WO2015141902A1 - 유수분리 구조체 및 그 제조방법, 유수분리 장치, 및 상기 유수분리 장치를 이용한 유수분리방법 - Google Patents

유수분리 구조체 및 그 제조방법, 유수분리 장치, 및 상기 유수분리 장치를 이용한 유수분리방법 Download PDF

Info

Publication number
WO2015141902A1
WO2015141902A1 PCT/KR2014/006688 KR2014006688W WO2015141902A1 WO 2015141902 A1 WO2015141902 A1 WO 2015141902A1 KR 2014006688 W KR2014006688 W KR 2014006688W WO 2015141902 A1 WO2015141902 A1 WO 2015141902A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
water separation
water
separation structure
substrate
Prior art date
Application number
PCT/KR2014/006688
Other languages
English (en)
French (fr)
Inventor
문명운
이헌주
고태준
Original Assignee
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140041513A external-priority patent/KR101726402B1/ko
Application filed by 한국과학기술연구원 filed Critical 한국과학기술연구원
Publication of WO2015141902A1 publication Critical patent/WO2015141902A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/02Separation of non-miscible liquids
    • B01D17/04Breaking emulsions
    • B01D17/045Breaking emulsions with coalescers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/08Thickening liquid suspensions by filtration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D17/00Separation of liquids, not provided for elsewhere, e.g. by thermal diffusion
    • B01D17/08Thickening liquid suspensions by filtration
    • B01D17/10Thickening liquid suspensions by filtration with stationary filtering elements
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/288Treatment of water, waste water, or sewage by sorption using composite sorbents, e.g. coated, impregnated, multi-layered
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/007Contaminated open waterways, rivers, lakes or ponds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/08Nanoparticles or nanotubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/20Controlling water pollution; Waste water treatment
    • Y02A20/204Keeping clear the surface of open water from oil spills

Definitions

  • It relates to a oil-water separation structure and a method of manufacturing the nano-pattern structure on the surface, an oil-water separation device including the oil-water separation structure, and a oil-water separation method using the oil-water separation device.
  • the technique of removing oil from oil spilled rivers and seas uses a method of separating oil from water by controlling surface energy such as hydrophilicity and hydrophobicity of the surface.
  • Oil and water separation techniques can be classified into two categories. One of them is a superhydrophobic, superoleophilic filter with low surface energy, and oil is passed through, while the other is a hydrophilic or superhydrophilic filter with high surface energy. Oil is not passed through the water film formed on the wall. It is easy to use a filter with the latter technique to selectively separate oil from water and oil for collection. This requires a technique of hydrophilizing the filter.
  • hydrophilic to superhydrophilic surface on the material surface wet etching, UV treatment or plasma / ion treatment may be used.
  • hydrophilic or superhydrophilic surfaces can be obtained by increasing the roughness of the surface and controlling the chemical properties of the surface with a material having hydrophilic properties.
  • One aspect of the present invention is to provide an oil and water separation structure capable of large area and improved durability.
  • Another aspect of the present invention is to provide an oil-water separation apparatus including the oil-water separation structure.
  • Another aspect of the present invention to provide a method for producing the oil and water separation structure.
  • Another aspect of the present invention is to provide an oil-water separation method using the oil-water separation device.
  • a porous substrate including a plurality of protrusions forming a nano pattern on at least one surface
  • an oil separation structure comprising a.
  • the substrate may be in the form of a nonwoven, woven, or net.
  • the substrate has a curved shape
  • the nano-pattern may be formed on at least the concave surface of the curved shape.
  • the substrate may include at least one of plastic, fiber, glass, metal, ceramic, and carbon-based material.
  • the protrusions may be in the form of nano-hair, nano-fiber, nano-pillar, nano-rod or nano-wire. Can be.
  • the inorganic particles may include at least one of Ti, Cu, Au, Ag, Cr, Pt, Fe, Al, Si, alloys thereof, and oxides thereof.
  • the inorganic particles may include TiO 2 .
  • the oil-and-water separation structure may have a contact angle with respect to water in the air of 20 ° or less, and a contact angle with oil in the water may be 140 ° or more.
  • an oil / water separator including the oil / oil separator.
  • the oil-water separation apparatus may be a garden chaff comprising the oil-water separation structure and a support frame for fixing it.
  • the garden vegetable can only remove oil from water among water and oil.
  • the oil and water separation structure may be applied to the oil fence.
  • an oil / water separation structure comprising a.
  • the substrate may be in the form of a nonwoven, woven, or net.
  • the substrate may include at least one of plastic, fiber, glass, metal, ceramic, and carbon-based material.
  • the metal network structure may include at least one of Ti, Cu, Au, Ag, Cr, Pt, Fe, Al, Si, alloys thereof, and oxides thereof.
  • the metal mesh structure may be positioned at an interval of 20 mm or less above the substrate.
  • the plasma processing step the plasma processing step
  • the deposition step and the etching step may be performed simultaneously under the same plasma treatment conditions.
  • the plasma treatment may be performed using at least one gas selected from O 2 , CF 4 , Ar, N 2 , and H 2 .
  • the metal network structure may include Ti, and the plasma treatment may be performed using O 2 gas.
  • the plasma treatment may be performed for 10 seconds to 5 hours at a pressure of 1 to 1000 mTorr in the voltage range of -100V to -1000V.
  • an oil and water separation method which includes selectively passing water and collecting oil from water and oil using an oil and water separation device.
  • the oil / water separator may further include a pretreatment step of wetting the water / oil separator.
  • the oil-water separation apparatus may further comprise the step of UV treatment.
  • the oil-separated structure according to one aspect has hydrophilic to superhydrophilic surface properties, so that water in the water and oil can selectively pass through, and oil can be easily separated and collected.
  • the oil and water separation structure is an environmentally friendly manufacturing process, it is possible to large area.
  • the oil and water separation apparatus including the oil and water separation structure can be repeatedly used to prevent additional environmental pollution.
  • FIG. 1 is a view schematically showing a cross-sectional structure of the oil and water separation structure according to an embodiment.
  • FIG. 2 is a schematic diagram for explaining a method of manufacturing an oil / water separation structure according to an embodiment.
  • FIG. 3 is a diagram illustrating a method of manufacturing the oil / water separation structure according to one embodiment.
  • FIG. 4 is a perspective view showing the appearance of the garden garden according to an embodiment.
  • FIG. 5 is a cross-sectional view schematically illustrating a cross section of the garden vegetables of FIG. 4.
  • Example 6 is a scanning electron microscope (Scanning Electron Microscope, SEM) photograph showing a step of forming a nano-pattern according to the oxygen plasma treatment time in Example 1.
  • FIG. 8A is a comparison photograph of wettability of water of the oil / water separation structure prepared in Comparative Example 1 and Example 1.
  • FIG. 8A is a comparison photograph of wettability of water of the oil / water separation structure prepared in Comparative Example 1 and Example 1.
  • Figure 8b is a graph measuring the contact angle with respect to the water according to the plasma treatment time of the oil and water separation structure prepared in Comparative Example 1 and Example 1.
  • FIG. 9A is a comparative photograph of observation of wettability of oil in air of the oil / water separation structures prepared in Comparative Example 1 and Example 1.
  • FIG. 9A is a comparative photograph of observation of wettability of oil in air of the oil / water separation structures prepared in Comparative Example 1 and Example 1.
  • FIG. 9B is a comparison photograph of the wettability of oil in water of the oil / water separation structure prepared in Comparative Example 1 and Example 1.
  • FIG. 9B is a comparison photograph of the wettability of oil in water of the oil / water separation structure prepared in Comparative Example 1 and Example 1.
  • Figure 9c is a graph measuring the contact angle for the oil according to the plasma treatment time of the oil and water separation structure prepared in Comparative Example 1 and Example 1.
  • FIG. 10 is a view showing the concept of oil and water separation of the garden vegetable using the general nonwoven fabric used in Comparative Example 1 ((a) before plasma treatment) and the oil / water separation structure prepared in Example 1 ((b) after plasma treatment).
  • Figure 11a is a photograph showing the oil and water separation effect of the garden using the nonwoven fabric (before (a) plasma treatment) used in Comparative Example 1.
  • Figure 11b is a photograph showing the oil and water separation effect of the garden using the oil and water separation structure ((b) after the plasma treatment) prepared in Example 1.
  • oil-water separation structure and its manufacturing method
  • oil-water separation apparatus including the oil-water separation structure
  • oil-water separation method using the oil-water separation apparatus
  • Oil-water separation structure according to one aspect,
  • a porous substrate including a plurality of protrusions forming a nano pattern on at least one surface
  • FIG. 1 schematically illustrates a cross-sectional structure of an oil / water separation structure according to an embodiment.
  • the plurality of nano-sized protrusions 4a may be repeated at uniform intervals to form a uniform nano pattern over the entire surface of the substrate 1 surface, and at the ends of the protrusions 4a.
  • the inorganic particle 3 is arrange
  • the substrate 1 may have a flat or curved shape.
  • the nanopattern may be formed on at least the concave surface of the curved shape.
  • the base material 1 has a curved shape, in selectively passing water among water and oil and collecting only oil, the highly volatile oil may be collected inside the curved surface to reduce the surface area where oil evaporates. Improve oil collection efficiency.
  • the substrate 1 is not limited in size, for example, the area may be 100 cm 2 or more.
  • the substrate 1 may have a large area of, for example, 10 cm X 10 cm or more.
  • the thickness of the substrate 1 is not limited.
  • the substrate 1 is not limited in form as long as it is a porous or network structure having a hole through which water can pass.
  • the substrate 1 may be, for example, in the form of a nonwoven fabric, a woven fabric, or a net.
  • the base material 1 is a fiber material, it may be preferable that it is in the form of a nonwoven fabric.
  • a net form or a woven fabric may also be used.
  • the net substrate 1 may be, for example, in the form of a mesh of 10 to 500 mesh. Water is drawn off in the mesh range, and only oil can be selectively filtered out.
  • the mesh exceeds 500 mesh, the mesh size is excessively small, and the speed of water dropping is remarkably reduced, which may cause a problem in oil-water separation efficiency. If the mesh size is less than 10 mesh, the mesh size is excessively large, which may cause oil to escape.
  • the substrate 1 may include at least one of a plastic, fiber, glass, metal, ceramic, and carbon-based material as a material forming the substrate 1.
  • the plastic is not particularly limited, and may include, for example, at least one of polypropylene, polyethylene terephthalate, polyvinylidene fluoride, polytetrafluoroethylene, copolymers thereof, and combinations thereof.
  • the fibers may comprise natural fibers, artificial fibers or combinations thereof.
  • the natural fiber for example, cotton, hemp, wool, silk, asbestos fibers, a combination thereof may be used.
  • the artificial fibers include: i) regenerated fibers such as rayon, modal, tencel, lyocell, polynosic, and the like; ii) semisynthetic fibers such as acetate and triacetate; iii) polyamides such as nylon, nomex, kevlar, polyolefins such as polyethylene and polypropylene, polyesters such as polyethylene terephthalate, acrylic, poly (meth) acrylates, polyvinyl alcohol (PVA), poly Synthetic fibers such as urethane, polyvinyl chloride (PVC), polyvinylidene chloride (PVDC), and polystyrene; And inorganic fibers such as glass fiber, but are not limited thereto.
  • the metal is iron (Fe), aluminum (Al), stainless steel (stainless steel), copper (Cu), platinum (Pt), gold (Au), silver (Ag), titanium (Ti), silicon (Si), Or alloys thereof, and combinations thereof.
  • the carbonaceous material may include graphite, carbon fiber, diamond, graphene, or a combination thereof.
  • At least one surface of the porous substrate 1 includes a plurality of protrusions 4a forming a nano pattern.
  • the protrusion 4a may have a diameter in the range of 1 to 100 nm, a length in the range of 1 to 10,000 nm, and an aspect ratio of 1 to 50.
  • the protrusion may have a shape such as nano-hair, nano-fiber, nano-pillar, nano-rod, or nano-wire. ) To form a nano pattern on the surface. According to the manufacturing method to be described later, the nano-pattern may be uniformly formed on the surface of the large-area substrate.
  • the inorganic particle 3 is arrange
  • a plurality of inorganic particles 3 may be aggregated to form clusters.
  • the inorganic particles 3 may be disposed at the ends of almost all or all of the protrusions 4a, some inorganic particles 3 may be scraped off during the etching process by the plasma treatment in the manufacturing method described later.
  • the inorganic particle 3 may not be arrange
  • the inorganic particles 3 may include a metal or a metal oxide capable of imparting suitable surface properties according to oil and water separation applications.
  • the inorganic particles 3 may include metals or metal oxides that impart hydrophilicity to superhydrophilicity such that water passes through the oil separation structure and oil does not pass.
  • the metal or metal oxide may be derived from a metal network structure used in the manufacturing process described later.
  • the inorganic particles may include at least one of Ti, Cu, Au, Ag, Cr, Pt, Fe, Al, Si, alloys thereof, and oxides thereof.
  • the hydrophilic surface properties of the nanopatterns themselves may be further modified to be superhydrophilic. You can.
  • the oil / water separation structure may have super-hydrophilic surface characteristics of 20 ° or less in contact angle with water due to chemical bonding with inorganic particles that impart hydrophilicity to the surface of the nanopattern formed substrate.
  • the oil-separated structure having such a superhydrophilic surface has a very high surface state, and thus may have a lipophilic property with respect to oil having a low surface energy.
  • oil is not absorbed by the oil and water separation structure, and exhibits superoleophobicity that maintains a spherical droplet form. Accordingly, the oil / water separation structure may have a contact angle for oil in water, for example, 140 ° or more in water.
  • the method of manufacturing the oil / water separation structure is not limited to the area or the cross-sectional shape of the substrate, and in particular, the oil / water separation structure in which the nano-pattern is uniformly formed on the surface over a large area may be relatively simple to be environmentally friendly.
  • FIG. 2 is a schematic diagram for explaining a method of manufacturing an oil / water separation structure according to an embodiment.
  • FIG 3 is a step-by-step view illustrating a method of manufacturing a nanocomposite structure according to an embodiment.
  • the metal network structure 2 is placed above the base material 1, and plasma processing is performed.
  • the type and shape of the substrate 1 are the same as described above with respect to the oil / water separation structure according to the embodiment, and thus, a detailed description thereof will be omitted.
  • the metal network structure 2 is not only a raw material of the inorganic particles 3 to be coated on the surface of the oil and water separation structure, but also inorganic particles of metal or metal oxides generated from the metal network structure 2 during the plasma treatment described later. (3) can be uniformly deposited on the entire surface of the substrate 1.
  • the inorganic particles 3 serve as masks or inhibitors to selectively etch portions of the substrate 1 on which the inorganic particles 3 are not deposited, thereby allowing nano-patterns to be selectively etched on the surface of the substrate 1. This can be formed.
  • the use of the metal network structure 2 enables the inorganic particles 3 to be uniformly deposited on the entire surface of the substrate 1, thereby enabling a large area of the oil / water separation structure.
  • the metal mesh structure 2 may include a metal or a metal oxide capable of imparting suitable surface properties according to oil and water separation applications.
  • the metal network structure 2 may include a metal or metal oxide that imparts hydrophilicity to superhydrophilicity so that water passes through the oil separation structure and oil does not pass through the oil / separation structure.
  • the metal network structure 2 may include at least one of Ti, Cu, Au, Ag, Cr, Pt, Fe, Al, Si, alloys thereof, and oxides thereof.
  • the metal network structure 2 including Ti by forming a nano-pattern coated with TiO 2 particles, it is possible to modify the surface of the oil-water separation structure with superhydrophilic.
  • the metal mesh structure 2 can be used without limitation as long as it has a network structure so that the metal or metal oxide inorganic particles 3 generated therefrom can be uniformly deposited throughout the substrate 1.
  • the metal mesh structure 2 may be formed of a metal mesh woven of a metal wire in a mesh form.
  • the diameter, spacing, and the like of the metal wire constituting the metal mesh structure 2 are not particularly limited, and may be adjusted according to a desired nanopattern structure.
  • the spacing of the metal wires forming the metal mesh structure 2 may range from 10 ⁇ m to 500 ⁇ m.
  • the size of the metal mesh structure 2 may be selected to match the size of the substrate 1 to form a nano-pattern.
  • the metal network structure 2 may be positioned at a predetermined distance on the substrate 1.
  • the substrate 1 and the metal mesh 2 may be 20 mm or less.
  • the inorganic particles 3 of the metal or metal oxide generated from the metal network structure 2 may fall on the surface of the substrate immediately below the metal network structure 2, so that the substrate ( 1) It can be uniformly deposited on the entire surface.
  • the metal network structure 2 is in contact with the substrate 1, the portion of the substrate 1 to which the metal network structure 2 contacts is not etched by plasma treatment, so that the portion where the nanopattern is not formed increases. The more oil-separated structure will be, the less oil-water separation efficiency will be. Therefore, it is preferable that the metal network structure 2 does not contact the surface of the substrate 1.
  • the substrate 1 on which the metal network structure 2 is located is subjected to plasma treatment.
  • the surface of the substrate 1 may have hydrophilic to superhydrophilic characteristics by plasma treatment.
  • the plasma processing step the plasma processing step
  • the metal or metal oxide inorganic particles 3 generated from the metal network structure 2 are separated and deposited on the surface of the substrate 1.
  • the inorganic particles 3 may form clusters during plasma processing.
  • Subsequent plasma treatment of the substrate 1 on which the metal or metal oxide inorganic particles 3 are deposited may selectively etch portions of the surface of the substrate 1 on which the metal or metal oxide inorganic particles 2 are not deposited. While forming a nano-pattern structure on the surface of the substrate (1).
  • inorganic particles 3 of metals or metal oxides are deposited on the surface of the substrate 1, they act as inhibitors to the etching effect of the plasma, where the rate of etching is significantly slower, whereas metal
  • the etching speed is increased there, and as a result, nano-hair and nano-particles are formed on the surface of the substrate 1. It is possible to form a nanopattern composed of first protrusions 4a in the form of fibers (nan-fiber), nano-pillars, nano-rods, or nano-wires.
  • the deposition of the metal or metal oxide inorganic particles 3 and the etching of the substrate 1 may be simultaneously performed under the same plasma treatment conditions.
  • the metal network structure 2 may be continuously maintained on the substrate 1 while the etching by the plasma treatment is continued.
  • the metal or metal oxide inorganic particles 3 deposited on the substrate 1 are also scraped off by sputtering little by little, so that the inorganic particles 3 which will act as inhibitors during long time etching continue. Because it needs to be supplied. Therefore, by performing the plasma treatment continuously without removing the metal network structure 2, the metal or metal oxide inorganic particles 3 can be continuously supplied and the cluster can be maintained.
  • the plasma treatment may form nano-pattern structures of various types by adjusting the conditions and the treatment time.
  • the plasma treatment may be performed in the presence of at least one gas selected from O 2 , CF 4 , Ar, N 2 , and H 2 .
  • the surface of the substrate 1 can be combined with oxygen by a plasma treatment to provide a hydrophilic surface having persistence.
  • the pressure during the plasma treatment may be, for example, 1 to 1000 mTorr, and even higher atmospheric pressure may be possible.
  • the plasma treatment may be performed, for example, in a voltage range of -100 V to -1000 V, for 10 seconds to 5 hours at a pressure of 1 to 1000 mTorr. Can be done.
  • the substrate surface may change from hydrophilic to superhydrophilic.
  • the contact angle with water may decrease to 20 ° or less, 10 ° or less, 5 ° or less, or even 1 ° or less while increasing the superhydrophilicity of the substrate surface.
  • the contact angle with respect to the pure water of the surface of a base material is defined as hydrophilicity 20 degrees or less, and the contact angle is defined as super hydrophilicity 10 degrees or less.
  • the manufacturing method of the oil and water separation structure is environmentally friendly, and can be surface-treated in a large area to realize a large area of the oil and water separation structure.
  • the oil-separation structure manufactured as described above may be applied to various oil-water separation apparatuses.
  • Oil-water separation device includes the above-described oil-water separation structure.
  • the oil / oil separator may be implemented by any suitable means or various structures that can be applied to oil / oil separation using the oil / oil separator.
  • the oil and water separation device may further include a reinforcing material for supporting the oil and water separation structure.
  • the reinforcing material serves to support the oil-separation structure so that the oil-water separation structure is not deformed by oil or externally applied high pressure.
  • the reinforcing material may be formed of at least one of a metal rod, a metal mesh, a polymer rod, and a polymer mesh.
  • the reinforcing material may be disposed on the opposite side of the oil filtering side from the oil / oil separation structure, that is, the surface from which the water escapes.
  • the oil and water separation apparatus can improve the structural stability by the reinforcing material.
  • the reinforcing material may also be used by forming a nano pattern consisting of a plurality of protrusions on at least one surface through the above-described plasma treatment.
  • the oil and water separation structure may be applied to the floating garden oil existing on the water surface.
  • the garden leaf may include the oil-separation structure and a support frame capable of supporting it.
  • FIG. 4 is a perspective view showing the appearance of the garden garden according to an embodiment
  • Figure 5 is a cross-sectional view schematically showing a cross section of the garden garden of Figure 4;
  • the garden chaff includes an oil / water separation structure 10 and a support frame 20 supporting the oil and water separation structure 10.
  • the oil / water separation structure 10 is fixed to the support frame 20. If the oil / water separation structure 10 has sufficient rigidity by itself, there may be no additional support frame 20.
  • the landing net may further include a handle.
  • the oil / water separation structure 10 fixed to the support frame 20 may increase the efficiency of collecting volatile oil, and the oil / water separation structure 10 may have a curved shape.
  • the oil / water separation structure 10 may have a hemispherical shape as a whole.
  • the shape of the oil / water separation structure 10 is not particularly limited.
  • the oil / water separation structure may have a cylindrical shape having a flat bottom, or may have a rectangular box shape.
  • the inner surface of the garden cloth is formed with a nano-pattern through the plasma treatment as described above, and only water may be drained through the hole formed in the oil and water separation structure of the garden cloth to selectively filter oil. .
  • the oil and water separation structure may be applied to the oil fence.
  • the oil fence using the oil separation structure of the oil leaked in the sea, rivers, rivers when the oil spill due to the operation of the vessel, the sinking accident of the vessel, even oil accidents on land, refinery, oil storage, oil pipeline, gas station, etc. This prevents the oil from spreading to the shore.
  • the oil fence using the oil and water separation structure may be installed so that the oil can be trapped in one place in the event of an oil spill.
  • the oil fence has a superhydrophilic property on the surface, and the water film formed after soaking in water has a super-oil repelling property, so that oil collected in the oil fence can be easily collected by using another type of oil / water separator. Can be.
  • Oil and oil separation method according to one aspect using the above-described oil and water separation device, the step of selectively passing the water in the water and oil and collecting the oil.
  • the oil / water separation apparatus As the oil / water separation structure exhibits hydrophilicity to superhydrophilicity, the oil / water separation apparatus has high wettability and easily passes water. Accordingly, when the liquid mixed with oil and water passes through the oil / water separator, water easily passes through the oil / oil separator, but oil does not pass through the oil / oil separator due to the repulsive force of water, It will be filtered out.
  • it in carrying out the oil-water separation, before using the oil-water separation device, it may further comprise a pretreatment step of wetting the oil-water separation device in water.
  • a pretreatment step of wetting the oil-water separation device in water Through the process of soaking in water, it is possible to form a water film on the surface of the oil and water separation structure to filter oil on it more efficiently.
  • the oil-water separation apparatus may further comprise the step of UV treatment.
  • the UV treatment may further improve the hydrophilicity of the inorganic particles coated on the nanopattern, and may repeatedly use the oil / water separator used more than once through the UV treatment.
  • the morphological structures of the surfaces prepared in the following Examples and Comparative Examples were examined by scanning electron microscopy (SEM, FEI, Nova NanoSEM 200, USA).
  • the contact angle (CA) for water was measured with a contact angle meter (Goniometer, Rame-Hart, USA).
  • the volume of each droplet used for the static contact angle was 8 ⁇ l. Average CA values were obtained by measuring at five different locations for the same sample.
  • a circular polyethylene terephthalate nonwoven fabric having a diameter of 160 mm and a thickness of 1 mm was applied as an oil-separation structure without plasma treatment.
  • a circular polyethylene terephthalate nonwoven fabric having a diameter of 160 mm and a thickness of 1 mm (manufactured by SK Chemical) was used.
  • Ti mesh As the metal mesh, Ti mesh (Nilaco Co., Ltd, circular: 160 mm in diameter, wire spacing: 320 ⁇ m, wire diameter: 180 ⁇ m) was used, and as a plasma treatment apparatus, a radio-frequency generator (manufacturer: Advanced Energy, Product Name: RTX-600) Used.
  • the substrate was placed on the cathode in the chamber of the plasma processing apparatus.
  • the Ti mesh was positioned at a distance of 2 mm on the substrate, and the distance between the mesh and the substrate was adjusted by stacking a support on the mesh rim and placing the mesh thereon to fix the mesh.
  • a plasma treatment for 30 minutes at a voltage, pressure, the conditions of O 2 gas of 10sccm 50mTorr of -400V was produced water separation structure.
  • FIG. 6 is a SEM photograph illustrating a step of forming a nanopattern according to an oxygen plasma treatment time in Example 1.
  • FIG. 4 it can be seen that the protrusion height of the nano-pattern formed on the fiber of the nonwoven fabric is formed in a range of 10 nm to 1 mm in proportion to the plasma treatment time.
  • FIG. 7 is a result of analyzing the surface components of the oil and water separation structure prepared in Comparative Example 1 and Example 1 using an X-ray photoelectron spectroscopy (XPS). As shown in FIG. 7, when oxygen plasma treatment was performed using the Ti mesh, it can be confirmed that TiO 2 was formed on the surface of the substrate. On the other hand, when the plasma treatment is not performed, it can be seen that there is no result for the metal element on the substrate surface.
  • XPS X-ray photoelectron spectroscopy
  • FIG. 8A is a comparison photograph illustrating wettability of water of the oil / water separation structures prepared in Comparative Examples 1 and 1
  • FIG. 8B is a plasma treatment time of the oil / water separation structures prepared in Comparative Examples 1 and 1 according to the present invention. It is a graph measuring the contact angle with respect to water.
  • the contact angle with respect to water is 126 ° so that the water does not enter between the pores and exists only on the surface of the porous substrate. Hydrophilic chemical bonds on the surface of the substrate increase the contact angle to the water at 0 °, allowing the water to pass between the pores of the porous substrate, and if the amount of water is sufficient, it can escape under the porous substrate by gravity. Able to know.
  • FIG. 9A is a comparative photograph illustrating the wettability of oil in air of the oil and water separation structures prepared in Comparative Examples 1 and 1
  • FIG. 9B is the water of the oil and water separation structures prepared in Comparative Examples 1 and 1
  • 9 is a graph illustrating a contact angle of oil with respect to the plasma treatment time of the oil / water separation structures prepared in Comparative Example 1 and Example 1, respectively.
  • the porous substrate before the plasma treatment did not form a water film on the surface of the oil contact the porous structure to form a contact angle of 40 °.
  • the plasma-treated porous substrate has improved hydrophilicity, which improves the bonding force between the water film and the porous substrate, and thus, the water film formed on the surface of the porous substrate prevents oil from directly contacting the porous substrate and forms a contact angle of 165 °. .
  • This super-oil phenomena in water can be explained by the formula for the three-phase system consisting of solid / water / oil shown below. Cheng et al, ACS Applied Materials & Interfaces, 21 (2013), 11363-70.
  • ⁇ ow increases as ⁇ w decreases.
  • ⁇ wa ⁇ oa
  • ⁇ o the same 0 ° before and after plasma.
  • FIG. 10 is a conceptual diagram of oil garden separation using the general nonwoven fabric used in Comparative Example 1 ((a) before plasma treatment) and the oil separation structure prepared in Example 1 ((b) after plasma treatment) and a photograph showing the oil separation effect. to be.
  • the surface of the porous substrate having a curved surface showed hydrophobicity and water did not pass through the pores so that water and oil were mixed on the porous substrate.
  • oil has a smaller specific gravity than water, and it floats on water, so water and oil are kept on the surface at the same time.
  • the porous substrate of Example 1 which has been treated with plasma, has nanopatterns having superhydrophilic properties on its surface, and when water and oil are floated together, water having a high specific gravity preferentially contacts the surface of the hydrophilic porous substrate. Due to the strong bonding between the water and the substrate, the remaining water falls down by gravity while forming a water film coating.
  • the oil Since the oil is in contact with the surface of the porous substrate on which the water film is formed, the oil remains separated on the porous substrate as it does not pass between the pores due to repulsion by the water film.
  • the oil floats in the gardening net, causing the water to drain between the gardening nets and leaving the oil remaining so that the oil can be placed in another oil container. This separated oil may be reused as is.

Abstract

유수분리 구조체 및 그 제조방법, 상기 유수분리 구조체를 포함하는 유수분리 장치, 및 상기 유수분리 장치를 이용한 유수분리방법이 제공된다. 상기 유수분리 구조체는 적어도 일 표면에 나노 패턴을 형성하는 복수개의 돌출부를 포함하는 다공성 기재; 및 상기 돌출부 중 적어도 일부의 단부에 배치된 무기 입자;를 포함한다. 상기 유수분리 구조체는 친수성 내지 초친수성 표면 특성을 가짐으로써, 물과 기름 중 물은 선택적으로 통과시키고, 기름을 용이하게 분리하여 수거해 낼 수 있다. 상기 유수분리 구조체는 제조공정이 친환경적이고, 대면적화가 가능하다. 상기 유수분리 구조체를 포함하는 유수분리 장치는 반복 사용이 가능하여 추가적인 환경오염을 방지할 수 있다.

Description

유수분리 구조체 및 그 제조방법, 유수분리 장치, 및 상기 유수분리 장치를 이용한 유수분리방법
표면에 나노 패턴 구조를 유수분리 구조체 및 그 제조방법, 상기 유수분리 구조체를 포함하는 유수분리 장치, 및 상기 유수분리 장치를 이용한 유수분리방법에 관한 것이다.
기름이 유출된 강이나 바다에서 기름을 제거하는 기술은, 표면의 친수성과 소수성과 같은 표면에너지를 조절함으로써, 유출된 기름을 물에서부터 분리하여 제거하는 방법을 이용하고 있다.
기름과 물을 분리하는 기술(이하 유수분리 기술)은 크게 두 가지로 분류될 수 있다. 그 중 하나는 표면에너지가 낮은 초소수성이면서 초친유성의 필터를 이용하여 기름은 통과시키고 물은 거르는 방법이고, 또 다른 하나는 표면에너지가 높은 친수성 혹은 초친수성 필터를 이용하여 물은 통과시키고 필터 사이에 형성된 수막에 의해 기름은 통과시키지 않는 방법이다. 물과 기름으로부터 기름을 선택적으로 분리해 내어 수거하기 위해서는 후자의 기술이 적용된 필터를 이용하는 것이 용이하다. 이를 위해서 필터를 친수화 하는 기술이 필요하다.
재료 표면에 친수성 내지 초친수성 표면을 형성시키는 방법으로는 습식 식각 (wet etching), UV 처리 또는 플라즈마/이온 처리 등이 이용될 수 있다. 특히, 표면의 거칠기를 증가시키고, 친수성 성질을 가진 재료를 이용하여 표면의 화학적 성질을 조절하면, 친수 또는 초친수 표면을 얻을 수 있다고 알려져 있다.
그러나, 다양한 소재 및 박막 표면에서 이러한 친수 특성을 구현하려는 시도가 이루어지고 있지만, 일반 물질의 표면에 형성된 친수성은 시간이 지남에 따라서 쉽게 사라지는 단점이 있다. 이는, 친수 표면의 표면에너지가 상대적으로 높아서, 표면에너지를 낮추기 위하여 공기 중의 물 분자 또는 탄화수소와 같은 미세 입자와 쉽게 결합하려는 경향을 가지게 되고, 이러한 결합이 이루어지면 표면에너지가 낮아지면서 친수성이 상실되기 때문이다. 종래에 알려져 있는 방법에 의한 대부분의 친수 또는 초친수 처리는 수 시간 또는 수 일 내에 효과가 상실되므로, 친수 또는 초친수 특성이 오랫동안 유지되도록 하는 연구가 다양하게 진행되고 있다. 또한, 친수 또는 초친수 표면을 제조함에 있어서 대면적화나 대량 생산 또한 요구된다.
한편, 산업이 고도화됨에 따라 환경 문제가 크게 부각되고, 유수분리, 해수담수화와 같이 혼합물로부터 특정 물질을 분리 및/또는 제거하기 위한 소재에 대한 연구가 지속적으로 증가하고 있다. 또한, 최근 대두되고 있는 원유 유출사고 발생시 원유를 1차적으로 회수해야 하고 회수된 원유를 재사용할 수 있으며 회수 과정에서 발생하는 2차 환경 오염을 유발하지 않는 유수 분리 기법을 위한 많은 연구가 진행되고 있다.
따라서, 제조공정이 친환경적이고, 내구성이 뛰어난 대면적의 유수분리 구조체에 대한 개발이 필요하다.
본 발명의 일 측면은 대면적화가 가능하고 내구성이 향상된 유수분리 구조체를 제공하는 것이다.
본 발명의 다른 측면은 상기 유수분리 구조체를 포함하는 유수분리 장치를 제공하는 것이다.
본 발명의 또 다른 측면은 상기 유수분리 구조체의 제조방법을 제공하는 것이다.
본 발명의 또 다른 측면은 상기 유수분리 장치를 이용한 유수분리방법을 제공하는 것이다.
상기 과제를 달성하기 위하여 본 발명의 일 측면에서는,
적어도 일 표면에 나노 패턴을 형성하는 복수개의 돌출부를 포함하는 다공성 기재; 및
상기 돌출부 중 적어도 일부의 단부에 배치된 무기 입자;
를 포함하는 유수분리 구조체가 제공된다.
일 실시예에 따르면, 상기 기재는 부직포, 직물, 또는 망 형태일 수 있다.
일 실시예에 따르면, 상기 기재는 곡면 형상을 가지며, 상기 나노 패턴이 적어도 상기 곡면 형상의 오목한 면에 형성될 수 있다.
일 실시예에 따르면, 상기 기재는 플라스틱, 섬유, 유리, 금속, 세라믹, 및 탄소계 물질 중 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 상기 돌출부는 나노 헤어(nano-hair), 나노 섬유(nan-fiber), 나노 필라(nano-pillar), 나노 로드(nano-rod) 또는 나노 와이어(nano-wire) 형태일 수 있다.
일 실시예에 따르면, 상기 무기 입자는, Ti, Cu, Au, Ag, Cr, Pt, Fe, Al, Si, 이들의 합금, 및 이들의 산화물 중 적어도 하나를 포함할 수 있다. 예를 들어, 상기 무기 입자는 TiO2를 포함할 수 있다.
일 실시예에 따르면, 상기 유수분리 구조체는 공기중 물에 대한 접촉각이 20° 이하이고, 수중 기름에 대한 접촉각이 140° 이상일 수 있다.
본 발명의 다른 측면에서는, 상기 유수분리 구조체를 포함하는 유수분리 장치가 제공된다.
일 실시예에 따르면, 상기 유수분리 장치는 상기 유수분리 구조체 및 이를 고정하는 지지 프레임을 포함하는 뜰채일 수 있다. 상기 뜰채는 물과 기름 중 물에서 기름만을 떠낼 수 있다.
일 실시예에 따르면, 상기 유수분리 구조체는 오일펜스에 적용될 수 있다.
본 발명의 또 다른 측면에서는,
다공성 기재를 준비하는 단계;
금속 망 구조체를 상기 기재의 상방에 위치시키는 단계; 및
상기 금속 망 구조체가 위치한 상기 기재를 플라즈마 처리하는 단계;
를 포함하는 유수분리 구조체의 제조방법이 제공된다.
일 실시예에 따르면, 상기 기재는 부직포, 직물, 또는 망 형태일 수 있다.
일 실시예에 따르면, 상기 기재는 플라스틱, 섬유, 유리, 금속, 세라믹, 및 탄소계 물질 중 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 상기 상기 금속 망 구조체는 Ti, Cu, Au, Ag, Cr, Pt, Fe, Al, Si, 이들의 합금, 및 이들의 산화물 중 적어도 하나를 포함할 수 있다.
일 실시예에 따르면, 상기 금속 망 구조체는 상기 기재의 상방에 20mm 이하의 간격을 두고 위치시킬 수 있다.
일 실시예에 따르면, 상기 플라즈마 처리 단계는,
플라즈마 처리를 통하여, 상기 금속 망 구조체로부터 발생된 금속 또는 금속 산화물 무기 입자를 상기 기재 표면에 증착하는 단계; 및
플라즈마 처리를 통하여, 상기 기재 표면에서 상기 금속 또는 금속 산화물 무기 입자가 증착된 부분 이외의 나머지 부분을 식각하는 단계;를 포함할 수 있다.
상기 증착 단계 및 식각 단계는 동일한 플라즈마 처리 조건에서 동시에 수행될 수 있다.
일 실시예에 따르면, 상기 플라즈마 처리는 O2, CF4, Ar, N2, 및 H2 중 선택된 1종 이상의 가스를 이용하여 행해질 수 있다.
일 실시예에 따르면, 상기 금속 망 구조체는 Ti를 포함하고, 상기 플라즈마 처리는 O2 가스를 이용하여 수행될 수 있다.
일 실시예에 따르면, 상기 플라즈마 처리는 -100V 내지 -1000V의 전압 범위에서, 1 내지 1000 mTorr의 압력에서 10초 내지 5시간 동안 수행될 수 있다.
본 발명의 또 다른 측면에서는, 유수분리 장치를 이용하여, 물과 기름 중 물을 선택적으로 통과시키고 기름을 수거하는 단계를 포함하는 유수분리방법이 제공된다.
일 실시예에 따르면, 상기 유수분리 장치를 사용하기 전에, 상기 유수분리 장치를 물에 적시는 전처리 단계를 더 포함할 수 있다.
일 실시예에 따르면, 상기 기름 수거 후, 상기 유수분리 장치를 UV 처리하는 단계를 더 포함할 수 있다.
일 측면에 따른 상기 유수분리 구조체는 친수성 내지 초친수성 표면 특성을 가짐으로써, 물과 기름 중 물은 선택적으로 통과시키고, 기름을 용이하게 분리하여 수거해 낼 수 있다. 상기 유수분리 구조체는 제조공정이 친환경적이고, 대면적화가 가능하다. 상기 유수분리 구조체를 포함하는 유수분리 장치는 반복 사용이 가능하여 추가적인 환경오염을 방지할 수 있다.
도 1은 일 실시예에 따른 유수분리 구조체의 단면 구조를 개략적으로 나타낸 도면이다.
도 2는 일 실시예에 따른 유수분리 구조체의 제조방법을 설명하기 위한 모식도이다.
도 3은 일 실시예에 따른 유수분리 구조체의 제조방법을 단계적으로 나타낸 도면이다.
도 4는 일 실시예에 따른 뜰채의 외관을 도시한 사시도이다.
도 5는 도 4의 뜰채의 단면을 개략적으로 도시한 단면도이다.
도 6은 실시예 1에서 산소 플라즈마 처리 시간에 따른 나노 패턴의 형성 과정을 단계별로 보여주는 주사전자현미경 (Scanning Electron Microscope, SEM) 사진이다.
도 7은 비교예 1 및 실시예 1에서 제조한 유수분리 구조체의 표면 성분을 광전자 분광기 (X-ray photoelectron spectroscopy, XPS)를 이용하여 분석한 결과이다.
도 8a는 비교예 1 및 실시예 1에서 제조한 유수분리 구조체의 물에 대한 젖음성을 관찰한 비교 사진이다.
도 8b는 비교예 1 및 실시예 1에서 제조한 유수분리 구조체의 플라즈마 처리 시간에 따른 물에 대한 접촉각을 측정한 그래프이다.
도 9a는 비교예 1 및 실시예 1에서 제조한 유수분리 구조체의 공기중에서 기름에 대한 젖음성을 관찰한 비교 사진이다.
도 9b는 비교예 1 및 실시예 1에서 제조한 유수분리 구조체의 물 속에서 기름에 대한 젖음성을 관찰한 비교 사진이다.
도 9c는 비교예 1 및 실시예 1에서 제조한 유수분리 구조체의 플라즈마 처리 시간에 따른 기름에 대한 접촉각을 측정한 그래프이다.
도 10은 비교예 1에서 사용한 일반 부직포((a) 플라즈마 처리 전) 및 실시예 1에서 제조한 유수분리 구조체((b) 플라즈마 처리 후)를 이용한 뜰채의 유수분리 개념을 보여주는 도면이다.
도 11a는 비교예 1에서 사용한 일반 부직포((a) 플라즈마 처리 전)를 이용한 뜰채의 유수분리 효과를 보여주는 사진이다.
도 11b는 실시예 1에서 제조한 유수분리 구조체((b) 플라즈마 처리 후)를 이용한 뜰채의 유수분리 효과를 보여주는 사진이다.
이하, 도면을 참조하여 일 구현예에 따른 유수분리 구조체 및 그 제조방법, 상기 유수분리 구조체를 포함하는 유수분리 장치, 및 상기 유수분리 장치를 이용한 유수분리방법에 대해 상세히 설명하고자 한다.
일 측면에 따른 유수분리 구조체는,
적어도 일 표면에 나노 패턴을 형성하는 복수개의 돌출부를 포함하는 다공성 기재; 및
상기 돌출부 중 적어도 일부의 단부에 배치된 무기 입자;를 포함한다.
도 1은 일 실시예에 따른 유수분리 구조체의 단면 구조를 개략적으로 나타낸 것이다. 도 1에서 보는 바와 같이, 복수개의 나노 사이즈를 갖는 돌출부(4a)가 균일한 간격으로 반복되면서 기재(1) 표면의 전면에 걸쳐 균일한 나노 패턴을 형성할 수 있으며, 돌출부(4a)의 단부에는 무기 입자(3)가 배치된다.
상기 기재(1)는 평면 또는 곡면 형상을 가질 수 있다. 상기 기재(1)가 곡면 형상을 가지는 경우, 상기 나노 패턴이 적어도 상기 곡면 형상의 오목한 면에 형성될 수 있다. 상기 기재(1)가 곡면 형상을 가지는 경우, 물과 기름 중 물을 선택적으로 통과시키고 기름만을 수거하는데 있어서, 휘발성이 강한 기름을 곡면 안쪽으로 모아 주어 기름의 증발이 일어날 표면적을 감소시킬 수 있으므로, 기름의 수거 효율을 향상시킬 수 있다.
상기 기재(1)는 크기에 제한을 받지 않으며, 예를 들어 면적이 100 cm2 이상일 수 있다. 상기 기재(1)는 예를 들어 10 cm X 10 cm 이상의 대면적을 가질 수 있다. 상기 기재(1)의 두께는 제한되지 않는다.
상기 기재(1)는 물이 통과할 수 있는 구멍을 가진 다공질 또는 망상 구조체라면 그 형태에 제한이 없다. 상기 기재(1)는 예를 들어, 부직포, 직포, 또는 망 형태일 수 있다. 상기 기재(1)가 섬유 재질인 경우, 부직포 형태인 것이 바람직할 수 있다. 상기 기재(1)가 일정 수준 이상의 강도를 갖는 재질인 경우, 망 형태나 직포 형태도 가능하다. 망 형태의 기재(1)는 예를 들어 10 내지 500 메쉬(mesh)의 그물망 형태일 수 있다. 상기 메쉬 범위에서 물은 빠져나가고, 기름만 선택적으로 걸러낼 수 있다. 그물망이 500메쉬를 초과하면 메쉬 크기가 과도하게 작아 물이 빠져나가는 속도가 현저히 떨어져 유수분리 효율에 문제가 생길 수 있고, 10메쉬 미만이면 메쉬 크기가 과도하게 커서 기름까지 빠져나갈 염려가 있다.
상기 기재(1)는 이를 이루는 소재로서, 플라스틱, 섬유, 유리, 금속, 세라믹, 및 탄소계 물질 중 적어도 하나를 포함할 수 있다.
상기 플라스틱은 특별히 제한되는 것은 아니며, 예를 들어, 폴리프로필렌, 폴리에틸렌 테레프탈레이트, 폴리비닐리덴 플루오라이드, 폴리테트라플루오로에틸렌, 이들의 공중합체, 및 이들의 조합 중 적어도 하나를 포함할 수 있다.
상기 섬유는 천연섬유, 인조섬유 또는 이들의 조합을 포함할 수 있다. 상기 천연섬유로는 예를 들어, 면, 마, 모, 견, 석면 섬유, 이들의 조합 등을 사용할 수 있다. 상기 인조섬유로는 예를 들어, i) 레이온, 모달, 텐셀, 리오셀, 폴리노직 등의 재생섬유; ii) 아세테이트, 트리아세테이트 등의 반합성섬유; iii) 나일론, 노멕스, 케블라 등의 폴리아미드계, 폴리에틸렌, 폴리프로필렌 등의 폴리올레핀계, 폴리에틸렌 테레프탈레이트 등의 폴리에스테르계, 아크릴, 폴리(메타)아크릴레이트계, 폴리비닐알콜(PVA), 폴리우레탄, 폴리염화비밀(PVC), 폴리염화비닐리덴(PVDC), 폴리스티렌 등의 합성섬유; 및 유리섬유 등의 무기섬유 등을 사용할 수 있으나, 이들에 한정되는 것은 아니다.
상기 금속은 철(Fe), 알루미늄(Al), 스테인레스 강(stainless steel), 구리(Cu), 백금(Pt), 금(Au), 은 (Ag), 티타늄(Ti), 실리콘 (Si), 또는 이들의 합금일 수 있으며, 이들의 조합을 포함할 수 있다.
상기 탄소계 물질은 흑연, 탄소 섬유, 다이아몬드, 그래핀, 또는 이들의 조합을 포함할 수 있다.
이러한 다공성 기재(1)의 적어도 일 표면에는 나노 패턴을 형성하는 복수개의 돌출부(4a)를 포함한다. 상기 돌출부(4a)는 직경이 1 내지 100nm 범위이고, 길이가 1 내지 10,000nm 범위이며, 종횡비가 1 내지 50 일 수 있다. 상기 돌출부는 나노 헤어(nano-hair), 나노 섬유(nan-fiber), 나노 필라(nano-pillar), 나노 로드(nano-rod) 또는 나노 와이어(nano-wire)와 같은 형태이며, 기재(1) 표면에 나노 패턴을 형성한다. 상기 나노 패턴은 후술할 제조 방법에 의하면, 대면적의 기재 표면에도 균일하게 형성될 수 있다.
상기 돌출부(4a)의 적어도 일부의 단부에는 무기 입자(3)가 배치된다. 상기 무기 입자(3)는 복수개가 뭉쳐져서 클러스터를 형성할 수 있다. 또한, 거의 대부분의 또는 모든 돌출부(4a) 단부에 무기 입자(3)가 배치될 수도 있지만, 후술하는 제조방법에서 플라즈마 처리에 의한 식각 공정에서 일부 무기 입자(3)가 깎여 떨어져 나갈 수 있으므로, 모든 돌출부(4a)의 단부에 무기 입자(3)가 배치되지 않을 수도 있다.
상기 무기 입자(3)는 유수분리 용도에 따라 적합한 표면 특성을 부여할 수 있는 금속 또는 금속 산화물을 포함할 수 있다. 일 실시예에 따르면, 상기 무기 입자(3)는 유수분리 구조체를 통하여 물은 통과하고 기름은 통과하지 않도록 친수성 내지 초친수성을 부여하는 금속 또는 금속 산화물을 포함할 수 있다. 상기 금속 또는 금속 산화물은 후술하는 제조과정에서 사용된 금속 망 구조체로부터 유래될 수 있다. 예를 들어, 상기 무기 입자는 Ti, Cu, Au, Ag, Cr, Pt, Fe, Al, Si, 이들의 합금, 이들의 산화물 중 적어도 하나를 포함할 수 있다. 일 실시예에 따르면, 나노 패턴을 형성하는 돌출부(4a) 단부에 TiO2를 포함하는 무기 입자(3)가 배치된 경우, 상기 나노 패턴 자체가 가질 수 있는 친수성 표면 특성이 더욱 더 초친수성으로 개질시킬 수 있다.
상기 유수분리 구조체는 나노 패턴이 형성된 기재 표면에 친수성을 부여하는 무기 입자와의 화학결합에 의하여, 물에 대한 접촉각이 20° 이하의 초친수 표면 특성을 가질 수가 있다.
이와 같은 초친수 표면을 갖는 유수분리 구조체는 표면 상태가 매우 높은 상태이며, 따라서 표면에너지가 낮은 기름에 대해서는 친유 특성을 가질 수 있다. 그러나, 물속에서는 기름이 상기 유수분리 구조체에 흡수되지 않고, 구형의 방울 형태를 유지하는 초소유성 (Superoleophobicity)를 나타낸다. 이에 따라, 상기 유수분리 구조체는 물속에서 예를 들어 140° 이상의 높은 수중 기름에 대한 접촉각을 가질 수 있다.
이하에서, 상기 유수분리 구조체의 제조방법에 관하여 설명하기로 한다.
일 측면에 따른 유수분리 구조체의 제조방법은,
다공성 기재를 준비하는 단계;
금속 망 구조체를 상기 기재의 상방에 위치시키는 단계; 및
상기 금속 망 구조체가 위치한 상기 기재를 플라즈마 처리하는 단계;를 포함한다.
상기 유수분리 구조체의 제조방법은 기재의 면적이나 단면 형태에 제한되지 않고, 특히 대면적에 걸쳐 나노 패턴이 균일하게 표면에 형성된 유수분리 구조체를 친환경적으로 비교적 간단하게 제조할 수 있다.
도 2는 일 실시예에 따른 유수분리 구조체의 제조방법을 설명하기 위한 모식도이다.
도 3은 일 실시예에 따른 나노 복합 구조체의 제조방법을 단계별로 나타낸 도면이다.
도 2 및 도 3에서 보는 바와 같이, 기재(1) 상방에 금속 망 구조체(2)를 위치시키고, 플라즈마 처리를 실시한다. 상기 기재(1)의 종류 및 형태에 대해서는, 일 구현예에 따른 유수분리 구조체에 관하여 앞에서 설명한 바와 같으므로, 여기서는 구체적인 설명은 생략하기로 한다.
상기 금속 망 구조체(2)는 유수분리 구조체의 표면에 코팅될 무기 입자(3)의 원료가 될 뿐만 아니라, 후술하는 플라즈마 처리시 금속 망 구조체로(2)로부터 발생된 금속 또는 금속 산화물의 무기 입자(3)를 기재(1) 표면 전체에 균일하게 증착시킬 수 있다. 상기 무기 입자(3)는 무기 입자(3)가 증착되지 않은 기재(1) 부분이 선택적으로 식각될 수 있도록 마스크 내지 저해제(inhibitor)로 작용함으로써, 기재(1) 표면의 선택적인 식각으로 나노 패턴이 형성될 수 있는 것이다. 상기 금속 망 구조체(2)의 사용은, 무기 입자(3)를 기재(1) 표면 전체에 균일하게 증착시킬 수 있도록 하기 때문에, 상기 유수분리 구조체의 대면적화를 가능하게 한다.
상기 금속 망 구조체(2)는 유수분리 용도에 따라 적합한 표면 특성을 부여할 수 있는 금속 또는 금속 산화물을 포함할 수 있다. 일 실시예에 따르면, 상기 금속 망 구조체(2)는 유수분리 구조체를 통하여 물은 통과하고 기름은 통과하지 않도록 친수성 내지 초친수성을 부여하는 금속 또는 금속 산화물을 포함할 수 있다. 예를 들어, 상기 금속 망 구조체(2)는 Ti, Cu, Au, Ag, Cr, Pt, Fe, Al, Si, 이들의 합금, 이들의 산화물 중 적어도 하나를 포함할 수 있다. 일 실시예에 따르면, Ti를 포함하는 금속 망 구조체(2)의 경우, TiO2 입자가 코팅된 나노 패턴을 형성하여, 상기 유수분리 구조체의 표면을 초친수로 개질시킬 수 있다.
상기 금속 망 구조체(2)는 이로부터 발생된 금속 또는 금속 산화물 무기 입자(3)가 기판(1) 전체에 걸쳐 균일하게 증착될 수 있도록 망 구조를 가진 것이라면 제한없이 사용될 수 있다.
예를 들어, 상기 금속 망 구조체(2)는 금속 와이어를 메쉬 형태로 직조한 금속 메쉬로 이루어질 수 있다. 상기 금속 망 구조체(2)를 이루는 금속 와이어의 직경, 및 간격 등은 특별히 제한되지는 않으며, 원하는 나노 패턴 구조에 따라 조절할 수 있다. 예를 들어 상기 금속 망 구조체(2)를 이루는 금속 와이어의 간격은 10㎛ 내지 500㎛ 범위일 수 있다.
상기 금속 망 구조체(2)의 크기는 나노 패턴을 형성하고자 하는 기재(1)의 크기에 부합하도록 선택할 수 있다.
상기 기재(1) 상에 상기 금속 망 구조체(2)를 위치시키는데 있어서, 상기 금속 망 구조체(2)는 기재(1) 상에 일정 간격을 두고 위치시킬 수 있다. 예를 들어, 상기 기재(1)와 상기 금속 망 구조체(2)의 20 mm 이하일 수 있다. 상기 범위로 간격을 두는 경우에, 상기 금속 망 구조체로(2)로부터 발생된 금속 또는 금속 산화물의 무기 입자(3)가 금속 망 구조체(2)의 바로 아래의 기재 표면에도 떨어질 수 있으므로, 기재(1) 표면 전체에 균일하게 증착될 수 있다. 상기 금속 망 구조체로(2)가 기재(1)와 접하는 경우에는 금속 망 구조체(2)가 접촉한 기재(1) 부분은 플라즈마 처리에 의한 식각이 일어나지 않으므로, 나노 패턴이 형성되지 않은 부분이 증가할수록 유수분리 구조체는 유수분리 효율이 떨어지게 될 것이다. 따라서, 상기 금속 망 구조체(2)는 상기 기재(1) 표면에 접촉하지 않는 것이 바람직하다.
이어서, 상기 금속 망 구조체(2)가 위치한 상기 기재(1)를 플라즈마 처리한다. 플라즈마 처리에 의해 상기 기재(1)의 표면은 친수 내지 초친수 특성을 가질 수 있다.
일 실시예에 따르면, 상기 플라즈마 처리 단계는,
플라즈마 처리를 통하여, 상기 금속 망 구조체로부터 발생된 금속 또는 금속 산화물 입자를 상기 기재 표면에 증착하는 단계; 및
플라즈마 처리를 통하여, 상기 기재 표면에서 상기 금속 또는 금속 산화물 입자가 증착된 부분 이외의 나머지 부분을 식각하는 단계;를 포함한다.
도 3에서 보는 바와 같이, 플라즈마 처리를 하게 되면, 먼저 상기 금속 망 구조체(2)로부터 발생된 금속 또는 금속 산화물 무기 입자(3)가 떨어져 나와 기재(1) 표면에 증착된다. 상기 무기 입자(3)는 플라즈마 처리가 진행되는 동안 클러스터를 형성할 수 있다.
상기 금속 또는 금속 산화물 무기 입자(3)가 증착된 기재(1)를 계속해서 플라즈마 처리하면, 상기 기재(1) 표면에서 상기 금속 또는 금속 산화물 무기 입자(2)가 증착되지 않은 부분이 선택적으로 식각되면서 기재(1) 표면에 나노 패턴 구조를 형성할 수 있다.
보다 구체적으로 설명하면, 기재(1) 표면 중 금속 또는 금속 산화물의 무기 입자(3)가 증착된 곳에는 이들이 플라즈마의 식각 작용에 대한 저해제로 작용하여 그곳에서는 식각되는 속도가 현저하게 느린 반면, 금속 또는 금속 산화물 무기 입자(3)가 증착되지 않은 기재(1) 표면은 플라즈마에 의해 식각이 이루어지므로 그곳에서는 식각 속도가 빠르게 되어, 결과적으로 기재(1) 표면에 나노 헤어(nano-hair), 나노 섬유(nan-fiber), 나노 필라(nano-pillar), 나노 로드(nano-rod) 또는 나노 와이어(nano-wire)와 같은 형태의 제1 돌출부(4a)로 이루어지는 나노 패턴을 형성할 수 있다.
상기 금속 또는 금속 산화물 무기 입자(3)의 증착 단계와 기판(1)의 식각 단계는 동일한 플라즈마 처리 조건에서 동시에 수행될 수 있다.
도 3에서 보는 바와 같이, 플라즈마 처리에 의한 식각이 계속되는 동안 금속 망 구조체(2)를 제거하지 않고 기재(1) 상부에 계속 유지시킬 수 있다. 플라즈마 처리에 의한 식각이 진행되는 동안, 기재(1) 상에 증착된 금속 또는 금속 산화물 무기 입자(3) 또한 조금씩 스퍼터링에 의해 깎여나가기 때문에, 장시간 식각시 저해제 역할을 할 무기 입자(3)가 계속 공급될 필요가 있기 때문이다. 따라서, 금속 망 구조체(2)를 제거하지 않고 연속적으로 플라즈마 처리를 함으로써, 금속 또는 금속 산화물 무기 입자(3)를 계속해서 공급할 수 있고 클러스터를 유지할 수 있다.
상기 플라즈마 처리는 그 조건 및 처리 시간 등을 조절함으로써 다양한 형태의 나노 패턴 구조를 형성할 수 있다.
상기 플라즈마 처리는 O2, CF4, Ar, N2, 및 H2 중 선택된 1종 이상의 가스 존재하에 행해질 수 있다. 이중, O2 가스를 이용하는 경우, 플라즈마 처리에 의해 기재(1) 표면이 산소와 결합하여 지속성을 가지는 친수성 표면을 부여할 수 있다. 한편, 플라즈마 처리시 압력은, 예를 들어 1 내지 1000 mTorr 일 수 있으며, 더 높은 대기압도 가능할 수 있다.
상기 플라즈마 처리는 예를 들어, -100V 내지 -1000V의 전압 범위에서 행해질 수 있으며, 1 내지 1000 mTorr의 압력에서 10초 내지 5시간 동안 행해질 수 있다. 플라즈마 처리 시간이 길어질수록 기재 표면이 친수성(hydrophilic)에서 초친수성(superhydrophilic)으로 변할 수 있다. 일 실시예에 따르면, 플라즈마 처리 시간이 길어지면, 기재 표면의 초친수성이 증가하면서 물에 대한 접촉각이 20° 이하, 10° 이하, 5° 이하, 또는 더 나아가 1° 이하까지도 감소할 수 있다. 여기서, 기재 표면의 순수에 대한 접촉각이 20° 이하는 친수로 정의하고, 접촉각이 10° 이하는 초친수로 정의된다.
상기 유수분리 구조체의 제조방법은 친환경적이고, 대면적으로 표면 처리가 가능하여 유수분리 구조체의 대면적화를 실현시킬 수 있다.
이와 같이 제조된 유수분리 구조체는 다양한 유수분리 장치에 적용될 수 있다.
일 측면에 따른 유수분리 장치는 상술한 유수분리 구조체를 포함한다. 상기 유수분리 장치는 상기 유수분리 구조체를 이용하여, 유수분리에 적용될 수 있는 적절한 수단 또는 다양한 구조로 구현될 수 있다.
일 실시예에 따르면, 상기 유수분리 장치는 상기 유수분리 구조체를 지지하는 보강재를 더 포함할 수 있다. 상기 보강재는 상기 유수분리 구조체가 유수분리하는 과정에서 발생할 수 있는 기름이나 외부의 가해진 높은 압력에 의해 변형되지 않도록 이를 지지하는 역할을 한다. 상기 보강재는 금속 막대, 금속 메쉬, 고분자 막대, 고분자 메쉬 중 적어도 하나로 형성될 수 있다. 상기 보강재는 상기 유수분리 구조체에서 기름이 걸러지는 쪽의 반대면, 즉 물이 빠져나가는 면에 배치될 수 있다. 상기 유수분리 장치는 상기 보강재에 의해 구조적인 안정성을 향상시킬 수 있다. 상기 보강재 또한 상술한 플라즈마 처리를 통하여 적어도 일 표면에 복수개의 돌출부로 이루어진 나노 패턴을 형성시켜 사용할 수 있다.
일 실시예에 따르면, 상기 유수분리 구조체는 수면상에 존재하는 기름을 뜰 수 있는 뜰채에 적용될 수 있다. 상기 뜰채는 상기 유수분리 구조체 및 이를 지지할 수 있는 지지 프레임을 포함할 수 있다.
도 4는 일 실시예에 따른 뜰채의 외관을 도시한 사시도이고, 도 5는 도 4의 뜰채의 단면을 개략적으로 도시한 단면도이다.
도 4 및 도 5를 참조하면, 일 실시예에 따른 뜰채는 유수분리 구조체(10) 및 이를 지지하는 지지 프레임(20)을 포함한다. 상기 유수분리 구조체(10)는 상기 지지 프레임(20)에 고정된다. 상기 유수분리 구조체(10)가 자체로 충분한 강성을 가지는 경우에는 추가적인 지지 프레임(20)이 없어도 된다. 상기 뜰채는 손잡이를 더 포함할 수 있다.
지지 프레임(20)에 고정된 상기 유수분리 구조체(10)는 휘발성 기름의 수거 효율을 높이기 위하여, 상기 유수분리 구조체(10)는 전체적인 외부 형상이 곡면 형상을 가질 수 있다. 예를 들어, 상기 유수분리 구조체(10)는 전체적인 외부 형상이 반구 형상을 가질 수 있다. 그러나, 상기 유수분리 구조체(10)의 형상에는 특별한 제한이 없으며, 예를 들어 상기 유수분리 구조체가 바닥이 평평한 원통 형상을 가질 수도 있고, 사각의 상자 형상을 가질 수도 있다.
도 5에서 보는 바와 같이, 상기 뜰채의 내면은 상술한 바와 같은 플라즈마 처리를 통하여 나노 패턴이 형성되며, 상기 뜰채의 유수분리 구조체에 형성되어 있는 구멍을 통하여 물만 빠져나가고 기름을 선택적으로 걸러낼 수 있다.
일 실시예에 따르면, 상기 유수분리 구조체는 오일펜스에 적용될 수 있다. 상기 유수분리 구조체를 이용한 오일펜스는 선박의 운항, 선박의 침몰사고, 육상에서의 유조차 사고, 정유시설, 유류저장고, 송유관, 주유소 등으로 인한 기름 유출시, 바다, 하천, 강물에 누출된 기름의 확산을 방지하여, 기름이 수면을 타고 해안까지 번지지 않도록 할 수 있다.
또한, 상기 유수분리 구조체를 이용한 오일펜스는 기름 유출사고시 기름을 한곳에 가둬놓을 수 있도록 설치될 수 있다. 상기 오일펜스는 표면에 초친수 특성을 가지며, 물에 적신 후 형성된 수막은 초발유 특성을 가지기 때문에, 상기 오일펜스 안에 모인 기름을 다른 형태의 유수분리 장치를 이용하여 용이하게 수거할 수 있도록 도와줄 수 있다.
일 측면에 따른 유수분리방법은 상술한 유수분리 장치를 이용하여, 물과 기름 중 물을 선택적으로 통과시키고 기름을 수거하는 단계를 포함한다.
상기 유수분리 구조체는 친수성 내지 초친수성을 나타냄에 따라, 상기 유수분리 장치는 높은 젖음성을 가지며, 물을 쉽게 통과시킨다. 따라서, 상기 유수분리 장치에 기름과 물이 혼합된 액체를 통과시키면 물은 상기 유수분리 구조체를 쉽게 통과하지만, 기름은 물에 대한 척력으로 인해 상기 유수분리 구조체를 통과하지 못하고, 유수분리 구조체 상부에 걸러지게 된다.
일 실시예에 따르면, 유수분리를 시행함에 있어서, 상기 유수분리 장치를 사용하기 전에, 상기 유수분리 장치를 물에 적시는 전처리 단계를 더 포함할 수 있다. 물에 적시는 과정을 통하여, 상기 유수분리 구조체의 표면에 수막을 형성하여 그 위에 기름을 더 효율적으로 걸러낼 수 있다.
일 실시예에 따르면, 상기 기름 수거 후, 상기 유수분리 장치를 UV 처리하는 단계를 더 포함할 수 있다. 상기 UV 처리는 나노 패턴 상에 코팅된 무기 입자의 친수성을 더욱 향상시킬 수 있으며, 상기 UV 처리를 통하여 한번 이상 사용한 상기 유수분리 장치를 반복 사용할 수 있다.
이하 실시예를 통하여 본 발명에 대하여 더욱 상세히 설명하기로 한다.
하기 실시예 및 비교예에서 제조한 표면의 모폴로지 구조는 주사전자현미경(SEM, FEI, Nova NanoSEM 200, USA)으로 조사하였다. 물에 대한 접촉각(CA)은 접촉각 미터(Goniometer, Rame-Hart, USA)로 측정하였다. 정적 접촉각에 사용된 각 물방울의 부피는 8㎕이었다. 평균 CA 값은 동일 샘플에 대하여 5개의 상이한 위치에서 측정하여 얻었다.
비교예 1
다공성 기재로서 직경이 160mm이고 두께가 1mm인 원형의 폴리에틸렌 테레프탈레이트 부직포(제조사: SK Chemical)를 플라즈마 처리하지 않고 유수분리 구조체로 적용하였다.
실시예 1
다공성 기재로는 직경이 160mm이고 두께가 1mm인 원형의 폴리에틸렌 테레프탈레이트 부직포(제조사: SK Chemical)를 사용하였다.
금속 메쉬로는 Ti 메쉬 (Nilaco Co., Ltd, 직경: 160mm 인 원형, 와이어 간격: 320㎛, 와이어 직경: 180㎛)를 사용하였으며, 플라즈마 처리 장치로는 Radio-frequency generator (제조사 : Advanced Energy, 제품명 : RTX-600)를 사용하였다.
먼저, 플라즈마 처리 장치의 챔버 내 캐소드 위에 상기 기재를 놓았다. 상기 기재 위에 2mm의 간격을 두고 Ti 메쉬를 위치시켰으며, 메쉬를 고정하기 위해서 메쉬 테두리에 지지대를 쌓고 그 위에 메쉬를 올려놓음으로써 메쉬와 기재의 거리를 조절하였다. 그런 다음 -400V 의 전압, 50mTorr의 압력, O2 가스 10sccm의 조건으로 30분 동안 플라즈마 처리하여 유수분리 구조체를 제조하였다.
도 6은 상기 실시예 1에서 산소 플라즈마 처리 시간에 따른 나노 패턴의 형성과정을 단계별로 보여주는 SEM 사진이다. 도 4에서 보는 바와 같이, 부직포의 섬유 상부에 형성된 나노 패턴의 돌출부 높이는 플라즈마 처리 시간에 비례하며 10 nm 에서 1 mm 범위로 형성되어 가는 것을 알 수 있다.
도 7은 비교예 1 및 실시예 1에서 제조한 유수분리 구조체의 표면 성분을 광전자 분광기 (X-ray photoelectron spectroscopy, XPS)를 이용하여 분석한 결과이다. 도 7에서 보는 바와 같이, Ti 메쉬를 이용하여 산소 플라즈마 처리한 경우에는, 기재 표면에 TiO2 가 형성된 것을 확인할 수 있다. 반면에 플라즈마 처리를 하지 않은 경우, 기재 표면에서는 금속 원소에 대한 결과가 없음을 알 수 있다.
도 8a는 비교예 1 및 실시예 1에서 제조한 유수분리 구조체의 물에 대한 젖음성을 관찰한 비교 사진이고, 도 8b는 비교예 1 및 실시예 1에서 제조한 유수분리 구조체의 플라즈마 처리 시간에 따른 물에 대한 접촉각을 측정한 그래프이다.
도 8a 및 도 8b에서 보는 바와 같이, 플라즈마 처리 전의 다공성 기재의 경우 물에 대한 접촉각이 126°로 소수성을 가지므로 물이 기공 사이로 들어가지 못해 다공성 기재의 표면에만 존재하는 반면, 플라즈마 처리 후에는 다공성 기재의 표면에 친수성을 띄는 화학결합이 많아지기 때문에 물에 대한 접촉각이 0°로 물이 다공성 기재의 기공들 사이로 지나갈 수 있게 되어 물의 양이 충분한 경우 중력에 의해 다공성 기재 아래로 빠져나갈 수 있음을 알 수 있다.
도 9a는 비교예 1 및 실시예 1에서 제조한 유수분리 구조체의 공기중에서 기름에 대한 젖음성을 관찰한 비교 사진이고, 도 9b는 비교예 1 및 실시예 1에서 제조한 유수분리 구조체의 물 속에서 기름에 대한 젖음성을 관찰한 비교 사진이고, 도 9c는 비교예 1 및 실시예 1에서 제조한 유수분리 구조체의 플라즈마 처리 시간에 따른 기름에 대한 접촉각을 측정한 그래프이다.
도 9a에서 보는 바와 같이, 플라즈마 처리 전후 모두 공기 중에서는 기름을 잘 흡수함을 알 수 있다. 이는 산소 플라즈마에 의한 표면의 친수화는 표면에너지가 매우 높은 상태이며 따라서 표면에너지가 낮은 기름에 대해서도 더욱 친유 특성을 보이게 된다. 하지만 플라즈마 처리 후 물속에서는 기름이 흡수되지 않고 구형의 방울 형태를 유지하는 초소유성 (Superoleophobicity)을 보이는 것을 알 수 있다.
도 9b에서 보는 바와 같이, 플라즈마 처리 전의 다공성 기재는 표면에 수막이 형성되지 않아 기름이 다공성 구조체와 접하여 40°의 접촉각을 이루었다. 반면, 플라즈마 처리된 다공성 기재는 친수성 향상에 따라 수막과 다공성 기재 사이의 결합력이 향상되어 다공성 기재 표면에 형성된 수막에 의해 기름이 다공성 기재에 직접 접촉하지 못하며 165°의 접촉각을 형성하는 초소유성을 보였다. 이러한 물속에서의 초소유성 현상은 아래에 표시된 고체/물/기름으로 구성된 3상계에 대한 수식을 통해 설명이 가능하다. [Cheng et al, ACS Applied Materials & Interfaces, 21 (2013), 11363-70]
Figure PCTKR2014006688-appb-I000001
θ w , θ o , θ ow : 공기중의 물, 공기중의 기름, 물속의 기름의 접촉각
γ ow , γ wa , γ oa : 기름/물, 물/공기, 기름/공기의 표면장력
플라즈마 처리에 의해 다공성 기재 표면에 친수기가 형성되면 θ w 가 감소함에 따라 θ ow 는 증가하게 된다. 여기서, γ ow , γ wa , γ oa 는 모두 상수이며, θ o 의 경우 플라즈마 전후 동일한 0°이다.
도 10은 비교예 1에서 사용한 일반 부직포((a) 플라즈마 처리 전) 및 실시예 1에서 제조한 유수분리 구조체((b) 플라즈마 처리 후)를 이용한 뜰채의 유수분리 개념도 및 유수분리 효과를 보여주는 사진이다.
도 10에서 보는 바와 같이, 플라즈마 처리되지 않은 비교예 1의 경우 곡면을 가진 다공성 기재의 표면이 소수성을 보이며 기공으로 물이 통과하지 못하여 다공성 기재 위에 물과 기름이 혼재하면서, 만일 일반적으로 바다에 유출되는 원유와 같이 기름이 물보다 비중이 작으며 물위에 떠 있게 되어 물과 기름으 동시에 곡면 안에 갖히게 되어 유수분리가 되지 않는다. 하지만 플라즈마 처리된 실시예 1의 다공성 기재는 표면에 초친수 특성을 가지는 나노 패턴이 형성되어 있고, 이를 이용하여 물과 기름을 함께 뜰 경우 비중이 높은 물이 우선적으로 친수성의 다공성 기재의 표면과 접하게 되고, 물과 기재 사이의 강한 결합으로 인해 수막 코팅을 형성함과 동시에 남는 물은 중력에 의해 아래로 빠지게 된다. 이후 기름이 수막이 형성된 다공성 기재의 표면과 접하게 되고 수막에 의한 반발로 기공 사이를 통과하지 못함에 따라 다공성 기재 위에 남게 되어 유수분리가 된다. 이러한 원리를 이용하여 물에 기름이 유출되었을 때 본 뜰채로 기름을 뜨게 되면 물을 뜰채의 채 사이로 빠져나가게 되고 기름은 남게 되어 떠진 기름을 다른 기름 용기에 담을 수 있다. 이렇게 분리된 기름은 그대로 재사용 가능할 수 있다.
상기한 설명에서 많은 사항이 구체적으로 기재되어 있으나, 그들은 발명의 범위를 한정하는 것이라기보다, 실시예의 예시로서 해석되어야 한다. 따라서, 본 발명의 범위는 설명된 실시예에 의하여 정하여 질 것이 아니고 특허 청구범위에 기재된 기술적 사상에 의해 정하여져야 한다.

Claims (36)

  1. 적어도 일 표면에 나노 패턴을 형성하는 복수개의 돌출부를 포함하는 다공성 기재; 및
    상기 돌출부 중 적어도 일부의 단부에 배치된 무기 입자;
    를 포함하는 유수분리 구조체.
  2. 제1항에 있어서,
    상기 돌출부는 나노 헤어(nano-hair), 나노 섬유(nan-fiber), 나노 필라(nano-pillar), 나노 로드(nano-rod) 또는 나노 와이어(nano-wire) 형태인 유수분리 구조체.
  3. 제1항에 있어서,
    상기 돌출부는 직경이 1 내지 100nm 범위이고, 길이가 1 내지 10,000nm 범위이며, 종횡비가 1 내지 50 인 유수분리 구조체.
  4. 제1항에 있어서,
    상기 무기 입자는, Ti, Cu, Au, Ag, Cr, Pt, Fe, Al, Si, 이들의 합금, 및 이들의 산화물 중 적어도 하나를 포함하는 유수분리 구조체.
  5. 제1항에 있어서,
    상기 무기 입자는 TiO2를 포함하는 유수분리 구조체.
  6. 제1항에 있어서,
    상기 무기 입자는 클러스터를 형성하는 유수분리 구조체.
  7. 제1항에 있어서,
    상기 기재는 곡면 형상을 가지고, 상기 나노 패턴이 적어도 상기 곡면 형상의 오목한 면에 형성된 유수분리 구조체.
  8. 제1항에 있어서,
    상기 기재는 부직포, 직물, 또는 망 형태인 유수분리 구조체.
  9. 제1항에 있어서,
    상기 기재는 10 내지 500 메쉬(mesh)의 그물망 형태인 유수분리 구조체.
  10. 제1항에 있어서,
    상기 기재는, 플라스틱, 섬유, 유리, 금속, 세라믹 및 탄소계 물질 중 적어도 하나를 포함하는 유수분리 구조체.
  11. 제10항에 있어서,
    상기 플라스틱은 폴리프로필렌, 폴리에틸렌, 폴리에틸렌 테레프탈레이트, 폴리스타일렌, 폴리메틸메타크릴레이트, 폴리비닐리덴 플루오라이드, 폴리테트라플루오로에틸렌, 및 이들의 공중합체 중 적어도 하나를 포함하는 유수분리 구조체.
  12. 제10항에 있어서,
    상기 섬유는 천연섬유, 인조섬유 및 이들의 조합 중 적어도 하나를 포함하는 유수분리 구조체.
  13. 제12항에 있어서,
    상기 천연섬유는 면, 마, 모, 견, 및 석면 중 적어도 하나를 포함하고,
    상기 인조섬유는 레이온, 모달, 텐셀, 리오셀, 폴리노직, 아세테이트, 트리아세테이트, 폴리아미드계, 폴리올레핀계, 폴리에스테르계, 아크릴, 폴리(메타)아크릴레이트계, 폴리비닐알콜(PVA), 폴리우레탄, 폴리염화비밀(PVC), 폴리염화비닐리덴(PVDC), 폴리스티렌, 유리섬유, 및 이들의 공중합체 중 적어도 하나를 포함하는 유수분리 구조체.
  14. 제10항에 있어서,
    상기 금속은 철(Fe), 알루미늄(Al), 스테인레스 강(stainless steel), 구리(Cu), 백금(Pt), 금(Au), 은 (Ag), 티타늄(Ti), 실리콘 (Si) 및 이들의 합금 중 적어도 하나를 포함하는 유수분리 구조체.
  15. 제10항에 있어서,
    상기 탄소계 물질은 흑연, 탄소 섬유, 다이아몬드, 및 그래핀 중 적어도 하나를 포함하는 유수분리 구조체.
  16. 제1항에 있어서,
    상기 유수분리 구조체는 공기중 물에 대한 접촉각이 20° 이하인 유수분리 구조체.
  17. 제1항에 있어서,
    상기 유수분리 구조체는 수중 기름에 대한 접촉각이 140° 이상인 유수분리 구조체.
  18. 제1항 내지 제17항 중 어느 한 항에 따른 유수분리 구조체를 포함하는 유수분리 장치.
  19. 제18항에 있어서,
    상기 유수분리 구조체를 지지하는 보강재를 더 포함하는 유수분리 장치.
  20. 제1항 내지 제17항 중 어느 한 항에 따른 유수분리 구조체를 포함하는 뜰채.
  21. 제20항에 있어서,
    상기 유수분리 구조체를 고정하는 지지 프레임을 더 포함하는 뜰채.
  22. 제1항 내지 제17항 중 어느 한 항에 따른 유수분리 구조체를 포함하는 오일 펜스.
  23. 다공성 기재를 준비하는 단계;
    금속 망 구조체를 상기 기재의 상방에 위치시키는 단계; 및
    상기 금속 망 구조체가 위치한 상기 기재를 플라즈마 처리하는 단계;
    를 포함하는 유수분리 구조체의 제조방법.
  24. 제23항에 있어서,
    상기 기재는 부직포, 직물, 또는 망 형태인 유수분리 구조체의 제조방법.
  25. 제23항에 있어서,
    상기 기재는 플라스틱, 섬유, 유리, 금속, 세라믹, 및 탄소계 물질 중 적어도 하나를 포함하는 유수분리 구조체의 제조방법.
  26. 제23항에 있어서,
    상기 금속 망 구조체는 상기 기재의 상방에 20mm 이하의 간격을 두고 위치시키는 유수분리 구조체의 제조방법.
  27. 제23항에 있어서,
    상기 금속 망 구조체는 Ti, Cu, Au, Ag, Cr, Pt, Fe, Al, Si, 이들의 합금, 및 이들의 산화물 중 적어도 하나를 포함하는 유수분리 구조체의 제조방법.
  28. 제23항에 있어서,
    상기 금속 망 구조체의 망 간격이 10㎛ 내지 500㎛ 범위인 유수분리 구조체의 제조방법.
  29. 제23항에 있어서,
    상기 플라즈마 처리 단계는,
    플라즈마 처리를 통하여, 상기 금속 망 구조체로부터 발생된 금속 또는 금속 산화물 입자를 상기 기재 표면에 증착하는 단계; 및
    플라즈마 처리를 통하여, 상기 기재 표면에서 상기 금속 또는 금속 산화물 입자가 증착된 부분 이외의 나머지 부분을 식각하는 단계;
    를 포함하는 유수분리 구조체의 제조방법.
  30. 제29항에 있어서,
    상기 증착 단계 및 식각 단계는 동일한 플라즈마 처리 조건에서 동시에 수행되는 유수분리 구조체의 제조방법.
  31. 제23항에 있어서,
    상기 플라즈마 처리는 O2, CF4, Ar, N2, 및 H2 중 선택된 1종 이상의 가스를 이용하여 행해지는 유수분리 구조체의 제조방법.
  32. 제23항에 있어서,
    상기 플라즈마 처리는 -100V 내지 -1000V의 전압 범위에서, 1 내지 1000 mTorr의 압력에서 10초 내지 5시간 동안 수행되는 나노 복합 구조체의 제조방법.
  33. 제23항에 있어서,
    상기 금속 망 구조체는 Ti를 포함하고, 상기 플라즈마 처리는 O2 가스를 이용하는 유수분리 구조체의 제조방법.
  34. 제18항에 따른 유수분리 장치를 이용하여, 물과 기름 중 물을 선택적으로 통과시키고 기름을 수거하는 단계를 포함하는 유수분리방법.
  35. 제34항에 있어서,
    상기 유수분리 장치를 사용하기 전에, 상기 유수분리 장치를 물에 적시는 전처리 단계를 더 포함하는 유수분리방법.
  36. 제34항에 있어서,
    상기 기름 수거 후, 상기 유수분리 장치를 UV 처리하는 단계를 더 포함하는 유수분리 방법.
PCT/KR2014/006688 2014-03-17 2014-07-23 유수분리 구조체 및 그 제조방법, 유수분리 장치, 및 상기 유수분리 장치를 이용한 유수분리방법 WO2015141902A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20140031150 2014-03-17
KR10-2014-0031150 2014-03-17
KR10-2014-0041513 2014-04-07
KR1020140041513A KR101726402B1 (ko) 2014-03-17 2014-04-07 유수분리 구조체 및 그 제조방법, 유수분리 장치, 및 상기 유수분리 장치를 이용한 유수분리방법

Publications (1)

Publication Number Publication Date
WO2015141902A1 true WO2015141902A1 (ko) 2015-09-24

Family

ID=52686206

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/006688 WO2015141902A1 (ko) 2014-03-17 2014-07-23 유수분리 구조체 및 그 제조방법, 유수분리 장치, 및 상기 유수분리 장치를 이용한 유수분리방법

Country Status (3)

Country Link
US (1) US10000391B2 (ko)
EP (1) EP2929925B1 (ko)
WO (1) WO2015141902A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180217A (zh) * 2019-05-16 2019-08-30 西安石油大学 一种用于油水分离的石墨烯基三维纤维纸及其制备方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20163141A1 (it) 2016-05-04 2017-11-04 Univ Degli Studi Di Milano Bicocca Materiali flessibili trattati superficialmente adatti per filtrazione e separazione di liquidi immiscibili
CN105999769B (zh) * 2016-06-06 2018-10-23 集美大学 一种油水分离网的制备方法
RU2633891C1 (ru) * 2016-12-21 2017-10-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный технический университет имени Н.Э. Баумана" (национальный исследовательский университет)" (МГТУ им. Н.Э. Баумана) Гидрофобный фильтр для сбора нефтепродуктов с поверхности воды и способ его получения
KR101921626B1 (ko) 2016-12-28 2018-11-26 한국과학기술연구원 유회수 장치 및 유회수 장치를 포함한 유회수 시스템
KR101896614B1 (ko) 2016-12-28 2018-09-07 한국과학기술연구원 유분리 막을 구비하는 오일 펜스
CN106731014B (zh) * 2017-01-06 2019-01-22 长春理工大学 耐腐蚀不锈钢油水分离网及其制造方法和应用
IT201700048351A1 (it) * 2017-05-04 2018-11-04 Innograf S R L Dispositivo filtrante, impianto, metodo ed uso per il trattamento di acque contaminate
CN109748359A (zh) * 2018-06-05 2019-05-14 金昌中枨科技有限责任公司 一种亲水性膜材料油水分离技术
CN108905295A (zh) * 2018-07-12 2018-11-30 西安交通大学 一种油水分离网膜的制备方法及应用
CN109289251B (zh) * 2018-11-26 2024-04-05 北京揽山环境科技股份有限公司 一种油水分离复合式过滤材料及其制备方法
CN109663386B (zh) * 2018-12-29 2021-07-27 北京航空航天大学 一种电场驱动微结构锥体表面液体可控输运的方法
CN110102083B (zh) * 2019-05-30 2021-09-28 苏州大学 多功能油水分离材料及其制备方法和应用
KR102425275B1 (ko) * 2020-04-14 2022-07-27 한국과학기술연구원 유수분리필터 구조체 및 이를 포함하는 유수분리장치
CN114504880B (zh) * 2020-11-16 2023-04-14 清华大学 一种疏水改性金属网及其制备方法和用途
CN115889145A (zh) * 2022-12-09 2023-04-04 苏州微世奇新材料科技有限公司 一种高耐久性油水分离网及其制备方法
CN116813102B (zh) * 2023-08-28 2023-11-14 山东春帆环境科技有限责任公司 一种含上浮油水源的一体化处理方法
CN116924516B (zh) * 2023-09-18 2024-01-09 山西圣弗兰环保科技股份有限公司 一种油污水用气浮分离装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753014A (en) * 1993-11-12 1998-05-19 Van Rijn; Cornelis Johannes Maria Membrane filter and a method of manufacturing the same as well as a membrane
KR20110100828A (ko) * 2010-03-05 2011-09-15 한국전자통신연구원 거대 나노선 구조체로 이루어진 흡착제 및 그 제조 방법
KR101217783B1 (ko) * 2012-04-24 2013-01-02 한국기계연구원 나노 패턴의 형성방법
KR101275909B1 (ko) * 2008-11-11 2013-06-17 서울대학교산학협력단 표면이 패턴화된 분리막, 그 제조방법 및 이를 이용한 수처리 공정
KR101311851B1 (ko) * 2011-03-03 2013-09-27 한국과학기술연구원 고종횡비 나노 구조를 포함하는 초소수성/친유성 표면 구조체 및 그 제조방법

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7579077B2 (en) 2003-05-05 2009-08-25 Nanosys, Inc. Nanofiber surfaces for use in enhanced surface area applications
US20080110820A1 (en) * 2004-06-30 2008-05-15 Elizabeth Louise Knipmeyer Gravity Flow Carbon Block Filter
KR100886621B1 (ko) 2007-07-25 2009-03-05 이강문 흐름형 유수분리장치
US9085476B2 (en) * 2007-08-31 2015-07-21 New Jersey Institute Of Technology Pervaporation membranes highly selective for volatile solvents present in fermentation broths
WO2010028117A1 (en) 2008-09-03 2010-03-11 Cummins Filtration Ip Inc. Air-jacketed coalescer media with improved performance
US9199185B2 (en) 2009-05-15 2015-12-01 Cummins Filtration Ip, Inc. Surface coalescers
MX347647B (es) * 2008-11-21 2017-05-08 Global Water Group Incorporated Filtros de material compuesto de nanofibras de bloques porosos.
EP2243746B1 (en) 2009-04-22 2015-04-01 Lg Electronics Inc. Water purifying filter and method for fabricating the same
KR101662075B1 (ko) 2009-09-22 2016-10-04 엘지전자 주식회사 정수 필터 및 그의 제조 방법
WO2011068266A1 (ko) 2009-12-04 2011-06-09 한국기계연구원 지용성 용매 분리 장치
US9186631B2 (en) 2010-06-14 2015-11-17 The Regents Of The University Of Michigan Superhydrophilic and oleophobic porous materials and methods for making and using the same
US9956743B2 (en) 2010-12-20 2018-05-01 The Regents Of The University Of California Superhydrophobic and superoleophobic nanosurfaces
GB201108334D0 (en) 2011-05-18 2011-06-29 Schlumberger Holdings Separation of oil droplets from water
KR101351513B1 (ko) * 2012-06-28 2014-01-16 포항공과대학교 산학협력단 물과 기름을 선택적으로 분리할 수 있는 극소수성 여과 구조물

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753014A (en) * 1993-11-12 1998-05-19 Van Rijn; Cornelis Johannes Maria Membrane filter and a method of manufacturing the same as well as a membrane
KR101275909B1 (ko) * 2008-11-11 2013-06-17 서울대학교산학협력단 표면이 패턴화된 분리막, 그 제조방법 및 이를 이용한 수처리 공정
KR20110100828A (ko) * 2010-03-05 2011-09-15 한국전자통신연구원 거대 나노선 구조체로 이루어진 흡착제 및 그 제조 방법
KR101311851B1 (ko) * 2011-03-03 2013-09-27 한국과학기술연구원 고종횡비 나노 구조를 포함하는 초소수성/친유성 표면 구조체 및 그 제조방법
KR101217783B1 (ko) * 2012-04-24 2013-01-02 한국기계연구원 나노 패턴의 형성방법

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110180217A (zh) * 2019-05-16 2019-08-30 西安石油大学 一种用于油水分离的石墨烯基三维纤维纸及其制备方法
CN110180217B (zh) * 2019-05-16 2021-09-07 西安石油大学 一种用于油水分离的石墨烯基三维纤维纸及其制备方法

Also Published As

Publication number Publication date
US20150259221A1 (en) 2015-09-17
US10000391B2 (en) 2018-06-19
EP2929925A2 (en) 2015-10-14
EP2929925A3 (en) 2016-04-06
EP2929925B1 (en) 2023-10-04
EP2929925C0 (en) 2023-10-04

Similar Documents

Publication Publication Date Title
WO2015141902A1 (ko) 유수분리 구조체 및 그 제조방법, 유수분리 장치, 및 상기 유수분리 장치를 이용한 유수분리방법
KR101726402B1 (ko) 유수분리 구조체 및 그 제조방법, 유수분리 장치, 및 상기 유수분리 장치를 이용한 유수분리방법
US11110496B2 (en) Nano composite structure with nano patterned structure on its surface and method of producing the same
Liu et al. Fabrication of superhydrophobic/superoleophilic cotton for application in the field of water/oil separation
Liu et al. Insights into the superhydrophobicity of metallic surfaces prepared by electrodeposition involving spontaneous adsorption of airborne hydrocarbons
Li et al. Multifunctional ultrathin aluminum foil: oil/water separation and particle filtration
Palamà et al. Underwater Wenzel and Cassie oleophobic behaviour
EP2510140B1 (en) Oil collecting device
Ouyang et al. Self-indicating and recyclable superhydrophobic membranes for effective oil/water separation in harsh conditions
CN105327526B (zh) 一种用于分离乳化油的不锈钢纤维毡及其改性方法和应用
WO2012118805A2 (en) Polymers having superhydrophobic surfaces
US20190161368A1 (en) Spilled oil collecting apparatus and method
EP3722389A1 (en) Polymeric material having micro-nano composite structure, device including the same, and method for manufacturing the polymeric material
Jawad et al. Performed of filter nano textile for purification of aerosol water by electrospinning technique
Abdulhussein et al. Facile fabrication of a free-standing superhydrophobic and superoleophilic carbon nanofiber-polymer block that effectively absorbs oils and chemical pollutants from water
Mosayebi et al. Synthesis of a durable and efficient superhydrophobic copper mesh coated by organosilica nano/microstructures for separating oil from water
Wang et al. Synthesis of vertically aligned composite microcone membrane filter for water/oil separation
Chen et al. Under-oil superhydrophilic TiO2/poly (sodium vinylphosphonate) nanocomposite for the separation of water from oil
KR20190014712A (ko) 유수분리 구조체 및 그 제조방법, 그리고 이를 이용한 유수분리방법
TWI714828B (zh) 透射電鏡微柵的製備方法
Tian et al. Dodecyl mercaptan functionalized copper mesh for water repellence and oil-water separation
WO2018208040A2 (ko) 고성능의 유해물질 포집 필터 및 그의 제조 방법
US9682346B1 (en) Nanostructured zinc oxide membrane for separating oil from water
CN110292866B (zh) 一种超亲水疏油油水分离膜的制备方法及其应用
Wang et al. A ternary system oleophilic–hydrophobic membrane prepared by electrospinning for efficient gravity-driven oil–water separation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886625

Country of ref document: EP

Kind code of ref document: A1