on the machining axis and a retracted position separated from the machining axis. Specifically, the entire body unit 42 including the contact portion 44 is rotated between the working position and the retracted position around the rotation shaft 43 a of the connection mechanism 43. Thereby, in the case of maintenance of the machining unit 2 or the main body unit 42 (in the case of the present embodiment, each drill is replaced), the abutting portion 44 is moved to the retracted position, thereby improving the drill exchanging workability. improves.
  • the multi-function unit 5 includes a hollow contact portion 44, a hollow intermediate portion 422, and a hollow duct portion 423 as a configuration as a suction space forming unit, and these internal spaces communicate with each other.
  • the abutting portion 44 has a box shape with the lower part opened so as to surround the periphery of the machining part of the cutting tool T with respect to the work W, and the lower surface thereof contacts the upper surface of the work W. Touch.
  • the contact portion 44 also functions as a suction space forming portion that forms the internal space 421 that is sucked by negative pressure. Openings 44 a and 44 b through which the cutting tool T can pass are formed in the upper wall and the bottom wall of the contact portion 44.
  • a suction device such as a pump is connected to the upper end portion of the duct portion 423 via a hose (not shown).
  • the internal space of the suction space forming part 421 is sucked with a negative pressure by driving the suction device. Thereby, the processing waste generated in the processing work by the cutting tool T can be discharged to the outside, and the work site can be kept clean.
  • the multi-function unit 5 includes a contact portion 44 and a sensor 45 as a configuration as a detection unit.
  • the sensor 45 is a sensor that detects the tip of the cutting tool T.
  • the sensor 45 is an optical sensor that includes a light emitting element 45a and a light receiving element 45b.
  • the light emitting element 45a and the light receiving element 45b are provided on the upper wall of the contact portion 44 so as to sandwich the opening 44a.
  • the support unit 5 is lowered by the moving unit 3 from a state where the cutting tool T and the contact portion 44 are both separated above the workpiece W as shown in the state S1.
  • the machining unit 2 and the multi-function unit 5 are lowered, and first, as shown in the state S ⁇ b> 2, the contact portion 44 contacts (lands) the upper surface of the workpiece W. Since the dimension of the contact part 44 is known, the height H from the upper surface of the workpiece W to the detection position S of the sensor 45 is also a known height.
  • the machining unit 2 is further lowered.
  • the tip of the cutting tool T (here, the tip of the drill T1) passes through the detection position S as shown in the state S3.
  • the distance between the cutting tool T and the workpiece W can be calculated from the amount of lowering of the support unit 5 after the tip of the cutting tool T is detected by the sensor 45, and the depth of the hole to be processed is controlled. Can do.
  • FIG. 6B is a block diagram of the control unit 6 of the processing apparatus 1. In the case of this embodiment, the control unit 6 controls the entire processing system 100.
  • the control unit 6 includes a processing unit 61 such as a CPU, a storage unit 62 such as a RAM and a ROM, and an interface unit 63 that interfaces the input device 65 and the output device 64 constituting the external device with the processing unit 61. .
  • the interface unit 63 also includes a communication interface that performs communication with the host computer.
  • the host computer is, for example, a computer that controls the entire manufacturing facility in which the processing system 100 is arranged.
  • the processing unit 61 executes a program stored in the storage unit 62, and controls the output device 64 based on information input from the input device 65 (for example, a sensor detection result) and an instruction from the host computer.
  • the input device 65 includes, for example, a sensor 45 and the like.
  • the output device 64 includes, for example, a drive source of the drive mechanism 21, each drive source such as the moving unit 242 and the moving unit 3. And the process part 61 controls the propulsive force by the rotational speed and rotational force of the motor used as each drive source.
  • FIG. 7 to 9 illustrate a case where a stepped hole is formed on the workpiece W by the cutting tool T to manufacture a part with a hole. Briefly, a small-diameter hole is first formed by the drill T1, and then a concentric large-diameter hole is formed around the small-diameter hole by the drill T2. Meanwhile, the relative positions of the drill T1 and the drill T2 are adjusted. Details will be described below.
  • the relative position of the drill T1 and the drill T2 is adjusted by the relative movement mechanism 24 so that the protrusion amount L corresponds to the depth of the small-diameter hole.
  • the support unit 5 is lowered by the moving unit 3 and the machining unit 2 and the multi-function unit 4 are lowered.
  • the driving mechanism 21 is driven to rotate the cutting tool T, and the processing unit 2 is further lowered.
  • FIG. 7A a hole is formed in the workpiece W by the drill T1 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T1.
  • the support unit 5 When the tip T1a of the drill T1 reaches a predetermined depth, the support unit 5 is raised, and the cutting tool T is temporarily retracted from the workpiece W as shown in FIG. 7B.
  • a hole h1 is formed in the workpiece W.
  • the hole h1 is a hole that penetrates the workpiece W1 and reaches the upper portion of the workpiece W2.
  • the relative positions of the drill T1 and the drill T2 are adjusted. Assuming that the amount of protrusion at the time of processing the small-diameter hole shown in FIG. 7A is La, the amount of protrusion Lb after the relative position adjustment is different from the amount of La.
  • the protrusion amount Lb selected within the range of 0 ⁇ Lb ⁇ La can be set as a relative position where the protrusion amount Lb is smaller than the relative position when processing a small-diameter hole.
  • the adjustment of the relative position of the drill T1 and the drill T2 is performed by the relative movement mechanism 24.
  • the moving parts 242 and 242 are driven to lower the support part 241 and the relative position is adjusted so that Lb ⁇ La.
  • the relative position between the drill T1 and the drill T2 is adjusted to a relative position different from the relative position at the time of processing the small-diameter hole.
  • the adjustable relative position is a relative position between the relative position at the time of processing the small-diameter hole and the relative position where the tip T1a of the drill T1 is accommodated in the drill T2, and is a relative position where the protrusion amount L is small. Can do.
  • the support unit 5 is lowered by the moving unit 3, and the machining unit 2 is lowered again as shown in FIG. 8B.
  • a hole is formed in the workpiece W by the drill T2 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T2.
  • the tip T2a of the drill T2 reaches a predetermined depth, the support unit 5 is raised and the cutting tool T is retracted from the workpiece W as shown in FIG.
  • a stepped hole h including a hole h1 and a hole h2 is formed in the work W.
  • the relative positions of the drill T1 and the drill T2 can be changed, it is not necessary to replace the drill when manufacturing a holed part having holes with different diameters.
  • the relative position between the drill T1 and the drill T2 can be changed, it is not necessary to replace the drill when manufacturing a holed part having holes with different depths.
  • drilling can be performed with an optimum rotation speed and driving force according to the size of the drill T1 and the drill T2.
  • FIG. 10 shows an example in which a depression is formed in advance as a punch hole to form a stepped hole.
  • the relative positions of the drill T1 and the drill T2 are adjusted to a relative position suitable for formation of the recess.
  • the protruding amount L is L1
  • the tip T1a of the drill T1 is slightly protruding from the tip T2a of the drill T2.
  • the support unit 5 is lowered by the moving unit 3, and the tip T1a of the drill T1 is brought into contact with the surface of the workpiece W as shown in FIG. 10B.
  • the cutting tool T is preferably rotated.
  • the support unit 5 is raised and the cutting tool T is temporarily retracted from the workpiece W. As shown in FIG. 10C, a recess h0 is formed on the upper surface of the workpiece W. Next, in order to form a small-diameter hole with the drill T1, as shown in FIG. 10C, the relative positions of the drill T1 and the drill T2 are adjusted.
  • the protrusion amount L2 is a protrusion amount corresponding to the depth of the small-diameter hole, and has a relationship of L2> L1.
  • the drive mechanism 21 is driven, the cutting tool T is rotated, and the support unit 5 is lowered by the moving unit 3.
  • a hole is formed in the workpiece W by the drill T1 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T1.
  • the tip T1a of the drill T1 reaches a predetermined depth, the support unit 5 is raised, and the cutting tool T is retracted from the workpiece W as shown in FIG. 10E.
  • a hole h1 is formed in the workpiece W.
  • the relative positions of the drill T1 and the drill T2 are adjusted as shown in FIG. 10E.
  • the protrusion amount L is L3.
  • the relationship between L1, L2, and L3 is, for example, L1 ⁇ L2 ⁇ L3.
  • the support unit 5 is lowered by the moving unit 3, and the machining unit 2 is lowered again as shown in FIG. 10F. Thereby, a hole is formed in the workpiece W by the drill T2 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T2.
  • the tip T2a of the drill T2 reaches a predetermined depth, the support unit 5 is raised, and a hole similar to the stepped hole h shown in FIG. 9 is formed.
  • FIG. 11 is an explanatory diagram thereof.
  • FIG. 11 after forming a stepped hole by forming a depression as a punch hole in advance as in FIG. 10, a hole is drilled by the drill T ⁇ b> 1 and then a hole is drilled by the drill T ⁇ b> 2 to form a stepped hole.
  • An example is shown.
  • the relative positions of the drill T1 and the drill T2 are adjusted to a relative position suitable for formation of the recess.
  • the protruding amount L is L1
  • the tip T1a of the drill T1 is slightly protruding from the tip T2a of the drill T2.
  • the support unit 5 is lowered by the moving unit 3, and the tip T1a of the drill T1 is brought into contact with the surface of the workpiece W as shown in FIG. 11B.
  • the cutting tool T is preferably rotated.
  • the cutting tool T is temporarily retracted from the workpiece W. As shown in FIG. 11C, a recess h0 is formed on the upper surface of the workpiece W. Next, in order to form a small-diameter hole with the drill T1, as shown in FIG. 11C, the relative positions of the drill T1 and the drill T2 are adjusted.
  • the protrusion amount L2 is a protrusion amount corresponding to the depth of the small-diameter hole, and has a relationship of L2> L1.
  • the drive mechanism 21 is driven, the cutting tool T is rotated, and the support unit 5 is lowered by the moving unit 3.
  • a hole is formed in the workpiece W by the drill T1 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T1.
  • the drill T1 is not moved while the cutting tool T is rotated in order to continuously form holes with the drill T2 as shown in FIG. 11E.
  • the relative position of the drill T1 and the drill T2 is adjusted (without raising the support unit 5). That is, the moving unit 242 is moved to lower the drill T2.
  • the protrusion amount L is L3 '.
  • the relationship between L1, L2, and L3 ′ is, for example, L1 ⁇ L2 ⁇ L3 ′.
  • drilling is performed with a drill T2 while the support portion 241 is lowered by the moving portions 242, 242. Thereby, a hole is formed in the workpiece W by the drill T2 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T2.
  • the tip T2a of the drill T2 reaches a predetermined depth, the support unit 5 is raised, and a hole similar to the stepped hole h shown in FIG. 9 is formed.
  • FIG. 12A shows a stage where the machining of the small diameter hole h1 is completed by the drill T1, and the relative position between the drill T1 and the drill T2 is adjusted.
  • the protrusion amount L is L4.
  • the protrusion amount L4 is set to a value as large as possible within a range smaller than the depth of the hole h1, for example.
  • the support unit 5 is lowered by the moving unit 3, and first, the drill T1 is used as a hole insertion guide, and the drill T1 is inserted into the hole h1. Accordingly, naturally, the center of the drill T1 and the center of the hole h1 completely coincide. At this time, since the drill T1 and the drill T2 are provided concentrically, as a result, the center of the drill T2 and the center of the hole h1 completely coincide. Further, the inclination of the hole h1 with respect to the workpiece W and the inclination of the drill T1 with respect to the workpiece W are completely coincident with each other.
  • the drill T1 is used as a slide guide for the drill T2, and the protrusion L4 is gradually reduced.
  • the drill T2 is slid forward along the drill T1 while the drill T1 and the drill T2 are kept concentric, the center of the drill T2 and the center of the hole h1 are not shifted.
  • the hole drilling operation is performed at an optimum speed and driving force according to the size of the workpiece W and the drill T2.
  • the tip of the drill T2 can be applied to the upper opening of the hole h1 at an optimum speed and propulsive force while keeping the center of the drill T2 coincident with the center of the hole h1. .
  • the protrusion amount L4 is further reduced from the initially set protrusion amount L4 according to the cutting depth of the drill T2.
  • the hole h2 is gradually formed from the upper opening of the hole h1 toward the back of the hole by the drill T2, and stepped holes (the hole H1 and the hole h2) are formed.
  • the protrusion amount L 0.
  • a stepped hole can be formed in which the inclination of h1 and the inclination of the hole h2 with respect to the workpiece W are completely coincident.
  • FIG. 13 is an explanatory diagram thereof. It should be noted that the control in the above-described stepped hole processing example can be appropriately applied to processing two types of holes separated from each other. To do.
  • the protrusion amount L5 is a protrusion amount corresponding to the depth of the small-diameter hole.
  • the drive mechanism 21 is driven to rotate the cutting tool T and the support unit 5 is lowered by the moving unit 3.
  • a hole is formed in the workpiece W by the drill T1 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T1.
  • the tip T1a of the drill T1 reaches a predetermined depth, the support unit 5 is raised, and the cutting tool T is retracted from the workpiece W as shown in FIG. 13C.
  • a hole h11 is formed in the workpiece W.
  • the support unit 5 is lowered by the moving unit 3, and the machining unit 2 is lowered again as shown in FIG. 13D.
  • a hole is formed in the workpiece W by the drill T2 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T2.
  • the support unit 5 is raised.
  • a hole h12 having a different diameter is formed at a position different from the hole 11.
  • FIG. 13C and 13D show an example.
  • the processing device 1 After processing the hole h11, as shown in FIG. 13E, the processing device 1 is moved to the formation position of the large-diameter hole by the moving device 101, and the relative position between the drill T1 and the drill T2 is adjusted.
  • the protrusion amount L L6.
  • the protrusion amount L6 is, for example, L6 ⁇ L5, and can be set particularly to the extent that the tip T1a of the drill T1 is exposed.
  • the support unit 5 is lowered by the moving unit 3, and the machining unit 2 is lowered again as shown in FIG. 13F. Thereby, a hole is formed in the workpiece W by the drill T2 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T2. Since the tip T1a of the drill T1 protrudes from the tip T2a of the drill T2, more stable processing can be performed. When the tip T2a of the drill T2 reaches a predetermined depth, the support unit 5 is raised. A hole h12 having a different diameter is formed at a position different from the hole 11.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Drilling And Boring (AREA)
  • Drilling Tools (AREA)
  • Processing Of Stones Or Stones Resemblance Materials (AREA)
  • Numerical Control (AREA)

Abstract

This machining device is equipped with a machining unit for driving a cutting tool to rotate and a moving unit capable of moving the machining unit in the axial direction of the cutting tool. The cutting tool is equipped with a first drill for forming a first hole and a second drill for forming a second hole that is larger than the first hole. The second drill is coaxially disposed around the first drill, and the first drill and the second drill are enabled to slide in the axial direction so as to change the relative positions thereof. The machining unit is equipped with a relative movement mechanism for changing the relative positions of the first drill and the second drill in the axial direction.

Description

製造方法、加工装置及びドリルManufacturing method, processing apparatus and drill
 本発明はワークに穴を形成する技術に関する。 The present invention relates to a technique for forming a hole in a workpiece.
 径が異なる穴をワークに加工する方法として、例えば、特許文献1~3に開示された技術が提案されている。特許文献1には、複数種類の段付きのドリルを用いて段付き穴を加工する方法が開示されている。特許文献2及び3には径の異なる複数の刃を備えたドリルにより、穴を加工する方法が開示されている。 For example, the techniques disclosed in Patent Documents 1 to 3 have been proposed as a method of machining holes having different diameters into a workpiece. Patent Document 1 discloses a method of machining a stepped hole using a plurality of types of stepped drills. Patent Documents 2 and 3 disclose a method of machining a hole with a drill having a plurality of blades having different diameters.
特開2004-337997号公報JP 2004-337997 A 特開2006-082420号公報JP 2006-084220 A 特許第5151501号公報Japanese Patent No. 5151501
 特許文献1の方法は、ドリルの交換を必要とするため、加工時間が長くなる場合がある。特許文献2及び3の方法は、径の異なる複数の刃を一体に構成したドリルであるため、穴の深さ等が異なる場合には、ドリルの組み換えが必要とされ、やはりドリルの交換が必要となる。 Since the method of Patent Document 1 requires exchanging a drill, the processing time may be long. Since the methods of Patent Documents 2 and 3 are drills in which a plurality of blades having different diameters are integrally formed, if the depth of the hole is different, recombination of the drill is required, and the drill must also be replaced. It becomes.
 本発明の目的は、径の異なる穴を加工するに際して、ドリルを交換することなく、穴付きの部品を製造することにある。 An object of the present invention is to manufacture a holed part without exchanging a drill when machining holes having different diameters.
 本発明によれば、ワークに対して切削工具により二種類の穴を形成することで、穴付きの部品を製造する製造方法であって、前記切削工具が、第一の穴を形成する第一のドリルと、前記第一の穴よりも大径の第二の穴を形成する第二のドリルと、を備え、前記第二のドリルは、前記第一のドリルの周りに同軸上に設けられ、かつ、前記第一のドリルと前記第二のドリルとは、これらの相対位置が変化するように、軸方向にスライド自在であり、前記製造方法は、前記第一のドリルと前記第二のドリルとの相対位置が、第一のドリルの先端が第二のドリルの先端から突出した第一の相対位置に調整された状態で、前記第一のドリルにより、前記ワークに前記第一の穴を形成する第一の加工工程と、前記第一のドリルと前記第二のドリルとの相対位置を、前記第一のドリルの先端が前記第二のドリルに収容されているか、又は、前記第一の相対位置と比較して、前記第二のドリルの先端からの前記第一のドリルの先端の突出量が小さい第二の相対位置に調整する調整工程と、前記第一のドリルと前記第二のドリルとの相対位置が前記第二の相対位置に調整された状態で、前記第二のドリルにより、前記ワークに前記第二の穴を形成する第二の加工工程と、を備える、ことを特徴とする製造方法が提供される。 According to this invention, it is a manufacturing method which manufactures components with a hole by forming two types of holes with a cutting tool with respect to a workpiece | work, Comprising: The said cutting tool is the 1st which forms a 1st hole. And a second drill that forms a second hole having a diameter larger than that of the first hole, and the second drill is provided coaxially around the first drill. The first drill and the second drill are slidable in the axial direction so that their relative positions change, and the manufacturing method includes the first drill and the second drill. With the relative position with respect to the drill adjusted to the first relative position where the tip of the first drill protrudes from the tip of the second drill, the first hole is formed in the workpiece by the first drill. And a phase of the first drill and the second drill The position of the first drill from the tip of the second drill is compared with the position of the first drill when the tip of the first drill is housed in the second drill or compared to the first relative position. An adjustment step for adjusting the second protrusion to a small relative protrusion amount, and the second drill in a state in which the relative position between the first drill and the second drill is adjusted to the second relative position. And a second machining step for forming the second hole in the workpiece by the drill of (2).
 また、ワークに対して切削工具により段付き穴を形成することで、穴付きの部品を製造する製造方法であって、前記切削工具が、第一の穴を形成する第一のドリルと、前記第一の穴よりも大径の第二の穴を形成する第二のドリルと、を備え、前記第二のドリルは、前記第一のドリルの周りに同軸上に設けられ、かつ、前記第一のドリルと前記第二のドリルとは、これらの相対位置が変化するように、軸方向にスライド自在であり、前記製造方法は、前記第一のドリルと前記第二のドリルとの相対位置が、第一のドリルの先端が第二のドリルの先端から突出した第一の相対位置に調整された状態で、前記第一のドリルにより、前記ワークに前記第一の穴を形成する第一の加工工程と、前記第一のドリルと前記第二のドリルとの相対位置を、前記第一の相対位置と比較して、前記第二のドリルの先端からの前記第一のドリルの先端の突出量が小さい第二の相対位置に調整する調整工程と、前記第一のドリルと前記第二のドリルとの相対位置が前記第二の相対位置に調整された状態で、前記第二のドリルにより前記第一の穴と同心の前記第二の穴を形成し、前記段付き穴を形成する第二の加工工程と、を備える、ことを特徴とする製造方法が提供される。 Moreover, it is a manufacturing method which manufactures a part with a hole by forming a stepped hole with a cutting tool for a work, and the cutting tool includes a first drill for forming a first hole, A second drill that forms a second hole having a diameter larger than that of the first hole, the second drill being provided coaxially around the first drill, and the first drill The first drill and the second drill are slidable in the axial direction so that their relative positions change, and the manufacturing method includes relative positions of the first drill and the second drill. The first drill forms the first hole in the workpiece by the first drill in a state where the tip of the first drill is adjusted to the first relative position protruding from the tip of the second drill. And the relative position between the first drill and the second drill An adjustment step of adjusting the second relative position in which the amount of protrusion of the tip of the first drill from the tip of the second drill is small compared to the first relative position; and the first drill and the In a state where the relative position to the second drill is adjusted to the second relative position, the second drill forms the second hole concentric with the first hole, and the stepped hole is And a second processing step to be formed.
 また、本発明によれば、切削工具を回転駆動する加工ユニットと、前記加工ユニットを前記切削工具の軸方向に移動可能な移動ユニットと、を備え、前記切削工具は、第一の穴を形成する第一のドリルと、前記第一の穴よりも大径の第二の穴を形成する第二のドリルと、を備え、前記第二のドリルは、前記第一のドリルの周りに同軸上に設けられ、かつ、前記第一のドリルと前記第二のドリルとは、これらの相対位置が変化するように、軸方向にスライド自在であり、前記加工ユニットは、前記第一のドリルと前記第二のドリルとの前記軸方向の相対位置を変化させる相対移動機構を備える、ことを特徴とする加工装置が提供される。 According to the invention, there is further provided a processing unit that rotationally drives the cutting tool, and a moving unit that can move the processing unit in an axial direction of the cutting tool, and the cutting tool forms a first hole. And a second drill that forms a second hole larger in diameter than the first hole, wherein the second drill is coaxially around the first drill. And the first drill and the second drill are slidable in the axial direction so that their relative positions change, and the processing unit includes the first drill and the second drill. There is provided a processing apparatus comprising a relative movement mechanism that changes a relative position of the second drill in the axial direction.
 また、所定のドリルの内側に配設されるドリルであって、軸方向の一方端部側に形成され、加工装置に固定される装着部と、軸方向の他方端部側に形成され、ワークに穴を加工する刃部と、前記装着部と前記刃部との間に形成され、前記所定のドリルの軸方向の移動を案内する案内部と、を備える、ことを特徴とするドリルが提供される。 Further, the drill is disposed inside a predetermined drill, and is formed on one end side in the axial direction, fixed on the processing apparatus, and formed on the other end side in the axial direction. Provided with a drill comprising: a blade portion for machining a hole; and a guide portion formed between the mounting portion and the blade portion for guiding the axial movement of the predetermined drill. Is done.
 また、所定のドリルの外側に配設されるドリルであって、前記所定のドリルが挿通される軸方向に延びる貫通孔と、軸方向の一方端部側に形成され、加工装置に固定される装着部と、軸方向の他方端部側に形成され、ワークに穴を加工する刃部と、を備える、ことを特徴とするドリルが提供される。 Further, the drill is disposed outside a predetermined drill, and is formed on an axially extending through hole through which the predetermined drill is inserted, and one end in the axial direction, and is fixed to a processing apparatus. There is provided a drill characterized by comprising a mounting portion and a blade portion that is formed on the other end side in the axial direction and that forms a hole in a workpiece.
 本発明によれば、径の異なる穴を加工するに際して、ドリルを交換することなく、穴付きの部品を製造することができる。 According to the present invention, when machining holes with different diameters, it is possible to manufacture a part with a hole without replacing the drill.
本発明の一実施形態に係る加工システムの概略図。1 is a schematic diagram of a processing system according to an embodiment of the present invention. 図2A~図2Dは切削工具の説明図。2A to 2D are explanatory views of a cutting tool. 本発明の一実施形態に係る加工装置の斜視図。The perspective view of the processing apparatus which concerns on one Embodiment of this invention. 図3の加工装置の分解斜視図。The disassembled perspective view of the processing apparatus of FIG. 図3のIII-III線断面図。III-III sectional view taken on the line of FIG. 図6Aは切削工具の先端検出例の説明図、図6Bは制御ユニットのブロック図。FIG. 6A is an explanatory diagram of an example of detecting a tip of a cutting tool, and FIG. 6B is a block diagram of a control unit. 図7A及び図7Bは加工例の説明図。7A and 7B are explanatory diagrams of processing examples. 図8A及び図8Bは加工例の説明図。8A and 8B are explanatory diagrams of processing examples. 加工例の説明図。Explanatory drawing of a processing example. 図10A~図10Fは他の加工例の説明図。10A to 10F are explanatory diagrams of other processing examples. 図11A~図11Fは他の加工例の説明図。11A to 11F are explanatory diagrams of other processing examples. 図12A~図12Dは他の加工例の説明図。12A to 12D are explanatory diagrams of other processing examples. 図13A~図13Fは他の加工例の説明図。13A to 13F are explanatory views of other processing examples.
 図面を参照して本発明の実施形態について説明する。なお、各図においてX、Yは互いに直交する水平方向を示し、Zは上下方向を示す。 Embodiments of the present invention will be described with reference to the drawings. In each figure, X and Y indicate horizontal directions orthogonal to each other, and Z indicates the vertical direction.
 <加工システム>
 図1は本発明の一実施形態に係る加工システム100の概略図である。加工システム100は、ワークWに対して切削工具Tで穴を形成することで穴付きの部品を製造するシステムであり、加工装置1と、加工装置1を移動する移動装置101と、を備える。
<Processing system>
FIG. 1 is a schematic diagram of a processing system 100 according to an embodiment of the present invention. The processing system 100 is a system for manufacturing a part with a hole by forming a hole in the workpiece W with the cutting tool T, and includes a processing device 1 and a moving device 101 that moves the processing device 1.
 ワークWは、本実施形態の場合、板状の部材W1と板状の部材W2との積層体であり、水平姿勢で準備される。穴を形成するワークとしては、様々なワークを対象とすることができる。例えば、鋼板、建材用パネル、構造用の鉄鋼材又は木材、エンジンのシリンダブロックやシリンダヘッド等を挙げることができる。 In the case of this embodiment, the workpiece W is a laminate of a plate-like member W1 and a plate-like member W2, and is prepared in a horizontal posture. Various workpieces can be targeted as the workpiece for forming the hole. For example, steel plates, building material panels, structural steel materials or wood, cylinder blocks and cylinder heads of engines, and the like can be given.
 移動装置101は、一対の支柱部101bと、一対の支柱部101b間に架設された梁部101aとを備え、一対の支柱部101bは、Y方向に延びるレール101c上をレール101cに沿って移動可能となっている。梁部101aには複数の加工装置1が支持されており、一対の支柱部101bがレール101c上を移動することで、複数の加工装置1を同時に水平に移動することができ、ワークWの複数部位に同時に穴の加工作業を行うことができる。また、各加工装置1は、梁部101aの長手方向(図1中ではX方向)に沿ってスライド移動自在に設けても良い。これによって、加工装置1間の各離間距離を任意の値に設定することができる。 The moving device 101 includes a pair of column portions 101b and a beam portion 101a installed between the pair of column portions 101b, and the pair of column portions 101b moves along the rail 101c on the rail 101c extending in the Y direction. It is possible. A plurality of processing devices 1 are supported on the beam portion 101a, and the plurality of processing devices 1 can be moved horizontally simultaneously by moving a pair of support columns 101b on the rail 101c. The hole can be processed at the same time in the region. Each processing apparatus 1 may be provided so as to be slidable along the longitudinal direction (X direction in FIG. 1) of the beam portion 101a. Thereby, each separation distance between the processing apparatuses 1 can be set to an arbitrary value.
 なお、本実施形態では、移動装置101を複数の加工装置1を同時に移動する直動機構を備えたガントリー型のロボットとしたが、個々の加工装置1毎に設けられ、加工装置1を3次元的に移動する多関節アーム型のロボットとしてもよい。 In this embodiment, the moving device 101 is a gantry-type robot having a linear motion mechanism that moves a plurality of processing devices 1 simultaneously. However, the moving device 101 is provided for each processing device 1 and the processing device 1 is three-dimensionally provided. The robot may be an articulated arm type robot that moves in a moving manner.
 <切削工具>
 図2A~図2Dを参照して切削工具Tの構成について説明する。図2Aは切削工具Tの正面図、図2Bは切削工具Tの先端側の部分の拡大図、図2Cは図2BのI-I線断面図、図2Dは図2CのII-II線断面図である。
<Cutting tools>
The configuration of the cutting tool T will be described with reference to FIGS. 2A to 2D. 2A is a front view of the cutting tool T, FIG. 2B is an enlarged view of a tip side portion of the cutting tool T, FIG. 2C is a cross-sectional view taken along the line II in FIG. 2B, and FIG. .
 切削工具Tは、切削可能な穴径が異なる二種類のドリルT1、T2を組み合わせて構成されている。ドリルT1とドリルT2とは、ドリルT1がドリルT2の内側に配設され、ドリルT2がドリルT1の外側に配設される関係にある。 The cutting tool T is configured by combining two types of drills T1 and T2 having different hole diameters that can be cut. The drill T1 and the drill T2 are in a relationship in which the drill T1 is disposed inside the drill T2 and the drill T2 is disposed outside the drill T1.
 ドリルT1は相対的に小径の穴を形成するドリルである。ドリルT1は、全体として円柱状の部材であり、刃部T11、装着部T12、案内部T13とを備える。刃部T11は、ドリルT1の前方側となる先端T1aから一定の範囲に渡って形成され、ワークWに穴を形成する刃の部分である。ここで言う先端T1aとは、ドリルの先端部における逃げ面の部分を意味している。装着部T12は、加工装置1に固定される部分であり、ドリルT1の後方側となる後端から一定の範囲に渡って形成されている。ドリルT1はその軸方向がZ方向となるように加工装置1に固定され、使用時に先端T1aはドリルT1の下端に位置することになる。案内部T13は、刃部T11と装着部T12との間に形成されており、ドリルT2の軸方向の移動を案内する。本実施形態の場合、装着部T12と案内部T13とは同径の円柱形状としているが、他の形状(例えば、多角形)であってもよく、また、装着部T12と案内部T13とが異径の円柱形状であってもよいし、異形状であってもよい。 Drill T1 is a drill that forms a relatively small diameter hole. The drill T1 is a cylindrical member as a whole, and includes a blade portion T11, a mounting portion T12, and a guide portion T13. The blade portion T11 is a portion of the blade that is formed over a certain range from the tip T1a on the front side of the drill T1 and forms a hole in the workpiece W. The tip T1a referred to here means a flank portion at the tip of the drill. The mounting portion T12 is a portion fixed to the processing apparatus 1, and is formed over a certain range from the rear end on the rear side of the drill T1. The drill T1 is fixed to the processing apparatus 1 so that the axial direction thereof is the Z direction, and the tip T1a is positioned at the lower end of the drill T1 during use. The guide portion T13 is formed between the blade portion T11 and the mounting portion T12 and guides the axial movement of the drill T2. In the case of the present embodiment, the mounting portion T12 and the guide portion T13 have a cylindrical shape with the same diameter, but other shapes (for example, polygons) may be used, and the mounting portion T12 and the guide portion T13 are provided. It may have a cylindrical shape with a different diameter or may have a different shape.
 ドリルT2は相対的に大径の穴を形成するドリルである。ドリルT2は、全体として円筒状の部材であり、刃部T21、装着部T22、貫通穴T23とを備える。刃部T21は、ドリルT2の前方側となる先端T2aから一定の範囲に渡って形成され、ワークWに穴を形成する刃の部分である。ここで言う先端T2aとは、ドリルの先端部における逃げ面の部分を意味している。装着部T22は、加工装置1に固定される部分であり、ドリルT2の後方側となる後端から一定の範囲に渡って形成されている。本実施形態の場合、刃部T21と装着部T22とが、それぞれドリルT2の全長の約半分ずつ形成されている。貫通穴T23はドリルT2の軸方向に延びて形成されており、ドリルT2を軸方向に貫通する穴である。ドリルT2はその軸方向がZ方向となるように加工装置1に固定され、使用時に先端T2aはドリルT2の下端に位置することになる。 Drill T2 is a drill that forms a relatively large diameter hole. The drill T2 is a cylindrical member as a whole, and includes a blade portion T21, a mounting portion T22, and a through hole T23. The blade portion T21 is a portion of the blade that is formed over a certain range from the tip T2a on the front side of the drill T2 and forms a hole in the workpiece W. The tip T2a referred to here means a flank portion at the tip of the drill. The mounting portion T22 is a portion fixed to the processing apparatus 1 and is formed over a certain range from the rear end on the rear side of the drill T2. In the case of this embodiment, the blade part T21 and the mounting part T22 are each formed about half of the total length of the drill T2. The through hole T23 is formed to extend in the axial direction of the drill T2, and penetrates the drill T2 in the axial direction. The drill T2 is fixed to the processing apparatus 1 so that the axial direction thereof is the Z direction, and the tip T2a is positioned at the lower end of the drill T2 during use.
 貫通穴T23にはドリルT1が挿通され、ドリルT2がドリルT1の周りを囲むようにして、ドリルT1とドリルT2とは同軸上に設けられる。本実施形態の場合、貫通穴T23は、ドリルT1の刃部T11及び案内部T13の外径よりも僅かに大きい穴径とされる。案内部T13と貫通穴T23とは、互いの軸方向の移動を案内する関係にある。ドリルT1とドリルT2とはそれらの相対位置が変化するように、互いに軸方向にスライド自在である。この結果、ドリルT2の先端T2aから突出するドリルT1の先端T1aの突出量Lを0~所定量まで変化させることができる。 The drill T1 is inserted into the through hole T23, and the drill T1 and the drill T2 are provided coaxially so that the drill T2 surrounds the drill T1. In the case of the present embodiment, the through hole T23 has a hole diameter slightly larger than the outer diameters of the blade part T11 and the guide part T13 of the drill T1. The guide portion T13 and the through hole T23 are in a relationship for guiding the movement in the axial direction of each other. The drill T1 and the drill T2 are slidable in the axial direction so that their relative positions change. As a result, the protruding amount L of the tip T1a of the drill T1 protruding from the tip T2a of the drill T2 can be changed from 0 to a predetermined amount.
 ドリルT1とドリルT2との相対位置としては、例えば、以下の例が想定される。 As the relative position between the drill T1 and the drill T2, for example, the following examples are assumed.
 まず、ドリルT1の先端T1aは貫通穴T23内に完全に収容された状態であり、L=0の場合である。専らドリルT2のみで加工を行う場合の相対位置である。 First, the tip T1a of the drill T1 is completely accommodated in the through hole T23, and L = 0. This is the relative position when machining is performed exclusively with the drill T2.
 次に、ドリルT1の先端T1aが僅かにドリルT2の先端T2aから突出した状態であり、L=逃げ面が形成された先端部の突出長さである。ドリルT2での加工の際にドリルT1の先端T1aを利用する場合、或いは、ポンチ穴として利用する凹部を形成する場合等の相対位置である。 Next, the tip T1a of the drill T1 slightly protrudes from the tip T2a of the drill T2, and L = the protruding length of the tip portion where the flank is formed. It is a relative position when the tip T1a of the drill T1 is used in processing with the drill T2 or when a concave portion used as a punch hole is formed.
 次に、ドリルT1の刃部T11の周面が露出した状態であり、L>逃げ面が形成された先端部の突出長さである。この場合、刃部T11の全体が露出した場合と一部が露出した場合とがあり得る。ドリルT1で加工を行う場合、或いは、ドリルT2で加工を行う際に、ドリルT1をガイドとして利用する場合等の相対位置である。 Next, the peripheral surface of the blade portion T11 of the drill T1 is exposed, and L> the protruding length of the tip portion where the flank surface is formed. In this case, there may be a case where the entire blade portion T11 is exposed and a case where a part thereof is exposed. It is a relative position when the drill T1 is used for processing or when the drill T2 is used as a guide when processing is performed with the drill T2.
 <加工装置>
 図3~図6Aを参照して加工装置1について説明する。図3は切削工具Tを装着した状態での加工装置1の斜視図、図4は切削工具Tを装着した状態での加工装置1の分解斜視図である。図5は図3のIII-III線断面図である。図6Aは切削工具Tの先端検出例の説明図である。
<Processing equipment>
The machining apparatus 1 will be described with reference to FIGS. 3 to 6A. FIG. 3 is a perspective view of the processing apparatus 1 with the cutting tool T mounted, and FIG. 4 is an exploded perspective view of the processing apparatus 1 with the cutting tool T mounted. 5 is a cross-sectional view taken along line III-III in FIG. FIG. 6A is an explanatory diagram of an example of detecting the tip of the cutting tool T.
 加工装置1は、駆動ユニット2と、移動ユニット3と、多機能ユニット4と、支持ユニット5とを備える。 The processing apparatus 1 includes a drive unit 2, a moving unit 3, a multi-function unit 4, and a support unit 5.
 <駆動ユニット>
 駆動ユニット2は、駆動機構21と、ドリル支持ユニット22と、ドリル支持ユニット23と、相対移動機構24と、を備える。
<Drive unit>
The drive unit 2 includes a drive mechanism 21, a drill support unit 22, a drill support unit 23, and a relative movement mechanism 24.
 駆動機構21は、切削工具Tを回転駆動する駆動力を出力する。駆動機構21は、例えば、電動モータ等の駆動源を備え、必要に応じて駆動源の出力を減速する減速機を設けてもよい。本実施形態の場合、速度制御可能なモータを採用しており、切削工具Tおよび加工対象となるワークWの材質に応じた最適な加工速度になるように速度制御が行われる。 The drive mechanism 21 outputs a driving force for rotationally driving the cutting tool T. The drive mechanism 21 includes a drive source such as an electric motor, for example, and may be provided with a speed reducer that decelerates the output of the drive source as necessary. In the case of the present embodiment, a motor capable of speed control is employed, and speed control is performed so as to obtain an optimum processing speed according to the material of the cutting tool T and the workpiece W to be processed.
 ドリル支持ユニット22は、ドリルT1を支持するユニットである。ドリル支持ユニット22は、回転部材221と、回転部材221をZ軸周りに回転自在に支持する回転支持部材222とを備える。回転支持部材222は筒状の部材であり、この回転支持部材222の内部空間に回転部材221が挿通される。 The drill support unit 22 is a unit that supports the drill T1. The drill support unit 22 includes a rotation member 221 and a rotation support member 222 that supports the rotation member 221 so as to be rotatable about the Z axis. The rotation support member 222 is a cylindrical member, and the rotation member 221 is inserted into the internal space of the rotation support member 222.
 回転部材221は、連結部221aと、装着部221bと、係合部221cとを備える。連結部221aは、ドリルT1の軸方向(Z方向。以下同じ)で一方の端部(上側)に設けられている。連結部221aには駆動機構21の出力軸が連結され、駆動機構21の回転力が伝達される。これにより、回転部材221はZ軸周りに回転する。 The rotating member 221 includes a connecting portion 221a, a mounting portion 221b, and an engaging portion 221c. The connecting portion 221a is provided at one end (upper side) in the axial direction of the drill T1 (Z direction; the same applies hereinafter). The output shaft of the drive mechanism 21 is connected to the connecting portion 221a, and the rotational force of the drive mechanism 21 is transmitted. Thereby, the rotating member 221 rotates around the Z axis.
 装着部221bは、ドリルT1の軸方向で他方の端部(下側)に設けられている。装着部221bは、ドリルT1の装着部T12を固定するチャックを備え、ドリルT1は装着部221bに着脱可能に取り付けられる。 The mounting portion 221b is provided at the other end (lower side) in the axial direction of the drill T1. The mounting part 221b includes a chuck for fixing the mounting part T12 of the drill T1, and the drill T1 is detachably attached to the mounting part 221b.
 係合部221cは、連結部221aと装着部221bとの間の位置に設けられている。係合部221cは後述するように回転部材231の係合部231aと係合して、駆動機構21の回転力を回転部材231に伝達する。 The engaging portion 221c is provided at a position between the connecting portion 221a and the mounting portion 221b. As will be described later, the engaging portion 221c engages with the engaging portion 231a of the rotating member 231, and transmits the rotational force of the drive mechanism 21 to the rotating member 231.
 ドリル支持ユニット23は、ドリルT2を支持するユニットである。ドリル支持ユニット23は、回転部材231と、回転部材231をZ軸周りに回転自在に支持する回転支持部材232とを備える。回転支持部材232は筒状の部材であり、筒状の筒体部232aと、筒体部232aにおける他方端部(図4中では下端部)に設けられるフランジ部232bとを備える。この筒体部232aの内部空間に回転部材231が挿通される。 The drill support unit 23 is a unit that supports the drill T2. The drill support unit 23 includes a rotation member 231 and a rotation support member 232 that supports the rotation member 231 so as to be rotatable around the Z axis. The rotation support member 232 is a cylindrical member, and includes a cylindrical cylindrical body portion 232a and a flange portion 232b provided at the other end portion (lower end portion in FIG. 4) of the cylindrical body portion 232a. The rotating member 231 is inserted into the internal space of the cylindrical portion 232a.
 回転部材231は、係合部231aと、装着部231bとを備える。係合部231aは、ドリルT2の軸方向(Z方向。以下同じ)で一方の端部(上側)に設けられており、本実施形態の場合、回転部材231の上端面に開口した開口部として形成されている。装着部231bは、ドリルT2の軸方向で他方の端部(下側)に設けられている。装着部231bは、ドリルT2の装着部T22を固定するチャックを備え、ドリルT2は装着部231bに着脱可能に取り付けられる。筒体部232aの内部空間には、回転部材231の装着部231bの側が挿通される。 The rotating member 231 includes an engaging portion 231a and a mounting portion 231b. The engaging portion 231a is provided at one end (upper side) in the axial direction (Z direction, hereinafter the same) of the drill T2. In this embodiment, the engaging portion 231a is an opening opened at the upper end surface of the rotating member 231. Is formed. The mounting portion 231b is provided at the other end (lower side) in the axial direction of the drill T2. The mounting portion 231b includes a chuck for fixing the mounting portion T22 of the drill T2, and the drill T2 is detachably attached to the mounting portion 231b. The side of the mounting portion 231b of the rotating member 231 is inserted into the internal space of the cylindrical portion 232a.
 回転部材231は、回転部材221から回転力が伝達されて回転する。回転力の伝達は、回転部材221の係合部221cと回転部材231の係合部231aとの係合により行われる。回転部材221と回転部材231とは同軸上に配置される。図5に示すように、係合部221cは略四角形の断面形状を有しており、係合部231aは係合部221cと略同形状の開口部を有しており、係合部221cが、係合部231aに挿入、嵌合され、両者は嵌め合い(すきまばめ)の関係にある。 The rotating member 231 is rotated by the rotational force transmitted from the rotating member 221. The transmission of the rotational force is performed by the engagement between the engaging portion 221c of the rotating member 221 and the engaging portion 231a of the rotating member 231. The rotating member 221 and the rotating member 231 are arranged coaxially. As shown in FIG. 5, the engaging portion 221c has a substantially quadrangular cross-sectional shape, the engaging portion 231a has an opening having substantially the same shape as the engaging portion 221c, and the engaging portion 221c is Are inserted into and engaged with the engaging portion 231a, and both are in a fitting (clearance fitting) relationship.
 このため、回転部材221と回転部材231とのZ方向の相対移動は許容されるが、回転部材221と回転部材231とのZ軸周りの相対回転は許容されない。したがって、駆動機構21の回転力は、回転部材221を介して回転部材231に伝達されることになる。本実施形態では、係合部221cと係合部231aとの結合態様が嵌め合いの場合を例に挙げたが、Z方向の相対移動を許容しながら回転力を伝達できれば、どのような結合態様であってもよい。例えば、キー溝結合、スプライン結合であっても良い。 For this reason, relative movement in the Z direction between the rotating member 221 and the rotating member 231 is allowed, but relative rotation about the Z axis between the rotating member 221 and the rotating member 231 is not allowed. Therefore, the rotational force of the drive mechanism 21 is transmitted to the rotation member 231 via the rotation member 221. In the present embodiment, the case where the coupling mode between the engagement portion 221c and the engagement portion 231a is a fit example has been described as an example. However, any coupling mode can be used as long as rotational force can be transmitted while allowing relative movement in the Z direction. It may be. For example, key groove coupling or spline coupling may be used.
 相対移動機構24は、回転部材221と回転部材231とをZ方向に相対移動させる機構である。本実施形態では回転部材231側を移動させる構成としている。回転部材221と回転部材231とを相対移動させることで、ドリルT1とドリルT2との軸方向の相対位置を変化させることができ、したがって、上述した突出量Lを変化させることができる。 The relative movement mechanism 24 is a mechanism that relatively moves the rotating member 221 and the rotating member 231 in the Z direction. In the present embodiment, the rotating member 231 side is moved. By relatively moving the rotating member 221 and the rotating member 231, the relative position in the axial direction between the drill T <b> 1 and the drill T <b> 2 can be changed, and thus the protrusion amount L described above can be changed.
 相対移動機構24は、支持部241と、支持部241をZ方向に移動する移動部242、242を備える。支持部241は、回転支持部材232を固定する部材であり、回転支持部材232を介して回転部材231を回転自在に支持する。支持部241は、互いに結合される支持部材241aと、支持部材241bとを備える。支持部材241aは回転支持部材232が装着される凹部241a’と、回転支持部材232を軸方向の装着位置に規定する規定部241a”とを備え、支持部材241bは回転支持部材232が装着される凹部241b’を備える。これら凹部241a’、241b’により回転支持部材232を挟み込むようにして回転支持部材232を固定し、規定部241a”によってフランジ部232bを規定することで軸方向の位置を規定する。 The relative movement mechanism 24 includes a support portion 241 and moving portions 242 and 242 that move the support portion 241 in the Z direction. The support portion 241 is a member that fixes the rotation support member 232, and supports the rotation member 231 via the rotation support member 232 in a freely rotatable manner. The support part 241 includes a support member 241a and a support member 241b that are coupled to each other. The support member 241a includes a recess 241a ′ in which the rotation support member 232 is mounted and a defining portion 241a ″ that defines the rotation support member 232 in the mounting position in the axial direction. The support member 241b is mounted on the rotation support member 232. The rotation support member 232 is fixed so that the rotation support member 232 is sandwiched between the recesses 241a ′ and 241b ′, and the flange portion 232b is defined by the defining portion 241a ″ to define the axial position. To do.
 移動部242,242は支持部241をZ方向に移動する移動機構であり、本実施形態の場合、X方向に離間して二つの移動機構を併設しているが一つであってもよい。本実施形態の場合、移動部242は電動シリンダ等のアクチュエータであり、Z方向に延びるロッド242aをZ方向に進退させる機構である。ロッド242aの下端には支持部241が接続されており、二つの移動部242を同期的に駆動することで支持部241をZ方向に移動(昇降)し、ドリルT2のZ方向の位置を調整すると共に、ドリルT2による穴加工時の推進力を最適に制御することができる。この移動を円滑に行うため、支持部材241aの背面には、後述するレール部53、53と係合するスライダ241c、241cが設けられている。 The moving parts 242 and 242 are moving mechanisms that move the support part 241 in the Z direction. In the present embodiment, two moving mechanisms are provided apart from each other in the X direction. In the case of this embodiment, the moving part 242 is an actuator such as an electric cylinder, and is a mechanism for moving the rod 242a extending in the Z direction back and forth in the Z direction. A support portion 241 is connected to the lower end of the rod 242a, and the support portion 241 is moved (lifted / lowered) in the Z direction by synchronously driving the two moving portions 242 to adjust the position of the drill T2 in the Z direction. In addition, the propulsive force at the time of drilling with the drill T2 can be optimally controlled. In order to perform this movement smoothly, sliders 241c and 241c that engage with rail portions 53 and 53 described later are provided on the back surface of the support member 241a.
 <支持ユニット>
 支持ユニット5は、加工ユニット2及び多機能ユニット4を支持するユニットである。支持ユニット5は、ベース部材50、支持部51、支持部52、52、レール部53、53及びレール部54を備える。
<Support unit>
The support unit 5 is a unit that supports the processing unit 2 and the multifunction unit 4. The support unit 5 includes a base member 50, a support part 51, support parts 52 and 52, rail parts 53 and 53, and a rail part 54.
 ベース部材50は板状の部材であり、その一面に支持部51、支持部52、52、レール部53、53及びレール部54が固定されている。支持部51は駆動機構21を支持する。支持部52、52は、それぞれ、移動部242、242を支持する。これにより、相対移動機構24が支持ユニット5に支持される。 The base member 50 is a plate-like member, and a support portion 51, support portions 52 and 52, rail portions 53 and 53, and a rail portion 54 are fixed to one surface thereof. The support part 51 supports the drive mechanism 21. The support parts 52 and 52 support the moving parts 242 and 242, respectively. Thereby, the relative movement mechanism 24 is supported by the support unit 5.
 レール部53、53はZ方向に延設されており、スライダ241c、241cのZ方向の移動を案内する。これにより支持部241がZ方向に円滑に昇降可能となる。レール部54はZ方向に延設されており、多機能ユニット4のスライダ41と係合して多機能ユニット4のZ方向の移動を案内する。なお、多機能ユニット4がレール部54から落下することを防止するため、その降下量を規制する不図示のストッパが設けられている。 The rail parts 53 and 53 are extended in the Z direction, and guide the movement of the sliders 241c and 241c in the Z direction. Thereby, the support part 241 can be moved up and down smoothly in the Z direction. The rail portion 54 extends in the Z direction and engages with the slider 41 of the multi-function unit 4 to guide the movement of the multi-function unit 4 in the Z direction. In order to prevent the multi-function unit 4 from falling from the rail portion 54, a stopper (not shown) that restricts the amount of the descent is provided.
 <移動ユニット>
 移動ユニット3は支持ユニット5をZ方向に移動する機構である。支持ユニット5をZ方向に移動することで、加工ユニット2及び多機能ユニット4がZ方向に移動することになる。加工ユニット2を降下させることで、切削工具TをワークWに当接させ加工することが可能となる。
<Mobile unit>
The moving unit 3 is a mechanism for moving the support unit 5 in the Z direction. By moving the support unit 5 in the Z direction, the processing unit 2 and the multi-function unit 4 are moved in the Z direction. By lowering the processing unit 2, the cutting tool T can be brought into contact with the workpiece W and processed.
 移動ユニット3は、移動体31と、支柱32とを備える。支柱32は、移動体31をZ方向に移動する機構を内蔵する。このような機構は、例えば、電動モータ等の駆動源と、駆動源の駆動力を移動体31に伝達する伝達機構(例えばボールねじ機構やベルト伝動機構等)とから構成することができる。本実施形態の場合の駆動源は、エンコーダを含むサーボモータを採用しており、移動体31の移動を任意の位置に移動制御することができる。支持ユニット5は移動体31に固定され、移動体31の移動により支持ユニット5が移動し、ドリルT1をZ方向の所定の位置に調整し、ドリルT1による穴加工時の推進力を最適に制御することができる。 The moving unit 3 includes a moving body 31 and a support column 32. The support column 32 incorporates a mechanism for moving the moving body 31 in the Z direction. Such a mechanism can be composed of, for example, a drive source such as an electric motor and a transmission mechanism (for example, a ball screw mechanism or a belt transmission mechanism) that transmits the driving force of the drive source to the moving body 31. The drive source in the present embodiment employs a servo motor including an encoder, and can control the movement of the moving body 31 to an arbitrary position. The support unit 5 is fixed to the movable body 31, and the support unit 5 is moved by the movement of the movable body 31, the drill T1 is adjusted to a predetermined position in the Z direction, and the propulsive force at the time of drilling by the drill T1 is optimally controlled. can do.
 <多機能ユニット>
 多機能ユニット4は、ワークWにおける加工部位の周囲を囲包し、負圧吸引される内部空間を形成する吸引空間形成ユニットとしての機能と、ワークWに対する切削工具Tの先端位置を検出する検出ユニットとしての機能とを有している。
<Multifunctional unit>
The multi-function unit 4 surrounds the portion to be machined in the workpiece W and functions as a suction space forming unit that forms an internal space that is sucked by negative pressure, and detection for detecting the tip position of the cutting tool T with respect to the workpiece W It has a function as a unit.
 多機能ユニット4は、スライダ41と、本体ユニット42と、接続機構43とを備える。スライダ41は、上述したとおり、レール部54と係合してZ方向にスライド自在であり、多機能ユニット4はレール部54にZ方向にスライド自在に支持される。 The multi-function unit 4 includes a slider 41, a main unit 42, and a connection mechanism 43. As described above, the slider 41 engages with the rail portion 54 and is slidable in the Z direction, and the multi-function unit 4 is supported by the rail portion 54 so as to be slidable in the Z direction.
 接続機構43は、スライダ41に対して吸引空間形成ユニットを含む本体ユニット42を移動可能に接続する蝶番機構である。本実施形態の場合、後述する当接部44を加工軸上の作業位置と加工軸から離脱した退避位置との間で移動可能に構成する。具体的には、接続機構43の回転軸43aの周りに、当接部44を含む本体ユニット42全体が、作業位置と退避位置との間で回動される。これにより、加工ユニット2や本体ユニット42のメンテナンス等の(本実施形態の場合、それぞれのドリルの交換を行う)場合に、当接部44を退避位置に移動させることでドリルの交換作業性を向上する。 The connection mechanism 43 is a hinge mechanism that movably connects the main body unit 42 including the suction space forming unit to the slider 41. In the case of the present embodiment, a contact portion 44 described later is configured to be movable between a work position on the machining axis and a retracted position separated from the machining axis. Specifically, the entire body unit 42 including the contact portion 44 is rotated between the working position and the retracted position around the rotation shaft 43 a of the connection mechanism 43. Thereby, in the case of maintenance of the machining unit 2 or the main body unit 42 (in the case of the present embodiment, each drill is replaced), the abutting portion 44 is moved to the retracted position, thereby improving the drill exchanging workability. improves.
 多機能ユニット5は、吸引空間形成ユニットとしての構成として、中空の当接部44と、中空の中間部422と、中空のダクト部423とを備え、これらの内部空間は連通している。 The multi-function unit 5 includes a hollow contact portion 44, a hollow intermediate portion 422, and a hollow duct portion 423 as a configuration as a suction space forming unit, and these internal spaces communicate with each other.
 当接部44は、図6Aに示すように、ワークWに対する切削工具Tの加工部位の周囲を囲包するよう、下方が開放した箱状をなしており、その下面がワークWの上面に当接する。当接部44は、負圧吸引される内部空間421を形成する吸引空間形成部としても機能する。当接部44の上壁及び底壁には、切削工具Tが通過可能な開口部44a、44bが形成されている。 As shown in FIG. 6A, the abutting portion 44 has a box shape with the lower part opened so as to surround the periphery of the machining part of the cutting tool T with respect to the work W, and the lower surface thereof contacts the upper surface of the work W. Touch. The contact portion 44 also functions as a suction space forming portion that forms the internal space 421 that is sucked by negative pressure. Openings 44 a and 44 b through which the cutting tool T can pass are formed in the upper wall and the bottom wall of the contact portion 44.
 ダクト部423の上端部には、ポンプ等の吸引装置がホースを介して接続される(不図示)。吸引装置の駆動により吸引空間形成部421の内部空間を負圧吸引する。これにより切削工具Tによる加工作業の際に生じる加工屑を外部に排出することができ、作業部位を清潔に維持できる。 A suction device such as a pump is connected to the upper end portion of the duct portion 423 via a hose (not shown). The internal space of the suction space forming part 421 is sucked with a negative pressure by driving the suction device. Thereby, the processing waste generated in the processing work by the cutting tool T can be discharged to the outside, and the work site can be kept clean.
 多機能ユニット5は、検出ユニットとしての構成として、当接部44と、センサ45とを備える。センサ45は、切削工具Tの先端を検出するセンサであり、本実施形態では、発光素子45aと受光素子45bとを備える光センサである。発光素子45aと受光素子45bは、開口部44aを挟むようにして当接部44の上壁に設けられている。 The multi-function unit 5 includes a contact portion 44 and a sensor 45 as a configuration as a detection unit. The sensor 45 is a sensor that detects the tip of the cutting tool T. In the present embodiment, the sensor 45 is an optical sensor that includes a light emitting element 45a and a light receiving element 45b. The light emitting element 45a and the light receiving element 45b are provided on the upper wall of the contact portion 44 so as to sandwich the opening 44a.
 図6Aを参照してセンサ45による切削工具Tの先端の検出例について説明する。加工の際、状態S1に示すように、切削工具T及び当接部44が共にワークWの上方に離間した状態から、移動ユニット3によって支持ユニット5が降下される。これにより、加工ユニット2及び多機能ユニット5は降下し、まずは状態S2に示すように、当接部44がワークWの上面に当接(着地)する。当接部44の寸法は既知であるので、ワークWの上面からセンサ45の検出位置Sまでの高さHも既知の高さである。支持ユニット5が更に降下されると、加工ユニット2は更に降下するものの、多機能ユニット5は既にワークWに当接しているため、これ以上、降下しない。すると、状態S3に示すように切削工具Tの先端(ここではドリルT1の先端)が検知位置Sを通過する。切削工具Tの先端がセンサ45で検知されてからの、支持ユニット5の降下量によって、切削工具TとワークWとの距離を演算することができ、加工する穴の深さ等を制御することができる。 An example of detecting the tip of the cutting tool T by the sensor 45 will be described with reference to FIG. 6A. During processing, the support unit 5 is lowered by the moving unit 3 from a state where the cutting tool T and the contact portion 44 are both separated above the workpiece W as shown in the state S1. As a result, the machining unit 2 and the multi-function unit 5 are lowered, and first, as shown in the state S <b> 2, the contact portion 44 contacts (lands) the upper surface of the workpiece W. Since the dimension of the contact part 44 is known, the height H from the upper surface of the workpiece W to the detection position S of the sensor 45 is also a known height. When the support unit 5 is further lowered, the machining unit 2 is further lowered. However, since the multi-function unit 5 is already in contact with the workpiece W, it is not further lowered. Then, the tip of the cutting tool T (here, the tip of the drill T1) passes through the detection position S as shown in the state S3. The distance between the cutting tool T and the workpiece W can be calculated from the amount of lowering of the support unit 5 after the tip of the cutting tool T is detected by the sensor 45, and the depth of the hole to be processed is controlled. Can do.
 <制御ユニット>
 図6Bは加工装置1の制御ユニット6のブロック図である。本実施形態の場合、制御ユニット6は加工システム100全体の制御を行う。
<Control unit>
FIG. 6B is a block diagram of the control unit 6 of the processing apparatus 1. In the case of this embodiment, the control unit 6 controls the entire processing system 100.
 制御ユニット6は、CPU等の処理部61と、RAM、ROM等の記憶部62と、外部デバイスを構成する入力デバイス65および出力デバイス64と処理部61とをインターフェースするインターフェース部63と、を含む。インターフェース部63には、ホストコンピュータとの通信を行う通信インターフェースも含まれる。ホストコンピュータは、例えば、加工システム100が配置された製造設備全体を制御するコンピュータである。 The control unit 6 includes a processing unit 61 such as a CPU, a storage unit 62 such as a RAM and a ROM, and an interface unit 63 that interfaces the input device 65 and the output device 64 constituting the external device with the processing unit 61. . The interface unit 63 also includes a communication interface that performs communication with the host computer. The host computer is, for example, a computer that controls the entire manufacturing facility in which the processing system 100 is arranged.
 処理部61は記憶部62に記憶されたプログラムを実行し、入力デバイス65から入力される情報(例えばセンサの検知結果)や、ホストコンピュータの指示に基づいて、出力デバイス64を制御する。入力デバイス65には、例えば、センサ45等が含まれる。出力デバイス64には、例えば、駆動機構21の駆動源、移動部242、移動ユニット3等の各駆動源等が含まれる。そして、処理部61は、それぞれの駆動源となるモータの回転速度や回転力による推進力を制御する。 The processing unit 61 executes a program stored in the storage unit 62, and controls the output device 64 based on information input from the input device 65 (for example, a sensor detection result) and an instruction from the host computer. The input device 65 includes, for example, a sensor 45 and the like. The output device 64 includes, for example, a drive source of the drive mechanism 21, each drive source such as the moving unit 242 and the moving unit 3. And the process part 61 controls the propulsive force by the rotational speed and rotational force of the motor used as each drive source.
 <制御例>
 制御ユニット6の処理部61が実行する加工装置1の制御例について説明する。図7~図9は、ワークWに対して切削工具Tにより段付き穴を形成して穴付きの部品を製造する場合を例示している。概説すると、まず、ドリルT1で小径の穴を形成し、続いてドリルT2で小径の穴の周りに同心で大径の穴を形成する。その間、ドリルT1とドリルT2の相対位置を調整する。以下、詳細を説明する。
<Control example>
A control example of the machining apparatus 1 executed by the processing unit 61 of the control unit 6 will be described. 7 to 9 illustrate a case where a stepped hole is formed on the workpiece W by the cutting tool T to manufacture a part with a hole. Briefly, a small-diameter hole is first formed by the drill T1, and then a concentric large-diameter hole is formed around the small-diameter hole by the drill T2. Meanwhile, the relative positions of the drill T1 and the drill T2 are adjusted. Details will be described below.
 まず、小径の穴の深さに応じた突出量Lとなるように、相対移動機構24によってドリルT1とドリルT2の相対位置を調整する。移動ユニット3により支持ユニット5を降下し、加工ユニット2と多機能ユニット4とを降下させる。図6Aで説明したように、ドリルT1の先端T1aが検出されると、駆動機構21を駆動して切削工具Tを回転し、更に加工ユニット2を降下させる。これにより図7Aに示すようにワークWおよびドリルT1のサイズに応じた最適な速度および推進力でドリルT1によってワークWに穴を形成する。ドリルT1の先端T1aが所定の深さに達すると、支持ユニット5を上昇し、図7Bに示すように切削工具TをワークWから一旦退避させる。ワークWには穴h1が形成されている。同図の例では、穴h1は、ワークW1を貫通してワークW2の上部に到達した穴である。 First, the relative position of the drill T1 and the drill T2 is adjusted by the relative movement mechanism 24 so that the protrusion amount L corresponds to the depth of the small-diameter hole. The support unit 5 is lowered by the moving unit 3 and the machining unit 2 and the multi-function unit 4 are lowered. As described with reference to FIG. 6A, when the tip T1a of the drill T1 is detected, the driving mechanism 21 is driven to rotate the cutting tool T, and the processing unit 2 is further lowered. As a result, as shown in FIG. 7A, a hole is formed in the workpiece W by the drill T1 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T1. When the tip T1a of the drill T1 reaches a predetermined depth, the support unit 5 is raised, and the cutting tool T is temporarily retracted from the workpiece W as shown in FIG. 7B. A hole h1 is formed in the workpiece W. In the example of the figure, the hole h1 is a hole that penetrates the workpiece W1 and reaches the upper portion of the workpiece W2.
 次に、ドリルT2で穴を形成するために、ドリルT1とドリルT2の相対位置を調整する。図7Aに示した小径の穴の加工時における突出量をLaとすると、相対位置調整後の突出量LbはLaと異なる突出量とする。例えば、0≦Lb<Laの範囲内で選択される突出量Lbとし、小径の穴の加工時の相対位置と比較して、突出量Lbが小さくなる相対位置とすることができる。 Next, in order to form a hole with the drill T2, the relative positions of the drill T1 and the drill T2 are adjusted. Assuming that the amount of protrusion at the time of processing the small-diameter hole shown in FIG. 7A is La, the amount of protrusion Lb after the relative position adjustment is different from the amount of La. For example, the protrusion amount Lb selected within the range of 0 ≦ Lb <La can be set as a relative position where the protrusion amount Lb is smaller than the relative position when processing a small-diameter hole.
 ドリルT1とドリルT2の相対位置の調整は、相対移動機構24によって行う。図8Aの例では、移動部242、242を駆動して支持部241を降下し、Lb<Laとなるように相対位置を調整している。こうして、ドリルT1とドリルT2との相対位置を、小径穴の加工時の相対位置とは異なる相対位置に調整する。調整可能な相対位置は、小径穴の加工時の相対位置と、ドリルT1の先端T1aがドリルT2に収容される相対位置との間の相対位置で、突出量Lが小さくなる相対位置とすることができる。 The adjustment of the relative position of the drill T1 and the drill T2 is performed by the relative movement mechanism 24. In the example of FIG. 8A, the moving parts 242 and 242 are driven to lower the support part 241 and the relative position is adjusted so that Lb <La. In this way, the relative position between the drill T1 and the drill T2 is adjusted to a relative position different from the relative position at the time of processing the small-diameter hole. The adjustable relative position is a relative position between the relative position at the time of processing the small-diameter hole and the relative position where the tip T1a of the drill T1 is accommodated in the drill T2, and is a relative position where the protrusion amount L is small. Can do.
 移動ユニット3により支持ユニット5を降下させ、図8Bに示すように、加工ユニット2を再び降下させる。これによりワークWおよびドリルT2のサイズに応じた最適な速度および推進力でドリルT2によってワークWに穴を形成する。ドリルT2の先端T2aが所定の深さに達すると、支持ユニット5を上昇させ、図9に示すように切削工具TをワークWから退避させる。ワークWには穴h1と穴h2とからなる段付き穴hが形成される。 The support unit 5 is lowered by the moving unit 3, and the machining unit 2 is lowered again as shown in FIG. 8B. As a result, a hole is formed in the workpiece W by the drill T2 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T2. When the tip T2a of the drill T2 reaches a predetermined depth, the support unit 5 is raised and the cutting tool T is retracted from the workpiece W as shown in FIG. A stepped hole h including a hole h1 and a hole h2 is formed in the work W.
 このように、本実施形態では、ドリルT1とドリルT2との相対位置を変更できるため、径の異なる穴を備える穴付き部品を製造するに際して、ドリルを交換する必要がない。また、ドリルT1とドリルT2との相対位置を変更できるので、異なる深さの穴を備える穴付き部品を製造するに際しても、ドリルの交換が不要である。また、ドリルT1およびドリルT2のサイズに応じた最適な回転速度および推進力により穴加工を行うことができる。 Thus, in this embodiment, since the relative positions of the drill T1 and the drill T2 can be changed, it is not necessary to replace the drill when manufacturing a holed part having holes with different diameters. In addition, since the relative position between the drill T1 and the drill T2 can be changed, it is not necessary to replace the drill when manufacturing a holed part having holes with different depths. In addition, drilling can be performed with an optimum rotation speed and driving force according to the size of the drill T1 and the drill T2.
 以下、他の加工例について説明する。図10は、ポンチ穴として事前に窪みを形成して段付き穴を形成する例を示している。 Hereinafter, other processing examples will be described. FIG. 10 shows an example in which a depression is formed in advance as a punch hole to form a stepped hole.
 まず、図10Aに示すように、窪みの形成に適した相対位置にドリルT1とドリルT2の相対位置を調整する。ここでは突出量LをL1にしており、ドリルT1の先端T1aがドリルT2の先端T2aから僅かに突出した状態としている。ドリルT1の突出量Lを小さくすることで、大きくした場合よりもドリルT1の先端の振れ幅をドリルT2により抑制し、ワークWの目的位置に精度よくドリルT1の先端を位置付けすることができる。 First, as shown in FIG. 10A, the relative positions of the drill T1 and the drill T2 are adjusted to a relative position suitable for formation of the recess. Here, the protruding amount L is L1, and the tip T1a of the drill T1 is slightly protruding from the tip T2a of the drill T2. By reducing the protruding amount L of the drill T1, the deflection width of the tip of the drill T1 can be suppressed by the drill T2 as compared with the case where it is increased, and the tip of the drill T1 can be accurately positioned at the target position of the workpiece W.
 次に、移動ユニット3により支持ユニット5を降下させ、図10Bに示すように、ドリルT1の先端T1aをワークWの表面に当接させる。このとき、切削工具Tは回転させることが好ましい。 Next, the support unit 5 is lowered by the moving unit 3, and the tip T1a of the drill T1 is brought into contact with the surface of the workpiece W as shown in FIG. 10B. At this time, the cutting tool T is preferably rotated.
 支持ユニット5を上昇させ、切削工具TをワークWから一旦退避させる。図10Cに示すようにワークWの上面には窪みh0が形成される。次に、ドリルT1で小径の穴を形成するために、図10Cに示すように、ドリルT1とドリルT2の相対位置を調整する。突出量L2は、小径の穴の深さに応じた突出量であり、L2>L1の関係にある。 The support unit 5 is raised and the cutting tool T is temporarily retracted from the workpiece W. As shown in FIG. 10C, a recess h0 is formed on the upper surface of the workpiece W. Next, in order to form a small-diameter hole with the drill T1, as shown in FIG. 10C, the relative positions of the drill T1 and the drill T2 are adjusted. The protrusion amount L2 is a protrusion amount corresponding to the depth of the small-diameter hole, and has a relationship of L2> L1.
 駆動機構21を駆動して切削工具Tを回転させ移動ユニット3により支持ユニット5を降下させる。これにより図10Dに示すようにワークWおよびドリルT1のサイズに応じた最適な速度および推進力でドリルT1によってワークWに穴が形成される。ドリルT1の先端T1aが所定の深さに達すると、支持ユニット5を上昇させ、図10Eに示すように切削工具TをワークWから退避させる。ワークWには穴h1が形成される。 The drive mechanism 21 is driven, the cutting tool T is rotated, and the support unit 5 is lowered by the moving unit 3. As a result, as shown in FIG. 10D, a hole is formed in the workpiece W by the drill T1 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T1. When the tip T1a of the drill T1 reaches a predetermined depth, the support unit 5 is raised, and the cutting tool T is retracted from the workpiece W as shown in FIG. 10E. A hole h1 is formed in the workpiece W.
 続いてドリルT2で穴を形成するために、図10Eに示すようにドリルT1とドリルT2の相対位置を調整する。同図の例では突出量LをL3としている。L1、L2、L3の関係は、例えば、L1<L2<L3である。 Subsequently, in order to form a hole with the drill T2, the relative positions of the drill T1 and the drill T2 are adjusted as shown in FIG. 10E. In the example of the figure, the protrusion amount L is L3. The relationship between L1, L2, and L3 is, for example, L1 <L2 <L3.
 移動ユニット3により支持ユニット5を降下させ、図10Fに示すように、加工ユニット2を再び降下させる。これによりワークWおよびドリルT2のサイズに応じた最適な速度および推進力でドリルT2によってワークWに穴が形成される。ドリルT2の先端T2aが所定の深さに達すると、支持ユニット5を上昇させ、図9に示した段付き穴hと同様の穴が形成される。 The support unit 5 is lowered by the moving unit 3, and the machining unit 2 is lowered again as shown in FIG. 10F. Thereby, a hole is formed in the workpiece W by the drill T2 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T2. When the tip T2a of the drill T2 reaches a predetermined depth, the support unit 5 is raised, and a hole similar to the stepped hole h shown in FIG. 9 is formed.
 次に、ドリルT1による穴加工後、ドリルT1を上昇(ワークWから離脱)させずにドリルT2による穴加工(連続穴加工)を行うことも可能である。図11は、その説明図である。 Next, after drilling with the drill T1, it is possible to perform drilling (continuous drilling) with the drill T2 without raising the drill T1 (detaching from the workpiece W). FIG. 11 is an explanatory diagram thereof.
 以下、他の加工例について説明する。図11は、図10と同様にポンチ穴として事前に窪みを形成して段付き穴を形成した後、ドリルT1による穴加工後、連続してドリルT2による穴加工を行って段付き穴を形成する例を示している。 Hereinafter, other processing examples will be described. In FIG. 11, after forming a stepped hole by forming a depression as a punch hole in advance as in FIG. 10, a hole is drilled by the drill T <b> 1 and then a hole is drilled by the drill T <b> 2 to form a stepped hole. An example is shown.
 まず、図11Aに示すように、窪みの形成に適した相対位置にドリルT1とドリルT2の相対位置を調整する。ここでは突出量LをL1にしており、ドリルT1の先端T1aがドリルT2の先端T2aから僅かに突出した状態としている。ドリルT1の突出量Lを小さくすることで、大きくした場合よりもドリルT1の先端の振れ幅をドリルT2により抑制し、ワークWの目的位置に精度よくドリルT1の先端を位置付けすることができる。 First, as shown in FIG. 11A, the relative positions of the drill T1 and the drill T2 are adjusted to a relative position suitable for formation of the recess. Here, the protruding amount L is L1, and the tip T1a of the drill T1 is slightly protruding from the tip T2a of the drill T2. By reducing the protruding amount L of the drill T1, the deflection width of the tip of the drill T1 can be suppressed by the drill T2 as compared with the case where it is increased, and the tip of the drill T1 can be accurately positioned at the target position of the workpiece W.
 次に、移動ユニット3により支持ユニット5を降下させ、図11Bに示すように、ドリルT1の先端T1aをワークWの表面に当接させる。このとき、切削工具Tは回転させることが好ましい。 Next, the support unit 5 is lowered by the moving unit 3, and the tip T1a of the drill T1 is brought into contact with the surface of the workpiece W as shown in FIG. 11B. At this time, the cutting tool T is preferably rotated.
 次に、切削工具TをワークWから一旦退避させる。図11Cに示すようにワークWの上面には窪みh0が形成される。次に、ドリルT1で小径の穴を形成するために、図11Cに示すように、ドリルT1とドリルT2の相対位置を調整する。突出量L2は、小径の穴の深さに応じた突出量であり、L2>L1の関係にある。 Next, the cutting tool T is temporarily retracted from the workpiece W. As shown in FIG. 11C, a recess h0 is formed on the upper surface of the workpiece W. Next, in order to form a small-diameter hole with the drill T1, as shown in FIG. 11C, the relative positions of the drill T1 and the drill T2 are adjusted. The protrusion amount L2 is a protrusion amount corresponding to the depth of the small-diameter hole, and has a relationship of L2> L1.
 駆動機構21を駆動して切削工具Tを回転させ移動ユニット3により支持ユニット5を降下させる。これにより図11Dに示すようにワークWおよびドリルT1のサイズに応じた最適な速度および推進力でドリルT1によってワークWに穴が形成される。ドリルT1の先端T1aが所定の深さに達すると、図11Eに示すように連続してドリルT2で穴を形成するために、切削工具Tを回転させたままドリルT1の位置は移動させずに(支持ユニット5を上昇させずに)、ドリルT1とドリルT2の相対位置を調整する。つまり、移動部242を移動させてドリルT2を降下させる。同図の例では突出量LをL3’としている。L1、L2、L3’の関係は、例えば、L1<L2<L3’である。 The drive mechanism 21 is driven, the cutting tool T is rotated, and the support unit 5 is lowered by the moving unit 3. As a result, as shown in FIG. 11D, a hole is formed in the workpiece W by the drill T1 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T1. When the tip T1a of the drill T1 reaches a predetermined depth, the drill T1 is not moved while the cutting tool T is rotated in order to continuously form holes with the drill T2 as shown in FIG. 11E. The relative position of the drill T1 and the drill T2 is adjusted (without raising the support unit 5). That is, the moving unit 242 is moved to lower the drill T2. In the example shown in the figure, the protrusion amount L is L3 '. The relationship between L1, L2, and L3 ′ is, for example, L1 <L2 <L3 ′.
 このように相対位置を調整することでドリルT1による穴加工を行うと共に、ドリルT1による穴加工完了後、切削工具Tを回転させたままドリルT1の位置を移動させずにドリルT2の移動を行う際のガイドを兼ねてドリルT2による穴加工を行うことでドリルT1による穴の芯とドリルT2による穴の芯を精度高く一致させることができる。 By adjusting the relative position in this manner, drilling with the drill T1 is performed, and after the drilling with the drill T1 is completed, the drill T2 is moved without moving the position of the drill T1 while the cutting tool T is rotated. By performing the hole machining with the drill T2 while also serving as a guide at the time, the core of the hole by the drill T1 and the core of the hole by the drill T2 can be matched with high accuracy.
 図11Fに示すように、移動部242、242により支持部241を降下させながらドリルT2による穴加工を行う。これによりワークWおよびドリルT2のサイズに応じた最適な速度および推進力でドリルT2によってワークWに穴が形成される。ドリルT2の先端T2aが所定の深さに達すると、支持ユニット5を上昇させ、図9に示した段付き穴hと同様の穴が形成される。 As shown in FIG. 11F, drilling is performed with a drill T2 while the support portion 241 is lowered by the moving portions 242, 242. Thereby, a hole is formed in the workpiece W by the drill T2 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T2. When the tip T2a of the drill T2 reaches a predetermined depth, the support unit 5 is raised, and a hole similar to the stepped hole h shown in FIG. 9 is formed.
 なお、図11の実施形態においては、窪み加工から段付き穴加工に関する工程を連続して説明したが、窪み加工を行わずに、いきなり穴加工を行ってもよい。 In the embodiment of FIG. 11, the steps related to the step processing from the dent processing have been described continuously, but the hole processing may be performed suddenly without performing the dent processing.
 次に、ドリルT2で穴を加工する場合に、ドリルT1を、ガイドとして利用する場合について図12を参照して説明する。図12AはドリルT1により小径の穴h1の加工が終了し、ドリルT1とドリルT2との相対位置を調整している段階を示している。ここでは、突出量LをL4としている。突出量L4は例えば穴h1の深さより小さくなる範囲で、なるべく大きな値とする。 Next, a case where the drill T1 is used as a guide when a hole is machined with the drill T2 will be described with reference to FIG. FIG. 12A shows a stage where the machining of the small diameter hole h1 is completed by the drill T1, and the relative position between the drill T1 and the drill T2 is adjusted. Here, the protrusion amount L is L4. The protrusion amount L4 is set to a value as large as possible within a range smaller than the depth of the hole h1, for example.
 続いて、図12Bに示すように、移動ユニット3により支持ユニット5を降下させ、先ず、ドリルT1を穴挿入ガイドとして使用し、ドリルT1を穴h1に挿入する。これによって、当然、ドリルT1の中心と穴h1の中心が完全に一致する。このとき、ドリルT1とドリルT2とは同心に設けられていることから、結果として、ドリルT2の中心と穴h1の中心が完全に一致する。また、ワークWに対する穴h1の傾きと、ワークWに対するドリルT1の傾きとが完全に一致する。 Subsequently, as shown in FIG. 12B, the support unit 5 is lowered by the moving unit 3, and first, the drill T1 is used as a hole insertion guide, and the drill T1 is inserted into the hole h1. Accordingly, naturally, the center of the drill T1 and the center of the hole h1 completely coincide. At this time, since the drill T1 and the drill T2 are provided concentrically, as a result, the center of the drill T2 and the center of the hole h1 completely coincide. Further, the inclination of the hole h1 with respect to the workpiece W and the inclination of the drill T1 with respect to the workpiece W are completely coincident with each other.
 次に、ドリルT1をドリルT2のスライドガイドとして使用し、突出量L4を徐々に小さくしてゆく。このとき、ドリルT1とドリルT2は同心に保たれたまま、ドリルT2がドリルT1に沿ってスライド前進されるため、ドリルT2の中心と穴h1の中心がずれることはない。また、ワークWおよびドリルT2のサイズに応じた最適な速度および推進力で穴加工作業が行われる。その結果、図12Cに示すように、ドリルT2の中心と穴h1の中心の一致を精度良く保ったまま、最適な速度および推進力でドリルT2の先端を穴h1の上部開口にあてがうことができる。 Next, the drill T1 is used as a slide guide for the drill T2, and the protrusion L4 is gradually reduced. At this time, since the drill T2 is slid forward along the drill T1 while the drill T1 and the drill T2 are kept concentric, the center of the drill T2 and the center of the hole h1 are not shifted. Further, the hole drilling operation is performed at an optimum speed and driving force according to the size of the workpiece W and the drill T2. As a result, as shown in FIG. 12C, the tip of the drill T2 can be applied to the upper opening of the hole h1 at an optimum speed and propulsive force while keeping the center of the drill T2 coincident with the center of the hole h1. .
 その後、図12Dに示すように、ドリルT2の切削深さに応じて、突出量L4を当初設定した突出量L4から更に小さくしていく。これにより、ドリルT2により穴h1の上部開口から穴奥に向かって徐々に穴h2が形成され、段付き穴(穴H1及び穴h2)が形成される。図12Dの段階では突出量L=0となっている。これにより、ドリルT1が穴h1を余計に深く加工してしまうことを防止しながら、切削工具Tの振れを防止でき、ドリルT2による穴の加工精度を向上できる。すなわち、本実施形態によれば、2つのドリルT1、T2を用いてワークWに穴加工を行った際に、穴h1の中心と穴h2の中心が完全に一致し、かつ、ワークWに対する穴h1の傾きとワークWに対する穴h2の傾きが完全に一致した段付き穴を形成することができる。 Thereafter, as shown in FIG. 12D, the protrusion amount L4 is further reduced from the initially set protrusion amount L4 according to the cutting depth of the drill T2. Thereby, the hole h2 is gradually formed from the upper opening of the hole h1 toward the back of the hole by the drill T2, and stepped holes (the hole H1 and the hole h2) are formed. In the stage of FIG. 12D, the protrusion amount L = 0. Thereby, while preventing the drill T1 from processing the hole h1 excessively deeply, the swing of the cutting tool T can be prevented, and the processing accuracy of the hole by the drill T2 can be improved. That is, according to this embodiment, when the hole is drilled in the workpiece W using the two drills T1 and T2, the center of the hole h1 and the center of the hole h2 completely coincide with each other and the hole with respect to the workpiece W is formed. A stepped hole can be formed in which the inclination of h1 and the inclination of the hole h2 with respect to the workpiece W are completely coincident.
 次に、上述した例はいずれも段付き穴を加工する加工例であるが、位置が離れた二種類の穴を形成することも可能である。図13はその説明図である。なお、上述した段付き穴の加工例における制御は、位置が離れた二種類の穴の加工にも適宜適用可能である。
する。
Next, although the example mentioned above is a processing example which processes a stepped hole, it is also possible to form two types of holes which positions separated. FIG. 13 is an explanatory diagram thereof. It should be noted that the control in the above-described stepped hole processing example can be appropriately applied to processing two types of holes separated from each other.
To do.
 ここでは、ドリルT1で小径の穴を形成し、別の位置にドリルT2で大径の穴を形成する場合を説明する。まず、図13Aに示すように、ドリルT1とドリルT2の相対位置を調整する。突出量L5は、小径の穴の深さに応じた突出量である。 Here, a case where a small-diameter hole is formed by the drill T1 and a large-diameter hole is formed at another position by the drill T2 will be described. First, as shown in FIG. 13A, the relative positions of the drill T1 and the drill T2 are adjusted. The protrusion amount L5 is a protrusion amount corresponding to the depth of the small-diameter hole.
 駆動機構21を駆動して切削工具Tを回転して移動ユニット3により支持ユニット5を降下させる。これにより図13Bに示すようにワークWおよびドリルT1のサイズに応じた最適な速度および推進力でドリルT1によってワークWに穴を形成する。ドリルT1の先端T1aが所定の深さに達すると、支持ユニット5を上昇させ、図13Cに示すように切削工具TをワークWから退避させる。ワークWには穴h11が形成される。 The drive mechanism 21 is driven to rotate the cutting tool T and the support unit 5 is lowered by the moving unit 3. As a result, as shown in FIG. 13B, a hole is formed in the workpiece W by the drill T1 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T1. When the tip T1a of the drill T1 reaches a predetermined depth, the support unit 5 is raised, and the cutting tool T is retracted from the workpiece W as shown in FIG. 13C. A hole h11 is formed in the workpiece W.
 また、移動装置101により大径の穴の形成位置に加工装置1を移動させる。更に、ドリルT2で穴を形成するために、ドリルT1とドリルT2の相対位置を調整する。図13Cの例では突出量L=0としている。 Also, the processing device 1 is moved to the position where the large-diameter hole is formed by the moving device 101. Furthermore, in order to form a hole with the drill T2, the relative positions of the drill T1 and the drill T2 are adjusted. In the example of FIG. 13C, the protrusion amount L = 0.
 移動ユニット3により支持ユニット5を降下し、図13Dに示すように、加工ユニット2を再び降下させる。これによりワークWおよびドリルT2のサイズに応じた最適な速度および推進力でドリルT2によってワークWに穴を形成する。ドリルT2の先端T2aが所定の深さに達すると、支持ユニット5を上昇する。穴11と異なる位置に、径の異なる穴h12が形成される。 The support unit 5 is lowered by the moving unit 3, and the machining unit 2 is lowered again as shown in FIG. 13D. As a result, a hole is formed in the workpiece W by the drill T2 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T2. When the tip T2a of the drill T2 reaches a predetermined depth, the support unit 5 is raised. A hole h12 having a different diameter is formed at a position different from the hole 11.
 図13C、図13Dの例では突出量L=0としたが、この場合、ドリルT2の先端T2aにおいて、ワークWの切削力が不十分となる場合がある。そこで、突出量L>0とすることもできる。図13E、図13Fはその一例を示す。 13C and 13D, the protrusion amount L = 0, but in this case, the cutting force of the workpiece W may be insufficient at the tip T2a of the drill T2. Therefore, the protruding amount L> 0 can be set. FIG. 13E and FIG. 13F show an example.
 穴h11の加工後、図13Eに示すように、移動装置101により大径の穴の形成位置に加工装置1を移動させ、更に、ドリルT1とドリルT2の相対位置を調整する。図13Eの例では突出量L=L6としている。突出量L6は、例えば、L6<L5とし、特に、ドリルT1の先端T1aが露出する程度とすることができる。 After processing the hole h11, as shown in FIG. 13E, the processing device 1 is moved to the formation position of the large-diameter hole by the moving device 101, and the relative position between the drill T1 and the drill T2 is adjusted. In the example of FIG. 13E, the protrusion amount L = L6. The protrusion amount L6 is, for example, L6 <L5, and can be set particularly to the extent that the tip T1a of the drill T1 is exposed.
 移動ユニット3により支持ユニット5を降下させ、図13Fに示すように、加工ユニット2を再び降下させる。これによりワークWおよびドリルT2のサイズに応じた最適な速度および推進力でドリルT2によってワークWに穴が形成される。ドリルT1の先端T1aがドリルT2の先端T2aから突出しているので、より安定した加工を行える。ドリルT2の先端T2aが所定の深さに達すると、支持ユニット5を上昇させる。穴11と異なる位置に、径の異なる穴h12が形成される。 The support unit 5 is lowered by the moving unit 3, and the machining unit 2 is lowered again as shown in FIG. 13F. Thereby, a hole is formed in the workpiece W by the drill T2 at an optimum speed and propulsive force according to the size of the workpiece W and the drill T2. Since the tip T1a of the drill T1 protrudes from the tip T2a of the drill T2, more stable processing can be performed. When the tip T2a of the drill T2 reaches a predetermined depth, the support unit 5 is raised. A hole h12 having a different diameter is formed at a position different from the hole 11.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.

Claims (14)

  1.  ワークに対して切削工具により二種類の穴を形成することで、穴付きの部品を製造する製造方法であって、
     前記切削工具が、
     第一の穴を形成する第一のドリルと、
     前記第一の穴よりも大径の第二の穴を形成する第二のドリルと、を備え、
     前記第二のドリルは、前記第一のドリルの周りに同軸上に設けられ、かつ、前記第一のドリルと前記第二のドリルとは、これらの相対位置が変化するように、軸方向にスライド自在であり、
     前記製造方法は、
     前記第一のドリルと前記第二のドリルとの相対位置が、第一のドリルの先端が第二のドリルの先端から突出した第一の相対位置に調整された状態で、前記第一のドリルにより、前記ワークに前記第一の穴を形成する第一の加工工程と、
     前記第一のドリルと前記第二のドリルとの相対位置を、前記第一のドリルの先端が前記第二のドリルに収容されているか、又は、前記第一の相対位置と比較して、前記第二のドリルの先端からの前記第一のドリルの先端の突出量が小さい第二の相対位置に調整する調整工程と、
     前記第一のドリルと前記第二のドリルとの相対位置が前記第二の相対位置に調整された状態で、前記第二のドリルにより、前記ワークに前記第二の穴を形成する第二の加工工程と、を備える、
    ことを特徴とする製造方法。
    A manufacturing method for manufacturing a part with a hole by forming two types of holes with a cutting tool on a workpiece,
    The cutting tool is
    A first drill forming a first hole;
    A second drill for forming a second hole having a diameter larger than that of the first hole,
    The second drill is provided coaxially around the first drill, and the first drill and the second drill are arranged in the axial direction so that their relative positions change. Is slidable,
    The manufacturing method includes:
    The relative position between the first drill and the second drill is adjusted to the first relative position where the tip of the first drill protrudes from the tip of the second drill. By the first processing step of forming the first hole in the workpiece,
    The relative position between the first drill and the second drill is compared with the first relative position when the tip of the first drill is accommodated in the second drill, or An adjustment step of adjusting the second drilling position of the tip of the first drill from the tip of the second drill to a small relative position;
    In a state where the relative position between the first drill and the second drill is adjusted to the second relative position, a second hole is formed in the workpiece by the second drill. A processing step,
    The manufacturing method characterized by the above-mentioned.
  2.  ワークに対して切削工具により段付き穴を形成することで、穴付きの部品を製造する製造方法であって、
     前記切削工具が、
     第一の穴を形成する第一のドリルと、
     前記第一の穴よりも大径の第二の穴を形成する第二のドリルと、を備え、
     前記第二のドリルは、前記第一のドリルの周りに同軸上に設けられ、かつ、前記第一のドリルと前記第二のドリルとは、これらの相対位置が変化するように、軸方向にスライド自在であり、
     前記製造方法は、
     前記第一のドリルと前記第二のドリルとの相対位置が、第一のドリルの先端が第二のドリルの先端から突出した第一の相対位置に調整された状態で、前記第一のドリルにより、前記ワークに前記第一の穴を形成する第一の加工工程と、
     前記第一のドリルと前記第二のドリルとの相対位置を、前記第一の相対位置と比較して、前記第二のドリルの先端からの前記第一のドリルの先端の突出量が小さい第二の相対位置に調整する調整工程と、
     前記第一のドリルと前記第二のドリルとの相対位置が前記第二の相対位置に調整された状態で、前記第二のドリルにより前記第一の穴と同心の前記第二の穴を形成し、前記段付き穴を形成する第二の加工工程と、を備える、
    ことを特徴とする製造方法。
    A manufacturing method for manufacturing a part with a hole by forming a stepped hole with a cutting tool on a workpiece,
    The cutting tool is
    A first drill forming a first hole;
    A second drill for forming a second hole having a diameter larger than that of the first hole,
    The second drill is provided coaxially around the first drill, and the first drill and the second drill are arranged in the axial direction so that their relative positions change. Is slidable,
    The manufacturing method includes:
    The relative position between the first drill and the second drill is adjusted to the first relative position where the tip of the first drill protrudes from the tip of the second drill. By the first processing step of forming the first hole in the workpiece,
    The relative position between the first drill and the second drill is compared with the first relative position, and the amount of protrusion of the tip of the first drill from the tip of the second drill is small. An adjustment process for adjusting the relative position of the two;
    The second hole concentric with the first hole is formed by the second drill in a state where the relative position between the first drill and the second drill is adjusted to the second relative position. And a second processing step for forming the stepped hole,
    The manufacturing method characterized by the above-mentioned.
  3.  請求項2に記載の製造方法であって、
     前記第二の加工工程では、前記第二のドリルの先端からの前記第一のドリルの先端の突出量を小さくしながら前記第二の穴を形成する、
    ことを特徴とする製造方法。
    It is a manufacturing method of Claim 2, Comprising:
    In the second processing step, the second hole is formed while reducing the protruding amount of the tip of the first drill from the tip of the second drill.
    The manufacturing method characterized by the above-mentioned.
  4.  請求項2に記載の製造方法であって、
     前記第一の加工工程の前に、前記段付き穴を形成する位置に窪みを加工する窪み加工工程を更に備え、
     前記窪み加工工程では、
     前記第一のドリルと前記第二のドリルとの相対位置が、前記第一のドリルの先端が前記第二のドリルの先端よりも突出し、かつ、前記第一の相対位置と比較して、前記第二のドリルの先端からの前記第一のドリルの先端の突出量が小さくなるように調整された状態で、前記第一のドリルにより前記窪みを加工する、
    ことを特徴とする製造方法。
    It is a manufacturing method of Claim 2, Comprising:
    Before the first processing step, further comprising a dent processing step for processing a dent at a position where the stepped hole is formed,
    In the recess processing step,
    The relative position between the first drill and the second drill is such that the tip of the first drill protrudes more than the tip of the second drill, and compared with the first relative position, In the state adjusted so that the protruding amount of the tip of the first drill from the tip of the second drill is reduced, the recess is processed by the first drill,
    The manufacturing method characterized by the above-mentioned.
  5.  切削工具を回転駆動する加工ユニットと、
     前記加工ユニットを前記切削工具の軸方向に移動可能な移動ユニットと、を備え、
     前記切削工具は、
     第一の穴を形成する第一のドリルと、
     前記第一の穴よりも大径の第二の穴を形成する第二のドリルと、を備え、
     前記第二のドリルは、前記第一のドリルの周りに同軸上に設けられ、かつ、前記第一のドリルと前記第二のドリルとは、これらの相対位置が変化するように、軸方向にスライド自在であり、
     前記加工ユニットは、
     前記第一のドリルと前記第二のドリルとの前記軸方向の相対位置を変化させる相対移動機構を備える、
    ことを特徴とする加工装置。
    A machining unit for rotationally driving the cutting tool;
    A moving unit capable of moving the processing unit in the axial direction of the cutting tool,
    The cutting tool is
    A first drill forming a first hole;
    A second drill for forming a second hole having a diameter larger than that of the first hole,
    The second drill is provided coaxially around the first drill, and the first drill and the second drill are arranged in the axial direction so that their relative positions change. Is slidable,
    The processing unit is
    A relative movement mechanism for changing a relative position in the axial direction between the first drill and the second drill;
    A processing apparatus characterized by that.
  6.  請求項5に記載の加工装置であって、
     前記加工ユニットは、
     前記第一のドリルを支持する第一の回転部材と、
     前記第一の回転部材を回転させる駆動機構と、
     前記第二のドリルを支持する第二の回転部材と、を備え、
     前記第一の回転部材は、
     前記駆動機構の回転力が伝達される、前記軸方向で一方の端部と、
     前記第一のドリルが取付けられる、前記軸方向で他方の端部と、を備え、
     前記第二の回転部材は、
     前記第一の回転部材から回転力が伝達される、前記軸方向で一方の端部と、
     前記第二のドリルが取付けられる、前記軸方向で他方の端部と、を備える、
    ことを特徴とする加工装置。
    The processing apparatus according to claim 5,
    The processing unit is
    A first rotating member that supports the first drill;
    A drive mechanism for rotating the first rotating member;
    A second rotating member for supporting the second drill,
    The first rotating member is
    One end in the axial direction to which the rotational force of the drive mechanism is transmitted;
    The other end in the axial direction, to which the first drill is attached,
    The second rotating member is
    One end portion in the axial direction to which a rotational force is transmitted from the first rotating member,
    The second drill is attached to the other end in the axial direction,
    A processing apparatus characterized by that.
  7.  請求項6に記載の加工装置であって、
     前記第二の回転部材の前記一方の端部には、前記第一の回転部材が係合する係合部が設けられ、
     前記係合部と前記第一の回転部材とは、前記第一の回転部材と前記第二の回転部材との前記軸方向の相対移動を許容し、かつ、前記第一の回転部材の回転を前記第二の回転部材に伝達する形状を有している、
    ことを特徴とする加工装置。
    The processing apparatus according to claim 6, wherein
    The one end of the second rotating member is provided with an engaging portion with which the first rotating member is engaged,
    The engaging portion and the first rotating member allow relative movement in the axial direction between the first rotating member and the second rotating member, and rotate the first rotating member. Having a shape to be transmitted to the second rotating member;
    A processing apparatus characterized by that.
  8.  請求項7に記載の加工装置であって、
     前記相対移動機構は、
     前記第二の回転部材を、回転自在に支持する支持部と、
     前記支持部を前記軸方向に移動する移動部と、を備える、
    ことを特徴とする加工装置。
    The processing apparatus according to claim 7,
    The relative movement mechanism is
    A support portion for rotatably supporting the second rotating member;
    A moving part that moves the support part in the axial direction,
    A processing apparatus characterized by that.
  9.  請求項5に記載の加工装置であって、
     ワークに対する前記切削工具の先端位置を検出する検出ユニットと、
     前記検出ユニットの検出結果に基づいて、前記加工ユニット及び前記移動ユニットを制御する制御ユニットと、を更に備える、
    ことを特徴とする加工装置。
    The processing apparatus according to claim 5,
    A detection unit for detecting a tip position of the cutting tool with respect to a workpiece;
    A control unit for controlling the processing unit and the moving unit based on the detection result of the detection unit;
    A processing apparatus characterized by that.
  10.  請求項9に記載の加工装置であって、
     前記検出ユニットは、
     ワークに当接する当接部と、
     前記当接部に設けられ、前記第一のドリルの先端を検出するセンサと、を備え、
     前記当接部は、前記移動ユニットに対して前記軸方向にスライド自在に支持される、
    ことを特徴とする加工装置。
    The processing apparatus according to claim 9,
    The detection unit is
    A contact portion that contacts the workpiece;
    A sensor that is provided at the contact portion and detects a tip of the first drill;
    The contact portion is supported slidably in the axial direction with respect to the moving unit.
    A processing apparatus characterized by that.
  11.  請求項5に記載の加工装置であって、
     ワークにおける加工部位の周囲を囲包し、負圧吸引される内部空間を形成する吸引空間形成ユニットを更に備え、
     前記吸引空間形成ユニットは、前記第一のドリル及び前記第二のドリルが通過可能な開口部を備える、
    ことを特徴とする加工装置。
    The processing apparatus according to claim 5,
    A suction space forming unit that surrounds the periphery of the processing site in the workpiece and forms an internal space that is sucked under negative pressure,
    The suction space forming unit includes an opening through which the first drill and the second drill can pass.
    A processing apparatus characterized by that.
  12.  請求項5に記載の加工装置と、
     前記加工装置を移動する移動装置と、を備える、
    ことを特徴とする加工システム。
    A processing apparatus according to claim 5;
    A moving device for moving the processing device,
    A processing system characterized by that.
  13.  所定のドリルの内側に配設されるドリルであって、
     軸方向の一方端部側に形成され、加工装置に固定される装着部と、
     軸方向の他方端部側に形成され、ワークに穴を加工する刃部と、
     前記装着部と前記刃部との間に形成され、前記所定のドリルの軸方向の移動を案内する案内部と、を備える、
    ことを特徴とするドリル。
    A drill disposed inside a predetermined drill,
    A mounting portion formed on one end side in the axial direction and fixed to the processing apparatus;
    A blade portion that is formed on the other end side in the axial direction and that forms a hole in the workpiece;
    A guide portion that is formed between the mounting portion and the blade portion and guides the movement of the predetermined drill in the axial direction.
    A drill characterized by that.
  14.  所定のドリルの外側に配設されるドリルであって、
     前記所定のドリルが挿通される軸方向に延びる貫通孔と、
     軸方向の一方端部側に形成され、加工装置に固定される装着部と、
     軸方向の他方端部側に形成され、ワークに穴を加工する刃部と、を備える、
    ことを特徴とするドリル。
    A drill disposed outside a predetermined drill,
    A through hole extending in the axial direction through which the predetermined drill is inserted; and
    A mounting portion formed on one end side in the axial direction and fixed to the processing apparatus;
    A blade portion that is formed on the other end side in the axial direction and that processes a hole in the workpiece;
    A drill characterized by that.
PCT/JP2015/000346 2014-03-27 2015-01-27 Manufacturing method, machining device, and drill WO2015145928A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201580014980.3A CN106232274B (en) 2014-03-27 2015-01-27 Manufacturing method, processing unit (plant) and drill bit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014066732A JP6395414B2 (en) 2014-03-27 2014-03-27 Manufacturing method and processing apparatus
JP2014-066732 2014-03-27

Publications (1)

Publication Number Publication Date
WO2015145928A1 true WO2015145928A1 (en) 2015-10-01

Family

ID=54194492

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/000346 WO2015145928A1 (en) 2014-03-27 2015-01-27 Manufacturing method, machining device, and drill

Country Status (3)

Country Link
JP (1) JP6395414B2 (en)
CN (1) CN106232274B (en)
WO (1) WO2015145928A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669173B (en) * 2018-12-14 2019-08-21 龍華科技大學 Double acting tubular drill

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017107301B4 (en) * 2017-04-05 2019-01-24 Man Diesel & Turbo Se Apparatus and method for machining counterweight holes on a crankshaft of an internal combustion engine
CN110560752B (en) * 2019-09-02 2020-07-31 深圳市新昌晶鑫金属制品有限公司 Integrated drilling and grinding dual-purpose tool for precision machinery manufacturing
CN114226779B (en) * 2021-12-11 2024-01-23 贵州凯星液力传动机械有限公司 Machining method for long suspension deep eccentric step small hole

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068605U (en) * 1992-07-02 1994-02-04 有限会社トヨバックス 2 step drill
US5775853A (en) * 1996-09-03 1998-07-07 Makino Inc. Machining method and multi-function tool
JP2004337997A (en) * 2003-05-13 2004-12-02 Mitsubishi Materials Corp Stepped deep hole machining method and stepped drill
US20100183387A1 (en) * 2009-01-19 2010-07-22 Ho-Tien Chen Adjustable drilling edge-widening and screw driving tool set

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4629216B2 (en) * 2000-09-11 2011-02-09 サミットエフエーシステム株式会社 Fixing device for butt part in laser welding
JP2005342829A (en) * 2004-06-02 2005-12-15 Honda Motor Co Ltd Deep hole machining device and method
DE202008011892U1 (en) * 2008-09-05 2008-12-18 Schlagmann Baustoffwerke Gmbh & Co. Kg drilling
CN201261083Y (en) * 2008-09-27 2009-06-24 黄校荣 Multifunctional drill head
CN201735847U (en) * 2010-07-15 2011-02-09 蒋建伟 Multi-functional drill
CN203171026U (en) * 2013-04-19 2013-09-04 苏州文鼎模具有限公司 Stepped drill capable of adjusting stepped hole depths
CN103521860B (en) * 2013-10-09 2016-04-27 袁沛良 Cutter

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068605U (en) * 1992-07-02 1994-02-04 有限会社トヨバックス 2 step drill
US5775853A (en) * 1996-09-03 1998-07-07 Makino Inc. Machining method and multi-function tool
JP2004337997A (en) * 2003-05-13 2004-12-02 Mitsubishi Materials Corp Stepped deep hole machining method and stepped drill
US20100183387A1 (en) * 2009-01-19 2010-07-22 Ho-Tien Chen Adjustable drilling edge-widening and screw driving tool set

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI669173B (en) * 2018-12-14 2019-08-21 龍華科技大學 Double acting tubular drill

Also Published As

Publication number Publication date
CN106232274B (en) 2018-10-02
JP2015188956A (en) 2015-11-02
CN106232274A (en) 2016-12-14
JP6395414B2 (en) 2018-09-26

Similar Documents

Publication Publication Date Title
WO2015145928A1 (en) Manufacturing method, machining device, and drill
CN207806956U (en) Machine for being handled positive displacement metal object
JP2014087865A (en) Lathe, and method for processing workpiece
WO2015178096A1 (en) Machine tool
CN110421359A (en) A kind of recombination laser pipe cutting machine
KR20150028530A (en) Apparatus for manufacturing yoke of universial joint and method therefor
CN105773165A (en) Light cross core lattice foam sandwich panel drilling and grinding equipment suitable for integrating impact resistance and noise reduction
TWI485034B (en) Machine tool control system
KR20120067995A (en) Machine for making gears
JPH09234638A (en) Tool hand, machine tool and machining method using the same
CN109261995A (en) A kind of five degree of freedom fast servo tool micromotion platform
JP3185622U (en) Screw forming machine
CN105500125B (en) A kind of profile tool grinding machine
CN209077809U (en) A kind of five degree of freedom fast servo tool micromotion platform
JP3406406B2 (en) Laser and drill tap multitasking machine
CN103240771A (en) Milling device for processing matched part between panel of guitar case and guitar neck
CN206351261U (en) Borehole drill construction and rig
CN210524422U (en) All-in-one is attacked to brill for laser pipe cutting machine
JP6130511B2 (en) Machine tool and processing method thereof
CN209578230U (en) A kind of double servo intelligent reinforcement flap facing attachments
KR102019012B1 (en) Gun drill device with boring
US10315282B2 (en) Control device and control method
JP5538002B2 (en) Work processing method and machine tool
RU2754218C1 (en) Apparatus for machine processing of internal channels and corresponding method for machine processing
JP2002331433A (en) Cutting work unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15770110

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15770110

Country of ref document: EP

Kind code of ref document: A1