WO2015145870A1 - Hybrid switching device - Google Patents

Hybrid switching device Download PDF

Info

Publication number
WO2015145870A1
WO2015145870A1 PCT/JP2014/081567 JP2014081567W WO2015145870A1 WO 2015145870 A1 WO2015145870 A1 WO 2015145870A1 JP 2014081567 W JP2014081567 W JP 2014081567W WO 2015145870 A1 WO2015145870 A1 WO 2015145870A1
Authority
WO
WIPO (PCT)
Prior art keywords
support
switch
coil
insulator
power supply
Prior art date
Application number
PCT/JP2014/081567
Other languages
French (fr)
Japanese (ja)
Inventor
和長 金谷
網田 芳明
腰塚 正
正将 安藤
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to EP14887580.0A priority Critical patent/EP3125262B1/en
Priority to CN201480077426.5A priority patent/CN106165046B/en
Publication of WO2015145870A1 publication Critical patent/WO2015145870A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6661Combination with other type of switch, e.g. for load break switches
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/14Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc
    • H01H33/143Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc of different construction or type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/42Driving mechanisms

Definitions

  • Embodiments of the present invention relate to a multi-point cut composite switch that brings a plurality of contacts into and out of contact with each other.
  • a switch for high voltage which has an obligation to shut off an accident current is required to be able to shut off from a small current to a large current with certainty.
  • the following two responsibilities must be satisfied:
  • a switch of a type is also developed in which a special blocking unit is connected to each of the blocking duties to achieve the above two blocking duties. That is, it is a switch of the system which has a some interruption
  • Such a switch separates the internal space of a single pressure vessel into two and constitutes a shutoff in each space.
  • one of the separated internal spaces accommodates a puffer-type blocking part excellent in BTF blocking performance, and the other contains a puffer-type blocking part excellent in SLF blocking performance. And both blocking parts are electrically connected in series.
  • each interruption has a contact point that can be attached and detached.
  • the closing operation and the closing operation of all the contacts are performed by the actuator which is a single operation unit, the load on the operation unit is large. For this reason, the type and size of the operation unit are limited, and when the operation energy can not be increased, there is a problem that the interruption time becomes long.
  • the embodiments of the present invention are proposed to solve the problems of the prior art as described above, and the object of the present invention is to easily achieve a plurality of interrupting requirements required for a high voltage switch. And provide a combined switch with a short shutoff time.
  • the composite switch which is an embodiment of the present invention, is proposed to achieve the above object, and has the following invention specific matters.
  • At least two switches connected in series (2) At least one of the switches is a vacuum switch having a vacuum valve at a contact portion (3) At least one of the switches is a high withstand voltage switch having a contact portion having a dielectric strength larger than that of the vacuum switch.
  • the high breakdown voltage switch and the vacuum switch have the following invention-specifying matters.
  • the high breakdown voltage switch further has the following invention specific matters.
  • the operation unit and the movable electrode of the contact unit connected to the operation unit have equal potentials
  • FIG. 6 is a partial enlarged cross-sectional view of FIG. 5; It is the elements on larger scale sectional drawing of FIG. It is sectional drawing which shows the whole structure of the composite-type switch which concerns on 3rd Embodiment, and shows an injection
  • FIG. 10 is a partial enlarged cross-sectional view of FIG. 9; It is the elements on larger scale sectional drawing of FIG. It is sectional drawing of the high voltage
  • FIGS. 1 and 2 are cross-sectional views showing the entire configuration of the composite switch according to this embodiment.
  • FIG. 1 shows a closing state and
  • FIG. 2 shows a blocking state.
  • 3 is a partial enlarged cross-sectional view of FIG. 1
  • FIG. 4 is a partial enlarged cross-sectional view of FIG.
  • the composite switch 1 includes a vacuum switch 3 and a high withstand voltage switch 5.
  • the vacuum switch 3 is a switch having a vacuum valve 2 at a contact point.
  • the high breakdown voltage switch 5 is a switch having a contact 4 having a larger dielectric strength than the vacuum switch 3.
  • the vacuum switch 3 and the high withstand voltage switch 5 are horizontally juxtaposed to a foundation 16 which is an installation surface, and are electrically connected in series to each other through the insulated wire 6.
  • the vacuum switch 3 has a pressure vessel 7, a support portion 8, a contact portion 9, an operation portion 10 and a power supply portion 11.
  • the pressure vessel 7 is a cylindrical closed vessel made of insulating insulator and metal. Openings at both ends of the insulator, which is a body portion of the pressure vessel 7, are sealed by metal lids 12 and 13.
  • the metal lids 12 and 13 are electrically insulated.
  • Conductor plates 14 and 15 are provided at the end of each of the metal lids 12 and 13.
  • the vacuum switch 3 is connected to a bus bar (not shown) via the conduction plate 14, and is connected to the high breakdown voltage switch 5 from the conduction plate 15 via the insulated wire 6.
  • the insulated wire 6 is a wire of which insulation from the outside is secured by an insulating coating or the like.
  • the support portion 8 is a member that supports the pressure vessel 7 and secures insulation with the ground.
  • the support portion 8 is disposed between a base 16 for fixing the vacuum switch 3 and the pressure vessel 7 in a high voltage state.
  • the support 8 mechanically supports the pressure vessel 7 and secures an insulation distance between the base 16 and the pressure vessel 7. That is, the support portion 8 secures the electrical insulation between the pressure vessel 7 and the ground surface.
  • the contact portion 9 has a vacuum valve 2 and a shield 65.
  • the contact portion 9 is accommodated in the pressure vessel 7 and is connected to the metal lids 12 and 13 of the pressure vessel 7 directly or through the operation unit 10.
  • the operation unit 10 is a mechanism for driving the vacuum valve 2 of the contact portion 9.
  • the operation unit 10 is connected to the end of the pressure vessel 7, applies kinetic energy to the vacuum valve 2 of the contact unit 9, and drives the vacuum valve 2 to open and close. Thereby, the energized state of the vacuum switch 3 is switched.
  • the power supply unit 11 is installed on the base 16 and is a power supply source for the operation unit 10 to function.
  • the high withstand voltage switch 5 includes a pressure vessel 17, a support 18, a contact 19, an operation unit 20, and a power supply 21.
  • the pressure vessel 17 is a cylindrical closed vessel made of insulating insulator and metal. Openings at both ends of the insulator, which is a body portion of the pressure vessel 17, are sealed by metal lids 22 and 23.
  • the metal lids 22 and 23 are electrically insulated. Conductor plates 24 and 25 are provided at the end of each of the metal lids 22 and 23.
  • the high withstand voltage switch 5 is connected to the vacuum switch 3 from the conducting plate 24 via the insulated wire 6, and is connected to a bus (not shown) via the conducting plate 25.
  • the support portion 18 is a member that supports the pressure vessel 17 and secures insulation with the ground.
  • the support portion 18 is disposed between the base 16 to which the high withstand voltage switch 5 is fixed and the pressure vessel 17 in the high voltage state, mechanically supports the pressure vessel 17, and the base 16 and the pressure vessel 17. Ensure insulation distance between them. That is, the support portion 18 secures electrical insulation between the pressure vessel 17 and the ground surface.
  • the contact portion 19 has the contact 4 and the shields 66 and 67.
  • the contact portion 19 is accommodated in the pressure vessel 17, and is connected to the metal lids 22 and 23 of the pressure vessel 17 directly or through the operation unit 20.
  • the operation unit 20 is a mechanism for driving the contact 4 of the contact unit 19.
  • the operation unit 20 is connected to an end of the pressure vessel 17 and applies kinetic energy to the contact 4 of the contact 19 to drive the contact 4 to open and close. Thereby, the energized state of the high breakdown voltage switch 5 is switched.
  • the power supply unit 21 is installed on the base 16 and is a power supply source for the operation unit 20 to function.
  • the current introduced from the conduction plate 14 is the metal cover 12, the operation unit 10, the vacuum valve 2, the metal cover 13, the conduction. It flows to the board 15. Further, the current is led to the conducting plate 25 sequentially through the conducting plate 24, the metal cover 22, the operation unit 20, the contact point 4 and the metal cover 23 through the insulated wire 6.
  • the vacuum valve 2 of the vacuum switch 3 and the contact 4 of the high withstand voltage switch 5 are opened, and the current is shut off.
  • FIGS. 3 (A) and 4 (A) are enlarged cross-sectional views of the vacuum switch 3.
  • FIG. 3 (A) shows the closed state
  • FIG. 4 (A) shows the closed state.
  • the pressure vessel 7 has a forceps tank 26 and metal lids 12 and 13.
  • the insulator tank 26 has a sleeve 27 open at both ends as a body portion, and metal flanges 28 and 29 are bonded to the opened ends, respectively.
  • Metal lids 12 and 13 are fastened to the metal flanges 28 and 29, respectively.
  • the internal space 68 of the pressure vessel 7 is in a closed state.
  • the inner space 68 is filled with an insulating medium.
  • the insulating medium may be, for example, sulfur hexafluoride gas (SF6 gas), carbon dioxide, nitrogen, dry air, a mixed gas of these, or an insulating oil. In the present embodiment, it is assumed that SF 6 gas is filled.
  • Support part Support part 8 has support insulators 30 and 31, support structures 32 and 33, and connection fittings 34 and 35.
  • the support structures 32, 33 are upright metal pedestals and the lower ends thereof are fastened to the base 16.
  • the support insulators 30 and 31 are support beams in which the metal parts at both ends are insulated by insulating insulators.
  • the lower ends of the support insulators 30 and 31 are fastened to the upper ends of the support structures 32 and 33.
  • the upper ends of the support insulators 30 and 31 are connected to the metal lids 12 and 13 via the connection fittings 34 and 35.
  • the support portion 8 supports the pressure vessel 7 in a stable state in structure. Further, the length of the support insulators 30 and 31 is designed to be longer than the insulation distance between the pressure vessel 7 and the ground (support structure).
  • the contact part 9 has the vacuum valve 2 and the shield 65.
  • the vacuum valve 2 has a fixed electrode 36, a movable electrode 37, a vacuum vessel 2a, and a bellows 2b.
  • the fixed electrode 36 is directly fastened to the metal lid 13.
  • the movable electrode 37 is connected to the metal lid 12 via the drive device 38 of the operation unit 10.
  • the vacuum vessel 2a is a vessel made of an insulating crucible which accommodates the fixed electrode 36 and the movable electrode 37 and is sealed in a vacuum state.
  • the bellows 2 b is a flexible telescopic member for movably attaching the movable electrode 37 to the vacuum vessel 2 a in a hermetically sealed state.
  • the pressure of the gas in the internal space 68 is equal to or less than the gas pressure of the internal space 69 described later and equal to or higher than the atmospheric pressure. This is a pressure that the bellows 2b can withstand.
  • the shield 65 is disposed to reduce the concentration of the electric field around the vacuum valve 2 and is connected to the metal lid 12.
  • the operation unit 10 includes a drive device 38 and a control device 39.
  • the drive device 38 is fastened to the metal lid 12 inside the pressure vessel 7.
  • the drive shaft of the drive device 38 is connected to the movable electrode 37 and drives the vacuum valve 2 so as to be able to contact and release.
  • the connecting portions between the drive device 38 and the movable electrode 37 do not use the insulating material but use the conductive material, so that they are at the same potential.
  • As a conductive material it is preferable to use a highly conductive metal material.
  • the control device 39 is fastened to the metal lid 12 outside the pressure vessel 7, and is connected to the drive device 38 via the insulated wire 40 penetrating the metal lid 12. Thereby, the control device 39 controls the operation of the drive device 38 by adjusting the power supplied to the drive device 38.
  • the operation unit 10 applies a driving force to the mechanically connected movable electrode 37 to push and pull the movable electrode 37 in a straight line, thereby bringing the movable electrode 37 into and out of contact with the fixed electrode 36.
  • the operation of the operation unit 10 can be started, for example, when the control device 39 receives a command signal from a signal output device (not shown) installed outside the vacuum switch 3. Further, the metal lid 12 of the pressure vessel 7 through which the insulated wire 40 penetrates is provided with a seal portion having a packing of an elastic body (not shown), and the airtightness of the internal space 68 is maintained.
  • the power supply unit 11 includes a transformer 41, a bus 42, a pressure vessel 161, and a bushing 162.
  • the container of the transformer 41 and the pressure container 161 are fixed to the base 16 via the support structure 163.
  • the opening of the container of the transformer 41 is fastened to one opening of the pressure container 161.
  • the other opening of the pressure vessel 161 is fastened to the opening of the bushing 162.
  • the transformer 41, the pressure vessel 161, and the heat pipe 162 share an internal space 164, and the internal space 164 is sealed and filled with an insulating medium.
  • the insulating medium to be filled is the same as described above.
  • the primary side of the transformer 41 is connected to the bus 42 via the insulated wire 43.
  • the secondary side of the transformer 41 is connected to the insulated wire 44.
  • the insulated wire 44 passes through the internal space 164, penetrates the end of the bushing 162 on the operation unit 10 side, and is connected to the control device 39 of the operation unit 10.
  • the transformer 41 and the collar tube 162 through which the insulated wires 43 and 44 penetrate are provided with a seal portion having a packing of an elastic body (not shown), and the airtightness of the internal space 164 is maintained.
  • the dielectric strength between the primary side and the secondary side of the transformer 41 and the dielectric strength between both ends of the bushing 162 are designed to be larger than the dielectric strength required between the pressure vessel 7 and the ground.
  • the bus bar 42 is connected to a power supply not shown.
  • the power from the power supply source supplied from the bus 42 is boosted to a voltage necessary for driving the operation unit 10 by the transformer 41 and supplied to the operation unit 10. That is, the power supply unit 11 supplies power to the operation unit 10 in which the ground voltage is in the high voltage state without grounding.
  • FIGS. 3B and 4B Next, referring to FIGS. 3B and 4B, the pressure vessel 17, the support 18, the contact 19, the operation unit 20, and the power supply 21 which constitute the high withstand voltage switch 5 outlined above.
  • FIGS. 3B and 4B are enlarged cross-sectional views of the high breakdown voltage switch 5, FIG. 3 (B) shows a closing state, and FIG. 4 (B) shows a blocking state.
  • the pressure vessel 17 has a forceps tank 45 and metal lids 22 and 23.
  • the insulator tank 45 has a sleeve 46 open at both ends as a body portion, and metal flanges 47 and 48 are bonded to the open ends, respectively.
  • Metal lids 22 and 23 are fastened to the metal flanges 47 and 48, respectively.
  • the internal space 69 of the pressure vessel 17 is in a closed state, and the internal space 69 is filled with an insulating medium.
  • the insulating medium to be filled is the same as described above.
  • the support part 18 has the support forceps 49, 50, the support structure 51, 52, and the connection fitting 53, 54.
  • the support structures 51, 52 are upright metal pedestals and the lower ends thereof are fastened to the base 16.
  • the support insulators 49 and 50 are support beams in which the metal parts at both ends are insulated by insulating insulators.
  • the lower ends of the support insulators 49, 50 are fastened to the upper ends of the support structures 51, 52.
  • the upper ends of the support insulators 49 and 50 are connected to the metal lids 22 and 23 through the connection fittings 53 and 54.
  • the support portion 18 supports the pressure vessel 17 in a structurally stable state.
  • the length of the support insulators 49 and 50 is designed to be longer than the insulation distance between the pressure vessel 17 and the ground (support structure). For this reason, electrical insulation with the ground plane of the pressure vessel 17 is secured.
  • the contact part 19 has the contact 4 and the shields 66 and 67.
  • the contact 4 has a fixed electrode 55 and a movable electrode 56.
  • the fixed electrode 55 is directly fastened to the metal lid 23.
  • the movable electrode 56 is connected to the metal cover 22 via the drive device 57 of the operation unit 20.
  • the shields 66, 67 are arranged to ease the concentration of the electric field around the contact point 4, and are connected to the metal lids 22, 23, respectively.
  • the operation unit 20 includes a drive device 57 and a control device 58.
  • the drive device 57 is fastened to the metal lid 22 inside the pressure vessel 17.
  • the drive shaft of the drive device 57 is connected to the movable electrode 56, and drives the contact point 4 so as to be contactable and detachable.
  • the connecting portions between the drive device 57 and the movable electrode 56 do not use the insulating material, but use the conductive material, so that they have equal potential.
  • As a conductive material it is preferable to use a highly conductive metal material.
  • the control device 58 is fastened to the metal lid 22 outside the pressure vessel 17, and is connected to the drive device 57 via the insulated wire 59 penetrating the metal lid 22.
  • the control device 58 controls the operation of the drive device 57 by adjusting the power supplied to the drive device 57.
  • the operation unit 20 applies a driving force to the mechanically connected movable electrode 56 to push and pull the movable electrode 56 on a straight line, and brings the movable electrode 56 into and out of contact with the fixed electrode 55.
  • the operation of the operation unit 20 can be started, for example, when the control device 58 receives a command signal from a signal output device (not shown) installed outside the high breakdown voltage switch 5.
  • the metal lid 22 of the pressure vessel 17 through which the insulated wire 59 penetrates is provided with a seal portion having a packing of an elastic body (not shown), and the airtightness of the internal space 69 is maintained.
  • the power supply unit 21 includes a transformer 60, a bus 61, a pressure vessel 165, and a bushing 166.
  • the container of the transformer 60 and the pressure container 165 are fixed to the base 16 via the support structure 167.
  • the opening of the container of the transformer 60 is fastened to one opening of the pressure container 165.
  • the other opening of the pressure vessel 165 is fastened to the opening of the bushing 166.
  • the transformer 60, the pressure vessel 165, and the bushing 166 share an internal space 168, which is sealed and filled with an insulating medium.
  • the insulating medium to be filled is the same as described above.
  • the primary side of the transformer 60 is connected to the bus 61 via the insulated wire 62.
  • the secondary side of the transformer 60 is connected to the insulated wire 63.
  • the insulated wire 63 passes through the internal space 168, penetrates the end of the bushing 166 on the operation unit 20 side, and is connected to the control device 58 of the operation unit 20.
  • the transformer 60 through which the insulated wires 62 and 63 penetrate and the seal tube 166 are provided with a seal portion having a packing of an elastic body (not shown), and the airtightness of the internal space 168 is maintained.
  • the dielectric strength between the primary side and the secondary side of the transformer 60 and the dielectric strength between both ends of the bushing 166 are designed to be larger than the dielectric strength required between the pressure vessel 17 and the ground.
  • the bus bar 61 is connected to a power supply source (not shown).
  • the power from the power supply source supplied from the bus 61 is boosted to a voltage necessary for driving the operation unit 20 by the transformer 60 and supplied to the operation unit 20. That is, the power supply unit 21 supplies power to the operation unit 20 in which the ground voltage is in the high voltage state without grounding.
  • the movable electrode 37 of the vacuum valve 2 is separated from the fixed electrode 38.
  • an arc composed of particles and electrons evaporated from the electrode is generated between the movable electrode 37 and the fixed electrode 38.
  • the inside of the vacuum valve 2 is a high vacuum, substances constituting the arc are diffused and disappear without being able to keep their shape. Thereby, the current can be cut off.
  • the movable electrode 56 of the contact point 4 is separated from the fixed electrode 55 and an arc is generated between the electrodes.
  • the arc disappears by securing the insulation distance between the electrodes.
  • the separated gas of the SF6 gas generated by the arc is generated in the internal space 69 of the high withstand voltage switch 5.
  • the separated gas acts to corrode the surface layer of the vacuum vessel 2 a consisting of the insulating crucible of the vacuum valve 2.
  • the vacuum vessel 2 a is accommodated in the pressure vessel 7 of the vacuum switch 3, there is no fear of corrosion by the separated gas generated in the internal space 69.
  • the bellows 2b of the vacuum valve 2 may not have good high pressure resistance.
  • the pressure of the gas in the internal space 68 is equal to or less than the gas pressure in the internal space 69 and equal to or higher than the atmospheric pressure, which is the pressure that the bellows 2 b can withstand. Thereby, the bellows 2 b of the internal space 68 is protected while securing the dielectric strength at the contact points 4 of the internal space 69.
  • the vacuum switch 3 bears the sharp transient recovery voltage in the SLF interrupting duty in the interrupting process, the high transient voltage in the BTF interrupting duty, and the high withstand voltage switch with high dielectric strength. 5 bears. Thus, both blocking responsibilities can be easily achieved.
  • the connecting portion of the insulating material has lower rigidity than the metal material, the insulating material has a large elongation at the initial stage of the blocking operation, which causes a delay in response of the movable electrode to the operation of the drive device.
  • the insulating material since there is no connection part of the insulating material, it is possible to prevent the response delay of the movable electrodes 37, 56 with respect to the operation of the drive devices 38, 57.
  • the drive unit 38 is disposed in the pressure vessel 7 and the drive unit 57 is disposed in the pressure vessel 17, the distance between the drive units 38 and 57 and the movable electrodes 37 and 56 can be further shortened. The weight of the movable part can be reduced.
  • connection between the drive unit and the movable electrode does not penetrate the pressure vessel, it is possible to prevent a response delay due to sliding friction between the connection and the pressure vessel, gas leakage, and an increase in the number of parts due to the provision of the seal. .
  • the present embodiment can shorten the interruption time since the current interruption and the insulation distance can be secured in a short time as compared with the conventional switch having a plurality of puffer-type contact parts. That is, in the vacuum switch 3, since the vacuum valve 2 has a contact-type contact point and the weight of the movable electrode 37 is also small, it is possible to perform the interrupting operation for a very short time.
  • the high-breakdown-voltage switch 5 also has a dedicated operation unit 20 as a puffer-type gas contact unit. For this reason, the load per one of the operation parts 10 and 20 can be made small as the whole composite type switch 1, and the contact 4 can be open
  • the high withstand voltage switch 5 does not have a puffer cylinder or nozzle in the movable electrode 56, the weight of the movable portion driven by the operation portion 57 is reduced as compared with the puffer-type contact.
  • the operation unit 57 of the high withstand voltage switch 5 can drive the movable electrode 56 at a higher speed, so the time required to secure the insulation distance can be significantly reduced.
  • each can be made into different pressure. More specifically, the pressure of the gas in the internal space 68 is equal to or less than the gas pressure of the internal space 69 and equal to or higher than the atmospheric pressure. Thereby, the bellows 2 b of the internal space 68 can be protected while securing the dielectric strength at the contact of the internal space 69. Further, the vacuum vessel 2 a is accommodated in the pressure vessel 7. Therefore, in the shutoff process, the separated gas of SF6 gas generated by the arc generated in the internal space 69 does not come in direct contact with the vacuum vessel 2a formed of the insulating crucible of the vacuum valve 2, thereby preventing the corrosion action by the separated gas. be able to.
  • FIGS. 5 and 6 are enlarged cross-sectional views of the vacuum switch 3 according to the second embodiment, and FIG. 5 shows the closing state of the vacuum switch 3 and FIG. 6 shows the closing state of the vacuum switch 3.
  • 7 and 8 are enlarged sectional views of the electromagnetic repulsion drive device 71 in FIGS. 5 and 6, respectively.
  • the basic configuration of the present embodiment is the same as that of the first embodiment. Therefore, only differences from the first embodiment will be described, and the same parts as those of the first embodiment are denoted by the same reference numerals and detailed description thereof will be omitted.
  • an electromagnetic repulsion drive device 71 is used as the drive device 38 of the operation unit 10 of the vacuum switch 3.
  • the electromagnetic repulsion drive device 71 utilizes electromagnetic repulsion for the driving force of the opening operation, and has high responsiveness in the opening operation.
  • the electromagnetic repulsion drive device 71 has a mechanism box 72, a high speed open part 73, a wipe mechanism 74, and a holding mechanism 75. Each part will be described in detail below.
  • the mechanism box 72 is a hollow box having an opening at one end on the vacuum valve 2 side.
  • a support portion 80 which is a wall surface that divides the mechanism box 72 from the outside, is fixed.
  • a hole 80 a for slidingly supporting the movable electrode 37 of the vacuum valve 2 is formed at the center of the support portion 80.
  • the bottom surface of the mechanism box 72 on the opposite side to the support portion 80 side is fixedly connected to the wall surface of the metal lid 12 inside the pressure vessel 7.
  • the high-speed opening portion 73, the wipe mechanism 74, and the holding mechanism 75 are accommodated.
  • the high-speed opening portion 73 has a movable shaft 76, an electromagnetic repulsion coil 77, a repulsion ring 78, and a repulsion ring receiver 79.
  • the movable shaft 76 is a rod-like body coaxially connected to the movable electrode 37 of the vacuum valve 2.
  • the repulsion ring receiver 79 is an annular body fitted in the movable shaft 76 and integrated with the movable shaft 76.
  • the repelling ring 78 is an annular body made of a good conductor. The repelling ring 78 is coaxially fixed to the surface of the repelling ring receiver 79 on the vacuum valve 2 side.
  • the electromagnetic repulsion coil 77 is a coil made of a good conductor and fixed to the surface of the support 80 facing the repulsion ring 78.
  • the repulsion ring 78 is a facing good conductor facing the electromagnetic repulsion coil 77.
  • the electromagnetic repulsion coil 77 is connected to the control device 39 via the insulated wire 40.
  • the control device 39 is a coil excitation means, and by supplying power through a capacitor in the control device 39, the electromagnetic repulsion coil 77 can be excited.
  • the electromagnetic repulsion coil 77 is excited by the power from the control device 39 to generate an electromagnetic repulsive force which is a repulsive force between the repulsive ring 78 and the movable shaft 76 in the right direction in the drawing.
  • an electromagnetic repulsive force which is a repulsive force between the repulsive ring 78 and the movable shaft 76 in the right direction in the drawing.
  • copper, silver, gold, aluminum, iron are mentioned as a good conductor used for the electromagnetic repulsion coil 77 and the repulsion ring 78.
  • the wipe mechanism 74 transmits the electromagnetic repulsive force generated at the high-speed opening 73 to the holding mechanism 75.
  • the wipe mechanism 74 has a collar 81, a coupling 82, a wipe spring 83, a collar 84, and a shock absorber 85.
  • the collar 81 is an annular plate member coaxially fitted to the movable shaft 76.
  • the coupling 82 is a flat plate disposed opposite to the flange 81, and is fixed to an end of a leg 89a of a movable portion 89 described later.
  • the wiping spring 83 is in contact with the collar 81 at one end and the coupling 82 at the other end in a state where a biasing force is applied to the collar 81 and the coupling 82.
  • Collar retainer 84 is a cylindrical body with a bottom.
  • the collar holder 84 is fixed to the coupling 82 at the end opposite to the bottom surface so as to surround the collar 81 and the wipe spring 83.
  • the bottom surface of the collar holder 84 serves as a stopper for the collar 81.
  • An opening is provided on the bottom surface of the collar holder 84, and the movable shaft 76 is movably inserted.
  • the shock absorber 85 is fixed to the coupling 82.
  • the shock absorber 85 has elasticity and strength capable of absorbing the shock from the movable portion 89. Thereby, the shock absorber 85 suppresses the impact when the movable shaft 76 collides.
  • the holding mechanism portion 75 includes a permanent magnet 86, an open circuit spring 87, an electromagnetic solenoid 88, a movable portion 89, and a shock absorber 90.
  • the permanent magnet 86, the open circuit spring 87, the electromagnetic solenoid 88, the movable portion 89, and the shock absorber 90 are accommodated in a space on the opposite side of the high speed opening portion 73 formed by the support portion 91 and the inner surface of the mechanism box 72. It is done.
  • the support portion 91 is a partition plate which partitions the space inside the mechanism box 72 in the direction orthogonal to the axis on the inner surface of the mechanism box 72.
  • the movable portion 89 is made of a ferromagnetic material that exerts a suction force with the permanent magnet 86.
  • the movable portion 89 has a substantially T-shaped cross section, and the leg 89a, which is the axis of the movable portion 89, is inserted through the opening 91a provided at the center of the support portion 91 and extends toward the high speed opening portion 73. It is fixed to the ring 82.
  • the leg 89 a is slidably supported by the opening 91 a of the support portion 91.
  • a trunk 89c having a diameter larger than that of the leg 89a and smaller than that of the hands 89b is formed.
  • An electromagnetic solenoid 88 described later is provided around the barrel 89c.
  • the permanent magnet 86 is fixed to the wall surface of the support portion 91 opposite to the high speed open pole portion 73 and faces the hands 89 b of the movable portion 89.
  • the permanent magnet 86 generates a suction force in the gap between the movable portion 89 and the T-shaped hands 89 b.
  • the permanent magnet 86 and the electromagnetic solenoid 88 generate a thrust in a direction to close the movable electrode 37 constituting the contact point of the vacuum valve 2 with respect to both hands 89 b of the movable portion 89.
  • the open circuit spring 87 is installed between the hands 89 b of the movable portion 89 and the wall surface of the support portion 91 provided with the permanent magnet 86 so as to apply a biasing force to the movable portion 89.
  • the biasing force is larger than the sum of the self-closing force of the vacuum valve 2 and the attraction force of the permanent magnet 86, and in the closed state, the permanent magnet 86 for the movable portion 89.
  • the electromagnetic solenoid 88 is a winding made of a conductive member, and is wound around and fixed to a barrel 89 c of the movable portion 89.
  • the electromagnetic solenoid 88 is connected to the control device 39 via the insulated wire 40 in the same manner as the electromagnetic repulsion coil 77, is supplied with power from the power supply in the control device 39, and is configured to be capable of being excited.
  • the shock absorber 90 is fixed to the inner surface of the mechanical box 72 opposed to the hands 89 b of the movable portion 89.
  • the shock absorber 90 has elasticity and strength capable of absorbing the shock from the movable portion 89. Thereby, the shock absorber 90 suppresses the shock when the movable portion 89 collides.
  • the attraction force acting on the movable portion 89 in the closing direction by the permanent magnet 86 is larger than the force in the opening direction by the wipe spring 83 and the opening spring 87. Therefore, due to the attraction force of the permanent magnet 86, the movable portion 89 compresses the open circuit spring 87 with its both hands 89b and abuts on the support portion 91, and the movable portion 89 is fixed to the support portion 91.
  • the movable electrode 37 is in contact with the fixed electrode 36 via the movable shaft 76 by this suction force, and an urging force by the wipe spring 83 in the closing direction is applied.
  • the fixed electrode 36 and the movable electrode 37 of the vacuum valve 2 are in contact with each other by the load of the wipe spring 83, and the suction state (closed state) is maintained by the suction force of the permanent magnet 86 against the movable portion 89.
  • shut off operation Next, the opening operation of the electromagnetic repulsion drive device 71 in the shutoff operation process of the present embodiment will be described.
  • an electromagnetic repulsive force is generated between the electromagnetic repulsion coil 77 and the repulsion ring 78, and the movable electrode 37 is directed from the fixed electrode 36 to the electromagnetic repulsion driving device 71 via the repulsion ring receiver 79 and the movable shaft 76. Opening operation at high speed.
  • the direction of the opening operation in the vacuum valve 2 is hereinafter referred to as the opening direction. Also, this reverse direction is called a closing direction.
  • the movable shaft 76 moves in the open direction, and the collar 81 compresses the wipe spring 83 and collides with the shock absorber 85. At this time, the shock absorber 85 reduces the springback of the movable shaft 76 in the closing direction, and pushes the coupling 82 in the open circuit direction via the wipe spring 83 and the shock absorber 85.
  • the movable electrode 37 is separated from the fixed electrode 36 by the inertial force of the movable electrode 37 and the movable shaft 76 and the biasing force of the open circuit spring 87 until the predetermined gap is obtained. Clash with. This shock is absorbed by the shock absorber 90 and the movable portion 89 stops.
  • the predetermined gap is the distance between the fixed electrode 36 and the movable electrode 37 which is necessary for interrupting the current. After the gap between the movable electrode 37 and the fixed electrode 36 becomes a predetermined gap, the supply of power to the electromagnetic repulsion coil 77 and the electromagnetic solenoid 88 is stopped, and the excitation of these is released.
  • a capacitor in which electric charge is accumulated may be used as the power supply means from the control device 39, the accumulated electric charge may be released, and excitation may be canceled when the electric charge disappears.
  • the drive distance of the movable electrode 37 is measured by a position sensor (not shown), and after confirming that the predetermined gap or more has been driven by the control device 39, the excitation is released by interrupting the power supply. You may Even after the release, the biasing force of the open circuit spring 87 is larger than the sum of the self-closing force of the vacuum valve 2 and the attraction force of the permanent magnet 86, the contact of the vacuum valve 2 maintains the open state.
  • the drive device of the vacuum valve 2 is the electromagnetic repulsion drive device 71. For this reason, since the moving distance (stroke) of the movable electrode 37 necessary for interrupting the current is short and the weight of the movable member is small, the vacuum valve 2 achieves high responsiveness in the opening operation and further reduces the interruption time. be able to.
  • the electromagnetic repulsion drive device 71 As the electromagnetic repulsion drive device 71, the electromagnetic repulsion coil 77, the support portion 80 for fixing the electromagnetic repulsion coil 77, the repulsion ring 78 provided facing the electromagnetic repulsion coil 77, and the repulsion ring 78 are supported. There is provided a high-speed opening portion 73 consisting of a repulsive ring receiver 79.
  • the electromagnetic repulsion drive device 71 performing the opening operation by the electromagnetic repulsion force acting between the excited electromagnetic repulsion coil 77 and the repulsion ring 78 has a driving force as compared with a drive device using a spring force or a hydraulic pressure as a drive source. It is very quick to start up, and can obtain very high responsiveness. For this reason, it is excellent in SLF interruption
  • the electromagnetic repulsion drive device 71 is provided with thrust generating means for applying a thrust to the movable electrode 37 of the vacuum valve 2.
  • the movable portion 89 made of a ferromagnetic material indirectly connected to the movable shaft 76 via the coupling 82, the wipe spring 83, the collar retainer 84, the collar 81, etc., the permanent magnet 86, the electromagnetic A solenoid 88 is provided.
  • the attraction force of the permanent magnet 86 and the excited electromagnetic solenoid 88 acts on the movable portion 89, a thrust is generated in the closing direction with respect to the movable portion 89 and the movable shaft 76 to drive the movable electrode 37. It can be in contact with the stationary electrode 36.
  • FIGS. 9 and 10 are cross-sectional views showing the entire configuration of the composite switch 1 according to the present embodiment, where FIG. 9 shows the closing state and FIG. 10 shows the closing state.
  • 11 and 12 are partially enlarged cross-sectional views of the high breakdown voltage switch 5 of FIGS. 9 and 10, respectively.
  • the basic configuration of the present embodiment is the same as that of the first embodiment. Therefore, only differences from the first embodiment will be described, and the same parts as those of the first embodiment are denoted by the same reference numerals and detailed description thereof will be omitted.
  • an operation unit 101 and a power supply unit 102 are added to the composite switch 1 according to the first embodiment.
  • the fixed electrode 55 in the first embodiment is fastened to the metal lid 23.
  • the electrode corresponding to the fixed electrode 55 in the first embodiment is configured to be movable and connected to the operation unit 101. Therefore, the electrode is hereinafter referred to as the movable electrode 105.
  • the operation unit 101 includes a drive device 103 and a control device 104.
  • the driving device 103 is fastened to the metal lid 23 inside the pressure vessel 17 and is connected to the movable electrode 105 to drive the contact 4 so as to be able to contact and release.
  • the control device 104 is fastened to the metal lid 23 outside the pressure vessel 17 and is connected to the drive device 103 via the insulated wire 106 penetrating the metal lid 23.
  • the control device 104 controls the operation of the drive device 103 by adjusting the power supplied to the drive device 103.
  • the operation unit 101 pushes and pulls the movable electrode 105 in a straight line by applying a driving force to the mechanically connected movable electrode 105, thereby bringing the movable electrode 105 into and out of contact with the movable electrode 56. can do.
  • the operation of the operation unit 101 can be started, for example, when the control device 104 receives a command signal from a signal output device (not shown) installed outside the high breakdown voltage switch 5. Further, the airtightness of the internal space 69 is maintained by the seal portion having a packing of an elastic body (not shown) in the hole of the metal lid 23 through which the insulated wire 106 in the pressure vessel 17 penetrates.
  • the power supply unit 102 is a power supply unit that supplies power to the operation unit 101 whose ground voltage is in a high voltage state without grounding. It has a transformer 107, a bus bar 108, a pressure vessel 169, and a bushing 170.
  • the transformer 107 and the pressure vessel 169 are fixed to the base 16 via the support structure 171.
  • the opening of the container of the transformer 107 is fastened to one opening of the pressure container 169.
  • the other opening of the pressure vessel 169 is fastened to the opening of the bushing 170.
  • the transformer 107, the pressure vessel 169, and the bushing 170 share an internal space 172, which is sealed and filled with an insulating medium.
  • the insulating medium to be filled is the same as described above.
  • the primary side of the transformer 107 is connected to the bus 108 via the insulated wire 109. Further, the secondary side of the transformer 107 is connected to the insulated wire 110.
  • the insulated wire 110 passes through the internal space 172, penetrates the end of the operation tube 101 of the bushing 170 and is connected to the control device 104 of the operation unit 101.
  • a seal portion having a packing of an elastic body is provided in the transformer 107 and the bushing 170 through which the insulated wires 109 and 110 pass, and the airtightness of the internal space 172 is maintained.
  • the dielectric strength between the primary side and the secondary side of the transformer 107 and the dielectric strength between both ends of the bushing 170 are designed to be larger than the dielectric strength required between the pressure vessel 17 and the ground.
  • the bus bar 108 is connected to a power supply not shown.
  • the power supplied from the power supply source via the bus bar 108 is boosted to a voltage necessary for driving the operation unit 101 by the transformer 107 and supplied to the operation unit 101.
  • FIG. 13 is a cross-sectional view of the high breakdown voltage switch 5 of the composite switch 1 according to the present embodiment.
  • the basic configuration of the present embodiment is the same as that of the first embodiment. Therefore, only differences from the first embodiment will be described, and the same parts as those of the first embodiment are denoted by the same reference numerals and detailed description thereof will be omitted.
  • the member corresponding to the support portion 18 of the high withstand voltage switch 5 of the first embodiment is the support portion 111 in the composite switch 1 of the present embodiment.
  • the support portion 111 is disposed between the base 16 to which the high withstand voltage switch 5 is fixed and the pressure vessel 17 in the high voltage state.
  • the support portion 111 mechanically supports the pressure vessel 17 and secures an insulation distance between the base 16 and the pressure vessel 17.
  • the support portion 111 includes a large support insulator 112, small support insulators 113 and 114, an insulator connection portion 115, a support structure 116, and connection fittings 117 and 118.
  • the large-sized support insulators 112 and the small-sized support insulators 113 and 114 are support beams in which the metal parts at both ends are insulated by insulating insulators.
  • the insulator connection portion 115 is a metal block in which connection portions with the support insulator are arranged in three places in a Y-shape.
  • a Y-shaped support forceps 119 is configured by connecting one end of each of the large-size support forceps 112 and the small-size support forceps 113 and 114 to the forceps connection portion 115.
  • the support structure 116 is a metal pedestal and is fastened to the base 16.
  • the other end of the large support insulator 112 corresponding to the upright leg portion of the Y-shaped support insulator 119 is fastened to the support structure 116.
  • the other ends of the small-sized supporting insulators 113 and 114 corresponding to the Y-shaped arm portions are connected to the metal lids 22 and 23 through the connection fittings 117 and 118, respectively.
  • the support portion 111 supports the pressure vessel 17 in a stable state.
  • the lengths of the large support insulator 112 and the small support insulators 113 and 114 are such that A + B and A + C are equal to or greater than the insulation distance between the pressure vessel 17 and the ground, assuming that the respective dielectric strengths are A, B, and C. It is designed. Further, B + C is designed to be equal to or more than the insulation distance at both ends of the pressure vessel 17.
  • a Y-shaped support insulator 119 including a large support insulator 112, small support insulators 113 and 114, and an insulator connection portion 115 is used for the support portion 111 of the high withstand voltage switch.
  • the large-size support insulator 112 secures most of the dielectric strength between the pressure vessel 17 and the ground, and the small-size support insulators 113 and 114 secure the dielectric strength of both ends of the pressure vessel.
  • FIG. 14 is a cross-sectional view of the high withstand voltage switch 5 of the composite switch 1 according to the present embodiment.
  • the present embodiment is the same as the fourth embodiment in basic configuration. Therefore, only differences from the fourth embodiment will be described, and the same parts as those of the fourth embodiment are denoted by the same reference numerals and detailed description thereof will be omitted.
  • a member corresponding to the support portion 111 of the high breakdown voltage switch 5 according to the fourth embodiment is a support portion 121.
  • the support portion 121 is disposed between the base 16 for fixing the high withstand voltage switch 5 and the pressure vessel 17 in the high voltage state.
  • the support 121 mechanically supports the pressure vessel 17 and secures an insulation distance between the base 16 and the pressure vessel 17.
  • the support portion 121 of the present embodiment includes the large-sized support insulator 112, the small-sized support insulators 113 and 114, the insulator connection plate 122, the support structure 116, and the connection fittings 123 and 124.
  • the large-size support insulator 112 and the small-size support insulators 113 and 114 are support beams in which the metal portions at both ends are insulated by the insulating insulator.
  • the large support insulator 112 is longer than the small support insulators 113 and 114.
  • the insulator connection plate 122 is a metal plate arranged in the horizontal direction. In the upper surface of the insulator connection plate 122, two connection portions with the small-sized support insulators 113 and 114 are disposed, and in the lower surface, one connection portion with the large-size support insulator 112 is disposed. The upper end of the large-sized support insulator 112 is connected to the lower surface of the insulator connection plate 122, and the lower ends of the small-sized support insulators 113 and 114 are connected to the upper surface, thereby forming a bifurcated support insulator 125.
  • the support structure 116 is a metal pedestal and is fastened to the foundation.
  • the lower end of the large support insulator 112 corresponding to the leg portion of the bifurcated support insulator 125 is fastened to the support structure 116.
  • the upper ends of the small-sized support insulators 113 and 114 corresponding to the arm portion of the support insulator 125 are connected to the metal lids 22 and 23 through the connection fittings 123 and 124, respectively.
  • the support portion 121 supports the pressure vessel 17 in a structurally stable state.
  • the lengths of the large-sized support insulator 112 and the small-sizes 113, 114 are designed such that A + B and A + C are equal to or greater than the insulation distance between the pressure vessel 17 and the ground, where A, B and C respectively represent their dielectric strength. It is done.
  • B + C may become more than the insulation distance of the pressure vessel 17 both ends.
  • a bifurcated support insulator 125 including a large support insulator 112, small support insulators 113 and 114, and an insulator connection plate 122 is used for the support portion 121 of the high withstand voltage switch.
  • the number of large support insulators used can be reduced.
  • the large-sized support insulator 112 secures most of the dielectric strength between the pressure vessel 17 and the ground, and the small-size support insulators 113 and 114 secure the dielectric strength of both ends of the pressure vessel 17. Thereby, the number of large-sized support insulators used for one switch can be reduced, and the manufacturing cost of the switch can be suppressed.
  • FIG. 15 is a cross-sectional view showing the entire configuration of the combined switchgear 1 of the present embodiment.
  • the basic configuration of the present embodiment is the same as that of the first embodiment. Therefore, only differences from the first embodiment will be described, and the same parts as those of the first embodiment are denoted by the same reference numerals and detailed description thereof will be omitted.
  • the composite switch 1 according to the present embodiment does not have the insulated wire 6 to which the vacuum switch 3 and the high breakdown voltage switch 5 are connected in the first embodiment, and the direction of the vacuum switch 3 is reversed in the left and right direction. . Further, the operation unit 10 of the vacuum switch 3 and the operation unit 20 of the high withstand voltage switch 5 are disposed to face each other.
  • connection side of the metal lid 12 of the support portion 8 and the connection side of the metal lid 22 of the support portion 18 are unified into one shared support portion 131.
  • the shared support portion 131 mechanically supports the pressure vessels 7 and 17 and secures an insulation distance between the base 16 and the pressure vessel 7 and between the base 16 and the pressure vessel 17.
  • the power supply units 11 and 21 are unified into one power supply unit 132.
  • the shared support portion 131 has a support insulator 133, a support structure 134, and connection fittings 34, 53, 135.
  • the support structure 134 is a metal pedestal and is fastened to the base 16.
  • the support insulator 133 is a support beam in which the metal parts at both ends are insulated by an insulating insulator, and one end thereof is fastened to the support structure 134. The other end is connected to the metal cover 12 via the connection fittings 135 and 34 and is connected to the metal cover 22 via the connection fittings 135 and 53.
  • the support forceps 30 and the support structure 32 of the support portion 8 in the first embodiment, the support forceps 50 and the support structure 52 of the support portion 18 are one support forceps 133 and It is unified to the support structure 134, and is shared via the connection fitting 135.
  • the common support portion 131 supports one end of the pressure vessels 7 and 17 in a stable state.
  • the length of the support insulator 133 is designed longer than the insulation distance between the pressure vessels 7 and 17 (ground structure).
  • the power supply unit 132 includes a transformer 136, a bus 137, a pressure vessel 173, and a bushing 174.
  • the transformer 136 and the pressure vessel 173 are fixed to the base 16 via the support structure 175.
  • the opening of the container of the transformer 41 is fastened to one opening of the pressure container 161.
  • the other opening of the pressure vessel 173 is fastened to the opening of the bushing 174.
  • the transformer 136, the pressure vessel 173 and the bushing 174 share an internal space 176, which is sealed and filled with an insulating medium.
  • the insulating medium to be filled is the same as described above.
  • the primary side of transformer 132 is connected to bus 137 via insulated wire 138.
  • the secondary side of the transformer 136 is connected to the insulated wire 139.
  • the insulated wire 139 passes through the internal space 176, penetrates the upper end of the bushing 174, and is connected to the control device 39 of the operation unit 10 and the control device 58 of the operation unit 20.
  • the transformer 136 through which the insulated wires 138 and 139 penetrate and the seal tube 174 are provided with a seal having an elastic packing (not shown), and the airtightness of the internal space 176 is maintained.
  • the dielectric strength between the primary side and the secondary side of the transformer 136 and the dielectric strength between both ends of the bushing 174 are designed to be greater than the dielectric strength required between the pressure vessel 7 and the ground.
  • the bus bar 137 is connected to a power supply not shown.
  • the power supplied from the bus 137 is boosted to a voltage necessary for driving the operation units 10 and 20 by the transformer 136 and supplied to the operation units 10 and 20.
  • the power supply unit 132 supplies power to the operation units 10 and 20 whose ground voltage is in the high voltage state without grounding.
  • the present embodiment can reduce the number of support portions and power supply portions, so that the manufacturing cost can be reduced.
  • the pressure vessels 7 and 17 are simultaneously supported by one common support portion 131. That is, the plurality of switches share the common support portion 131. For this reason, the number of support insulators and support structures used for the support part of composite type switch 1 can be reduced, and a manufacturing cost can be reduced.
  • the operation units 10 and 20 connected to the metal lids 12 and 22 supported by the common support unit 131 have the same potential, power can be supplied from one power supply unit 132. That is, the power supply unit 132 is shared by a plurality of switches. As a result, the number of power supply units used for the composite switch 1 can be reduced, and the manufacturing cost can be reduced.
  • FIG. 16 is a cross-sectional view of the high breakdown voltage switch 5 of the composite switch 1 according to the present embodiment.
  • the basic configuration of the present embodiment is the same as that of the first embodiment. Therefore, only differences from the first embodiment will be described, and the same parts as those of the first embodiment are denoted by the same reference numerals and detailed description thereof will be omitted.
  • the high-breakdown-voltage switch 5 of the composite switch 1 includes a power supply unit 141 as a power supply unit that replaces the power supply unit 21 according to the first embodiment. Further, a member corresponding to the support forceps 49 of the first embodiment is a support sleeve 142 having a sealed space inside. An insulating medium is filled in the closed space of the support sleeve 142. As the insulating medium, the same one as described above can be used.
  • the power supply unit 141 includes a power feeding coil 143, a power receiving coil 144, a power feeding coil support 145, a power receiving coil support 146, a coil excitation device 147, and a bus bar 148.
  • the power supply coil 143 and the power reception coil 144 are coils for supplying and receiving electric power, and are coaxially vertically disposed in the support bushing 142.
  • the power feeding coil 143 and the power receiving coil 144 are opposed to each other with an insulation distance therebetween.
  • the power reception coil 144 is connected to the control device 58 of the operation unit 20 via the insulated wire 149.
  • the feeding coil support portion 145 is a rod-like supporting member in which the feeding coil 143 is fixed at one end thereof. The other end of the feeding coil support portion 145 is fixed to the support structure 51 side in the support sleeve 142.
  • the power reception coil support portion 146 is a rod-like support member to which the power reception coil 144 is fixed at one end. The other end of the power reception coil support portion 146 is fixed to the pressure vessel 17 side inside the support sleeve 142.
  • the coil excitation device 147 is fixed to the base 16 and is connected to the feeding coil 143 via the insulated wire 151.
  • the bus bar 148 is connected to a power supply (not shown), and is connected to the coil excitation device 147 via the insulated wire 150.
  • the coil excitation device 147 excites the power supply coil 143 by the power supplied from the bus bar 148 and generates an induction current in the power reception coil 144 to supply power to the operation unit 20.
  • the coil excitation device 147 controls the power supplied to the power supply coil 143 so that the induced current flows continuously to the power reception coil 144. That is, the power supply unit 141 supplies power to the operation unit 20 in which the ground voltage is in the high voltage state without grounding.
  • the insulated wires 149 and 151 penetrate through the support sleeve 142, the respective penetration portions are provided with a seal portion having a packing of an elastic body (not shown) so that the airtightness of the sealed space is maintained. There is.
  • the high-breakdown-voltage switch 5 of the composite switch 1 uses a power supply unit 141 capable of supplying power at two points separated by electromagnetic induction.
  • power can be supplied to the operation unit 20 in which the ground voltage is in the high voltage state without grounding.
  • the power supply unit 141 can make the power supply unit 141 compact by housing the power supply coil 143 and the power reception coil 144 in the support sleeve 142 filled with the insulating medium.
  • the insulating medium can improve the power supply efficiency by shortening the distance between the power supply coil 143 and the power reception coil 144, prevent positional deviation between the two coils, and block the influence of the external environment.
  • the following embodiments are also included in the scope of the invention.
  • the movable electrodes 37 and 56 are simultaneously separated from the fixed electrodes 36 and 55 by the driving force of the operation units 10 and 20 in the shutoff process.
  • the movable electrode 37 of the vacuum valve 2 is separated from the fixed electrode 36 to cut off the conduction current, and then the movable electrode 56 of the contact 4 is separated from the fixed electrode 55. It is also possible to secure an insulation distance of
  • the movable portion 89 of the holding mechanism portion 75 is indirectly connected to the movable shaft 76 of the high-speed opening portion 73 via the wipe mechanism portion 74.
  • the movable portion 89 may be directly connected to the movable shaft 76.
  • Electromagnetic Repulsion drive device 72 ... Mechanism box 73 ... High speed opening part 74 ... Wipe mechanism part 75 ... Holding mechanism part 76 ... Movable shaft 77 .
  • Electromagnetic repulsion coil 78 ... Repulsion ring 79 ... Repulsion ring receptacle 80 ... Support part 80a ... Hole 81 ... Collar 82 ... Coupling 83 ... Wipe spring 84 ... Collar retainer 85, 90 ... Shock absorber 86 ... Permanent magnet 87 ... Open circuit spring 88 ... Electromagnetic solenoid 89 ...
  • Movable part 8 a Legs 89b: Both hands 89c: Body 112: Large-sized support forceps 113, 114: Small-size support forceps 115: Forced connection portion 119: Y-shaped support forceps 122: Forced connection plate 125: Bifurcated support forceps 131: Shared support portion 142: support bushing 143: power feeding coil 144: power receiving coil 145: power feeding coil support 146: power receiving coil support 147: coil excitation device

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Driving Mechanisms And Operating Circuits Of Arc-Extinguishing High-Tension Switches (AREA)

Abstract

Provided is a hybrid switching device which can easily achieve a plurality of interruption duties demanded for a high voltage switch and has a short interruption time. The hybrid switching device comprises at least two or more switches which are connected in series, wherein one of the switches is a vacuum switch (3) comprising, in a contact portion, a vacuum valve, and one is a high-breakdown-voltage switch (5) comprising a contact portion of greater dielectric strength than the vacuum switch. The high-breakdown-voltage switch (5) and vacuum switch (3) have: support portions (8 and 18) which provide electrical insulation from a ground plane while supporting respective pressure vessels (7 and 17) which are each filled with an insulating medium and in which the respective contact portions (9 and 19) are housed; operation units (10 and 20) for driving the contact portions (9 and 19); and power supply units (11 and 21) which supply power to the respective operation units (10 and 20). Movable electrodes (37 and 56) for the respective contact portions (9 and 19) connected to the respective operation units (10 and 20) are equipotential to the respective operation units (10 and 20).

Description

複合型開閉器Combined switch
 本発明の実施形態は、複数個の接点を接離する多点切りの複合型開閉器に関する。 Embodiments of the present invention relate to a multi-point cut composite switch that brings a plurality of contacts into and out of contact with each other.
 事故電流の遮断責務を持つ高電圧用の開閉器には、小電流から大電流までを確実に遮断できることが要求される。特に大電流に関しては、以下の二つの遮断責務を満足しなければならない。 A switch for high voltage which has an obligation to shut off an accident current is required to be able to shut off from a small current to a large current with certainty. In particular, for large currents, the following two responsibilities must be satisfied:
 (1)近距離線路故障(SLF)電流の遮断
 これに関しては、電流零点直後の電圧(過渡回復電圧)の立ち上がり初期において現れる電圧、つまり、その絶対値は低いが急峻な変化率をもつ三角波形の電圧に対応できる責務が、開閉器に課される。
(1) Interruption of the short-range line fault (SLF) current In this regard, the voltage appearing at the initial rise of the voltage (transient recovery voltage) immediately after the current zero point, that is, the triangular waveform with a low absolute value but a steep change rate The switch is responsible for being able to handle the voltage of
 (2)遮断器端子短絡故障(BTF)電流の遮断
 これに関しては、過渡回復電圧の初期の立ち上がりは緩やかであるが終期に絶対値が高くなる印加電圧に対応できる責務が、開閉器に課される。
(2) Interruption of circuit breaker terminal short circuit fault (BTF) current In this respect, the switch is charged with the responsibility to be able to cope with the applied voltage whose initial rise of the transient recovery voltage is gradual but the absolute value becomes high at the end. Ru.
 近年では、パッファ形の開閉器が広く採用されている。この開閉器は、絶縁性ガスとしてSF6ガスを封入した圧力容器の中に、接離可能な接点を有する一つの遮断部を収容している。そして、遮断動作時には、接点に絶縁性ガスを吹き付けてアークを消弧する。この方式では、単一の開閉器で、上記の2つの遮断責務を達成する必要がある。 In recent years, puffer-type switches have been widely adopted. This switch accommodates one shut-off portion having a contact point which can be separated in a pressure vessel in which SF6 gas is sealed as an insulating gas. Then, at the time of the shutoff operation, the insulating gas is blown to the contacts to extinguish the arc. In this scheme, it is necessary to achieve the above two shutoff duties with a single switch.
 さらに、遮断責務のそれぞれに対して特化した遮断部を連結し、上記2つの遮断責務を達成する方式の開閉器も開発されている。すなわち、複数の遮断部を有し、各遮断部が、それぞれの遮断責務を分担する方式の開閉器である。このような開閉器は、単一の圧力容器の内部空間を2つに分離して、それぞれの空間に遮断部を構成している。 Furthermore, a switch of a type is also developed in which a special blocking unit is connected to each of the blocking duties to achieve the above two blocking duties. That is, it is a switch of the system which has a some interruption | blocking part and each interruption | blocking part shares each interruption | blocking duty. Such a switch separates the internal space of a single pressure vessel into two and constitutes a shutoff in each space.
 つまり、分離した内部空間の一方に、BTF遮断性能に優れたパッファ形の遮断部を収容し、他方に、SLF遮断性能に優れたパッファ形の遮断部を収容している。そして、両遮断部は、電気的に直列に接続されている。 In other words, one of the separated internal spaces accommodates a puffer-type blocking part excellent in BTF blocking performance, and the other contains a puffer-type blocking part excellent in SLF blocking performance. And both blocking parts are electrically connected in series.
特開2003―348721号公報JP 2003-348721 A
 上記のように、2つの遮断責務のそれぞれに対して特化した遮断部を連結した開閉器は、各遮断部が、接離自在な接点を有している。しかし、すべての接点の遮断動作及び投入動作を、単一の操作部であるアクチュエータによって行っているため、操作部への負担が大きくかかる。このため、操作部の種類やサイズが制限され、操作エネルギを大きくできない場合には、遮断時間が長くなるといった問題がある。 As described above, in the switch in which the special interruptions are connected to each of the two interruption duties, each interruption has a contact point that can be attached and detached. However, since the closing operation and the closing operation of all the contacts are performed by the actuator which is a single operation unit, the load on the operation unit is large. For this reason, the type and size of the operation unit are limited, and when the operation energy can not be increased, there is a problem that the interruption time becomes long.
 本発明の実施形態は、上記のような従来技術の問題を解決するために提案されたものであり、その目的は、高電圧用の開閉器に要求される複数の遮断責務を容易に達成可能で、遮断時間の短い複合型開閉器を提供することにある。 The embodiments of the present invention are proposed to solve the problems of the prior art as described above, and the object of the present invention is to easily achieve a plurality of interrupting requirements required for a high voltage switch. And provide a combined switch with a short shutoff time.
 本発明の実施形態である複合型開閉器は、上記のような目的を達成するために提案されたものであり、以下のような発明特定事項を有する。
(1)直列に接続された少なくとも二つ以上の開閉器
(2)前記開閉器のうちの少なくとも一つが、真空バルブを接点部に有する真空開閉器である
(3)前記開閉器のうちの少なくとも一つが、前記真空開閉器よりも絶縁耐力の大きい接点部を有する高耐圧開閉器である
(4)前記高耐圧開閉器及び前記真空開閉器は、以下のような発明特定事項を有する。
 (4-1)絶縁性媒体が充填されるとともに、前記接点部が収容された密閉容器
 (4-2)前記密閉容器を支持しつつ、接地面との電気的絶縁を行う支持部
 (4-3)前記接点部が有する可動電極を駆動する操作部
 (4-4)前記操作部に電力を供給する電源部
(5)前記高耐圧開閉器は、更に以下のような発明特定事項を有する。
 (5-1)前記操作部と、前記操作部と接続されている前記接点部の可動電極とが、等電位である
The composite switch, which is an embodiment of the present invention, is proposed to achieve the above object, and has the following invention specific matters.
(1) At least two switches connected in series
(2) At least one of the switches is a vacuum switch having a vacuum valve at a contact portion
(3) At least one of the switches is a high withstand voltage switch having a contact portion having a dielectric strength larger than that of the vacuum switch.
(4) The high breakdown voltage switch and the vacuum switch have the following invention-specifying matters.
(4-1) A sealed container filled with an insulating medium and in which the contact portion is accommodated (4-2) A support portion for performing electrical insulation with a ground plane while supporting the sealed container 3) Operation unit for driving the movable electrode of the contact unit (4-4) Power supply unit for supplying power to the operation unit
(5) The high breakdown voltage switch further has the following invention specific matters.
(5-1) The operation unit and the movable electrode of the contact unit connected to the operation unit have equal potentials
第1の実施形態に係る複合型開閉器の全体構成を示す断面図であり、投入状態を示す。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing which shows the whole structure of the composite switch which concerns on 1st Embodiment, and shows an injection | throwing-in state. 第1の実施形態に係る複合型開閉器の全体構成を示す断面図であり、遮断状態を示す。It is sectional drawing which shows the whole structure of the composite-type switch which concerns on 1st Embodiment, and shows a interruption | blocking state. 図1の部分拡大断面図であり、(A)は真空開閉器、(B)は高耐圧開閉器を示す。It is the elements on larger scale sectional drawing of FIG. 1, (A) shows a vacuum switch and (B) shows a high pressure-resistant switch. 図2の部分拡大断面図であり、(A)は真空開閉器、(B)は高耐圧開閉器を示す。It is the elements on larger scale sectional drawing of FIG. 2, (A) shows a vacuum switch and (B) shows a high pressure-resistant switch. 第2の実施形態に係る真空開閉器の部分拡大断面図であり、投入状態を示す。It is a partial expanded sectional view of the vacuum switch which concerns on 2nd Embodiment, and shows an injection | throwing-in state. 第2の実施形態に係る真空開閉器の部分拡大断面図であり、遮断状態を示す。It is a partial expanded sectional view of the vacuum switch which concerns on 2nd Embodiment, and shows the interruption | blocking state. 図5の部分拡大断面図である。FIG. 6 is a partial enlarged cross-sectional view of FIG. 5; 図6の部分拡大断面図である。It is the elements on larger scale sectional drawing of FIG. 第3の実施形態に係る複合型開閉器の全体構成を示す断面図であり、投入状態を示す。It is sectional drawing which shows the whole structure of the composite-type switch which concerns on 3rd Embodiment, and shows an injection | throwing-in state. 第3の実施形態に係る複合型開閉器の全体構成を示す断面図であり、遮断状態を示す。It is sectional drawing which shows the whole structure of the composite-type switch which concerns on 3rd Embodiment, and shows a interruption | blocking state. 図9の部分拡大断面図である。FIG. 10 is a partial enlarged cross-sectional view of FIG. 9; 図10の部分拡大断面図である。It is the elements on larger scale sectional drawing of FIG. 第4の実施形態に係る高耐圧開閉器の断面図である。It is sectional drawing of the high voltage | pressure-resistant switch which concerns on 4th Embodiment. 第5の実施形態に係る高耐圧開閉器の断面図である。It is sectional drawing of the high voltage | pressure-resistant switch which concerns on 5th Embodiment. 第6の実施形態に係る複合型開閉器の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the composite-type switch which concerns on 6th Embodiment. 第7の実施形態に係る高耐圧開閉器の部分拡大断面図である。It is a partial expanded sectional view of the high pressure-resistant switch concerning a 7th embodiment.
[第1の実施形態]
 第1の実施形態の複合型開閉器の構成について、図1~4を参照して説明する。図1、図2は、本実施形態の複合型開閉器の全体構成を示す断面図であり、図1は投入状態、図2は遮断状態を示す。図3は、図1の部分拡大断面図、図4は、図2の部分拡大断面図である。
First Embodiment
The configuration of the composite switch according to the first embodiment will be described with reference to FIGS. 1 and 2 are cross-sectional views showing the entire configuration of the composite switch according to this embodiment. FIG. 1 shows a closing state and FIG. 2 shows a blocking state. 3 is a partial enlarged cross-sectional view of FIG. 1, and FIG. 4 is a partial enlarged cross-sectional view of FIG.
[全体構成]
 まず、図1及び図2を参照して、本実施形態の全体構成を説明する。本実施形態の複合型開閉器1は、真空開閉器3及び高耐圧開閉器5を有する。真空開閉器3は、真空バルブ2を接点に有する開閉器である。高耐圧開閉器5は、真空開閉器3よりも絶縁耐力の大きい接点4を有する開閉器である。真空開閉器3と高耐圧開閉器5とは、設置面である基礎16に、水平方向に並置され、絶縁電線6を介して互いに電気的に直列に接続されている。
[overall structure]
First, with reference to FIG. 1 and FIG. 2, the whole structure of this embodiment is demonstrated. The composite switch 1 according to the present embodiment includes a vacuum switch 3 and a high withstand voltage switch 5. The vacuum switch 3 is a switch having a vacuum valve 2 at a contact point. The high breakdown voltage switch 5 is a switch having a contact 4 having a larger dielectric strength than the vacuum switch 3. The vacuum switch 3 and the high withstand voltage switch 5 are horizontally juxtaposed to a foundation 16 which is an installation surface, and are electrically connected in series to each other through the insulated wire 6.
(真空開閉器の概要)
 真空開閉器3は、圧力容器7、支持部8、接点部9、操作部10及び電源部11を有する。圧力容器7は、絶縁性の碍子及び金属からなる円筒型の密閉容器である。圧力容器7の胴部分である碍子の両端の開口は、金属蓋12、13によって封止されている。金属蓋12、13間は、電気的に絶縁されている。それぞれの金属蓋12、13の端部には、通電板14、15が設置されている。真空開閉器3は、通電板14を介して図示しない母線へと接続され、通電板15から絶縁電線6を介して高耐圧開閉器5と接続される。絶縁電線6は、絶縁性の被覆等により外部との絶縁が確保された電線である。
(Overview of Vacuum Switch)
The vacuum switch 3 has a pressure vessel 7, a support portion 8, a contact portion 9, an operation portion 10 and a power supply portion 11. The pressure vessel 7 is a cylindrical closed vessel made of insulating insulator and metal. Openings at both ends of the insulator, which is a body portion of the pressure vessel 7, are sealed by metal lids 12 and 13. The metal lids 12 and 13 are electrically insulated. Conductor plates 14 and 15 are provided at the end of each of the metal lids 12 and 13. The vacuum switch 3 is connected to a bus bar (not shown) via the conduction plate 14, and is connected to the high breakdown voltage switch 5 from the conduction plate 15 via the insulated wire 6. The insulated wire 6 is a wire of which insulation from the outside is secured by an insulating coating or the like.
 支持部8は、圧力容器7を支持し、対地との絶縁性を確保する部材である。支持部8は、真空開閉器3を固定する基礎16と、高電圧状態の圧力容器7との間に設置されている。これにより、支持部8は、圧力容器7を機械的に支持し、かつ基礎16と圧力容器7との間の絶縁距離を確保している。つまり、支持部8は、圧力容器7と接地面との電気的絶縁を確保している。 The support portion 8 is a member that supports the pressure vessel 7 and secures insulation with the ground. The support portion 8 is disposed between a base 16 for fixing the vacuum switch 3 and the pressure vessel 7 in a high voltage state. Thus, the support 8 mechanically supports the pressure vessel 7 and secures an insulation distance between the base 16 and the pressure vessel 7. That is, the support portion 8 secures the electrical insulation between the pressure vessel 7 and the ground surface.
 接点部9は、真空バルブ2及びシールド65を有する。接点部9は、圧力容器7内に収容されており、圧力容器7の金属蓋12、13に対して、直接若しくは操作部10を介して接続されている。 The contact portion 9 has a vacuum valve 2 and a shield 65. The contact portion 9 is accommodated in the pressure vessel 7 and is connected to the metal lids 12 and 13 of the pressure vessel 7 directly or through the operation unit 10.
 操作部10は、接点部9の真空バルブ2を駆動する機構である。操作部10は、圧力容器7の端部に接続され、接点部9の真空バルブ2に運動エネルギを与え、真空バルブ2を接離開閉するように駆動する。これにより、真空開閉器3の通電状態が切り替わる。電源部11は、基礎16に設置され、操作部10が機能するための電力の供給源である。 The operation unit 10 is a mechanism for driving the vacuum valve 2 of the contact portion 9. The operation unit 10 is connected to the end of the pressure vessel 7, applies kinetic energy to the vacuum valve 2 of the contact unit 9, and drives the vacuum valve 2 to open and close. Thereby, the energized state of the vacuum switch 3 is switched. The power supply unit 11 is installed on the base 16 and is a power supply source for the operation unit 10 to function.
(高耐圧開閉器の概要)
 高耐圧開閉器5は、圧力容器17、支持部18、接点部19、操作部20及び電源部21を有する。圧力容器17は、絶縁性の碍子及び金属からなる円筒型の密閉容器である。圧力容器17の胴部分である碍子の両端の開口は、金属蓋22、23によって封止されている。金属蓋22、23間は、電気的に絶縁されている。それぞれの金属蓋22、23の端部には、通電板24、25が設置されている。高耐圧開閉器5は、通電板24から絶縁電線6を介して真空開閉器3と接続され、通電板25を介して図示しない母線へと接続される。
(Overview of high voltage switchgear)
The high withstand voltage switch 5 includes a pressure vessel 17, a support 18, a contact 19, an operation unit 20, and a power supply 21. The pressure vessel 17 is a cylindrical closed vessel made of insulating insulator and metal. Openings at both ends of the insulator, which is a body portion of the pressure vessel 17, are sealed by metal lids 22 and 23. The metal lids 22 and 23 are electrically insulated. Conductor plates 24 and 25 are provided at the end of each of the metal lids 22 and 23. The high withstand voltage switch 5 is connected to the vacuum switch 3 from the conducting plate 24 via the insulated wire 6, and is connected to a bus (not shown) via the conducting plate 25.
 支持部18は、圧力容器17を支持し、対地との絶縁性を確保する部材である。支持部18は、高耐圧開閉器5を固定する基礎16と、高電圧状態の圧力容器17との間に設置され、圧力容器17を機械的に支持し、かつ基礎16と圧力容器17との間の絶縁距離を確保する。つまり、支持部18は、圧力容器17と接地面との電気的絶縁を確保している。 The support portion 18 is a member that supports the pressure vessel 17 and secures insulation with the ground. The support portion 18 is disposed between the base 16 to which the high withstand voltage switch 5 is fixed and the pressure vessel 17 in the high voltage state, mechanically supports the pressure vessel 17, and the base 16 and the pressure vessel 17. Ensure insulation distance between them. That is, the support portion 18 secures electrical insulation between the pressure vessel 17 and the ground surface.
 接点部19は、接点4及びシールド66、67を有する。接点部19は、圧力容器17内に収容されており、圧力容器17の金属蓋22、23に対して、直接若しくは操作部20を介して接続されている。 The contact portion 19 has the contact 4 and the shields 66 and 67. The contact portion 19 is accommodated in the pressure vessel 17, and is connected to the metal lids 22 and 23 of the pressure vessel 17 directly or through the operation unit 20.
 操作部20は、接点部19の接点4を駆動する機構である。操作部20は、圧力容器17の端部に接続され、接点部19の接点4に運動エネルギを与え、接点4を接離開閉するように駆動する。これにより、高耐圧開閉器5の通電状態が切り替わる。電源部21は、基礎16に設置され、操作部20が機能するための電力の供給源である。 The operation unit 20 is a mechanism for driving the contact 4 of the contact unit 19. The operation unit 20 is connected to an end of the pressure vessel 17 and applies kinetic energy to the contact 4 of the contact 19 to drive the contact 4 to open and close. Thereby, the energized state of the high breakdown voltage switch 5 is switched. The power supply unit 21 is installed on the base 16 and is a power supply source for the operation unit 20 to function.
 以上のような複合型開閉器1が投入状態にあるときには、図1に示すように、通電板14から導入された電流が、金属蓋12、操作部10、真空バルブ2、金属蓋13、通電板15へと流れる。さらに、電流は、絶縁電線6を介して、通電板24、金属蓋22、操作部20、接点4、金属蓋23を順次経て、通電板25へ導出される。また、複合型開閉器1が遮断状態にあるときには、図2に示すように、真空開閉器3の真空バルブ2及び高耐圧開閉器5の接点4が開離し、電流が遮断されている。 When the composite switch 1 as described above is in the on state, as shown in FIG. 1, the current introduced from the conduction plate 14 is the metal cover 12, the operation unit 10, the vacuum valve 2, the metal cover 13, the conduction. It flows to the board 15. Further, the current is led to the conducting plate 25 sequentially through the conducting plate 24, the metal cover 22, the operation unit 20, the contact point 4 and the metal cover 23 through the insulated wire 6. When the composite switch 1 is in the shutoff state, as shown in FIG. 2, the vacuum valve 2 of the vacuum switch 3 and the contact 4 of the high withstand voltage switch 5 are opened, and the current is shut off.
[詳細構成]
 以下、本実施形態の詳細構成について説明する。
(真空開閉器)
 まず、上記で概説した真空開閉器3を構成する圧力容器7、支持部8、接点部9、操作部10及び電源部11を、図3(A)、図4(A)を参照して説明する。なお、図3(A)、図4(A)は、真空開閉器3の拡大断面図であり、図3(A)は投入状態、図4(A)は遮断状態を示す。
[Detailed configuration]
Hereinafter, the detailed configuration of the present embodiment will be described.
(Vacuum switch)
First, the pressure vessel 7, the support portion 8, the contact portion 9, the operation portion 10 and the power supply portion 11 constituting the vacuum switch 3 outlined above will be described with reference to FIGS. 3 (A) and 4 (A). Do. 3 (A) and 4 (A) are enlarged cross-sectional views of the vacuum switch 3. FIG. 3 (A) shows the closed state and FIG. 4 (A) shows the closed state.
(1)圧力容器
 圧力容器7は、碍子タンク26と金属蓋12、13を有する。碍子タンク26は、両端が開口した碍管27を胴部分とし、開口した両端部には、それぞれ金属フランジ28、29が接着されている。金属フランジ28、29には、それぞれ金属蓋12、13が締結されている。
(1) Pressure vessel The pressure vessel 7 has a forceps tank 26 and metal lids 12 and 13. The insulator tank 26 has a sleeve 27 open at both ends as a body portion, and metal flanges 28 and 29 are bonded to the opened ends, respectively. Metal lids 12 and 13 are fastened to the metal flanges 28 and 29, respectively.
 圧力容器7の内部空間68は、密閉状態にある。この内部空間68には、絶縁性媒体が充填されている。絶縁性媒体としては、例えば、六フッ化硫黄ガス(SF6ガス)、二酸化炭素、窒素、乾燥空気、これらの混合ガス又は絶縁油等とすることができる。本実施形態では、SF6ガスが充填されているものとする。 The internal space 68 of the pressure vessel 7 is in a closed state. The inner space 68 is filled with an insulating medium. The insulating medium may be, for example, sulfur hexafluoride gas (SF6 gas), carbon dioxide, nitrogen, dry air, a mixed gas of these, or an insulating oil. In the present embodiment, it is assumed that SF 6 gas is filled.
(2)支持部
 支持部8は、支持碍子30、31、支持構造物32、33、接続金具34、35を有する。支持構造物32、33は、直立した金属製の台座であり、下端が基礎16に締結されている。支持碍子30、31は、絶縁性の碍子によって両端の金属部が絶縁された支持梁である。支持碍子30、31の下端は、支持構造物32、33の上端に締結されている。支持碍子30、31の上端は、接続金具34、35を介して金属蓋12、13と接続されている。
(2) Support part Support part 8 has support insulators 30 and 31, support structures 32 and 33, and connection fittings 34 and 35. The support structures 32, 33 are upright metal pedestals and the lower ends thereof are fastened to the base 16. The support insulators 30 and 31 are support beams in which the metal parts at both ends are insulated by insulating insulators. The lower ends of the support insulators 30 and 31 are fastened to the upper ends of the support structures 32 and 33. The upper ends of the support insulators 30 and 31 are connected to the metal lids 12 and 13 via the connection fittings 34 and 35.
 これによって、支持部8は、圧力容器7を構造上安定した状態で支持している。また、支持碍子30、31の長さは、圧力容器7の対地(支持構造物)間の絶縁距離より、長く設計されている。 By this, the support portion 8 supports the pressure vessel 7 in a stable state in structure. Further, the length of the support insulators 30 and 31 is designed to be longer than the insulation distance between the pressure vessel 7 and the ground (support structure).
(3)接点部
 接点部9は、真空バルブ2、シールド65を有する。真空バルブ2は、固定電極36、可動電極37、真空容器2a、ベローズ2bを有する。固定電極36は、金属蓋13に直接締結されている。可動電極37は、操作部10の駆動装置38を介して、金属蓋12に接続されている。
(3) Contact part The contact part 9 has the vacuum valve 2 and the shield 65. The vacuum valve 2 has a fixed electrode 36, a movable electrode 37, a vacuum vessel 2a, and a bellows 2b. The fixed electrode 36 is directly fastened to the metal lid 13. The movable electrode 37 is connected to the metal lid 12 via the drive device 38 of the operation unit 10.
 真空容器2aは、固定電極36、可動電極37を収容し、真空状態で封止された絶縁碍からなる容器である。ベローズ2bは、可動電極37を、真空容器2aに対して、気密を保った状態で移動可能に取り付ける可撓性のある伸縮部材である。なお、内部空間68のガスの圧力は、後述する内部空間69のガス圧力以下かつ大気圧以上である。これは、ベローズ2bが耐え得る圧力である。シールド65は、真空バルブ2周辺の電界の集中を緩和するように配置され、金属蓋12に接続されている。 The vacuum vessel 2a is a vessel made of an insulating crucible which accommodates the fixed electrode 36 and the movable electrode 37 and is sealed in a vacuum state. The bellows 2 b is a flexible telescopic member for movably attaching the movable electrode 37 to the vacuum vessel 2 a in a hermetically sealed state. The pressure of the gas in the internal space 68 is equal to or less than the gas pressure of the internal space 69 described later and equal to or higher than the atmospheric pressure. This is a pressure that the bellows 2b can withstand. The shield 65 is disposed to reduce the concentration of the electric field around the vacuum valve 2 and is connected to the metal lid 12.
(4)操作部
 操作部10は、駆動装置38、制御装置39を有する。駆動装置38は、圧力容器7内部の金属蓋12に締結されている。駆動装置38の駆動軸は、可動電極37と接続し、真空バルブ2を接離自在に駆動する。また、駆動装置38と可動電極37との接続部には、絶縁性材料を用いず、導電性材料を用いることで、それぞれ等電位となっている。導電性材料としては、導電性の高い金属材料を用いることが好ましい。制御装置39は、圧力容器7外部の金属蓋12に締結され、金属蓋12を貫通する絶縁電線40を介して、駆動装置38と接続されている。これにより、制御装置39は、駆動装置38に供給する電力を調節することで、駆動装置38の動作を制御する。
(4) Operation Unit The operation unit 10 includes a drive device 38 and a control device 39. The drive device 38 is fastened to the metal lid 12 inside the pressure vessel 7. The drive shaft of the drive device 38 is connected to the movable electrode 37 and drives the vacuum valve 2 so as to be able to contact and release. In addition, the connecting portions between the drive device 38 and the movable electrode 37 do not use the insulating material but use the conductive material, so that they are at the same potential. As a conductive material, it is preferable to use a highly conductive metal material. The control device 39 is fastened to the metal lid 12 outside the pressure vessel 7, and is connected to the drive device 38 via the insulated wire 40 penetrating the metal lid 12. Thereby, the control device 39 controls the operation of the drive device 38 by adjusting the power supplied to the drive device 38.
 操作部10は、機械的に接続された可動電極37に対して駆動力を与えることで、可動電極37を一直線上に押し引きし、可動電極37を固定電極36に対して接離開閉する。なお、操作部10の動作は、例えば、真空開閉器3外部に設置された図示しない信号出力装置からの指令信号を、制御装置39が受信することにより開始することができる。また、絶縁電線40が貫通する圧力容器7の金属蓋12には、図示しない弾性体のパッキンを有するシール部が設けられており、内部空間68の気密性が保たれている。 The operation unit 10 applies a driving force to the mechanically connected movable electrode 37 to push and pull the movable electrode 37 in a straight line, thereby bringing the movable electrode 37 into and out of contact with the fixed electrode 36. The operation of the operation unit 10 can be started, for example, when the control device 39 receives a command signal from a signal output device (not shown) installed outside the vacuum switch 3. Further, the metal lid 12 of the pressure vessel 7 through which the insulated wire 40 penetrates is provided with a seal portion having a packing of an elastic body (not shown), and the airtightness of the internal space 68 is maintained.
(5)電源部
 電源部11は、変圧器41、母線42、圧力容器161、碍管162を有する。変圧器41の容器と圧力容器161とは、支持構造物163を介して基礎16に固定されている。変圧器41の容器の開口部は、圧力容器161の一方の開口部に締結されている。一方、圧力容器161の他方の開口部は、碍管162の開口部と締結されている。変圧器41、圧力容器161、碍管162は、内部空間164を共有しており、この内部空間164は密閉され、絶縁性媒体が充填されている。充填する絶縁性媒体は、上記と同様である。変圧器41の一次側は、絶縁電線43を介して母線42と接続されている。また、変圧器41の二次側は、絶縁電線44と接続されている。絶縁電線44は内部空間164を通り、碍管162の操作部10側端部を貫通し、操作部10の制御装置39と接続されている。絶縁電線43、44が貫通する変圧器41、碍管162には、図示しない弾性体のパッキンを有するシール部が設けられており、内部空間164の気密性が保たれている。変圧器41の一次側と二次側間の絶縁耐力および、碍管162の両端間の絶縁耐力は、圧力容器7と対地間に必要な絶縁耐力よりも大きく設計されている。母線42は、図示しない電力供給源に接続されている。
(5) Power Supply Unit The power supply unit 11 includes a transformer 41, a bus 42, a pressure vessel 161, and a bushing 162. The container of the transformer 41 and the pressure container 161 are fixed to the base 16 via the support structure 163. The opening of the container of the transformer 41 is fastened to one opening of the pressure container 161. On the other hand, the other opening of the pressure vessel 161 is fastened to the opening of the bushing 162. The transformer 41, the pressure vessel 161, and the heat pipe 162 share an internal space 164, and the internal space 164 is sealed and filled with an insulating medium. The insulating medium to be filled is the same as described above. The primary side of the transformer 41 is connected to the bus 42 via the insulated wire 43. Further, the secondary side of the transformer 41 is connected to the insulated wire 44. The insulated wire 44 passes through the internal space 164, penetrates the end of the bushing 162 on the operation unit 10 side, and is connected to the control device 39 of the operation unit 10. The transformer 41 and the collar tube 162 through which the insulated wires 43 and 44 penetrate are provided with a seal portion having a packing of an elastic body (not shown), and the airtightness of the internal space 164 is maintained. The dielectric strength between the primary side and the secondary side of the transformer 41 and the dielectric strength between both ends of the bushing 162 are designed to be larger than the dielectric strength required between the pressure vessel 7 and the ground. The bus bar 42 is connected to a power supply not shown.
 母線42から供給される電力供給源からの電力は、変圧器41によって操作部10の駆動に必要な電圧まで昇圧され、操作部10へと供給される。すなわち電源部11は、対地電圧が高電圧状態となっている操作部10へ、地絡することなく電力を供給する。 The power from the power supply source supplied from the bus 42 is boosted to a voltage necessary for driving the operation unit 10 by the transformer 41 and supplied to the operation unit 10. That is, the power supply unit 11 supplies power to the operation unit 10 in which the ground voltage is in the high voltage state without grounding.
(高耐圧開閉器)
 次に、上記で概説した高耐圧開閉器5を構成する圧力容器17、支持部18、接点部19、操作部20及び電源部21を、図3(B)、図4(B)を参照して説明する。なお、図3(B)、図4(B)は、高耐圧開閉器5の拡大断面図であり、図3(B)は投入状態、図4(B)は遮断状態を示す。
(High voltage switchgear)
Next, referring to FIGS. 3B and 4B, the pressure vessel 17, the support 18, the contact 19, the operation unit 20, and the power supply 21 which constitute the high withstand voltage switch 5 outlined above. Explain. 3 (B) and 4 (B) are enlarged cross-sectional views of the high breakdown voltage switch 5, FIG. 3 (B) shows a closing state, and FIG. 4 (B) shows a blocking state.
(1)圧力容器
 圧力容器17は、碍子タンク45と金属蓋22、23を有する。碍子タンク45は、両端が開口した碍管46を胴部分とし、開口した両端部には、それぞれ金属フランジ47、48が接着されている。金属フランジ47、48には、それぞれ金属蓋22、23が締結されている。
(1) Pressure vessel The pressure vessel 17 has a forceps tank 45 and metal lids 22 and 23. The insulator tank 45 has a sleeve 46 open at both ends as a body portion, and metal flanges 47 and 48 are bonded to the open ends, respectively. Metal lids 22 and 23 are fastened to the metal flanges 47 and 48, respectively.
 圧力容器17の内部空間69は、密閉状態にあり、この内部空間69には、絶縁性媒体が充填されている。充填する絶縁性媒体は、上記と同様である。 The internal space 69 of the pressure vessel 17 is in a closed state, and the internal space 69 is filled with an insulating medium. The insulating medium to be filled is the same as described above.
(2)支持部
 支持部18は、支持碍子49、50と支持構造物51、52と接続金具53、54を有する。支持構造物51、52は、直立した金属製の台座であり、下端が基礎16に締結されている。支持碍子49、50は、絶縁性の碍子によって両端の金属部が絶縁された支持梁である。支持碍子49、50の下端は、支持構造物51、52の上端に締結されている。支持碍子49、50の上端は、接続金具53、54を介して金属蓋22、23と接続されている。
(2) Support part The support part 18 has the support forceps 49, 50, the support structure 51, 52, and the connection fitting 53, 54. The support structures 51, 52 are upright metal pedestals and the lower ends thereof are fastened to the base 16. The support insulators 49 and 50 are support beams in which the metal parts at both ends are insulated by insulating insulators. The lower ends of the support insulators 49, 50 are fastened to the upper ends of the support structures 51, 52. The upper ends of the support insulators 49 and 50 are connected to the metal lids 22 and 23 through the connection fittings 53 and 54.
 これによって、支持部18は、圧力容器17を構造上安定した状態に支持している。また、支持碍子49、50の長さは、圧力容器17の対地(支持構造物)間の絶縁距離より、長く設計されている。このため、圧力容器17の接地面との電気的絶縁が確保されている。 By this, the support portion 18 supports the pressure vessel 17 in a structurally stable state. Also, the length of the support insulators 49 and 50 is designed to be longer than the insulation distance between the pressure vessel 17 and the ground (support structure). For this reason, electrical insulation with the ground plane of the pressure vessel 17 is secured.
(3)接点部
 接点部19は、接点4、シールド66、67を有する。接点4は、固定電極55、可動電極56を有する。固定電極55は、金属蓋23に直接締結されている。可動電極56は、操作部20の駆動装置57を介して、金属蓋22に接続されている。シールド66、67は、接点4周辺の電界の集中を緩和するように配置され、それぞれ金属蓋22、23に接続されている。
(3) Contact part The contact part 19 has the contact 4 and the shields 66 and 67. The contact 4 has a fixed electrode 55 and a movable electrode 56. The fixed electrode 55 is directly fastened to the metal lid 23. The movable electrode 56 is connected to the metal cover 22 via the drive device 57 of the operation unit 20. The shields 66, 67 are arranged to ease the concentration of the electric field around the contact point 4, and are connected to the metal lids 22, 23, respectively.
(4)操作部
 操作部20は、駆動装置57、制御装置58を有する。駆動装置57は、圧力容器17内部の金属蓋22に締結されている。駆動装置57の駆動軸は、可動電極56と接続し、接点4を接離自在に駆動する。また、駆動装置57と可動電極56との接続部には、絶縁性材料を用いず、導電性材料を用いることで、それぞれ等電位となっている。導電性材料としては、導電性の高い金属材料を用いることが好ましい。制御装置58は、圧力容器17外部の金属蓋22に締結され、金属蓋22を貫通する絶縁電線59を介して、駆動装置57と接続されている。これにより、制御装置58は、駆動装置57に供給する電力を調節することで、駆動装置57の動作を制御する。
(4) Operation Unit The operation unit 20 includes a drive device 57 and a control device 58. The drive device 57 is fastened to the metal lid 22 inside the pressure vessel 17. The drive shaft of the drive device 57 is connected to the movable electrode 56, and drives the contact point 4 so as to be contactable and detachable. In addition, the connecting portions between the drive device 57 and the movable electrode 56 do not use the insulating material, but use the conductive material, so that they have equal potential. As a conductive material, it is preferable to use a highly conductive metal material. The control device 58 is fastened to the metal lid 22 outside the pressure vessel 17, and is connected to the drive device 57 via the insulated wire 59 penetrating the metal lid 22. Thus, the control device 58 controls the operation of the drive device 57 by adjusting the power supplied to the drive device 57.
 操作部20は、機械的に接続された可動電極56に対して駆動力を与えることで、可動電極56を一直線上に押し引きし、可動電極56を固定電極55に対して接離開閉する。なお、操作部20の動作は、例えば、高耐圧開閉器5外部に設置された図示しない信号出力装置からの指令信号を、制御装置58が受信することにより開始することができる。 The operation unit 20 applies a driving force to the mechanically connected movable electrode 56 to push and pull the movable electrode 56 on a straight line, and brings the movable electrode 56 into and out of contact with the fixed electrode 55. The operation of the operation unit 20 can be started, for example, when the control device 58 receives a command signal from a signal output device (not shown) installed outside the high breakdown voltage switch 5.
 また、絶縁電線59が貫通する圧力容器17の金属蓋22には、図示しない弾性体のパッキンを有するシール部が設けられており、内部空間69の気密性が保たれている。 Further, the metal lid 22 of the pressure vessel 17 through which the insulated wire 59 penetrates is provided with a seal portion having a packing of an elastic body (not shown), and the airtightness of the internal space 69 is maintained.
(5)電源部
 電源部21は、変圧器60、母線61、圧力容器165、碍管166を有する。変圧器60の容器と圧力容器165とは、支持構造物167を介して基礎16に固定されている。変圧器60の容器の開口部は、圧力容器165の一方の開口部に締結されている。一方、圧力容器165の他方の開口部は、碍管166の開口部と締結されている。変圧器60、圧力容器165、碍管166は、内部空間168を共有しており、この内部空間168は密閉され、絶縁性媒体が充填されている。充填する絶縁性媒体は、上記と同様である。変圧器60の一次側は、絶縁電線62を介して母線61と接続されている。また、変圧器60の二次側は、絶縁電線63と接続されている。絶縁電線63は内部空間168を通り、碍管166の操作部20側端部を貫通し、操作部20の制御装置58と接続されている。絶縁電線62、63が貫通する変圧器60、碍管166には、図示しない弾性体のパッキンを有するシール部が設けられており、内部空間168の気密性が保たれている。変圧器60の一次側と二次側間の絶縁耐力および、碍管166の両端間の絶縁耐力は、圧力容器17と対地間に必要な絶縁耐力よりも大きく設計されている。母線61は、図示しない電力供給源に接続されている。
(5) Power Supply Unit The power supply unit 21 includes a transformer 60, a bus 61, a pressure vessel 165, and a bushing 166. The container of the transformer 60 and the pressure container 165 are fixed to the base 16 via the support structure 167. The opening of the container of the transformer 60 is fastened to one opening of the pressure container 165. On the other hand, the other opening of the pressure vessel 165 is fastened to the opening of the bushing 166. The transformer 60, the pressure vessel 165, and the bushing 166 share an internal space 168, which is sealed and filled with an insulating medium. The insulating medium to be filled is the same as described above. The primary side of the transformer 60 is connected to the bus 61 via the insulated wire 62. Further, the secondary side of the transformer 60 is connected to the insulated wire 63. The insulated wire 63 passes through the internal space 168, penetrates the end of the bushing 166 on the operation unit 20 side, and is connected to the control device 58 of the operation unit 20. The transformer 60 through which the insulated wires 62 and 63 penetrate and the seal tube 166 are provided with a seal portion having a packing of an elastic body (not shown), and the airtightness of the internal space 168 is maintained. The dielectric strength between the primary side and the secondary side of the transformer 60 and the dielectric strength between both ends of the bushing 166 are designed to be larger than the dielectric strength required between the pressure vessel 17 and the ground. The bus bar 61 is connected to a power supply source (not shown).
 母線61から供給される電力供給源からの電力は、変圧器60によって操作部20の駆動に必要な電圧まで昇圧され、操作部20へと供給される。すなわち、電源部21は、対地電圧が高電圧状態となっている操作部20へ、地絡することなく電力を供給する。 The power from the power supply source supplied from the bus 61 is boosted to a voltage necessary for driving the operation unit 20 by the transformer 60 and supplied to the operation unit 20. That is, the power supply unit 21 supplies power to the operation unit 20 in which the ground voltage is in the high voltage state without grounding.
[作用]
 以上のような本実施形態の作用を、投入状態と遮断動作に分けて説明する。なお、投入状態は、図1、図3(A)(B)に示し、遮断動作は、図2、図4(A)(B)に示す。
[Effect]
The operation of the present embodiment as described above will be described separately for the on state and the blocking operation. The input state is shown in FIG. 1 and FIGS. 3 (A) and 3 (B), and the shutoff operation is shown in FIGS. 2 and 4 (A) and 4 (B).
(投入状態)
 まず、複合型開閉器1が投入状態にあるときには、通電板14から導入される電流は、金属蓋12、駆動装置38、可動電極37、固定電極36、金属蓋13、通電板15へと流れる。そして、電流は、通電板15から絶縁電線6を介して、通電板24、金属蓋22、駆動装置57、可動電極56、固定電極55、金属蓋23を順次経て、通電板25へ導出される。
(Input state)
First, when the composite switch 1 is in the on state, the current introduced from the conducting plate 14 flows to the metal lid 12, the driving device 38, the movable electrode 37, the fixed electrode 36, the metal lid 13, and the conducting plate 15. . Then, the current is led out from the conducting plate 15 to the conducting plate 25 sequentially through the conducting plate 24, the metal lid 22, the driving device 57, the movable electrode 56, the fixed electrode 55 and the metal lid 23 through the insulated wire 6. .
(遮断動作)
 一方、複合型開閉器1の外部から、電流遮断の指令信号が与えられると、駆動装置38、57に接続された可動電極37、56は、駆動力を与えられる。これにより、可動電極37、56が固定電極36、55から同時に開離して、電流遮断を開始する。
(Shut off operation)
On the other hand, when a command signal for interrupting the current is given from the outside of the composite switch 1, the movable electrodes 37, 56 connected to the driving devices 38, 57 are given a driving force. As a result, the movable electrodes 37 and 56 are simultaneously separated from the fixed electrodes 36 and 55 to start current interruption.
 具体的には、真空開閉器3においては、真空バルブ2の可動電極37が固定電極38から開離する。この過程で、可動電極37と固定電極38との間には、電極より蒸発した粒子と電子によって構成されるアークが発生する。しかし、真空バルブ2内は高真空であるためアークを構成する物質は拡散し、形状を留めていることができずに消滅する。これにより通電電流を遮断することができる。 Specifically, in the vacuum switch 3, the movable electrode 37 of the vacuum valve 2 is separated from the fixed electrode 38. In this process, an arc composed of particles and electrons evaporated from the electrode is generated between the movable electrode 37 and the fixed electrode 38. However, since the inside of the vacuum valve 2 is a high vacuum, substances constituting the arc are diffused and disappear without being able to keep their shape. Thereby, the current can be cut off.
 一方、高耐圧開閉器5においては、接点4の可動電極56が固定電極55から開離し、電極間にアークが発生するが、電極間の絶縁距離を確保することにより、アークは消滅する。 On the other hand, in the high breakdown voltage switch 5, the movable electrode 56 of the contact point 4 is separated from the fixed electrode 55 and an arc is generated between the electrodes. However, the arc disappears by securing the insulation distance between the electrodes.
 この遮断過程において、高耐圧開閉器5の内部空間69では、アークによって発生するSF6ガスの分離ガスが発生する。この分離ガスは、真空バルブ2の絶縁碍からなる真空容器2aの表面層を腐食する作用がある。しかし、真空容器2aは、真空開閉器3の圧力容器7内に収容されているので、内部空間69で発生した分離ガスにより腐食する心配がない。 In the shutoff process, in the internal space 69 of the high withstand voltage switch 5, the separated gas of the SF6 gas generated by the arc is generated. The separated gas acts to corrode the surface layer of the vacuum vessel 2 a consisting of the insulating crucible of the vacuum valve 2. However, since the vacuum vessel 2 a is accommodated in the pressure vessel 7 of the vacuum switch 3, there is no fear of corrosion by the separated gas generated in the internal space 69.
 なお、真空バルブ2が有するベローズ2bは、耐高圧性が良くない場合がある。本実施形態では、内部空間68のガスの圧力を、ベローズ2bが耐え得る圧力である、内部空間69のガス圧力以下かつ大気圧以上とした。これにより、内部空間69の接点4における絶縁耐力を確保しつつ、内部空間68のベローズ2bが保護される。 In addition, the bellows 2b of the vacuum valve 2 may not have good high pressure resistance. In the present embodiment, the pressure of the gas in the internal space 68 is equal to or less than the gas pressure in the internal space 69 and equal to or higher than the atmospheric pressure, which is the pressure that the bellows 2 b can withstand. Thereby, the bellows 2 b of the internal space 68 is protected while securing the dielectric strength at the contact points 4 of the internal space 69.
 以上のように、本実施形態では、遮断過程において、SLF遮断責務における急峻な過渡回復電圧を真空開閉器3が負担し、BTF遮断責務における高い過渡復電圧を、絶縁耐力が高い高耐圧開閉器5が負担する。このように、両遮断責務を容易に達成することができる。 As described above, in the present embodiment, the vacuum switch 3 bears the sharp transient recovery voltage in the SLF interrupting duty in the interrupting process, the high transient voltage in the BTF interrupting duty, and the high withstand voltage switch with high dielectric strength. 5 bears. Thus, both blocking responsibilities can be easily achieved.
[効果]
 以上のような本実施形態の効果は、以下の通りである。
(1)複数の開閉器があり、それぞれの接点部を駆動する操作部を有しているので、操作部の一つ当たりの負荷が小さくなり、接点を高速に開離することができる。つまり、真空開閉器3の接点部9を駆動する操作部10、高耐圧開閉器5の接点部19を駆動する操作部20を有しているので、操作部10と操作部20のそれぞれの負荷を小さくすることができ、高速な開離が可能となる。
[effect]
The effects of the present embodiment as described above are as follows.
(1) Since there are a plurality of switches and the operation part which drives each contact part, the load per one of the operation parts becomes small, and the contacts can be separated at high speed. That is, since the operation unit 10 for driving the contact unit 9 of the vacuum switch 3 and the operation unit 20 for driving the contact unit 19 of the high withstand voltage switch 5 are provided, each load of the operation unit 10 and the operation unit 20 is Can be reduced, and high speed separation is possible.
(2)複数の開閉器のうち、少なくとも一つがSLF遮断責務を担当し、少なくとも一つがBTF遮断責務を担当するので、両責務を容易に達成することができる。つまり、一つの開閉器として、真空バルブ2を有する真空開閉器3を用い、一つの開閉器として、真空バルブ2よりも絶縁耐力の大きい接点4を有する高耐圧開閉器5を用いている。これにより、遮断過程において、SLF遮断責務における急峻な過渡回復電圧を真空開閉器3が負担することができる。また、BTF遮断責務における高い過渡復電圧を、絶縁耐力が高い高耐圧開閉器5が負担することができる。 (2) Since at least one of the plurality of switches is in charge of the SLF blocking duty and at least one is in charge of the BTF blocking duty, both the duties can be easily achieved. That is, as one switch, the vacuum switch 3 having the vacuum valve 2 is used, and as one switch, the high breakdown voltage switch 5 having the contact 4 having a larger dielectric strength than the vacuum valve 2 is used. Thereby, the vacuum switch 3 can bear the sharp transient recovery voltage in the SLF interrupting duty in the interrupting process. In addition, the high breakdown voltage in the BTF interrupting duty can be borne by the high breakdown voltage switch 5 having high dielectric strength.
(3)複数の開閉器は、駆動装置と可動電極とが等電位であるため、駆動装置と可動電極の間の絶縁距離を確保する必要がない。よって、絶縁性材料の接続部が不要となる。これにより、可動部の重量が低減され、接点を高速に開離することができる。つまり、真空開閉器3の操作部10の駆動装置38と、可動電極37は等電位であり、高耐圧開閉器5の操作部20の駆動装置57と、可動電極56は等電位である。このため、駆動装置38、57と可動電極37、56の距離を短くすることができる。
 また、絶縁性材料の接続部は、金属材料に比べて剛性が低いため、遮断動作初期において、絶縁性材料には大きな伸びが生じ、駆動装置の動作に対する可動電極の応答遅れが生じる。本実施形態では、この絶縁性材料の接続部を持たないため、駆動装置38、57の動作に対する可動電極37、56の応答遅れを防止できる。
 加えて、駆動装置38は、圧力容器7内に配置され、駆動装置57は、圧力容器17内に配置されているため、駆動装置38、57と可動電極37、56の距離を更に短縮でき、可動部の重量を低減できる。
 また、駆動装置と可動電極との接続部が圧力容器を貫通しないため、接続部と圧力容器間の摺動摩擦による応答遅れや、ガス漏れ、シール部を設けることによる部品点数の増加等を防止できる。
(3) In the plurality of switches, since the drive device and the movable electrode are equipotential, it is not necessary to secure an insulation distance between the drive device and the movable electrode. Therefore, the connection portion of the insulating material is not necessary. As a result, the weight of the movable portion is reduced, and the contacts can be separated at high speed. That is, the drive unit 38 of the operation unit 10 of the vacuum switch 3 and the movable electrode 37 are equipotential, and the drive unit 57 of the operation unit 20 of the high breakdown voltage switch 5 and the movable electrode 56 are equipotential. Therefore, the distance between the drive devices 38 and 57 and the movable electrodes 37 and 56 can be shortened.
In addition, since the connecting portion of the insulating material has lower rigidity than the metal material, the insulating material has a large elongation at the initial stage of the blocking operation, which causes a delay in response of the movable electrode to the operation of the drive device. In this embodiment, since there is no connection part of the insulating material, it is possible to prevent the response delay of the movable electrodes 37, 56 with respect to the operation of the drive devices 38, 57.
In addition, since the drive unit 38 is disposed in the pressure vessel 7 and the drive unit 57 is disposed in the pressure vessel 17, the distance between the drive units 38 and 57 and the movable electrodes 37 and 56 can be further shortened. The weight of the movable part can be reduced.
In addition, since the connection between the drive unit and the movable electrode does not penetrate the pressure vessel, it is possible to prevent a response delay due to sliding friction between the connection and the pressure vessel, gas leakage, and an increase in the number of parts due to the provision of the seal. .
(4)本実施形態は、従来のパッファ形の接点部を複数有する開閉器と比べて、電流遮断及び絶縁距離の確保をより短時間で行えるので、遮断時間を短縮することができる。つまり、真空開閉器3は、真空バルブ2が接触式の接点を有し、可動電極37の重量も小さいため、非常に短時間の遮断動作が可能となる。また、高耐圧開閉器5は、パッファ形のガス接点部としても、専用の操作部20を有している。このため、複合型開閉器1の全体として、操作部10、20の一つ当たりの負荷を小さくし、接点4を高速に開離することができる。さらに、高耐圧開閉器5は、可動電極56にパッファシリンダやノズルを有しない場合、パッファ形の接点に比べて、操作部57の駆動する可動部重量が低減される。これにより、高耐圧開閉器5の操作部57は、可動電極56をさらに高速に駆動させることができるので、絶縁距離を確保するために必要な時間を大幅に短縮することができる。 (4) The present embodiment can shorten the interruption time since the current interruption and the insulation distance can be secured in a short time as compared with the conventional switch having a plurality of puffer-type contact parts. That is, in the vacuum switch 3, since the vacuum valve 2 has a contact-type contact point and the weight of the movable electrode 37 is also small, it is possible to perform the interrupting operation for a very short time. The high-breakdown-voltage switch 5 also has a dedicated operation unit 20 as a puffer-type gas contact unit. For this reason, the load per one of the operation parts 10 and 20 can be made small as the whole composite type switch 1, and the contact 4 can be open | released at high speed. Furthermore, when the high withstand voltage switch 5 does not have a puffer cylinder or nozzle in the movable electrode 56, the weight of the movable portion driven by the operation portion 57 is reduced as compared with the puffer-type contact. As a result, the operation unit 57 of the high withstand voltage switch 5 can drive the movable electrode 56 at a higher speed, so the time required to secure the insulation distance can be significantly reduced.
(5)接点部を別個の開閉器に分離し、それぞれを収容した空間を独立させる構造としたので、それぞれを異なる圧力にすることができる。より具体的には、内部空間68のガスの圧力を内部空間69のガス圧力以下かつ大気圧以上としている。これにより、内部空間69の接点における絶縁耐力を確保しつつ、内部空間68のベローズ2bを保護することができる。また、真空容器2aは、圧力容器7内に収容されている。従って、遮断過程において、内部空間69で生じるアークによって発生するSF6ガスの分離ガスが、真空バルブ2の絶縁碍からなる真空容器2aと直接接触することがなくなり、この分離ガスによる腐食作用を防止することができる。 (5) Since the contact portions are separated into separate switches, and the space in which each is accommodated is made independent, each can be made into different pressure. More specifically, the pressure of the gas in the internal space 68 is equal to or less than the gas pressure of the internal space 69 and equal to or higher than the atmospheric pressure. Thereby, the bellows 2 b of the internal space 68 can be protected while securing the dielectric strength at the contact of the internal space 69. Further, the vacuum vessel 2 a is accommodated in the pressure vessel 7. Therefore, in the shutoff process, the separated gas of SF6 gas generated by the arc generated in the internal space 69 does not come in direct contact with the vacuum vessel 2a formed of the insulating crucible of the vacuum valve 2, thereby preventing the corrosion action by the separated gas. be able to.
[第2の実施形態]
[構成]
 第2の実施形態について、図5~8を参照して説明する。なお、図5、6は、第2の実施形態に係る真空開閉器3の拡大断面図であり、図5が真空開閉器3の投入状態、図6が真空開閉器3の遮断状態を示す。図7、8はそれぞれ図5、6における電磁反発駆動装置71の拡大断面図である。
Second Embodiment
[Constitution]
The second embodiment will be described with reference to FIGS. 5 and 6 are enlarged cross-sectional views of the vacuum switch 3 according to the second embodiment, and FIG. 5 shows the closing state of the vacuum switch 3 and FIG. 6 shows the closing state of the vacuum switch 3. 7 and 8 are enlarged sectional views of the electromagnetic repulsion drive device 71 in FIGS. 5 and 6, respectively.
 本実施形態は、第1の実施形態と基本構成は同じである。よって、第1の実施形態と異なる点のみを説明し、第1の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。 The basic configuration of the present embodiment is the same as that of the first embodiment. Therefore, only differences from the first embodiment will be described, and the same parts as those of the first embodiment are denoted by the same reference numerals and detailed description thereof will be omitted.
 本実施形態は、真空開閉器3の操作部10の駆動装置38として、電磁反発駆動装置71を用いている。電磁反発駆動装置71は、開極動作の駆動力に電磁反発力を利用したものであり、開極動作において高い応答性を有する。この電磁反発駆動装置71は、機構箱72、高速開極部73、ワイプ機構部74、保持機構部75を有する。以下、各部を詳説する。 In the present embodiment, an electromagnetic repulsion drive device 71 is used as the drive device 38 of the operation unit 10 of the vacuum switch 3. The electromagnetic repulsion drive device 71 utilizes electromagnetic repulsion for the driving force of the opening operation, and has high responsiveness in the opening operation. The electromagnetic repulsion drive device 71 has a mechanism box 72, a high speed open part 73, a wipe mechanism 74, and a holding mechanism 75. Each part will be described in detail below.
(機構箱)
 機構箱72は、真空バルブ2側の一端に開口を有する内部が中空の箱である。機構箱72の開口には、機構箱72と外部とを仕切る壁面である支持部80が固定されている。この支持部80の中央には、真空バルブ2の可動電極37を摺動支持する穴80aが形成されている。
(Mechanism box)
The mechanism box 72 is a hollow box having an opening at one end on the vacuum valve 2 side. At the opening of the mechanism box 72, a support portion 80, which is a wall surface that divides the mechanism box 72 from the outside, is fixed. A hole 80 a for slidingly supporting the movable electrode 37 of the vacuum valve 2 is formed at the center of the support portion 80.
 機構箱72の支持部80側とは反対側の底面は、圧力容器7内部の金属蓋12壁面に、固定接続されている。このような機構箱72内に、高速開極部73、ワイプ機構部74、及び保持機構部75が収容されている。 The bottom surface of the mechanism box 72 on the opposite side to the support portion 80 side is fixedly connected to the wall surface of the metal lid 12 inside the pressure vessel 7. In such a mechanism box 72, the high-speed opening portion 73, the wipe mechanism 74, and the holding mechanism 75 are accommodated.
(高速開極部)
 高速開極部73は、可動軸76、電磁反発コイル77、反発リング78、反発リング受け79を有する。
(High-speed opening)
The high-speed opening portion 73 has a movable shaft 76, an electromagnetic repulsion coil 77, a repulsion ring 78, and a repulsion ring receiver 79.
 可動軸76は、真空バルブ2の可動電極37と同軸に接続された棒状体である。反発リング受け79は、可動軸76に嵌め込まれ可動軸76と一体になった環状体である。反発リング78は、良導体からなる環状体である。この反発リング78は、反発リング受け79の真空バルブ2側の面に、同軸上に固定されている。 The movable shaft 76 is a rod-like body coaxially connected to the movable electrode 37 of the vacuum valve 2. The repulsion ring receiver 79 is an annular body fitted in the movable shaft 76 and integrated with the movable shaft 76. The repelling ring 78 is an annular body made of a good conductor. The repelling ring 78 is coaxially fixed to the surface of the repelling ring receiver 79 on the vacuum valve 2 side.
 電磁反発コイル77は、良導体からなり、支持部80における反発リング78と対向する面に固定されたコイルである。ここで、反発リング78は、電磁反発コイル77に対向する対向良導体である。電磁反発コイル77は、絶縁電線40を介して制御装置39と接続されている。制御装置39は、コイル励磁手段であり、制御装置39内のコンデンサを介して電力を供給することにより、電磁反発コイル77を励磁できるようになっている。 The electromagnetic repulsion coil 77 is a coil made of a good conductor and fixed to the surface of the support 80 facing the repulsion ring 78. Here, the repulsion ring 78 is a facing good conductor facing the electromagnetic repulsion coil 77. The electromagnetic repulsion coil 77 is connected to the control device 39 via the insulated wire 40. The control device 39 is a coil excitation means, and by supplying power through a capacitor in the control device 39, the electromagnetic repulsion coil 77 can be excited.
 つまり、制御装置39からの電力により電磁反発コイル77は励磁され、反発リング78との間に斥力である電磁反発力を発生させ、可動軸76を図中右方向に駆動させる。なお、電磁反発コイル77及び反発リング78に用いる良導体としては、銅、銀、金、アルミニウム、鉄が挙げられる。 That is, the electromagnetic repulsion coil 77 is excited by the power from the control device 39 to generate an electromagnetic repulsive force which is a repulsive force between the repulsive ring 78 and the movable shaft 76 in the right direction in the drawing. In addition, as a good conductor used for the electromagnetic repulsion coil 77 and the repulsion ring 78, copper, silver, gold, aluminum, iron are mentioned.
(ワイプ機構部)
 ワイプ機構部74は、高速開極部73で発生した電磁反発力を保持機構部75に伝達する。このワイプ機構部74は、つば81、カップリング82、ワイプばね83、つば押さえ84、衝撃吸収体85を有する。
(Wipe mechanism part)
The wipe mechanism 74 transmits the electromagnetic repulsive force generated at the high-speed opening 73 to the holding mechanism 75. The wipe mechanism 74 has a collar 81, a coupling 82, a wipe spring 83, a collar 84, and a shock absorber 85.
 つば81は、可動軸76に同軸に嵌着された円環形状の板部材である。カップリング82は、つば81と対向配置された平板であり、後述する可動部89の脚89aの端部に固定されている。ワイプばね83は、つば81とカップリング82とに付勢力が加わる状態で、一端がつば81に、他端がカップリング82に当接している。 The collar 81 is an annular plate member coaxially fitted to the movable shaft 76. The coupling 82 is a flat plate disposed opposite to the flange 81, and is fixed to an end of a leg 89a of a movable portion 89 described later. The wiping spring 83 is in contact with the collar 81 at one end and the coupling 82 at the other end in a state where a biasing force is applied to the collar 81 and the coupling 82.
 つば押さえ84は、有底の筒状体である。つば押さえ84は、つば81とワイプばね83とを取り囲むようにして、底面と反対側の端部がカップリング82に固定されている。これにより、つば押さえ84の底面が、つば81のストッパーの役割を果す。なお、つば押さえ84の底面には、開口が設けられ、可動軸76が移動可能に挿通されている。 Collar retainer 84 is a cylindrical body with a bottom. The collar holder 84 is fixed to the coupling 82 at the end opposite to the bottom surface so as to surround the collar 81 and the wipe spring 83. Thus, the bottom surface of the collar holder 84 serves as a stopper for the collar 81. An opening is provided on the bottom surface of the collar holder 84, and the movable shaft 76 is movably inserted.
 衝撃吸収体85は、カップリング82に固定されている。衝撃吸収体85は、可動部89からの衝撃を吸収可能な弾性及び強度を有している。これにより、衝撃吸収体85は、可動軸76が衝突したときの衝撃を抑える。 The shock absorber 85 is fixed to the coupling 82. The shock absorber 85 has elasticity and strength capable of absorbing the shock from the movable portion 89. Thereby, the shock absorber 85 suppresses the impact when the movable shaft 76 collides.
(保持機構部75)
 保持機構部75は、永久磁石86、開路ばね87、電磁ソレノイド88、可動部89、衝撃吸収体90を有する。これらの永久磁石86、開路ばね87、電磁ソレノイド88、可動部89、衝撃吸収体90は、支持部91と機構箱72の内面とで形成される高速開極部73と反対側の空間に収容されている。この支持部91は、機構箱72の内面に、機構箱72の内部の空間を軸と直交する方向に仕切る仕切り板である。
(Holding mechanism 75)
The holding mechanism portion 75 includes a permanent magnet 86, an open circuit spring 87, an electromagnetic solenoid 88, a movable portion 89, and a shock absorber 90. The permanent magnet 86, the open circuit spring 87, the electromagnetic solenoid 88, the movable portion 89, and the shock absorber 90 are accommodated in a space on the opposite side of the high speed opening portion 73 formed by the support portion 91 and the inner surface of the mechanism box 72. It is done. The support portion 91 is a partition plate which partitions the space inside the mechanism box 72 in the direction orthogonal to the axis on the inner surface of the mechanism box 72.
 可動部89は、永久磁石86との間に吸引力が働く強磁性体からなる。可動部89は、断面が概略T字形状で、その軸である脚89aが、支持部91の中央に設けられた開口91aに挿通されて、高速開極部73側に向けて延出し、カップリング82に固定されている。脚89aは、支持部91の開口91aに摺動支持される。また、可動部89のT字形状の両手89bに対する脚89aの付け根には、脚89aよりも大径で、両手89bよりも小径の胴89cが形成されている。この胴89cの周囲には後述する電磁ソレノイド88が設けられている。 The movable portion 89 is made of a ferromagnetic material that exerts a suction force with the permanent magnet 86. The movable portion 89 has a substantially T-shaped cross section, and the leg 89a, which is the axis of the movable portion 89, is inserted through the opening 91a provided at the center of the support portion 91 and extends toward the high speed opening portion 73. It is fixed to the ring 82. The leg 89 a is slidably supported by the opening 91 a of the support portion 91. At the base of the leg 89a with respect to the T-shaped hands 89b of the movable portion 89, a trunk 89c having a diameter larger than that of the leg 89a and smaller than that of the hands 89b is formed. An electromagnetic solenoid 88 described later is provided around the barrel 89c.
 永久磁石86は、支持部91における高速開極部73側とは反対側の壁面に固定され、可動部89の両手89bと対向する。この永久磁石86は、可動部89のT字形状の両手89bとのギャップ間に、吸引力を生じさせる。永久磁石86及び電磁ソレノイド88は、可動部89の両手89bに対して、真空バルブ2の接点を構成する可動電極37を閉接させる方向の推力を発生させる。 The permanent magnet 86 is fixed to the wall surface of the support portion 91 opposite to the high speed open pole portion 73 and faces the hands 89 b of the movable portion 89. The permanent magnet 86 generates a suction force in the gap between the movable portion 89 and the T-shaped hands 89 b. The permanent magnet 86 and the electromagnetic solenoid 88 generate a thrust in a direction to close the movable electrode 37 constituting the contact point of the vacuum valve 2 with respect to both hands 89 b of the movable portion 89.
 開路ばね87は、可動部89の両手89bと永久磁石86が設けられた支持部91の壁面との間に、可動部89に付勢力を与えるように設置されている。なお、開路ばね87としては、開路状態においては、上記付勢力が、真空バルブ2の自閉力と永久磁石86の吸引力との和より大きく、閉路状態においては、可動部89に対する永久磁石86の吸引力より小さいものを用いる。 The open circuit spring 87 is installed between the hands 89 b of the movable portion 89 and the wall surface of the support portion 91 provided with the permanent magnet 86 so as to apply a biasing force to the movable portion 89. As the open circuit spring 87, in the open state, the biasing force is larger than the sum of the self-closing force of the vacuum valve 2 and the attraction force of the permanent magnet 86, and in the closed state, the permanent magnet 86 for the movable portion 89. Use one that is smaller than the suction power of
 電磁ソレノイド88は、導電性の部材からなる巻線であり、可動部89の胴89cに巻回されて固定されている。電磁ソレノイド88は、電磁反発コイル77と同様に、絶縁電線40を介して制御装置39と接続されており、制御装置39内の電源から電力を供給され、励磁可能に構成されている。 The electromagnetic solenoid 88 is a winding made of a conductive member, and is wound around and fixed to a barrel 89 c of the movable portion 89. The electromagnetic solenoid 88 is connected to the control device 39 via the insulated wire 40 in the same manner as the electromagnetic repulsion coil 77, is supplied with power from the power supply in the control device 39, and is configured to be capable of being excited.
 衝撃吸収体90は、可動部89の両手89bと対向する機構箱72内面に、固定されている。衝撃吸収体90は、可動部89からの衝撃を吸収可能な弾性及び強度を有している。これにより、衝撃吸収体90は、可動部89が衝突したときの衝撃を抑える。 The shock absorber 90 is fixed to the inner surface of the mechanical box 72 opposed to the hands 89 b of the movable portion 89. The shock absorber 90 has elasticity and strength capable of absorbing the shock from the movable portion 89. Thereby, the shock absorber 90 suppresses the shock when the movable portion 89 collides.
[作用]
 以上のような本実施形態の作用を、投入状態と遮断動作とに分けて説明する。図5、図7は投入状態を示し、図6、図8は遮断動作を示す。
(投入状態)
 まず、本実施形態の投入状態を説明する。投入状態においては、真空バルブ2の固定電極36と可動電極37は、所定の荷重で接触している。
[Effect]
The operation of the present embodiment as described above will be described separately for the on state and the blocking operation. 5 and 7 show the closing state, and FIGS. 6 and 8 show the shutoff operation.
(Input state)
First, the introduction state of the present embodiment will be described. In the charged state, the fixed electrode 36 and the movable electrode 37 of the vacuum valve 2 are in contact with each other with a predetermined load.
 可動部89に対して、永久磁石86によって閉路方向にはたらく吸引力は、ワイプばね83と開路ばね87による開路方向への力より大きくなっている。そのため、永久磁石86の吸引力により、可動部89はその両手89bが開路ばね87を圧縮し、支持部91と当接し、可動部89が支持部91に固定された状態になっている。 The attraction force acting on the movable portion 89 in the closing direction by the permanent magnet 86 is larger than the force in the opening direction by the wipe spring 83 and the opening spring 87. Therefore, due to the attraction force of the permanent magnet 86, the movable portion 89 compresses the open circuit spring 87 with its both hands 89b and abuts on the support portion 91, and the movable portion 89 is fixed to the support portion 91.
 一方、この吸引力により、可動軸76を介して、可動電極37は固定電極36と当接しているとともに、ワイプばね83による閉路方向への付勢力が加わっている。 On the other hand, the movable electrode 37 is in contact with the fixed electrode 36 via the movable shaft 76 by this suction force, and an urging force by the wipe spring 83 in the closing direction is applied.
 このように、真空バルブ2の固定電極36と可動電極37は、ワイプばね83による荷重で接触しており、可動部89に対する永久磁石86の吸引力により投入状態(閉路状態)を維持する。 As described above, the fixed electrode 36 and the movable electrode 37 of the vacuum valve 2 are in contact with each other by the load of the wipe spring 83, and the suction state (closed state) is maintained by the suction force of the permanent magnet 86 against the movable portion 89.
(遮断動作)
 次に、本実施形態の遮断動作過程における電磁反発駆動装置71の開極動作について説明する。まず、真空バルブ2の固定電極36と可動電極37が接している閉路状態において、制御装置39に対して、開閉器の外部から開極指令を与える。すると、制御装置39のコンデンサから、電磁反発コイル77に電力が供給され、電磁反発コイル77が励磁される。
(Shut off operation)
Next, the opening operation of the electromagnetic repulsion drive device 71 in the shutoff operation process of the present embodiment will be described. First, in the closed state where the fixed electrode 36 of the vacuum valve 2 and the movable electrode 37 are in contact with each other, an opening command is given to the control device 39 from the outside of the switch. Then, power is supplied from the capacitor of the control device 39 to the electromagnetic repulsion coil 77, and the electromagnetic repulsion coil 77 is excited.
 これにより、電磁反発コイル77と反発リング78との間に電磁反発力が発生し、反発リング受け79と可動軸76を介して、可動電極37が、固定電極36から電磁反発駆動装置71の方向に高速に開極動作する。真空バルブ2における開極動作の方向を、以下、開路方向という。また、この逆方向を閉路方向という。 Thereby, an electromagnetic repulsive force is generated between the electromagnetic repulsion coil 77 and the repulsion ring 78, and the movable electrode 37 is directed from the fixed electrode 36 to the electromagnetic repulsion driving device 71 via the repulsion ring receiver 79 and the movable shaft 76. Opening operation at high speed. The direction of the opening operation in the vacuum valve 2 is hereinafter referred to as the opening direction. Also, this reverse direction is called a closing direction.
 可動軸76は、開路方向に移動し、つば81がワイプばね83を圧縮するとともに、衝撃吸収体85に衝突する。このとき、可動軸76は、衝撃吸収体85により閉路方向への跳ね返りが低減され、ワイプばね83と衝撃吸収体85を介して、カップリング82を開路方向に押し込む。 The movable shaft 76 moves in the open direction, and the collar 81 compresses the wipe spring 83 and collides with the shock absorber 85. At this time, the shock absorber 85 reduces the springback of the movable shaft 76 in the closing direction, and pushes the coupling 82 in the open circuit direction via the wipe spring 83 and the shock absorber 85.
 一方、保持機構部75の電磁ソレノイド88には、可動軸76によりカップリング82を開路方向に押し込むタイミング以前に、制御装置39から電力が供給される。これにより、電磁ソレノイド88が、永久磁石86の磁束を打ち消す方向に励磁され、可動部89の両手89bと永久磁石86とのギャップ間に生じる吸引力が低下する。すると、可動部89は、開路ばね87の付勢力により開路方向に駆動する。 On the other hand, power is supplied to the electromagnetic solenoid 88 of the holding mechanism 75 from the control device 39 before the timing when the movable shaft 76 pushes the coupling 82 in the opening direction. Thereby, the electromagnetic solenoid 88 is excited in the direction to cancel the magnetic flux of the permanent magnet 86, and the attraction force generated between the gap between the hands 89b of the movable portion 89 and the permanent magnet 86 is reduced. Then, the movable portion 89 is driven in the open circuit direction by the biasing force of the open circuit spring 87.
 そして、カップリング82を介してつば押さえ84がつば81に当接することにより、可動部89がカップリング82、つば押さえ84及びつば81を一体的に引っ張り、可動軸76を介して可動電極37をさらに開極させる。 Then, when the collar holder 84 abuts on the collar 81 via the coupling 82, the movable portion 89 integrally pulls the coupling 82, collar holder 84 and collar 81, and the movable electrode 37 is moved via the movable shaft 76. Further open the pole.
 その後、可動電極37及び可動軸76の慣性力と開路ばね87の付勢力とにより、可動電極37は固定電極36に対して、所定のギャップになるまで開離し、可動部89が衝撃吸収体90と衝突する。この衝撃は衝撃吸収体90によって吸収されて可動部89が停止する。 Thereafter, the movable electrode 37 is separated from the fixed electrode 36 by the inertial force of the movable electrode 37 and the movable shaft 76 and the biasing force of the open circuit spring 87 until the predetermined gap is obtained. Clash with. This shock is absorbed by the shock absorber 90 and the movable portion 89 stops.
 なお、所定のギャップとは、電流遮断に必要な固定電極36と可動電極37のとの間隔である。可動電極37と固定電極36の間隔が所定のギャップになった後、電磁反発コイル77と電磁ソレノイド88への電力の供給を停止し、これらの励磁を解除する。 Here, the predetermined gap is the distance between the fixed electrode 36 and the movable electrode 37 which is necessary for interrupting the current. After the gap between the movable electrode 37 and the fixed electrode 36 becomes a predetermined gap, the supply of power to the electromagnetic repulsion coil 77 and the electromagnetic solenoid 88 is stopped, and the excitation of these is released.
 例えば、制御装置39からの電力の供給手段に電荷が蓄積したコンデンサを用い、蓄積した電荷を放出し、電荷がなくなったことにより励磁を解除するようにしても良い。 For example, a capacitor in which electric charge is accumulated may be used as the power supply means from the control device 39, the accumulated electric charge may be released, and excitation may be canceled when the electric charge disappears.
 他の方法として、図示しない位置センサにより、可動電極37の駆動距離を計測し、制御装置39によって、所定のギャップ以上駆動したことを確認した後、電力供給を遮断することで励磁を解除するようにしても良い。この解除後も、開路ばね87の付勢力は、真空バルブ2の自閉力、永久磁石86の吸引力の和より大きいため、真空バルブ2の接点は開路状態を維持する。 As another method, the drive distance of the movable electrode 37 is measured by a position sensor (not shown), and after confirming that the predetermined gap or more has been driven by the control device 39, the excitation is released by interrupting the power supply. You may Even after the release, the biasing force of the open circuit spring 87 is larger than the sum of the self-closing force of the vacuum valve 2 and the attraction force of the permanent magnet 86, the contact of the vacuum valve 2 maintains the open state.
[効果]
 以上のような本実施形態は、第1の実施形態と同様の効果に加えて、以下の効果が得られる。
[effect]
The above-described embodiment can obtain the following effects in addition to the same effects as those of the first embodiment.
(1)真空バルブ2の駆動装置を、電磁反発駆動装置71としている。このため、真空バルブ2は電流遮断に必要な可動電極37の移動距離(ストローク)が短く、可動する部材の重量が小さいため、開極動作において高い応答性が得られ、遮断時間を更に短縮することができる。 (1) The drive device of the vacuum valve 2 is the electromagnetic repulsion drive device 71. For this reason, since the moving distance (stroke) of the movable electrode 37 necessary for interrupting the current is short and the weight of the movable member is small, the vacuum valve 2 achieves high responsiveness in the opening operation and further reduces the interruption time. be able to.
(2)電磁反発駆動装置71として、電磁反発コイル77と、電磁反発コイル77を固定する支持部80と、電磁反発コイル77に対向して設けられた反発リング78と、反発リング78を支持する反発リング受け79とからなる高速開極部73を設けている。励磁された電磁反発コイル77と反発リング78との間に働く電磁反発力によって、開極動作を行う電磁反発駆動装置71は、ばね力や油圧を駆動源とする駆動装置に比べて、駆動力の立ち上がりが非常に速く、非常に高い応答性を得ることができる。このため、急峻な過渡回復電圧についてのSLF遮断性能に優れる。 (2) As the electromagnetic repulsion drive device 71, the electromagnetic repulsion coil 77, the support portion 80 for fixing the electromagnetic repulsion coil 77, the repulsion ring 78 provided facing the electromagnetic repulsion coil 77, and the repulsion ring 78 are supported. There is provided a high-speed opening portion 73 consisting of a repulsive ring receiver 79. The electromagnetic repulsion drive device 71 performing the opening operation by the electromagnetic repulsion force acting between the excited electromagnetic repulsion coil 77 and the repulsion ring 78 has a driving force as compared with a drive device using a spring force or a hydraulic pressure as a drive source. It is very quick to start up, and can obtain very high responsiveness. For this reason, it is excellent in SLF interruption | blocking performance about a steep transient recovery voltage.
(3)電磁反発駆動装置71に、真空バルブ2の可動電極37に推力を与える推力発生手段を設けた。具体的には、可動軸76にカップリング82、ワイプばね83、つば押さえ84、及びつば81等を介して間接的に接続された強磁性体からなる可動部89と、永久磁石86と、電磁ソレノイド88とを設けた。これにより、可動部89に、永久磁石86及び励磁された電磁ソレノイド88の吸引力が働くので、可動部89及び可動軸76に対して閉路方向に推力を発生させ、可動電極37を駆動して固定電極36と接触させることができる。 (3) The electromagnetic repulsion drive device 71 is provided with thrust generating means for applying a thrust to the movable electrode 37 of the vacuum valve 2. Specifically, the movable portion 89 made of a ferromagnetic material indirectly connected to the movable shaft 76 via the coupling 82, the wipe spring 83, the collar retainer 84, the collar 81, etc., the permanent magnet 86, the electromagnetic A solenoid 88 is provided. As a result, since the attraction force of the permanent magnet 86 and the excited electromagnetic solenoid 88 acts on the movable portion 89, a thrust is generated in the closing direction with respect to the movable portion 89 and the movable shaft 76 to drive the movable electrode 37. It can be in contact with the stationary electrode 36.
[第3の実施形態]
[構成]
 第3の実施形態について、図9~12を参照して説明する。なお、図9、10は、本実施形態に係る複合型開閉器1の全体構成を示す断面図であり、図9が投入状態、図10が遮断状態を示す。図11、図12はそれぞれ図9、図10の高耐圧開閉器5の部分拡大断面図である。
Third Embodiment
[Constitution]
The third embodiment will be described with reference to FIGS. 9 and 10 are cross-sectional views showing the entire configuration of the composite switch 1 according to the present embodiment, where FIG. 9 shows the closing state and FIG. 10 shows the closing state. 11 and 12 are partially enlarged cross-sectional views of the high breakdown voltage switch 5 of FIGS. 9 and 10, respectively.
 本実施形態は、第1の実施形態と基本構成は同じである。よって、第1の実施形態と異なる点のみを説明し、第1の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。 The basic configuration of the present embodiment is the same as that of the first embodiment. Therefore, only differences from the first embodiment will be described, and the same parts as those of the first embodiment are denoted by the same reference numerals and detailed description thereof will be omitted.
 本実施形態は、第1の実施形態に係る複合型開閉器1に対して、操作部101と、電源部102が追加されている。また、第1の実施形態における固定電極55は金属蓋23と締結されていた。しかし、本実施形態においては、第1の実施形態における固定電極55に相当する電極は、可動に構成され、操作部101と接続されている。このため、以降では、当該電極を可動電極105と呼ぶ。 In the present embodiment, an operation unit 101 and a power supply unit 102 are added to the composite switch 1 according to the first embodiment. The fixed electrode 55 in the first embodiment is fastened to the metal lid 23. However, in the present embodiment, the electrode corresponding to the fixed electrode 55 in the first embodiment is configured to be movable and connected to the operation unit 101. Therefore, the electrode is hereinafter referred to as the movable electrode 105.
 以下、本実施形態における高耐圧開閉器5の構成を説明する。まず、操作部101は、駆動装置103、制御装置104を有する。駆動装置103は、圧力容器17内部の金属蓋23に締結されており、可動電極105と接続し、接点4を接離自在に駆動する。 Hereinafter, the configuration of the high breakdown voltage switch 5 in the present embodiment will be described. First, the operation unit 101 includes a drive device 103 and a control device 104. The driving device 103 is fastened to the metal lid 23 inside the pressure vessel 17 and is connected to the movable electrode 105 to drive the contact 4 so as to be able to contact and release.
 制御装置104は、圧力容器17の外部の金属蓋23に締結され、金属蓋23を貫通する絶縁電線106を介して、駆動装置103と接続されている。制御装置104は、駆動装置103に供給する電力を調節することで、駆動装置103の動作を制御する。 The control device 104 is fastened to the metal lid 23 outside the pressure vessel 17 and is connected to the drive device 103 via the insulated wire 106 penetrating the metal lid 23. The control device 104 controls the operation of the drive device 103 by adjusting the power supplied to the drive device 103.
 つまり、操作部101は、機械的に接続された可動電極105に対して駆動力を与えることで、可動電極105を一直線上に押し引きし、可動電極105を可動電極56に対して接離開閉することができる。 That is, the operation unit 101 pushes and pulls the movable electrode 105 in a straight line by applying a driving force to the mechanically connected movable electrode 105, thereby bringing the movable electrode 105 into and out of contact with the movable electrode 56. can do.
 なお操作部101の動作は、例えば、高耐圧開閉器5の外部に設置された図示しない信号出力装置からの指令信号を、制御装置104が受信することにより開始することができる。また、圧力容器17における絶縁電線106が貫通している金属蓋23の穴には、図示しない弾性体のパッキンを有するシール部によって、内部空間69の気密性が保たれている。 The operation of the operation unit 101 can be started, for example, when the control device 104 receives a command signal from a signal output device (not shown) installed outside the high breakdown voltage switch 5. Further, the airtightness of the internal space 69 is maintained by the seal portion having a packing of an elastic body (not shown) in the hole of the metal lid 23 through which the insulated wire 106 in the pressure vessel 17 penetrates.
 電源部102は、対地電圧が高電圧状態となっている操作部101へ、地絡することなく電力を供給する電力供給部である。変圧器107、母線108、圧力容器169、碍管170を有する。変圧器107と圧力容器169とは、支持構造物171を介して基礎16に固定されている。変圧器107の容器の開口部は、圧力容器169の一方の開口部に締結されている。一方、圧力容器169の他方の開口部は、碍管170の開口部と締結されている。変圧器107、圧力容器169、碍管170は、内部空間172を共有しており、この内部空間172は密閉され、絶縁性媒体が充填されている。充填する絶縁性媒体は、上記と同様である。変圧器107の一次側は、絶縁電線109を介して母線108と接続されている。また、変圧器107の二次側は、絶縁電線110に接続されている。絶縁電線110は内部空間172を通り、碍管170の操作部101側端部を貫通し、操作部101の制御装置104と接続されている。絶縁電線109、110が貫通する変圧器107、碍管170には、図示しない弾性体のパッキンを有するシール部が設けられており、内部空間172の気密性が保たれている。変圧器107の一次側と二次側間の絶縁耐力および、碍管170の両端間の絶縁耐力は、圧力容器17と対地間に必要な絶縁耐力よりも大きく設計されている。 The power supply unit 102 is a power supply unit that supplies power to the operation unit 101 whose ground voltage is in a high voltage state without grounding. It has a transformer 107, a bus bar 108, a pressure vessel 169, and a bushing 170. The transformer 107 and the pressure vessel 169 are fixed to the base 16 via the support structure 171. The opening of the container of the transformer 107 is fastened to one opening of the pressure container 169. On the other hand, the other opening of the pressure vessel 169 is fastened to the opening of the bushing 170. The transformer 107, the pressure vessel 169, and the bushing 170 share an internal space 172, which is sealed and filled with an insulating medium. The insulating medium to be filled is the same as described above. The primary side of the transformer 107 is connected to the bus 108 via the insulated wire 109. Further, the secondary side of the transformer 107 is connected to the insulated wire 110. The insulated wire 110 passes through the internal space 172, penetrates the end of the operation tube 101 of the bushing 170 and is connected to the control device 104 of the operation unit 101. A seal portion having a packing of an elastic body (not shown) is provided in the transformer 107 and the bushing 170 through which the insulated wires 109 and 110 pass, and the airtightness of the internal space 172 is maintained. The dielectric strength between the primary side and the secondary side of the transformer 107 and the dielectric strength between both ends of the bushing 170 are designed to be larger than the dielectric strength required between the pressure vessel 17 and the ground.
 母線108は、図示しない電力供給源に接続されている。母線108を介して電力供給源から供給される電力は、変圧器107によって操作部101の駆動に必要な電圧まで昇圧され、操作部101へと供給される。 The bus bar 108 is connected to a power supply not shown. The power supplied from the power supply source via the bus bar 108 is boosted to a voltage necessary for driving the operation unit 101 by the transformer 107 and supplied to the operation unit 101.
[作用]
 以上のような本実施形態の作用を、投入状態と遮断動作に分けて説明する。
(投入状態)
 まず、複合型開閉器1が投入状態にあるときには、通電板14から導入される電流は、金属蓋12、駆動装置38、可動電極37、固定電極36、金属蓋13、通電板15へと流れる。そして、電流は、通電板15から絶縁電線6を介して、通電板24、金属蓋22、駆動装置57、可動電極56、可動電極105、駆動装置103、金属蓋23を順次経て、通電板25へ導出される。
[Effect]
The operation of the present embodiment as described above will be described separately for the on state and the blocking operation.
(Input state)
First, when the composite switch 1 is in the on state, the current introduced from the conducting plate 14 flows to the metal lid 12, the driving device 38, the movable electrode 37, the fixed electrode 36, the metal lid 13, and the conducting plate 15. . Then, the current flows from the conducting plate 15 through the insulated wire 6 through the conducting plate 24, the metal cover 22, the driving device 57, the movable electrode 56, the movable electrode 105, the driving device 103 and the metal lid 23 in sequence. Derived to
(遮断動作)
 一方、複合型開閉器1の外部から電流遮断の指令信号が与えられると、駆動装置38、57、103に接続された可動電極37、56、105が、駆動力を与えられる。これにより、真空開閉器3では可動電極37が固定電極36から開離し、高耐圧開閉器5では可動電極56及び可動電極105が互いに開離し合い、電流遮断を開始する。このように、遮断動作において、高耐圧開閉器5の接点4の可動電極56及び可動電極105が、互いに開離し合う点が、第1の実施形態と相違する。その他の作用は、第1の実施形態と同様である。
(Shut off operation)
On the other hand, when the command signal for interrupting the current is given from the outside of the composite switch 1, the movable electrodes 37, 56, 105 connected to the drive devices 38, 57, 103 are given a driving force. Thereby, in the vacuum switch 3, the movable electrode 37 is separated from the fixed electrode 36, and in the high breakdown voltage switch 5, the movable electrode 56 and the movable electrode 105 are separated from each other, and the current interruption is started. As described above, it is different from the first embodiment in that the movable electrode 56 and the movable electrode 105 of the contact 4 of the high withstand voltage switch 5 are separated from each other in the blocking operation. The other actions are the same as in the first embodiment.
[効果]
 以上のような本実施形態の効果は、以下の通りである。すなわち、高耐圧開閉器5の接点4を構成する可動電極56、105が、それぞれ別個の操作部20、101を有していることにより、可動電極56、105を同時に駆動することができ、接点4を高速に開離することができる。これにより、絶縁距離を確保するために必要な時間を大幅に短縮することができる。
[effect]
The effects of the present embodiment as described above are as follows. That is, since the movable electrodes 56 and 105 constituting the contact point 4 of the high breakdown voltage switch 5 have separate operation parts 20 and 101, respectively, the movable electrodes 56 and 105 can be driven at the same time. 4 can be released at high speed. This can significantly reduce the time required to secure the insulation distance.
 特に、従来のパッファ形の接点部を複数有する開閉器と比べて、電流遮断及び絶縁距離の確保をより短時間で行えるので、遮断時間の短縮が可能となる。 In particular, compared to a switch having a plurality of conventional puffer-type contact portions, current interruption and insulation distance can be secured in a shorter time, so that the interruption time can be shortened.
[第4の実施形態]
[構成]
 第4の実施形態について、図13を参照して説明する。なお、図13は、本実施形態に係る複合型開閉器1の高耐圧開閉器5の断面図である。
Fourth Embodiment
[Constitution]
The fourth embodiment will be described with reference to FIG. FIG. 13 is a cross-sectional view of the high breakdown voltage switch 5 of the composite switch 1 according to the present embodiment.
 本実施形態は、第1の実施形態と基本構成は同じである。よって、第1の実施形態と異なる点のみを説明し、第1の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。 The basic configuration of the present embodiment is the same as that of the first embodiment. Therefore, only differences from the first embodiment will be described, and the same parts as those of the first embodiment are denoted by the same reference numerals and detailed description thereof will be omitted.
 本実施形態の複合型開閉器1は、第1の実施形態の高耐圧開閉器5の支持部18に相当する部材が、支持部111となっている。この支持部111は、第1の実施形態の支持部18と同様に、高耐圧開閉器5を固定する基礎16と、高電圧状態の圧力容器17との間に設置されている。支持部111は、圧力容器17を機械的に支持し、かつ基礎16と圧力容器17との間の絶縁距離を確保する。 The member corresponding to the support portion 18 of the high withstand voltage switch 5 of the first embodiment is the support portion 111 in the composite switch 1 of the present embodiment. Like the support portion 18 of the first embodiment, the support portion 111 is disposed between the base 16 to which the high withstand voltage switch 5 is fixed and the pressure vessel 17 in the high voltage state. The support portion 111 mechanically supports the pressure vessel 17 and secures an insulation distance between the base 16 and the pressure vessel 17.
 より具体的には、支持部111は、大型支持碍子112、小型支持碍子113、114、碍子接続部115、支持構造物116、接続金具117、118を有する。大型支持碍子112及び小型支持碍子113、114は、絶縁性の碍子によって両端の金属部が絶縁された支持梁である。 More specifically, the support portion 111 includes a large support insulator 112, small support insulators 113 and 114, an insulator connection portion 115, a support structure 116, and connection fittings 117 and 118. The large-sized support insulators 112 and the small- sized support insulators 113 and 114 are support beams in which the metal parts at both ends are insulated by insulating insulators.
 碍子接続部115は、支持碍子との接続部がY字型に三カ所配置されている金属製のブロックである。碍子接続部115に、大型支持碍子112及び小型支持碍子113、114の一端がそれぞれ接続されることにより、Y字型支持碍子119が構成されている。 The insulator connection portion 115 is a metal block in which connection portions with the support insulator are arranged in three places in a Y-shape. A Y-shaped support forceps 119 is configured by connecting one end of each of the large-size support forceps 112 and the small- size support forceps 113 and 114 to the forceps connection portion 115.
 支持構造物116は、金属製の台座であり、基礎16に締結されている。支持構造物116には、Y字型支持碍子119の直立した脚部分に相当する大型支持碍子112の他端が締結されている。Y字の腕部分に相当する小型支持碍子113、114の他端は、それぞれ接続金具117、118を介して、金属蓋22、23と接続されている。 The support structure 116 is a metal pedestal and is fastened to the base 16. The other end of the large support insulator 112 corresponding to the upright leg portion of the Y-shaped support insulator 119 is fastened to the support structure 116. The other ends of the small-sized supporting insulators 113 and 114 corresponding to the Y-shaped arm portions are connected to the metal lids 22 and 23 through the connection fittings 117 and 118, respectively.
 これによって、支持部111は、圧力容器17を構造上安定した状態に支持している。また、大型支持碍子112、小型支持碍子113、114の長さは、それぞれの絶縁耐力をA、B、Cとすると、A+B及びA+Cが、圧力容器17と地面の間の絶縁距離以上となるように設計されている。また、B+Cが、圧力容器17の両端の絶縁距離以上となるように設計されている。 Thus, the support portion 111 supports the pressure vessel 17 in a stable state. In addition, the lengths of the large support insulator 112 and the small support insulators 113 and 114 are such that A + B and A + C are equal to or greater than the insulation distance between the pressure vessel 17 and the ground, assuming that the respective dielectric strengths are A, B, and C. It is designed. Further, B + C is designed to be equal to or more than the insulation distance at both ends of the pressure vessel 17.
[作用効果]
 以上のような本実施形態の作用効果を説明する。まず、前提として、接点を有する圧力容器が、電気的に接地されていないタイプの開閉器について、高電圧系統で使用することを想定する。すると、圧力容器と地面との電位差が、圧力容器の両端の電位差よりも大きくなり、絶縁耐力が高い大型の支持碍子が必要となることがある。このような支持碍子は高価であるため、なるべく使用本数を削減したいという要請がある。
[Function effect]
The effects and advantages of the present embodiment as described above will be described. First, as a premise, it is assumed that a pressure vessel having a contact is used in a high voltage system for a switch of a type not electrically grounded. Then, the potential difference between the pressure vessel and the ground becomes larger than the potential difference between both ends of the pressure vessel, and a large support insulator having high dielectric strength may be required. Since such support insulators are expensive, there is a demand to reduce the number of use as much as possible.
 本実施形態は、高耐圧開閉器の支持部111に、大型支持碍子112と小型支持碍子113、114と碍子接続部115を備えるY字型支持碍子119を使用している。このため、大型の支持碍子の使用本数を削減することができる。大型支持碍子112は、圧力容器17と地面の間の絶縁耐力の大部分を確保し、小型支持碍子113、114は、圧力容器両端の絶縁耐力を確保している。このように、ひとつの開閉器に使用する大型の支持碍子の本数を削減することにより、開閉器の製作コストを抑えることができる。 In this embodiment, a Y-shaped support insulator 119 including a large support insulator 112, small support insulators 113 and 114, and an insulator connection portion 115 is used for the support portion 111 of the high withstand voltage switch. For this reason, the number of large-sized support insulators can be reduced. The large-size support insulator 112 secures most of the dielectric strength between the pressure vessel 17 and the ground, and the small- size support insulators 113 and 114 secure the dielectric strength of both ends of the pressure vessel. By thus reducing the number of large support insulators used in one switch, the manufacturing cost of the switch can be reduced.
[第5の実施形態]
[構成]
 第5の実施形態について、図14を参照して説明する。なお、図14は、本実施形態に係る複合型開閉器1の高耐圧開閉器5の断面図である。本実施形態は、第4の実施形態と基本構成は同じである。よって、第4の実施形態と異なる点のみを説明し、第4の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
Fifth Embodiment
[Constitution]
The fifth embodiment will be described with reference to FIG. FIG. 14 is a cross-sectional view of the high withstand voltage switch 5 of the composite switch 1 according to the present embodiment. The present embodiment is the same as the fourth embodiment in basic configuration. Therefore, only differences from the fourth embodiment will be described, and the same parts as those of the fourth embodiment are denoted by the same reference numerals and detailed description thereof will be omitted.
 本実施形態の複合型開閉器1は、第4の実施形態に係る高耐圧開閉器5の支持部111に相当する部材が、支持部121となっている。この支持部121は、第4の実施形態の支持部111と同様に、高耐圧開閉器5を固定する基礎16と、高電圧状態の圧力容器17との間に設置されている。支持部121は、圧力容器17を機械的に支持し、かつ基礎16と圧力容器17との間の絶縁距離を確保する。 In the composite switchgear 1 of the present embodiment, a member corresponding to the support portion 111 of the high breakdown voltage switch 5 according to the fourth embodiment is a support portion 121. Like the support portion 111 of the fourth embodiment, the support portion 121 is disposed between the base 16 for fixing the high withstand voltage switch 5 and the pressure vessel 17 in the high voltage state. The support 121 mechanically supports the pressure vessel 17 and secures an insulation distance between the base 16 and the pressure vessel 17.
 さらに、本実施形態の支持部121は、大型支持碍子112、小型支持碍子113、114、碍子接続板122、支持構造物116、接続金具123、124を有する。大型支持碍子112、小型支持碍子113、114は、絶縁性の碍子によって両端の金属部が絶縁された支持梁である。大型支持碍子112は、小型支持碍子113、114よりも長尺となっている。 Furthermore, the support portion 121 of the present embodiment includes the large-sized support insulator 112, the small- sized support insulators 113 and 114, the insulator connection plate 122, the support structure 116, and the connection fittings 123 and 124. The large-size support insulator 112 and the small- size support insulators 113 and 114 are support beams in which the metal portions at both ends are insulated by the insulating insulator. The large support insulator 112 is longer than the small support insulators 113 and 114.
 碍子接続板122は、水平方向に配置された金属製の板である。この碍子接続板122は、上面に、小型支持碍子113、114との接続部が二カ所、下面に大型支持碍子112との接続部が一カ所配置されている。碍子接続板122の下面には大型支持碍子112の上端が、上面には小型支持碍子113、114の下端がそれぞれ接続され、二又状支持碍子125を構成している。 The insulator connection plate 122 is a metal plate arranged in the horizontal direction. In the upper surface of the insulator connection plate 122, two connection portions with the small- sized support insulators 113 and 114 are disposed, and in the lower surface, one connection portion with the large-size support insulator 112 is disposed. The upper end of the large-sized support insulator 112 is connected to the lower surface of the insulator connection plate 122, and the lower ends of the small- sized support insulators 113 and 114 are connected to the upper surface, thereby forming a bifurcated support insulator 125.
 支持構造物116は、金属製の台座であり、基礎に締結されている。二又状支持碍子125の脚部分に相当する大型支持碍子112の下端は、支持構造物116に締結されている。二又支持碍子125の腕部分に相当する小型支持碍子113、114の上端は、それぞれ接続金具123、124を介して、金属蓋22、23に接続されている。 The support structure 116 is a metal pedestal and is fastened to the foundation. The lower end of the large support insulator 112 corresponding to the leg portion of the bifurcated support insulator 125 is fastened to the support structure 116. The upper ends of the small- sized support insulators 113 and 114 corresponding to the arm portion of the support insulator 125 are connected to the metal lids 22 and 23 through the connection fittings 123 and 124, respectively.
 これにより、支持部121は、圧力容器17を構造上安定した状態に支持している。また、大型支持碍子112及び小型113、114の長さは、それぞれの絶縁耐力をA、B、Cとすると、A+B及びA+Cが、圧力容器17と地面の間の絶縁距離以上となるように設計されている。また、B+Cが圧力容器17両端の絶縁距離以上となるように設計されている。 Thus, the support portion 121 supports the pressure vessel 17 in a structurally stable state. Also, the lengths of the large-sized support insulator 112 and the small- sizes 113, 114 are designed such that A + B and A + C are equal to or greater than the insulation distance between the pressure vessel 17 and the ground, where A, B and C respectively represent their dielectric strength. It is done. Moreover, it is designed so that B + C may become more than the insulation distance of the pressure vessel 17 both ends.
[作用効果]
 以上の本実施の形態の作用効果は、以下の通りである。まず、本実施形態は、高耐圧開閉器の支持部121に、大型支持碍子112、小型支持碍子113、114、碍子接続板122を備える二又状支持碍子125を使用している。これにより、第4の実施形態と同様に、大型の支持碍子の使用本数を削減できる。
[Function effect]
The operation and effect of the above embodiment are as follows. First, in the present embodiment, a bifurcated support insulator 125 including a large support insulator 112, small support insulators 113 and 114, and an insulator connection plate 122 is used for the support portion 121 of the high withstand voltage switch. Thereby, as in the fourth embodiment, the number of large support insulators used can be reduced.
 大型支持碍子112が、圧力容器17と地面の間の絶縁耐力の大部分を確保し、小型支持碍子113、114が圧力容器17の両端の絶縁耐力を確保している。これにより、一つの開閉器に使用する大型の支持碍子の本数を削減し、開閉器の製作コストを抑えることができる。 The large-sized support insulator 112 secures most of the dielectric strength between the pressure vessel 17 and the ground, and the small- size support insulators 113 and 114 secure the dielectric strength of both ends of the pressure vessel 17. Thereby, the number of large-sized support insulators used for one switch can be reduced, and the manufacturing cost of the switch can be suppressed.
[第6の実施形態]
[構成]
 第6の実施形態について、図15を参照して説明する。図15は、本実施形態の複合型開閉器1の全体構成を示す断面図である。本実施形態は、第1の実施形態と基本構成は同じである。よって、第1の実施形態と異なる点のみを説明し、第1の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。
Sixth Embodiment
[Constitution]
The sixth embodiment will be described with reference to FIG. FIG. 15 is a cross-sectional view showing the entire configuration of the combined switchgear 1 of the present embodiment. The basic configuration of the present embodiment is the same as that of the first embodiment. Therefore, only differences from the first embodiment will be described, and the same parts as those of the first embodiment are denoted by the same reference numerals and detailed description thereof will be omitted.
 本実施形態の複合型開閉器1は、第1の実施形態において真空開閉器3及び高耐圧開閉器5を接続していた絶縁電線6が無く、真空開閉器3の向きが左右逆転している。また、真空開閉器3の操作部10と、高耐圧開閉器5の操作部20とが、対向して配置される構成となっている。 The composite switch 1 according to the present embodiment does not have the insulated wire 6 to which the vacuum switch 3 and the high breakdown voltage switch 5 are connected in the first embodiment, and the direction of the vacuum switch 3 is reversed in the left and right direction. . Further, the operation unit 10 of the vacuum switch 3 and the operation unit 20 of the high withstand voltage switch 5 are disposed to face each other.
 また、支持部8の金属蓋12の接続側と、支持部18の金属蓋22の接続側は、一つの共有支持部131に統一されている。共有支持部131は、圧力容器7、17を機械的に支持し、基礎16と圧力容器7、基礎16と圧力容器17との間の絶縁距離を確保する。さらに、電源部11、21はひとつの電源部132に統一されている。 Further, the connection side of the metal lid 12 of the support portion 8 and the connection side of the metal lid 22 of the support portion 18 are unified into one shared support portion 131. The shared support portion 131 mechanically supports the pressure vessels 7 and 17 and secures an insulation distance between the base 16 and the pressure vessel 7 and between the base 16 and the pressure vessel 17. Furthermore, the power supply units 11 and 21 are unified into one power supply unit 132.
 共有支持部131は、支持碍子133、支持構造物134、接続金具34、53、135を有する。支持構造物134は、金属製の台座であり、基礎16に締結されている。支持碍子133は、絶縁性の碍子によって、両端の金属部が絶縁された支持梁であり、一端が支持構造物134に締結されている。他端は、接続金具135、34を介して、金属蓋12と接続されるとともに、接続金具135、53を介して、金属蓋22に接続されている。 The shared support portion 131 has a support insulator 133, a support structure 134, and connection fittings 34, 53, 135. The support structure 134 is a metal pedestal and is fastened to the base 16. The support insulator 133 is a support beam in which the metal parts at both ends are insulated by an insulating insulator, and one end thereof is fastened to the support structure 134. The other end is connected to the metal cover 12 via the connection fittings 135 and 34 and is connected to the metal cover 22 via the connection fittings 135 and 53.
 以上のように、本実施形態では、第1の実施形態における支持部8の支持碍子30及び支持構造物32と、支持部18の支持碍子50及び支持構造物52が、ひとつの支持碍子133及び支持構造物134に統一され、接続金具135を介して共有されている。 As described above, in the present embodiment, the support forceps 30 and the support structure 32 of the support portion 8 in the first embodiment, the support forceps 50 and the support structure 52 of the support portion 18 are one support forceps 133 and It is unified to the support structure 134, and is shared via the connection fitting 135.
 これにより、共有支持部131は、圧力容器7、17の片端を、構造上安定した状態に支持している。また、支持碍子133の長さは、圧力容器7、17の対地(支持構造物)間の絶縁距離よりも、長く設計されている。 As a result, the common support portion 131 supports one end of the pressure vessels 7 and 17 in a stable state. Moreover, the length of the support insulator 133 is designed longer than the insulation distance between the pressure vessels 7 and 17 (ground structure).
 電源部132は、変圧器136、母線137、圧力容器173、碍管174を有する。変圧器136と圧力容器173とは、支持構造物175を介して基礎16に固定されている。変圧器41の容器の開口部は、圧力容器161の一方の開口部に締結されている。一方、圧力容器173の他方の開口部は、碍管174の開口部と締結されている。変圧器136、圧力容器173、碍管174は、内部空間176を共有しており、この内部空間176は密閉され、絶縁性媒体が充填されている。充填する絶縁性媒体は、上記と同様である。変圧器132の一次側は、絶縁電線138を介して母線137と接続されている。また、変圧器136の二次側は、絶縁電線139と接続されている。絶縁電線139は内部空間176を通り、碍管174の上側端部を貫通し、操作部10の制御装置39、操作部20の制御装置58に、それぞれ接続されている。絶縁電線138、139が貫通する変圧器136、碍管174には、図示しない弾性体のパッキンを有するシール部が設けられており、内部空間176の気密性が保たれている。変圧器136の一次側と二次側間の絶縁耐力および、碍管174の両端間の絶縁耐力は、圧力容器7と対地間に必要な絶縁耐力よりも大きく設計されている。母線137は、図示しない電力供給源に接続されている。 The power supply unit 132 includes a transformer 136, a bus 137, a pressure vessel 173, and a bushing 174. The transformer 136 and the pressure vessel 173 are fixed to the base 16 via the support structure 175. The opening of the container of the transformer 41 is fastened to one opening of the pressure container 161. On the other hand, the other opening of the pressure vessel 173 is fastened to the opening of the bushing 174. The transformer 136, the pressure vessel 173 and the bushing 174 share an internal space 176, which is sealed and filled with an insulating medium. The insulating medium to be filled is the same as described above. The primary side of transformer 132 is connected to bus 137 via insulated wire 138. Further, the secondary side of the transformer 136 is connected to the insulated wire 139. The insulated wire 139 passes through the internal space 176, penetrates the upper end of the bushing 174, and is connected to the control device 39 of the operation unit 10 and the control device 58 of the operation unit 20. The transformer 136 through which the insulated wires 138 and 139 penetrate and the seal tube 174 are provided with a seal having an elastic packing (not shown), and the airtightness of the internal space 176 is maintained. The dielectric strength between the primary side and the secondary side of the transformer 136 and the dielectric strength between both ends of the bushing 174 are designed to be greater than the dielectric strength required between the pressure vessel 7 and the ground. The bus bar 137 is connected to a power supply not shown.
 母線137から供給される電力は、変圧器136によって操作部10、20の駆動に必要な電圧まで昇圧され、操作部10、20へと供給される。このように、電源部132は、対地電圧が高電圧状態となっている操作部10、20へ、地絡することなく電力を供給する。 The power supplied from the bus 137 is boosted to a voltage necessary for driving the operation units 10 and 20 by the transformer 136 and supplied to the operation units 10 and 20. Thus, the power supply unit 132 supplies power to the operation units 10 and 20 whose ground voltage is in the high voltage state without grounding.
[作用効果]
 以上のような本実施形態の作用効果は、以下の通りである。すなわち、本実施形態は、第1の実施形態と比べて、支持部及び電源部の数を減らすことができるので、製造コストを削減することができる。
[Function effect]
The effects and advantages of the present embodiment as described above are as follows. That is, compared with the first embodiment, the present embodiment can reduce the number of support portions and power supply portions, so that the manufacturing cost can be reduced.
 より具体的には、本実施形態は、一つの共有支持部131によって、圧力容器7、17を同時に支持している。つまり、共有支持部131を、複数の開閉器が共有している。このため、複合型開閉器1の支持部に使用する支持碍子及び支持構造物の数を減らし、製造コストを削減することができる。 More specifically, in the present embodiment, the pressure vessels 7 and 17 are simultaneously supported by one common support portion 131. That is, the plurality of switches share the common support portion 131. For this reason, the number of support insulators and support structures used for the support part of composite type switch 1 can be reduced, and a manufacturing cost can be reduced.
 また、共有支持部131で支持した金属蓋12、22に接続されている操作部10、20は同電位となるため、一つの電源部132によって電力を供給することができる。つまり、電源部132を、複数の開閉器が共有している。これにより複合開閉器1に使用する電源部の数を減らし、製造コストを削減することができる。 Further, since the operation units 10 and 20 connected to the metal lids 12 and 22 supported by the common support unit 131 have the same potential, power can be supplied from one power supply unit 132. That is, the power supply unit 132 is shared by a plurality of switches. As a result, the number of power supply units used for the composite switch 1 can be reduced, and the manufacturing cost can be reduced.
[第7の実施形態]
[構成]
 第7の実施形態について、図16を参照して説明する。なお、図16は、本実施形態に係る複合型開閉器1の高耐圧開閉器5の断面図である。
Seventh Embodiment
[Constitution]
The seventh embodiment will be described with reference to FIG. FIG. 16 is a cross-sectional view of the high breakdown voltage switch 5 of the composite switch 1 according to the present embodiment.
 本実施形態は、第1の実施形態と基本構成は同じである。よって、第1の実施形態と異なる点のみを説明し、第1の実施形態と同じ部分については同じ符号を付して詳細な説明は省略する。 The basic configuration of the present embodiment is the same as that of the first embodiment. Therefore, only differences from the first embodiment will be described, and the same parts as those of the first embodiment are denoted by the same reference numerals and detailed description thereof will be omitted.
 本実施形態の複合型開閉器1の高耐圧開閉器5は、第1の実施形態の電源部21に代わる給電手段として、電源部141を有する。また、第1の実施形態の支持碍子49に相当する部材が、内部に密閉空間を有する支持碍管142である。この支持碍管142の密閉空間内には、絶縁性媒体が充填されている。絶縁性媒体としては、上記と同様のものを使用できる。 The high-breakdown-voltage switch 5 of the composite switch 1 according to this embodiment includes a power supply unit 141 as a power supply unit that replaces the power supply unit 21 according to the first embodiment. Further, a member corresponding to the support forceps 49 of the first embodiment is a support sleeve 142 having a sealed space inside. An insulating medium is filled in the closed space of the support sleeve 142. As the insulating medium, the same one as described above can be used.
 電源部141は、給電用コイル143、受電用コイル144、給電用コイル支持部145、受電用コイル支持部146、コイル励磁装置147、母線148を有する。 The power supply unit 141 includes a power feeding coil 143, a power receiving coil 144, a power feeding coil support 145, a power receiving coil support 146, a coil excitation device 147, and a bus bar 148.
 給電用コイル143、受電用コイル144は、電力の需給用のコイルであり、支持碍管142内に、上下に同軸上に配置されている。給電用コイル143と受電用コイル144は、両者の絶縁距離分だけ離れて対向している。受電用コイル144は、絶縁電線149を介して、操作部20の制御装置58に接続されている。 The power supply coil 143 and the power reception coil 144 are coils for supplying and receiving electric power, and are coaxially vertically disposed in the support bushing 142. The power feeding coil 143 and the power receiving coil 144 are opposed to each other with an insulation distance therebetween. The power reception coil 144 is connected to the control device 58 of the operation unit 20 via the insulated wire 149.
 給電用コイル支持部145は、その一端に給電用コイル143が固定された棒状の支持部材である。給電用コイル支持部145の他端は、支持碍管142内部の支持構造物51側に固定されている。 The feeding coil support portion 145 is a rod-like supporting member in which the feeding coil 143 is fixed at one end thereof. The other end of the feeding coil support portion 145 is fixed to the support structure 51 side in the support sleeve 142.
 受電用コイル支持部146は、その一端に受電用コイル144が固定された棒状の支持部材である。受電用コイル支持部146の他端は、支持碍管142内部の圧力容器17側に固定されている。 The power reception coil support portion 146 is a rod-like support member to which the power reception coil 144 is fixed at one end. The other end of the power reception coil support portion 146 is fixed to the pressure vessel 17 side inside the support sleeve 142.
 コイル励磁装置147は、基礎16に固定されており、絶縁電線151を介して給電用コイル143と接続されている。母線148は、図示しない電力供給源へと接続されていて、絶縁電線150を介して、コイル励磁装置147に接続されている。 The coil excitation device 147 is fixed to the base 16 and is connected to the feeding coil 143 via the insulated wire 151. The bus bar 148 is connected to a power supply (not shown), and is connected to the coil excitation device 147 via the insulated wire 150.
 コイル励磁装置147は、母線148から供給される電力によって、給電用コイル143を励磁し、受電用コイル144に誘導電流を発生させることで、操作部20へと電力を供給する。また、コイル励磁装置147は、受電用コイル144に誘導電流が継続的に流れるように、給電用コイル143へ供給する電力を制御する。つまり、電源部141は、対地電圧が高電圧状態となっている操作部20へ、地絡することなく電力を供給する。 The coil excitation device 147 excites the power supply coil 143 by the power supplied from the bus bar 148 and generates an induction current in the power reception coil 144 to supply power to the operation unit 20. In addition, the coil excitation device 147 controls the power supplied to the power supply coil 143 so that the induced current flows continuously to the power reception coil 144. That is, the power supply unit 141 supplies power to the operation unit 20 in which the ground voltage is in the high voltage state without grounding.
 なお、絶縁電線149、151は、支持碍管142を貫通しているが、それぞれの貫通部分は、図示しない弾性体のパッキンを有するシール部が設けられており、密閉空間の気密性が保たれている。 Although the insulated wires 149 and 151 penetrate through the support sleeve 142, the respective penetration portions are provided with a seal portion having a packing of an elastic body (not shown) so that the airtightness of the sealed space is maintained. There is.
[作用効果]
 以上のような本実施形態の作用効果は、以下の通りである。すなわち、第1の実施形態と比べて、電源部141の一部をコンパクト化することができる。
[Function effect]
The effects and advantages of the present embodiment as described above are as follows. That is, compared to the first embodiment, part of the power supply unit 141 can be made compact.
 より具体的には、複合型開閉器1の高耐圧開閉器5が、電磁誘導によって離れた二点での電力供給が可能な電源部141を用いている。これにより、対地電圧が高電圧状態となっている操作部20へ、地絡することなく電力を供給することができる。 More specifically, the high-breakdown-voltage switch 5 of the composite switch 1 uses a power supply unit 141 capable of supplying power at two points separated by electromagnetic induction. Thus, power can be supplied to the operation unit 20 in which the ground voltage is in the high voltage state without grounding.
 また、電源部141は、給電用コイル143、受電用コイル144を絶縁性媒体が充填された支持碍管142内に収納することにより、電源部141をコンパクト化することができる。 Further, the power supply unit 141 can make the power supply unit 141 compact by housing the power supply coil 143 and the power reception coil 144 in the support sleeve 142 filled with the insulating medium.
 また、絶縁性媒体によって、給電用コイル143、受電用コイル144の間の距離を短縮できることによる給電効率の向上や、両コイル間の位置ずれ防止、外部環境の影響の遮断といった効果も得られる。 In addition, the insulating medium can improve the power supply efficiency by shortening the distance between the power supply coil 143 and the power reception coil 144, prevent positional deviation between the two coils, and block the influence of the external environment.
[他の実施形態]
 本明細書においては、本発明に係る複数の実施形態を説明したが、これらの実施形態は例として提示したものであって、発明の範囲を限定することを意図していない。具体的には、第1乃至第7の実施形態を全て又はいずれかを組み合わせたものも包含される。以上のような実施形態は、その他の様々な形態で実施されることが可能であり、発明の範囲を逸脱しない範囲で、種々の省略や置き換え、変更を行うことができる。これらの実施形態やその変形は、発明の範囲や要旨に含まれると同様に、請求の範囲に記載された発明とその均等の範囲に含まれるものである。
[Other embodiments]
While several embodiments of the present invention have been described herein, these embodiments have been presented by way of example only, and are not intended to limit the scope of the invention. Specifically, all or any combination of the first to seventh embodiments is included. The embodiment as described above can be implemented in other various forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the invention described in the claims and the equivalents thereof as well as included in the scope and the gist of the invention.
 例えば、以下のような態様も発明の範囲に含まれる。
(1)第1の実施形態では、遮断過程において、操作部10、20の駆動力により可動電極37、56が固定電極36、55から同時に開離するようにした。これに対して、真空バルブ2の可動電極37が固定電極36から開離させて通電電流を遮断し、続いて接点4の可動電極56を固定電極55から開離させ、両電極55、56間の絶縁距離を確保するようにしても良い。
For example, the following embodiments are also included in the scope of the invention.
(1) In the first embodiment, the movable electrodes 37 and 56 are simultaneously separated from the fixed electrodes 36 and 55 by the driving force of the operation units 10 and 20 in the shutoff process. On the other hand, the movable electrode 37 of the vacuum valve 2 is separated from the fixed electrode 36 to cut off the conduction current, and then the movable electrode 56 of the contact 4 is separated from the fixed electrode 55. It is also possible to secure an insulation distance of
(2)第2の実施形態では、保持機構部75の可動部89を、高速開極部73の可動軸76にワイプ機構部74を介して間接的に接続していた。これに対して、可動部89を可動軸76に直接的に接続するようにしても良い。 (2) In the second embodiment, the movable portion 89 of the holding mechanism portion 75 is indirectly connected to the movable shaft 76 of the high-speed opening portion 73 via the wipe mechanism portion 74. On the other hand, the movable portion 89 may be directly connected to the movable shaft 76.
1…複合型開閉器
2…真空バルブ
2a…真空容器
2b…ベローズ
3…真空開閉器
4…接点
5…高耐圧開閉器
6…絶縁電線
7、17、161、165、169、173…圧力容器
8、18、91、111、121…支持部
9、19…接点部
10、20、101…操作部
11、21、102、132、141…電源部
12、13、22、23…金属蓋
14、15、24、25…通電板
16…基礎
26、45…碍子タンク
27、46、162、166、170、174…碍管
28、29、47、48…金属フランジ
30、31、49、50、133…支持碍子
32、33、51、52、116、134、163、167、171、175…支持構造物
34、35、53、54、117、118、123、124、135…接続金具
36、55…固定電極
37、56、105…可動電極
38、57、103…駆動装置
39、58、104…制御装置
40、43、44、59、62、63、106、109、110、138、139、149、150、151…絶縁電線
41、60、107、136…変圧器
42、61、108、137、148…母線
65、66、67…シールド
68、69、164、168、172、176…内部空間
71…電磁反発駆動装置
72…機構箱
73…高速開極部
74…ワイプ機構部
75…保持機構部
76…可動軸
77…電磁反発コイル
78…反発リング
79…反発リング受け
80…支持部
80a…穴
81…つば
82…カップリング
83…ワイプばね
84…つば押さえ
85、90…衝撃吸収体
86…永久磁石
87…開路ばね
88…電磁ソレノイド
89…可動部
89a…脚
89b…両手
89c…胴
112…大型支持碍子
113、114…小型支持碍子
115…碍子接続部
119…Y字型支持碍子
122…碍子接続板
125…二又状支持碍子
131…共有支持部
142…支持碍管
143…給電用コイル
144…受電用コイル
145…給電用コイル支持部
146…受電用コイル支持部
147…コイル励磁装置
DESCRIPTION OF SYMBOLS 1 ... Composite type switch 2 ... Vacuum valve 2a ... Vacuum vessel 2b ... Bellows 3 ... Vacuum switch 4 ... Contact 5 ... High voltage | pressure-resistant switch 6 ... Insulated electric wire 7, 17, 161, 165, 169, 173 ... Pressure vessel 8 18, 91, 111, 121: Support portion 9, 19: Contact portion 10, 20, 101: Operation portion 11, 21, 102, 132, 141: Power supply portion 12, 13, 22, 23: Metal lid 14, 15 , 24, 25 ... energizing plate 16 ... foundation 26, 45 ... insulator tank 27, 46, 162, 166, 170, 174 ... pipe 28, 29, 47, 48 ... metal flange 30, 31, 49, 50, 133 ... support Forceps 32, 33, 51, 52, 116, 134, 163, 167, 171, 175 ... supporting structures 34, 35, 53, 54, 117, 118, 123, 124, 135 ... connecting fittings 36, 55 ... fixed Poles 37, 56, 105 ... Movable electrodes 38, 57, 103 ... Drive devices 39, 58, 104 ... Control devices 40, 43, 44, 59, 62, 63, 106, 109, 110, 138, 139, 149, 150 , 151: Insulated electric wire 41, 60, 107, 136 ... Transformer 42, 61, 108, 137, 148 ... Bus 65, 66, 67 ... Shield 68, 69, 164, 168, 172, 176 ... Internal space 71 ... Electromagnetic Repulsion drive device 72 ... Mechanism box 73 ... High speed opening part 74 ... Wipe mechanism part 75 ... Holding mechanism part 76 ... Movable shaft 77 ... Electromagnetic repulsion coil 78 ... Repulsion ring 79 ... Repulsion ring receptacle 80 ... Support part 80a ... Hole 81 ... Collar 82 ... Coupling 83 ... Wipe spring 84 ... Collar retainer 85, 90 ... Shock absorber 86 ... Permanent magnet 87 ... Open circuit spring 88 ... Electromagnetic solenoid 89 ... Movable part 8 a: Legs 89b: Both hands 89c: Body 112: Large-sized support forceps 113, 114: Small-size support forceps 115: Forced connection portion 119: Y-shaped support forceps 122: Forced connection plate 125: Bifurcated support forceps 131: Shared support portion 142: support bushing 143: power feeding coil 144: power receiving coil 145: power feeding coil support 146: power receiving coil support 147: coil excitation device

Claims (11)

  1.  直列に接続された少なくとも二つ以上の開閉器を有し、
     前記開閉器のうちの少なくとも一つが、真空バルブを接点部に有する真空開閉器であって、
     前記開閉器のうちの少なくとも一つが、前記真空開閉器よりも絶縁耐力の大きい接点部を有する高耐圧開閉器であって、
     前記高耐圧開閉器及び前記真空開閉器は、
     絶縁性媒体が充填されるとともに、前記接点部が収容された密閉容器と、
     前記密閉容器を支持しつつ、接地面との電気的絶縁を行う支持部と、
     前記接点部が有する可動電極を駆動する操作部と、
     前記操作部に電力を供給する電源部と、
     を有し、
     前記高耐圧開閉器の前記操作部と、前記操作部が接続されている前記接点部の可動電極とは、等電位であることを特徴とする複合型開閉器。
    Have at least two switches connected in series,
    At least one of the switches is a vacuum switch having a vacuum valve at a contact portion,
    At least one of the switches is a high breakdown voltage switch having a contact portion having a larger dielectric strength than the vacuum switch,
    The high withstand voltage switch and the vacuum switch are
    A sealed container filled with an insulating medium and containing the contact portion;
    A supporting portion that electrically insulates from the ground plane while supporting the sealed container;
    An operation unit for driving a movable electrode of the contact unit;
    A power supply unit for supplying power to the operation unit;
    Have
    A composite switch according to claim 1, wherein the operation portion of the high breakdown voltage switch and the movable electrode of the contact portion to which the operation portion is connected are equipotential.
  2.  前記密閉容器は、
     両端が開口した絶縁性の胴部分と、
     両端の開口を封止する金属蓋と、
    を有し、
     前記操作部は、
     前記接点部に駆動力を与える駆動装置と、
     前記駆動装置の動作を制御する制御装置と、
    を有し、
     前記駆動装置は、前記密閉容器内に設けられ、前記金属蓋に接続され、かつ前記接点部と接続されており、
     前記制御装置は、前記密閉容器の外側に設けられ、前記電源部から前記操作部を駆動するための電力が供給されるように、前記電源部に接続されており、
     前記高耐圧開閉器の前記駆動装置と、前記接点部の前記可動電極との接続部には、導電性材料が用いられていることを特徴とする請求項1記載の複合型開閉器。
    The closed container is
    Insulating torso portion open at both ends,
    A metal lid that seals the openings at both ends,
    Have
    The operation unit is
    A driving device for applying a driving force to the contact portion;
    A control device that controls the operation of the drive device;
    Have
    The drive device is provided in the sealed container, connected to the metal lid, and connected to the contact portion,
    The control device is provided on the outside of the sealed container, and is connected to the power supply unit such that power for driving the operation unit is supplied from the power supply unit.
    The composite type switch according to claim 1, wherein a conductive material is used for a connection portion between the drive device of the high withstand voltage switch and the movable electrode of the contact portion.
  3.  前記操作部は、
     コイルと、
     前記コイルを固定するコイル固定部と、
     前記コイルと対向して設けられた対向良導体と、
     前記対向良導体を貫通し、この前記対向良導体に固定された可動軸と、
     前記コイルに電流を供給し、前記コイルを励磁するコイル励磁手段と、
     を有し、
     前記コイル励磁手段により励磁された前記コイルと、前記対向良導体との間で発生する反発力により、前記可動軸に推力を与えることを特徴とする請求項2記載の複合型開閉器。
    The operation unit is
    With the coil,
    A coil fixing portion for fixing the coil;
    An opposing good conductor provided opposite to the coil,
    A movable shaft passing through the opposing good conductor and fixed to the opposing good conductor;
    Coil excitation means for supplying current to the coil to excite the coil;
    Have
    The composite switch according to claim 2, wherein a thrust is given to the movable shaft by a repulsive force generated between the coil excited by the coil excitation means and the opposing good conductor.
  4.  前記支持部は、
     絶縁物である碍子を二つの金属部で挟んで構成された支持碍子と、
     前記接地面に固定された支持構造物と、
    を有し、
     前記支持碍子は、前記支持構造物と前記密閉容器との間に固定され、両者を機械的に接続し、かつ電気的に絶縁していることを特徴とする請求項1~3のいずれか1項に記載の複合型開閉器。
    The support portion is
    A supporting insulator configured by sandwiching a insulator which is an insulator between two metal parts,
    A support structure fixed to the ground plane;
    Have
    The said support insulator is fixed between the said support structure and the said airtight container, mechanically connects both, and insulates electrically electrically, It is characterized by the above-mentioned. Compound type switch described in the section.
  5.  前記支持部は、三本の前記支持碍子を、碍子接続部によりY字型に接続したY字型支持碍子を有し、
     前記碍子接続部は、前記支持碍子との接続部がY字型に三カ所配置されている金属製のブロックであり、
     三本の前記支持碍子の一端が、それぞれ前記碍子接続部に固定され、
     一本の前記支持碍子の他端は、前記支持構造物に固定されることにより、直立した脚部分を構成し、
     他の二本の前記支持碍子の他端は、前記密封容器に接続されることにより、両腕部分を構成していることを特徴とする請求項4記載の複合型開閉器。
    The support portion has a Y-shaped support forceps in which the three support forceps are connected in a Y-shape by a forceps connection portion,
    The ladder connection portion is a metal block in which three connection portions with the support insulator are arranged in a Y shape,
    One end of each of the three support insulators is fixed to the insulator connection portion,
    The other end of one support ladder is fixed to the support structure to constitute an upright leg portion,
    5. The composite switch according to claim 4, wherein the other ends of the other two support insulators are connected to the sealed container to constitute both arms.
  6.  前記支持部は、三本の前記支持碍子と碍子接続板を有する二又状支持碍子を有し、
     前記碍子接続板は、前記支持碍子との接続部が上面に二カ所、下面に一カ所配置されている金属製の板であり、
     前記二又状支持碍子は、三本の前記支持碍子の一端をそれぞれ前記碍子接続板の接続部に固定することで構成し、
     一本の前記支持碍子は、他端が前記支持構造物に固定されることにより、直立した脚部分を構成し、
     二本の前記支持碍子は、他端が前記密封容器に接続されることにより、直立した両腕部分を構成することを特徴とする請求項4記載の複合型開閉器。
    The support portion has a bifurcated support insulator having three of the support insulators and an insulator connection plate,
    The ladder connection plate is a metal plate in which connection portions with the support insulator are disposed at two places on the upper surface and one place on the lower surface,
    The bifurcated support insulator is configured by fixing one end of each of the three support insulators to the connection portion of the insulator connection plate,
    The one supporting ladder constitutes an upright leg portion by being fixed to the supporting structure at the other end,
    The combined switchgear according to claim 4, wherein the two supporting insulators constitute upright arms by connecting the other end to the sealed container.
  7.  前記開閉器のうち隣接する二つの前記開閉器が、前記支持部を共有することを特徴とする請求項1~6のいずれか1項に記載の複合型開閉器。 The composite switch according to any one of claims 1 to 6, wherein two adjacent ones of the switches share the support portion.
  8.  前記開閉器のうち隣接する二つの前記開閉器が、前記電源部を共有することを特徴とする請求項1~7のいずれか1項に記載の複合型開閉器。 8. The composite switch according to any one of claims 1 to 7, wherein two adjacent ones of the switches share the power supply unit.
  9.  前記高耐圧開閉器は、前記接点部が有する一対の可動電極がそれぞれ別個の前記操作部に接続されていることを特徴とする請求項1~8のいずれか1項に記載の複合型開閉器。 The composite switch according to any one of claims 1 to 8, wherein in the high withstand voltage switch, a pair of movable electrodes of the contact portion are connected to separate operation portions. .
  10.  前記開閉器の前記電源部に、変圧器および碍管が用いられていることを特徴とする請求項1~9のいずれか1項に記載の複合型開閉器。 The composite switch according to any one of claims 1 to 9, wherein a transformer and a bushing are used for the power supply unit of the switch.
  11.  前記電源部は、
     電力を供給可能な電力供給源と、
     前記電力供給源と電気的に接続された給電用コイルと、
     前記操作部の前記制御装置と電気的に接続された受電用コイルと、
    を有し、
     前記支持碍子の前記碍子は中空の管状体で、内部が両端の前記金属部によって密閉されており、かつ前記絶縁性媒体が充填され、
     前記給電用コイル及び受電用コイルは、前記支持碍子内部の同軸上に、絶縁距離分だけ離れて配置され、
     前記給電用コイルは、前記支持碍子の前記接地面側の前記金属部に給電用コイル支持部を介して固定され、
     前記受電用コイルは前記支持碍子の前記密閉容器側の前記金属部に受電用コイル支持部を介して固定されていることを特徴とする請求項1~9のいずれか1項に記載の複合型開閉器。
    The power supply unit
    A power supply source capable of supplying power;
    A feeding coil electrically connected to the power supply source;
    A power reception coil electrically connected to the control device of the operation unit;
    Have
    The insulator of the support insulator is a hollow tubular body, the inside is sealed by the metal parts at both ends, and the insulating medium is filled,
    The feeding coil and the receiving coil are arranged coaxially inside the support insulator and separated by an insulation distance,
    The feeding coil is fixed to the metal portion on the ground plane side of the support insulator via a feeding coil support portion.
    The composite type according to any one of claims 1 to 9, wherein the power reception coil is fixed to the metal portion on the closed container side of the support insulator via the power reception coil support portion. Switch.
PCT/JP2014/081567 2014-03-25 2014-11-28 Hybrid switching device WO2015145870A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14887580.0A EP3125262B1 (en) 2014-03-25 2014-11-28 Hybrid switching device
CN201480077426.5A CN106165046B (en) 2014-03-25 2014-11-28 Compound shutter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014062719A JP6301698B2 (en) 2014-03-25 2014-03-25 Combined switch
JP2014-062719 2014-03-25

Publications (1)

Publication Number Publication Date
WO2015145870A1 true WO2015145870A1 (en) 2015-10-01

Family

ID=54194439

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081567 WO2015145870A1 (en) 2014-03-25 2014-11-28 Hybrid switching device

Country Status (4)

Country Link
EP (1) EP3125262B1 (en)
JP (1) JP6301698B2 (en)
CN (1) CN106165046B (en)
WO (1) WO2015145870A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659844A (en) * 2019-01-28 2019-04-19 深圳市蓝希望电子有限公司 A kind of atmospheric closed permanent-magnet breaker cabinet

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018229970A1 (en) * 2017-06-16 2018-12-20 東芝エネルギーシステムズ株式会社 Direct-current circuit breaker, mechanical switching device for direct-current circuit breaker and semiconductor switching device for direct current circuit breaker
CN107492466A (en) * 2017-08-09 2017-12-19 许继集团有限公司 A kind of disconnecting switch and its disconnecting switch body, fracture component
FR3080946B1 (en) * 2018-05-07 2021-02-19 Alstom Transp Tech VACUUM SWITCH CIRCUIT BREAKER
CN109167478A (en) * 2018-07-27 2019-01-08 广州顺途信息科技有限公司 Brushless motor
EP3896713A4 (en) * 2018-12-14 2022-07-27 Toshiba Energy Systems & Solutions Corporation Direct-current circuit breaker

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5195281A (en) * 1975-02-19 1976-08-20
JPS58181218A (en) * 1982-04-19 1983-10-22 株式会社日立製作所 Composite vacuum breaker
JPS60189130A (en) * 1984-03-07 1985-09-26 株式会社日立製作所 Composite type breaking device
JPS6177216A (en) * 1984-09-21 1986-04-19 株式会社日立製作所 Compound type switch
JP2000331576A (en) * 1999-05-24 2000-11-30 Mitsubishi Electric Corp Vacuum breaker device
JP2005038630A (en) * 2003-07-15 2005-02-10 Toshiba Corp Vacuum interrupting device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4159498A (en) * 1977-11-17 1979-06-26 General Electric Company Electric circuit breaker with high current interruption capability
JPS5736733A (en) * 1980-08-14 1982-02-27 Tokyo Shibaura Electric Co
JPS58207802A (en) * 1982-05-27 1983-12-03 株式会社東芝 Hybrid breaker
JP3799924B2 (en) * 2000-01-11 2006-07-19 株式会社日立製作所 Power circuit breaker and power plant electrical circuit device
JP5306034B2 (en) * 2009-04-16 2013-10-02 株式会社東芝 Gas insulated switchgear
JP4906892B2 (en) * 2009-08-12 2012-03-28 株式会社日立製作所 Switchgear
CN202695270U (en) * 2012-06-18 2013-01-23 株式会社日立制作所 Vacuum shutter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5195281A (en) * 1975-02-19 1976-08-20
JPS58181218A (en) * 1982-04-19 1983-10-22 株式会社日立製作所 Composite vacuum breaker
JPS60189130A (en) * 1984-03-07 1985-09-26 株式会社日立製作所 Composite type breaking device
JPS6177216A (en) * 1984-09-21 1986-04-19 株式会社日立製作所 Compound type switch
JP2000331576A (en) * 1999-05-24 2000-11-30 Mitsubishi Electric Corp Vacuum breaker device
JP2005038630A (en) * 2003-07-15 2005-02-10 Toshiba Corp Vacuum interrupting device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659844A (en) * 2019-01-28 2019-04-19 深圳市蓝希望电子有限公司 A kind of atmospheric closed permanent-magnet breaker cabinet
CN109659844B (en) * 2019-01-28 2024-02-06 深圳市蓝希望电子有限公司 Constant-pressure airtight permanent magnet breaker cabinet

Also Published As

Publication number Publication date
CN106165046B (en) 2018-01-12
JP2015185477A (en) 2015-10-22
EP3125262A4 (en) 2017-12-06
JP6301698B2 (en) 2018-03-28
EP3125262B1 (en) 2019-01-09
EP3125262A1 (en) 2017-02-01
CN106165046A (en) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2015145870A1 (en) Hybrid switching device
WO2015029606A1 (en) Switch
US9208966B2 (en) Switch
WO2015037318A1 (en) Switch
US20120274428A1 (en) Circuit-breaker with a common housing
US9520699B2 (en) Switchgear
KR101704807B1 (en) operation device using electromagnetic repulsion force for circuit breaker
US8519812B2 (en) Vacuum interrupter for vacuum circuit breaker
US9673005B2 (en) Switchgear
JP2012221959A (en) Switch having two sets of contact elements and two drives
GB2522696A (en) Improvements in or relating to vacuum switching devices
CN105280431A (en) Grounding switch capable of extinguishing arc quickly through electromagnetic reluctance tension
EP0782759B1 (en) Operating device for circuit breakers
JP2012129265A (en) Three-phase transformer for gas insulated meter
CN205195087U (en) Intelligent switch cabinet
CN209844393U (en) Environment-friendly gas-insulated totally-enclosed breaker cabinet
US20150114933A1 (en) Pushrod assembly for a medium voltage vacuum circuit breaker
CA3117799C (en) Electromagnetic drive for a power circuit-breaker with a vacuum interrupter
US20230116363A1 (en) Insulated drive vacuum interrupter
KR20080063912A (en) Actuator for an instrument operate by using transformer equipment
EP3979286A1 (en) Bypass switch
JP2012099641A (en) Gas-insulation instrument voltage transformer
KR20200135031A (en) Bypass Switch
KR20200135034A (en) Bypass Switch

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14887580

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014887580

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014887580

Country of ref document: EP