JP4047972B2 - Heat exchange pile and heating device - Google Patents

Heat exchange pile and heating device Download PDF

Info

Publication number
JP4047972B2
JP4047972B2 JP15686298A JP15686298A JP4047972B2 JP 4047972 B2 JP4047972 B2 JP 4047972B2 JP 15686298 A JP15686298 A JP 15686298A JP 15686298 A JP15686298 A JP 15686298A JP 4047972 B2 JP4047972 B2 JP 4047972B2
Authority
JP
Japan
Prior art keywords
heat
pipe
pile
heat exchange
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP15686298A
Other languages
Japanese (ja)
Other versions
JPH11336008A (en
Inventor
弘道 梅宮
直己 前田
昭悟 加藤
Original Assignee
前田製管株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 前田製管株式会社 filed Critical 前田製管株式会社
Priority to JP15686298A priority Critical patent/JP4047972B2/en
Publication of JPH11336008A publication Critical patent/JPH11336008A/en
Application granted granted Critical
Publication of JP4047972B2 publication Critical patent/JP4047972B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Road Paving Structures (AREA)
  • Piles And Underground Anchors (AREA)
  • Foundations (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、地中に埋設して地熱を吸収する熱交換杭と、この地熱を吸収した熱媒体を地表部に設置した放熱ブロック内を循環せしめて暖房あるいは融雪等を行う加温装置に関する。
【0002】
【従来の技術】
従来より、地中に熱交換杭を埋設して地熱を吸収し、この地熱を吸収した熱媒体を地表部で利用する試みがなされており、人工的な発熱源の使用を極力抑えた機構として融雪や暖房等の目的に採用されている。
【0003】
この地中に埋設する熱交換杭として、特開昭60−8659号公報には、コンクリート製基礎杭の中空部にU字形状の熱交換パイプを挿入し、この熱交換パイプと前記中空部の空間部分を熱伝導の良い適宜の材料で埋めた構成とするものが開示されており、前記熱交換パイプ内の地熱で加熱された熱媒体を循環させることにより、地表部で暖房或いは融雪等を行わせるものである。
【0004】
しかし、前記特開昭60−8659号公報に記載の熱交換杭は、単純にU字形状に折曲した熱交換パイプを杭の中心部に埋設したものであるため、地中における前記熱交換パイプの吸熱面積が小さい。したがって、地表部での放熱範囲も狭く形成せざるを得ないといった制約があるとゝもに、前記熱交換パイプは杭の外周から遠い位置にあり、且つ充填した材料によりその全体が囲まれた構成のものであるため、地熱の吸収効率が悪いといった問題点がある。
【0005】
このような問題点を解決したものとして、特開平3−83226号公報には、コンクリート製中空杭のコンクリート層内に螺旋状の熱媒体流入側の吸熱パイプを埋設し、該吸熱パイプの下端と連結した熱媒体流出側の流出パイプを中空杭の中空部を直線状に昇って杭の上部へ導き出した構成の熱交換機能を有する基礎杭が開示されている。
【0006】
【発明が解決しようとする課題】
前記特開平3−83226号公報に開示された構成の熱交換杭とすることにより、前記特開昭60−8659号公報に開示されたものより熱交換パイプの吸熱面積が大きくなり、且つ地熱の吸収効率も向上するといった諸効果を奏する。しかし、このような構成のものにあっては、熱交換パイプにおける吸熱パイプの吸熱面積を増大させるには一定の限度がある。
【0007】
したがって、放熱範囲をより広く確保するためには、コンクリート製中空杭の本数を増加したり、その他の加熱装置を用いて放熱に必要な熱量を熱媒体に加える必要があった。しかし、杭の埋設本数を増やすことは杭の本数及び施工作業量が増すため、材料費及び作業費の増大を招くとゝもに、作業時間も延長されるなどの問題点を含んでおり、さらに加熱装置等を付加すれば、より多くの人工的な熱エネルギを使用することになり、本来の目的達成の意図とはかけ離れてしまうことになる、といった諸問題点がある。
【0008】
【課題を解決するための手段】
本発明は、上記のような従来の問題点を解決するために成されたもので、限られた容積の杭で出来るだけ多量の地熱を吸収可能なものを提供することを目的としたものであり、その要旨は、コンクリート製中空杭の肉厚部に、熱媒体が流動する往路パイプと復路パイプとを交互に巻き回した螺旋状部と、上方部が前記中空杭の上端面に開口又は上端面から突出する通水部とからなる熱交換パイプを埋設してなる構成であって、熱媒体が流動する前記螺旋状部の往路パイプと復路パイプの両方又は一方を蛇腹状のパイプで形成したことを特徴とする熱交換杭及び加温装置にある。
【0009】
【発明の実施の態様】
以下、本発明を図面に示す実施例により詳細に説明するに、図において、Aは熱交換杭で、鉄筋コンクリート製の中空杭1と、該中空杭1の肉厚部に埋設した熱交換パイプ2とから構成されている。前記中空杭1は、実施例のものにあっては外径200mm,内径90mm,長さ3000mmのもので、前記熱交換パイプ2は、図1乃至図3に示す実施例のものにあっては、コイル状に巻き回した螺旋状部3と直線状の2本の通水部4とから構成されている。
【0010】
前記螺旋状部3は、図2に示すように、長さ約12000mmの直線パイプ5の中央を前記中空杭1の外形より小径な円形5aに折曲して、2本の並列した熱媒体の往路パイプ5bと復路パイプ5cにそれぞれ形成した後、この両パイプ5b,5cをそれぞれ同一方向に且つ同心円状に螺旋状に巻き回して、図3に示すように、該往路パイプ5bと復路パイプ5cが交互に位置する螺旋状に形成した構造のものであり、この各パイプ5b,5cの自由端部には雄ネジ5dが夫々形成されている。
【0011】
一方、前記2本の通水部4は、直線状のパイプと、その両端部にそれぞれ設けた大径筒部4a,4bとから構成されており、該大径筒部4a,4bの内部には雌ネジが刻設されている。そして、この雌ネジに前記螺旋状部3の雄ネジ5dを螺合して、この螺旋状部3と通水部4とを連結することにより前記熱交換パイプ2が構成されている。ここで、前記熱交換パイプ2は螺旋状部3と通水部4とに分離されているが、これは螺旋状部3の製造上の関係で分離した構成としたものであり、一本の直線パイプにより螺旋状部3と通水部4とを形成した一体構造のものであってもよい。
【0012】
前記熱交換パイプ2は、硬質塩化ビニールパイプ等の樹脂製パイプやステンレス製パイプ,銅製パイプ,鉄製パイプ等の金属製パイプ等を使用することができるが、熱伝導性や耐蝕性の観点からステンレス製のものが好ましい。また、熱交換パイプ2は、図4に示すように、その管壁形状が長さ方向に波形をした蛇腹パイプ(フレキシブルパイプ)を使用しており、吸熱面積の増大と折り曲げ加工を容易にしている。従って、前記熱交換パイプ2の表面積は螺旋形状と蛇腹形状とによって非常に大きなものとなり、吸熱容量の増大及び地表面での広範囲な保温が可能となる。
【0013】
次に、前記鉄筋コンクリート製の中空杭1と熱交換パイプ2からなる熱交換杭Aを採用した加温装置として、融雪装置に適用した実施例について、図5により説明するに、図中6は平面視長方形状の放熱ブロックで、鉄筋コンクリートで形成したものであり、該放熱ブロック6の表面には樹脂や放熱性に優れた金属で形成した放熱用パイプ7が蛇行した溝8内に設置されている。
【0014】
8aは前記放熱ブロック6の側面に設けた溝8の側面開口部で、前後左右の4側面に形成されており、該放熱ブロック6の敷設態様による前記放熱用パイプ7の端部連結を可能としている。9は高さ調整機構で、図6に示すように、前記放熱ブロック6の凹部6a底部に形成したナット部NにボルトBを回転可能に螺合した構造のもので、前記放熱ブロック6の敷設時に該ブロック6の底面から突出する前記ボルトBの先端部により敷設高さを調整するものである。
【0015】
そこで、前記融雪装置を施工するには、まず所定範囲の地面を掘削し、その融雪範囲外の地中に前記熱交換杭Aを埋設する。一方、前記掘削地面の融雪範囲にはまず栗石層を敷設し、その上に砂等を入れて水平に地均した後、前記複数個の放熱ブロック6を所定面積だけ隣接状態にして敷設する。その後、前記各放熱ブロック6の蛇行状の溝8に合わせて前記放熱用パイプ7を設置し、その排出口および吸入口にあたる開口端部7aを前記各放熱ブロック6の側面開口部8aより突出させた後、前記溝8内にモルタル等の結合材10を充填して前記放熱用パイプ7を固着するとゝもに、放熱ブロック6の表面を均一にする。
【0016】
そして、図7に示すように、前記地中に埋設した熱交換杭Aの熱交パイプ2、地表に敷設された放熱ブロック6の放熱用パイプ7、循環用ポンプ11、前記熱交換杭A側に設けた温度計T1 、前記放熱ブロック6の上面に設置した各温度計T2 ,T3 ,T4 、流量計12、流量調整弁13等を途中に介して連絡用パイプ14で連結し、循環経路が形成されるように配管する。ここで、前記連絡用パイプ14には発泡スチロール等の断熱材を被覆して無駄な放熱を防止している。前記循環経路を形成した後、熱交換杭Aおよび連絡用パイプ14を埋め戻すとゝもに、前記放熱ブロック6の上面に栗石層および土砂層を形成して均一な地面を形成する。次いで、前記均一な地面の表面に砂を薄く敷いた後、装飾用ブロック等を敷設して路面を形成する。
【0017】
そこで、前記地中に埋設された熱交換杭Aの熱交換パイプ2内に、通水部4の一方から不凍液等の熱媒体を流すことにより、往路パイプ5b及び復路パイプ5cを通過する間に熱媒体は地熱を吸収して加熱され、該加熱された熱媒体は前記循環用ポンプ11により流量調整弁13,流量計12を経てそれぞれ放熱ブロック6の蛇行状の放熱用パイプ7内を循環する。そして、当該放熱ブロック6を加温した後、各流量調整弁13,流量計12を経て前記循環用ポンプ11に戻るといった循環が繰り返し行われる。
【0018】
上記のように、地熱により加熱された熱媒体が前記融雪装置の放熱ブロック6を循環することにより、図8に示すような実験結果を得た。ここで、熱媒体の循環は路面の積雪が13cmで、地中深さに対する地中温度及び熱交換杭Aの熱交換パイプ2内の温度条件が図9に示す状態のもとで開始し、ほぼ24時間循環し続けたときの前記積雪の融雪状況を観察した。なお前記熱媒体の全容量のうち、前記熱交換パイプ2内において約2.0リットル、放熱用パイプ7内で1.3リットル確保されており、その循環速度は2m/secである。
【0019】
そこで、前記図8の実験結果を説明すると、循環開始時間より3時間後には前記温度計T1 ,T2 ,T3 ,T4 が外気温を越え、概ね前記放熱ブロック6の融雪面の層に充分な熱量が伝達され、融雪が徐々に始めりつつあることを示している。そして、約10時間30分後には温度計T3 とT4 の温度差が逆転するものの外気温よりは高くなり、この時点で概ね路面上の積雪は完全に融雪されるのが観察された。そして、それ以降は外気温が氷点下にあるにも関わらず前記融雪面は0度以上の温度を保つことができ、人工的な発熱装置を使うことなく地熱のみで融雪あるいは積雪を予防することが可能となり、経済的にも有効であることが実証された。
【0020】
図10に示すものは熱交換杭Aの他実施例で、中空杭1は前記実施例のものと同一のものであるが、該中空杭1の本体内に埋設した熱交換パイプ2のコイル状に巻き回した螺旋状部3の一部において前記実施例のものとその構成が相違している。すなわち、この実施例における螺旋状部3は、熱媒体が流動する復路パイプ5cが直線パイプで構成され、他方の往路パイプ5bは直線パイプで構成された前記復路パイプ5cを囲むようにして螺旋状に形成した螺旋パイプで構成したものである。
【0021】
また前記熱交換パイプ2と鉄筋かご15との関係は、図11に示すように、前記螺旋状の往路パイプ5bのピッチ間と鉄筋かご15の螺旋筋16のピッチ間とが、中空杭1の長手方向において交互に配置されるように組立てられている。但し、本発明において、この構成とは逆に、復路パイプ5cが螺旋パイプで構成され、往路パイプ5bを直線パイプで構成したものでも、本発明の目的は達成できる。また熱交換パイプ2に鋼製のものを使用した場合には、例えばRC製杭やハウス用杭であって、鉄筋かご15の螺旋筋16の代替として、螺旋状の前記復路パイプ5c又は往路パイプ5bを軸筋17に溶接して使用することもできる。
【0022】
【発明の効果】
本発明に係る熱交換杭は、上記のような構成であるから、杭の長さに比して格段に長い熱交換パイプを備え、且つ該熱交換パイプはその全長が中空杭の肉厚部に埋設されているため、吸熱面積の増大と地熱の吸熱効率の向上を図ることができる。したがって、中空杭一本当たりの地表部における放熱範囲を広く確保することができる。また、熱交換パイプを蛇腹パイプで形成することにより、より広い吸熱面積を得ることができ、更に高い吸熱率を確保できる、といった諸効果がある。
【図面の簡単な説明】
【図1】 本発明に係る熱交換杭の縦断面図である。
【図2】 熱交換杭に埋設する熱交換パイプの成形前の状態を示す正面図である。
【図3】 熱交換杭に埋設する熱交換パイプの分解斜視図である。
【図4】 熱交換パイプの部分断面斜視図である。
【図5】 放熱ブロックの斜視図である。
【図6】 放熱ブロックの部分拡大斜視図である。
【図7】 本発明に係る加温装置の配管図である。
【図8】 加温装置の時間と温度との関係を示す図である。
【図9】 熱交換杭の温度分布図である。
【図10】 他実施例の熱交換杭の縦断面図である。
【図11】 熱交換杭の部分斜視図である。
【符号の説明】
A 熱交換杭
1 コンクリート製の中空杭
2 熱交換パイプ
3 螺旋状部
4 通水部
5b 往路パイプ
5c 復路パイプ
6 放熱ブロック
7 放熱用パイプ
8 溝
14 連結用パイプ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat exchanging pile that is buried in the ground and absorbs geothermal heat, and a heating device that heats or melts snow by circulating a heat medium that absorbs the geothermal heat in a heat radiation block installed on the ground surface.
[0002]
[Prior art]
Conventionally, heat exchange piles have been buried in the ground to absorb geothermal heat, and attempts have been made to use the heat medium that has absorbed this geothermal heat on the surface, as a mechanism that suppresses the use of artificial heat sources as much as possible. It is used for melting snow and heating.
[0003]
As a heat exchanging pile buried in the ground, in Japanese Patent Laid-Open No. 60-8659, a U-shaped heat exchanging pipe is inserted into a hollow portion of a concrete foundation pile, and the heat exchanging pipe and the hollow portion Disclosed is a structure in which a space portion is filled with an appropriate material having good heat conduction, and by heating a heat medium heated by geothermal heat in the heat exchange pipe, heating or melting snow is performed on the surface. It is what you want to do.
[0004]
However, the heat exchanging pile described in JP-A-60-8659 is simply a U-shaped heat exchanging pipe embedded in the center of the pile. The endothermic area of the pipe is small. Therefore, the heat exchange pipe is located far from the outer periphery of the pile, and the whole is surrounded by the filled material. Since it is a thing of a structure, there exists a problem that the absorption efficiency of geothermal heat is bad.
[0005]
As a solution to such a problem, Japanese Patent Laid-Open No. 3-83226 discloses that a heat absorption pipe on the spiral heat medium inflow side is embedded in a concrete layer of a concrete hollow pile, and the lower end of the heat absorption pipe is The foundation pile which has the heat exchange function of the structure which led the connected outflow pipe of the heat-medium outflow side to the upper part of the pile by raising the hollow part of the hollow pile linearly is disclosed.
[0006]
[Problems to be solved by the invention]
By adopting the heat exchange pile having the configuration disclosed in Japanese Patent Laid-Open No. 3-83226, the heat absorption area of the heat exchange pipe is larger than that disclosed in Japanese Patent Laid-Open No. 60-8659, and the geothermal heat There are various effects such as improved absorption efficiency. However, in such a configuration, there is a certain limit to increase the heat absorption area of the heat absorption pipe in the heat exchange pipe.
[0007]
Therefore, in order to ensure a wider heat radiation range, it is necessary to increase the number of concrete hollow piles or to add heat necessary for heat radiation to the heat medium using other heating devices. However, increasing the number of buried piles increases the number of piles and the amount of construction work, so there are problems such as an increase in material costs and work costs, and an increase in work time. Furthermore, if a heating device or the like is added, more artificial heat energy is used, and there is a problem that it is far from the intention of achieving the original purpose.
[0008]
[Means for Solving the Problems]
The present invention was made to solve the conventional problems as described above, and aims to provide a pile having a limited volume capable of absorbing as much geothermal heat as possible. The gist is that the thick part of the hollow hollow pile made of concrete is a spiral part in which the forward pipe and the return pipe through which the heat medium flows are alternately wound, and the upper part is opened or opened at the upper end surface of the hollow pile. A heat exchange pipe composed of a water flow portion projecting from the upper end surface is embedded, and both the forward pipe and the return pipe of the spiral part through which the heat medium flows are formed by a bellows-like pipe. It exists in the heat exchange pile and heating apparatus characterized by having performed.
[0009]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the embodiments shown in the drawings. In the figure, A is a heat exchange pile, a hollow pile 1 made of reinforced concrete, and a heat exchange pipe 2 embedded in a thick portion of the hollow pile 1. It consists of and. The hollow pile 1 has an outer diameter of 200 mm, an inner diameter of 90 mm, and a length of 3000 mm in the embodiment, and the heat exchange pipe 2 is in the embodiment shown in FIGS. The spiral portion 3 wound in a coil shape and two linear water passage portions 4 are configured.
[0010]
As shown in FIG. 2, the spiral portion 3 is formed by bending the center of a straight pipe 5 having a length of about 12000 mm into a circular shape 5 a having a smaller diameter than the outer shape of the hollow pile 1. After the pipe 5b and the return pipe 5c are respectively formed, the pipes 5b and 5c are wound in the same direction and concentrically in a spiral shape, and as shown in FIG. 3, the forward pipe 5b and the return pipe 5c are wound. Are formed in a spiral shape, and male threads 5d are formed at the free ends of the pipes 5b and 5c, respectively.
[0011]
On the other hand, the two water passing portions 4 are composed of straight pipes and large-diameter cylindrical portions 4a and 4b provided at both ends thereof, and the large-diameter cylindrical portions 4a and 4b are provided inside the large-diameter cylindrical portions 4a and 4b. Is engraved with female threads. Then, the heat exchange pipe 2 is configured by screwing the male screw 5d of the spiral portion 3 into this female screw and connecting the spiral portion 3 and the water passage portion 4. Here, the heat exchange pipe 2 is separated into a spiral portion 3 and a water passage portion 4, which is configured to be separated due to the manufacturing relationship of the spiral portion 3. The thing of the integral structure which formed the spiral part 3 and the water flow part 4 with the straight pipe may be sufficient.
[0012]
The heat exchange pipe 2 may be a resin pipe such as a hard vinyl chloride pipe, a metal pipe such as a stainless steel pipe, a copper pipe, or an iron pipe, but stainless steel from the viewpoint of thermal conductivity and corrosion resistance. Those made of are preferred. Further, as shown in FIG. 4, the heat exchange pipe 2 uses a bellows pipe (flexible pipe) whose tube wall shape is corrugated in the length direction, thereby facilitating an increase in heat absorption area and bending. Yes. Therefore, the surface area of the heat exchange pipe 2 becomes very large due to the spiral shape and the bellows shape, so that the heat absorption capacity can be increased and a wide range of heat can be kept on the ground surface.
[0013]
Next, an embodiment applied to a snow melting device as a heating device employing the heat exchange pile A composed of the reinforced concrete hollow pile 1 and the heat exchange pipe 2 will be described with reference to FIG. A rectangular heat radiation block, which is formed of reinforced concrete. On the surface of the heat radiation block 6, a heat radiation pipe 7 made of a resin or a metal having excellent heat radiation properties is installed in a meandering groove 8. .
[0014]
8a is a side opening portion of the groove 8 provided on the side surface of the heat dissipation block 6 and is formed on the front, rear, left and right side surfaces, and enables the end portion of the heat dissipation pipe 7 to be connected by the laying mode of the heat dissipation block 6. Yes. Reference numeral 9 denotes a height adjusting mechanism having a structure in which a bolt B is rotatably screwed to a nut portion N formed at the bottom of the recess 6a of the heat dissipation block 6, as shown in FIG. Sometimes the laying height is adjusted by the tip of the bolt B protruding from the bottom surface of the block 6.
[0015]
Therefore, in order to construct the snow melting device, first, a predetermined range of ground is excavated, and the heat exchange pile A is buried in the ground outside the snow melting range. On the other hand, a crushed stone layer is first laid in the snow melting area of the excavated ground, and sand or the like is placed on the ground, and then the plurality of heat dissipating blocks 6 are laid adjacent to each other by a predetermined area. Thereafter, the heat radiating pipe 7 is installed in alignment with the meandering grooves 8 of the heat radiating blocks 6, and the opening end portions 7 a corresponding to the discharge ports and the suction ports are projected from the side surface opening portions 8 a of the heat radiating blocks 6. After that, when the groove 8 is filled with a binder 10 such as mortar and the heat radiating pipe 7 is fixed, the surface of the heat radiating block 6 is made uniform.
[0016]
And as shown in FIG. 7, the heat exchange pipe 2 of the heat exchanging pile A buried in the ground, the heat dissipating pipe 7 of the heat dissipating block 6 laid on the ground surface, the circulation pump 11, the heat exchanging pile A side A thermometer T1 provided on the heat radiation block 6 and thermometers T2, T3, T4, a flow meter 12, a flow rate adjusting valve 13 and the like installed on the upper surface of the heat dissipating block 6 are connected by a connecting pipe 14 along the way, and the circulation path is Piping to form. Here, the connecting pipe 14 is covered with a heat insulating material such as expanded polystyrene to prevent wasteful heat dissipation. After the circulation path is formed, when the heat exchange pile A and the connection pipe 14 are backfilled, a chestnut layer and a soil layer are formed on the upper surface of the heat dissipation block 6 to form a uniform ground. Next, after thinly laying sand on the surface of the uniform ground, a decorative surface or the like is laid to form a road surface.
[0017]
Therefore, by passing a heat medium such as antifreeze liquid from one of the water flow parts 4 into the heat exchange pipe 2 of the heat exchange pile A buried in the ground, while passing through the forward pipe 5b and the backward pipe 5c. The heat medium absorbs geothermal heat and is heated, and the heated heat medium circulates in the meandering heat radiation pipe 7 of the heat radiation block 6 through the flow rate adjusting valve 13 and the flow meter 12 by the circulation pump 11. . Then, after heating the heat dissipating block 6, circulation such as returning to the circulation pump 11 through the flow rate adjusting valves 13 and the flow meter 12 is repeated.
[0018]
As described above, an experimental result as shown in FIG. 8 was obtained by circulating the heat medium heated by the geothermal heat through the heat dissipation block 6 of the snow melting device. Here, the circulation of the heat medium starts when the snow on the road surface is 13 cm, the underground temperature with respect to the underground depth, and the temperature condition in the heat exchange pipe 2 of the heat exchange pile A under the state shown in FIG. The snow melting state of the snow when the circulation continued for about 24 hours was observed. Of the total capacity of the heat medium, about 2.0 liters are secured in the heat exchange pipe 2 and 1.3 liters in the heat radiating pipe 7, and the circulation speed is 2 m / sec.
[0019]
Therefore, the experimental results in FIG. 8 will be explained. After 3 hours from the circulation start time, the thermometers T1, T2, T3, and T4 exceed the outside air temperature, and the amount of heat sufficient for the layer of the snow melting surface of the heat dissipating block 6 is sufficient. Is transmitted, indicating that snow melting is gradually starting. After about 10 hours and 30 minutes, although the temperature difference between the thermometers T3 and T4 was reversed, it became higher than the outside air temperature, and at this time, it was observed that the snow on the road surface was almost completely melted. Thereafter, although the outside air temperature is below freezing, the snow melting surface can maintain a temperature of 0 ° C. or more, and it is possible to prevent snow melting or snow accumulation only by geothermal heat without using an artificial heating device. It became possible and proved to be economically effective.
[0020]
FIG. 10 shows another embodiment of the heat exchange pile A, and the hollow pile 1 is the same as that of the above embodiment, but the coil shape of the heat exchange pipe 2 embedded in the main body of the hollow pile 1. The configuration of the part of the spiral portion 3 wound around is different from that of the above embodiment. That is, the spiral portion 3 in this embodiment is formed in a spiral shape so that the return pipe 5c through which the heat medium flows is constituted by a straight pipe, and the other forward pass pipe 5b surrounds the return pipe 5c constituted by a straight pipe. It consists of a spiral pipe.
[0021]
Further, as shown in FIG. 11, the relationship between the heat exchange pipe 2 and the rebar cage 15 is that the pitch between the spiral outward pipe 5b and the pitch between the helix bars 16 of the rebar cage 15 They are assembled so as to be alternately arranged in the longitudinal direction. However, in the present invention, contrary to this configuration, the object of the present invention can be achieved even when the return pipe 5c is formed of a spiral pipe and the forward pipe 5b is formed of a straight pipe. Further, when a steel pipe is used for the heat exchange pipe 2, for example, an RC pile or a house pile, the helical return path pipe 5c or the forward path pipe can be used as an alternative to the spiral bar 16 of the reinforcing bar 15. It is also possible to weld 5b to the shaft rod 17 for use.
[0022]
【The invention's effect】
Since the heat exchanging pile according to the present invention is configured as described above, the heat exchanging pipe includes a heat exchanging pipe that is much longer than the length of the pile, and the heat exchanging pipe has a full-thickness portion of the hollow pile. Therefore, it is possible to increase the endothermic area and improve the endothermic efficiency of geothermal heat. Therefore, it is possible to ensure a wide heat radiation range in the surface portion per hollow pile. Further, by forming the heat exchange pipe with a bellows pipe, there are various effects that a wider endothermic area can be obtained and a higher endothermic rate can be secured.
[Brief description of the drawings]
FIG. 1 is a longitudinal sectional view of a heat exchange pile according to the present invention.
FIG. 2 is a front view showing a state before molding of a heat exchange pipe embedded in a heat exchange pile.
FIG. 3 is an exploded perspective view of a heat exchange pipe embedded in a heat exchange pile.
FIG. 4 is a partial cross-sectional perspective view of a heat exchange pipe.
FIG. 5 is a perspective view of a heat dissipation block.
FIG. 6 is a partially enlarged perspective view of a heat dissipation block.
FIG. 7 is a piping diagram of a heating device according to the present invention.
FIG. 8 is a diagram showing a relationship between time and temperature of a heating device.
FIG. 9 is a temperature distribution diagram of the heat exchange pile.
FIG. 10 is a longitudinal sectional view of a heat exchange pile according to another embodiment.
FIG. 11 is a partial perspective view of a heat exchange pile.
[Explanation of symbols]
A Heat exchange pile 1 Concrete hollow pile 2 Heat exchange pipe 3 Spiral part 4 Water flow part 5b Outward pipe 5c Return pipe 6 Heat radiation block 7 Heat radiation pipe 8 Groove 14 Connection pipe

Claims (2)

コンクリート製中空杭の肉厚部に、熱媒体が流動する往路パイプと復路パイプとを交互に巻き回した螺旋状部と、上方部が前記中空杭の上端面に開口又は上端面から突出する通水部とからなる熱交換パイプを埋設してなる構成であって、熱媒体が流動する前記螺旋状部の往路パイプと復路パイプの両方又は一方を蛇腹状のパイプで形成したことを特徴とする熱交換杭。A spiral part in which a forward pipe and a return pipe in which a heat medium flows are alternately wound around a thick part of a concrete hollow pile, and an upper part of the hollow pile passes through the upper end surface of the hollow pile. A heat exchange pipe composed of a water part is embedded, wherein both or one of the forward pipe and the return pipe of the spiral part through which the heat medium flows is formed of a bellows-like pipe. Heat exchange pile. 地中に埋設した請求項1記載の熱交換杭と、地表に敷設した蛇行状の放熱用パイプを設置してなるコンクリート製の放熱ブロックと、前記熱交換杭の熱交換パイプと前記放熱ブロックの放熱用パイプとを、その内部を流動する熱媒体が循環するように連結した循環経路とから構成したことを特徴とする加温装置。  The heat exchanging pile according to claim 1 embedded in the ground, a concrete heat dissipating block having a meandering heat dissipating pipe laid on the ground surface, a heat exchanging pipe of the heat exchanging pile, and the heat dissipating block A heating apparatus comprising a heat radiation pipe and a circulation path connected so that a heat medium flowing inside circulates therein.
JP15686298A 1998-05-22 1998-05-22 Heat exchange pile and heating device Expired - Lifetime JP4047972B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15686298A JP4047972B2 (en) 1998-05-22 1998-05-22 Heat exchange pile and heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15686298A JP4047972B2 (en) 1998-05-22 1998-05-22 Heat exchange pile and heating device

Publications (2)

Publication Number Publication Date
JPH11336008A JPH11336008A (en) 1999-12-07
JP4047972B2 true JP4047972B2 (en) 2008-02-13

Family

ID=15637022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15686298A Expired - Lifetime JP4047972B2 (en) 1998-05-22 1998-05-22 Heat exchange pile and heating device

Country Status (1)

Country Link
JP (1) JP4047972B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4248920B2 (en) * 2003-04-18 2009-04-02 太平洋セメント株式会社 Underground pipe
KR100666469B1 (en) 2004-06-23 2007-01-09 코오롱건설주식회사 Spiral type geothermal exchanger
JP4688159B2 (en) * 2006-02-13 2011-05-25 鉄建建設株式会社 Concrete pavement cooling system and concrete slab structure
JP4953973B2 (en) * 2007-08-07 2012-06-13 株式会社フェアリープラントテクノロジー Embedded heat exchanger and method for manufacturing the same
CN103968607B (en) * 2014-05-23 2016-04-06 重庆大学 A kind of ground heat exchanger for geothermal heat pump air-conditioning system
CN104846808B (en) * 2015-02-03 2016-08-31 河海大学 A kind of heat exchange hollow pile and construction method thereof

Also Published As

Publication number Publication date
JPH11336008A (en) 1999-12-07

Similar Documents

Publication Publication Date Title
JP4606312B2 (en) Underground heat exchanger
CA2033691C (en) Heat exchanger and use thereof
JP2008292044A (en) Natural heat hybrid soil thermal storage system
JP2007315742A (en) Underground heat exchanger and its buried structure
JP2009257737A (en) Underground heat utilization heat pump system
JP4047972B2 (en) Heat exchange pile and heating device
JP2004309124A (en) Underground heat exchanger
JP6327648B2 (en) Water heat snow melting device, water heat snow melting system, and control method thereof
JP4981516B2 (en) HEAT EXCHANGER, HEAT EXCHANGE SYSTEM, HEAT EXCHANGER MANUFACTURING METHOD, AND HEAT EXCHANGE SYSTEM CONSTRUCTION METHOD
JP2003262430A (en) Heat pump using underground heat
JP2001193008A (en) Heating block and method for producing the same, as well as snow melting apparatus
JP2009257081A (en) Steel pipe pile for heat exchange
US6006826A (en) Ice rink installation having a polymer plastic heat transfer piping imbedded in a substrate
JP2009002631A (en) Heat exchanger and heat exchanging system
JP4990593B2 (en) Underground heat exchanger buried structure
CN208860177U (en) The buried gravity assisted heat pipe of big L/D ratio stage evaporation type
JP2002013105A (en) Heat source facility using drainage and its construction method
JP2004177012A (en) Steel pipe pile for heat exchange
JP2001074316A (en) Underground heat utilizing facility
JP2000240029A (en) Concrete pipe having snow melting function, and snow melting apparatus or cooling apparatus using concrete pipe having snow melting function
JP2849699B2 (en) Solar thermal storage snow melting device
JP2008156867A (en) Circulation-type heat absorption and radiation equipment utilizing geothermal heat
JP2008101378A (en) Geothermal energy utilizing snow melting system
KR20070003504A (en) Geothermal heat exchanger and heat pump type air conditioner utilizing geothermal heat
JP2008256329A (en) Underground heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070912

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071030

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071126

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111130

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121130

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131130

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term