JPH0417353B2 - - Google Patents

Info

Publication number
JPH0417353B2
JPH0417353B2 JP58105748A JP10574883A JPH0417353B2 JP H0417353 B2 JPH0417353 B2 JP H0417353B2 JP 58105748 A JP58105748 A JP 58105748A JP 10574883 A JP10574883 A JP 10574883A JP H0417353 B2 JPH0417353 B2 JP H0417353B2
Authority
JP
Japan
Prior art keywords
water
underground
temperature
layer
impermeable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58105748A
Other languages
Japanese (ja)
Other versions
JPS59231395A (en
Inventor
Hideo Sekiguchi
Shigeaki Urakawa
Shinji Yosomya
Toshiaki Koga
Yukio Haga
Masayoshi Myazawa
Takashi Yukimura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Ebara Corp
Furukawa Electric Co Ltd
IHI Corp
Hitachi Zosen Corp
Nippon Steel Corp
Original Assignee
Hitachi Plant Construction Co Ltd
Ebara Corp
Furukawa Electric Co Ltd
IHI Corp
Hitachi Zosen Corp
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Ebara Corp, Furukawa Electric Co Ltd, IHI Corp, Hitachi Zosen Corp, Sumitomo Metal Industries Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP58105748A priority Critical patent/JPS59231395A/en
Publication of JPS59231395A publication Critical patent/JPS59231395A/en
Publication of JPH0417353B2 publication Critical patent/JPH0417353B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)

Description

【発明の詳細な説明】 この発明は、熱エネルギーの貯蔵、および利用
方法に関するものであり、特に温度の余り高くな
い熱エネルギーを複数の温度レベルで同時に地中
にて水に蓄えさせ、これを大規模かつ長期にわた
つて貯蔵し、適時に該エネルギーを取り出し利用
する方法を提供しようとするものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for storing and utilizing thermal energy, and in particular a method for storing thermal energy at a not-too-high temperature in water underground at a plurality of temperature levels at the same time. The aim is to provide a method for storing energy on a large scale and over a long period of time, and extracting and utilizing the energy in a timely manner.

かかる地中に熱エネルギーを貯蔵する目的の一
つとして、冬期の冷熱を夏期まで、あるいは夏期
の温熱を冬期まで大規模に貯蔵し、夏期及び冬期
にこれを取り出してそれぞれ冷房及び暖房用に利
用しようとするにある。
One of the purposes of storing thermal energy underground is to store cold heat in the winter until the summer, or warm heat in the summer until the winter, on a large scale, and then take it out in the summer and winter and use it for cooling and heating, respectively. I'm trying.

一般にローカルエネルギーと云われている太陽
熱エネルギー、風力エネルギーあるいは各種農林
畜産廃棄物に由来する熱エネルギーの有効利用に
対する関心は著しく高いが、これらに共通する重
大な欠点は、該エネルギーの供給に不連続性が避
け難いこと、及び該エネルギーの需要期及び供給
期に大きな不一致があり、希望の需要に適切に応
じ得ないこと等が挙げられ、これらの欠点を解消
するためには、経済性等を満足し得る長期間のエ
ネルギーの貯蔵、および利用方法の確立が強く望
まれている。
There is considerable interest in the effective use of solar thermal energy, wind energy, or thermal energy derived from various types of agricultural, forestry, and livestock waste, which are generally referred to as local energy, but a serious drawback common to these is that the supply of the energy is discontinuous. In addition, there is a large discrepancy between the demand period and the supply period of the energy, making it impossible to respond appropriately to the desired demand. In order to eliminate these disadvantages, economic efficiency etc. There is a strong desire to establish a satisfactory long-term energy storage and utilization method.

従来夏期の温熱エネルギー及び冬期の冷熱エネ
ルギーを長期に貯蔵する方法として、地下帯水層
を利用する方法が試みられている。
BACKGROUND ART Conventionally, methods of utilizing underground aquifers have been attempted as a method for storing thermal energy in the summer and cold energy in the winter for a long period of time.

即ち、地下水の流れの小さい地下帯水層を利用
して蓄熱を行うもので、具体的な一例としては夏
期に該帯水層の水を汲み上げ、高温外気や積極的
に太陽熱などによりこれを昇温させ、別の帯水層
中にこの昇温水を注入して熱エネルギーを貯蔵す
るものである。
In other words, heat is stored by using an underground aquifer with a small flow of groundwater.One specific example is pumping up water from the aquifer in the summer and raising it using high-temperature outside air or active solar heat. The heated water is then injected into another aquifer to store thermal energy.

周知の如く、帯水層は熱伝導率の小さい土壌中
に存在し、いわば天然の優れた断熱材で囲まれた
蓄熱槽とでも云うべく、熱損失が非常に少なく効
率的な蓄熱が可能である。
As is well known, aquifers exist in soil with low thermal conductivity, and are like heat storage tanks surrounded by excellent natural insulation, allowing for efficient heat storage with very little heat loss. be.

そしてかかる温水は適時、一例として冬期にこ
れを汲み上げ、積雪地での屋根、道路等の融雪用
に、更に時には該温水をヒートポンプ等にて昇温
し、給湯用あるいは暖房用に利用することが行わ
れている。一方、上記融雪により熱交換された冷
水はこれを別の帯水槽に還元して貯蔵し、夏期の
冷房用の使用に備えることも可能である。
The hot water can then be pumped up in a timely manner, for example in winter, to melt snow from roofs and roads in snowy areas, and sometimes heated by a heat pump or the like and used for hot water supply or space heating. It is being done. On the other hand, it is also possible to return the cold water heat-exchanged by the snow melting to another aquifer tank and store it in preparation for use in summer cooling.

しかし、かかる熱エネルギーの貯蔵に好適な上
記帯水槽の存在は地域的に著しく限られているの
が普通であり、更に上記の如き温熱エネルギー又
は冷熱エネルギーの需要地の近くのどこにでもそ
の立地を求めることは著しく困難となるのが実情
である。
However, the existence of the above-mentioned aquifers suitable for storing such thermal energy is usually extremely limited regionally, and furthermore, the presence of such aquifers suitable for storing such thermal energy is not limited to anywhere near the above-mentioned hot energy or cold energy demand areas. The reality is that it is extremely difficult to ask for it.

ここに発明者等は、かかる地中への熱エネルギ
ーの貯蔵、および利用に関して、特に上記立地上
の制約を解消させるべく鋭意検討を重ねた結果本
発明を完成したのである。
The inventors have completed the present invention as a result of intensive studies with a view to resolving the above-mentioned location constraints, especially regarding the storage and utilization of thermal energy underground.

即ち本発明は、地下水の流れのある地中の適地
に、実質的に鉛直方向に設置された遮水壁の下端
部を不浸透層に直接接触してなる遮水壁にて、堰
き上められて形成された上部よりオーバフローす
る型の地下貯水部、あるいは実質的に鉛直方向に
設置された遮水壁の下端部に該不浸透層と直接接
触しないで流水可能な間〓を設けてなる遮水壁に
て堰き止められて形成された型の地下貯水部を形
成し、該貯水部に地下水の温度より高い温度の水
は上層に、低い温度の水は下層になるように貯水
させて温度成層を形成させるために、前記貯水部
の低温度の下層水部、および高温度の上層水部
に、それぞれの水層に到達するように地上部より
鉛直方向深部、および浅部に導水パイプを設ける
と共に、該パイプを通して揚水、および注水可能
なように密閉循環路を形成した揚水、および注水
装置を設置して、熱エネルギーの貯蔵および取り
出しを行うようにしたことを特徴とする熱エネル
ギーの貯蔵および利用方法である。
That is, the present invention provides a method for damming up an impermeable wall by directly contacting an impervious layer with the lower end of an impermeable wall installed in a substantially vertical direction in a suitable underground location where groundwater flows. an underground water storage part that overflows from the upper part formed by the above-mentioned structure, or a gap that allows water to flow without directly contacting the impermeable layer at the lower end of an impermeable wall installed substantially vertically. An underground water storage part is formed by being dammed with an impermeable wall, and water with a temperature higher than that of groundwater is stored in the upper layer, and water with a lower temperature is stored in the lower layer. In order to form temperature stratification, water guide pipes are installed vertically deeper and shallower than above ground to reach the low temperature lower water part and the high temperature upper water part of the water storage part, respectively, so as to reach the respective water layers. and a water pumping and water injection device forming a closed circulation path so that water can be pumped and injected through the pipe to store and extract thermal energy. storage and utilization methods.

なお、遮水壁によつて地下水をせき止めるが、
目的に応じ、温水のみを使用する場合は、遮水壁
下部と岩盤との間に、冷水のみを使用する場合に
は、帯水層上で、遮水壁の上部に、温、冷水を使
用する場合には、遮水壁の中間部に、地下水の流
路を保持することが好ましい。
Although underground water is dammed up by impermeable walls,
Depending on the purpose, if only hot water is used, use hot or cold water between the lower part of the impermeable wall and the bedrock, or above the aquifer and above the impermeable wall if only cold water is used. In this case, it is preferable to maintain a flow path for groundwater in the middle part of the impermeable wall.

以下図面を参照しつつこの発明を詳細に説明す
る。第1図は本発明における地中貯水部(以下、
地下ダムとも云う)の概略的な断面図であり、1
は地表、1′はこの地表上に構築された市街地建
物等、2は地下岩盤、3は上述の地下帯水層、4
は地下水流である。
The present invention will be described in detail below with reference to the drawings. Figure 1 shows the underground water storage section (hereinafter referred to as
This is a schematic cross-sectional view of a subterranean dam (also called an underground dam).
is the ground surface, 1' is the urban building etc. built on this ground surface, 2 is the underground bedrock, 3 is the above-mentioned underground aquifer, 4
is a groundwater flow.

そして5は第1図Bの例では岩盤(不浸透層)
2上に接して構築された遮水壁であり、前記地下
水流4に対して市街地1′の下流に位置させかつ
上記地下帯水層3の厚みに略匹敵する高さに設け
られている。この遮水壁5によつて上記地下水流
4はせきとめられ図の如く市街地1′下部に地下
ダム6が形成され、該地下ダム6の水は注入する
水の温度、注入する位置を選ぶことによりその下
層6aに比較的低温の水、及び上層6bにこれよ
り温度の高い水がそれぞれ所謂温度成層をなして
貯水される。
And 5 is the bedrock (impermeable layer) in the example of Figure 1 B.
It is a water-shielding wall built in contact with the underground aquifer 2, and is located downstream of the urban area 1' with respect to the underground water flow 4, and is provided at a height approximately equal to the thickness of the underground aquifer 3. The above-mentioned underground water flow 4 is blocked by this impermeable wall 5, and an underground dam 6 is formed in the lower part of the city area 1' as shown in the figure. Water at a relatively low temperature is stored in the lower layer 6a, and water at a higher temperature is stored in the upper layer 6b, forming so-called temperature stratification.

第1図Cの例では、上記遮水壁5はその基部を
岩盤2に接触することなく設けられて居り、した
がつてこの場合は上記地下水は地下ダム底部から
常時流れ去る。
In the example shown in FIG. 1C, the impermeable wall 5 is provided without its base touching the bedrock 2, and therefore, in this case, the groundwater always flows away from the bottom of the underground dam.

かかる地下ダムの構築については今日その技術
が略確立されて居り、具体的には該地下ダム設置
位置に地表から垂直または斜方向に多数の注入用
ボーリング孔を穿ち、該ボーリング孔を介して孔
底よりセメントベントナイト液等を注入して、更
に上記岩盤の透水係数を低く抑え、更に又低粘度
の水ガラス液等の注入により遮水壁5の構築を行
う。上記遮水壁5の設置により、第1図B及びC
のいづれの場合も地下水が満水時にオーバーフロ
ーするか又は遮水壁下に伏流するので、該地下水
流を大きく変化させることはなく地下ダム下流の
地下水位の変化に起因する地盤沈下等の発生の憂
いは殆んど生じない。
The technology for constructing such underground dams is almost established today, and specifically, a large number of injection boreholes are drilled perpendicularly or diagonally from the ground surface at the location where the underground dam is installed, and the holes are drilled through the boreholes. A cement bentonite liquid or the like is injected from the bottom to lower the permeability coefficient of the rock, and a water-shielding wall 5 is constructed by injecting a low-viscosity water glass liquid or the like. By installing the above-mentioned water-shielding wall 5,
In either case, the groundwater overflows when the water is full or flows underground under the impermeable wall, so the groundwater flow does not change significantly and there is a concern that ground subsidence may occur due to changes in the groundwater level downstream of the subsurface dam. almost never occurs.

そして貯水部は概ね砂れき層をなしていること
から貯められた水の温度差による対流は起りにく
く上述の温度成層が容易に形成されるためこの発
明の目的とする後記複数のエネギーの同時保存に
著しく適するものとなる。
Since the water storage section is generally formed of a gravel layer, convection due to temperature differences in the stored water is difficult to occur, and the above-mentioned temperature stratification is easily formed. It becomes eminently suitable.

次に地表から図の如く、地下ダムの上記上層、
及び下層に達する井戸(パイプ)10を設置し、
更にこれらの井戸(パイプ)10を揚水及び注水
装置11に接続しておく。この際第1図Bの例で
は、上層が地下水のオーバーフローによつて流出
するので、低温水の貯蔵に適し、同Cの例では底
部で地下水が常時流出するので高温水の貯蔵に適
している。但しいづれの場合も貯蔵された水の出
し入れは、それぞれの層に直接到達させた井戸
(パイプ)を通じて別個に行うことが必要で、相
互の成層を乱すような誤まつた地下水の出入は避
けなければならない。
Next, from the ground surface, as shown in the figure, the above-mentioned upper layer of the underground dam,
and install a well (pipe) 10 that reaches the lower layer,
Furthermore, these wells (pipes) 10 are connected to a water pumping and water injection device 11. In this case, the example shown in Figure 1B is suitable for storing low-temperature water because the upper layer flows out due to overflow of groundwater, while the example in Figure 1C is suitable for storing high-temperature water because groundwater constantly flows out at the bottom. . However, in both cases, it is necessary to take in and out the stored water separately through wells (pipes) that reach each layer directly, and it is necessary to avoid mistaken inflow and outflow of groundwater that may disturb the mutual stratification. Must be.

そして、これら揚水及び注水装置11は、全て
密閉循環系にて運転されるよう常用の手段を施し
ておく。
All of these water pumping and water injection devices 11 are provided with conventional means to operate in a closed circulation system.

次に以上のように構築された地下ダムに熱エネ
ルギーを貯蔵し利用する方法の一例を、積雪地に
おける冬期融雪、及び夏期冷房に利用する場合に
ついて説明する。
Next, an example of a method of storing and utilizing thermal energy in the underground dam constructed as described above will be described in the case where it is used for snow melting in the winter in snowy areas and for cooling in the summer.

第2図において1′aは地上の建物、10a,
10bは地下ダム6の下層及び上層に到達するよ
うに設置された井戸(パイプ)、12は前記建物
1′aの屋根に配置された融雪用パイプである。
In Figure 2, 1'a is a building on the ground, 10a,
10b is a well (pipe) installed to reach the lower and upper layers of the underground dam 6, and 12 is a snow melting pipe placed on the roof of the building 1'a.

今冬期積雪時図示しないポンプにより井戸(パ
イプ)10bを介して地下ダム6の上層から比較
的温度の高い水を汲み上げ融雪用フイン付パイプ
12に通し屋根上の融雪を行い、そしてここで熱
交換されて冷却された冷水は井戸(パイプ)10
aを介して図示しない注入ポンプにより地下ダム
6の下層に還元される。
When it snows this winter, a pump (not shown) pumps up relatively high temperature water from the upper layer of the underground dam 6 through the well (pipe) 10b, passes it through the snow melting pipe 12 with fins, melts the snow on the roof, and exchanges heat here. The cooled water is fed to a well (pipe) 10.
It is returned to the lower layer of the underground dam 6 via a not shown injection pump.

次に夏期は逆に、井戸(パイプ)10aを介し
て下層の冷水を汲み上げ、屋内に設置された空調
器13のコイル13aにて熱交換して該屋内を冷
房し、温度の上つた水を井戸(パイプ)10bを
介して地下ダム6の上層に戻すものである。
Next, in the summer, on the contrary, the cold water from the lower layer is pumped up through the well (pipe) 10a, heat is exchanged with the coil 13a of the air conditioner 13 installed indoors, and the room is cooled, and the hot water is pumped up. It returns to the upper layer of the underground dam 6 via a well (pipe) 10b.

上述の冬期地下ダム6の下層に戻された冷水、
及び夏期の同上層に戻された温水は、該地下ダム
6が対流を起しにくいこと及び天然の断熱性雰囲
気にあることから上記熱エネルギーが長期間適切
に貯蔵され、これら融雪及び冷房に充分応じ得る
ものとなる。
Cold water returned to the lower layer of the winter underground dam 6 mentioned above,
In addition, the hot water returned to the upper layer in the summer is not likely to cause convection and is in a natural insulating atmosphere, so the thermal energy is appropriately stored for a long period of time, and is sufficient for snow melting and cooling. It will be possible to comply.

かかる設備は、その使用目的、特に地域的な配
慮から上記冬期あるいは夏期のみの使用に適合す
るよう上記井戸(パイプ)、配管及び諸設備等を
一部省略しても良いが、この場合は地下ダム6に
還元する水に別途の熱交換設備を設けることが必
要である。
Such equipment may be partially omitted from the wells (pipes), piping, and various equipment, etc., so that it is suitable for use only in the winter or summer season, depending on the purpose of use, especially regional considerations. It is necessary to provide separate heat exchange equipment for the water returning to the dam 6.

又かかる地下水の急激な汲み上げは地盤沈下等
の不測の欠陥を招くことがあり、予めこれらを予
測した汲上げ量あるいは還元注入量等を決めて行
うことが望まれる。
In addition, such rapid pumping of groundwater may lead to unexpected defects such as ground subsidence, and it is desirable to determine the amount of pumping or reinjection in advance to anticipate these problems.

そして上記汲上げ及び注入に際しての熱損失を
少なくするよう、エネルギー利用場所にできるだ
け近い地点に上記設備を設けることが得策であ
り、又循環系を密閉方式とすることにより、使用
目的に種々応じ得ることになるばかりでなく、該
取り出し、あるいは注入井戸(パイプ)の目詰り
や水質変化等が予防でき、このため、直接に水の
涵養が可能となり、特に好ましい。
In order to reduce the heat loss during pumping and injection, it is a good idea to install the above equipment as close as possible to the energy usage site, and by making the circulation system a closed system, it can be adapted to various purposes. Not only this, but also the clogging of the extraction or injection well (pipe), changes in water quality, etc. can be prevented, and therefore water can be recharged directly, which is particularly preferable.

上記第2図の熱エネルギーの貯蔵、及び利用方
式が実際に運転されると、冬期は上層水の汲上げ
及び下層への注入、夏期はこの逆となり、その境
界、即ち上記の温度成層は長期的な構成としては
大きく変動するが全体の水量のバランスは保たれ
る。
When the thermal energy storage and utilization method shown in Figure 2 above is actually operated, the upper layer water will be pumped up and injected into the lower layer in the winter, and the reverse will occur in the summer, and the boundary between them, that is, the temperature stratification described above, will be maintained for a long time. Although the overall water composition fluctuates greatly, the overall water volume remains balanced.

特に好ましいのは、かかる一方式を地域全体と
して一括して取り入れ、上述の地下ダムを大容量
化することであるが、この場合、集中的な取水、
還元を行うことにより中央集中型設備を設置する
こともできるし、一つの大規模地下ダムに対し、
地区毎に取水、注水を分散して行ない、これらに
よつて該地域中に個別に貯蔵エネルギーを分散使
用することもできる。
What is particularly preferable is to introduce such a system all at once for the entire region and increase the capacity of the above-mentioned subsurface dams, but in this case, intensive water intake,
By performing reduction, it is also possible to install centralized equipment, and for one large-scale underground dam,
By distributing water intake and water injection to each area, it is also possible to use the stored energy in a distributed manner within each area.

上記貯蔵および利用方法の例においては、冬期
融雪、夏期冷房と云う単一目的であり、これら熱
収支には一定のバランスの取れることを前提とし
ているが、一般的には積雪地での融雪エネルギー
がかなり大きく占めるのが普通である。
In the above example of storage and usage methods, the single purpose is snow melting in the winter and cooling in the summer, and it is assumed that a certain balance can be achieved in the heat balance, but in general, snow melting energy in snowy areas is used. Usually, it occupies a large proportion.

かかるエネルギーバランスの見地から、地域全
体でのエネルギー利用を総合的に判断し設備化す
る必要がある。かかる目的で上記エネルギーバラ
ンスを補うための一例を第3図に示す。
From the perspective of such energy balance, it is necessary to comprehensively judge energy usage in the entire region and install equipment. An example of supplementing the energy balance for this purpose is shown in FIG.

同図において、22は米などの農産物貯蔵用の
冷温倉庫、23はえのき茸などの比較的低温栽培
を目的とする栽培工事、24はごみ焼却場で、こ
れらはいづれも地下ダム6の下層から冷水を取水
して熱交換し、温水を同上層に還元し得るもの
で、これらを上記設備に組入れ上記熱エネルギー
貯蔵および利用のエネルギー収支をバランスさせ
得るものである。
In the figure, 22 is a cold warehouse for storing agricultural products such as rice, 23 is cultivation work for the purpose of relatively low-temperature cultivation of enoki mushrooms, etc., and 24 is a garbage incinerator, all of which are connected to the lower level of underground dam 6. It is capable of taking cold water and exchanging heat, and returning hot water to the upper layer, and by incorporating these into the above-mentioned equipment, it is possible to balance the energy balance of the above-mentioned thermal energy storage and utilization.

尚図において24′は焼却工事煙突、25は各
熱交換器、26は集中取水管、27は各注水管で
ある。
In the figure, 24' is an incineration work chimney, 25 is each heat exchanger, 26 is a central water intake pipe, and 27 is each water injection pipe.

次に都市ごみ焼却場においては、ごみ焼却発生
熱によつて蒸気を発生させこれをタービン発電に
供する場合があり、該蒸気タービンの復水器冷却
水として上記冷水を用いることができる。その一
例を第4図に示す。
Next, in municipal waste incineration plants, steam is sometimes generated from the heat generated by waste incineration and used for turbine power generation, and the above-mentioned cold water can be used as condenser cooling water for the steam turbine. An example is shown in FIG.

同図において28は焼却ボイラ、29は蒸気タ
ービン、30は発電機、31は復水器である。具
体的にはダム6の下層水を該復水器31の冷却用
に使用し温水を上層に還元し得るのである。
In the figure, 28 is an incineration boiler, 29 is a steam turbine, 30 is a generator, and 31 is a condenser. Specifically, the lower layer water of the dam 6 can be used for cooling the condenser 31, and the hot water can be returned to the upper layer.

ここで蒸気の遮水壁5として不透水性岩盤2に
直接接しないようにした第1図Cの例を採用すれ
ば、地下ダム6の下層水は常時流れ去り上層水は
比較的静かに貯蔵されることになるため、特に比
較的高温水の長期貯蔵に適するものとなる。
If we adopt the example shown in Figure 1C in which the steam impermeable wall 5 does not come into direct contact with the impervious bedrock 2, the water in the lower layer of the underground dam 6 will constantly flow away and the water in the upper layer will be stored relatively quietly. Therefore, it is particularly suitable for long-term storage of relatively high-temperature water.

これを上記第2図の例示設備に応用し、しかも
冬期における融雪のための屋根上のフイン付循環
パイプに冷水を循環させ、熱エネルギーの豊富な
夏期の太陽熱にて温水を作りこれを冬期まで貯蔵
する設備を作り得る。
Applying this to the example equipment shown in Figure 2 above, cold water is circulated through a finned circulation pipe on the roof for snow melting in the winter, and hot water is created using solar heat in the summer, when heat energy is abundant, and this water is used until the winter. You can create storage facilities.

特に融雪量の多い地域にあつては、かかる温水
貯蔵量を増やし上記屋根上の融雪の外、道路上等
の融雪に備え得ることにもなり非常に有効であ
る。
Particularly in areas where there is a large amount of snow melting, it is very effective to increase the amount of hot water stored and prepare for snow melting not only on roofs but also on roads.

本発明は以上詳述したように、地中の適地に遮
水壁を設けて地下ダムを積極的に形成させ、地中
が本来有する高断熱性を利用して冷熱及び温熱エ
ネルギーを同時に効率的に貯蔵しこれを適時に利
用する方法としたものであるから、特に前述した
立地上の制約が著しく改善される優れた効果を奏
する。
As described in detail above, the present invention actively forms a subterranean dam by installing an impermeable wall in a suitable location underground, and utilizes the high thermal insulation properties inherent in the underground to simultaneously efficiently generate cold and thermal energy. Since this method is a method for storing and using the stored waste in a timely manner, it has an excellent effect in that the above-mentioned location constraints are significantly improved.

そしてかかるこの発明の本来の効果に加えて、 () 例えば上記融雪等のための地下水汲み上げ
による地盤沈下等の重大な問題が著しく軽減さ
れる、 () 該融雪等のための温水作成の燃料を使用す
るものに比し著しく経済性が高い、 () 本来、水源を隣接地に求めにくい市街地域
にあつても上記地下ダムの利用によりこれが可
能となる、 () 本来地下水のない場所に遮水壁を設け、
こゝに冷水又は温水を注入貯蔵するなど、全く
人工的な地下貯水層を形成することも可能とな
る、 () 構造が著しく単純で経済的である、 () 設置地点に制約が著しく少なくなる、 () 計画蓄熱量への対応が容易である、 等の効果を有し、上記融雪用、暖房用等にとどま
らずその利用範囲が非常に広く、結局不連続的な
エネルギー源であるローカルエネルギーの利用促
進が可能となり、特に地域経済に寄与し得る工業
的効果はまことに大きい。
In addition to the original effects of the present invention, () Serious problems such as ground subsidence caused by pumping up groundwater for snow melting, etc. are significantly reduced, () Fuel for producing hot water for snow melting, etc. It is extremely economical compared to other types of underground dams, () Even in urban areas where it would be difficult to find a water source in adjacent areas, the use of the above-mentioned underground dam makes it possible. erect a wall,
It is also possible to form a completely artificial underground water reservoir by injecting and storing cold water or hot water. () The structure is extremely simple and economical. () There are significantly fewer restrictions on the installation location. , () It is easy to cope with the planned amount of heat storage, etc., and the scope of its use is very wide, not only for snow melting and heating, etc., and after all, local energy is a discontinuous energy source. The industrial effects that can contribute to the local economy, in particular, are truly significant.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明方法を説明するための地下ダム
断面図で同Aは縦断面図、同Bは横断面図、同C
は他の実施例の横断面図、第2図は同方法を融雪
及び暖房に利用した一例の概略図、第3図は更に
同方法を他の利用分野に拡大した例の概略図、第
4図は特にごみ焼却時の発生熱によるタービン発
電冷却水の熱エネルギー還元への利用例を示した
概略図である。 1……地表、1′……市街地建物、2……地下
岩盤(不浸透層)、3……地下帯水層、4……地
下水流、5……遮水壁、6……地下ダム(貯水
部)、6a,6b……上層、下層(温度成層)、1
0a,10b……井戸(パイプ)、11……揚水、
注水装置、12……融雪用フイン付パイプ、13
……空調器、25……熱交換器、26,27……
集中配管、29……蒸気タービン、30……発電
機、31……復水器。
Figure 1 is a cross-sectional view of an underground dam for explaining the method of the present invention, where A is a vertical cross-sectional view, B is a cross-sectional view, and C is a cross-sectional view.
is a cross-sectional view of another embodiment, FIG. 2 is a schematic diagram of an example in which the same method is used for snow melting and heating, FIG. 3 is a schematic diagram of an example in which the same method is further expanded to other fields of application, and FIG. The figure is a schematic diagram showing an example of using the heat generated during garbage incineration to return thermal energy to turbine power generation cooling water. 1...Ground surface, 1'...Urban building, 2...Underground bedrock (impermeable layer), 3...Underground aquifer, 4...Groundwater flow, 5...Waterproof wall, 6...Underground dam ( water storage part), 6a, 6b...upper layer, lower layer (temperature stratification), 1
0a, 10b...well (pipe), 11...pumped water,
Water injection device, 12... pipe with fins for snow melting, 13
...Air conditioner, 25...Heat exchanger, 26,27...
Central piping, 29...steam turbine, 30...generator, 31...condenser.

Claims (1)

【特許請求の範囲】 1 地下水の流れのある地中の適地に、実質的に
鉛直方向に設置された遮水壁の下端部を不浸透層
に直接接触してなる遮水壁にて、堰き上められて
形成された上部よりオーバフローする型の地下貯
水部、あるいは実質的に鉛直方向に設置された遮
水壁の下端部に該不浸透層と直接接触しないで流
水可能な間〓を設けてなる遮水壁にて堰き止めら
れて形成された型の地下貯水部を形成し、該貯水
部に地下水の温度より高い温度の水は上層に、低
い温度の水は下層になるように貯水させて温度成
層を形成させるために、前記貯水部の低温度の下
層水部、および高温度の上層水部に、それぞれの
水層に到達するように地上部より鉛直方向深部、
および浅部に導水パイプを設けると共に、該パイ
プを通して揚水、および注水可能なように密閉循
環路を形成した揚水、および注水装置を設置し
て、熱エネルギーの貯蔵および取り出しを行うよ
うにしたことを特徴とする熱エネルギーの貯蔵お
よび利用方法。 2 前記1項における地下貯水部が、上部よりオ
ーバフローする型の貯水部で、該貯水部下層に通
常の地下水より低温の水を貯蔵することを特徴と
する低温熱エネルギーの貯蔵および利用方法。 3 前記1項における地下貯水部が、遮水壁の下
端部が不浸透層と直接接触しないで流水可能な間
〓を設けてなる遮水壁にて形成された型の貯水部
で、該貯水部の上層に通常の地下水より高温の水
を貯蔵することを特徴とする高温熱エネルギーの
貯蔵および利用方法。
[Scope of Claims] 1. A dam constructed by installing an impermeable wall in a suitable underground location where groundwater flows, with the lower end of the impermeable wall installed in a substantially vertical direction in direct contact with an impermeable layer. An underground water storage area that overflows from the upper part that is raised, or a gap that allows water to flow without directly contacting the impermeable layer is provided at the bottom end of an impermeable wall installed substantially vertically. An underground water storage area is formed by being dammed with an impermeable wall, and water with a temperature higher than that of the groundwater is stored in the upper layer, and water with a lower temperature is stored in the lower layer. In order to form temperature stratification, the lower water part of the water storage section has a lower temperature, and the upper water part of a higher temperature water part has a vertically deeper part than the ground part, so as to reach the respective water layers.
In addition to installing a water guide pipe in a shallow area, a pumping and water injection device was installed that formed a closed circulation path so that water could be pumped and injected through the pipe, and thermal energy was stored and extracted. Features methods for storing and utilizing thermal energy. 2. A method for storing and utilizing low-temperature thermal energy, characterized in that the underground water storage section according to item 1 above is of a type that overflows from the upper part, and stores water at a lower temperature than normal ground water in the lower layer of the storage section. 3. The underground water storage section in paragraph 1 above is a type of water storage section formed by an impermeable wall with a gap in which the lower end of the impermeable wall allows water to flow without being in direct contact with the impermeable layer, and the water storage section A method for storing and utilizing high-temperature thermal energy, which is characterized by storing water at a higher temperature than normal groundwater in the upper layer of the ground.
JP58105748A 1983-06-15 1983-06-15 Geothermal energy storage system Granted JPS59231395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58105748A JPS59231395A (en) 1983-06-15 1983-06-15 Geothermal energy storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58105748A JPS59231395A (en) 1983-06-15 1983-06-15 Geothermal energy storage system

Publications (2)

Publication Number Publication Date
JPS59231395A JPS59231395A (en) 1984-12-26
JPH0417353B2 true JPH0417353B2 (en) 1992-03-25

Family

ID=14415869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58105748A Granted JPS59231395A (en) 1983-06-15 1983-06-15 Geothermal energy storage system

Country Status (1)

Country Link
JP (1) JPS59231395A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179693A (en) * 2010-02-26 2011-09-15 Hazama Corp Geothermal utilization system

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076422A (en) * 2002-08-20 2004-03-11 Haruhiko Morinaga Warm water dam
SE536722C2 (en) 2012-11-01 2014-06-17 Skanska Sverige Ab energy Storage
SE536723C2 (en) 2012-11-01 2014-06-24 Skanska Sverige Ab Thermal energy storage including an expansion space
SE537267C2 (en) 2012-11-01 2015-03-17 Skanska Sverige Ab Method of operating a device for storing thermal energy

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298345A (en) * 1976-02-16 1977-08-18 Ohbayashigumi Ltd Heat storage water tank
JPS56124859A (en) * 1979-12-28 1981-09-30 Svenska Vaeg Ab Heat storage device
JPS59145487A (en) * 1983-02-05 1984-08-20 Tsutomu Arimizu Apparatus for accumulating heat in aquifer and for preventing ground from subsiding and method for controlling subterranean water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298345A (en) * 1976-02-16 1977-08-18 Ohbayashigumi Ltd Heat storage water tank
JPS56124859A (en) * 1979-12-28 1981-09-30 Svenska Vaeg Ab Heat storage device
JPS59145487A (en) * 1983-02-05 1984-08-20 Tsutomu Arimizu Apparatus for accumulating heat in aquifer and for preventing ground from subsiding and method for controlling subterranean water

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011179693A (en) * 2010-02-26 2011-09-15 Hazama Corp Geothermal utilization system

Also Published As

Publication number Publication date
JPS59231395A (en) 1984-12-26

Similar Documents

Publication Publication Date Title
Terziotti et al. Modeling seasonal solar thermal energy storage in a large urban residential building using TRNSYS 16
FI64856B (en) SAETT ATT I EN MARKKROPP LAGRA TERMISK ENERGI
US4054246A (en) Building structure for solar energy recovery and utilization
US4173304A (en) Building structure with heat storage and recovery
KR20100049052A (en) Geothermal energy system and method of operation
KR20100049051A (en) Geothermal energy system and method of operation
KR20110002380A (en) Hybrid form subterranean-heat of heat pump system
KR20190030844A (en) Subterranean seasonal thermal storage system
KR20110002376A (en) Subterranean heat of heat pump system use heat exchanger
Wong et al. Recent inter-seasonal underground thermal energy storage applications in Canada
CN205561615U (en) Ground depth of origin well energy storage exchange system land used buries heat exchange tube
KR101124358B1 (en) ubterranean heat of Heat pump system use Air heat pump and Well pump
KR200417382Y1 (en) Ground heat exchange system for high quality heat pump
JP3970505B2 (en) Heat pump system using groundwater
JP2002054857A (en) Heat pump system utilizing underground water
JP4609946B2 (en) Underground heat storage system and reserve water source for seasonal energy use
JPH0417353B2 (en)
Assad et al. Heating and cooling by geothermal energy
KR100407673B1 (en) An air conditioning system using the heat of the earth and method of constructing a large heat-exchanging pipe
KR100771934B1 (en) Heat exchanger used in underground in a geothmal heat pump sysyem
CN105651093A (en) Underground heat exchange tube for energy exchange system of ground-source deep well
JP6948711B2 (en) Exhaust hot water heat regeneration device and exhaust hot water heat regeneration system using it
JP2014040989A (en) Underground heat utilization system
KR101124357B1 (en) Subterranean heat of Heat pump system use Heat exchanger and Well pump
EP2557385B1 (en) Thermal Energy Stores and Heat Exchange Assemblies Therefor