WO2015141878A1 - Ground heat exchanger to which pcm fusion grout is applied and method for installing same - Google Patents

Ground heat exchanger to which pcm fusion grout is applied and method for installing same Download PDF

Info

Publication number
WO2015141878A1
WO2015141878A1 PCT/KR2014/002384 KR2014002384W WO2015141878A1 WO 2015141878 A1 WO2015141878 A1 WO 2015141878A1 KR 2014002384 W KR2014002384 W KR 2014002384W WO 2015141878 A1 WO2015141878 A1 WO 2015141878A1
Authority
WO
WIPO (PCT)
Prior art keywords
grout
heat exchange
heat exchanger
phase change
ground
Prior art date
Application number
PCT/KR2014/002384
Other languages
French (fr)
Korean (ko)
Other versions
WO2015141878A9 (en
Inventor
김수민
정수광
유슬기
Original Assignee
숭실대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 숭실대학교산학협력단 filed Critical 숭실대학교산학협력단
Publication of WO2015141878A1 publication Critical patent/WO2015141878A1/en
Publication of WO2015141878A9 publication Critical patent/WO2015141878A9/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/0052Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using the ground body or aquifers as heat storage medium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a ground heat exchanger using a PCM fusion grout and a construction method thereof, and more particularly, to a ground heat exchanger using a PCM fusion grout for application to a ground heat pump system and a construction method thereof.
  • geothermal energy is relatively inexpensive to install and maintain, many heating and cooling systems using geothermal heat as a heat source have been proposed.
  • Geothermal energy can be categorized into direct use and indirect use technologies according to the depth and temperature used.
  • Geothermal heat pump system geothermal heat pump system
  • the geothermal heat pump system which is receiving much attention as a building renewable energy facility, is a combined cooling and heating system composed of a ground heat exchanger and a geothermal heat pump unit.
  • Korea mainly uses vertical geothermal heat pump system, the core of which can be seen as heat pump and underground heat exchanger.
  • the geothermal heat exchanger is completed by inserting a U-shaped polyethylene pipe into the borehole and then filling the void space between the pipe and the borehole with grouting material. At this time, grouting to fill an empty space with a material having a proper thermal conductivity and a small hydraulic conductivity (permeability) is the most important factor for the performance of the ground heat exchanger.
  • an object of the present invention is to provide a geothermal heat exchanger using a PCM fusion grout capable of maximizing temperature and heat.
  • Another object of the present invention is to provide a construction method of the above ground heat exchanger.
  • An underground heat exchanger to which the PCM fusion grout is applied includes: a hollow having a center and installed in the ground; A heat exchange pipe containing a heat exchange medium and disposed in the hollow of the pile; And a grout filled between the heat exchange pipe and the hollow inner surface to perform heat exchange with the heat exchange medium, wherein the grout includes a first grout material comprising a shape stabilized phase change material (SSPCM).
  • SSPCM shape stabilized phase change material
  • the grout further includes a second grout material, the second grout material may include at least one of bentonite, cement, concrete, earth and sand, sand and soy gravel.
  • the grout may be alternately laminated with the first grout material and the second grout material.
  • the grout may be formed by mixing the first grout material and the second grout material.
  • the heat exchange pipe is formed in a double cylindrical structure, the heat exchange medium is contained therein, the core portion formed in the longitudinal center; And a cladding part surrounding the core part and containing a phase stable phase change material.
  • the cladding portion may include at least one partition wall for fixing the phase stable phase change material in a longitudinal direction.
  • the phase stable phase change material is at least one of a phase change material formed by mixing a phase change material in a polymer, a phase change material formed by impregnating a phase change material and an encapsulated phase change material in a porous material. It may include.
  • a construction method of a ground heat exchanger including a first grout material including a shape stabilized phase change material (SSPCM) in the hollow. Pouring the grout; And installing a heat exchange pipe containing a heat exchange medium in the hollow in which the grout is poured.
  • SSPCM shape stabilized phase change material
  • the first grout material and the second grout material may be alternately stacked.
  • the step of pouring the grout it is possible to pour the grout formed by mixing the first grout material and the second grout material.
  • the second grout material may include at least one of bentonite, cement, concrete, earth and sand, sand and soy gravel.
  • the step of installing the heat exchange pipe may include a heat exchange pipe formed of a double cylindrical structure in which a heat exchange medium is contained in the core portion and a phase stable phase change material is contained in the cladding portion.
  • the phase stable phase change material as a grout material of the ground heat exchanger, it is possible to solve the problem of PCM converted into liquid during the phase change process, and to secure a high thermal conductivity. Therefore, the ground heat temperature can be stabilized and the thermal efficiency of the ground heat exchanger can be improved.
  • FIG. 1 is a schematic diagram of a ground heat pump system according to the present invention.
  • FIG. 2 is a cross-sectional view showing a state in which the underground heat exchanger of FIG. 1 is installed in the ground.
  • FIG 3 is a view showing the application of the SSPCM grout material of the ground heat exchanger according to an embodiment of the present invention.
  • Figure 4 is a view showing the application of the SSPCM grout material of the ground heat exchanger according to another embodiment of the present invention.
  • FIG. 5 is a view showing the application of the SSPCM grout material of the ground heat exchanger according to another embodiment of the present invention.
  • FIG. 6 is a cross-sectional view in the vertical direction and the longitudinal direction of the double heat exchange pipe of FIG. 5.
  • FIG. 7 is a conceptual diagram showing the thermal efficiency of the underground heat exchanger according to the present invention.
  • FIG. 8 is a flowchart illustrating a construction method of a ground heat exchanger according to an embodiment of the present invention.
  • FIG. 1 is a schematic diagram of a ground heat pump system according to the present invention.
  • 2 is a cross-sectional view showing a state in which the underground heat exchanger of FIG. 1 is installed in the ground.
  • the underground heat pump system which is attracting much attention as a building renewable energy facility, is a combined cooling and heating system composed of a ground heat exchanger and a geothermal heat pump unit.
  • the geothermal heat pump system is considered to be a highly efficient system because it utilizes the constant temperature of the underground which is hardly affected by the outside air.
  • the present invention maximizes the temperature and heat of the underground heat exchanger by utilizing PCM (Phase Change Materials).
  • the ground heat pump system 1 includes a ground heat exchanger 10 embedded in the ground.
  • the underground heat exchanger (10) has a hollow formed in the middle, a pile (30) installed in the ground, a heat exchange medium, and a heat exchange pipe (100) and the heat exchange pipe (100) disposed in the hollow of the pile.
  • the grout 200 is filled between the hollow inner surfaces to perform heat exchange with the heat exchange medium.
  • the underground heat exchanger 10 may further include a container 200 formed in the pile 30 to cover the heat exchange pipe 100 and the grout 200.
  • the ground heat pump system (1) is for heating and cooling air-conditioning heat exchange between the heating and cooling fluid connected to the heat-exchange pipe 100 through which the heating and cooling fluid (cooling and heating fluid may be liquid or gas) for the heating and cooling of the building
  • the heat pump 20 may be included.
  • In the tube of the heat exchange pipe 100 may be provided with a valve in a position necessary to block or open the fluid flow.
  • the ground heat pump system 1 may be further provided with a solar heat collecting plate (not shown) and a heat storage tank (not shown) in order to restore the ground heat that is lost over time.
  • a discharge pipe, a circulation pipe, and the like connected to the inside of the pile 30 may be further installed.
  • a pile (30, pile) is installed.
  • the LW method, the SGR method, and the JSP method may be used.
  • the pile 30 has a hollow 11 is formed in the middle, it may be used PHC pile.
  • the container 200 may be further installed inside the pile 30. In the state where the heat exchange pipe 100 has passed through the upper surface of the container 200, the upper surface of the container 200 should be sealed, and the sealing method may use fusion between the tube and the upper surface.
  • the heat exchange pipe 100 has its own elasticity and may be formed in a U shape.
  • the present invention is not limited thereto, and may be modified in various forms such as a coil shape, a straight shape, and a zigzag shape.
  • the heat exchange pipe 100 may be disposed inside the container 200 or in the hollow 11 of the pile 30.
  • the grout 300 is filled in the gap between the outer surface of the container 200 and the inner surface of the hollow 11 so that heat exchange with the ground can be performed smoothly.
  • compacting may be performed so that there is no gap in the grout 300 in order to facilitate heat transfer.
  • the grout 300 may also be filled in the inner space 22 of the container 200 or the pile 30, which is a space other than the heat exchange pipe 100, to increase thermal efficiency.
  • a closing cap 13 is installed on the upper portion of the pile 30 to close the hollow 11 of the pile 30.
  • the heat exchange pipe 100 extends out of the pile 30 through the closing cap 13.
  • the closing cap 13 may be formed of a plate member through which a through hole through which the tube may pass and close the hollow 11.
  • the ground heat exchanger (10) is a costly part that takes up 50% of the total construction cost of the ground heat pump system (1), and is an important part that influences the performance of the ground heat pump system (1).
  • the grout is a material that fills the gap between the drilled hole and the heat exchange pipe 100 of the underground heat exchanger 10, which accounts for 2 to 3% of the total construction cost of the underground heat pump system 1, but the thermal conductivity of the grout is 0.7 W / When doubled from mk to 1.4 W / mk, the ground heat conductivity is increased by about 15%, and the total length of the ground heat exchanger (10) required for the ground heat pump system (1) can be reduced by more than 30%. It is an important part.
  • the present invention applies Phase Change Materials (PCM) to grout in order to develop a ground heat pump system capable of securing a constant underground temperature throughout the year and regenerated using latent heat.
  • PCM Phase Change Materials
  • the use of a phase change material is a feature that generates a large amount of heat in and out without a temperature change when the material changes phase. It absorbs heat as it melts when the ambient temperature rises and crystallizes when the temperature decreases. It is a material that repeats heat storage and heat radiation.
  • the ground heat pump system (1) is applied to PCM to maximize heat exchange efficiency and heat do. If the ground temperature is stabilized efficiently through the application of PCM, the system performance in long-term operation can be improved by more than 30% compared to the existing system, and the economic efficiency of the system can be improved by maximizing the amount of heat per hollow.
  • the PCM has a problem of leaking the PCM converted into liquid during the phase change process and low thermal conductivity, the PCM cannot be applied as a grout material. Therefore, the shape stabilized phase change material (SSPCM) is used. Is used as grout material.
  • SSPCM shape stabilized phase change material
  • FIG 3 is a view showing the application of the SSPCM grout material of the ground heat exchanger according to an embodiment of the present invention.
  • the grout is formed by alternately stacking the first grout material 310 including the SSPCM and the second grout material 320 and the other grout material 320.
  • the second grout material 320 may be formed of bentonite, cement, concrete, soil, sand, soybean, and the like, and may include all known grout materials.
  • first grout material 310 and the second grout material 320 are poured into the drilling hole of the pile 30 installed in the ground or the hollow of the container 200, and then the heat exchange pipe 100. Can be buried.
  • first grout material 310 and the second grout material 320 may be poured after the heat exchange pipe 100 is installed in the drilling hole of the pile 30 or the hollow of the container 200. It may be.
  • the heat exchange pipe 100 may be buried simultaneously with the lamination of the first grout material 310 and the second grout material 320.
  • the stacking order of the first grout material 310 and the second grout material 320 may be interchanged, and the stacking height of each section may be adjusted as necessary.
  • the first grout material 310 including the SSPCM and the second grout material 320 are stacked to form a grout, thereby preventing the SSPCM from leaking and increasing the thermal conductivity.
  • the ground temperature is different from the upper layer and the lower layer, so that the SSPCM having a different melting point can be appropriately applied to each section, thereby increasing the heat storage performance to the maximum.
  • Figure 4 is a view showing the application of the SSPCM grout material of the ground heat exchanger according to another embodiment of the present invention.
  • the grout is formed by mixing a first grout material including SSPCM and a second grout material different from the first grout material.
  • the second grout material may be formed of bentonite, cement, concrete, earth and sand, sand, soybean, and the like, and may include all known grout materials.
  • the mixed grout material 330 may be manufactured by impregnating the second grout material into the second grout material. This is a similar principle to SSPCM applied to fine aggregates in concrete.
  • the heat exchange pipe 100 may be embedded.
  • the mixing grout material 330 may be poured after the heat exchange pipe 100 is installed in the drilling hole of the pile 30 or the hollow of the container 200.
  • the heat exchange pipe 100 may be buried at the same time as the mixed grout material 330 is laminated.
  • 5 is a view showing the application of the SSPCM grout material of the ground heat exchanger according to another embodiment of the present invention.
  • 6 is a cross-sectional view in the vertical direction and the longitudinal direction of the double heat exchange pipe of FIG. 5.
  • the grout material 340 may include the SSPCM
  • the heat exchange pipe 100 is formed in a double cylindrical structure
  • the SSPCM may be filled in the outer pipe.
  • FIG. 6A a cross-sectional view in a vertical direction of the heat exchange pipe 100 of FIG. 5, in which a heat exchange medium is contained, and the SSPCM wraps around the core part 110 and the core part 110 formed at the center in the longitudinal direction.
  • the filled cladding unit 130 is included.
  • the heat exchange medium filled in the core part 110 may be a flowing gas or a fluid, for example, hot water. Since the SSPCM filled in the cladding unit 130 does not need to flow, it includes at least one partition wall.
  • FIG. 6B a cross-sectional view of the heat exchange pipe 100 in FIG. 5 in a length direction, wherein the cladding unit 130 includes an SSPCM section 130a containing an SSPCM and a partition wall 130b for fixing the SSPCM. do.
  • the present invention applies a PCM fused grout having characteristics of high heat storage and high thermal conductivity by mixing SSPCM having high thermal conductivity with other grout materials. Through this, it is possible to secure heat amount of the underground heat pump system and to improve thermal efficiency.
  • SSPCM applicable to the present invention are as follows. First, the manufacturing method of SSPCM by combining with polymer, the manufacturing method of making SSPCM by mixing PCM with polymer, and second, PCM phase stabilization method through encapsulation, in this case, PCM exists in the capsule as encapsulated PCM On the outside, various materials such as silica play a role in wrapping PCM. Sesame, a method of manufacturing SSPCM by impregnating PCM with porous materials, as if the dough does not leak water. However, the present invention is not limited thereto, and various types of SSPCMs may be manufactured and applied to the ground heat exchanger.
  • FIG. 7 is a conceptual diagram showing the thermal efficiency of the underground heat exchanger according to the present invention.
  • SSPCM is applied to the ground heat exchanger to efficiently stabilize the ground temperature and improve the performance of the ground heat pump system in the long term operation by more than 30%. Therefore, it is possible to improve the economics of the geothermal heat pump system by maximizing the amount of heat per hollow.
  • FIG. 8 is a flowchart illustrating a construction method of a ground heat exchanger according to an embodiment of the present invention.
  • the pile or container in which the hollow is formed is embedded in the foundation position according to the construction of the building (step S110).
  • a grout comprising a first grout material comprising a shape stabilized phase change material (SSPCM) in the hollow is placed in the hollow of the perforation hole or container of the pile (step S130).
  • SSPCM shape stabilized phase change material
  • the first grout material and the second grout material may be alternately stacked.
  • the second grout material may include bentonite, cement, concrete, earth and sand, sand, soybean, and the like.
  • the grout material formed by mixing the first grout material and the second grout material may be poured.
  • the heat exchange pipe containing the heat exchange medium is installed in the hollow in which the grout is poured (step S150).
  • the heat exchange medium may be installed in a double cylindrical structure in which a heat exchange medium is contained in the core portion and a phase-stable phase change material is contained in the cladding portion.
  • the heat exchange pipe is installed after the grout is placed in the hole of the pile or the hollow of the container.
  • the grout may be filled after inserting the heat exchange pipe into the hole of the pile or the hollow of the container.
  • the pipe may be installed in stages according to the degree of pouring grout.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Soil Conditioners And Soil-Stabilizing Materials (AREA)
  • Piles And Underground Anchors (AREA)
  • Road Paving Structures (AREA)

Abstract

A ground heat exchanger, to which PCM fusion grout is applied, comprises: a pile, which has a hollow portion formed at the center thereof, and which is installed in the ground; a heat exchange pipe, which contains a heat exchange medium, and which is arranged in the hollow portion of the pile; and grout which fills the space between the heat exchange pipe and the inner surface of the hollow portion, thereby performing heat exchange with the heat exchange medium, wherein the grout comprises a first grout member comprising shape stabilized phase change materials (SSPCM). Accordingly, a highly-efficient ground heat exchanger can be provided.

Description

[규칙 제26조에 의한 보정 31.03.2014] PCM 융합 그라우트를 적용한 지중열 교환기 및 그의 시공 방법[Correction 31.03.2014] according to Rule 26. Geothermal heat exchanger applying PCM fusion grout and construction method thereof
본 발명은 PCM 융합 그라우트를 적용한 지중열 교환기 및 그의 시공 방법에 관한 것으로서, 더욱 상세하게는 지중열 펌프 시스템에 적용하기 위한 PCM 융합 그라우트를 적용한 지중열 교환기 및 그의 시공 방법에 관한 것이다.The present invention relates to a ground heat exchanger using a PCM fusion grout and a construction method thereof, and more particularly, to a ground heat exchanger using a PCM fusion grout for application to a ground heat pump system and a construction method thereof.
최근 들어 고유가에 대처하기 위하여 건설업계에서는 냉난방에 사용되는 에너지원으로서 석유나 천연가스를 대체할 수 있는 대체 에너지 개발을 활발하게 진행하고 있다. 이러한 대체 에너지 자원 중에서, 무한한 에너지원을 갖는 풍력, 태양열, 지열 등을 이용하여 냉난방시스템에 적용할 수 있는 기술이 연구되고 있는데, 이들 에너지 자원들은 공기오염과 기후변화에 거의 영향을 미치지 않으면서 에너지를 얻을 수 있는 장점이 있는 반면 에너지 밀도가 낮은 단점이 있다.Recently, in order to cope with high oil prices, the construction industry is actively developing alternative energy that can replace oil or natural gas as an energy source used for heating and cooling. Among these alternative energy sources, technologies that can be applied to air-conditioning systems using wind, solar, geothermal, etc., which have infinite energy sources, are being studied. These energy sources have little effect on air pollution and climate change. While there is an advantage to obtain a low energy density has the disadvantage.
풍력과 태양열 에너지를 얻기 위해서는 설치장소의 한계와 함께 넓은 면적이 확보되어야 하며, 이 장치들은 에너지 생산량이 적고 설치 및 유지관리에 많은 비용이 소요되므로, 현재까지 냉난방시스템에 적용하는데 한계가 있다.In order to obtain wind and solar energy, a large area must be secured along with the limit of the installation site. These devices have a limited energy production and cost to install and maintain.
지열 에너지는 설치 및 유지관리가 상대적으로 저렴하기 때문에, 지열을 열원으로 이용한 냉난방시스템이 많이 제안되고 있다.Since geothermal energy is relatively inexpensive to install and maintain, many heating and cooling systems using geothermal heat as a heat source have been proposed.
지열 에너지는 사용하는 깊이와 온도에 따라 직접이용(direct use)과 간접이용(indirect use) 기술로 분류할 수 있으며, 지열 에너지의 직접이용 기술 중 가장 큰 부분을 차지하는 기술이 지열 열펌프 시스템(geothermal heat pump system)이다. 건물 신재생에너지 설비로 많은 관심을 받고 있는 지열 열펌프 시스템은 크게 지중열 교환기(ground heat exchanger)와 지열 열펌프 유닛(geothermal heat pump unit)으로 구성된 냉난방 겸용 시스템이다. Geothermal energy can be categorized into direct use and indirect use technologies according to the depth and temperature used. Geothermal heat pump system (geothermal heat pump system) is the largest part of the direct use technology of geothermal energy. heat pump system). The geothermal heat pump system, which is receiving much attention as a building renewable energy facility, is a combined cooling and heating system composed of a ground heat exchanger and a geothermal heat pump unit.
또한, 외기에 거의 영향을 받지 않는 지중의 항온성을 활용하기 때문에 효율이 높은 시스템으로 간주되고 있다. 국내는 주로 수직형 지열 열펌프 시스템을 사용하며, 이 시스템의 핵심은 열펌프와 지중열 교환기로 볼 수 있다. 여기서 지중열 교환기는 U자 형상의 폴리에틸렌 파이프를 보어홀에 삽입한 다음, 파이프와 보어홀 사이의 빈 공간을 그라우팅 재료로 채움으로써 완성된다. 이때, 적절한 열전도를 가지며, 동시에 수리전도도(투수도)가 작은 재료로 빈 공간을 채우는 그라우팅이 지중열 교환기 성능에 가장 핵심적인 요소라고 할 수 있다.In addition, it is regarded as a highly efficient system because it utilizes the constant temperature of the underground which is hardly affected by outside air. Korea mainly uses vertical geothermal heat pump system, the core of which can be seen as heat pump and underground heat exchanger. The geothermal heat exchanger is completed by inserting a U-shaped polyethylene pipe into the borehole and then filling the void space between the pipe and the borehole with grouting material. At this time, grouting to fill an empty space with a material having a proper thermal conductivity and a small hydraulic conductivity (permeability) is the most important factor for the performance of the ground heat exchanger.
그러나, 종래 사용되는 콘크리트나 벤토나이트와 같은 그라우팅 재료는 지중의 열을 전달받는 열전달 효율이 떨어지는 문제점이 있다. 즉, 벤토나이트의 경우 열전도율이 0.8 ∼ 0.9이고 콘크리트의 경우 열전도율이 건조시 0.43 ∼ 1.25, 습윤시 0.83 ∼ 2.12로서 열전달 효율이 떨어져 지열을 효율적으로 이용하는데 한계가 따른다.However, conventionally used grouting materials such as concrete or bentonite have a problem in that the heat transfer efficiency of receiving heat from the ground is low. That is, bentonite has a thermal conductivity of 0.8 to 0.9, and concrete has a thermal conductivity of 0.43 to 1.25 when dried and 0.83 to 2.12 when wet, which leads to limitations in using geothermal efficiency due to poor heat transfer efficiency.
이에, 본 발명의 기술적 과제는 이러한 점에서 착안된 것으로 본 발명의 목적은 온도 및 채열량을 극대화할 수 있는 PCM 융합 그라우트를 적용한 지중열 교환기를 제공하는 것이다.Accordingly, the technical problem of the present invention was conceived in this respect, and an object of the present invention is to provide a geothermal heat exchanger using a PCM fusion grout capable of maximizing temperature and heat.
본 발명의 다른 목적은 상기 지중열 교환기의 시공 방법을 제공하는 것이다.Another object of the present invention is to provide a construction method of the above ground heat exchanger.
상기한 본 발명의 목적을 실현하기 위한 일 실시예에 따른 PCM 융합 그라우트를 적용한 지중열 교환기는, 가운데 중공이 형성되어 있고, 지중에 설치되는 파일; 열교환 매체가 담겨 있고, 상기 파일의 중공 내에 배치되는 열교환 파이프; 및 상기 열교환 파이프와 상기 중공 내면 사이에 채워져서 상기 열교환 매체와 열교환을 수행하는 그라우트를 포함하고, 상기 그라우트는 상안정 상변화 물질(Shape stabilized Phase Change Materials; SSPCM)을 포함하는 제1 그라우트재를 포함한다.An underground heat exchanger to which the PCM fusion grout is applied according to an embodiment for realizing the object of the present invention includes: a hollow having a center and installed in the ground; A heat exchange pipe containing a heat exchange medium and disposed in the hollow of the pile; And a grout filled between the heat exchange pipe and the hollow inner surface to perform heat exchange with the heat exchange medium, wherein the grout includes a first grout material comprising a shape stabilized phase change material (SSPCM). Include.
본 발명의 실시예에서, 상기 그라우트는 제2 그라우트재를 더 포함하고, 상기 제2 그라우트재는 벤토나이트, 시멘트, 콘크리트, 토사, 모래 및 콩자갈 중 적어도 하나를 포함할 수 있다.In an embodiment of the present invention, the grout further includes a second grout material, the second grout material may include at least one of bentonite, cement, concrete, earth and sand, sand and soy gravel.
본 발명의 실시예에서, 상기 그라우트는 상기 제1 그라우트재 및 상기 제2 그라우트재가 교번적으로 적층될 수 있다.In an embodiment of the present invention, the grout may be alternately laminated with the first grout material and the second grout material.
본 발명의 실시예에서, 상기 그라우트는 상기 제1 그라우트재 및 상기 제2 그라우트재가 혼합되어 형성될 수 있다.In an embodiment of the present invention, the grout may be formed by mixing the first grout material and the second grout material.
본 발명의 실시예에서, 상기 열교환 파이프는 이중 원통 구조로 형성되어, 내부에 열교환 매체가 담겨 있고, 길이 방향 중앙에 형성된 코어부; 및 상기 코어부를 감싸며 상안정 상변화 물질이 담겨 있는 클래딩부를 포함할 수 있다.In an embodiment of the present invention, the heat exchange pipe is formed in a double cylindrical structure, the heat exchange medium is contained therein, the core portion formed in the longitudinal center; And a cladding part surrounding the core part and containing a phase stable phase change material.
본 발명의 실시예에서, 상기 클래딩부는 길이 방향으로 상기 상안정 상변화 물질을 고정하는 적어도 하나의 격벽을 포함할 수 있다.In an embodiment of the present invention, the cladding portion may include at least one partition wall for fixing the phase stable phase change material in a longitudinal direction.
본 발명의 실시예에서, 상기 상안정 상변화 물질은 폴리머에 상변화 물질을 혼합하여 형성된 상변화 물질, 캡슐레이션된 상변화 물질 및 상변화 물질을 다공성 물질에 함침시켜 형성된 상변화 물질 중 적어도 하나를 포함할 수 있다.In an embodiment of the present invention, the phase stable phase change material is at least one of a phase change material formed by mixing a phase change material in a polymer, a phase change material formed by impregnating a phase change material and an encapsulated phase change material in a porous material. It may include.
상기한 본 발명의 다른 목적을 실현하기 위한 일 실시예에 따른 지중열 교환기의 시공 방법은, 상기 중공에 상안정 상변화 물질(Shape stabilized Phase Change Materials; SSPCM)을 포함하는 제1 그라우트재를 포함하는 그라우트를 타설하는 단계; 및 상기 그라우트가 타설된 중공에 열교환 매체가 담겨 있는 열교환 파이프를 설치하는 단계를 포함한다.According to another aspect of the present invention, there is provided a construction method of a ground heat exchanger including a first grout material including a shape stabilized phase change material (SSPCM) in the hollow. Pouring the grout; And installing a heat exchange pipe containing a heat exchange medium in the hollow in which the grout is poured.
본 발명의 실시예에서, 상기 그라우트를 타설하는 단계는, 상기 제1 그라우트재 및 제2 그라우트재를 교번적으로 적층할 수 있다.In an embodiment of the present invention, in the pouring of the grout, the first grout material and the second grout material may be alternately stacked.
본 발명의 실시예에서, 상기 그라우트를 타설하는 단계는, 상기 제1 그라우트재 및 제2 그라우트재를 혼합하여 형성한 그라우트재를 타설할 수 있다.In an embodiment of the present invention, the step of pouring the grout, it is possible to pour the grout formed by mixing the first grout material and the second grout material.
본 발명의 실시예에서, 상기 제2 그라우트재는 벤토나이트, 시멘트, 콘크리트, 토사, 모래 및 콩자갈 중 적어도 하나를 포함할 수 있다.In an embodiment of the present invention, the second grout material may include at least one of bentonite, cement, concrete, earth and sand, sand and soy gravel.
본 발명의 실시예에서, 상기 열교환 파이프를 설치하는 단계는, 코어부에 열교환 매체가 담겨 있고, 클래딩부에 상안정 상변화 물질이 담겨 있는 이중 원통 구조로 형성된 열교환 파이프를 설치할 수 있다.In an embodiment of the present invention, the step of installing the heat exchange pipe may include a heat exchange pipe formed of a double cylindrical structure in which a heat exchange medium is contained in the core portion and a phase stable phase change material is contained in the cladding portion.
이와 같은 본 발명에 따르면, 상안정 상변화 물질을 지중열 교환기의 그라우트 재료로 사용하여 상변화 과정에서 액체로 변환된 PCM이 유출되는 문제점을 해결하고, 높은 열전도율을 확보할 수 있다. 따라서, 지중열 온도를 안정화시키고, 지중열 교환기의 열효율을 향상시킬 수 있다.According to the present invention, by using the phase stable phase change material as a grout material of the ground heat exchanger, it is possible to solve the problem of PCM converted into liquid during the phase change process, and to secure a high thermal conductivity. Therefore, the ground heat temperature can be stabilized and the thermal efficiency of the ground heat exchanger can be improved.
도 1은 본 발명에 따른 지중열 펌프 시스템의 개략적인 구성도이다.1 is a schematic diagram of a ground heat pump system according to the present invention.
도 2는 도 1의 지중열 교환기가 지중에 설치되어 있는 상태를 보여주는 단면도이다.2 is a cross-sectional view showing a state in which the underground heat exchanger of FIG. 1 is installed in the ground.
도 3은 본 발명의 일 실시예에 따른 지중열 교환기의 SSPCM 그라우트재의 적용을 보여주기 위한 도면이다.3 is a view showing the application of the SSPCM grout material of the ground heat exchanger according to an embodiment of the present invention.
도 4는 본 발명의 다른 실시예에 따른 지중열 교환기의 SSPCM 그라우트재의 적용을 보여주기 위한 도면이다.Figure 4 is a view showing the application of the SSPCM grout material of the ground heat exchanger according to another embodiment of the present invention.
도 5는 본 발명의 또 다른 실시예에 따른 지중열 교환기의 SSPCM 그라우트재의 적용을 보여주기 위한 도면이다.5 is a view showing the application of the SSPCM grout material of the ground heat exchanger according to another embodiment of the present invention.
도 6은 도 5의 이중 열교환 파이프의 수직 방향 및 길이 방향의 단면도들이다.6 is a cross-sectional view in the vertical direction and the longitudinal direction of the double heat exchange pipe of FIG. 5.
도 7은 본 발명에 따른 지중열 교환기의 열효율 향상을 보여주기 위한 개념도이다.7 is a conceptual diagram showing the thermal efficiency of the underground heat exchanger according to the present invention.
도 8은 본 발명의 일 실시예에 따른 지중열 교환기의 시공 방법의 순서도이다.8 is a flowchart illustrating a construction method of a ground heat exchanger according to an embodiment of the present invention.
후술하는 본 발명에 대한 상세한 설명은, 본 발명이 실시될 수 있는 특정 실시예를 예시로서 도시하는 첨부 도면을 참조한다. 이들 실시예는 당업자가 본 발명을 실시할 수 있기에 충분하도록 상세히 설명된다. 본 발명의 다양한 실시예는 서로 다르지만 상호 배타적일 필요는 없음이 이해되어야 한다. 예를 들어, 여기에 기재되어 있는 특정 형상, 구조 및 특성은 일 실시예에 관련하여 본 발명의 정신 및 범위를 벗어나지 않으면서 다른 실시예로 구현될 수 있다. 또한, 각각의 개시된 실시예 내의 개별 구성요소의 위치 또는 배치는 본 발명의 정신 및 범위를 벗어나지 않으면서 변경될 수 있음이 이해되어야 한다. 따라서, 후술하는 상세한 설명은 한정적인 의미로서 취하려는 것이 아니며, 본 발명의 범위는, 적절하게 설명된다면, 그 청구항들이 주장하는 것과 균등한 모든 범위와 더불어 첨부된 청구항에 의해서만 한정된다. 도면에서 유사한 참조부호는 여러 측면에 걸쳐서 동일하거나 유사한 기능을 지칭한다.DETAILED DESCRIPTION The following detailed description of the invention refers to the accompanying drawings that show, by way of illustration, specific embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention. It should be understood that the various embodiments of the present invention are different but need not be mutually exclusive. For example, certain shapes, structures, and characteristics described herein may be embodied in other embodiments without departing from the spirit and scope of the invention with respect to one embodiment. In addition, it is to be understood that the location or arrangement of individual components within each disclosed embodiment may be changed without departing from the spirit and scope of the invention. The following detailed description, therefore, is not to be taken in a limiting sense, and the scope of the present invention, if properly described, is defined only by the appended claims, along with the full range of equivalents to which such claims are entitled. Like reference numerals in the drawings refer to the same or similar functions throughout the several aspects.
이하, 도면들을 참조하여 본 발명의 바람직한 실시예들을 보다 상세하게 설명하기로 한다. Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the drawings.
도 1은 본 발명에 따른 지중열 펌프 시스템의 개략적인 구성도이다. 도 2는 도 1의 지중열 교환기가 지중에 설치되어 있는 상태를 보여주는 단면도이다.1 is a schematic diagram of a ground heat pump system according to the present invention. 2 is a cross-sectional view showing a state in which the underground heat exchanger of FIG. 1 is installed in the ground.
건물 신재생에너지 설비로 많은 관심을 받고 있는 지중열 펌프 시스템은 크게 지중열 교환기(ground heat exchanger)와 지열 열펌프 유닛(geothermal heat pump unit)으로 구성된 냉난방 겸용 시스템이다. 지중열 펌프 시스템은 외기에 거의 영향을 받지 않는 지중의 항온성을 활용하기 때문에 효율이 높은 시스템으로 간주되고 있다. 그러나, 하절기 방열로 인한 지중온도 상승 및 동절기 채열로 인한 지중온도 하강으로 시스템 효율 급격히 감소되기 때문에, 본 발명에서는 PCM(Phase Change Materials)을 활용하여 지중열 교환기의 온도 및 채열량을 극대화한다.The underground heat pump system, which is attracting much attention as a building renewable energy facility, is a combined cooling and heating system composed of a ground heat exchanger and a geothermal heat pump unit. The geothermal heat pump system is considered to be a highly efficient system because it utilizes the constant temperature of the underground which is hardly affected by the outside air. However, since the system efficiency is drastically reduced due to the increase in the ground temperature due to the heat dissipation in the summer and the decrease in the ground temperature due to the heat in the winter, the present invention maximizes the temperature and heat of the underground heat exchanger by utilizing PCM (Phase Change Materials).
도 1 및 도 2를 참조하면, 본 발명에 따른 지중열 펌프 시스템(1)은, 지중에 매립 설치된 지중열 교환기(10)를 포함한다. 상기 지중열 교환기(10)는 가운데 중공이 형성되어 있고, 지중에 설치되는 파일(30), 열교환 매체가 담겨 있고, 상기 파일의 중공 내에 배치되는 열교환 파이프(100) 및 상기 열교환 파이프(100)와 상기 중공 내면 사이에 채워져서 상기 열교환 매체와 열교환을 수행하는 그라우트(200)를 포함한다. 상기 지중열 교환기(10)는 상기 파일(30) 내부에 형성되어 상기 열교환 파이프(100) 및 상기 그라우트(200)를 컨테이너(200)를 더 포함할 수 있다.1 and 2, the ground heat pump system 1 according to the present invention includes a ground heat exchanger 10 embedded in the ground. The underground heat exchanger (10) has a hollow formed in the middle, a pile (30) installed in the ground, a heat exchange medium, and a heat exchange pipe (100) and the heat exchange pipe (100) disposed in the hollow of the pile. The grout 200 is filled between the hollow inner surfaces to perform heat exchange with the heat exchange medium. The underground heat exchanger 10 may further include a container 200 formed in the pile 30 to cover the heat exchange pipe 100 and the grout 200.
또한, 상기 지중열 펌프 시스템(1)은, 건물의 냉난방을 위한 냉난방 유체(냉난방 유체는 액체일 수도 있고 기체일 수도 있다)가 순환하는 열교환 파이프(100)가 연결된 냉난방 유체 간의 열교환이 이루어지는 냉난방용 히트펌프(20)를 포함할 수 있다. 상기 열교환 파이프(100)의 관내에는 유체 흐름을 차단하거나 개방하도록 필요한 위치에 밸브가 구비될 수가 있다. In addition, the ground heat pump system (1) is for heating and cooling air-conditioning heat exchange between the heating and cooling fluid connected to the heat-exchange pipe 100 through which the heating and cooling fluid (cooling and heating fluid may be liquid or gas) for the heating and cooling of the building The heat pump 20 may be included. In the tube of the heat exchange pipe 100 may be provided with a valve in a position necessary to block or open the fluid flow.
또한, 상기 지중열 펌프 시스템(1)은, 시간이 지나감에 따라 소실되어 가는 지중열을 복원하기 위하여 태양열 집열판(미도시)과 축열조(미도시)가 더 구비될 수 있다. 도면에서는 생략되었으나, 상기 파일(30) 내부와 연결되는 배출관, 순환 파이프 등이 더 설치될 수 있다.In addition, the ground heat pump system 1 may be further provided with a solar heat collecting plate (not shown) and a heat storage tank (not shown) in order to restore the ground heat that is lost over time. Although omitted in the drawing, a discharge pipe, a circulation pipe, and the like connected to the inside of the pile 30 may be further installed.
상기 지중열 교환기(10)의 시공을 위해, 지중에 천공홀을 형성한 후 건축물의 하중을 안전하게 지반에 전달하는 목적으로 설치되는 기초재로서, 파일(30, 말뚝)을 설치한다. 상기 천공홀을 형성하는 방법은 LW 공법, SGR 공법 및 JSP 공법 등을 사용할 수 있다.For the construction of the underground heat exchanger 10, after forming a hole in the ground as a base material that is installed for the purpose of safely transferring the load of the building to the ground, a pile (30, pile) is installed. As the method of forming the hole, the LW method, the SGR method, and the JSP method may be used.
상기 파일(30)은 가운데 중공(11)이 형성되며, PHC 파일을 사용할 수 있다. 상기 파일(30) 내부에는 컨테이너(200)가 더 설치될 수 있다. 상기 열교환 파이프(100)가 상기 컨테이너(200)의 상면을 통과한 상태에서 상기 컨테이너(200)의 상면은 밀봉되어야 하며, 밀봉 방법으로는 관과 상면 간의 융착을 이용할 수 있다.The pile 30 has a hollow 11 is formed in the middle, it may be used PHC pile. The container 200 may be further installed inside the pile 30. In the state where the heat exchange pipe 100 has passed through the upper surface of the container 200, the upper surface of the container 200 should be sealed, and the sealing method may use fusion between the tube and the upper surface.
상기 열교환 파이프(100)은 자체 탄성을 가지며, U자 형상으로 이루어질 수 있다. 그러나, 이에 한정되지 않고 코일 형상, 일자 형상, 지그재그 형상 등 다양한 형태로 변형될 수 있다.The heat exchange pipe 100 has its own elasticity and may be formed in a U shape. However, the present invention is not limited thereto, and may be modified in various forms such as a coil shape, a straight shape, and a zigzag shape.
상기 열교환 파이프(100)는 상기 컨테이너(200) 내부 또는 상기 파일(30)의 중공(11)에 배치될 수 있다. 상기 컨테이너(200)의 외면과 중공(11)의 내면 사이의 간격에는, 지반과의 열교환이 원활하게 이루어질 수 있도록 그라우트(300)가 채워진다. 상기 컨테이너(200)의 외면과 중공(11)의 내면 사이의 간격에 그라우트(300)를 채울 때에는, 열 전달이 원활하게 되도록 하기 위하여 그라우트(300) 내에 공극이 없도록 다짐작업을 실시할 수 있다. The heat exchange pipe 100 may be disposed inside the container 200 or in the hollow 11 of the pile 30. The grout 300 is filled in the gap between the outer surface of the container 200 and the inner surface of the hollow 11 so that heat exchange with the ground can be performed smoothly. When the grout 300 is filled in the gap between the outer surface of the container 200 and the inner surface of the hollow 11, compacting may be performed so that there is no gap in the grout 300 in order to facilitate heat transfer.
또한, 상기 열교환 파이프(100)가 형성된 이외의 공간인, 상기 컨테이너(200) 또는 상기 파일(30)의 내부 공극(22)에도 역시 그라우트(300)가 채워져 열적효율을 높일 수 있다.In addition, the grout 300 may also be filled in the inner space 22 of the container 200 or the pile 30, which is a space other than the heat exchange pipe 100, to increase thermal efficiency.
상기 그라우트(300)가 채워진 후, 상기 파일(30)의 상부에는 마감 캡(13)이 설치되어 상기 파일(30)의 중공(11)을 폐쇄하게 된다. 물론 열교환 파이프(100)는 상기 마감 캡(13)을 관통하여 상기 파일(30)의 외부로 연장된다. 상기 마감 캡(13)은, 상기 관이 통과할 수 있는 통과 구멍이 형성되며 중공(11)을 폐쇄하는 판부재로 이루어질 수 있다. After the grout 300 is filled, a closing cap 13 is installed on the upper portion of the pile 30 to close the hollow 11 of the pile 30. Of course, the heat exchange pipe 100 extends out of the pile 30 through the closing cap 13. The closing cap 13 may be formed of a plate member through which a through hole through which the tube may pass and close the hollow 11.
상기 지중열 교환기(10)는 지중열 펌프 시스템(1) 전체 공사비의 50%를 차지할 정도로 많은 비용이 소요되는 부분이며, 지중열 펌프 시스템(1) 성능을 좌우하는 중요한 부분이다. 그라우트는 천공홀과 상기 지중열 교환기(10)의 열교환 파이프(100) 사이의 공극을 채우는 재료로 지중열 펌프 시스템(1) 전체 공사비의 2 내지 3%를 차지하지만 그라우트의 열전도도를 0.7 W/mk에서 1.4 W/mk로 2배가량 증가하면 지중열전도도는 약 15%가량 증가하며, 지중열 펌프 시스템(1)에 소요되는 총 지중열 교환기(10)의 길이는 30%이상 절감할 수 있을 정도로 중요한 부분이다. The ground heat exchanger (10) is a costly part that takes up 50% of the total construction cost of the ground heat pump system (1), and is an important part that influences the performance of the ground heat pump system (1). The grout is a material that fills the gap between the drilled hole and the heat exchange pipe 100 of the underground heat exchanger 10, which accounts for 2 to 3% of the total construction cost of the underground heat pump system 1, but the thermal conductivity of the grout is 0.7 W / When doubled from mk to 1.4 W / mk, the ground heat conductivity is increased by about 15%, and the total length of the ground heat exchanger (10) required for the ground heat pump system (1) can be reduced by more than 30%. It is an important part.
본 발명은 연중 일정한 지중온도를 확보하고 잠열을 이용한 축열이 가능한 지중열 펌프 시스템을 개발하기 위하여, 그라우트에 상변화 물질(Phase Change Materials; PCM)을 적용한다. 상변화 물질의 이용은 물질이 상변화할 때 온도변화 없이 많은 열의 출입이 발생하는 특성을 이용하는 것으로서, 주변의 온도가 상승하면 녹으면서 열을 흡수하고 주변의 온도가 낮아지면 결정화 하면서 열을 방출하는 축열과 방열을 반복하는 물질이다. The present invention applies Phase Change Materials (PCM) to grout in order to develop a ground heat pump system capable of securing a constant underground temperature throughout the year and regenerated using latent heat. The use of a phase change material is a feature that generates a large amount of heat in and out without a temperature change when the material changes phase. It absorbs heat as it melts when the ambient temperature rises and crystallizes when the temperature decreases. It is a material that repeats heat storage and heat radiation.
PCM의 축열효과를 이용하여 타 열원과 병용 시 지중열 교환기의 온도 및 채열량을 극대화 할 수 있으므로, 본 발명에 따른 지중열 펌프 시스템(1)은 열교환 효율 및 채열량을 극대화하기 위하여 PCM을 적용한다. PCM 적용을 통하여 지중온도를 효율적으로 안정화 시키면, 장기 운전시의 시스템 성능을 기존 시스템 대비 30%이상 향상시킬 수 있으며 중공 1공당 채열량을 극대화하여 시스템의 경제성 향상을 도모할 수 있다. By using the heat storage effect of the PCM can be maximized the temperature and heat of the heat exchanger when combined with other heat sources, the ground heat pump system (1) according to the present invention is applied to PCM to maximize heat exchange efficiency and heat do. If the ground temperature is stabilized efficiently through the application of PCM, the system performance in long-term operation can be improved by more than 30% compared to the existing system, and the economic efficiency of the system can be improved by maximizing the amount of heat per hollow.
그러나, PCM은 상변화 과정에서 액체로 변환된 PCM이 유출되는 문제점이 있고 낮은 열전도율이 문제되어 그 자체로 그라우트재로 적용할 수 없기 때문에, 상안정 상변화 물질(Shape stabilized Phase Change Materials; SSPCM)을 그라우트재로 활용한다.However, since the PCM has a problem of leaking the PCM converted into liquid during the phase change process and low thermal conductivity, the PCM cannot be applied as a grout material. Therefore, the shape stabilized phase change material (SSPCM) is used. Is used as grout material.
이하에서는, 상안정 상변화 물질을 그라우트재로 활용하는 본 발명의 실시예들에 대해서 자세히 설명한다.Hereinafter, embodiments of the present invention using a phase stable phase change material as a grout material will be described in detail.
도 3은 본 발명의 일 실시예에 따른 지중열 교환기의 SSPCM 그라우트재의 적용을 보여주기 위한 도면이다.3 is a view showing the application of the SSPCM grout material of the ground heat exchanger according to an embodiment of the present invention.
본 실시예에서 그라우트는 SSPCM을 포함하는 제1 그라우트재(310)와 상기 제1 그라우트재(310)와 다른 제2 그라우트재(320)를 교번적으로 적층하여 형성된다. 상기 제2 그라우트재(320)는 벤토나이트, 시멘트, 콘크리트, 토사, 모래, 콩자갈 등으로 형성될 수 있고, 이에 한정되지 않고 공지된 그라우트재를 모두 포함할 수 있다.In the present embodiment, the grout is formed by alternately stacking the first grout material 310 including the SSPCM and the second grout material 320 and the other grout material 320. The second grout material 320 may be formed of bentonite, cement, concrete, soil, sand, soybean, and the like, and may include all known grout materials.
시공 시에는 지중에 설치된 상기 파일(30)의 천공홀 또는 상기 컨테이너(200)의 중공에 상기 제1 그라우트재(310) 및 상기 제2 그라우트재(320)를 타설한 후 상기 열교환 파이프(100)를 매설할 수 있다. 그러나, 이와 반대로 상기 열교환 파이프(100)를 상기 파일(30)의 천공홀 또는 상기 컨테이너(200)의 중공에 설치 후 상기 제1 그라우트재(310) 및 상기 제2 그라우트재(320)를 타설할 수도 있다. 또한, 상기 제1 그라우트재(310) 및 상기 제2 그라우트재(320)의 적층과 동시에 상기 열교환 파이프(100)의 매설이 이루어질 수도 있을 것이다.During construction, the first grout material 310 and the second grout material 320 are poured into the drilling hole of the pile 30 installed in the ground or the hollow of the container 200, and then the heat exchange pipe 100. Can be buried. On the contrary, the first grout material 310 and the second grout material 320 may be poured after the heat exchange pipe 100 is installed in the drilling hole of the pile 30 or the hollow of the container 200. It may be. In addition, the heat exchange pipe 100 may be buried simultaneously with the lamination of the first grout material 310 and the second grout material 320.
상기 제1 그라우트재(310) 및 상기 제2 그라우트재(320)의 적층 순서는 서로 바뀌어도 무방하며, 각 구간의 적층 높이는 필요에 따라 조절 가능하다. 본 실시예에 따라 SSPCM을 포함하는 제1 그라우트재(310)와 상기 제2 그라우트재(320)를 적층하여 그라우트를 형성함으로써, SSPCM이 누출되지 않는 동시에 열전도율을 높일 수 있다. 또한, 지중 온도가 상층부와 하층부가 다름을 이용하여 용융점이 다른 SSPCM을 각 구간마다 적절하게 적용함에 따라 축열 성능을 최대로 끌어올릴 수 있다.The stacking order of the first grout material 310 and the second grout material 320 may be interchanged, and the stacking height of each section may be adjusted as necessary. According to the present exemplary embodiment, the first grout material 310 including the SSPCM and the second grout material 320 are stacked to form a grout, thereby preventing the SSPCM from leaking and increasing the thermal conductivity. In addition, the ground temperature is different from the upper layer and the lower layer, so that the SSPCM having a different melting point can be appropriately applied to each section, thereby increasing the heat storage performance to the maximum.
도 4는 본 발명의 다른 실시예에 따른 지중열 교환기의 SSPCM 그라우트재의 적용을 보여주기 위한 도면이다.Figure 4 is a view showing the application of the SSPCM grout material of the ground heat exchanger according to another embodiment of the present invention.
본 실시예에서 그라우트는 SSPCM을 포함하는 제1 그라우트재와 상기 제1 그라우트재와 다른 제2 그라우트재를 혼합하여 형성된다. 상기 제2 그라우트재는 벤토나이트, 시멘트, 콘크리트, 토사, 모래, 콩자갈 등으로 형성될 수 있고, 이에 한정되지 않고 공지된 그라우트재를 모두 포함할 수 있다.In this embodiment, the grout is formed by mixing a first grout material including SSPCM and a second grout material different from the first grout material. The second grout material may be formed of bentonite, cement, concrete, earth and sand, sand, soybean, and the like, and may include all known grout materials.
예를 들어, 상기 제2 그라우트재에 상기 제2 그라우트재를 함침하여 혼합 그라우트재(330)를 제조할 수 있다. 이는 SSPCM이 콘크리트의 잔골재로 적용되는 것과 비슷한 원리이다.For example, the mixed grout material 330 may be manufactured by impregnating the second grout material into the second grout material. This is a similar principle to SSPCM applied to fine aggregates in concrete.
시공 시에는 지중에 설치된 상기 파일(30)의 천공홀 또는 상기 컨테이너(200)의 중공에 상기 혼합 그라우트재(330)를 타설한 후 상기 열교환 파이프(100)를 매설할 수 있다. 그러나, 이와 반대로 상기 열교환 파이프(100)를 상기 파일(30)의 천공홀 또는 상기 컨테이너(200)의 중공에 설치 후 상기 혼합 그라우트재(330)를 타설할 수도 있다. 또한, 혼합 그라우트재(330)의 적층과 동시에 상기 열교환 파이프(100)의 매설이 이루어질 수도 있을 것이다.During construction, after the mixing grout material 330 is poured into the drilling hole of the pile 30 installed in the ground or the hollow of the container 200, the heat exchange pipe 100 may be embedded. On the contrary, the mixing grout material 330 may be poured after the heat exchange pipe 100 is installed in the drilling hole of the pile 30 or the hollow of the container 200. In addition, the heat exchange pipe 100 may be buried at the same time as the mixed grout material 330 is laminated.
도 5는 본 발명의 또 다른 실시예에 따른 지중열 교환기의 SSPCM 그라우트재의 적용을 보여주기 위한 도면이다. 도 6은 도 5의 이중 열교환 파이프의 수직 방향 및 길이 방향의 단면도들이다.5 is a view showing the application of the SSPCM grout material of the ground heat exchanger according to another embodiment of the present invention. 6 is a cross-sectional view in the vertical direction and the longitudinal direction of the double heat exchange pipe of FIG. 5.
본 실시예에서 그라우트재(340)는 SSPCM을 포함할 수 있으며, 열교환 파이프(100)가 이중 원통 구조로 형성되어, 외부 파이프 내부에 SSPCM이 채워질 수 있다.In this embodiment, the grout material 340 may include the SSPCM, the heat exchange pipe 100 is formed in a double cylindrical structure, the SSPCM may be filled in the outer pipe.
도 6a를 참조하면, 도 5의 열교환 파이프(100)의 수직 방향의 단면도로서, 내부에 열교환 매체가 담겨 있고, 길이 방향 중앙에 형성된 코어부(110) 및 상기 코어부(110)를 감싸며 SSPCM이 채워진 클래딩부(130)를 포함한다. 상기 코어부(110)에 채워진 열교환 매체는 유동하는 기체 또는 유체일 수 있으며, 예를 들어 온수일 수 있다. 상기 클래딩부(130)에 채워진 SSPCM는 유동할 필요가 없으므로, 적어도 하나의 격벽을 포함한다.Referring to FIG. 6A, a cross-sectional view in a vertical direction of the heat exchange pipe 100 of FIG. 5, in which a heat exchange medium is contained, and the SSPCM wraps around the core part 110 and the core part 110 formed at the center in the longitudinal direction. The filled cladding unit 130 is included. The heat exchange medium filled in the core part 110 may be a flowing gas or a fluid, for example, hot water. Since the SSPCM filled in the cladding unit 130 does not need to flow, it includes at least one partition wall.
도 6b를 참조하면, 도 5의 열교환 파이프(100)의 길이 방향의 단면도로서, 상기 클래딩부(130)는 SSPCM을 담고 있는 SSPCM 구간(130a)과 상기 SSPCM의 고정을 위한 격벽(130b)을 포함한다.Referring to FIG. 6B, a cross-sectional view of the heat exchange pipe 100 in FIG. 5 in a length direction, wherein the cladding unit 130 includes an SSPCM section 130a containing an SSPCM and a partition wall 130b for fixing the SSPCM. do.
상기 설명한 바와 같이, 본 발명은 열전도율이 높은 SSPCM을 다른 그라우트재와 혼합함으로서 고축열, 고열전도의 특징을 가진 PCM 융합 그라우트를 적용한다. 이를 통하여 최종적으로 지중열 펌프 시스템의 채열량 확보와 더불어 열효율을 향상시킬 수 있다.As described above, the present invention applies a PCM fused grout having characteristics of high heat storage and high thermal conductivity by mixing SSPCM having high thermal conductivity with other grout materials. Through this, it is possible to secure heat amount of the underground heat pump system and to improve thermal efficiency.
본 발명에 적용할 수 있는 SSPCM의 예들은 다음과 같다. 첫째, 폴리머와의 결합을 통한 SSPCM 제조로서, 폴리머에 PCM을 혼합하여 SSPCM을 만든 제조 방법, 둘째, 캡슐레이션을 통한 PCM 상안정화 방법, 이 경우, 캡슐화 형태의 PCM으로서 캡슐 내부에 PCM이 존재하며, 외부에는 실리카 등 다양한 물질이 PCM을 싸는 역할을 한다. 셋쌔, 밀가루 반죽에 물이 새지 않는 것처럼 PCM을 다공성 물질 등에 함침시킴으로써 SSPCM를 제조하는 방법이다. 그러나, 이에 한정되지 않고, 다양한 형태의 SSPCM을 제조하고, 지중열 교환기에 적용할 수 있다.Examples of SSPCM applicable to the present invention are as follows. First, the manufacturing method of SSPCM by combining with polymer, the manufacturing method of making SSPCM by mixing PCM with polymer, and second, PCM phase stabilization method through encapsulation, in this case, PCM exists in the capsule as encapsulated PCM On the outside, various materials such as silica play a role in wrapping PCM. Sesame, a method of manufacturing SSPCM by impregnating PCM with porous materials, as if the dough does not leak water. However, the present invention is not limited thereto, and various types of SSPCMs may be manufactured and applied to the ground heat exchanger.
도 7은 본 발명에 따른 지중열 교환기의 열효율 향상을 보여주기 위한 개념도이다.7 is a conceptual diagram showing the thermal efficiency of the underground heat exchanger according to the present invention.
본 발명은 지중열 교환기에 SSPCM을 적용하여 지중 온도를 효율적으로 안정화 시키고, 장기 운전시의 지중열 펌프 시스템 성능을 기존 시스템 대비 30%이상 향상시킬 수 있다. 이에, 1 중공당 채열량을 극대화하여 지중열 펌프 시스템의 경제성 향상을 도모할 수 있다.According to the present invention, SSPCM is applied to the ground heat exchanger to efficiently stabilize the ground temperature and improve the performance of the ground heat pump system in the long term operation by more than 30%. Therefore, it is possible to improve the economics of the geothermal heat pump system by maximizing the amount of heat per hollow.
도 8은 본 발명의 일 실시예에 따른 지중열 교환기의 시공 방법의 순서도이다.8 is a flowchart illustrating a construction method of a ground heat exchanger according to an embodiment of the present invention.
먼저 중공이 형성된 파일 또는 컨테이너를 건축물 시공에 따른 기초 위치에 매입한다(단계 S110).First, the pile or container in which the hollow is formed is embedded in the foundation position according to the construction of the building (step S110).
상기 중공에 상안정 상변화 물질(Shape stabilized Phase Change Materials; SSPCM)을 포함하는 제1 그라우트재를 포함하는 그라우트를 파일의 천공홀 또는 컨테이너의 중공에 타설한다(단계 S130). A grout comprising a first grout material comprising a shape stabilized phase change material (SSPCM) in the hollow is placed in the hollow of the perforation hole or container of the pile (step S130).
상기 그라우트를 타설하는 단계(단계 S130)는, 상기 제1 그라우트재 및 제2 그라우트재를 교번적으로 적층할 수 있다. 상기 제2 그라우트재는 벤토나이트, 시멘트, 콘크리트, 토사, 모래, 콩자갈 등을 포함할 수 있다.In the step of pouring the grout (step S130), the first grout material and the second grout material may be alternately stacked. The second grout material may include bentonite, cement, concrete, earth and sand, sand, soybean, and the like.
다른 예로서, 상기 그라우트를 타설하는 단계(단계 S130)는, 상기 제1 그라우트재 및 제2 그라우트재를 혼합하여 형성한 그라우트재를 타설할 수 있다.As another example, in the step of pouring the grout (step S130), the grout material formed by mixing the first grout material and the second grout material may be poured.
상기 그라우트가 타설된 중공에 열교환 매체가 담겨 있는 열교환 파이프를 설치한다(단계 S150).The heat exchange pipe containing the heat exchange medium is installed in the hollow in which the grout is poured (step S150).
상기 열교환 파이프를 설치하는 단계(단계 S150)는, 코어부에 열교환 매체가 담겨 있고, 클래딩부에 상안정 상변화 물질이 담겨 있는 이중 원통 구조로 형성된 열교환 파이프를 설치할 수 있다.In the step of installing the heat exchange pipe (step S150), the heat exchange medium may be installed in a double cylindrical structure in which a heat exchange medium is contained in the core portion and a phase-stable phase change material is contained in the cladding portion.
본 실시예에서는 상기 그라우트를 파일의 천공홀 또는 컨테이너의 중공에 타설한 후 상기 열교환 파이프를 설치하였으나, 이와 다르게 상기 열교환 파이프를 파일의 천공홀 또는 컨테이너의 중공에 삽입한 후 상기 그라우트를 채울 수도 있다. 또한, 그라우트의 타설 정도에 따라 상기 파이프를 단계적으로 설치할 수도 있다.In this embodiment, the heat exchange pipe is installed after the grout is placed in the hole of the pile or the hollow of the container. Alternatively, the grout may be filled after inserting the heat exchange pipe into the hole of the pile or the hollow of the container. . In addition, the pipe may be installed in stages according to the degree of pouring grout.
이상에서는 실시예들을 참조하여 설명하였지만, 해당 기술 분야의 숙련된 당업자는 하기의 특허 청구의 범위에 기재된 본 발명의 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시킬 수 있음을 이해할 수 있을 것이다.Although described above with reference to the embodiments, those skilled in the art can be variously modified and changed within the scope of the present invention without departing from the spirit and scope of the invention described in the claims below. I can understand.
지중열 펌프 시스템의 열효율이 향상된다면 신재생 관련 건축시장의 활성화와 더불어 지열을 주로 이용하는 우리나라의 경우, 상당한 에너지 절약과 경제적 효과를 가져올 수 있을 것으로 기대된다. 현재 PCM과 관련한 국내 연구 및 시장은 크게 형성되어 있지 않으며, 지중열 펌프 시스템 적용을 위하여 PCM 융합 그라우트 개발에 대한 연구는 미미한 것으로 분석된다. 국내에서 활용이 가능한 신재생에너지 자원 중 지열이 가지고 있는 잠재성은 매우 크다. 최근 지중열 펌프 시스템에 대한 관심과 연구가 커지고 있으며, PCM 융합 그라우트재의 개발에 따라 관련 시장이 매우 커질 것으로 전망한다.If the thermal efficiency of the geothermal heat pump system is improved, it is expected to bring significant energy savings and economic effects in Korea, which uses geothermal heat as well as revitalizing the construction market related to renewable energy. At present, domestic research and market related to PCM are not largely formed, and research on development of PCM fusion grout for geothermal heat pump system is considered to be insignificant. The potential of geothermal heat among the renewable energy resources available in Korea is very high. Recently, the interest and research on the ground heat pump system is growing, and the related market is expected to grow very much with the development of PCM fusion grout material.

Claims (12)

  1. 가운데 중공이 형성되어 있고, 지중에 설치되는 파일;A hollow formed in the center and installed in the ground;
    열교환 매체가 담겨 있고, 상기 파일의 중공 내에 배치되는 열교환 파이프; 및A heat exchange pipe containing a heat exchange medium and disposed in the hollow of the pile; And
    상기 열교환 파이프와 상기 중공 내면 사이에 채워져서 상기 열교환 매체와 열교환을 수행하는 그라우트를 포함하고,A grout filled between the heat exchange pipe and the hollow inner surface to perform heat exchange with the heat exchange medium,
    상기 그라우트는 상안정 상변화 물질(Shape stabilized Phase Change Materials; SSPCM)을 포함하는 제1 그라우트재를 포함하는 지중열 교환기.Wherein the grout comprises a first grout material comprising a shape stabilized phase change material (SSPCM).
  2. 제1항에 있어서, The method of claim 1,
    상기 그라우트는 제2 그라우트재를 더 포함하고,The grout further comprises a second grout material,
    상기 제2 그라우트재는 벤토나이트, 시멘트, 콘크리트, 토사, 모래 및 콩자갈 중 적어도 하나를 포함하는 지중열 교환기.The second grout material is at least one of bentonite, cement, concrete, earth and sand, sand and soybeans.
  3. 제2항에 있어서, The method of claim 2,
    상기 그라우트는 상기 제1 그라우트재 및 상기 제2 그라우트재가 교번적으로 적층된 지중열 교환기.The grout is a ground heat exchanger in which the first grout material and the second grout material are alternately stacked.
  4. 제2항에 있어서, The method of claim 2,
    상기 그라우트는 상기 제1 그라우트재 및 상기 제2 그라우트재가 혼합되어 형성된 지중열 교환기.The grout is a ground heat exchanger formed by mixing the first grout material and the second grout material.
  5. 제1항에 있어서, The method of claim 1,
    상기 열교환 파이프는 이중 원통 구조로 형성되어, The heat exchange pipe is formed of a double cylindrical structure,
    내부에 열교환 매체가 담겨 있고, 길이 방향 중앙에 형성된 코어부; 및A core part containing a heat exchange medium therein and formed in the center of the longitudinal direction; And
    상기 코어부를 감싸며 상안정 상변화 물질이 담겨 있는 클래딩부를 포함하는 지중열 교환기.An underground heat exchanger surrounding the core part and including a cladding part containing a phase stable phase change material.
  6. 제5항에 있어서, The method of claim 5,
    상기 클래딩부는 길이 방향으로 상기 상안정 상변화 물질을 고정하는 적어도 하나의 격벽을 포함하는 지중열 교환기.The cladding unit includes at least one partition wall for fixing the phase stable phase change material in the longitudinal direction.
  7. 제1항에 있어서, The method of claim 1,
    상기 상안정 상변화 물질은 폴리머에 상변화 물질을 혼합하여 형성된 상변화 물질, 캡슐레이션된 상변화 물질 및 상변화 물질을 다공성 물질에 함침시켜 형성된 상변화 물질 중 적어도 하나를 포함하는 지중열 교환기.The phase stable phase change material includes at least one of a phase change material formed by mixing a phase change material in a polymer, a phase change material formed by impregnating the encapsulated phase change material, and a phase change material in a porous material.
  8. 가운데 중공이 형성된 파일을 지중에 설치하는 단계;Installing a pile having a hollow in the ground;
    상기 중공에 상안정 상변화 물질(Shape stabilized Phase Change Materials; SSPCM)을 포함하는 제1 그라우트재를 포함하는 그라우트를 타설하는 단계; 및Placing a grout in the cavity comprising a first grout material comprising a shape stabilized phase change material (SSPCM); And
    상기 그라우트가 타설된 중공에 열교환 매체가 담겨 있는 열교환 파이프를 설치하는 단계를 포함하는 지중열 교환기의 시공 방법.And installing a heat exchange pipe containing a heat exchange medium in the hollow in which the grout is poured.
  9. 제8항에 있어서, The method of claim 8,
    상기 그라우트를 타설하는 단계는,Pouring the grout,
    상기 제1 그라우트재 및 제2 그라우트재를 교번적으로 적층하는 지중열 교환기의 시공 방법.The construction method of the underground heat exchanger which alternately laminates the said 1st grout material and the 2nd grout material.
  10. 제8항에 있어서, The method of claim 8,
    상기 그라우트를 타설하는 단계는,Pouring the grout,
    상기 제1 그라우트재 및 제2 그라우트재를 혼합하여 형성한 그라우트재를 타설하는 지중열 교환기의 시공 방법.The construction method of the underground heat exchanger which places the grout material formed by mixing the said 1st grout material and the 2nd grout material.
  11. 제9항 및 제10항 중 어느 한 항에 있어서, The method according to any one of claims 9 and 10,
    상기 제2 그라우트재는 벤토나이트, 시멘트, 콘크리트, 토사, 모래 및 콩자갈 중 적어도 하나를 포함하는 지중열 교환기의 시공 방법.The second grout material is a construction method of the underground heat exchanger comprising at least one of bentonite, cement, concrete, earth and sand, sand and soybean.
  12. 제8항에 있어서, The method of claim 8,
    상기 열교환 파이프를 설치하는 단계는,Installing the heat exchange pipe,
    코어부에 열교환 매체가 담겨 있고, 클래딩부에 상안정 상변화 물질이 담겨 있는 이중 원통 구조로 형성된 열교환 파이프를 설치하는 지중열 교환기의 시공 방법.A method of constructing an underground heat exchanger, in which a heat exchanger medium is formed in a core part and a heat exchanger pipe is formed in a double-cylindrical structure containing a phase-stable phase change material in a cladding part.
PCT/KR2014/002384 2014-03-21 2014-03-21 Ground heat exchanger to which pcm fusion grout is applied and method for installing same WO2015141878A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0033092 2014-03-21
KR1020140033092A KR101541781B1 (en) 2014-03-21 2014-03-21 Ground heat exchanger using phase change materials fused grout and method for constructing the same

Publications (2)

Publication Number Publication Date
WO2015141878A1 true WO2015141878A1 (en) 2015-09-24
WO2015141878A9 WO2015141878A9 (en) 2016-11-17

Family

ID=53884603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/002384 WO2015141878A1 (en) 2014-03-21 2014-03-21 Ground heat exchanger to which pcm fusion grout is applied and method for installing same

Country Status (2)

Country Link
KR (1) KR101541781B1 (en)
WO (1) WO2015141878A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017210805A1 (en) * 2016-06-06 2017-12-14 CUENI, Marcel Urban heat-exchange network
CN109163478A (en) * 2018-09-04 2019-01-08 深圳大学 A kind of phase transformation energy pile, earth source heat pump heat-exchange system and production method

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101726198B1 (en) 2015-10-20 2017-04-12 숭실대학교산학협력단 Adjustable heat transfer analysis apparatus for thermal storage building materials, heat transfer analysis method using the apparatus and recording medium for performing the method
KR101984767B1 (en) 2017-11-13 2019-05-31 (주)에너지허브 Passive cooling heat exchange system using capsule-type phase change material
CN113295563B (en) * 2021-05-27 2022-01-28 水利部交通运输部国家能源局南京水利科学研究院 Method for treating cold region expansive soil channel based on phase change material temperature control composite
CN115075281B (en) * 2022-07-26 2023-10-31 西南石油大学 CFG pile-raft composite foundation structure capable of relieving thermal disturbance of frozen soil and construction method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050034535A (en) * 2003-10-09 2005-04-14 코오롱건설주식회사 Geothermal exchanger using hollow of pile and method of construction thereof
KR20090108795A (en) * 2008-04-14 2009-10-19 대림산업 주식회사 Geothermal exchanging system and constructing method the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20050034535A (en) * 2003-10-09 2005-04-14 코오롱건설주식회사 Geothermal exchanger using hollow of pile and method of construction thereof
KR20090108795A (en) * 2008-04-14 2009-10-19 대림산업 주식회사 Geothermal exchanging system and constructing method the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JUNG, SU GWANG ET AL.: "Consideration for Application of Phase Change Material(PCM) for Building Energy Saving", JOURNAL OF KOREAN INSTITUTE OF ARCHITECTURAL SUSTAINABLE ENVIRONMENT AND BUILDING SYSTEMS, vol. 5, no. 1, 2011, pages 7 - 15 *
JUNG, SU GWANG ET AL.: "Preparation of Shape Stabilized PCM Using Porous Materials for Application to Buildings", JOURNAL OF THE SOCIETY OF AIR-CONDITIONING AND REFRIGERATING ENGINEERS OF KOREA, vol. 25, no. 8, 2013, pages 432 - 437, XP055225460 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017210805A1 (en) * 2016-06-06 2017-12-14 CUENI, Marcel Urban heat-exchange network
CH712526A1 (en) * 2016-06-06 2017-12-15 Geinoz François Ignace Urban heat exchange network.
CN109163478A (en) * 2018-09-04 2019-01-08 深圳大学 A kind of phase transformation energy pile, earth source heat pump heat-exchange system and production method

Also Published As

Publication number Publication date
KR101541781B1 (en) 2015-08-04
WO2015141878A9 (en) 2016-11-17

Similar Documents

Publication Publication Date Title
WO2015141878A1 (en) Ground heat exchanger to which pcm fusion grout is applied and method for installing same
CN102003010A (en) Energy-saving cast-in-place hollow floor
CN102995627B (en) Geothermal energy collecting pile foundation
WO2018014604A1 (en) Cast-in-place pile apparatus for combined cooling, heat and power generation and construction method therefor
WO2018014606A1 (en) Pcc pile apparatus for combined cooling, heat and power generation and manufacturing method therefor
CN109458757B (en) Static drilling root planting energy pile and production method and construction method thereof
DE102006019339B3 (en) Artificial water storage under the earth
US10900666B2 (en) Wall part, heat buffer and energy exchange system
JP4953973B2 (en) Embedded heat exchanger and method for manufacturing the same
CN105927271A (en) Grouting backfilling system and grouting backfilling method for vertical shafts in vertical heat exchangers
KR20090108795A (en) Geothermal exchanging system and constructing method the same
CN205876388U (en) Grout system of backfilling of shaft in vertical heat exchanger
CN105698437B (en) A kind of U-joint used for geothermal heat pump, earth source heat pump and earth source heat pump construction method
CN102003026A (en) Combined hollow box body for cast-in-place energy-saving hollow floor
KR100991002B1 (en) A heatexchanger for the underground
KR20120134659A (en) Combined type geothermal system and construction method using large aperture punchung
KR101457388B1 (en) Method for construction of ground heat exchanger system using floor space of the underground structures
CN105651093A (en) Underground heat exchange tube for energy exchange system of ground-source deep well
CN109282515A (en) A kind of heat accumulating type underground heat extraction element and extracting method
KR102597648B1 (en) Ice and snow prevention system
KR102114105B1 (en) Segment tunnel of solar heat exchange system
JPH0417353B2 (en)
CN208108548U (en) A kind of underground enhanced heat exchange system based on pile foundation pipe laying
CN209541226U (en) Ground heat-exchange system in underground pipe geothermal source pumping system
WO2015016143A1 (en) Large capacity geothermal heat exchange well

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886097

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886097

Country of ref document: EP

Kind code of ref document: A1