JP4953973B2 - Embedded heat exchanger and method for manufacturing the same - Google Patents

Embedded heat exchanger and method for manufacturing the same Download PDF

Info

Publication number
JP4953973B2
JP4953973B2 JP2007205838A JP2007205838A JP4953973B2 JP 4953973 B2 JP4953973 B2 JP 4953973B2 JP 2007205838 A JP2007205838 A JP 2007205838A JP 2007205838 A JP2007205838 A JP 2007205838A JP 4953973 B2 JP4953973 B2 JP 4953973B2
Authority
JP
Japan
Prior art keywords
tube
heat exchanger
diameter
diameter pipe
small
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007205838A
Other languages
Japanese (ja)
Other versions
JP2009041231A (en
Inventor
謙次 江本
雅一 高野
Original Assignee
株式会社フェアリープラントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フェアリープラントテクノロジー filed Critical 株式会社フェアリープラントテクノロジー
Priority to JP2007205838A priority Critical patent/JP4953973B2/en
Publication of JP2009041231A publication Critical patent/JP2009041231A/en
Application granted granted Critical
Publication of JP4953973B2 publication Critical patent/JP4953973B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/10Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground
    • F24T10/13Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes
    • F24T10/17Geothermal collectors with circulation of working fluids through underground channels, the working fluids not coming into direct contact with the ground using tube assemblies suitable for insertion into boreholes in the ground, e.g. geothermal probes using tubes closed at one end, i.e. return-type tubes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Description

本発明は、地中に埋設して大地との熱交換により冷暖房等を行うための埋設型熱交換器及びその製造方法に関するものである。   The present invention relates to an embedded heat exchanger for embedding in the ground and performing air conditioning and the like by heat exchange with the ground, and a method for manufacturing the same.

地中の一定深さ領域には、温度が季節、昼夜を問わずほぼ一定となる定温度領域が存在し、この定温度領域を利用して、熱交換を行う埋設型熱交換器が種々開発されている。従来のこの種の埋設型熱交換器としては、特許文献1、2に記載されているように、コンクリートや鋼製の中空杭を地中に埋め込み、その内部にU字型の熱交換パイプを挿入したものが知られている。また、単純に熱交換パイプを挿入しただけでは、熱交換効率が低いため、中空杭と熱交換パイプとの間の隙間空間を熱伝導性の良い適宜の材料で埋めたものや、熱交換パイプの往路部分をフィン形状にしたり、特許文献3、4に示すように螺旋状にしたりしたものも発明されている。
特開昭60−8659号公報 特開2004−233031号公報 特開平3−83226号公報 特開平11−336008号公報
There is a constant temperature region where the temperature is almost constant regardless of the season or day and night in the fixed depth region of the ground, and various embedded heat exchangers that perform heat exchange using this constant temperature region have been developed. Has been. As a conventional buried heat exchanger of this kind, as described in Patent Documents 1 and 2, a hollow pile made of concrete or steel is buried in the ground, and a U-shaped heat exchange pipe is embedded in the inside. The one inserted is known. In addition, the heat exchange efficiency is low simply by inserting a heat exchange pipe, so the gap space between the hollow pile and the heat exchange pipe is filled with an appropriate material having good thermal conductivity, or the heat exchange pipe In some cases, the forward path portion is formed in a fin shape or in a spiral shape as shown in Patent Documents 3 and 4.
Japanese Unexamined Patent Publication No. 60-8659 JP 2004-233031 A Japanese Patent Laid-Open No. 3-83226 JP-A-11-336008

しかしながら、従来の埋設型熱交換器は、大地との熱交換効率を高めることを目指しつつも、下端からほぼ地表に到るまでが同一構造であるため、地表付近の大気温度に影響を受ける領域でも熱交換が行われ、そのことが逆に悪影響を及ぼす場合もある。つまり、前述した地中の定温度層で一旦冷やされた(又は暖められた)空気が、地表付近で再度暖められて(又は冷やされて)しまう恐れがあるのである。   However, the conventional buried heat exchanger has the same structure from the bottom to almost the ground surface while aiming to increase the efficiency of heat exchange with the ground. However, heat exchange takes place, which may adversely affect it. That is, the air once cooled (or warmed) in the above-described constant temperature layer in the ground may be reheated (or cooled) near the ground surface.

また、大地との熱交換効率を向上させるべく、例えば熱交換パイプをフィン形状にしたり螺旋状にしたりすると、製造に大きな負担がかかるうえ、工場でほぼ全てを予め作り込んでおく必要が生じるため、長さが10m以上にもなる埋設型熱交換器を工場から現場まで輸送する手間が大変なものとなる。   Also, to improve the efficiency of heat exchange with the ground, for example, if the heat exchange pipe is made into a fin shape or a spiral shape, it will take a large burden on the manufacturing and it will be necessary to make almost everything in advance at the factory. The trouble of transporting the buried heat exchanger having a length of 10 m or more from the factory to the site becomes serious.

本発明はかかる不具合を解決すべくなされたものであって、簡単な構造で製作や輸送に負担がかからず、しかも、高い熱交換効率を有した埋設型熱交換器及びその製造方法を提供することをその主たる所期課題としたものである。   The present invention has been made to solve such problems, and provides an embedded heat exchanger having a simple structure that does not impose a burden on production and transportation, and has high heat exchange efficiency, and a method for manufacturing the same. This is the main desired task.

すなわち、本発明に係る埋設型熱交換器は、地中に穿たれた穴に埋設され、流体が流路を流通していく過程で大地と熱交換するように構成した柱状をなす埋設型熱交換器であって、地中の定温度層にほぼ全てが埋設される下側管状体と、定温度層の上方の温度変化層にほぼ全てが埋設され、前記下側管状体よりも熱交換能の低い上側管状体とを具備しており、前記下側管状体は、中心に形成された大径管と、その大径管の周囲に形成された複数の小径管と、それら小径管及び大径管を下端部において連通する連通部とを有したものであり、前記上側管状体は、中心管と外周管とからなる二重管構造をなし、前記中心管が前記大径管の上端に接続されるとともに、前記外周管が前記小径管に連通するように構成したものである。   That is, the embedded heat exchanger according to the present invention is embedded in a hole drilled in the ground, and has a columnar embedded heat configured to exchange heat with the ground while the fluid flows through the flow path. It is an exchanger, and almost all of the lower tubular body is embedded in the underground constant temperature layer and the temperature change layer above the constant temperature layer is embedded, and heat exchange is performed more than the lower tubular body. An upper tubular body having a low performance, and the lower tubular body includes a large-diameter tube formed in the center, a plurality of small-diameter tubes formed around the large-diameter tube, the small-diameter tubes, and The upper tubular body has a double tube structure composed of a central tube and an outer peripheral tube, and the central tube is the upper end of the large-diameter tube. And the outer peripheral pipe communicates with the small diameter pipe.

このように構成した本発明によれば、定温度層に埋設される下側管状体において、小径管を直線状細管とし、これを多数設ければ、従来のように螺旋状にしたりフィン状にするといったことなく、直管だけの構成で無理なく表面積を大きくできるので、製造が簡単で、その分のコスト削減もできる。   According to the present invention configured as described above, in the lower tubular body embedded in the constant temperature layer, the small-diameter tube is a straight thin tube, and if a large number of these are provided, the tube can be spiraled or finned as in the past. Therefore, since the surface area can be increased without difficulty by using only a straight pipe, the manufacturing is simple and the cost can be reduced accordingly.

また、地表の温度変化の影響を受ける大地の温度変化層には、熱交換能に劣る上側接続管を埋設しているため、温度変化層からの伝熱影響を可及的に小さくすることができる一方、地表の温度変化の影響をほとんど受けない大地の定温度層には、熱交換能に優れた下側管状体を埋設しているため、伝熱効率を可及的に高めることができ、トータルとして、大地との間で理想的な熱交換を図ることができるようになる。   In addition, the temperature change layer on the earth that is affected by the temperature change on the ground surface has an upper connection pipe that is inferior in heat exchanging capacity, so the heat transfer effect from the temperature change layer can be minimized. On the other hand, since the lower tubular body excellent in heat exchange capacity is embedded in the constant temperature layer of the earth that is hardly affected by the temperature change of the ground surface, the heat transfer efficiency can be increased as much as possible. As a total, ideal heat exchange with the earth can be achieved.

さらに、主として上側管状体と下側管状体という2つの構造からなるものであるため、輸送時の長さを短くできるなどの利点を得られる。   Furthermore, since it mainly consists of two structures, an upper tubular body and a lower tubular body, it is possible to obtain an advantage that the length during transportation can be shortened.

熱交換能を異ならせる具体的な構成としては、下側管状体の少なくとも一部、より具体的には小径管を金属で形成するとともに、上側管状体は、中心管、外周管ともに樹脂で形成したものを挙げることができる。   As a specific configuration for varying the heat exchange capacity, at least a part of the lower tubular body, more specifically, a small diameter tube is formed of metal, and the upper tubular body is formed of resin for both the central tube and the outer tube. Can be mentioned.

下側管状体の熱交換能をより向上させるためには、少なくとも前記穴と小径管との間の隙間に、空気より熱伝導性の高い充填剤を充填しているものが望ましい。具体的な充填剤としては、砂、セメント又はそれらの混合物を挙げることができる。特に砂とセメントと水を適宜の配合で混ぜたコンクリートやモルタルなどのように、充填時には液状で後に固化するものであれば、穴の内周面の凹凸にも隙間なく行き渡るうえ、周囲の大地にも染み込み、大地との熱接触面積が増大して熱交換能がさらに向上する。加えて、充填剤の固化後は小径管や大径管を固定できるだけでなく、当該充填剤が穴の内周面の凹凸に係合して浮き上がり防止も期待できる。   In order to further improve the heat exchange capacity of the lower tubular body, it is desirable that at least the gap between the hole and the small diameter tube is filled with a filler having higher thermal conductivity than air. Specific fillers can include sand, cement, or mixtures thereof. In particular, if the material is liquid and solidifies after filling, such as concrete or mortar mixed with sand, cement, and water in an appropriate composition, the unevenness on the inner peripheral surface of the hole is spread without any gaps, and the surrounding earth The heat exchange capacity is further improved by increasing the heat contact area with the ground. In addition, after the filler is solidified, not only can the small-diameter tube and the large-diameter tube be fixed, but the filler can also be expected to engage with the irregularities on the inner peripheral surface of the hole to prevent it from rising.

小径管及び大径管を一体構造物として、地中への埋め込み作業を容易化するとともに、埋設現場での充填剤の充填作業を可能ならしめ、しかも連通部を簡単に形成できるようにするには、前記大径管及び小径管を貫通させながらそれらの下端部を支持する隔壁板をさらに設け、その隔壁板が前記穴の底よりも一定距離上方に配置され、当該隔壁板の下方に形成される空間が前記連通部を形成するように構成しておくことが望ましい。一体性をより高めるには、前記隔壁板よりも上方に、小径管及び大径管を貫通させながら保持する中間保持枠を設けているものがさらに好ましい。   Making the small diameter pipe and the large diameter pipe as an integral structure facilitates the embedding work into the ground, enables the filling work of the filling material at the embedding site, and allows the communication part to be easily formed. Is further provided with a partition plate that supports the lower end of the large-diameter tube and the small-diameter tube while penetrating the large-diameter tube and the small-diameter tube, and the partition plate is disposed at a certain distance above the bottom of the hole and formed below the partition plate. It is desirable that the space to be formed forms the communication part. In order to further improve the unity, it is more preferable to provide an intermediate holding frame that holds the small-diameter pipe and the large-diameter pipe penetrating above the partition plate.

充填剤を確実に充填するための構成としては、前記隔壁板近傍に吐出口が配置される充填剤注入管をさらに備え、前記充填剤がその吐出口から吐出されて前記穴と大径管及び小径管との間の隙間に下から充填されていくように構成しているものが好適である。   The configuration for reliably filling the filler further includes a filler injection pipe in which a discharge port is disposed in the vicinity of the partition plate, and the filler is discharged from the discharge port to form the hole, the large-diameter pipe, and What is comprised so that the clearance gap between small diameter pipes may be filled from the bottom is suitable.

前記隔壁板が、前記充填剤注入管の下端部を支持しているものであれば、部材の一体化が図れてなお好ましい。   If the partition plate supports the lower end portion of the filler injection tube, it is preferable that the members can be integrated.

また、本発明に係る埋設型熱交換器は、地中に穿たれた穴に埋設され、流体が内部を流通していく過程で大地と熱交換するように構成した柱状をなす埋設型熱交換器であって、中心に形成された大径管と、その大径管の周囲に形成された複数の小径管と、前記大径管及び小径管を貫通させながらそれらの下端部を支持する隔壁板と、その隔壁板の上方であって小径管と大径管との隙間に充填される熱伝達用の充填剤と、を備え、その充填剤が、前記隔壁板近傍に吐出口が設けられた充填剤注入管から導入されて前記穴と大径管及び小径管との間の隙間に下から充填されていくように構成していることを特徴とする。   Further, the buried heat exchanger according to the present invention is buried in a hole drilled in the ground, and is buried in a pillar shape that is configured to exchange heat with the ground in the process of fluid flowing through the interior. A large-diameter pipe formed at the center, a plurality of small-diameter pipes formed around the large-diameter pipe, and a partition wall that supports the lower-end portions of the large-diameter pipe and the small-diameter pipe while passing through the large-diameter pipe And a heat transfer filler that fills the gap between the small-diameter pipe and the large-diameter pipe above the partition plate, and the filler is provided with a discharge port in the vicinity of the partition plate. It is configured to be introduced from the filler injection pipe and filled into the gap between the hole and the large diameter pipe and the small diameter pipe from below.

このようなものであれば、直管だけの構成で無理なく表面積を大きくできるので、製造が簡単で、その分のコスト削減もできるという効果に加え、隔壁板により小径管及び大径管が一体構造物となるので、地中への埋め込み作業が容易となる。さらに下方から充填剤が注入されるので、上から充填剤を注ぐのと比べ、空気の混入を防止できるなど、充填剤を現場で確実に充填することが容易にできる。   In such a case, since the surface area can be increased without difficulty by the configuration of only a straight pipe, the small diameter pipe and the large diameter pipe are integrated by the partition plate in addition to the effect that the manufacturing is easy and the cost can be reduced accordingly. Since it is a structure, it is easy to embed it into the ground. Furthermore, since the filler is injected from below, it is easy to reliably fill the filler on site, such as preventing air from being mixed, compared to pouring the filler from above.

大地との熱接触面積を増大させて熱交換能をより向上させるとともに、穴により確実に固定するには、前記充填剤が、セメントを含んだ少なくとも充填時には液状のものであり、穴の周囲に一部が浸み込んで固化するように構成しておくことが好ましい。   In order to increase the heat contact area with the ground and improve the heat exchange capacity more securely, and to fix the hole securely, the filler is liquid at least when filled with cement, and around the hole. It is preferable that a part is soaked and solidified.

かかる埋設型熱交換器の浮き上がりをより確実に防止するためには、長さ方向の中間部位に、径方向に外側に突出する鍔部を設けておけばよい。   In order to prevent the buried heat exchanger from rising more reliably, a flange that protrudes outward in the radial direction may be provided at an intermediate portion in the length direction.

小径管及び大径管を貫通させながら保持する中間保持枠を設け、その中間保持枠の周縁部が前記鍔部として機能するように構成しておけば、浮き上がり防止と構造強化とを1つの中間保持枠で行うことができるので、部品点数やコストの増大を抑制することができる。また、構造を強化することで、埋設時や運搬時の破損防止にも寄与し得る。   If an intermediate holding frame that holds the small-diameter pipe and the large-diameter pipe while being penetrated is provided and the peripheral edge portion of the intermediate holding frame functions as the flange portion, the floating prevention and the structural strengthening are performed in one middle. Since it can carry out with a holding frame, the increase in a number of parts and cost can be controlled. In addition, by strengthening the structure, it can also contribute to preventing damage during embedding and transportation.

より具体的な埋設型熱交換器の製造(設置)方法としては、地面から穴を穿孔する工程と、前記連通部を形成する連通部形成部材を穴底に配置する工程と、前記穴に、隔壁板及びそれに支持された小径管及び大径管を挿入して前記連通部形成部材上に配設する工程と、、前記穴と小径管及び大径管との隙間に砂、セメント又はそれらの混合物である充填剤を充填する工程と、前記穴に中心管及び外周管を挿入し、前記中心管を前記大径管の上端に接続するとともに、前記外周管を前記充填物の上面に配設して、この外周管と前記小径管とを連通させる工程と、を有したものを挙げることができる。   As a more specific method for manufacturing (installing) an embedded heat exchanger, a step of drilling a hole from the ground, a step of arranging a communication portion forming member forming the communication portion at the bottom of the hole, and the hole, Inserting a partition plate and a small-diameter pipe and a large-diameter pipe supported on the partition plate and disposing them on the communication portion forming member; and sand, cement, or their parts in a gap between the hole and the small-diameter pipe and the large-diameter pipe A step of filling a filler as a mixture; a central tube and an outer peripheral tube are inserted into the hole; the central tube is connected to an upper end of the large-diameter tube; and the outer peripheral tube is disposed on an upper surface of the filler Then, there can be mentioned one having a step of communicating the outer peripheral tube with the small-diameter tube.

また、穴内部への連通部形成部材や隔壁板、あるいは小径管、大径管等の挿入を容易化できるとともに、前記充填剤注入管を不要にでき、さらには浮き上がり防止も図れる埋設型熱交換器の設置方法としては、地面から地中に、前記隔壁板よりも所定寸法大径の穴を穿孔する工程と、前記連通部を形成する連通部形成部材を穴底に配置する工程と、前記小径管の上端部に、当該小径管及び大径管を貫通させながら保持する中間保持枠が固定され、その中間保持枠上に前記外周管が取り付けられてなる構造体を、前記連通部形成部材上に載置する工程と、前記穴の内周面と外周管との間の隙間から、砂、セメント又はそれらの混合物である充填剤を、少なくとも前記中間保持枠の高さにまで充填する工程と、前記充填剤の上に、前記穴の内周面と外周管との間の隙間から土砂を充填する工程と、を有したものが望ましい。   In addition, it is possible to facilitate the insertion of a communicating portion forming member, a partition plate, a small diameter tube, a large diameter tube, etc. into the inside of the hole, eliminate the need for the filler injection tube, and further prevent floating up. As a method for installing the vessel, a step of drilling a hole having a larger diameter than the partition plate from the ground into the ground, a step of arranging a communication portion forming member forming the communication portion at the bottom of the hole, An intermediate holding frame that holds the small diameter pipe and the large diameter pipe while penetrating the small diameter pipe and the large diameter pipe is fixed to the upper end portion of the small diameter pipe, and the structure in which the outer peripheral pipe is mounted on the intermediate holding frame is formed as the communication part forming member. And a step of filling the filler, which is sand, cement, or a mixture thereof, at least to the height of the intermediate holding frame from the gap between the inner peripheral surface of the hole and the outer peripheral tube. And the inner peripheral surface of the hole on the filler Those having a filling of sand from the gap between the outer tube, the desirable.

このように構成した本発明によれば、主として複数の直管で構成されているため、熱交換効率を高く維持しながら、製造の簡単化とコスト低減を図ることができる。また、熱交換能の異なる2つの管状体を上下に配置することによって、大地との間での熱交換をより効率的に行うことができるようになる。   According to the present invention configured as described above, since it is mainly configured by a plurality of straight pipes, it is possible to simplify manufacturing and reduce costs while maintaining high heat exchange efficiency. In addition, by arranging two tubular bodies having different heat exchange capacities up and down, heat exchange with the ground can be performed more efficiently.

以下、本発明の第1実施形態について図1〜図8を参照して説明する。
本実施形態にかかる埋設型熱交換器1は、図1等に示すように、地中に穿たれた穴H(以下、埋設用穴Hとも言う)に埋設される柱状をなすもので、内部に熱交換される流体(ここでは空気)が流れる流路が形成してあり、その流路を空気が流通していく過程で大地と熱交換するように構成されている。かかる埋設型熱交換器1は、例えば工場や家庭などの室内空気調和、特に冷房に好適に用いられる。しかして、この種の熱交換器1の熱交換容量は、大きさ(径×長さ)でほぼ定まり、特にその長さが重要なパラメータとなるが、この図1では、複数の熱交換器1を並列乃至直列に接続してトータル容量を増大させ、大規模な工場FA等での空調に使用できるようにした例を示している。
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
As shown in FIG. 1 and the like, an embedded heat exchanger 1 according to the present embodiment has a columnar shape embedded in a hole H (hereinafter also referred to as an embedded hole H) drilled in the ground. A flow path through which fluid (here, air) to be heat-exchanged flows is formed, and heat is exchanged with the ground in the process of air flowing through the flow path. Such an embedded heat exchanger 1 is suitably used for indoor air conditioning, particularly cooling, for example in factories and homes. The heat exchange capacity of this type of heat exchanger 1 is almost determined by the size (diameter × length), and the length is an important parameter. In FIG. 1, a plurality of heat exchangers are used. In this example, 1 is connected in parallel or in series to increase the total capacity so that it can be used for air conditioning in a large-scale factory FA or the like.

次に、単体の熱交換器1について詳述する。この熱交換器1は、図1、図2に示すように、地中の定温度層にのみ埋設される下側管状体2と、定温度層の上方の温度変化層に埋設される上側管状体3とを具備している。なお、定温度層とは、昼夜、季節を通じて温度がほぼ一定(約2〜3℃以内の変化)に保たれる領域のことで、地表から一定の深さ領域(我が国では5mから10m以上の深さに存在すると言われるが、地域によって深さは異なる)に存在する。温度変化層とは、その定温度層の直上から地表に至るまでの領域のことであり、地上温度の影響を受けて温度が変動する。ここでの下側管状体2は、上端部と下端部との温度差がほとんどない(約1℃以下)の定温度層に埋設される。   Next, the single heat exchanger 1 will be described in detail. As shown in FIGS. 1 and 2, the heat exchanger 1 includes a lower tubular body 2 embedded only in the underground constant temperature layer and an upper tubular body embedded in a temperature change layer above the constant temperature layer. And a body 3. The constant temperature layer is a region where the temperature is kept almost constant (change within about 2 to 3 ° C) throughout the day and night, and it is a certain depth region from the ground surface (in Japan, 5m to 10m or more). It is said that the depth exists, but the depth varies depending on the region. The temperature change layer is a region from directly above the constant temperature layer to the ground surface, and the temperature varies under the influence of the ground temperature. Here, the lower tubular body 2 is embedded in a constant temperature layer having almost no temperature difference between the upper end portion and the lower end portion (about 1 ° C. or less).

前記下側管状体2は、図2〜図5等に示すように、中心に形成された直管状をなす大径管21と、その大径管21の周囲に形成された直管状をなす複数(多数)の小径管22と、それら大径管21及び小径管22の下端部を貫通させながら支持する隔壁板24と、この隔壁板24よりも上方に設けられ、小径管22及び大径管21を同じく貫通させながら固定保持する中間保持枠26と、を具備したもので、その長さは約4m〜5m以上である。   The lower tubular body 2 includes, as shown in FIGS. 2 to 5, etc., a large-diameter tube 21 that forms a straight tube at the center and a plurality of straight tubes that are formed around the large-diameter tube 21. (Many) small-diameter pipes 22, partition plates 24 that support the large-diameter tubes 21 and the small-diameter tubes 22 while passing through the lower ends thereof, and the small-diameter tubes 22 and the large-diameter tubes provided above the partition plates 24 And an intermediate holding frame 26 that is fixedly held while penetrating through 21. The length of the intermediate holding frame 26 is about 4 m to 5 m or more.

大径管21は、例えば塩化ビニルなどの断熱性に富む樹脂を素材とする直管であり、小径管22は、アルミニウムや鉄などの熱伝導性に富む金属を素材とする直管である。なお、この実施形態では、大径管21の断面積と全ての小径管22を足し合わせた断面積とがほぼ同一となるように設定している。   The large-diameter pipe 21 is a straight pipe made of a resin having high heat insulation such as vinyl chloride, and the small-diameter pipe 22 is a straight pipe made of a metal having high thermal conductivity such as aluminum or iron. In this embodiment, the cross-sectional area of the large-diameter pipe 21 and the cross-sectional area obtained by adding all the small-diameter pipes 22 are set to be substantially the same.

隔壁板24は、埋設用穴Hの径とほぼ同じか若干小さい径を有する一定厚みの円形板であり、この隔壁板24を貫通するように大径管21及び小径管22の下端部が固定される。なお、図4では、大径管21及び小径管22を隔壁板24に対して螺着するようにしているが、螺着に限られず、接着や溶接などを利用して固定してもよい。また、この隔壁板24は、詳細については後述するが、埋設用穴Hの底から一定距離上方に配置され、この隔壁板24の下方において、小径管22及び大径管21を下端部において連通する連通部23が形成されるようにしてある。   The partition plate 24 is a circular plate having a constant thickness that is substantially the same as or slightly smaller than the diameter of the embedding hole H, and the lower end portions of the large diameter tube 21 and the small diameter tube 22 are fixed so as to penetrate the partition plate 24. Is done. In FIG. 4, the large-diameter pipe 21 and the small-diameter pipe 22 are screwed to the partition plate 24, but are not limited to screwing and may be fixed using adhesion or welding. Although the details of the partition plate 24 will be described later, the partition plate 24 is disposed at a certain distance above the bottom of the embedding hole H, and the small-diameter pipe 22 and the large-diameter tube 21 are communicated at the lower end portion below the partition plate 24. A communicating portion 23 is formed.

さらにこの実施形態では、前記隔壁板24に充填剤注入管5を取り付けている。この充填剤注入管5は、その下端面を隔壁板24の上面に接着するなどして固定したもので隔壁板24を貫通してはおらず、また、その下端部の側周面には、充填剤たる液状コンクリート4を吐出するための吐出口5aを開口させている。この充填剤注入管5は、後述する中間保持枠26を貫通し、上側管状体3の上端部またはそれ以上にまで延びる長さに設定してあり、その上端開口から充填剤であるコンクリート4が注入されると、下端部の吐出口5aからそのコンクリート4が吐出され、埋設用穴Hと小径管22及び大径管21との間の隙間に、下から充填されるように構成してある。   Furthermore, in this embodiment, the filler injection tube 5 is attached to the partition plate 24. The filler injection pipe 5 is fixed by adhering the lower end surface thereof to the upper surface of the partition plate 24 and does not penetrate the partition plate 24, and the side peripheral surface of the lower end portion is filled with a filler. A discharge port 5a for discharging the liquid concrete 4 as an agent is opened. The filler injection pipe 5 is set to a length that passes through an intermediate holding frame 26 to be described later and extends to the upper end portion of the upper tubular body 3 or more, and the concrete 4 that is a filler is passed through the upper end opening. When poured, the concrete 4 is discharged from the discharge port 5a at the lower end, and the gap between the burying hole H and the small diameter pipe 22 and the large diameter pipe 21 is filled from below. .

中間保持枠26は、一定厚さの円板状をなす例えば金属製のもので、厚み方向に1以上の空気抜き孔(図示しない)を有し、小径管22の上端部に設けられている。この中間保持枠26は、ここでは、さらに充填剤注入管5をも貫通させて保持している。なお、この中間保持枠26を長さ方向に間欠的に複数設けても構わない。   The intermediate holding frame 26 is made of, for example, a metal having a disk shape with a constant thickness, has one or more air vent holes (not shown) in the thickness direction, and is provided at the upper end portion of the small diameter tube 22. Here, the intermediate holding frame 26 further holds the filler injection pipe 5 so as to penetrate therethrough. A plurality of intermediate holding frames 26 may be provided intermittently in the length direction.

しかして、このように、この下側管状体2について、小径管22を金属管にするとともに、当該小径管22と大地との間を、空気よりも熱伝導性に優れたコンクリート4で充填することにより、大地と小径管22内を流れる流体との間での熱交換効率を向上させるべく図っている。   Thus, in this way, with respect to the lower tubular body 2, the small-diameter pipe 22 is made of a metal pipe, and the space between the small-diameter pipe 22 and the ground is filled with the concrete 4 having better thermal conductivity than air. Thus, the heat exchange efficiency between the ground and the fluid flowing in the small diameter pipe 22 is improved.

一方、前記上側管状体3は、図2等に示すように、中心管31と外周管32とからなる二重管構造をなすもので、前記中心管31が前記大径管21の上端に連続して接続されるとともに、前記外周管32が前記小径管22に連通するように構成されている。具体的に中心管31は、例えば塩化ビニルなどの断熱性に富む樹脂を素材とする直管であり、大径管21と略同一径をなす。外周管32は、その外径が埋設用穴Hの内径とほぼ同じ寸法のもので、中心管31と同じく、例えば塩化ビニルなどの断熱性に富む樹脂を素材とする直管である。この外周管32は、前記下側管状体2の充填剤であるコンクリート4の上に設置され、当該外周管32と中心管31との間の空間に前記小径管22の上端が開口する。そして、このように外周管32及び中心管31をいずれも断熱性の高い樹脂によって構成することにより、大地からの熱影響や、流入してくる空気と温度調整された流出する空気との熱交換が妨げられるように図っている。   On the other hand, as shown in FIG. 2 and the like, the upper tubular body 3 has a double tube structure including a central tube 31 and an outer peripheral tube 32, and the central tube 31 is continuous with the upper end of the large-diameter tube 21. And the outer peripheral pipe 32 communicates with the small diameter pipe 22. Specifically, the central tube 31 is a straight tube made of a resin having a high heat insulating property such as vinyl chloride, and has substantially the same diameter as the large-diameter tube 21. The outer peripheral pipe 32 has an outer diameter that is substantially the same as the inner diameter of the embedding hole H, and is a straight pipe made of a resin having a high heat insulating property, such as vinyl chloride, like the central pipe 31. The outer peripheral pipe 32 is installed on the concrete 4 that is the filler of the lower tubular body 2, and the upper end of the small diameter pipe 22 opens in a space between the outer peripheral pipe 32 and the central pipe 31. In this way, both the outer peripheral pipe 32 and the central pipe 31 are made of highly heat-insulating resin, so that the heat effect from the ground and heat exchange between the incoming air and the temperature-adjusted outgoing air are achieved. I am trying to be prevented.

次に、このような構成の埋設型熱交換器1についての製造(設置)方法について図5〜図8等を参照して説明する。   Next, a manufacturing (installation) method for the embedded heat exchanger 1 having such a configuration will be described with reference to FIGS.

まず、図5に示すように、地面から地中に垂直乃至斜めに、熱交換器1の外径とほぼ同じ内径の埋設用穴Hを穿孔する。なお、この埋設用穴Hの内周面は、同図に示すように、土が露出しており、石や土砂の落下によって凹凸のある状態となっている。   First, as shown in FIG. 5, a buried hole H having an inner diameter substantially the same as the outer diameter of the heat exchanger 1 is drilled vertically or obliquely from the ground to the ground. As shown in the figure, the inner peripheral surface of the embedding hole H is exposed to soil, and is in an uneven state due to the fall of stones or earth and sand.

次に、この埋設用穴Hに、底を固定するための、例えばコンクリート製の連通部形成部材6を嵌め入れる。この連通部形成部材6は上方に開口するカップ状のもので、その外径寸法は、埋設用穴Hの内径寸法とほぼ合致する。また、この連通部形成部材6の内部底面は、中心に向かって凹むように形成してあって、結露などによってこの連通部形成部材6に溜まる水が、中心部に集まるように構成している。溜まった水は、図示しないが例えば定期的に、中心管31及び大径管21に上方から挿入したチューブ、ポンプ等を利用して排出する。   Next, the communicating portion forming member 6 made of, for example, concrete for fixing the bottom is fitted into the embedding hole H. The communication portion forming member 6 is a cup-shaped member that opens upward, and the outer diameter thereof substantially matches the inner diameter of the embedding hole H. Further, the inner bottom surface of the communication portion forming member 6 is formed so as to be recessed toward the center, and the water accumulated in the communication portion forming member 6 due to condensation is collected in the central portion. . Although not shown, for example, the accumulated water is periodically discharged using a tube, a pump, or the like inserted into the center tube 31 and the large diameter tube 21 from above.

一方、予め工場等において、下側管状体2を一体構造物として製作し、埋設現場に輸送しておく。そして埋設現場にて、埋設前に、継ぎ手などを用いて、下側管状体2の大径管21に中心管31を接続して一体化した構造体27を製造しておく。この実施形態では、同図に示すように、充填剤注入管5も輸送時には二分されていて、埋設前に継ぎ手などを用いて連結される。そして、図6に示すように、埋設用穴Hに前記構造体27を上から挿入し、前記連通部形成部材6の上端面に、隔壁板24の外周縁部を載せる。このことにより、連通部形成部材6の上方開口が隔壁板24で閉塞され、その内部に小径管22及び大径管21とのみ連通し、その他とは実質的な気密状態が保たれる連通部23が形成される。   On the other hand, in a factory or the like, the lower tubular body 2 is manufactured as an integral structure and transported to the burial site. At the embedding site, before embedding, a structure 27 is manufactured by connecting the central tube 31 to the large-diameter tube 21 of the lower tubular body 2 using a joint or the like. In this embodiment, as shown in the figure, the filler injection tube 5 is also divided into two at the time of transportation, and is connected using a joint or the like before embedding. Then, as shown in FIG. 6, the structure 27 is inserted into the embedding hole H from above, and the outer peripheral edge portion of the partition plate 24 is placed on the upper end surface of the communication portion forming member 6. As a result, the upper opening of the communication portion forming member 6 is closed by the partition plate 24, and the communication portion in which only the small diameter tube 22 and the large diameter tube 21 communicate with each other and a substantially airtight state is maintained. 23 is formed.

次に、図7に示すように、充填剤注入管5の上端開口から充填剤である液状コンクリート4を注入する。そうすると、液状コンクリート4が充填剤注入管5の下端部吐出口5aから吐出され、前記隔壁板24を底として、埋設用穴Hと小径管22及び大径管21との間の隙間に、下から充填されていく。液状コンクリート4は、その上面が小径管22の上端よりも若干下方、具体的には中間保持枠26の下端面に至るまで注入される。このとき、コンクリート4は液状であるため、埋設用穴Hの凹凸ある内周面に隙間なく充填されるとともに、埋設用穴Hの内周面から周囲の土中にも一部染み込んでゆく。   Next, as shown in FIG. 7, liquid concrete 4 as a filler is injected from the upper end opening of the filler injection pipe 5. Then, the liquid concrete 4 is discharged from the lower end discharge port 5 a of the filler injection pipe 5, with the partition wall plate 24 as the bottom, in the gap between the embedding hole H and the small diameter pipe 22 and the large diameter pipe 21. It will be filled from. The liquid concrete 4 is injected until the upper surface thereof is slightly below the upper end of the small diameter tube 22, specifically, the lower end surface of the intermediate holding frame 26. At this time, since the concrete 4 is in a liquid state, the concave and convex inner peripheral surface of the embedding hole H is filled without any gaps, and partly penetrates into the surrounding soil from the inner peripheral surface of the embedding hole H.

次に、図8に示すように、コンクリート4がある程度まで固化するのを待って、外周管32を埋設用穴Hに挿入し、中間保持枠26に気密に外嵌させながら、コンクリート4の上端外周縁部に、若干めり込ませて搭載配置する。めり込ませるのは、ここから内部に水が浸入するのを防止するためである。   Next, as shown in FIG. 8, after the concrete 4 is solidified to a certain extent, the outer peripheral pipe 32 is inserted into the embedding hole H, and the upper end of the concrete 4 is airtightly fitted to the intermediate holding frame 26. Mounted and arranged slightly in the outer periphery. The reason for the penetration is to prevent water from entering inside from here.

最後に、中心管31及び外周管32の上端部に、工場FAなどの室内に連通する導出配管71及び導入配管72をそれぞれ接続する(図2参照)。このことによって、室内と熱交換器1とを結ぶ循環経路が形成される。なお、この循環経路中には、空気を図2中の矢印のごとく循環させるための図示しない送風機が設けられている。また、循環経路中に、この熱交換器1に加えて、補助的に電力等を用いた空気調和器を設けてもよい。   Finally, the outlet pipe 71 and the inlet pipe 72 communicating with the room such as the factory FA are respectively connected to the upper ends of the center pipe 31 and the outer pipe 32 (see FIG. 2). As a result, a circulation path connecting the room and the heat exchanger 1 is formed. In this circulation path, a blower (not shown) for circulating air as shown by an arrow in FIG. 2 is provided. Further, in addition to the heat exchanger 1, an air conditioner using electric power or the like may be provided in the circulation path.

このような構成において、室内から送出された空気は、導入配管71からこの熱交換器1の外周管32をとおり、小径管22を流通するあいだに、定温度層からの熱影響を受けてその温度に近づくように冷却(又は加熱)される。そして、このようにして冷却(又は加熱)された空気は、連通部23から大径管21、中心管31、導出配管72をとおって室内に戻される。   In such a configuration, the air sent from the room passes through the outer pipe 32 of the heat exchanger 1 from the introduction pipe 71 and is circulated through the small-diameter pipe 22, and is affected by the heat from the constant temperature layer. It is cooled (or heated) to approach the temperature. The air thus cooled (or heated) is returned to the room from the communication portion 23 through the large-diameter pipe 21, the central pipe 31, and the outlet pipe 72.

したがって、本実施形態によれば、熱交換能の異なる下側管状体2と上側管状体3とに分け、地表の温度変化の影響を受ける大地の温度変化層には、断熱性の高い上側管状体3を埋設して当該温度変化層からの熱影響を可及的に低減させる一方、地表の温度変化の影響をほとんど受けない大地の定温度層には、熱交換能に優れた下側管状体2を埋設して当該定温度層との間での伝熱を積極的に行わせるようにしているので、大地との間で理想的な熱交換を行うことができるようになり、常に一定の温度の空気を供給することが可能になる。   Therefore, according to the present embodiment, the lower tubular body 2 and the upper tubular body 3 having different heat exchange capacities are divided into the upper tubular body having a high heat insulating property in the temperature change layer of the earth affected by the temperature change of the ground surface. While the body 3 is embedded to reduce the thermal influence from the temperature change layer as much as possible, the lower temperature tubular layer having excellent heat exchange capability is provided in the constant temperature layer of the earth that is hardly affected by the temperature change of the ground surface. Since the body 2 is buried to actively transfer heat to and from the constant temperature layer, ideal heat exchange with the ground can be performed and always constant. It becomes possible to supply air at a temperature of.

また、熱交換を主として行う下側管状体2を、多数の直線状の小径管22から構成して無理なく表面積を大きくしているので、従来のように螺旋状にしたりフィン状にするといった必要がなく、製造の簡単化とその分のコスト削減を図ることができる。   Further, the lower tubular body 2 that mainly performs heat exchange is composed of a large number of linear small-diameter pipes 22 and has a reasonably large surface area, so that it is necessary to form a spiral or fin as in the prior art. Therefore, the manufacturing can be simplified and the cost can be reduced accordingly.

さらに、内周面に土が露出し凹凸ある埋設用穴Hに、熱伝達の充填剤として液状コンクリート4を注入するので、液状コンクリート4が凹凸を隙間なく埋めるとともに穴Hの周囲にまで染み渡ることとなる。したがって、大地との熱接触面積が増大して熱交換効率をより高めることができるとともに、大地への確実な固定による浮き上がり防止を図ることができる。   Furthermore, since the liquid concrete 4 is poured into the embedding hole H where the soil is exposed and uneven on the inner peripheral surface as a heat transfer filler, the liquid concrete 4 fills the unevenness without gaps and spreads around the hole H. It becomes. Therefore, the heat contact area with the ground can be increased and the heat exchange efficiency can be further increased, and the floating can be prevented by being securely fixed to the ground.

また、小径管22及び大径管21が、その上端部及び下端部においてそれぞれ中間保持枠26及び隔壁板24によって固定され、それらが一体構造物となっているため、地中への埋め込み作業や輸送の容易化を図れる。   In addition, since the small diameter pipe 22 and the large diameter pipe 21 are fixed at the upper end portion and the lower end portion thereof by the intermediate holding frame 26 and the partition plate 24, respectively, and they are an integral structure, Easy transportation.

次に、本発明の第2実施形態について説明する。なお、この実施形態において、前記第1実施形態に対応する部材には同一の符号を付することとする。
本実施形態の埋設型熱交換器1における、前記実施形態との主たる相違点は、充填剤注入管5が存在しない点、中間保持枠26に外周管32を埋設前に予め、気密に結合している点、及び埋設型熱交換器1を土中に埋める際の工程が異なる点にある。
Next, a second embodiment of the present invention will be described. In this embodiment, members corresponding to those in the first embodiment are denoted by the same reference numerals.
The main differences of the embedded heat exchanger 1 of the present embodiment from the above-described embodiment are that the filler injection pipe 5 does not exist, and the outer peripheral pipe 32 is connected to the intermediate holding frame 26 in an airtight manner before being embedded. And the process when the buried heat exchanger 1 is buried in the soil is different.

そこで、以下では、その埋設工程について説明しながら、必要に応じて、熱交換器1の各部の説明を行うこととする。   Therefore, in the following, each part of the heat exchanger 1 will be described as necessary while explaining the embedding process.

この実施形態では、図9に示すように、前記第1実施形態よりも大きな径、すなわち、熱交換器1の外径よりも大径の埋設用穴Hを穿孔する。そして、この埋設用穴Hに、前記連通部形成部材6を挿入して、穴底中央付近に載置する。   In this embodiment, as shown in FIG. 9, an embedding hole H having a diameter larger than that of the first embodiment, that is, a diameter larger than the outer diameter of the heat exchanger 1 is drilled. And the said communication part formation member 6 is inserted in this embedding hole H, and it mounts in the hole bottom center vicinity.

一方、予め工場等において、下側管状体2及び上側管状体3をそれぞれ別体で製作して埋設現場に輸送しておき、埋設現場にてそれら下側管状体2及び上側管状体3を接続し、一体構造化した構造体27’を製造する。   On the other hand, in a factory or the like, the lower tubular body 2 and the upper tubular body 3 are separately manufactured and transported to the embedding site, and the lower tubular body 2 and the upper tubular body 3 are connected at the embedding site. As a result, the structure 27 ′ having a monolithic structure is manufactured.

そして、図10に示すように、埋設用穴Hに前記構造体27’を上から挿入し、前記連通部形成部材6の上端面に、隔壁板24の外周縁部を載せる。   Then, as shown in FIG. 10, the structure 27 ′ is inserted into the embedding hole H from above, and the outer peripheral edge portion of the partition plate 24 is placed on the upper end surface of the communication portion forming member 6.

次に、図11に示すように、外周管32と埋設穴Hの内周面との隙間から液状コンクリート4を、中間保持枠26と外周管32とのつなぎ目よりもやや上方に至るまで注入する。なお、これはそのつなぎ目をコンクリート4で覆うことにより、バ外部から管内部への水漏れを防止するためである。
このとき、コンクリート4は液状であるため、埋設用穴Hの凹凸ある内周面に隙間なく充填されるとともに、埋設用穴Hの内周面から周囲の土中にも一部染み込んでゆく。
Next, as shown in FIG. 11, the liquid concrete 4 is injected from the gap between the outer peripheral pipe 32 and the inner peripheral surface of the buried hole H until it is slightly above the joint between the intermediate holding frame 26 and the outer peripheral pipe 32. . This is to prevent water leakage from the outside of the bar to the inside of the pipe by covering the joint with concrete 4.
At this time, since the concrete 4 is in a liquid state, the concave and convex inner peripheral surface of the embedding hole H is filled without any gaps, and partly penetrates into the surrounding soil from the inner peripheral surface of the embedding hole H.

そして、図12に示すように、コンクリート4が固化するのを待って、外周管32と埋設穴Hの内周面との隙間に土砂を充填する。   Then, as shown in FIG. 12, the concrete 4 is solidified, and the gap between the outer peripheral pipe 32 and the inner peripheral surface of the buried hole H is filled with earth and sand.

最後は、前記第1実施形態と同様に、中心管31及び外周管32の上端部に、工場FAなどの室内に連通する導出配管71及び導入配管72をそれぞれ接続する(図13参照)。   Finally, as in the first embodiment, the outlet pipe 71 and the inlet pipe 72 communicating with the room such as the factory FA are respectively connected to the upper ends of the center pipe 31 and the outer pipe 32 (see FIG. 13).

かかる構成によれば、コンクリート4の上方に土砂が載るうえ、コンクリート4の占める割合が大きくなって全体の重量が増すため、施工後の浮き上がりを、より有効に防止できる。また、埋設穴Hが大径であるため、構造体27’や連通部形成部材6を挿入しやすいという効果も奏し得る。   According to such a configuration, earth and sand are placed above the concrete 4, and the proportion of the concrete 4 is increased to increase the overall weight. Therefore, lifting after construction can be more effectively prevented. Further, since the embedded hole H has a large diameter, an effect that the structure 27 ′ and the communication portion forming member 6 can be easily inserted can be achieved.

なお、本発明は前記各実施形態に限られるものではない。
例えば、上側管状体を省略してもよい。この場合、埋設用穴の上端部から下端部に至るまで、小径管が延伸し、かつコンクリートが充填されることとなる。
The present invention is not limited to the above embodiments.
For example, the upper tubular body may be omitted. In this case, the small-diameter pipe extends and is filled with concrete from the upper end portion to the lower end portion of the embedding hole.

また、コンクリートを現場で穴に流し込むのではなく、予め、工場等でコンクリートを小径管及び大径管の隙間に充填して固化させ、この熱交換器を完成させた状態で埋設用穴に嵌め込んでもよい。   Rather than pouring concrete into the hole at the site, the concrete is filled in the gap between the small and large diameter pipes at the factory in advance and solidified, and this heat exchanger is completed and fitted into the burial hole. It may be complicated.

さらに充填剤は、コンクリートに限られず、空気よりも熱伝導率のよいものであれば何でも構わない。注入時に流動性があればなおよく、モルタルやセメント、砂などでもよい。   Furthermore, the filler is not limited to concrete, and any filler may be used as long as it has a higher thermal conductivity than air. It is better if there is fluidity at the time of injection, and mortar, cement, sand, etc. may be used.

充填剤注入管は必ずしも隔壁板に取り付けておく必要はなく、別途チューブなどを利用してもよい。このチューブは、充填剤の充填後引き抜いてもよいし、そのまま残しておいてもよい。また、充填剤注入用の穴を別に掘り設けて、埋設用穴の下端部に接続し、その充填剤注入用の穴から充填剤を注入するようにしてもよい。さらに、充填剤注入管を用いず上から充填剤を流し込んでもよい。その場合は小径管や大径管の上端から充填剤が浸入しないように、仮蓋を設けておく必要がある。   The filler injection tube is not necessarily attached to the partition plate, and a separate tube or the like may be used. The tube may be withdrawn after filling with the filler or left as it is. Alternatively, a filler injection hole may be dug separately and connected to the lower end of the embedding hole, and the filler may be injected from the filler injection hole. Further, the filler may be poured from above without using the filler injection tube. In that case, it is necessary to provide a temporary lid so that the filler does not enter from the upper end of the small diameter pipe or the large diameter pipe.

加えて言えば、長さ方向の中間部位に、径方向に外側に突出する鍔部を設けてその上を土砂が覆うように構成してもよい。このことにより、浮き上がりをさらに確実に防止できる。この鍔部は、中間保持枠と一体に構成しても構わない。   In addition, a saddle that protrudes outward in the radial direction may be provided at an intermediate portion in the length direction, and earth and sand may be covered thereon. This makes it possible to more reliably prevent lifting. This flange may be formed integrally with the intermediate holding frame.

また、この熱交換器への空気の導入、導出方向は、前記実施形態と逆向きでも構わない。工場用のみならず、家庭用やその他の用途に用いてもよいし、熱交換媒体を空気以外の気体や、水などの液体としてもよい。冬期に用いれば、この熱交換器で熱交換媒体を暖め、暖房や溶雪などにも利用することができる。   In addition, the direction of introducing and deriving air into the heat exchanger may be opposite to that in the above embodiment. It may be used not only for factories but also for household use and other uses, and the heat exchange medium may be a gas other than air or a liquid such as water. If used in winter, the heat exchanger can warm the heat exchange medium and can be used for heating and melting snow.

その他、本発明は前記図示例や実施形態に限られず、その主旨を逸脱しない範囲で種々の変形が可能である。   In addition, the present invention is not limited to the illustrated examples and embodiments, and various modifications can be made without departing from the gist thereof.

本発明の一実施形態における熱交換器を複数地中に埋設し、空調に用いた例を示す模式的システム概観図。The typical system general | schematic figure which shows the example which embed | buried the heat exchanger in one Embodiment of this invention in the ground, and used for air conditioning. 同実施形態における熱交換器の地中に埋設した状態を示す縦断面図。The longitudinal cross-sectional view which shows the state embed | buried under the ground of the heat exchanger in the embodiment. 同実施形態における熱交換器の小径管、大径管、隔壁板等を部分的に示す部分斜視図。The partial perspective view which shows partially the small diameter tube of the heat exchanger in the same embodiment, a large diameter tube, a partition plate, etc. 同実施形態における熱交換器の小径管を隔壁板に取り付けるための取付構造を示す分解斜視図。The disassembled perspective view which shows the attachment structure for attaching the small diameter pipe | tube of the heat exchanger in the embodiment to a partition plate. 同実施形態における熱交換器を設置する手順を示す設置工程説明図。Installation process explanatory drawing which shows the procedure which installs the heat exchanger in the embodiment. 同実施形態における熱交換器を設置する手順を示す設置工程説明図。Installation process explanatory drawing which shows the procedure which installs the heat exchanger in the embodiment. 同実施形態における熱交換器を設置する手順を示す設置工程説明図。Installation process explanatory drawing which shows the procedure which installs the heat exchanger in the embodiment. 同実施形態における熱交換器を設置する手順を示す設置工程説明図。Installation process explanatory drawing which shows the procedure which installs the heat exchanger in the embodiment. 本発明の第2実施形態における熱交換器を設置する手順を示す設置工程説明図。The installation process explanatory drawing which shows the procedure which installs the heat exchanger in 2nd Embodiment of this invention. 本発明の第2実施形態における熱交換器を設置する手順を示す設置工程説明図。The installation process explanatory drawing which shows the procedure which installs the heat exchanger in 2nd Embodiment of this invention. 本発明の第2実施形態における熱交換器を設置する手順を示す設置工程説明図。The installation process explanatory drawing which shows the procedure which installs the heat exchanger in 2nd Embodiment of this invention. 本発明の第2実施形態における熱交換器を設置する手順を示す設置工程説明図。The installation process explanatory drawing which shows the procedure which installs the heat exchanger in 2nd Embodiment of this invention. 本発明の第2実施形態における熱交換器を設置する手順を示す設置工程説明図。The installation process explanatory drawing which shows the procedure which installs the heat exchanger in 2nd Embodiment of this invention.

符号の説明Explanation of symbols

H・・・穴
1・・・埋設型熱交換器
2・・・下側管状体
21・・・大径管
22・・・小径管
23・・・連通部
24・・・隔壁板
26・・・中間保持枠
3・・・上側管状体
31・・・中心管
32・・・外周管
4・・・充填剤(コンクリート)
5・・・充填剤注入管
5a・・・吐出口
H ... Hole 1 ... Embedded heat exchanger 2 ... Lower tubular body 21 ... Large diameter tube 22 ... Small diameter tube 23 ... Communication part 24 ... Partition plate 26 ... Intermediate holding frame 3 upper tubular body 31 center tube 32 outer tube 4 filler (concrete)
5 ... Filler injection tube 5a ... Discharge port

Claims (14)

地中に穿たれた穴に埋設され、流体が流路を流通していく過程で大地と熱交換するように構成した柱状をなす埋設型熱交換器であって、
季節、昼夜を通じて温度がほぼ一定に保たれる領域である地中の定温度層に、略全てが埋設される下側管状体と、その定温度層の上方に位置する温度変化層に略全てが埋設される、前記下側管状体よりも熱交換能の低い上側管状体とを具備しており、
前記下側管状体は、中心に形成された大径管と、その大径管の周囲に形成された複数の小径管と、それら小径管及び大径管を下端部において連通する連通部とを有したものであり、
前記上側管状体は、中心管と外周管とからなる二重管構造をなし、前記中心管が前記大径管の上端に接続されるとともに、前記外周管が前記小径管に連通するように構成したものである埋設型熱交換器。
A buried heat exchanger having a column shape that is embedded in a hole drilled in the ground and configured to exchange heat with the ground in the process of fluid flowing through the flow path,
In the constant temperature layer in the ground, where the temperature is kept almost constant throughout the season and day and night, almost all of the lower tubular body is embedded, and the temperature changing layer located above the constant temperature layer. An upper tubular body having a lower heat exchange capacity than the lower tubular body,
The lower tubular body includes a large-diameter tube formed at the center, a plurality of small-diameter tubes formed around the large-diameter tube, and a communication portion that communicates the small-diameter tube and the large-diameter tube at the lower end portion. Have
The upper tubular body has a double tube structure composed of a center tube and an outer tube, and the center tube is connected to the upper end of the large-diameter tube, and the outer tube communicates with the small-diameter tube. An embedded heat exchanger.
下側管状体は、少なくともその一部が金属で形成されたものであり、上側管状体は、樹脂で形成されたものである請求項1記載の埋設型熱交換器。   The embedded heat exchanger according to claim 1, wherein at least a part of the lower tubular body is made of metal, and the upper tubular body is made of resin. 少なくとも前記穴と前記小径管との間の隙間に、空気より熱伝導性の高い充填剤を充填している請求項1又は2記載の埋設型熱交換器。   The embedded heat exchanger according to claim 1 or 2, wherein at least a gap between the hole and the small-diameter pipe is filled with a filler having higher thermal conductivity than air. 前記充填剤が、砂、セメント又はそれらの混合物からなるものである請求項3記載の埋設型熱交換器。   The embedded heat exchanger according to claim 3, wherein the filler is made of sand, cement, or a mixture thereof. 前記大径管及び小径管を貫通させながらそれらの下端部を支持する隔壁板をさらに備え、その隔壁板が前記穴の底よりも一定距離上方に配置され、当該隔壁板の下方に形成される空間が前記連通部を形成するように構成している請求項1乃至4いずれか記載の埋設型熱交換器。   A partition plate is further provided that supports the lower end portion of the large-diameter pipe and the small-diameter pipe while penetrating the large-diameter pipe and the small-diameter pipe, and the partition plate is disposed at a certain distance above the bottom of the hole and is formed below the partition plate. The embedded heat exchanger according to any one of claims 1 to 4, wherein a space forms the communication portion. 前記隔壁板よりも上方に、小径管及び大径管を貫通させながら保持する中間保持枠を設けている請求項5記載の埋設型熱交換器。   The embedded heat exchanger according to claim 5, wherein an intermediate holding frame is provided above the partition plate to hold the small diameter pipe and the large diameter pipe while penetrating them. 前記隔壁板近傍に吐出口が配置される充填剤注入管をさらに備え、前記充填剤がその吐出口から吐出されて前記穴と小径管及び大径管との間の隙間に下から充填されていくように構成している請求項5又は6記載の埋設型熱交換器。   It further includes a filler injection pipe in which a discharge port is disposed in the vicinity of the partition plate, and the filler is discharged from the discharge port and filled from below into the gap between the hole, the small diameter pipe, and the large diameter pipe. The buried heat exchanger according to claim 5 or 6, which is configured to go. 前記隔壁板が、前記充填剤注入管の下端部を支持している請求項7記載の埋設型熱交換器。   The embedded heat exchanger according to claim 7, wherein the partition plate supports a lower end portion of the filler injection tube. 地中に穿たれた穴に埋設され、流体が内部を流通していく過程で大地と熱交換するように構成した柱状をなす埋設型熱交換器であって、
中心に形成された大径管と、その大径管の周囲に形成された複数の小径管と、前記大径管及び小径管を貫通させながらそれらの下端部を支持する隔壁板と、その隔壁板の上方であって前記穴と小径管及び大径管との間の隙間に充填される熱伝達用の充填剤と、を備え、
その充填剤が、前記隔壁板近傍に吐出口が設けられた充填剤注入管から導入されて前記隙間に下から充填されていくように構成している埋設型熱交換器。
A buried heat exchanger in the form of a column that is buried in a hole drilled in the ground and configured to exchange heat with the ground in the process of fluid flowing inside,
A large-diameter pipe formed in the center, a plurality of small-diameter pipes formed around the large-diameter pipe, a partition plate supporting the lower ends of the large-diameter pipe and the small-diameter pipe while penetrating the large-diameter pipe, and the partition A heat transfer filler that fills a gap between the hole and the small-diameter pipe and the large-diameter pipe above the plate,
An embedded heat exchanger configured such that the filler is introduced from a filler injection pipe having a discharge port provided in the vicinity of the partition plate and is filled into the gap from below.
前記充填剤が、セメントを含んだ少なくとも充填時には液状のものであり、穴の周囲に一部が浸み込んで固化している請求項8記載の埋設型熱交換器。   The embedded heat exchanger according to claim 8, wherein the filler contains a cement and is in a liquid state at least at the time of filling, and a part of the filler soaks around the hole and is solidified. 長さ方向の中間部位に、径方向に外側に突出する鍔部を設けている請求項1乃至9いずれか記載の埋設型熱交換器。   The embedded heat exchanger according to any one of claims 1 to 9, wherein a flange portion protruding outward in the radial direction is provided at an intermediate portion in the length direction. 前記隔壁板の上方に、小径管及び大径管を貫通させながら保持する中間保持枠を設け、その中間保持枠の周縁部が前記鍔部として機能するように構成している請求項11記載の埋設型熱交換器。   The intermediate holding frame that holds the small-diameter pipe and the large-diameter pipe while passing therethrough is provided above the partition plate, and the peripheral edge portion of the intermediate holding frame functions as the flange portion. Buried heat exchanger. 請求項5又は9記載の埋設型熱交換器の製造方法であって、
地面から穴を穿孔する工程と、
前記連通部を形成する連通部形成部材を穴底に配置する工程と、
前記穴に、隔壁板及びそれに支持された小径管及び大径管を挿入して前記連通部形成部材上に配設する工程と、
前記穴と小径管及び大径管との間の隙間に砂、セメント又はそれらの混合物である充填剤を充填する工程と、
前記穴に中心管及び外周管を挿入し、前記中心管を前記大径管の上端に接続するとともに、前記外周管を前記充填物の上面に配設して、この外周管と前記小径管とを連通させる工程と、を有した埋設型熱交換器の製造方法。
A method for manufacturing an embedded heat exchanger according to claim 5 or 9,
Drilling holes from the ground;
Arranging a communication part forming member for forming the communication part at the bottom of the hole;
Inserting a partition plate and a small-diameter pipe and a large-diameter pipe supported by the hole into the hole and disposing on the communication portion forming member;
Filling the gap between the hole and the small diameter pipe and the large diameter pipe with a filler which is sand, cement or a mixture thereof;
A central tube and an outer peripheral tube are inserted into the hole, the central tube is connected to an upper end of the large diameter tube, and the outer peripheral tube is disposed on an upper surface of the filling, and the outer peripheral tube, the small diameter tube, And a method of manufacturing an embedded heat exchanger.
請求項5記載の埋設型熱交換器の製造方法であって、
前記隔壁板よりも所定寸法大径の穴を地面から穿孔する工程と、
前記連通部を形成する連通部形成部材を穴底に配置する工程と、
前記小径管の上端部に当該小径管及び大径管を貫通させながら保持する中間保持枠が固定されるとともに、その中間保持枠上に前記外周管が取り付けられてなる構造体を、前記連通部形成部材上に載置する工程と、
前記穴の内周面と外周管との間の隙間から、砂、セメント又はそれらの混合物である充填剤を、少なくとも前記中間保持枠の高さにまで充填する工程と、
前記充填剤の上に、前記穴の内周面と外周管との間の隙間から、土砂を充填する工程と、を有した埋設型熱交換器の製造方法。
A method for producing an embedded heat exchanger according to claim 5,
Drilling a hole of a predetermined size larger than the partition plate from the ground; and
Arranging a communication part forming member for forming the communication part at the bottom of the hole;
An intermediate holding frame that holds the small-diameter pipe and the large-diameter pipe while being penetrated is fixed to an upper end portion of the small-diameter pipe, and a structure in which the outer peripheral pipe is attached on the intermediate holding frame includes Placing on the forming member;
Filling the filler, which is sand, cement, or a mixture thereof, at least to the height of the intermediate holding frame from the gap between the inner peripheral surface of the hole and the outer peripheral pipe;
And a step of filling earth and sand from the gap between the inner peripheral surface of the hole and the outer peripheral tube on the filler.
JP2007205838A 2007-08-07 2007-08-07 Embedded heat exchanger and method for manufacturing the same Expired - Fee Related JP4953973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007205838A JP4953973B2 (en) 2007-08-07 2007-08-07 Embedded heat exchanger and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007205838A JP4953973B2 (en) 2007-08-07 2007-08-07 Embedded heat exchanger and method for manufacturing the same

Publications (2)

Publication Number Publication Date
JP2009041231A JP2009041231A (en) 2009-02-26
JP4953973B2 true JP4953973B2 (en) 2012-06-13

Family

ID=40442256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007205838A Expired - Fee Related JP4953973B2 (en) 2007-08-07 2007-08-07 Embedded heat exchanger and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP4953973B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5100219B2 (en) * 2007-06-28 2012-12-19 野本 哲嗣 Underground equipment in groundwater thermal ground equipment.
JP4889786B2 (en) * 2009-12-25 2012-03-07 有限会社理温テック Thermal wastewater recovery heat exchanger and thermal wastewater recovery heat exchanger
US20110247780A1 (en) * 2010-04-12 2011-10-13 Alcatel-Lucent Usa, Incorporated Electronic system cooler
CA2771608C (en) * 2011-03-22 2018-11-20 Tai-Her Yang Pipe member equipped with heat insulation core pipeline and u-shaped annularly-distributed pipeline
WO2013018660A1 (en) * 2011-07-29 2013-02-07 株式会社ジャスト東海 Heat exchanging unit, and heat absorbing/radiating system using same for solar battery panel
JP6827542B2 (en) 2017-07-04 2021-02-10 三菱電機株式会社 Refrigeration cycle equipment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS608659A (en) * 1983-06-27 1985-01-17 Akua Reinetsu Kenkyusho:Kk Heating source supplier for air conditioner utilizing concrete pile
JPH0352814Y2 (en) * 1989-04-04 1991-11-18
JPH0383226A (en) * 1989-08-25 1991-04-09 Sony Corp Recording medium
JP4047972B2 (en) * 1998-05-22 2008-02-13 前田製管株式会社 Heat exchange pile and heating device
JP2004233031A (en) * 2002-12-05 2004-08-19 Nippon Steel Corp Underground heat exchanger by hollow tubular body embedded by rotating press-fitting method, and highly efficient energy system using the same
JP2006038256A (en) * 2004-07-22 2006-02-09 Toko Kogyo:Kk Underground heat exchanger

Also Published As

Publication number Publication date
JP2009041231A (en) 2009-02-26

Similar Documents

Publication Publication Date Title
JP4953973B2 (en) Embedded heat exchanger and method for manufacturing the same
JP3143619B1 (en) Underground heat utilization system with foundation pile
US5477914A (en) Ground source heat pump system comprising modular subterranean heat exchange units with multiple parallel secondary conduits
US8973617B2 (en) Geothermal pipe system
US5339890A (en) Ground source heat pump system comprising modular subterranean heat exchange units with concentric conduits
JP7116272B2 (en) Devices for energy transfer and energy storage in liquid reservoirs
JP2007139370A (en) Underground heat exchanger
CN109458757B (en) Static drilling root planting energy pile and production method and construction method thereof
JP2010060247A (en) Soil heat exchanger of heat pump system using soil heat
CN106168418A (en) A kind of CCHP diaphram wall device and construction method thereof
FI130172B (en) Geothermal heat exchanger, geothermal heat arrangement and method for charging thermal energy into ground
JP5103070B2 (en) Support pile system for heat exchange for residential and architectural use using geothermal heat
JP5100219B2 (en) Underground equipment in groundwater thermal ground equipment.
JP2004332330A (en) Installation mechanism of heat exchange pipe in heat exchange system using foundation pile of building
JP2003307353A (en) Antifreeze circulation-type device for utilizing underground heat
JP2014020645A (en) Holding member
SK7401Y1 (en) Earth heat accumulator
JP4762623B2 (en) Geothermal heat utilization device and manufacturing method thereof
JP2014020644A (en) Underground heat exchanger, and method of inserting underground heat exchanger
JP2014005983A (en) Underground heat exchanger
KR101189079B1 (en) Geothermal exchanging pile
JP2017040469A (en) Method for inserting underground heat exchanger
US20150377523A1 (en) Support member with dual use rebar for geothermal underground loop
US11913678B2 (en) Ground heat-exchange system with water-filled boreholes
US20180080686A1 (en) Support member with dual use rebar for geothermal underground loop and methods

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100706

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110720

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120313

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120313

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150323

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees