JPS60189130A - Composite type breaking device - Google Patents

Composite type breaking device

Info

Publication number
JPS60189130A
JPS60189130A JP4208084A JP4208084A JPS60189130A JP S60189130 A JPS60189130 A JP S60189130A JP 4208084 A JP4208084 A JP 4208084A JP 4208084 A JP4208084 A JP 4208084A JP S60189130 A JPS60189130 A JP S60189130A
Authority
JP
Japan
Prior art keywords
contact
buffer
fixed
vacuum
cut
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4208084A
Other languages
Japanese (ja)
Other versions
JPH0474813B2 (en
Inventor
健一 夏井
黒沢 幸夫
袴田 好美
倉沢 隆直
浩 有田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4208084A priority Critical patent/JPS60189130A/en
Publication of JPS60189130A publication Critical patent/JPS60189130A/en
Publication of JPH0474813B2 publication Critical patent/JPH0474813B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/04Means for extinguishing or preventing arc between current-carrying parts
    • H01H33/14Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc
    • H01H33/143Multiple main contacts for the purpose of dividing the current through, or potential drop along, the arc of different construction or type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/666Operating arrangements
    • H01H33/6661Combination with other type of switch, e.g. for load break switches

Landscapes

  • Circuit Breakers (AREA)
  • High-Tension Arc-Extinguishing Switches Without Spraying Means (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はガス遮断器と真空連断器を直列に接続した複合
型遮断装置に係り、特に、高電圧・大容量で、定格通電
電流の大きな遮断装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to a composite type circuit breaker in which a gas circuit breaker and a vacuum circuit breaker are connected in series. Relating to a shutoff device.

[発明の背景] 電力系統の短絡容量は、電力需要増大と供給源の集中偏
在化が進む中で増大の一途にある。これに伴ない電力用
連断器に課せられる責務は、遮断容量の増大とユニット
あたりの高電圧化である。
[Background of the Invention] The short-circuit capacity of power systems continues to increase as demand for electricity increases and supply sources become more concentrated and unevenly distributed. Accordingly, the responsibility placed on power disconnectors is to increase the breaking capacity and increase the voltage per unit.

近年、高電圧・大容量遮断器は、絶縁性・消弧性のすぐ
れたSF6ガスを用いたバッファ形ガス遮断器が主流を
占めている。しかし、バッファ形ガス遮断器は、電流零
点近傍における電流変化率(di/dt)と電流遮断直
後の過渡回復電圧上昇率(dV/di)により、その遮
断特性が著しい影響を受け、連断電流が大きくなると、
dv/dtの厳しいに務となる近距離線路故障(SLF
迩断貢務や、遮断器の電源側母線条件により発生する高
い周波薮成分の過渡回復電圧(ITR,V)’Th含む
遮断置務などで、熱破壊と呼ばれる形態の1断不成功が
発生する。熱破壊と呼ばれるのけ、電て、電流遮断直前
のアークの熱履歴部分の絶縁が回復しないために遮断不
成功に至る現象である。
In recent years, buffer-type gas circuit breakers using SF6 gas, which has excellent insulation and arc-extinguishing properties, have been the mainstream of high-voltage, large-capacity circuit breakers. However, the interrupting characteristics of buffer type gas circuit breakers are significantly affected by the rate of current change near the current zero point (di/dt) and the rate of increase in transient recovery voltage (dV/di) immediately after current interruption, and the continuous current When becomes large,
Short-range line failure (SLF) is a severe problem for dv/dt.
Failure of one interruption in the form of thermal breakdown occurs due to interruption duty or interruption operation including transient recovery voltage (ITR, V)'Th of high frequency component generated due to the power side bus condition of the circuit breaker. do. This is a phenomenon called thermal breakdown, which is a phenomenon that results in failure of interruption because the insulation of the arc's thermal history immediately before the interruption of the current does not recover.

ガス遮断器では、電流零点直前の電流瞬時値の小さい領
域で、アーク径が非常に細くなる性質があり、このため
電流の小さい場合でもアークの中心温度は非常に高い値
を保持する。そのため、アークの熱履歴が電流零点直後
も残るものである。
In a gas circuit breaker, the arc diameter tends to become very small in the region where the instantaneous current value is small just before the current zero point, and therefore the center temperature of the arc maintains a very high value even when the current is small. Therefore, the thermal history of the arc remains even immediately after the current zero point.

SF、ガスを用いたガス遮断器では、大電流領域でこの
熱破壊による遮断不成功がillll性の限界となって
いる。
In a gas circuit breaker using SF or gas, failure to shut off due to thermal breakdown in a large current region is the limit of illumination.

一方、真空遮断器は、非常に優れた絶縁回復特性を有し
、遮断不成功は上記した熱破壊によるものでなく、絶縁
が一旦回復した後、電界強度の増大のため絶縁破壊に至
るものである。しかし、真空遮断器は、ユニットあたり
の高電圧化が困錐で、1点あたり72〜84kV級のも
のが限界である。
On the other hand, vacuum circuit breakers have extremely excellent insulation recovery characteristics, and failure to disconnect is not due to the thermal breakdown described above, but is due to an increase in electric field strength that leads to insulation breakdown once the insulation has recovered. be. However, vacuum circuit breakers have difficulty increasing the voltage per unit, and the limit is 72 to 84 kV per point.

高電圧・大容量の遮断器を実現するにあたり、ガス遮断
器が熱破壊で性能が決定される特性と、真空遮断器が絶
縁破壊で性能が決定される特性を相互に補なう形で、ガ
ス遮断器と真空遮断器を直列に用いることは従来から知
られている。たとえば、特公昭40−6658号公報に
はその基本構成が開示されており、また、特開昭56−
128527号、特開昭57−36733号、特開昭5
6−76128号各公報には、ガス遮断器と真空遮断器
を直列遮断した時の電圧分担を規制するための並列素子
接続技術が開示されている。これらの実施例は、投入状
態においていずれもアーク接触子部全通電する構造であ
り、定格通電々流が2000アンペア糧度の小さい系統
で使用する場合はよいが、4000アンペア以上の大き
い通電々流に対しては、接触部での発熱や溶着等の問題
が発゛生ずる。その九め、特開昭57−55022等公
報には、ガス遮断器と真空遮断器のそれぞれに通電用の
主接触子を設けた実施例が開示されている。
In creating a high-voltage, large-capacity circuit breaker, the characteristics of gas circuit breakers, whose performance is determined by thermal breakdown, and the characteristics of vacuum circuit breakers, whose performance is determined by dielectric breakdown, are mutually complementary. The use of gas circuit breakers and vacuum circuit breakers in series has been known for some time. For example, Japanese Patent Publication No. 40-6658 discloses its basic structure, and
No. 128527, JP-A-57-36733, JP-A-5
6-76128 discloses a parallel element connection technique for regulating voltage sharing when a gas circuit breaker and a vacuum circuit breaker are disconnected in series. All of these embodiments have a structure in which the arc contact part is fully energized in the closed state, and is suitable for use in small systems with a rated current of 2000 amperes, but for large currents of 4000 amperes or more. However, problems such as heat generation and welding occur at the contact portion. The ninth publication, Japanese Unexamined Patent Publication No. 57-55022, discloses an embodiment in which a gas circuit breaker and a vacuum circuit breaker are each provided with a main contact for energization.

しかし、この実施例では真空遮断部側に、真空遮断部の
可動接触子と可動側通電用主接触子とのストローク調整
を行なうためのワイプ装置を設ける必要があるため、部
品点数が多く、構造が複雑でしかも大型化する欠点があ
る。
However, in this embodiment, it is necessary to provide a wipe device on the vacuum cut-off part side to adjust the stroke between the movable contact of the vacuum cut-off part and the movable side energizing main contact, so the number of parts is large and the structure is The drawback is that it is complicated and large.

そのため、第1図に示したような技術が考案されている
(特願昭57−170986号)。この実施例は、1つ
の容器41内にバッファ形遮断部4と真空遮断部5が収
納されており、容器41内にはSFgガスが充填されて
いる。バッファ形遮断部4と真空遮断部5とは電気的に
直列に接続されている。真空遮断部5の可動接触子側端
板21には、真空遮断部5の外側を通って75ソファ形
遮断部へ延びる固定側通電用接触子42が取付けられて
いる。この固定側通電用接触子42け円筒状で、真空遮
断部5を内側に収納した形となっている。一方、バッフ
ァ形信断部4のバッファシリンダ8には、投入状態にお
いて前記固定側通電用接触子42と接触する可動側通電
用接触子43が設けられている。このように構成すると
、投入状態においては、一方のブッシングの中心導体1
3−ビス) 7 支持金具11− ヒストン10−バッ
ファシリンダ8−可動側通電用接触子43−固定側通電
用接触子42−可動接触子側端子21−他方のブッシン
グの中心導体24を通って通電々流が流れることになる
。通電用接触子42及び43は接触面積を大きくとれる
から、定格通電々流が十分大きい場合でも接触部での発
熱や溶着を発生することなく安定した通電状態を保つこ
とが可能である。
Therefore, a technique as shown in FIG. 1 has been devised (Japanese Patent Application No. 170986/1986). In this embodiment, a buffer type cutoff section 4 and a vacuum cutoff section 5 are housed in one container 41, and the container 41 is filled with SFg gas. The buffer type cutoff section 4 and the vacuum cutoff section 5 are electrically connected in series. A fixed side energizing contact 42 is attached to the movable contact side end plate 21 of the vacuum cutoff section 5 and extends through the outside of the vacuum cutoff section 5 to the 75 sofa-shaped cutoff section. These 42 fixed-side energizing contacts are cylindrical in shape, with the vacuum cutoff section 5 housed inside. On the other hand, the buffer cylinder 8 of the buffer type disconnection section 4 is provided with a movable side energizing contact 43 that comes into contact with the fixed side energizing contact 42 in the closed state. With this configuration, in the closed state, the center conductor 1 of one bushing
3-screws) 7 Support fitting 11 - Histone 10 - Buffer cylinder 8 - Movable side energizing contact 43 - Fixed side energizing contact 42 - Movable contact side terminal 21 - Electrification passes through the center conductor 24 of the other bushing A stream will flow. Since the energizing contacts 42 and 43 can have a large contact area, it is possible to maintain a stable energizing state without generating heat or welding at the contact portions even when the rated energizing current is sufficiently large.

また、投入状態においては真空遮断部5の接触子16.
17の接触部が短絡されるようになり、通電々流けその
ほとんどが通電用接触子42.43の接触部を流れるの
で、真空遮断部5の接触子16.17の通電能力が十分
でなくとも発熱や溶着の懸念がなく、接触力付与のため
の力が小さくてよく、理性操作用操作力の小さいもので
よい。
In addition, in the closed state, the contact 16 of the vacuum cutoff section 5.
17 is short-circuited, and most of the current flows through the contact parts of the current-carrying contacts 42 and 43, so the current-carrying capacity of the contacts 16 and 17 of the vacuum cut-off part 5 is insufficient. In both cases, there is no concern about heat generation or welding, and the force for applying contact force is small, and the operating force for rational operation is small.

遮断動作は次のように行なわれる。まず最初に通電用接
触子42.43が開離する。この時、バッファ形遮断部
4の接触子7.9及び真空遮断部5の接触子16.17
は接触状態を保持しているので、通電用接触子42.4
3の開離時にアークが発生することはない。次に、バッ
ファ形遮断部、ひきつづいて真空遮断部の順に開離する
The shutoff operation is performed as follows. First, the current-carrying contacts 42 and 43 are opened. At this time, the contact 7.9 of the buffer type cut-off part 4 and the contact 16.17 of the vacuum cut-off part 5
Since the contact state is maintained, the current-carrying contact 42.4
No arc occurs when 3 is released. Next, the buffer-type cutoff section is opened, followed by the vacuum cutoff section.

しかしながら、この構造では、真空遮断部5がバッファ
形泗断部4の固定接触子側6に配置されることになるの
で、電流遁断時に、バッファ形遮断i4から吹き出す高
温カスが真空遮断部5に吹き付けることになる。そのた
め、真空遮断部5の固定接触子側端板20と固定側通電
用接触子420間の絶縁をおびやかし、また、真空遮断
部5の絶縁物容器19の沿面絶縁耐圧低下を招くことが
明らかとなった。
However, in this structure, the vacuum cut-off part 5 is arranged on the fixed contact side 6 of the buffer-type cut-off part 4, so when the current is cut off, the high-temperature scum blown out from the buffer-type cut-off part i4 is transferred to the vacuum cut-off part 5. will be sprayed on. Therefore, it is clear that the insulation between the fixed contact side end plate 20 of the vacuum cutoff section 5 and the fixed side energizing contact 420 is threatened, and that the creeping dielectric strength voltage of the insulator container 19 of the vacuum cutoff section 5 is reduced. became.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、バッファ形遮断部から吹き出す高温ガ
スが真空遮断部に吹きつけない精成とすることKよって
、絶縁性能の優れた複合型遮断装置を提供することkあ
る。
SUMMARY OF THE INVENTION An object of the present invention is to provide a composite shutoff device with excellent insulation performance by preventing high-temperature gas blown from a buffer-type shutoff section from blowing against a vacuum shutoff section.

〔発明の概要〕[Summary of the invention]

この目的を達成するため、本発明け、バッファ形遮断部
と真空遮断部とを直列に接続した複合型遮断装置におい
て、真空遮断部とバッファ形鏡断部の可動接触子側が直
結した構成として、真空遮断部の固定接触子側端板に、
真空遮断部の外部を通って前記バッファ形遮断部に延び
る固定側通電用接触子を取りつけ、前記バッファ形遮断
部のバッファシリンダに、投入状態において前記固定側
通電用接触子と接触する可動側通電接触子を設けたこと
を特徴とする。
In order to achieve this object, the present invention provides a composite shutoff device in which a buffer type cutoff part and a vacuum cutoff part are connected in series, in which the vacuum cutoff part and the movable contact side of the buffer type mirror cutout part are directly connected. On the fixed contact side end plate of the vacuum cutoff section,
A fixed-side current-carrying contact that passes through the outside of the vacuum cut-off part and extends to the buffer-type cut-off part is attached, and a movable-side current-carrying contact that contacts the fixed-side current-carrying contact in the closed state is attached to the buffer cylinder of the buffer-type cutoff part. It is characterized by the provision of a contactor.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図を参照して詳細に説明
する。
Hereinafter, one embodiment of the present invention will be described in detail with reference to FIG.

この遮断装置は、1つの容器41内にバッファ形迩断部
4と真空遮断部5が収納されており、容器41内罠は8
 F eカスが充填されている。バッファ形遮断器4と
真空遮断部5とは、各々の可動接触子6及び16が、真
空遮断部の可動接触子側端板20. ピストン支持金具
11、ピストン10及びバッファシリンダ8を介して電
気的に直列に接続されている。真空遮断部5の固定接触
子側端板21には、バッファ形遮断部4のバッファシリ
ンダ8の外周に配置された円筒状の固定側通電用接触子
50を支持固定し、電気的に接続するための通電用接触
子支持金具51が取付けられている。
This cutoff device has a buffer type cutoff section 4 and a vacuum cutoff section 5 housed in one container 41, and there are 8 traps in the container 41.
Filled with Fe waste. In the buffer type circuit breaker 4 and the vacuum cutoff section 5, each movable contact 6 and 16 is connected to the movable contact side end plate 20. of the vacuum cutoff section. The piston support fitting 11, the piston 10, and the buffer cylinder 8 are electrically connected in series. A cylindrical fixed-side energizing contact 50 disposed on the outer periphery of the buffer cylinder 8 of the buffer-type cut-off part 4 is supported and fixed on the fixed-contact side end plate 21 of the vacuum cut-off part 5, and is electrically connected. A current-carrying contact support fitting 51 is attached for this purpose.

一方、バッファシリンダ8には投入状態において前記1
mlm測定電用接触子50と接触する可動側通電用接触
子52が設けられている。可動側通電用接触子52け、
バッファシリンダ8の外周に、バッファシリンダ外径よ
り大きな径となるような構造で、開離状態においては、
バッファシリンダ外周と固定側通電用接触子52の間に
間隙が発生、電気的絶縁を保持するものである。
On the other hand, the buffer cylinder 8 has the above-mentioned one in the closed state.
A movable-side energizing contact 52 that contacts the mlm measuring contact 50 is provided. 52 movable side energizing contacts,
The outer circumference of the buffer cylinder 8 has a structure that has a diameter larger than the outer diameter of the buffer cylinder, and in the open state,
A gap is created between the outer periphery of the buffer cylinder and the fixed side energizing contact 52 to maintain electrical insulation.

上記のように構成すると、投入状態においては、一方の
ブッシングの中心導体13−固定接触子側端板21−通
電用接触子支持金真51−固定側通電用接触子5〇−可
動側通電用接触子52−バッファシリンダ8′t−経て
、バッファ形遮断部の可動側通電用接触子53−固定側
通電用接触子54−バッファ形題断部固定接触子側端板
55−他方のブッシングの中心導体24を通って通電々
流が流れることになる。通電用接触子50.52及び5
3.54は接触面積を大きくとれるから、定常状態での
通電々流が十分大きい場合でも接触部での発熱や溶着音
発生することなく安定した通醒状態金保つことが可能で
ある。また、固定側通電用接触子54は、真空遮断部5
の固定接触子側端板21からバッファ形遮断部の可動側
へ延びているので、投入状態においては真空遮断部5の
接触子16.17の接触部が短絡されるようになり定常
状態における通電々流け#1とんどが通電用接触子50
.52の接触部を流れることになり、真空遮断部5の接
触子16.17の通電能力が十分でなくとも発熱や溶着
の懸念がなく、また接触力付与のための力が小ざくてよ
く、さらに、接触面積も小さいものでよいので、真空連
断部は小型で操作力の小さいものとすることができる。
With the above configuration, in the closed state, the center conductor 13 of one bushing - the fixed contact side end plate 21 - the energizing contact support metal stem 51 - the fixed side energizing contact 50 - the movable side energizing Contact 52 - buffer cylinder 8't - movable current-carrying contact 53 of buffer-type cut-off section - fixed-side current-carrying contact 54 - buffer-shaped section fixed contact side end plate 55 - of the other bushing. A current will flow through the center conductor 24. Current-carrying contacts 50, 52 and 5
Since the contact area of 3.54 can be made large, it is possible to maintain a stable conduction state without generating heat or welding noise at the contact portion even when the current flowing in the steady state is sufficiently large. Further, the fixed-side energizing contact 54 is connected to the vacuum cut-off portion 5
Since it extends from the fixed contact side end plate 21 to the movable side of the buffer type cut-off part, the contact parts of the contacts 16 and 17 of the vacuum cut-off part 5 are short-circuited in the closed state, thereby preventing current flow in the steady state. #1 Tondoga energizing contact 50
.. 52, there is no concern about heat generation or welding even if the current carrying capacity of the contacts 16 and 17 of the vacuum cutoff part 5 is insufficient, and the force for applying the contact force is small. Furthermore, since the contact area only needs to be small, the vacuum connecting section can be made small and require less operating force.

真空遮断部5の接触子16.17の接触部にも分流によ
る電流が流れるが、この電流は小さいので、接触抵抗に
よる発熱は問題とならないので、アークの発生する接触
子として、消耗の少ない材料や、溶着を考慮しなくても
よい材料など自由に選択することができ、装置設計上有
利である。
A shunt current also flows through the contact parts of the contacts 16 and 17 of the vacuum interrupter 5, but since this current is small, heat generation due to contact resistance is not a problem, so materials with low wear and tear are used as the contacts where arcing occurs. This is advantageous in terms of equipment design, as it allows the user to freely select materials that do not require consideration of welding.

遮断動作は次のように行なわれる。図示しない操作装置
により、絶縁物製操作ロッド60が図中下方へ駆動さi
すると、リンク61、レバー62及びリンク63によっ
て結合されたバッファシリンダシャフト64が動作する
。すると先ず、通電用接触子50.52及び53.54
が開離する。この時、バッファ形遮断部4の接触子6,
7及び真空遮断部5の接触子16.17は接触状態全保
持しているので、通電用接触子50.52及び53゜5
4の開離時にアークが発生することはない。次に、バッ
ファ形S断部4の接触子6.7が開離する。真空遮断部
5は、可動側接触子170ロツド65と絶縁操作ロッド
60とが判定の行程L’kd過した時点で遮断動作全開
始するもので、バッファ形ガス遮断器が開離し友後開離
するように−rるのが好ましい。こうすることにより、
di/+ltの大きい電流の遮断後、過渡回復電圧はバ
ッファ形遮断部と真空遮断部の両方に印加されるが、d
i/dtの大きい電流を遮断した直後のバッファ形運断
部極間はその熱履歴のため絶縁耐圧回復が充分でなく、
そのインピーダンスは低い状態にある。一方、真空遮断
部は、バッファ形過断部に較べて絶縁回復の速度が速い
ので4参間のインピーダンスが大きくなる。したがって
、電流連断直後、特に0〜10μs程度の時間は、イン
ピーダンスの関係から過渡回復電圧は真空遮断部に印加
されることになる。熱破壊による性能決定領域全経過し
た後は、バッファ形遮断部の絶縁耐力は著(−<回復す
るので、真空遮断部側が絶縁破壊しても、バッファ形運
断部は絶縁破壊に至ることはない。
The shutoff operation is performed as follows. An operating device (not shown) drives the insulating operating rod 60 downward in the figure.
Then, the buffer cylinder shaft 64 connected by the link 61, the lever 62, and the link 63 operates. Then, first, the energizing contacts 50.52 and 53.54
is released. At this time, the contactor 6 of the buffer type interrupting part 4,
7 and the contacts 16 and 17 of the vacuum cut-off part 5 are fully in contact, so the energizing contacts 50, 52 and 53° 5
4, no arc occurs when they open. Next, the contacts 6.7 of the buffer-shaped S-section 4 are opened. The vacuum cutoff section 5 starts the full cutoff operation when the movable contact 170 rod 65 and the insulated operating rod 60 have passed the determination distance L'kd, and the buffer type gas circuit breaker opens and then opens. It is preferable to -r. By doing this,
After interrupting a large current of di/+lt, a transient recovery voltage is applied to both the buffered interrupter and the vacuum interrupter, but d
Immediately after cutting off a current with a large i/dt, the dielectric strength voltage recovery between the electrodes of the buffer type disconnection section is not sufficient due to its thermal history.
Its impedance is in a low state. On the other hand, in the vacuum cut-off section, the speed of insulation recovery is faster than in the buffer-type cut-off section, so the impedance of the four stages becomes large. Therefore, immediately after the current is disconnected, especially for a period of about 0 to 10 μs, a transient recovery voltage is applied to the vacuum cutoff section due to the impedance relationship. After the performance-determining range due to thermal breakdown has passed, the dielectric strength of the buffer-type cut-off part recovers significantly (-<), so even if the vacuum cut-off part side has dielectric breakdown, the buffer-type cut-off part will not suffer dielectric breakdown. do not have.

また、上記のような遮断装置では、電流遮断過程で、固
定側通電用接触子50とバッファシリ/−ダ8の間に、
真空遮断部極間電圧が印加されるが、固定側通電用接触
子50とバッファシリンダ8はほぼ同軸の円筒状配置で
あり、また、電流遮断時にバッファ形遁断部から吹き付
けられる高温ガスが接触子間に吹き付けられることがな
いので絶縁設計上好ましい。また、真空遮断部がバッフ
ァ遮断部の可動側に配置できるので、バッファ形遮断部
から吹き付けられる高温ガスによって真空遮断部の絶縁
筒の外部沿面絶縁耐圧低下を招く懸念をなくすことがで
きる。
In addition, in the above-mentioned interrupting device, during the current interrupting process, between the fixed side energizing contact 50 and the buffer cylinder/- cylinder 8,
The voltage between the electrodes of the vacuum cut-off part is applied, but the fixed-side current-carrying contact 50 and the buffer cylinder 8 are arranged in a substantially coaxial cylindrical shape, and the high-temperature gas blown from the buffer-type cut-off part comes into contact with them when the current is cut off. It is preferable in terms of insulation design because it does not spray between the wires. Further, since the vacuum cutoff part can be arranged on the movable side of the buffer cutoff part, it is possible to eliminate the concern that the high temperature gas blown from the buffer type cutoff part will lower the external creeping dielectric strength voltage of the insulating cylinder of the vacuum cutoff part.

投入動作は次のように行なわれる。図示しない操作装置
により、絶縁物製操作ロッド60が図中上側に駆動され
ると、先ず最初に真空遮断部5の接触子16.17が接
触する。この時、バッファ形遮断部側はまだ充分な耐電
圧を保持した状態であるので、真空遮断部の投入時には
、直流は流れない。次に、バッファ形既断部4の接触子
6.7が投入、最後に、通電用接触子50.52及び5
3.54が投入して投入動作を完了する。したがって、
この構造では、投入時の大電流が真空遮断部5の接触子
16.17の接触ff1通市するのけ、バッファ形遮断
部が投入してから、通電用接触子が投入するまでの間だ
けで、それ以降は、重置のほとんどが通電用接触子部を
流れる。したがって、真空遮断部の接触子間で役人溶着
を発生することはなく、真空遮断部の投入力及び接触子
材料の設計上好ましい。
The input operation is performed as follows. When the insulating operating rod 60 is driven upward in the drawing by an operating device (not shown), the contacts 16 and 17 of the vacuum interrupter 5 come into contact first. At this time, the buffer-type cut-off part side still maintains a sufficient withstand voltage, so no direct current flows when the vacuum cut-off part is turned on. Next, the contacts 6.7 of the buffer-type cut section 4 are turned on, and finally the current-carrying contacts 50, 52 and 5 are turned on.
3.54 is closed and the closing operation is completed. therefore,
With this structure, the large current at the time of application only reaches one contact ff of the contacts 16 and 17 of the vacuum interrupter 5, but only during the period from when the buffer type interrupter is applied until the current-carrying contact is applied. After that, most of the superposition flows through the energizing contact section. Therefore, welding does not occur between the contacts of the vacuum interrupter, which is preferable in terms of the input force of the vacuum interrupter and the design of the contact material.

第3図は本発明の他の実施例金示す。この図において、
第2図と同−又は相当部分には同一符号が付しである。
FIG. 3 shows another embodiment of the invention. In this diagram,
The same or equivalent parts as in FIG. 2 are given the same reference numerals.

この実施例が第2図のものと異なるところは、バッファ
形遮断部4のバッファシリンダ8の外周に設けた固定側
通電用接触子50會支持固定するのに、バッファ形遮断
部4の固定接触子6を支持固定している端板55から、
絶縁支持体70を介している点である。この構造を採用
することによって、真空遮断部5の固定接触子側端板2
0之固定側通電用接触子50との接続部月71は電気的
に十分な通′亀容量さえあればよく、第2図に示した通
電用接触子支持金具51のように機械的強度を必要とし
なくなるので、寸法・構造・配置の点で設計上の利点が
ある。
This embodiment differs from the one in FIG. From the end plate 55 supporting and fixing the child 6,
This is through the insulating support 70. By adopting this structure, the fixed contact side end plate 2 of the vacuum cutoff section 5
The connecting portion 71 with the fixed-side current-carrying contact 50 only needs to have sufficient electrical conduction capacity, and should have mechanical strength like the current-carrying contact support metal fitting 51 shown in FIG. Since it is no longer necessary, there are design advantages in terms of size, structure, and placement.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、バッファ形遮断部
と真空鍾断部全それぞれの可動接触子側で結合して直列
接続した複合型遮断装置において、それぞれの遮断部の
通電用接触子をバッファ形遮断部の動作により開閉する
構造としたので、通電容量を大きくできると共に、通電
用接触子部の絶縁と、真空遮断剤容器外周部の絶縁の信
頼性全向上させ、真空遮断部の投入力低減接触子材料選
定の自由性などの効果がある。
As explained above, according to the present invention, in a composite type breaker device in which the movable contacts of the buffer type breaker and the vacuum breaker are connected in series, the energizing contact of each breaker is The structure opens and closes by the operation of the buffer-type interrupter, which increases the current carrying capacity and completely improves the reliability of the insulation of the current-carrying contact and the outer periphery of the vacuum interrupter container, making it easier to close the vacuum interrupter. Benefits include freedom in selecting force-reducing contact material.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の複合遮断装置を示す縦断面図、第2図、
第3図は本発明の実施例として示した複合遮断装置の縦
断面図である。 4・・・バッファ形遮断部、5・・・真空遮断部、6・
・・固定接触子、7・・・可動接触子、8・・・バッフ
ァシリンダ、16・・・固定接触子、17・・・可動接
触子、18・・・真空容器、20・・・固定接触子側端
板、21・・・可動接触子側端板、41・・・容器、5
o・・・固定側通電用接触子、52・・・可動側通電用
接触子、53・・・可動側通電用接触子、54・・・固
定側通電用接触子、55・・・固定接触子側端板、70
・・・絶縁支持体。 代理人 弁理士 高橋明夫 第1頁の続き 0発 明 者 有 1) 浩 日立市幸町3丁目1番1号 株式会社日立製作所日立研
究所内
Fig. 1 is a vertical cross-sectional view showing a conventional composite shutoff device;
FIG. 3 is a longitudinal sectional view of a composite shutoff device shown as an embodiment of the present invention. 4... Buffer type cutoff section, 5... Vacuum cutoff section, 6.
... Fixed contact, 7... Movable contact, 8... Buffer cylinder, 16... Fixed contact, 17... Movable contact, 18... Vacuum container, 20... Fixed contact Child side end plate, 21... Movable contact side end plate, 41... Container, 5
o...Fixed side energizing contact, 52...Movable side energizing contact, 53...Movable side energizing contact, 54...Fixed side energizing contact, 55...Fixed contact Child side end plate, 70
...Insulating support. Agent Patent Attorney Akio Takahashi Continued from page 1 0 Inventor: Yes 1) Hiroshi 3-1-1 Saiwaimachi, Hitachi City Hitachi Research Laboratory, Hitachi, Ltd.

Claims (1)

【特許請求の範囲】 1、バッファ形遮断部と真空傅断部とを、それらの可動
接触子側を直結するようにして直列接続したものにおい
て、前記真空遮断部の固定接触子側端板に前記真空遮断
部の外部を通って前記バッファ遮断部へ延びる固定側通
電用接触子を取付け1、 前記バッファ形辿断部のバッ
ファシリンダの外周部に投入状態において、前記固定側
通電用接触子と接触する可動側通電用接触子を設けたこ
とを特徴とする複合型遮断装置。 2、特許請求の範囲第1項において、前記固定側通電用
接触子は前記バッファ形遮断部のバッファシリンダと/
/1ぼ同心状をなす筒状体であること全特徴とする複合
型遮断装置。 3、特WFNN求の範囲第1項又は第2項において、前
記固定側通電用接触子が、バッファ形遮断部の固定接触
子側端板から絶縁物製支持体を介して支持・固定されて
いることを特徴とする複合型遮断装置。 4、特許請求の範囲第1項ないし第3項のいずrしかに
おいて、前記バッファ形遮断部の固定接触子側端板から
パックアシリンダに延びる固定側通電用接触子を取付け
、投入状態において、該固定側通電用接触子と接触する
可動側通電用接触子全バッファシリンダに設けたことを
特徴とする複合型遮断装置。
[Scope of Claims] 1. A buffer-type cut-off part and a vacuum cut-off part are connected in series so that their movable contact sides are directly connected, in which a fixed contact-side end plate of the vacuum cut-off part is A fixed-side current-carrying contact extending to the buffer cut-off portion through the outside of the vacuum cut-off portion is attached 1, and when the fixed-side current-carrying contact and A composite type interrupting device characterized by being provided with a movable side energizing contact that comes into contact. 2. In claim 1, the fixed-side energizing contact is connected to the buffer cylinder of the buffer-type interrupting part.
1. A composite shutoff device characterized by having a cylindrical body that is concentric. 3. In the scope of special WFNN requirements, item 1 or 2, the fixed side energizing contact is supported and fixed from the fixed contact side end plate of the buffer type interrupting part via an insulating material support. A complex type shutoff device characterized by: 4. In any one of claims 1 to 3, a fixed-side energizing contact extending from the fixed contact-side end plate of the buffer-type cut-off part to the pack cylinder is attached, and in the closed state. , A composite type interrupting device characterized in that a movable side energizing contact that comes into contact with the fixed side energizing contact is provided in all buffer cylinders.
JP4208084A 1984-03-07 1984-03-07 Composite type breaking device Granted JPS60189130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4208084A JPS60189130A (en) 1984-03-07 1984-03-07 Composite type breaking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4208084A JPS60189130A (en) 1984-03-07 1984-03-07 Composite type breaking device

Publications (2)

Publication Number Publication Date
JPS60189130A true JPS60189130A (en) 1985-09-26
JPH0474813B2 JPH0474813B2 (en) 1992-11-27

Family

ID=12626067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4208084A Granted JPS60189130A (en) 1984-03-07 1984-03-07 Composite type breaking device

Country Status (1)

Country Link
JP (1) JPS60189130A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276839A (en) * 2004-03-25 2005-10-06 Areva T & D Sa Control device for driving in conditioned manner at least two components of switch gear in which one component performs shielding in vacuum
JP2006128111A (en) * 2004-10-27 2006-05-18 Areva T & D Sa Drive mechanism in hybrid circuit breaker
JP2007305590A (en) * 2006-05-12 2007-11-22 Areva T & D Sa Disconnector circuit interrupting device of alternating current power supply driven with servomotor
WO2012157081A1 (en) * 2011-05-17 2012-11-22 三菱電機株式会社 Gas circuit breaker
WO2015145870A1 (en) * 2014-03-25 2015-10-01 株式会社 東芝 Hybrid switching device
JP6808091B1 (en) * 2019-10-28 2021-01-06 三菱電機株式会社 DC circuit breaker

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005276839A (en) * 2004-03-25 2005-10-06 Areva T & D Sa Control device for driving in conditioned manner at least two components of switch gear in which one component performs shielding in vacuum
JP2006128111A (en) * 2004-10-27 2006-05-18 Areva T & D Sa Drive mechanism in hybrid circuit breaker
JP2007305590A (en) * 2006-05-12 2007-11-22 Areva T & D Sa Disconnector circuit interrupting device of alternating current power supply driven with servomotor
WO2012157081A1 (en) * 2011-05-17 2012-11-22 三菱電機株式会社 Gas circuit breaker
CN103460326A (en) * 2011-05-17 2013-12-18 三菱电机株式会社 Gas circuit breaker
US9299507B2 (en) 2011-05-17 2016-03-29 Mitsubishi Electric Corporation Gas circuit breaker
WO2015145870A1 (en) * 2014-03-25 2015-10-01 株式会社 東芝 Hybrid switching device
CN106165046A (en) * 2014-03-25 2016-11-23 株式会社东芝 Compound shutter
JP6808091B1 (en) * 2019-10-28 2021-01-06 三菱電機株式会社 DC circuit breaker
WO2021084585A1 (en) * 2019-10-28 2021-05-06 三菱電機株式会社 Dc circuit breaker

Also Published As

Publication number Publication date
JPH0474813B2 (en) 1992-11-27

Similar Documents

Publication Publication Date Title
JPH04500740A (en) Vacuum valve, load switch equipped with this vacuum valve, and method of operating this load switch
US4617435A (en) Hybrid circuit breaker
EP0058007B1 (en) Electrical switchgear
JP3431439B2 (en) Insulated switchgear
JPH06101276B2 (en) Disconnector
Fink et al. Future trends in vacuum technology applications
JPS60189130A (en) Composite type breaking device
EP2715761B1 (en) Vacuum interrupter
JP2000311536A (en) Gas-insulated switch
JPH0754904Y2 (en) Gas circuit breaker for shunt reactor
JP2523474B2 (en) Gas circuit breaker
JP3724977B2 (en) Gas circuit breaker
JPH0381919A (en) Gas insulation switch
Rieder Circuit breakers Physical and engineering problems II-Design considerations
JPS61121222A (en) Compound type switchgear
JPH0447876Y2 (en)
JPS60257024A (en) Composite switching device
JPH0520984A (en) Resistance interrupting type circuit breaker
CLIVE et al. Interruption in Vacuum
JP2591547B2 (en) Puffer type gas circuit breaker
JP2670375B2 (en) Puffer type gas circuit breaker
Giere et al. Switching capability of double and single-break vacuum interrupters-Experiments on real high-voltage demonstration-tubes
Rigden The development of vacuum and SF/sub 6/distribution switchgear
JPS61193320A (en) Compound type switchgear
JP2002260470A (en) Gas insulated circuit breaker