WO2015144064A1 - 一种智能仿生排痰系统 - Google Patents

一种智能仿生排痰系统 Download PDF

Info

Publication number
WO2015144064A1
WO2015144064A1 PCT/CN2015/075100 CN2015075100W WO2015144064A1 WO 2015144064 A1 WO2015144064 A1 WO 2015144064A1 CN 2015075100 W CN2015075100 W CN 2015075100W WO 2015144064 A1 WO2015144064 A1 WO 2015144064A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
cavity
valve
drainage system
patient
Prior art date
Application number
PCT/CN2015/075100
Other languages
English (en)
French (fr)
Inventor
李小雪
李小苗
Original Assignee
北京雅果科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京雅果科技有限公司 filed Critical 北京雅果科技有限公司
Priority to JP2017501452A priority Critical patent/JP6588526B2/ja
Priority to KR1020167029904A priority patent/KR101907594B1/ko
Priority to ES15768007T priority patent/ES2908982T3/es
Priority to EP15768007.5A priority patent/EP3127574B1/en
Priority to CN201580000283.2A priority patent/CN105451798B/zh
Priority to US15/128,877 priority patent/US10463817B2/en
Publication of WO2015144064A1 publication Critical patent/WO2015144064A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M16/0009Accessories therefor, e.g. sensors, vibrators, negative pressure with sub-atmospheric pressure, e.g. during expiration
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0051Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes with alarm devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/021Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes operated by electrical means
    • A61M16/022Control means therefor
    • A61M16/024Control means therefor including calculation means, e.g. using a processor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/08Bellows; Connecting tubes ; Water traps; Patient circuits
    • A61M16/0816Joints or connectors
    • A61M16/0833T- or Y-type connectors, e.g. Y-piece
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/206Capsule valves, e.g. mushroom, membrane valves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/3601Applying electric currents by contact electrodes alternating or intermittent currents for stimulation of respiratory organs
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • A61N2/006Magnetotherapy specially adapted for a specific therapy for magnetic stimulation of nerve tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/0015Accessories therefor, e.g. sensors, vibrators, negative pressure inhalation detectors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/0003Accessories therefor, e.g. sensors, vibrators, negative pressure
    • A61M2016/003Accessories therefor, e.g. sensors, vibrators, negative pressure with a flowmeter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/05General characteristics of the apparatus combined with other kinds of therapy
    • A61M2205/054General characteristics of the apparatus combined with other kinds of therapy with electrotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/05General characteristics of the apparatus combined with other kinds of therapy
    • A61M2205/057General characteristics of the apparatus combined with other kinds of therapy with magnetotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/18General characteristics of the apparatus with alarm
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/50General characteristics of the apparatus with microprocessors or computers
    • A61M2205/502User interfaces, e.g. screens or keyboards
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to the field of medical and health, and provides an intelligent bionic drainage system.
  • Cough reflexes are a common and important defensive mechanism with receptors located in the larynx, trachea, and bronchial mucosa.
  • the receptors above the large bronchi are sensitive to mechanical stimuli, and the areas below the secondary bronchus are sensitive to chemical stimuli.
  • the afferent impulse is transmitted to the medulla via the vagus nerve, triggering a cough reflex.
  • ventilator assisted ventilation is often required. In this case, the patient's cough will be weaker, and the secretions in the deep lungs will not be effectively discharged, and the incidence of ventilator-associated pneumonia will be very high. Helping patients discharge excretions from deep lungs is important to prevent ventilator-associated pneumonia.
  • the commonly used suction method in clinical practice is closed suction tube suction.
  • the closed suction finger refers to the suction operation without disengaging the ventilator or stopping the mechanical ventilation, and the transparent film is formed on the suction tube casing, and the entire suction process is completed in a sealed state.
  • the bronchus in the lung can reach more than 20 levels, and the sputum in the main airway can only be sucked by the suction tube.
  • the suction tube can only suck the sputum on the side of the right lung, and the sputum on the left lung side cannot absorb it.
  • Ventilator-associated pneumonia is common in the left lung, and this is the reason. Sucking with a suction tube is also associated with airway scratches, bacteria, and hemodynamic shocks.
  • the Cough Assist cough machine produced by Philips is based on the principle of providing a large positive pressure ventilation to the airway and then quickly changing to negative pressure inhalation, and then sucking out the deep sputum by simulating the cough airflow.
  • the patent WO2007/054829A2 invents a mechanical suction and exhaust device which inhales airflow through a ventilator, and then exhales gas quickly and briefly to simulate a human cough, so that the sputum accumulated in the airway and the tracheal branch is smoothly discharged. .
  • This system automatically reduces inspiratory and exhalation by detecting airflow, reducing the burden on the staff. Through a series of intermittent negative pressure exhalation to cough up the sputum, it not only prevents the negative pressure from causing the alveolar to collapse, but also affects more than a dozen bronchial tubes, and drains the sputum from the deep part of the lungs.
  • all the coughing actions of the human body include deep inhalation, glottis closure, diaphragmatic muscle loss, rapid contraction of the expiratory muscles and abdominal muscles, and the pressure in the lungs is increased, and then the glottis is unfolded and the diaphragm is contracted, so that the high-pressure air in the lungs is ejected.
  • the coughing device only simulates the coughing airflow, and the respiratory muscles associated with coughing are not involved in exercise.
  • long-term hypoxia and poor systemic nutrition reduce and atrophy of the diaphragm muscle fibers, and the diaphragm muscle mobility is reduced.
  • the device only simulates airflow movement in cough. First, the device does not interfere with the patient's positive pressure ventilation process.
  • the device may not form an effective cough;
  • the positive pressure ventilation process of the ventilator itself has mechanical lung injury.
  • the drainage device only has airflow movement, and the muscle does not follow the movement. Improper control will bring additional mechanical lung injury. Again, it only relies on negative pressure airflow to drain the sputum. Contraction of the abdominal muscles will affect the intensity of cough and cough, which is not conducive to the discharge of sputum; finally, helping patients with sputum sputum can prompt the patient to withdraw early, but for patients with diaphragmatic atrophy, the diaphragm does not get exercise, withdraw early The effect of the machine will be affected.
  • the invention aims at the deficiencies of the prior art, and provides an intelligent bionic drainage system, which intelligently simulates a human cough from two aspects of airflow movement and respiratory muscle movement, and can safely and effectively help a patient to deepen the lungs.
  • Secretion Discharge reduce the incidence of ventilator-associated pneumonia, and help the patient's diaphragm recovery, to achieve early weaning.
  • the invention provides an intelligent bionic drainage system, which comprises a vacuum suction module, a patient interface unit, a central processing module, and a respiratory muscle synchronous motion module, wherein: the vacuum suction module is configured to generate a negative pressure airflow, so that The gas is expelled from the patient's lungs; the patient interface unit allows positive pressure and negative pressure airflow to flow through and is coupled between the positive pressure ventilation module, the vacuum suction module, and the patient, wherein the positive pressure ventilation module may be a breath
  • the central processing module is connected to the patient interface unit and the respiratory muscle synchronous motion module; the respiratory muscle synchronous motion module adopts a nerve stimulation manner or a mechanical pushing manner to cause a specific motion of the respiratory muscle, and the air movement Cooperate.
  • the patient interface unit includes a three-way device, a collection connector, and a collection cup
  • the three-way device includes a first valve
  • the first valve selectively blocks the positive pressure ventilation module to the a gas flow of the patient interface unit
  • a second valve is disposed between the three-way device and the vacuum suction module, and the second valve selectively blocks from the patient interface unit to the vacuum suction module Airflow.
  • the central processing module opens the first valve and closes the second valve, and controls the respiratory muscle synchronous motion module to generate muscle action when inhaling, that is, diaphragmatic contraction .
  • the central processing module opens the second valve and closes the first valve, and controls muscle action when the respiratory muscle synchronous motion module generates cough, that is, abdominal muscle contraction .
  • the intelligent bionic drainage system further includes a sensor module and a display module, and the sensor module and the display module are connected to the central processing module.
  • the first detection point of the sensor module is located on a sidewall of the branch directly connected to the positive pressure ventilation module, and the second detection point and the third detection point of the sensor module are located
  • the tee device is directly connected to the patient on the side wall of the branch, wherein the distance between the second detection point and the patient is greater than the distance between the third detection point and the patient.
  • the central processing module determines whether the first valve is closed based on the first detection point and the third detection point.
  • the central processing module determines that the first valve is closed. As a safety measure, if the first valve is not open during the inhalation phase, an alarm will be generated.
  • the central processing module calculates the magnitude and direction of the patient's respiratory gas flow based on the pressure difference between the second detection point and the third detection point.
  • the central processing module determines the end of inhalation of the patient based on the pressure and flow rate obtained by the three pressure detection points, and the end of exhalation to switch between inspiration and exhalation control in time.
  • the positive pressure ventilation module is a ventilator and a pipeline thereof.
  • the vacuum suction module is a negative pressure source such as a turbo fan, and a pipeline thereof.
  • the first valve is a pneumatic diaphragm valve.
  • the second valve is an electrically controlled switching valve.
  • the vacuum suction module allows a negative pressure air flow of 14 L/minute to 800 L/minute.
  • the manner of the nerve stimulation is electrical stimulation or magnetic stimulation.
  • the electrical stimulation mode employs a pair of treatment electrodes acting on the phrenic nerves on both sides and a pair of reference electrodes acting on the surface of the pectoralis major.
  • the magnetic stimulation module uses a charging capacitor and a stimulation coil to discharge the stimulation coil by using a capacitor that stores electrical energy, thereby generating a pulse current.
  • the mechanical pushing mode uses a mechanical arm to act on the main respiratory muscles, and generates different pushes according to the control signal of the central processing module, and cooperates with the inhalation and the expiratory phase.
  • the invention also provides a structure of a three-way device with a pneumatic switch function, which comprises a three-way lower end 2-1, a three-way upper end 2-2, a gland 2-3, a diaphragm valve 2-4 and a gas resistance 2-5, the lower end 2-1 of the tee includes a positive pressure unit interface 2-11, a negative pressure unit interface 2-12, a first pressure detecting port 2-13, and a groove 2-14, wherein the first pressure The detecting port 2-13 is located on the side wall of the positive pressure unit interface 2-11, and the positive pressure unit interface 2-11 and the negative pressure unit interface 2-12 are located at the lower end 2-1 of the three-way Side, and the groove 2-14 is located on the other side of the lower end 2-1 of the tee; the upper end 2-2 of the tee includes a patient port 2-21, an internal thread 2-22, and a second pressure detecting port 2-23 and a third pressure detecting port 2-24 and a buckle 2-25, wherein the second pressure detecting
  • connection relationship between the two is not limited thereto, and other types that can match each other can also be used.
  • the three-way upper end 2-2 is connected to the external thread 2-31 of the gland 2-3 through its internal thread 2-22, and the diaphragm valve 2-4 is disposed on the three-way upper cover 2 -2 corresponds to the position of the gland 2-3, and the air resistance 2-5 is disposed in the patient port to change the pressure of the airflow flowing through, thereby facilitating monitoring of the gas flow.
  • the first pressure detecting port 2-13, the second pressure detecting port 2-23, the third pressure detecting port 2-24, and the air supply hole 2-32 are protected. Inserting a wrong structure, for example, four grooves or protrusions uniformly distributed around the first pressure detecting port 2-13, and three evenly distributed grooves uniformly distributed around the second pressure detecting port 2-23 Or a protrusion, and the third pressure detecting port 2-24 is symmetrically distributed with two grooves or protrusions.
  • the above-described anti-insertion structure is for exemplary purposes only, and various other structures may be employed.
  • the three-way upper end 2-2, the three-way lower end 2-1, and the gland 2-3 are provided with an anti-insertion structure to prevent medical personnel from misoperation when connecting the pipeline.
  • the invention also provides a structural design of the electronically controlled on-off valve, the structure of which comprises a cavity 1, an air guiding tube 2, a reversing assembly 3, an electric power driving device 4 and a frame 5; the switching valve is controlled by the system, The flow of the air pressure generated by the fan is controlled; the cavity 1 is composed of a front end cover 11, a cavity body 12, and a rear end cover 13, which are fastened by screws, and one side of the cavity 1 is close to the front end cover 11 The portion has a driving air hole 14, the front end cover 11 has an air venting hole 15, a portion of the upper or side surface of the cavity 1 near the rear end cover 13 has a free air hole 16, and the rear end cover 13 has a running hole 17, the cavity a sealing gasket 18 is disposed on both sides of the driving air hole 14 in the body 1; the air guiding tube 2 is connected to the driving air hole 14; the reversing assembly 3 is composed of a reversing slider 31, a jack 32, and a spring 39; The spring 39 is located
  • the cavity 1 is of a separate type.
  • the reversing assembly 3 is composed of a reversing slider 31, a jack 32, a propulsion block 33, a roller 34, a cam 35, a displacement sensor 36, a displacement dial 37, a pallet 38, and a spring 39;
  • the electric power driving device 4 is a motor; the propulsion block 33 is placed above the pallet 38, and the upper end of the propulsion block 33 is provided with a through hole 331, and the roller 34 is connected through the pin shaft 332, and the roller 34 is flexible.
  • the reversing assembly 3 can also be composed of a reversing slider 31, a jack 32, a cam 35, a displacement sensor 36, a displacement dial 37, and a spring 39;
  • the electric power driving device 4 is a motor;
  • the electric power driving device 4 is fastened, and as the electric power driving device 4 rotates, the cam 35 is fastened with the displacement dial 37, and the two rotate together;
  • the jack 32 directly contacts the cam 35, The cam 35 is moved along the axis of the cavity 1;
  • the displacement sensor 36 is fixed to the frame 5, and the displacement dial 37 is detected to determine the rotation stroke of the electric power driving device 4. .
  • the reversing assembly 3 is composed of a reversing slider 31, a jack 32, and a spring 39; the electric power driving device 4 is an electromagnet; and the jack 32 is driven by the electromagnet The axis movement of the cavity 1 is described.
  • the invention combines respiratory muscle movement with mechanical suction and exhaust to more intelligently simulate human cough, safely and effectively help patients to discharge deep lung secretions, and help patients with invasive ventilator reduce the risk of ventilator-associated pneumonia.
  • the central control module activates the negative pressure exhalation and simultaneously moves the respiratory muscles to achieve a proper exhalation of the patient while matching the appropriate respiratory muscle movement, which can achieve a more effective deep inhalation. And more effective rapid exhalation to form an effective cough.
  • reduce man-machine confrontation reduce man-machine confrontation, and allow the diaphragm to participate more in the mechanical ventilation process, effectively slow down the related damage caused by negative pressure inhalation.
  • VILI mechanical ventilation related lung injury
  • VAP related pneumonia
  • VIDD ventilator-induced diaphragmatic dysfunction
  • FIG. 1 is a schematic structural view of an intelligent bionic drainage system according to the present invention.
  • Figure 2 is a schematic view showing the structure of a three-way device and a pressure detecting point thereof according to the present invention
  • FIG. 3 is a schematic structural view of an on-off valve with a pneumatic switch function according to the present invention.
  • FIG. 4 is a schematic view showing the structure of a cavity of an on-off valve having a pneumatic switch function according to the present invention
  • Figure 5 is a cross-sectional view of a cavity of an on-off valve having a pneumatic circuit breaker function according to the present invention
  • FIG. 6 is a schematic structural view of a reversing assembly of an on-off valve having a pneumatic circuit breaker function according to the present invention
  • Figure 7 is a schematic view showing a cam position structure of an on-off valve having a pneumatic switch function according to the present invention.
  • Figure 8 is a schematic view showing the structure of a pusher block of an on-off valve having a pneumatic circuit breaker function according to the present invention
  • Figure 9 is a schematic view showing another structure of an on-off valve having a pneumatic circuit breaker function according to the present invention.
  • Figure 10 is a schematic view showing the operating state of the on-off valve with the air circuit switch function according to the present invention.
  • Figure 11 is a schematic view showing the operation state of the on-off valve with the air circuit switch function according to the present invention.
  • Figure 12 is a schematic view showing the operation state of the on-off valve with the air circuit switch function according to the present invention.
  • Figure 13 is a schematic view showing the operation state of the on-off valve with the air circuit switch function according to the present invention.
  • Figure 14 is a schematic view showing the operating state of an on-off valve having a pneumatic circuit breaker function according to the present invention
  • Figure 15 is a patient interface unit with its components not connected in accordance with the present invention.
  • Figure 16 is a patient interface unit with its components attached in accordance with the present invention.
  • an intelligent bionic drainage system includes a positive pressure ventilation module, a vacuum suction module, a patient interface unit, a central processing module, a display module, a sensor module, and a breathing.
  • a positive pressure ventilation module for generating a positive pressure airflow which may be a ventilator
  • a vacuum suction module for generating a negative pressure airflow a patient interface unit allowing a positive pressure and a negative pressure airflow to flow
  • the ventilation module, the vacuum suction module and the patient are connected by a patient interface unit, the patient interface unit comprising a three-way device, the three-way device comprising a first valve, the first valve selectively blocking the positive a flow of the pressure venting module to the patient interface unit, a second valve disposed between the tee device and the vacuum suction module, the second valve selectively blocking from the patient interface unit to the The air flow of the vacuum suction module.
  • the first valve may employ a pneumatic diaphragm valve.
  • the central processor based on the feedback from the sensor module, implements the steps of selectively switching the first valve to allow or stop the positive pressure airflow of the ventilator to inflate the patient's lungs; selectively switching the second valve to Allow or stop the negative pressure airflow to vent the patient's lungs; control the respiratory muscle synchronous motion module to produce muscle movements during inhalation or exhalation.
  • the respiratory muscle synchronous motion module may select a nerve stimulation mode to achieve the purpose of diaphragmatic pacing, or a mechanical push to move the respiratory muscles.
  • nerve stimulation There are two ways of nerve stimulation: electrical stimulation and magnetic stimulation.
  • the stimulation signal is a square wave pulse generated by a single chip, and is shaped and amplified.
  • the electrical stimulation device comprises two pairs of electrodes, a pair of therapeutic electrodes acting on the two sides of the patient's phrenic nerve, a pair of reference electrodes acting on the pectoralis major surface of the patient; the magnetic stimulation device comprising a charging capacitor and a stimulation coil, The stimulation coil is discharged by a capacitor that stores electrical energy, and a pulse current is generated to stimulate the human body.
  • the mechanical pushing method includes two mechanical arms, which respectively act on the diaphragm and the abdominal muscles, and generate corresponding pushing actions according to the control signals of the central processing module.
  • the sensitive sensor module ensures that the system has an effective alarm system. When it is judged in a certain breathing phase that the valve does not produce the expected action, the highest level of alarm will be generated; other problems will result in a low level alarm.
  • the patient interface unit includes a three-way device 151, a collection connector 152, and a collection cup 153.
  • the three-way device 151 is provided with three pressure detecting points, and the three pressure detecting points are connected to three pressure sensors in the sensor module. Two of the detection points can be used to calculate the flow rate with the pressure difference, and the three sensors can detect the patient's breathing in real time.
  • the three-way device includes a three-way lower end 2-1, a three-way upper end 2-2, a gland 2-3, a diaphragm valve 2-4, and a gas resistance of 2-5;
  • the lower end 2-1 includes a positive pressure unit interface 2-11, a negative pressure unit interface 2-12, a pressure detecting point 2-13, and a recess 2-14, and the pressure detecting point 2-13 is located at the lower end of the tee 2- 1 on the side wall of the branch directly connected to the positive pressure unit interface 2-11;
  • the upper end 2-2 of the tee includes a patient port 2-21, an internal thread 2-22, a pressure detecting point 2-23, 2-24, buckle 2-25, the pressure detecting points 2-23, 2-24 are located at the upper end of the tee 2-2 and the patient is straight Connected to the side wall of the connected branch, and the distance between the pressure detecting point 2-23 and the pressure detecting point 2-24 is different from the patient;
  • a pneumatic diaphragm is included in the first valve.
  • the diaphragm When the diaphragm is not blown, it is placed in the inner cavity of the first branch of the tee. When the diaphragm is blown up, an bulging blockage occurs. Take the inner cavity of the first branch.
  • the first valve When the first valve is opened, the airflow is transmitted from the ventilator to the patient's lungs under positive pressure, and the second valve is closed to prevent the patient's lungs from being exposed to negative pressure; when the second valve is open, the patient is opened.
  • the lungs are exposed to negative pressure (allowable negative pressure air flow is 14L/minute to 800L/minute), at which point the first valve is closed to prevent the ventilator from being exposed to negative pressure.
  • Muscle movement during breathing refers to the process of enlargement and contraction of thoracic rhythm due to contraction and relaxation of respiratory muscles.
  • the main inspiratory muscles include the intercostal muscles of the diaphragm
  • the main expiratory muscles are the intercostal muscles and the abdominal muscles
  • the auxiliary inspiratory muscles include the scalene muscles and the sternocleidomastoid muscles, which are only used when inhaling hard. effect.
  • inhaling it is mainly contraction of the diaphragm.
  • coughing it is mainly contraction of the abdominal muscles and intercostal muscles.
  • the respiratory muscle synchronized motion module produces a diaphragmatic contraction that allows the patient to inhale more fully and effectively cough. Ready.
  • the second valve is opened, the first valve is closed, and the respiratory muscle synchronous motion module generates abdominal muscle contraction motion, simulating normal cough from both airflow and muscle movement, so that the lung is secreted. The discharge effect of the object is better.
  • the pressure detection point detects the end of exhalation, close the second valve, open the first valve, and start a new breathing cycle.
  • an electronically controlled on-off valve having a pneumatic switch function there is also provided an electronically controlled on-off valve having a pneumatic switch function, and a plurality of embodiments of the on-off valve having the pneumatic switch function will be described in detail below with reference to the accompanying drawings.
  • an electronically controlled on-off valve having a pneumatic circuit breaker function includes a cavity 1, an air guiding tube 2, a reversing assembly 3, an electric power driving device 4, and a machine. Rack 5.
  • the on-off valve is controlled by the system and is responsible for The circulation of the air pressure generated by the fan is controlled.
  • the on-off valve is closed, the patient is not exposed to the air pressure; when the on-off valve is opened, the patient is exposed to the air pressure, and the gas rapidly flows into the patient and the related equipment. At the same time, it will not cause any harm to the human body.
  • the cavity 1 is composed of a front end cover 11, a cavity body 12, and a rear end cover 13, which are fastened by screws, and a portion of the cavity 1 that is close to the front end cover 11 on one side of the cavity 1
  • a driving air hole 14 a front end cover 11 has an air venting hole 15, a portion of the upper or side surface of the cavity 1 near the rear end cover 13 has a free air hole 16, and the rear end cover 13 has a running hole 17, the cavity 1 a sealing washer 18 is disposed on both sides of the inner driving air hole 14;
  • the air guiding tube 2 is connected to the driving air hole 14;
  • the reversing assembly 3 is composed of a reversing slider 31, a jack 32, and a spring 39; 39 is located on the step inside the cavity 1 with one side on the front end cover 11 of the cavity 1 and the other side in contact with the reversing slider 31; the reversing slider 31 is placed in the cavity In the body 1, the periphery thereof is in herm
  • the cavity 1 is of a separate type.
  • an on-off valve having a pneumatic switch function is controlled by a system, and is responsible for controlling the flow of air pressure generated by the fan.
  • the on-off valve When the on-off valve is closed, The patient is not exposed to air pressure; when the on-off valve is opened, the patient is exposed to air pressure, and the gas flows quickly between the patient and the related equipment without causing any harm to the human body.
  • the cavity 1 is composed of a front end cover 11, a cavity body 12, and a rear end cover 13, which are fastened by screws, and a portion of the cavity 1 that is close to the front end cover 11 on one side of the cavity 1
  • a driving air hole 14 a front end cover 11 has an air venting hole 15, a portion of the upper or side surface of the cavity 1 near the rear end cover 13 has a free air hole 16, and the rear end cover 13 has a running hole 17, the cavity 1
  • the inner driving air holes 14 have sealing gaskets 18 on both sides thereof; the air guiding tubes 2 are connected to the driving air holes 14.
  • the reversing assembly 3 is composed of a reversing slider 31, a jack 32, a propulsion block 33, a roller 34, a cam 35, a displacement sensor 36, a displacement dial 37, a pallet 38, and a spring 39;
  • the reversing slider 31 is placed in the cavity 1 and its periphery is in close contact with the inner wall of the cavity 1.
  • the reversing slider 31 is interleaved between the spring 39 and the ejector pin 32.
  • the ram 32 passes through the stroke hole 17 and is connected to the reversing slider 31, and the ram 32 functions in the electric power driving device 4. Lower movement along the axis of the cavity 1.
  • the cam 35 is fastened to the electric power driving device 4, and as the electric power driving device 4 rotates, the cam 35 is fastened to the displacement dial 37, and both rotate together.
  • the propulsion block 33 is placed above the pallet 38.
  • the upper end of the propulsion block 33 is provided with a through hole 331, and the roller 34 is connected by a pin 332, and the roller 34 can be flexibly rotated.
  • the side of the closed end of the push block 33 is provided with a through hole 333, which is pluggablely connected to the jack 32, and the side end of the push block 33 is provided with a threaded hole 334, and the jack 32 is fixed by a screw 335;
  • the pallet 38 is fixed on the frame 5 to support the propulsion block 33;
  • the displacement sensor 36 is fixed to the frame 5, and detects the displacement dial 37 to determine the rotation stroke of the electric power driving device 4;
  • the spring 39 is located
  • the step inside the cavity 1 is on one side of the front end cover 11 of the cavity 1 and the other side is in contact with the reversing slider 31;
  • the electric power driving device 4 is a motor;
  • the electric power drive unit 4 is mounted on the frame 5.
  • the cavity 1 is of a separate type.
  • the cavity 1 is composed of a front end cover 11, a cavity body 12, and a rear end cover 13, which are fastened by screws, one side of the cavity 1
  • the portion close to the front end cover 11 has a driving air hole 14, the front end cover 11 has an air venting hole 15, the upper surface or the side surface of the cavity 1 near the rear end cover 13 has a free air hole 16, and the rear end cover 13 has a running hole. 17.
  • the two sides of the driving air hole 14 in the cavity 1 have sealing gaskets 18; the air guiding tube 2 is connected to the driving air hole 14; the reversing assembly 3 is composed of a reversing slider 31 and a jack 32.
  • the reversing slider 31 is placed in the cavity 1 and its periphery is in close contact with the inner wall of the cavity 1, the commutation
  • the slider 31 linearly reciprocates along the axis of the cavity 1 under the action of the spring 39 and the ram 32; the ram 32 passes through the stroke hole 17 and the reversing slider 31 is connected, the ram 32 is directly in contact with the cam 35, and is moved along the axis of the cavity 1 by the cam 35;
  • the cam 3 5 is fastened to the electric power driving device 4, and rotates with the electric power driving device 4, the cam 35 is fastened with the displacement dial 37, and the two rotate together;
  • the displacement sensor 36 is fixed on the frame 5, Detecting the displacement dial 37 to determine the rotational stroke of the electric power driving device 4;
  • the spring 39 is located on the step inside the cavity 1 and its one side is placed on the front end cover 11 of the cavity 1 The other side is in contact with the reversing slider 31;
  • the cavity 1 is of a separate type.
  • the reversing assembly 3 is composed of a reversing slider 31, a jack 32, and a spring 39; the spring 39 is located on a step inside the cavity 1, One side is placed on the front end cover 11 of the cavity 1, and the other side Contacting the reversing slider 31; the reversing slider 31 is placed in the cavity 1 and its periphery is in close contact with the inner wall of the cavity 1, and the reversing slider 31 is at the spring 39 and the ram 32 are linearly reciprocated along the axis of the cavity 1; the ram 32 passes through the stroke hole 17 and is connected to the reversing slider 31, the top The rod 32 is moved along the axis of the cavity 1 under the push of the electromagnet; the electric power driving device 4 is an electromagnet; the cavity 1, the electric power driving device 4 is mounted on the frame 5.
  • the cavity 1 is of a separate type.
  • a method of operating an on-off valve having a pneumatic circuit breaker function includes the following steps: as shown in FIG. 10, when the on-off valve is in an initial state, the commutation inside the cavity 1 The slider 31 is in a stationary state against the sealing gasket 18 at the end of the free air hole 16 under the elastic force of the spring 39, and the spring 39 between the air suction hole 15 and the reversing slider 31 is in a state of slight compression; as shown in FIG.
  • the motor 4 receives the pre-made air pressure signal from the system, the motor 4 drives the cam 35 to rotate clockwise.
  • the propulsion block 33 drives the ram 32 to shift to the front end of the cavity 1, and pushes
  • the reversing slider 31 moves toward the front end thereof in the axial direction of the cavity 1, and abuts against the sealing gasket 18 at the end of the suction hole 15, so that the inside of the cavity 1 is separated from the outside of the suction hole 15, and the spring 39 is in a compressed state.
  • the reversing slider 31 is temporarily held at this position. At this time, only the driving air hole 14 communicates with the free air hole 16 , and the air flow enters the driving air hole 14 from the free air hole 16 to form a pre-made air pressure inside the cavity 1; as shown in FIG.
  • another method of operating an on-off valve having a pneumatic circuit breaker function includes the following steps: when the switching valve is in an initial state, the reversing slider 31 inside the cavity 1 is in the spring 39 is elastically pressed against the sealing gasket 18 at the end of the free air hole 16 in a static state, and the spring 39 between the air suction hole 15 and the reversing slider 31 is in a state of slight compression; as shown in FIG. 13, when the motor receives The pre-fabricated air pressure signal sent by the system drives the cam 35 to rotate clockwise.
  • the ejector rod 32 directly contacting the piston is pushed to the front end of the cavity 1, and the reversing slider 31 is pushed along the cavity.
  • the axial direction moves toward the front end thereof, and the sealing gasket 18 at the end of the air suction hole 15 is pressed to block the inside of the cavity 1 from the outside of the air suction hole 15.
  • the spring 39 is in a compressed state, and the reversing slider is controlled by the displacement sensor 36. 31 is temporarily held at this position.
  • another method of operating an on-off valve having a pneumatic circuit breaker function includes the following steps: when the switching valve is in an initial state, the reversing slider 31 inside the cavity 1 is in the spring 39 Under the elastic force, the sealing washer 18 abutting on the end of the free air hole 16 is in a static state, and the spring 39 between the air discharging hole 15 and the reversing slider 31 is in a micro-compression state; as shown in FIG.
  • the on-off valve is extremely suitable for the field of respiratory gas exchange because of the above technical features.
  • the pneumatic switch valve of the present invention can stably and efficiently cooperate with the respiratory device for airflow switching, and assists the patient in performing the suction and exhaust movement. At the same time, it helps patients to discharge airway secretions smoothly, which is very suitable for use with medical devices such as ventilators, and can be widely used in other related fields. Therefore, it can be expected that the promotion and use of the present invention can simultaneously obtain economy, health, and the like. Multifaceted benefits.
  • the invention discloses an intelligent bionic drainage system for discharging lung secretions of a mechanically ventilated patient.
  • the ventilator is used to inhale the airflow through positive pressure ventilation, and the respiratory muscles perform inspiratory movement under the action of electric or magnetic stimulation or mechanical pushing.
  • the respiratory muscles make rapid and short exhalation exercises under electrical or magnetic stimulation or mechanical push. The movement of the respiratory muscles is synchronized with the inhalation and aspiration of the airflow throughout the breathing process.
  • simultaneous activation of the respiratory muscle synchronous motion module will promote contraction or relaxation of the diaphragm, increase diaphragmatic activity, increase diaphragm muscle strength, strengthen cough and cough.
  • the intensity of the movement increase the ventilation, enhance the oxygenation, improve the function of the respiratory ciliary movement, and promote the discharge of sputum.

Abstract

一种智能仿生排痰系统及其三通装置,智能仿生排痰系统包括负压吸引模块,中央处理模块,病人接口单元以及呼吸肌同步运动模块。中央处理模块控制两个阀门的打开或关闭,在关闭一个阀门的同时打开另一个阀门,并控制呼吸肌同步运动模块;病人接口单元与正压通气模块和负压吸引模块连接,允许正压气流或负压气流流过,取决于哪个阀门打开,以便让气流流入或流出肺部。呼吸肌同步运动模块可以采用神经刺激,例如是膈肌起搏,也可以采用机械推动,效果都是使得呼吸肌产生与吸气或者呼气相应的特定动作。呼吸肌同步运动模块与中央处理模块相连,在中央处理器控制下与气流运动同步动作,从而更好地模拟人的咳嗽,实现仿生排痰。三通装置包括腔体(1)、导气管(2)、换向组件(3)、电能驱动装置(4)和机架(5),对由风机所产生的气压的流通进行控制。

Description

一种智能仿生排痰系统 技术领域
本发明涉及医疗卫生领域,提供了一种智能仿生排痰系统。
背景技术
咳嗽反射是常见的重要防御性机制,其感受器位于喉、气管和支气管粘膜。大支气管以上部位的感受器对机械刺激敏感,二级支气管以下部位对化学刺激敏感。传入冲动经迷走神经传入延髓,触发咳嗽反射。
咳嗽时,先是一次短促的或较深的吸气(通常为2.5L),继而声门紧闭,呼气肌(腹肌和肋间內肌)强烈收缩,肺内压和胸膜腔内压(可达100mmHg甚至更高)急剧上升,然后声门突然开放,由于肺内压很高,气体便由肺内高速冲出,将呼吸道内的异物或分泌物排出。
腹肌和呼吸肌无力的患者咳嗽反射减弱,卧床的患者常由于胸廓的扩张受到限制,使咳嗽开始前进入肺内的气体不足造成咳嗽减弱甚至无效,另外延髓中枢受到抑制的患者咳嗽反射也会受到限制。
临床上各种原因导致呼吸肌衰弱的病人,经常需要呼吸机辅助通气。在此情况下,病人的咳嗽也会比较弱,无法有效地将肺深部的分泌物排出,呼吸机相关性肺炎的发生率就会非常高。帮助病人将肺深部的分泌物排出,对于预防呼吸机相关肺炎非常重要。目前临床常用吸痰法是密闭式吸痰管吸痰。
密闭式吸痰指不需脱开呼吸机或停止机械通气的吸痰操作,并且在吸痰管外套有透明膜,整个吸痰过程都是在密闭情况下完成。肺内支气管可达20多级,利用吸痰管,只能吸主气道内的痰液。另外由于肺部并不对称,吸痰管只能吸到右肺那一侧的痰,左肺侧的痰则吸不到。呼吸机相关肺炎多发在左肺,就有这个原因。使用吸痰管吸痰,还伴有气道划伤、带入细菌、血流动力学上的冲击等风险。
除了密闭式吸痰管这种手工操作的吸痰装置,现在也有自动咳痰装置。飞利浦公司生产的Cough Assist咳痰机,原理是向气道提供一次较大的正压通气后快速转变为负压吸气,通过模拟咳嗽气流进而把深部的痰吸出。
但由于使用时需要断开呼吸机,操作麻烦且断开呼吸机对重症患者有很大风险,无法作为经常性的排痰手段;Cough Assist咳痰机以时间作为周期循环的控制量,以此来结束吸气过程,但是以容量或流量作为周期循环的控制量更安全有效。另外,Cough Assist无法保持病人的呼气末正压通气(PEEP),对于需要高PEEP的病人不适用,这些病人没有高PEEP会有肺泡塌陷的风险;另一个明显缺点是,Cough Assist不包含生命支持系统上应有的警报系统;最后,它只有一条管路,呼气和吸气共用,下次吸气时可能会将上次咳出的分泌物吸入,将会增加病人自己的二次感染风险,也会减少管路寿命,同时也会增加下次使用该机器的病人的感染风险。
另外,专利WO2007/054829A2发明了一种机械吸排气装置,它通过呼吸机吸入气流,随之快速、短促地呼出气体来模拟人体咳嗽,使淤积在气道和气管分支中的痰液顺利排出。这种系统通过检测气流自动控制吸气和呼气,减轻了工作人员的负担。通过连续几次间断性的负压呼气咳出痰液,既防止了负压过大致使肺泡萎陷,而且能影响到十几级的支气管,将痰从肺的深部排出。但人体咳嗽全部动作包括深吸气、声门关闭、膈肌下降、呼气肌和腹肌迅速收缩,使肺内压力增高,然后声门展开、膈肌收缩,使肺内高压空气喷射而出。该咳痰装置都只是模拟了咳嗽的气流,而与咳嗽相关的呼吸肌都没有参与运动。对于机械通气病人来说,长期缺氧及全身营养不佳,使膈肌纤维减少和萎缩,以至膈肌移动度减少。该装置在咳痰中只是模拟气流运动,,首先,该设备不干预病人的正压通气过程,如果没有特殊控制,无法保证在咳嗽前有足够大的潮气量,可能无法形成有效的咳嗽;其次呼吸机正压通气过程本身就有机械肺损伤,该排痰装置只有气流运动,肌肉没有跟随运动,控制不当会带来额外的机械肺损伤;再次,只靠负压气流来排痰,不辅以腹肌收缩,将影响咳嗽、咳痰动作的强度,不利于痰液的排出;最后,帮助病人排痰能够促使病人提早撤机,但是对膈肌萎缩的病人,膈肌并没有得到锻炼,提早撤机的效果会受到影响。
发明内容
(一)解决的技术问题
本发明针对现有技术的不足,提供了一种智能仿生排痰系统,通过该系统,从气流运动及呼吸肌运动两方面智能地模拟了人的咳嗽,可以安全、有效地帮助病人将肺深部的分泌物 排出,降低呼吸机相关性肺炎的发病几率,并帮助病人的膈肌恢复,实现提早撤机。
(二)技术方案
本发明提供了一种智能仿生排痰系统,其包括负压吸引模块,病人接口单元,中央处理模块,呼吸肌同步运动模块,其中:所述负压吸引模块,用于产生负压气流,使气体从病人肺部排出;所述病人接口单元,允许正压以及负压气流流过,并连接在正压通气模块、所述负压吸引模块以及病人之间,其中正压通气模块可以是呼吸机;所述中央处理模块与所述病人接口单元以及所述呼吸肌同步运动模块相连;所述呼吸肌同步运动模块采用神经刺激的方式或者机械推动方式使得呼吸肌产生特定动作,与气流运动相配合。
进一步地,所述病人接口单元包括三通装置、集痰连接器以及集痰杯,所述三通装置包括第一阀门,所述第一阀门选择性的阻断所述正压通气模块到所述病人接口单元的气流,所述三通装置与所述负压吸引模块之间设置有第二阀门,所述第二阀门选择性的阻断从所述病人接口单元到所述负压吸引模块的气流。
进一步地,当所述正压通气模块工作时,所述中央处理模块打开所述第一阀门并关闭所述第二阀门,以及控制呼吸肌同步运动模块产生吸气时的肌肉动作,即膈肌收缩。
进一步地,当所述负压吸引模块工作时,所述中央处理模块打开所述第二阀门并关闭所述第一阀门,以及控制呼吸肌同步运动模块产生咳嗽时的肌肉动作,即腹肌收缩。
进一步地,智能仿生排痰系统还包括传感器模块和显示模块,所述传感器模块和所述显示模块与所述中央处理模块相连。
进一步地,所述传感器模块的第一检测点位于所述三通装置与所述正压通气模块直接相连的支路的侧壁上,所述传感器模块的第二检测点及第三检测点位于所述三通装置与病人直接相连的支路侧壁上,其中所述第二检测点与病人之间的距离大于所述第三检测点与病人之间的距离。
进一步地,所述中央处理模块基于所述第一检测点和所述第三检测点,判断所述第一阀门是否关闭。
进一步地,当所述第一检测点与所述第三检测点之间的压力差超过一定阈值时,所述中央处理模块判断所述第一阀门关闭。作为安全措施,如果在吸气阶段,第一阀门没有打开,则会产生报警。
进一步地,所述中央处理模块基于所述第二检测点和所述第三检测点之间的压力差,计算病人呼吸气体流量的大小和方向。
进一步地,所述中央处理模块根据三个压力检测点得到的压力和流量判断病人的吸气结束,和呼气结束,以便在吸气和呼气控制之间及时切换。
进一步地,所述正压通气模块为呼吸机及其管路。
进一步地,所述负压吸引模块为一个负压源如涡轮风机,及其管路。
进一步地,所述第一阀门为气动膜片阀。
进一步地,所述第二阀门为一个电控开关阀。
进一步地,所述负压吸引模块允许的负压气流量为14L/minute~800L/minute。
进一步地,所述神经刺激的方式是电刺激或者磁刺激。进一步地,所述电刺激方式采用作用于两侧膈神经上的一对治疗电极和作用于胸大肌表面上的一对参考电极。
进一步地,所述磁刺激模块采用充电电容和刺激线圈,利用存储电能的电容对刺激线圈放电,从而产生脉冲电流。
进一步地,所述机械推动方式采用机械臂作用在主要的呼吸肌上,根据中央处理模块的控制信号而产生不同的推动,与吸气、呼气相配合。
本发明还提供了一种具备气路开关功能的三通装置的结构,其包括三通下端2-1、三通上端2-2、压盖2-3、膜片阀2-4以及气阻2-5,所述三通下端2-1包括正压单元接口2-11、负压单元接口2-12、第一压力检测口2-13以及凹槽2-14,其中所述第一压力检测口2-13位于所述正压单元接口2-11的侧壁上,所述正压单元接口2-11和所述负压单元接口2-12位于所述三通下端2-1的一侧,而所述凹槽2-14位于所述三通下端2-1的另一侧;所述三通上端2-2包括病人端口2-21、内螺纹2-22、第二压力检测口2-23以及第三压力检测口2-24以及卡扣2-25,其中所述第二压力检测口2-23以及第三压力检测口2-24位于所述病人端口2-21的侧壁上,并且所述第二压力检测口2-23与所述卡扣2-25之间的距离小于第三压力检测口2-24与所述卡扣2-25之间的距离,所述第二检测点2-23与病人之间的距离大于所述第三检测点2-24与病人之间的距离;所述压盖2-3包括外螺纹2-31以及供气孔2-32,并且其位置与所述正压单元接口2-11相对;以及所述三通上端2-2的卡扣2-25与所述三通下端的凹槽2-14匹配连接,当然二者之间的连接关系不限于此,还可采用能够相互匹配的其它 结构,所述三通上端2-2通过其内螺纹2-22与所述压盖2-3的外螺纹2-31相连,所述膜片阀2-4设置于所述三通上盖2-2内与所述压盖2-3相应的位置,并且所述气阻2-5设置于所述病人端口内,使流经的气流压力发生变化,便于监测气体流量。
为了防止医务人员在管路连接时发生误操作,所述第一压力检测口2-13、第二压力检测口2-23、第三压力检测口2-24以及供气孔2-32上有防插错结构,例如,所述第一压力检测口2-13周围设置有均匀分布的四个凹槽或者凸起,所述第二压力检测口2-23周围均匀分布有三个均匀分布的凹槽或者凸起,而所述第三压力检测口2-24周围对称分布有两个凹槽或者凸起。当然,上述防插错结构仅用作示例性目的,还可采用多种其它结构。
类似地,所述三通上端2-2、三通下端2-1以及压盖2-3均设有防插错结构,防止医务人员在管路连接时发生误操作。
本发明发还提供了电控开关阀的结构设计,其结构其包括一个腔体1、导气管2、换向组件3、电能驱动装置4和机架5;所述开关阀由系统控制,对由风机所产生的气压的流通进行控制;所述腔体1由前端盖11、腔身12、后端盖13组成,通过螺钉紧固连接,所述腔体1的一个侧面上接近前端盖11的部分有驱动气孔14、前端盖11上有抽气孔15、所述腔体1的上面或侧面靠近后端盖13的部分有自由气孔16,后端盖13上有行程孔17,所述腔体1内驱动气孔14的两侧有密封垫圈18;所述导气管2与所述驱动气孔14相连接;所述换向组件3由换向滑块31、顶杆32、弹簧39组成;所述弹簧39位于所述腔体1内部的台阶上,其一侧顶在腔体1的前端盖11上,另一侧与换向滑块31相接触;所述换向滑块31置于所述腔体1中,其周边与所述腔体1的内壁密闭性接触,所述换向滑块31在所述弹簧39和所述顶杆32交错作用下沿着所述腔体1的轴线做直线往复运动;所述顶杆32通过所述行程孔17并与所述换向滑块31相连接,所述顶杆32在电能驱动装置4的作用下沿着所述腔体1的轴线运动;所述腔体1、电能驱动装置4安装在所述机架5上。
优选地,所述腔体1为分离式的。
可替换地,所述换向组件3由换向滑块31、顶杆32、推进块33、滚子34、凸轮35、位移传感器36、位移转盘37、托台38、弹簧39组成;所述电能驱动装置4为电机;所述推进块33置于所述托台38上方,推进块33开放端的上面设有通孔331,与所述滚子34通过销轴332连接,滚子34可灵活转动,推进块33封闭端的侧面设有通孔333,与所述顶杆32为可插式连接,推进块33侧端设有螺纹孔334,并通过螺钉335将所述顶杆32固定;所述 托台38固定于所述机架5上,对所述推进块33起支撑作用;所述凸轮35下方与所述电能驱动装置4紧固,随电能驱动装置4转动,凸轮35上方与所述位移转盘37紧固,两者一同转动;所述位移传感器36固定于所述机架5上,对所述位移转盘37进行检测,从而判断所述电能驱动装置4的转动行程。
此外,所述换向组件3还可由换向滑块31、顶杆32、凸轮35、位移传感器36、位移转盘37、弹簧39组成;所述电能驱动装置4为电机;所述凸轮35下方与所述电能驱动装置4紧固,随电能驱动装置4转动,凸轮35上方与所述位移转盘37紧固,两者一同转动;所述顶杆32直接与所述凸轮35相接触,在所述凸轮35的带动下沿着所述腔体1的轴线运动;所述位移传感器36固定于所述机架5上,对所述位移转盘37进行检测,从而判断所述电能驱动装置4的转动行程。
优选地,所述换向组件3由换向滑块31、顶杆32、弹簧39组成;所述电能驱动装置4为电磁铁;所述顶杆32在所述电磁铁的推动下沿着所述腔体1的轴线运动。
(三)有益效果
本发明将呼吸肌运动与机械吸排气相结合,更加智能地模拟人的咳嗽,更安全有效地帮助病人排出肺深部的分泌物,帮助使用有创呼吸机的病人降低患呼吸机相关性肺炎的风险。在呼吸机正压送气即将结束时,中央控制模块启动负压呼气,并同时联动呼吸肌运动,实现在病人快速呼气的同时匹配适当的呼吸肌运动,既可实现更有效的深吸气,及更有效的快速呼气,形成有效咳嗽。并且达到更好的人机同步性、减少人机对抗,又可让膈肌更多地参与到机械通气过程中,有效地减缓负压吸气所致的相关损伤。
此外,将呼吸肌运动引入到机械吸排气排痰中,在有助于危重病人在机械通气时最大程度地避免机械通气相关肺损伤(VILI)和相关性肺炎(VAP)的同时,还可以改善膈肌功能,保持膈肌活力,有效地防治呼吸机引起的横膈功能障碍(VIDD),为一直以来困扰ICU医生的这三种合并症提出前所未有的解决办法,促使病人提早撤机,还可以减少为避免VILI、VAP的药物使用,减轻病患的医疗负担和副作用。
附图说明
图1是根据本发明的智能仿生排痰系统的结构示意图;
图2是根据本发明的三通装置的结构及其压力检测点的结构示意图;
图3为根据本发明的具备气路开关功能的开关阀结构示意图;
图4为根据本发明的具备气路开关功能的开关阀的腔体结构示意图;
图5为根据本发明的具备气路开关功能的开关阀的腔体剖面图;
图6为根据本发明的具备气路开关功能的开关阀的一种换向组件结构示意图;
图7为根据本发明的具备气路开关功能的开关阀的一种凸轮位置结构示意图;
图8为根据本发明的具备气路开关功能的开关阀的一种推进块结构示意图;
图9为根据本发明的具备气路开关功能的开关阀的另一种结构示意图;
图10为根据本发明的具备气路开关功能的开关阀操作状态示意图;
图11为根据本发明的具备气路开关功能的开关阀操作状态示意图;
图12为根据本发明的具备气路开关功能的开关阀操作状态示意图;
图13为根据本发明的具备气路开关功能的开关阀操作状态示意图;
图14为根据本发明的具备气路开关功能的开关阀操作状态示意图;
图15为根据本发明的其各部件未连接的病人接口单元;
图16为根据本发明的其各部件连接的病人接口单元。
其中:1:腔体;2:导气管;3:换向组件;4:电机;5:机架;11:前端盖;12:腔身;13:后端盖;14:驱动气孔;15:抽气孔;16:自由气孔;17:行程孔;18:密封垫圈;31:换向滑块;32:顶杆;33:推进块;34:滚子;35:凸轮;36:位移传感器;37:位移转盘;38:托台;39:弹簧;331:通孔;332:销轴;333:通孔;334:螺纹孔;335:螺钉;151:三通装置;152:集痰连接器;153:集痰杯;三通下端:2-1;三通上端:2-2;压盖:2-3;膜片阀:2-4;气阻:2-5;正压单元接口:2-11;负压单元接口:2-12;压力检测点:2-13;凹槽:2-14;病人端口:2-21;内螺纹:2-22;压力检测点:2-23、2-24;卡扣:2-25;外螺纹:2-31;供气孔:2-32。
具体实施方式
以下将结合附图,对本发明的智能仿生排痰系统详细说明。
根据本发明的一方面,提供了一种智能仿生排痰系统,如图1所示,其包括正压通气模块,负压吸引模块,病人接口单元,中央处理模块,显示模块,传感器模块,呼吸肌同步运 动模块,其中:正压通气模块,用于产生正压气流,可以是呼吸机;负压吸引模块,用于产生负压气流;病人接口单元,允许正压以及负压气流流过;正压通气模块、负压吸引模块和病人之间通过病人接口单元连接,所述病人接口单元包括一个三通装置,所述三通装置包括第一阀门所述第一阀门选择性的阻断所述正压通气模块到所述病人接口单元的气流,所述三通装置与所述负压吸引模块之间设置有第二阀门,所述第二阀门选择性地阻断从所述病人接口单元到所述负压吸引模块的气流。优选地,所述第一阀门可采用气动膜片阀。
所述中央处理器,基于传感器模块反馈的结果实现以下步骤:选择性的开关第一个阀门以允许或停止呼吸机的正压气流为病人的肺部充气;选择性的开关第二个阀门以允许或停止负压气流为病人的肺部排气;控制呼吸肌同步运动模块,使之产生吸气或呼气时的肌肉动作。
所述呼吸肌同步运动模块可选择用神经刺激方式来达到膈肌起搏的目的,或者采用机械推动的方式来使呼吸肌运动。神经刺激方式又有电刺激、磁刺激两种方式。其中,刺激信号都是由一个单片机产生的方波脉冲,并经过整形和放大。电刺激装置包括两对电极,一对为治疗电极,作用于患者的两侧膈神经,一对为参考电极,作用于患者的胸大肌表面;磁刺激装置包括一个充电电容和一个刺激线圈,利用储存电能的电容对刺激线圈放电,产生脉冲电流刺激人体。机械推动方式包括两个机械手臂,分别作用于膈肌和腹肌,根据中央处理模块的控制信号产生相应的推动动作。
灵敏的传感器模块保证了系统带有有效的警报系统。当在某一个呼吸阶段判断到阀门没有产生预期的动作,则会产生最高级别的报警;其他一些问题则会产生低级别的报警。
如图15、16所示,所述病人接口单元包括三通装置151、集痰连接器152以及集痰杯153。所述三通装置151上设有三个压力检测点,所述三个压力检测点连接传感器模块内的三个压力传感器。其中两个检测点可以用来以压力差计算流量,这三个传感器就可以实时检测病人的呼吸情况。
以下将结合附图2,对三通装置的结构及其三个压力检测点的设置进行详细介绍。
如图2所示,所述三通装置包括三通下端2-1,三通上端2-2,压盖2-3,膜片阀2-4,气阻2-5;所述的三通下端2-1包括正压单元接口2-11,负压单元接口2-12,压力检测点2-13以及凹槽2-14,所述压力检测点2-13位于所述三通下端2-1与所述正压单元接口2-11直接连接的支路的侧壁上;所述的三通上端2-2包括病人端口2-21,内螺纹2-22,压力检测点2-23、2-24,卡扣2-25,所述压力检测点2-23、2-24位于所述三通上端2-2与病人直 接相连的支路的侧壁上,并且压力检测点2-23与所述压力检测点2-24相对于病人之间的距离不同;所述的压力检测点2-13,2-23,2-24以及供气孔2-32上有防差错结构设计,防止医务人员在管路连接时发生误操作;所述的卡扣2-25与三通下端凹槽2-14配合连接,提高设备气密性;所述压力检测点2-13将检测气流引到一个压力传感器上,可用于实时监测正压接口单元2-11处的气体压力;所述压力检测点2-24将检测气流引到一个压力传感器上,可用于实时监测病人端口2-21处的气体压力;所述压力检测点2-13和2-24协同工作可用于判断所述膜片阀2-4的是否关闭,当2-13与2-24的压力差超过一定阈值,就认为膜片阀是关闭的;所述压力检测点2-23,2-24将检测气流引到一个差分传感器上,与所述气阻2-5协同工作可用于实时监测流经病人端口2-21的气体流量大小及方向,由2-23、2-24口得到压力差,考虑气阻2-5的形状,即可以算出气体流量的大小及方向。
在第一个阀中包含一个气动的膜片,当此膜片没有被吹起时,是平放在三通的第一个分支的内腔里的,膜片被吹起时,发生鼓胀阻塞以第一分支的内腔。当第一个阀打开时,在正压下将气流从呼吸机传送到病人肺部,此时第二个阀关闭防止了病人肺部暴露在负压下;当第二个阀打开时,病人肺部暴露在负压下(允许的负压气流量为14L/minute~800L/minute),此时关闭第一个阀门,以免呼吸机暴露在负压下。
本系统的最大特点是在机械辅助吸气和呼气(咳嗽)的同时,能够辅以呼吸肌的同步运动。呼吸时的肌肉运动是指由于呼吸肌的收缩和舒张引起的胸廓节律性扩大和缩小的过程。主要的吸气肌包括膈肌的肋间外肌,主要的呼气肌为肋间内肌和腹肌,而辅助吸气肌包括斜角肌和胸锁乳突肌,仅在用力吸气时发挥作用。吸气时,主要是膈肌收缩,咳嗽时,主要是腹肌和肋间内肌收缩。当咳嗽程序启动时,在吸气阶段,打开第一个阀门、关闭第二个阀门的同时,呼吸肌同步运动模块会产生膈肌收缩动作,使病人的吸气更为充分,为有效的咳嗽做好准备。当压力检测点检测到吸气结束时,打开第二个阀门,关闭第一个阀门,同时呼吸肌同步运动模块产生腹肌收缩动作,从气流及肌肉运动两方面模拟正常的咳嗽,使得肺内分泌物的排出效果更好。当压力检测点检测到呼气结束时,关闭第二个阀门,打开第一个阀门,开始新的呼吸周期。
根据本发明,还提供了一种具备气路开关功能的电控开关阀,以下将会结合附图对该具备气路开关功能的开关阀的多个实施例作详细的介绍。
在一实施例中,如图3所示,根据本发明的一种具备气路开关功能的电控开关阀,包括一个腔体1、导气管2、换向组件3、电能驱动装置4和机架5。开关阀由系统控制,负责对 由风机所产生的气压的流通进行控制,当开关阀关闭时,患者不会暴露在气压作用之下;当开关阀开启时,患者暴露于气压作用下,气体快速流动于患者体内与相关设备之间,同时不会对人体造成任何伤害。
如图4和图5所示,所述腔体1由前端盖11、腔身12、后端盖13组成,通过螺钉紧固连接,所述腔体1的一个侧面上接近前端盖11的部分有驱动气孔14、前端盖11上有抽气孔15、所述腔体1的上面或侧面靠近后端盖13的部分有自由气孔16,后端盖13上有行程孔17,所述腔体1内驱动气孔14的两侧有密封垫圈18;所述导气管2与所述驱动气孔14相连接;所述换向组件3由换向滑块31、顶杆32、弹簧39组成;所述弹簧39位于所述腔体1内部的台阶上,其一侧顶在腔体1的前端盖11上,另一侧与换向滑块31相接触;所述换向滑块31置于所述腔体1中,其周边与所述腔体1的内壁密闭性接触,所述换向滑块31在所述弹簧39和所述顶杆32交错作用下沿着所述腔体1的轴线做直线往复运动;所述顶杆32通过所述行程孔17并与所述换向滑块31相连接,所述顶杆32在电能驱动装置4的作用下沿着所述腔体1的轴线运动;所述腔体1、电能驱动装置4安装在所述机架5上。
优选地,所述的腔体1为分离式的。
在第二实施例中,如图3所示,根据本发明的一种具备气路开关功能的开关阀由系统控制,负责对由风机所产生的气压的流通进行控制,当开关阀关闭时,患者不会暴露在气压作用之下;当开关阀开启时,患者暴露于气压作用下,气体快速流动于患者体内与相关设备之间,同时不会对人体造成任何伤害。
如图4和图5所示,所述腔体1由前端盖11、腔身12、后端盖13组成,通过螺钉紧固连接,所述腔体1的一个侧面上接近前端盖11的部分有驱动气孔14、前端盖11上有抽气孔15、所述腔体1的上面或侧面靠近后端盖13的部分有自由气孔16,后端盖13上有行程孔17,所述腔体1内驱动气孔14的两侧有密封垫圈18;所述导气管2与所述驱动气孔14相连接。
如图6所示,所述换向组件3由换向滑块31、顶杆32、推进块33、滚子34、凸轮35、位移传感器36、位移转盘37、托台38、弹簧39组成;所述换向滑块31置于所述腔体1中,其周边与所述腔体1的内壁密闭性接触,所述换向滑块31在所述弹簧39和所述顶杆32交错作用下沿着所述腔体1的轴线做直线往复运动;所述顶杆32通过所述行程孔17并与所述换向滑块31相连接,所述顶杆32在电能驱动装置4的作用下沿着所述腔体1的轴线运动。
如图7所示,所述的凸轮35下方与电能驱动装置4紧固,随电能驱动装置4转动,凸轮35上方与位移转盘37紧固,两者一同转动。
如图8所示,所述推进块33置于所述托台38上方,推进块33开放端的上面设有通孔331,与所述滚子34通过销轴332连接,滚子34可灵活转动,推进块33封闭端的侧面设有通孔333,与所述顶杆32为可插式连接,推进块33侧端设有螺纹孔334,并通过螺钉335将所述顶杆32固定;所述托台38固定于机架5上,对推进块33起支撑作用;所述位移传感器36固定于机架5上,对位移转盘37进行检测,从而判断电能驱动装置4的转动行程;弹簧39位于所述腔体1内部的台阶上,其一侧顶在腔体1的前端盖11上,另一侧与换向滑块31相接触;所述电能驱动装置4为电机;所述腔体1、电能驱动装置4安装在所述机架5上。
优选地,所述的腔体1为分离式的。
在第三实施例中,如图4和图5所示,所述腔体1由前端盖11、腔身12、后端盖13组成,通过螺钉紧固连接,所述腔体1的一个侧面上接近前端盖11的部分有驱动气孔14、前端盖11上有抽气孔15、所述腔体1的上面或侧面靠近后端盖13的部分有自由气孔16,后端盖13上有行程孔17,所述腔体1内驱动气孔14的两侧有密封垫圈18;所述导气管2与所述驱动气孔14相连接;所述的换向组件3由换向滑块31、顶杆32、凸轮35、位移传感器36、位移转盘37、弹簧39组成;所述换向滑块31置于所述腔体1中,其周边与所述腔体1的内壁密闭性接触,所述换向滑块31在所述弹簧39和所述顶杆32交错作用下沿着所述腔体1的轴线做直线往复运动;所述顶杆32通过所述行程孔17并与所述换向滑块31相连接,所述顶杆32直接与所述凸轮35相接触,在所述凸轮35的带动下沿着所述腔体1的轴线运动;所述凸轮35下方与所述电能驱动装置4紧固,随电能驱动装置4转动,凸轮35上方与所述位移转盘37紧固,两者一同转动;所述位移传感器36固定于所述机架5上,对所述位移转盘37进行检测,从而判断所述电能驱动装置4的转动行程;所述弹簧39位于所述腔体1内部的台阶上,其一侧顶在腔体1的前端盖11上,另一侧与换向滑块31相接触;所述电能驱动装置4为电机;所述腔体1、电能驱动装置4安装在所述机架5上。
优选地,所述的腔体1为分离式的。
在第四实施例中,如图14所示,所述换向组件3由换向滑块31、顶杆32、弹簧39组成;所述弹簧39位于所述腔体1内部的台阶上,其一侧顶在腔体1的前端盖11上,另一侧 与换向滑块31相接触;所述换向滑块31置于所述腔体1中,其周边与所述腔体1的内壁密闭性接触,所述换向滑块31在所述弹簧39和所述顶杆32交错作用下沿着所述腔体1的轴线做直线往复运动;所述顶杆32通过所述行程孔17并与所述换向滑块31相连接,所述顶杆32在所述电磁铁的推动下沿着所述腔体1的轴线运动;所述电能驱动装置4为电磁铁;所述腔体1、电能驱动装置4安装在所述机架5上。
优选地,所述的腔体1为分离式的。
在第五实施例中,根据本发明的一种具备气路开关功能的开关阀的操作方法,包括以下步骤:如图10所示,开关阀处于初始状态时,其腔体1内部的换向滑块31在弹簧39弹力作用下紧靠在自由气孔16端的密封垫圈18上处于静止状态,介于抽气孔15和换向滑块31之间的弹簧39处于微量压缩状态;如图11所示,当电机4接收到系统发出的预制气压信号,电机4带动凸轮35做顺时针旋转,在凸轮35与滚子34的转动作用下,推进块33带动顶杆32向腔体1前端位移,推动换向滑块31沿腔体1轴线方向向其前端运动,顶住抽气孔15端的密封垫圈18,使腔体1内部与抽气孔15外部隔断,此时弹簧39处于压缩状态。通过位移传感器36的控制,使换向滑块31在该位置暂时保持静止状态。此时,仅驱动气孔14与自由气孔16连通,气流从自由气孔16进入驱动气孔14,在腔体1内部形成预制气压;如图12所示,当电机4接收到系统发出的抽气信号,在位移传感器36的配合下,电机4带动凸轮35做逆时针转动复位,换向滑块31、顶杆32与推进块33在弹簧39作用下向腔体1后端回弹,直至换向滑块31右端顶住自由气孔16端的密封垫圈18,将自由气孔16与腔体1隔断。此时腔体1内部与抽气孔15连通,在预制气压的作用下,气体从抽气孔15进入驱动气孔14;以上过程可根据需要自行设定重复次数。
在第六实施例中,根据本发明的一种具备气路开关功能的开关阀的另一操作方法,包括以下步骤:开关阀处于初始状态时,腔体1内部的换向滑块31在弹簧39弹力作用下紧靠在自由气孔16端的密封垫圈18上处于静止状态,介于抽气孔15和换向滑块31之间的弹簧39处于微量压缩状态;如图13所示,当电机接收到系统发出的预制气压信号,电机带动凸轮35做顺时针旋转,在凸轮35的转动作用下,推动直接与其相接触的顶杆32向腔体1前端位移,进而推动换向滑块31沿腔体1轴线方向向其前端运动,顶住抽气孔15端的密封垫圈18,使腔体1内部与抽气孔15外部隔断,此时弹簧39处于压缩状态,通过位移传感器36的控制,使换向滑块31在该位置暂时保持静止状态,此时,仅驱动气孔14与自由气孔16连通,气流从自由气孔16进入驱动气孔14,在腔体1内部形成预制气压;当电机接收到系统发出 的抽气信号,在位移传感器36的配合下,电机带动凸轮35做逆时针转动复位,换向滑块31与顶杆32在弹簧39作用下向腔体1后端回弹,直至换向滑块31右端顶住自由气孔16端的密封垫圈18,将自由气孔16与腔体1隔断,此时腔体1内部与抽气孔15连通,在预制气压的作用下,气体从抽气孔15进入驱动气孔14;以上过程可根据需要自行设定重复次数。
在第七实施例中,根据本发明的一种具备气路开关功能的开关阀的其它操作方法,包括以下步骤:开关阀处于初始状态时,腔体1内部的换向滑块31在弹簧39弹力作用下紧靠在自由气孔16端的密封垫圈18上处于静止状态,介于抽气孔15和换向滑块31之间的弹簧39处于微量压缩状态;如图14所示,当电磁铁通电后,推动顶杆32向腔体1前端位移,进而推动换向滑块31沿腔体1轴线方向向其前端运动,顶住抽气孔15端的密封垫圈18,并使换向滑块31在该位置暂时保持静止状态,此时弹簧39处于压缩状态,腔体1内部与抽气孔15外部隔断,仅驱动气孔14与自由气孔16连通,气流从自由气孔16进入驱动气孔14,在腔体1内部形成预制气压;当电磁铁断电后,换向滑块31与顶杆32在弹簧39作用下向腔体1后端回弹,直至换向滑块31右端顶住自由气孔16端的密封垫圈18,将自由气孔16与腔体1隔断,此时腔体1内部与抽气孔15连通,在预制气压的作用下,气体从抽气孔15进入驱动气孔14;以上过程可根据需要自行设定重复次数。
综上所述,该开关阀由于具有以上技术特征,因此极适用于呼吸气路交换领域,本发明气路开关阀能够稳定、高效地配合呼吸设备进行气流切换,协助患者进行吸排气运动,同时帮助患者将气道分泌物顺利排出,非常适宜于与呼吸机等医疗器械联合使用,并可广泛应用于其他相关领域,因此,可以预期,本发明的推广使用,能够同时获得经济、健康等多方面的收益。
本发明公开一种智能仿生排痰系统,用于机械通气病人的肺部分泌物排出。通过呼吸机正压通气吸入气流,在电或磁刺激或者机械推动作用下呼吸肌做吸气运动,当肺内气压达到一定阈值时转换为负压吸气,在快速、短促地呼出气流的同时,在电或磁刺激或者机械推动作用下呼吸肌快速、短促地做呼气运动。在整个呼吸过程中呼吸肌运动与气流的吸入和吸出同步。
对于机械通气病人来说,在接入负压吸引模拟咳嗽的呼气模式时,同时启动呼吸肌同步运动模块,会促使膈肌收缩或舒张,增加膈肌活动度,提高膈肌肌力,加强咳嗽、咳痰动作的强度,并增加通气量,增强氧合作用,改善呼吸道纤毛运动功能,促进痰液的排出。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (22)

  1. 一种智能仿生排痰系统,其包括负压吸引模块,病人接口单元,中央处理模块以及呼吸肌同步运动模块,其特征在于:
    所述负压吸引模块,用于产生负压气流;
    所述病人接口单元连接在所述负压吸引模块以及病人之间,并且允许来自负压吸引模块的负压气流流过,也允许正压气流流过;
    所述中央处理模块与所述病人接口单元以及所述呼吸肌同步运动模块相连;
    所述呼吸肌同步运动模块采用神经刺激的方式或者机械推动方式使得呼吸肌产生特定动作,与气流运动相配合。
  2. 根据权利要求1所述的智能仿生排痰系统,其还包括正压通气模块,所述正压通气模块与所述病人接口单元相连,并产生正压气流。
  3. 根据权利要求2所述的智能仿生排痰系统,其中所述病人接口单元包括三通装置、集痰连接器以及集痰杯,所述三通装置包括第一阀门,所述第一阀门选择性的阻断所述正压通气模块到所述病人接口单元的气流,所述三通装置与所述负压吸引模块之间设置有第二阀门,所述第二阀门选择性的阻断从所述病人接口单元到所述负压吸引模块的气流。
  4. 根据权利要求3所述的智能仿生排痰系统,其中当所述正压通气模块工作时,所述中央处理模块打开所述第一阀门并关闭所述第二阀门,以及控制呼吸肌同步运动模块产生吸气时的肌肉动作。
  5. 根据权利要求3或者4所述的智能仿生排痰系统,其中当所述负压吸引模块工作时,所述中央处理模块打开所述第二阀门并关闭所述第一阀门,以及控制呼吸肌同步运动模块产生咳嗽时的肌肉动作。
  6. 根据权利要求3所述的智能仿生排痰系统,所述智能仿生排痰系统还包括传感器模块和显示模块,所述传感器模块和所述显示模块与所述中央处理模块相连。
  7. 根据权利要求6所述的智能仿生排痰系统,其中所述传感器模块的第一检测点位于所述三通装置与所述正压通气模块直接相连的支路的侧壁上,所述传感器模块的第二检测点及第三检测点位于所述三通装置与病人直接相连的支路侧壁上,其中所述第二检测点与病人之间的距离大于所述第三检测点与病人之间的距离。
  8. 根据权利要求7所述的智能仿生排痰系统,其中所述中央处理模块基于所述第一检测点和所述第三检测点,判断所述第一阀门是否关闭。
  9. 根据权利要求8所述的智能仿生排痰系统,其中当所述第一检测点与所述第三检测点之间的压力差超过一定阈值时,所述中央处理模块判断所述第一阀门关闭。
  10. 根据权利要求7所述的智能仿生排痰系统,其中所述中央处理模块基于所述第二检测点和所述第三检测点之间的压力差,计算病人呼吸气体流量的大小和方向;以及基于计算得到的病人呼吸气体流量的大小和方向,判断病人是否吸气结束以及呼气结束。
  11. 根据权利要求2所述的智能仿生排痰系统,其中所述正压通气模块为呼吸机。
  12. 根据权利要求3所述的智能仿生排痰系统,其中所述第一阀门为气动膜片阀。
  13. 根据权利要求5所述的智能仿生排痰系统,其中所述负压吸引模块允许的负压气流量为14L/minute~800L/minute。
  14. 根据权利要求1所述的智能仿生排痰系统,其中所述神经刺激的方式是电刺激或者磁刺激。
  15. 根据权利要求14所述的智能仿生排痰系统,其中所述电刺激方式采用作用于两侧膈神经上的一对治疗电极和作用于胸大肌表面上的一对参考电极。
  16. 根据权利要求14所述的智能仿生排痰系统,其中所述磁刺激模块采用充电电容和刺激线圈,利用存储电能的电容对刺激线圈放电,从而产生脉冲电流。
  17. 根据权利要求1所述的智能仿生排痰系统,其中所述机械推动方式采用机械臂作用在主要的呼吸肌上,根据中央处理模块的控制信号而产生不同的推动,与吸气、呼气相配合。
  18. 一种应用于权利要求2中智能仿生排痰系统的三通装置,其特征在于:所述三通装置包括腔体(1)、导气管(2)、换向组件(3)、电能驱动装置(4)和机架(5);
    所述开关阀由系统控制,对由风机所产生的气压的流通进行控制;
    所述腔体(1)由前端盖(11)、腔身(12)、后端盖(13)组成,通过螺钉紧固连接,所述腔体(1)的一个侧面上接近前端盖(11)的部分有驱动气孔(14)、前端盖(11)上有抽气孔(15)、所述腔体(1)的上面或侧面靠近后端盖(13)的部分有自由气孔(16),后端盖(13)上有行程孔(17),所述腔体(1)内驱动气孔(14)的两侧有密封垫圈(18);
    所述导气管(2)与所述驱动气孔(14)相连接;
    所述换向组件(3)由换向滑块(31)、顶杆(32)、弹簧(39)组成;
    所述弹簧(39)位于所述腔体(1)内部的台阶上,其一侧顶在腔体(1)的前端盖(11)上,另一侧与换向滑块(31)相接触;
    所述换向滑块(31)置于所述腔体(1)中,其周边与所述腔体(1)的内壁密闭性接触,所述换向滑块(31)在所述弹簧(39)和所述顶杆(32)交错作用下沿着所述腔体(1)的轴线做直线往复运动;
    所述顶杆(32)通过所述行程孔(17)并与所述换向滑块(31)相连接,所述顶杆(32)在电能驱动装置(4)的作用下沿着所述腔体(1)的轴线运动;
    所述腔体(1)、电能驱动装置(4)安装在所述机架(5)上。
  19. 根据权利要求18的所述三通装置,其中所述腔体(1)为分离式的。
  20. 根据权利要求18或19的所述三通装置,其中所述换向组件(3)由换向滑块(31)、顶杆(32)、推进块(33)、滚子(34)、凸轮(35)、位移传感器(36)、位移转盘(37)、托台(38)、弹簧(39)组成;
    所述电能驱动装置(4)为电机;
    所述推进块(33)置于所述托台(38)上方,推进块(33)开放端的上面设有通孔(331),与所述滚子(34)通过销轴(332)连接,滚子(34)可灵活转动,推进块(33)封闭端的侧面设有通孔(333),与所述顶杆(32)为可插式连接,推进块(33)侧端设有螺纹孔(334),并通过螺钉(335)将所述顶杆(32)固定;
    所述托台(38)固定于所述机架(5)上,对所述推进块(33)起支撑作用;
    所述凸轮(35)下方与所述电能驱动装置(4)紧固,随电能驱动装置(4)转动,凸轮(35)上方与所述位移转盘(37)紧固,两者一同转动;
    所述位移传感器(36)固定于所述机架(5)上,对所述位移转盘(37)进行检测,从而判断所述电能驱动装置(4)的转动行程。
  21. 根据权利要求18或19的所述三通装置,其中所述换向组件(3)由换向滑块(31)、顶杆(32)、凸轮(35)、位移传感器(36)、位移转盘(37)、弹簧(39)组成;
    所述电能驱动装置(4)为电机;
    所述凸轮(35)下方与所述电能驱动装置(4)紧固,随电能驱动装置(4)转动,凸轮 (35)上方与所述位移转盘(37)紧固,两者一同转动;
    所述顶杆(32)直接与所述凸轮(35)相接触,在所述凸轮(35)的带动下沿着所述腔体(1)的轴线运动;
    所述位移传感器(36)固定于所述机架(5)上,对所述位移转盘(37)进行检测,从而判断所述电能驱动装置(4)的转动行程。
  22. 根据权利要求18或19的所述三通装置,其中所述换向组件(3)由换向滑块(31)、顶杆(32)、弹簧(39)组成;
    所述电能驱动装置(4)为电磁铁;
    所述顶杆(32)在所述电磁铁的推动下沿着所述腔体(1)的轴线运动。
PCT/CN2015/075100 2014-03-26 2015-03-26 一种智能仿生排痰系统 WO2015144064A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2017501452A JP6588526B2 (ja) 2014-03-26 2015-03-26 知能バイオニクス排痰システム
KR1020167029904A KR101907594B1 (ko) 2014-03-26 2015-03-26 객담 배출을 위한 지능형 생체공학 시스템
ES15768007T ES2908982T3 (es) 2014-03-26 2015-03-26 Sistema inteligente de expectoración biónica
EP15768007.5A EP3127574B1 (en) 2014-03-26 2015-03-26 Intelligent bionic expectoration system
CN201580000283.2A CN105451798B (zh) 2014-03-26 2015-03-26 一种智能仿生排痰系统
US15/128,877 US10463817B2 (en) 2014-03-26 2015-03-26 Intelligent bionic expectoration system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410116218.3 2014-03-26
CN201410116218.3A CN103933648B (zh) 2014-03-26 2014-03-26 一种膈肌刺激吸排气系统

Publications (1)

Publication Number Publication Date
WO2015144064A1 true WO2015144064A1 (zh) 2015-10-01

Family

ID=51181689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/075100 WO2015144064A1 (zh) 2014-03-26 2015-03-26 一种智能仿生排痰系统

Country Status (7)

Country Link
US (1) US10463817B2 (zh)
EP (1) EP3127574B1 (zh)
JP (1) JP6588526B2 (zh)
KR (1) KR101907594B1 (zh)
CN (3) CN103933648B (zh)
ES (1) ES2908982T3 (zh)
WO (1) WO2015144064A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113827786A (zh) * 2020-06-08 2021-12-24 河北金康安医疗器械科技有限公司 一种排痰装置
WO2022217676A1 (zh) * 2021-04-15 2022-10-20 深圳市安保科技有限公司 具有排痰功能的呼吸机控制方法及呼吸机
WO2022217675A1 (zh) * 2021-04-15 2022-10-20 深圳市安保科技有限公司 一种具有排痰功能的新型呼吸机

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103933648B (zh) 2014-03-26 2016-09-07 北京雅果科技有限公司 一种膈肌刺激吸排气系统
CN104784794B (zh) * 2015-05-08 2017-03-29 濡新(北京)科技发展有限公司 一种咳痰管路
US11433200B2 (en) * 2015-08-26 2022-09-06 Koninklijke Philips N.V. Mechanical in-exsufflation
CN105343944B (zh) * 2015-10-12 2017-08-25 濡新(北京)科技发展有限公司 咳痰系统
TWM544941U (zh) 2016-05-20 2017-07-11 長庚醫療財團法人林口長庚紀念醫院 通氣設備
CN106730193A (zh) * 2016-11-11 2017-05-31 濡新(北京)科技发展有限公司 一种呼吸机
CN106492298A (zh) * 2016-11-11 2017-03-15 濡新(北京)科技发展有限公司 一种洗肺系统
CN106730065B (zh) * 2017-01-18 2024-03-08 北京雅果科技有限公司 一种负压产生系统及负压产生方法
CN106581833B (zh) * 2017-01-18 2024-02-06 北京雅果科技有限公司 一种呼吸机
CN108543182B (zh) * 2018-05-02 2020-08-21 北京雅果科技有限公司 无创呼吸机用辅助排痰方法及无创呼吸机
EP3669779A1 (en) * 2018-12-19 2020-06-24 Linde GmbH Device and method for determining an information relating to a treatment
WO2020127650A1 (en) * 2018-12-21 2020-06-25 Koninklijke Philips N.V. Pressure support, mechanical inexsufflation, and suctioning system
CN109718400A (zh) * 2019-01-14 2019-05-07 上海市第一人民医院 智能自动吸痰器械
CN110038200B (zh) * 2019-05-07 2022-03-11 濡新(北京)科技发展有限公司 一种限制咳出气量的咳痰装置和方法
KR102246205B1 (ko) * 2019-06-04 2021-04-29 영남대학교 산학협력단 객담 제거 보조 장치
CN110811577B (zh) * 2019-11-18 2022-08-09 长春大学 一种人体呼吸系统的模拟装置
CN111298293B (zh) * 2020-03-20 2022-02-11 北京航空航天大学 一种膈肌起搏咳痰辅助装置
CN111840668B (zh) * 2020-03-25 2023-11-21 刘齐山 一种新型吸痰器
CN113750298A (zh) * 2020-06-05 2021-12-07 河北金康安医疗器械科技有限公司 一种智能仿生排痰机
CN111905162A (zh) * 2020-08-14 2020-11-10 濡新(北京)科技发展有限公司 一种气道分泌物引流装置及引流方法
CN113018532A (zh) * 2021-03-08 2021-06-25 黄宁 一种急诊内科用气胸排气装置
CN113082317B (zh) * 2021-04-12 2023-04-25 中国科学院大学宁波华美医院 一种智能化全自动吸痰装置
CN114272455B (zh) * 2021-12-28 2022-06-10 中国科学院大学宁波华美医院 一种清痰辅助装置
CN114392409A (zh) * 2022-02-18 2022-04-26 孟祥礼 一种肿瘤科用负压装置
CN115043543B (zh) * 2022-07-08 2023-12-19 深圳市昌润利环保科技有限公司 一种电镀废水用常温蒸发装置及其使用方法
CN117258088B (zh) * 2023-11-14 2024-01-16 佛山市南海区第五人民医院(佛山市南海区大沥医院) 一种用于儿科肺炎雾化吸入治疗设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040107960A1 (en) * 2002-12-06 2004-06-10 Hung-Ming Wu Composite medical equipment having the phlegm extraction and mist spraying functions
CN102949770A (zh) * 2012-11-09 2013-03-06 张红璇 一种体外膈肌起搏与呼吸机协同送气的方法及其装置
CN103619392A (zh) * 2011-06-29 2014-03-05 皇家飞利浦有限公司 用于辅助进行气道清除的方法和装置
CN103933648A (zh) * 2014-03-26 2014-07-23 北京雅果科技有限公司 一种膈肌刺激吸排气系统
CN203935485U (zh) * 2014-03-26 2014-11-12 北京雅果科技有限公司 一种膈肌刺激吸排气系统

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1044031A (en) * 1908-10-01 1912-11-12 Johann Heinrich Draeger Method of causing artificial respiration.
GB550383A (en) * 1941-12-01 1943-01-05 John Haven Emerson Improvements in respiratory apparatus
US2770232A (en) * 1954-05-26 1956-11-13 Smith Welding Equipment Corp Respirator system
US2972345A (en) * 1955-10-26 1961-02-21 Spigel Robert Respirator
US2915056A (en) * 1956-05-18 1959-12-01 Arnold S J Lee Respirable gas administration apparatus
US3026908A (en) * 1958-07-09 1962-03-27 Bendix Corp Three-position valve
GB1208775A (en) * 1967-03-14 1970-10-14 H G East & Company Ltd Improvements in or relating to respiratory apparatus
US3662751A (en) * 1970-05-20 1972-05-16 Michigan Instr Inc Automatic respirator-inhalation therapy device
US3875810A (en) * 1973-07-05 1975-04-08 Standun Mechanism for intermittently controlling operation of a machine
GB1477313A (en) * 1973-08-22 1977-06-22 Pfitzner J Valves
US4522221A (en) * 1983-08-15 1985-06-11 Autarkic Flow Controls Timed flow control valve assembly
DE3422066A1 (de) * 1984-06-14 1985-12-19 Drägerwerk AG, 2400 Lübeck Beatmungssystem und steuerbare ventileinheit hierzu
US4712580A (en) * 1986-03-21 1987-12-15 Intertech Resources Inc. Exhalation valve assembly
US5072729A (en) * 1986-11-04 1991-12-17 Bird Products Corporation Ventilator exhalation valve
DE3822950A1 (de) * 1988-07-07 1990-01-11 Draegerwerk Ag Steuerbares beatmungsventil
US5484270A (en) * 1994-02-28 1996-01-16 Carmeli Adahan Pump particularly useful in respirator apparatus and exhalation valve assembly therefor
JPH1030973A (ja) 1996-07-15 1998-02-03 Shimadzu Corp 圧力検知バルブ及びこれを用いた配管漏洩箇所の特定方法
US6427691B1 (en) * 1999-07-09 2002-08-06 Walter Jinotti Medical valve
FR2812203B1 (fr) 2000-07-31 2003-01-03 Saime Sarl Appareil d'aide a la ventilation d'un patient
JP2004511311A (ja) * 2000-10-19 2004-04-15 マリンクロッド・インコーポレイテッド 二重気体供給部を備える人工呼吸器
JP2003079732A (ja) 2001-09-13 2003-03-18 Kyouto Biomedical Science:Kk 呼吸・嚥下・咳機能補助システム
IL145461A (en) * 2001-09-16 2006-09-05 Alyn Woldenberg Family Hospita Breathing and coughing device
JP4369138B2 (ja) 2003-02-14 2009-11-18 帝人株式会社 呼吸同調気体供給装置
EP1787669A2 (en) * 2004-07-16 2007-05-23 Shuichi Tokunaga Intra-tracheal sputum aspirating apparatus
AU2006313454A1 (en) 2005-09-26 2007-05-18 Innovent Medical Solutions, Inc. Combined ventilator inexsufflator
US20070199566A1 (en) * 2006-02-02 2007-08-30 Be Eri Eliezer Respiratory apparatus
BRPI0921295A2 (pt) * 2008-11-17 2016-03-08 Metrohealth System aparelho e método de depuração mucosal e ventilação pulmonar combinado
JP5436899B2 (ja) 2009-03-23 2014-03-05 テルモ株式会社 吸引システム
US20150059750A1 (en) * 2009-10-07 2015-03-05 Richard J. Arnott Apparatus and method for maintaining airway patency and pressure support ventilation
CN102309813A (zh) * 2010-07-01 2012-01-11 林延龙 电磁刺激装置及方法
US20120029321A1 (en) * 2010-07-27 2012-02-02 Advanced Circulatory Systems, Inc. Airway adjunct resuscitation systems and methods
DK2621569T3 (en) 2010-09-28 2017-07-31 B&D Electromedical Ltd treatment Device
US8539952B2 (en) 2011-05-13 2013-09-24 Hill-Rom Services Pte. Ltd. Mechanical insufflation/exsufflation airway clearance apparatus
KR101180309B1 (ko) * 2012-03-27 2012-09-06 (주)서일퍼시픽 방향 전환 밸브 유닛 및 이를 이용한 기침 보조 장치
BR112014032002A2 (pt) * 2012-06-21 2017-06-27 Univ Fraser Simon sistemas de estimulação de diafragma transvascular e métodos de utilização
WO2014030099A1 (en) 2012-08-20 2014-02-27 Koninklijke Philips N.V. Synchronizing mechanical in-exsufflation and diaphragmatic pacing
CN202909297U (zh) * 2012-10-12 2013-05-01 郝文延 一种临时膈肌刺激器
JP6619738B2 (ja) * 2013-12-17 2019-12-11 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. 複数の呼吸支援モードのための両用部品

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040107960A1 (en) * 2002-12-06 2004-06-10 Hung-Ming Wu Composite medical equipment having the phlegm extraction and mist spraying functions
CN103619392A (zh) * 2011-06-29 2014-03-05 皇家飞利浦有限公司 用于辅助进行气道清除的方法和装置
CN102949770A (zh) * 2012-11-09 2013-03-06 张红璇 一种体外膈肌起搏与呼吸机协同送气的方法及其装置
CN103933648A (zh) * 2014-03-26 2014-07-23 北京雅果科技有限公司 一种膈肌刺激吸排气系统
CN203935485U (zh) * 2014-03-26 2014-11-12 北京雅果科技有限公司 一种膈肌刺激吸排气系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3127574A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113827786A (zh) * 2020-06-08 2021-12-24 河北金康安医疗器械科技有限公司 一种排痰装置
WO2022217676A1 (zh) * 2021-04-15 2022-10-20 深圳市安保科技有限公司 具有排痰功能的呼吸机控制方法及呼吸机
WO2022217675A1 (zh) * 2021-04-15 2022-10-20 深圳市安保科技有限公司 一种具有排痰功能的新型呼吸机

Also Published As

Publication number Publication date
US10463817B2 (en) 2019-11-05
KR101907594B1 (ko) 2018-12-10
CN107789710B (zh) 2020-03-31
CN107789710A (zh) 2018-03-13
US20170173283A1 (en) 2017-06-22
EP3127574B1 (en) 2021-12-22
CN103933648A (zh) 2014-07-23
CN103933648B (zh) 2016-09-07
EP3127574A4 (en) 2018-04-11
JP6588526B2 (ja) 2019-10-09
KR20160145044A (ko) 2016-12-19
EP3127574A1 (en) 2017-02-08
CN105451798B (zh) 2017-12-19
CN105451798A (zh) 2016-03-30
JP2017509465A (ja) 2017-04-06
ES2908982T3 (es) 2022-05-04

Similar Documents

Publication Publication Date Title
WO2015144064A1 (zh) 一种智能仿生排痰系统
CN106581833B (zh) 一种呼吸机
KR101477945B1 (ko) 전기적으로 제어가능한 고빈도 제트 환기식 후두경
CN103619392B (zh) 用于辅助进行气道清除的装置
CN104840351B (zh) 一种可穿戴式同步于呼气相的胸廓外按压式呼吸机
AU2006313454A1 (en) Combined ventilator inexsufflator
US10201474B2 (en) Method and apparatus for improved ventilation and cardio-pulmonary resuscitation
AU2018200037A1 (en) Apparatus and method for improved assisted ventilation
US20140135668A1 (en) Cardio-pulmonary resuscitation airway valve and devices
CN204910377U (zh) 一种带仿生排痰功能的无创呼吸机
AU2020201241B2 (en) Apparatus and method for improved assisted ventilation
CN201894770U (zh) 高强度负压脉动呼吸疾病治疗仪
CN108310728B (zh) 一种呼吸内科肺活量训练装置及其使用方法
CN105788421A (zh) 新型吸痰训练模型
CN205434614U (zh) 胸廓辅助呼吸装置
CN110237375B (zh) 一种呼吸机和负压排痰机
US20230059167A1 (en) Apparatus and method for improved assisted ventilation
CN203935485U (zh) 一种膈肌刺激吸排气系统
CN206880920U (zh) 一种呼吸机
CN213285551U (zh) 一种呼吸内科肺功能康复训练器
CN206120951U (zh) 一种排痰机及其膜片阀
CN105748278B (zh) 胸廓辅助呼吸装置
WO2022217675A1 (zh) 一种具有排痰功能的新型呼吸机
CN105125392A (zh) 呼吸辅助胸腔球囊反搏引流器及方法
CN208927327U (zh) 一种模拟正常人声带功能的咳嗽辅助装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201580000283.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15768007

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15128877

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017501452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015768007

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015768007

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167029904

Country of ref document: KR

Kind code of ref document: A