WO2015144414A1 - Procédé et système servant à déterminer l'épaisseur de paroi d'un composant - Google Patents

Procédé et système servant à déterminer l'épaisseur de paroi d'un composant Download PDF

Info

Publication number
WO2015144414A1
WO2015144414A1 PCT/EP2015/054600 EP2015054600W WO2015144414A1 WO 2015144414 A1 WO2015144414 A1 WO 2015144414A1 EP 2015054600 W EP2015054600 W EP 2015054600W WO 2015144414 A1 WO2015144414 A1 WO 2015144414A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
sound
speed
wall thickness
detected
Prior art date
Application number
PCT/EP2015/054600
Other languages
German (de)
English (en)
Inventor
Tristan Sczepurek
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2015144414A1 publication Critical patent/WO2015144414A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B17/00Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations
    • G01B17/02Measuring arrangements characterised by the use of infrasonic, sonic or ultrasonic vibrations for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B15/00Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons
    • G01B15/02Measuring arrangements characterised by the use of electromagnetic waves or particle radiation, e.g. by the use of microwaves, X-rays, gamma rays or electrons for measuring thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/05Investigating materials by wave or particle radiation by diffraction, scatter or reflection
    • G01N2223/056Investigating materials by wave or particle radiation by diffraction, scatter or reflection diffraction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2223/00Investigating materials by wave or particle radiation
    • G01N2223/60Specific applications or type of materials
    • G01N2223/604Specific applications or type of materials monocrystal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness

Definitions

  • the present invention relates to a method for determining the wall thickness of a directed microstructure on ⁇ facing component, in particular a monocrystalline construction ⁇ part, on a predetermined component position by means of ultrasound. Furthermore, the present invention relates to a system for carrying out such a method.
  • Turbine blade blanks are normally manufactured by investment casting, using appropriately shaped cores to form the cooling air passages. By achieving a so-called directional solidification considerable strength ⁇ increases can be achieved during the cooling component by which it Set- de microstructure is optimally aligned with respect to the anticipated Be ⁇ operating loads. To generate the predetermined final dimensions, the turbine blade blanks are subjected to further mechanical processing after their cooling. Also, further thermal processing steps can follow.
  • turbine blades can be severely affected by manufacturing wall thickness and geometry variations. For this reason, turbine blades are subject to tight tolerances, compliance with which must be checked prior to commissioning of the components.
  • the predetermined component position is marked in a first step, which usually takes place using a template produced for this purpose.
  • the ultrasonic measuring device is calibrated, beispielswei ⁇ se using a homogeneous step wedge, which may be provided ⁇ for example from the same material as the turbine blade forth.
  • the Ultraschallprüfköpf is manually placed on the marker and the Wanddickenmes ⁇ sung performed.
  • ultrasonic waves are introduced via the Ultraschallprüfköpf into the component, which propagate in the component and are almost completely reflected on the opposite side of the component along the interface between the component material and the surrounding air of the component.
  • the calculation of the wall thickness of the component at the measuring position then takes place on the basis of which is considered as Materi ⁇ alkonstante the speed of sound, and the duration of the ultra ⁇ sound waves through the component.
  • Structure-containing components are unreliable and poorly reproducible.
  • the present invention provides a method of the type mentioned, in which the sound velocity is determined in a first step, with which propagates sound at the predetermined component position in the component, and in a second step, the wall thickness of the component is determined at the predetermined component position by means of ultrasound, taking into account the determined sound velocity.
  • the method according to the invention is distinguished by the fact that Sound wall thickness measurement no sound velocity in the form of a material constant but based on the Spotify ⁇ voted component position is determined in the first method ⁇ step determined Ist Schallgeschwindig- basis, which leads to very reliable and reproducible measurement results.
  • the wall thickness measurement is based on the actual sound velocity determined beforehand at the measurement position, which eliminates the error inherent in the known ultrasonic wall thickness measurements, which is why reliable and reproducible measurement results can be achieved.
  • a determination of the speed of sound preferably takes place before each wall thickness determination. In this way it is ensured that each ultrasonic measurement is the actual
  • Sound velocity is based on the predetermined measurement position.
  • the crystal orientation of the component is detected at the predetermined component position to determine the speed of sound and determines the speed of sound based on the detected crystal orientation.
  • an X-ray Laue method is used to detect the crystal orientation.
  • an X-ray pencil beam is beispielswei ⁇ se directed to the predetermined Bauteilposi- tion.
  • the crystal structure leads to punctiform reflections of the X-ray needle beam on a detector. Based on the position of the reflections on the detector, the orientation of the crystallite can then be determined.
  • the speed of sound is calculated based on the detected crystal orientation.
  • the speed of sound is created based on Refe ⁇ rence measurements on a reference component a function sliding ⁇ deviation to calculate, with which the sound velocity can be calculated in Ab ⁇ dependence on the detected crystal orientation, in particular in dependence on a detected Se kundärwinkel ( ⁇ ) representing the orientation of the secondary arms of the dendritically solidified crystals.
  • the secondary angle is the angle of rotation about the geometric Be ⁇ zugsachse. It is measured against the angle between the north-south axis of the Laue image and the vertical axis of, for example, a Greninger map.
  • This angle is positive when measured in the clockwise direction from the north-south axis of the Laue-recording to the vertical axis as the Greninger card he ⁇ follows.
  • the angle is negative when measured counterclockwise.
  • the measured secondary orientation is positive.
  • the functional equation can be defined in such a way that it directly determines the speed of sound, which is to be used as the basis for the subsequent determination of the wall thickness on the basis of the ultrasonic measurement.
  • they can also be defined DER art that a correction factor is determined by them, that the corrected sound velocity with which the ultrasound ⁇ measuring device used for wall thickness measurement typically measures.
  • the determination of the speed of sound and the determination of the wall thickness are preferably carried out automatically. With such an automatic execution of the individual process steps, the reproducibility of measurement result ⁇ se can be further improved.
  • Sound velocity configured first device and ei ⁇ ne set for determining the wall thickness second Einrich ⁇ tion, which are connected to each other in terms of data technology.
  • said first means is adapted to detect the Kristallorientie ⁇ tion of the component to a predetermined component position and based on the detected crystal orientation, the speed of sound, with the sound propagating at the predetermined component position in the component, or to determine a sound velocity correction factor.
  • the first device for performing an X-ray Laue method and for calculating a
  • the two devices are arranged separately from each other as individual system stations, wherein at least one component handling robot is provided, which moves the components to be checked between the system stations.
  • the component handling robot may have a five-axis robot arm with a gripping device configured to hold components to be tested or component receiving devices.
  • a component loading station provided, which is equipped in particular with a turntable.
  • a Bauteilbeschickungsstati ⁇ on very good clock characters can be achieved.
  • Figure 1 is a schematic perspective view showing a system according to an embodiment of the present invention for carrying out a method according to the invention, wherein a component handling robot is in a first position;
  • Figure 2 is a schematic perspective view of the arrangement shown in Figure 1 with the component handling robot in a second position;
  • FIG. 3 shows a tabular view of measurement results of reference measurements performed on a reference component
  • FIG. 4 is a graphic view showing the measurement results shown in FIG. 3 as a function.
  • Figures 1 and 2 show a system 1 according to an embodiment of the present invention, which is used for wall thickness determination of a directional structure structure having components 2, which are in the present case monocrystalline ⁇ line turbine blades.
  • the system 1 comprises IMP EXP ⁇ including three system stations in the form of a decorated for sound velocity detecting first device 3, an established for wall thickness measurement using ultrasound second device 4 which is connected for data transmission to the first device 3, and a Bauteilbeschickungsstati ⁇ on 5.
  • the system further comprises 1 shows a component handling robot Boter 6, the components 2 moves between the individual system stations.
  • the first device 3 comprises a collimator 7, with which an X-ray needle beam can be directed to a predetermined component position of a component 2.
  • the crystal structure of the component 2 leads to punctiform reflections of the X-ray needle beam on a detector 8, which in the present case is formed by a Laue camera.
  • the orientation of the crystallite represented here by the secondary angle ⁇ can then be determined using an evaluation unit of the first device 3, not shown in greater detail.
  • the secondary angle ⁇ characterizes the orientation of the secondary arms of the dendritically solidified crystals.
  • the primary angle is the angle of rotation about the geometric reference ⁇ axis. He is against the angle between the north-south axis of the Laue recording and the vertical axis, for example, the
  • Greninger card measured. This angle is positive when measured in the clockwise direction from the north-south axis of the Laue-recording to the vertical axis, for example, a Greninger card he ⁇ follows. The angle is negative when measured counterclockwise. When using a filmless automatic system, the measured secondary orientation is positive.
  • the evaluation unit is further adapted such that the sound velocity is calculated on Ba ⁇ sis of the particular orientation using a function equation with the sound propagating at the predetermined component position in the component. 2
  • a reference member is breathege ⁇ is that made from the same material as with the OF INVENTION ⁇ to the invention process to be measured components and has a constant known wall thickness or more ⁇ known wall thicknesses.
  • the crystal orientations of the reference component are determined at a plurality of measuring points using a Laue method. More specifically, the secondary angle ⁇ , which represents the orientation of the secondary arms of the dendritically solidified crystals, is determined in each case.
  • the respective wall thicknesses of the reference component are also be true ⁇ and compared with the corresponding known wall thickness at the same measuring points by means of ultrasonic measurements. Correct a measured wall thickness is not consistent with a zugehö ⁇ membered known (desired) thickness, as a corrected speed of sound is averages ER and assigned to the corresponding secondary ⁇ angle based on the deviation.
  • the equation of function is where v is the velocity of sound, v max presents the maximum speed Schallge ⁇ of all pairs of values, the minimum speed Schallge ⁇ of all pairs of values and a secondary re ⁇ angle.
  • the second device 4 is a conventional ultrasound device, which is connected via an ultrasound device. 9, the wall thickness of components 2 is detected at a predetermined component position, the calculation taking place on the basis of the transit time of the ultrasonic waves through the component 2 and the sound velocity determined using the first device 3, which is not shown in more detail ⁇ Asked data link from the first device 3 is transmitted to the second device 4.
  • the component feeding station 5 comprises a rotary table 10 equipped with two positions A and B, which serves to provide components 2 whose wall thickness is to be determined.
  • the components 2 are at the xed the Bauteilhandha ⁇ bung robot 6 facing away from position A of the rotary table 10 by a user manually component receiving means 12 fi.
  • the component handling robot 6 can receive the component receiving device 12 with the component 2 held therein.
  • the component handling robot 6 includes a five-axis robot arm 13 having a gripping device 14 arranged to hold component receiving devices 12.
  • this is arranged in a first step at the position A by the user 11 on a component receiving device 12 of the turntable 10. Then, the turntable 10 is rotated by 180 °, so that the component receiving devices 12 is moved with the component 2 held thereon from the position A to the position B. In the position B, the component receiving device
  • the component handling robot 6 arranges the component 2 relative to the first device 3 in such a way that a predetermined measuring position at which the wall thickness of the component 2 is to be determined is positioned at a predetermined distance and in a predetermined orientation to the collimator 7.
  • the component handling robot 6 moves the component holding device 12 with the component 2 arranged thereon to the second device 4 and positions the component 2 such that the ultrasonic testing head 9 is placed perpendicular to the predetermined component position of the component 2, whereupon the per se known per se Ultra sound measurement is determined taking into account the previously received speed of sound v.
  • the contact between the Ultraschallprüfköpf 9 and the component 2 is thereby Norma ⁇ lily generated using a contact gel.
  • the component handling robot 6 deposits the component 2.
  • an additional construction ⁇ part deposit station may be provided, but this is not shown here.
  • the cycle time required to determine the wall thickness of a component 2 the user 11 has time to position a further component 2 at the position A on the component receiving device 12, so that immediately afterwards the next component 12 can go through the previously described cycle.
  • the component can be any component with a directed or monocrystalline microstructure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Length Measuring Devices Characterised By Use Of Acoustic Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

L'invention concerne un procédé servant à déterminer l'épaisseur de paroi d'un composant (2) comportant une structure de jonction orientée, en particulier un composant (2) monocristallin, en une position du composant prédéterminée au moyen d'ultrasons. Ledit procédé consiste à déterminer, lors d'une première étape, la vitesse de propagation du son dans le composant (2) au niveau de la position du composant prédéterminée, et à définir, lors d'une deuxième étape, l'épaisseur de paroi du composant (2) au niveau de la position de composant prédéterminée au moyen d'ultrasons en tenant compte de la vitesse du son déterminée. L'invention concerne en outre un système (1) servant à la mise en œuvre du procédé.
PCT/EP2015/054600 2014-03-24 2015-03-05 Procédé et système servant à déterminer l'épaisseur de paroi d'un composant WO2015144414A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014205420.6A DE102014205420A1 (de) 2014-03-24 2014-03-24 Verfahren und System zur Bestimmung der Wanddicke eines Bauteils
DE102014205420.6 2014-03-24

Publications (1)

Publication Number Publication Date
WO2015144414A1 true WO2015144414A1 (fr) 2015-10-01

Family

ID=52814957

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/054600 WO2015144414A1 (fr) 2014-03-24 2015-03-05 Procédé et système servant à déterminer l'épaisseur de paroi d'un composant

Country Status (2)

Country Link
DE (1) DE102014205420A1 (fr)
WO (1) WO2015144414A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108121294A (zh) * 2016-11-29 2018-06-05 麦克隆·阿杰·查米莱斯股份公司 运动学校准

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017208106A1 (de) * 2017-05-15 2018-11-15 Siemens Aktiengesellschaft Verfahren und Vorrichtung zur zumindest abschnittsweisen, bevorzugt vollständigen Bestimmung der äußeren und inneren Geometrie eines Bauteils mit wenigstens einem Hohlraum
ES2931500T3 (es) 2018-12-03 2022-12-30 Siemens Ag Planificación operativa predictiva en una microrred con intercambio de potencia entre la microrred y una red eléctrica principal

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134321A (ja) * 2003-10-31 2005-05-26 Jfe Steel Kk 鋼管の熱間肉厚測定方法及びその装置
EP2426490A2 (fr) * 2010-09-02 2012-03-07 Hitachi Ltd. Procédé de test ultrasonique
US20130167647A1 (en) * 2011-12-30 2013-07-04 General Electric Company Concurrent Multiple Characteristic Ultrasonic Inspection

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3830233A1 (de) * 1988-09-06 1990-03-15 Mtu Muenchen Gmbh Vorrichtung zur bestimmung der kristallstruktur
JP4131598B2 (ja) * 1999-05-27 2008-08-13 三菱重工業株式会社 超音波検査方法
US7237438B1 (en) * 2005-03-16 2007-07-03 United Technologies Corporation Systems and methods for determining the velocity of ultrasonic surface skimming longitudinal waves on various materials
US7272529B2 (en) * 2005-07-08 2007-09-18 Honeywell International, Inc. Dual wall turbine blade ultrasonic wall thickness measurement technique
CA2669865A1 (fr) * 2009-06-19 2010-12-19 Her Majesty The Queen In Right Of Canada As Represented By The Ministeof Natural Resources Methode et systeme permettant de determiner le module de young et le nombre de poisson pour un materiau cristallin
EP2561332B1 (fr) * 2010-04-23 2014-06-18 Siemens Aktiengesellschaft Système de contrôle pour l'inspection d'aubes de turbines

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005134321A (ja) * 2003-10-31 2005-05-26 Jfe Steel Kk 鋼管の熱間肉厚測定方法及びその装置
EP2426490A2 (fr) * 2010-09-02 2012-03-07 Hitachi Ltd. Procédé de test ultrasonique
US20130167647A1 (en) * 2011-12-30 2013-07-04 General Electric Company Concurrent Multiple Characteristic Ultrasonic Inspection

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DAVID K. HSU ET AL: "Simultaneous determination of ultrasonic velocity, plate thickness and wedge angle using one-sided contact measurements", NDT & E INTERNATIONAL, vol. 27, no. 2, 1 April 1994 (1994-04-01), pages 75 - 82, XP055095214, ISSN: 0963-8695, DOI: 10.1016/0963-8695(94)90313-1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108121294A (zh) * 2016-11-29 2018-06-05 麦克隆·阿杰·查米莱斯股份公司 运动学校准
CN108121294B (zh) * 2016-11-29 2022-09-23 乔治费歇尔加工方案公司 运动学校准

Also Published As

Publication number Publication date
DE102014205420A1 (de) 2015-09-24

Similar Documents

Publication Publication Date Title
DE102015214560B4 (de) System zur Inspektion einer Fahrzeugkarosserie und Verfahren hierzu
DE602004007753T2 (de) Verfahren zur Qualitätskontrolle eines industriellen Verfahrens, insbesondere eines Laserschweissverfahrens
EP2665930B1 (fr) Procédé de détermination de l'inclinaison d'une tour
WO2015144414A1 (fr) Procédé et système servant à déterminer l'épaisseur de paroi d'un composant
DE102013103137A1 (de) Normierung der Ausrichtung einer Roboter-Schweißzange
EP2278262A1 (fr) Procédé de détermination de la forme d'une pièce usinée
EP0068082A2 (fr) Procédé pour la mesure des déviations de la rondeur de corps rotation-symétriques
EP2950043A1 (fr) Procédé de détermination d'une trajectoire sur une trajectoire fermée à l'aide d'un laser et d'un capteur à lumière laser et dispositif de détermination d'une trajectoire fermée
DE4009146A1 (de) Verfahren und anordnung zum pruefen der ausrichtung von koerperachsen auf parallelitaet
DE60008512T2 (de) System und verfahren zum nachprüfen der position eines werkzeuges einer werkzeugmaschine
EP0160922B1 (fr) Procédé pour le contrôle ultrasonore non destructif d'objets ou de pièces et appareil pour l'exécution de ce procédé
EP2699364A1 (fr) Procédé et dispositif permettant de déterminer l'épaisseur d'un produit laminé
DE10328523A1 (de) Verfahren und Meßvorrichtung zur berührungslosen Vermessung einer Kontur einer Oberfläche sowie Verfahren zur automatischen Entzerrung von Koordinaten von Bildpunkten
EP1238270B1 (fr) Procede de test ultrasonore d'une soudure de rotor de turbine soude
DE1303702C2 (de) Einrichtung zur bestimmung der koordinaten des mittelpunkts einer in einer ebene etwa kreisfoermigen begrenzung eines koerpers
DE3322849A1 (de) Steuerung fuer ein akustisches pruefsystem
DE2613799B1 (de) Verfahren zum Einrichten von Ultraschall-Pruefanlagen
EP3775765B1 (fr) Dispositif et procédé pour analyser la surface de composants présentant des ouvertures pour fluide de refroidissement
EP2609421B1 (fr) Réglage automatique de l'angle d'incidence d'une tête de contrôle à ultrasons, en fonction de sa position
DE10154872A1 (de) Meßverfahren und Meßvorrichtung zum Bestimmen der Masse und/oder des Schwerpunktes eines Bauteils
DE2642650A1 (de) Verfahren und vorrichtung zur oberflaechenpruefung mit ultraschall
DE102014016342B4 (de) Verfahren zur Kalibrierung eines Schielwinkels von Einzelbildkameras einer Stereokamera
EP2950046A1 (fr) Procédé de détermination d'une trajectoire fermée à l'aide d'un laser et d'un capteur à lumière laser et dispositif de détermination d'une trajectoire fermée
WO2021099498A1 (fr) Appareil de mesure et procédé de mesure pour déterminer une puissance de rayonnement globale
DE102014204917A1 (de) Verfahren und Vorrichtung zum Ermitteln des Abstands eines Lichtstrahls von einem Punkt auf einer Körperoberfläche mittels eines Lichtsensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15714772

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15714772

Country of ref document: EP

Kind code of ref document: A1