JP3970505B2 - Heat pump system using groundwater - Google Patents

Heat pump system using groundwater Download PDF

Info

Publication number
JP3970505B2
JP3970505B2 JP2000242130A JP2000242130A JP3970505B2 JP 3970505 B2 JP3970505 B2 JP 3970505B2 JP 2000242130 A JP2000242130 A JP 2000242130A JP 2000242130 A JP2000242130 A JP 2000242130A JP 3970505 B2 JP3970505 B2 JP 3970505B2
Authority
JP
Japan
Prior art keywords
groundwater
well
pump system
wells
heat pump
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2000242130A
Other languages
Japanese (ja)
Other versions
JP2002054856A (en
Inventor
美佐雄 岡本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui House Ltd
Original Assignee
Sekisui House Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui House Ltd filed Critical Sekisui House Ltd
Priority to JP2000242130A priority Critical patent/JP3970505B2/en
Publication of JP2002054856A publication Critical patent/JP2002054856A/en
Application granted granted Critical
Publication of JP3970505B2 publication Critical patent/JP3970505B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、主に住宅に適した地下水を利用したヒートポンプシステムに関する。
【0002】
【従来の技術】
地球環境温暖化防止の観点からエネルギー消費に伴うCO2排出量の削減が急務であるが、民生部門のエネルギー消費は年々増加しており、住宅の新築から解体・廃棄に至る全エネルギーのうち、約80%は居住(使用)時に消費される。さらに、このうち約60%は冷暖房、給湯による消費が占め、そのほとんどが化石燃料で賄われていることから、その消費量の削減又は自然エネルギーへの代替が望まれている。
【0003】
住宅における自然エネルギーの利用手段として現在確立し普及しているのは、太陽エネルギーのみである。しかし、太陽エネルギーの利用は、天候に左右され易く、また住宅密集地では十分な日射の確保ができない等の不確実性がある。
【0004】
【発明が解決しようとする課題】
これに対し、自然エネルギーのひとつである地熱は、年間を通じてほぼその地域の年平均気温付近で安定した温度を保つことから、夏季は外気より低温、冬季は高温となる。このような地熱の利用は、ビルや公共施設等で試行的に実施されているが、その利用方法は、熱媒管敷設による熱回収が一般的で、大掛かりな工事が必要であり、しかもイニシャルコストが高いことから、住宅用としては不向きである。
【0005】
一方、地熱の汲み上げ媒体としての地下水は、全国的に広く分布しており、井戸を施工することで容易に取得することができる。このような地下水を利用すれば、地中に多数の熱媒管を敷設する熱回収法と比べて簡便でイニシャルコストも低く抑えることができる。地下水を利用した冷房は、ヒートポンプが出回る以前に井戸水ファンコイルクーラーとして普及しており、さく井及び冷房技術はある程度確立されている。また、最近では、井戸から汲み上げた地下水を融雪や温室の保温のために利用するといった試みもなされている。
【0006】
しかし、現在主流のボーリング式井戸では、一般の住宅に広く普及させるには施工コストがまだまだ高く、しかも地下水を大量に汲み上げると地盤沈下等の弊害が生じるといった問題がある。また、地下水を利用した暖房は、全く行われていない。従って、地下水を利用した住宅用の冷暖房・給湯システムは、未だ確立されていないのが現状である。
【0007】
そこで、この発明は、上記に鑑み、地盤沈下等の弊害を生じさせることがなく、しかも構造が簡単で安価な地下水を利用したヒートポンプシステムの提供を目的とする。
【0008】
【課題を解決するための手段】
上記の課題を解決するため、この発明の地下水を利用したヒートポンプシステムは、地盤に複数の井戸を設け、それら井戸のうち一部の井戸から汲み上げた地下帯水層の地下水を、冷媒との熱交換に利用した後、他の井戸に注入して地下帯水層へ還元するようにしたことを特徴とする。
【0009】
具体的に、各井戸は、深さ10m以内の浅井戸とされ、ストレーナー付きのケーシングを地上から直接打ち込む打込工法によって施工されている。前記ケーシングにおいては、ストレーナーの外周に複数の集水口を有すると共に、その外周には砂進入防止用金網が巻き付けられ、さらにストレーナーの先端に矢尻が取り付けられている。また、各井戸は、少なくとも8mの間隔をあけて設けられている。
【0010】
【発明の実施の形態】
以下、この発明の実施形態を図面に基づいて詳細に説明する。図1及び図2は、この発明の一実施形態に係る住宅に適用したヒートポンプシステムの全体回路を示している。図において、(1)は、冷媒を圧縮する圧縮機、(2)は、冷房サイクルと暖房サイクルとを切り換える四方弁、(3)は、室外熱交換器、(4)は、住宅の室内に配されたファンコイルクーラー等の室内熱交換器であり、これらが配管(5)によって接続されて冷媒回路(6)を構成している。なお、室内熱交換器(4)を除く圧縮機(1)、室外熱交換器(3)といった冷媒回路(6)の主要部分は、室外機として単一のパッケージに納められている。
【0011】
そして、室外熱交換器(3)には、地下水回路(10)が接続されている。この地下水回路(10)は、地盤(11)に設けた汲上井戸(12)及び還元井戸(13)の2つの井戸を、ポンプ(14)を備えた地下水用配管(15)で繋ぐことによって構成されている。
【0012】
一般に、井戸の施工には、ボーリング工法と打込工法がある。ボーリング工法は、口径の大きな深さ10mを越える深井戸の施工に用いられ、地盤を予めボーリングで掘削し、ストレーナー付きのケーシングを挿入後、隙間に砂利等の濾過材を充填して施工する。このボーリング工法では、ストレーナーを帯水層へ確実に設置でき、優れた濾過性能を有する深井戸施工が可能であり、この深井戸からは水質の良好な地下水を得ることができるが、施工コストが高いといった問題がある。一方、打込工法は、口径の小さな深さ10m以内の浅井戸の施工に用いられ、ストレーナ付きのケーシングを地上から打ち込むだけの簡易工法のため、施工コストは半減する。しかし、浅井戸からは近年良質の地下水が得難くなっており、水質が安定しないといった問題がある。家庭用井戸の場合、特に水質の安定が重視されるため、現在のところボーリング工法による深井戸が主流となっている。
【0013】
ところが、この発明のヒートポンプシステムでは、上記のように2つの井戸(12)(13)を必要とすることから、他の機器を含めたイニシャルコストを考慮すると、井戸施工費の削減が重要である。また、地下水の熱だけを利用することから、水道水程の水質基準をクリアする必要はなく、必要水量が得られれば十分利用可能である。従って、汲上井戸(12)及び還元井戸(13)は、打込工法によって施工した深さ10m以内の浅井戸とされている。
【0014】
ここで、打込工法による汲上井戸(12)及び還元井戸(13)の施工について説明すると、まず地盤(11)の表面層を簡単に掘削して、その掘削部分に図3に示すようなストレーナー(20)付のケーシング(21)を直接打ち込む。ストレーナ(20)は、外周に多数の集水口(22)(22)を有し、その外周には砂侵入防止用金網(24)が巻き付けられ、先端には矢尻(25)が取り付けられている。上記の打込時には、ストレーナー(20)が地盤(11)の帯水層(30)に到達するまで打ち込む。
【0015】
そして、打ち込みが完了すると、揚水量等を確認して、問題がなければ掘削部分を埋め戻す。これにより、汲上井戸(12)及び還元井戸(13)の施工が完了する。
【0016】
このような浅井戸(12)(13)の場合、注入水の温度影響は比較的短時間に広範囲まで及び、特に汲上側へは水位勾配も発生して水が流れ易くなるため、温度影響は大きくなる。浅井戸(12)(13)において熱影響を全く受けなくするには、井戸間隔を15m以上確保しなければならないが、一般の戸建住宅の敷地では、このような井戸間隔を確保することができない。かといって、4m程度以下の井戸間隔では、注入水の熱による冷暖房効率への影響が無視できなくなることは実験により判明している。従って、井戸(12)(13)の間隔を、一般の戸建住宅で確保可能であり、しかも冷暖房効率への影響を受けにくいように、少なくとも8m以上に設定している。
【0017】
地下水用配管(15)は、汲上井戸(12)内に挿入した揚水管(35)と、還元井戸(13)内に挿入した注入管(36)とを連結管(37)で接続した構造となっている。そして、連結管(37)には、前記のポンプ(14)、図示しない砂取器等の各種機器が設けられている。そして、この連結管(37)が前記の室外熱交換器(3)に接続されている。
【0018】
上記構成のヒートポンプシステムでは、冷房時には、図1に示すように、圧縮機(1)により圧縮された冷媒が、四方弁(2)を通って室外熱交換器(3)に導かれ、凝縮熱を発散させながら液化状態となる。他方、地下水回路(10)において、ポンプ(14)の駆動により汲上井戸(12)から汲み上げられた地下帯水層(30)の地下水が、室外熱交換器(3)に導かれる。そして、室外熱交換器(3)において、冷媒回路(6)側の液化状態の高温冷媒と地下水回路(10)側の低温地下水との間で熱交換が行われる。この熱交換後の冷媒は、膨張しながら室内熱交換器(4)に導かれてガス化状態となり、このときの気化熱によって室内を冷房し、再び四方弁(2)を通って圧縮機(1)に戻される。熱交換後の地下水は、還元井戸(13)に注入されて地下帯水層(30)に還元される。
【0019】
暖房時には、図2に示すように、冷媒回路(6)側の四方弁(2)が切り換わり、圧縮機(1)により圧縮された冷媒が、四方弁(2)を通って室内熱交換器(4)に導かれ、凝縮熱を発散させながら液化状態となり、このときの凝縮熱によって室内を暖房する。この暖房後に膨張してガス化状態となった冷媒は、室外熱交換器(3)において地下水回路(10)側の高温地下水との間で熱交換が行われる。熱交換後の冷媒は、四方弁(2)を通って圧縮機(1)に戻される。熱交換後の地下水は、冷房時と同様に、還元井戸(13)に注入されて地下帯水層(30)に還元される。
【0020】
このような地下水を利用したヒートポンプシステムの場合、電力消費量の約6倍の熱エネルギーを得ることができる。すなわち、成績係数(COP)は「6」となり、成績係数が「3」である外気を利用した空気熱源ヒートポンプシステムに比較して、熱交換効率の高い省エネルギー効果に優れたヒートポンプシステムとすることができる。また、帯水層(30)から汲み上げた地下水を冷媒の熱交換用熱源として利用した後、再び帯水層(30)望ましくは同じ帯水層(30)に戻すようにすることで、地下水の汲み上げによる地盤沈下等を防ぐことができる。
【0021】
なお、この発明は上記実施形態に限定されるものではなく、この発明の範囲内で上記実施形態に多くの修正及び変更を加え得ることは勿論である。例えば、室内熱交換器に代えて給湯用熱交換器として、ヒートポンプシステムを冷暖房用だけでなく住宅における給湯用に利用しても良い。また、汲上井戸及び還元井戸は、ともに単一の井戸とは限らず、複数の井戸によって構成しても良い。
【0022】
【発明の効果】
以上の説明から明らかなように、この発明では、地盤に複数の井戸を設けて、地下帯水層から汲み上げた地下水を再び地下帯水層へ還元しているので、地盤沈下等の弊害を生じさせることなく、年間を通じて安定した温度を保つ地下水を冷媒の熱交換用の熱源として利用した熱交換効率の高いヒートポンプシステムを提供することができる。
【0023】
また、これら井戸は、打込工法によって施工した浅井戸であることから、ボーリング工法によって深井戸を施工するときと比べて、簡単な施工で済ますことができ、しかも施工コストの大幅な削減を実現することができる。これによって、一般の住宅にも広く普及させることができるシステムとすることができる。また、井戸間隔を8m以上確保していることから、還元側の井戸へ地下水を還元しても、その地下水の熱影響が汲上側の井戸にまで及び難くなり、冷暖房、給湯効率の向上を図ることができる。
【図面の簡単な説明】
【図1】この発明の一実施形態に係るヒートポンプシステムの冷房時の全体回路を示す図である。
【図2】同じくその暖房時の全体回路を示す図である。
【図3】打込工法によって施工した井戸を示す図である。
【符号の説明】
(11) 地盤
(12)(13) 井戸
(20) ストレーナー
(21) ケーシング
(30) 地下帯水層
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a heat pump system using groundwater suitable mainly for a house.
[0002]
[Prior art]
From the perspective of preventing global warming, there is an urgent need to reduce CO2 emissions associated with energy consumption. However, the energy consumption in the consumer sector is increasing year by year, and out of all the energy from new housing construction to dismantling and disposal. 80% is consumed at the time of residence (use). Furthermore, about 60% of this is consumed by air conditioning and hot water supply, and most of it is covered by fossil fuels. Therefore, reduction of the consumption or replacement with natural energy is desired.
[0003]
Only solar energy is currently established and popularized as a means of using natural energy in houses. However, the use of solar energy is subject to uncertainties such as being easily affected by the weather and not being able to ensure sufficient solar radiation in densely populated areas.
[0004]
[Problems to be solved by the invention]
In contrast, geothermal heat, one of the natural energies, maintains a stable temperature near the average annual temperature in the region throughout the year, so it is cooler than the outside air in summer and hot in winter. Such geothermal heat is used on a trial basis in buildings, public facilities, etc., but heat is generally recovered by laying a heat-medium pipe, requiring extensive construction, and initial. Due to its high cost, it is not suitable for residential use.
[0005]
On the other hand, groundwater as a geothermal pumping medium is widely distributed nationwide and can be easily acquired by constructing wells. By using such groundwater, it is simpler and the initial cost can be kept lower than the heat recovery method in which a large number of heat transfer pipes are laid in the ground. Cooling using groundwater has become widespread as a well water fan coil cooler before the heat pump goes around, and wells and cooling technology have been established to some extent. Recently, an attempt has been made to use groundwater pumped from a well for melting snow and keeping a greenhouse warm.
[0006]
However, the current mainstream boring well has a problem that the construction cost is still high for widespread use in ordinary houses, and when groundwater is pumped in large quantities, it causes problems such as land subsidence. In addition, heating using groundwater is not performed at all. Therefore, the present condition is that the air-conditioning and hot-water supply system for houses using groundwater has not been established yet.
[0007]
Therefore, in view of the above, an object of the present invention is to provide a heat pump system using groundwater that does not cause adverse effects such as land subsidence and has a simple structure and is inexpensive.
[0008]
[Means for Solving the Problems]
In order to solve the above problems, the heat pump system using groundwater of the present invention has a plurality of wells in the ground, and the groundwater in the subsurface aquifer pumped from some of the wells is heated with the refrigerant. After being used for exchange, it is injected into another well and returned to the underground aquifer.
[0009]
Specifically, each well is a shallow well having a depth of 10 m or less, and is constructed by a driving method in which a casing with a strainer is directly driven from the ground. The casing has a plurality of water collection ports on the outer periphery of the strainer, a sand intrusion prevention wire mesh is wound around the outer periphery, and an arrowhead is attached to the tip of the strainer. Each well is provided with an interval of at least 8 m.
[0010]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 and 2 show an entire circuit of a heat pump system applied to a house according to an embodiment of the present invention. In the figure, (1) is a compressor that compresses refrigerant, (2) is a four-way valve that switches between a cooling cycle and a heating cycle, (3) is an outdoor heat exchanger, and (4) is in the interior of a house. It is an indoor heat exchanger such as a fan coil cooler arranged, and these are connected by a pipe (5) to constitute a refrigerant circuit (6). The main parts of the refrigerant circuit (6) such as the compressor (1) and the outdoor heat exchanger (3) excluding the indoor heat exchanger (4) are housed in a single package as an outdoor unit.
[0011]
A groundwater circuit (10) is connected to the outdoor heat exchanger (3). This groundwater circuit (10) is constructed by connecting two wells, a pumping well (12) and a reduction well (13), provided on the ground (11), with a groundwater pipe (15) equipped with a pump (14). Has been.
[0012]
Generally, there are a borehole method and a driving method for well construction. The boring method is used for the construction of deep wells with a large diameter exceeding 10 m, and after excavating the ground beforehand by boring and inserting a casing with a strainer, the gap is filled with a filter medium such as gravel. With this boring method, the strainer can be installed reliably in the aquifer and deep well construction with excellent filtration performance is possible, and groundwater with good water quality can be obtained from this deep well. There is a problem such as high. On the other hand, the driving method is used for the construction of shallow wells having a small diameter and a depth of 10 m or less, and the construction cost is halved because it is a simple method of simply driving a casing with a strainer from the ground. However, in recent years, it has been difficult to obtain good quality groundwater from shallow wells, and there is a problem that the water quality is not stable. In the case of domestic wells, since the importance of water quality is particularly important, deep wells made by the boring method are currently the mainstream.
[0013]
However, since the heat pump system of the present invention requires two wells (12) and (13) as described above, it is important to reduce the well construction cost in consideration of the initial cost including other equipment. . Moreover, since only the heat of groundwater is used, it is not necessary to clear the water quality standard of tap water, and it is sufficient if the required amount of water is obtained. Accordingly, the pumping well (12) and the reduction well (13) are shallow wells having a depth of 10 m or less constructed by the driving method.
[0014]
Here, the construction of the pumping well (12) and the reduction well (13) by the driving method will be described. First, the surface layer of the ground (11) is simply excavated, and a strainer as shown in FIG. (20) Directly drive the attached casing (21). The strainer (20) has a large number of water collection ports (22) and (22) on the outer periphery, a sand intrusion prevention wire mesh (24) is wound around the outer periphery, and an arrowhead (25) is attached to the tip. . At the time of the above driving, the strainer (20) is driven until it reaches the aquifer (30) of the ground (11).
[0015]
When the driving is completed, the amount of pumped water is confirmed, and if there is no problem, the excavated portion is backfilled. Thereby, the construction of the pumping well (12) and the reduction well (13) is completed.
[0016]
In the case of such shallow wells (12) and (13), the temperature effect of the injected water reaches a wide range in a relatively short time. growing. In order to be completely unaffected by heat in shallow wells (12) and (13), the well spacing must be at least 15m, but such a well spacing can be secured on the site of a general detached house. Can not. However, it has been experimentally found that the influence of the heat of the injected water on the cooling and heating efficiency cannot be ignored at well intervals of about 4 m or less. Therefore, the interval between the wells (12) and (13) is set to at least 8 m so that it can be secured in a general detached house and is not easily affected by the cooling and heating efficiency.
[0017]
The groundwater pipe (15) has a structure in which a pumping pipe (35) inserted into the pumping well (12) and an injection pipe (36) inserted into the reduction well (13) are connected by a connecting pipe (37). It has become. The connecting pipe (37) is provided with various devices such as the pump (14) and a sand remover (not shown). The connecting pipe (37) is connected to the outdoor heat exchanger (3).
[0018]
In the heat pump system configured as described above, during cooling, as shown in FIG. 1, the refrigerant compressed by the compressor (1) is led to the outdoor heat exchanger (3) through the four-way valve (2), and heat of condensation is obtained. It becomes a liquefied state while diverging. On the other hand, in the groundwater circuit (10), the groundwater in the underground aquifer (30) pumped from the pumping well (12) by driving the pump (14) is guided to the outdoor heat exchanger (3). In the outdoor heat exchanger (3), heat is exchanged between the liquefied high-temperature refrigerant on the refrigerant circuit (6) side and the low-temperature ground water on the groundwater circuit (10) side. The refrigerant after the heat exchange is led to the indoor heat exchanger (4) while being expanded to be in a gasified state, and the room is cooled by the heat of vaporization at this time, and again passes through the four-way valve (2) to the compressor ( Returned to 1). The groundwater after heat exchange is injected into the reduction well (13) and reduced to the underground aquifer (30).
[0019]
At the time of heating, as shown in FIG. 2, the four-way valve (2) on the refrigerant circuit (6) side is switched, and the refrigerant compressed by the compressor (1) passes through the four-way valve (2) to the indoor heat exchanger. It is led to (4), it becomes a liquefied state while dissipating the condensation heat, and the room is heated by the condensation heat at this time. The refrigerant that has expanded into a gasified state after the heating is exchanged with the high-temperature groundwater on the groundwater circuit (10) side in the outdoor heat exchanger (3). The refrigerant after the heat exchange is returned to the compressor (1) through the four-way valve (2). The groundwater after heat exchange is injected into the reduction well (13) and reduced to the underground aquifer (30), as in the case of cooling.
[0020]
In the case of such a heat pump system using groundwater, it is possible to obtain thermal energy about six times the power consumption. That is, the coefficient of performance (COP) is “6”, and a heat pump system with high heat exchange efficiency and excellent energy saving effect can be obtained as compared with an air heat source heat pump system using outside air with a coefficient of performance of “3”. it can. In addition, groundwater pumped from the aquifer (30) is used as a heat source for heat exchange of the refrigerant, and then returned to the aquifer (30), preferably the same aquifer (30). Land subsidence due to pumping can be prevented.
[0021]
In addition, this invention is not limited to the said embodiment, Of course, many corrections and changes can be added to the said embodiment within the scope of this invention. For example, as a heat exchanger for hot water supply instead of an indoor heat exchanger, a heat pump system may be used not only for air conditioning but also for hot water supply in a house. In addition, the pumping well and the reduction well are not limited to a single well, and may be constituted by a plurality of wells.
[0022]
【The invention's effect】
As is clear from the above description, in the present invention, a plurality of wells are provided in the ground, and the groundwater pumped up from the underground aquifer is returned to the underground aquifer again, which causes problems such as ground subsidence. Therefore, it is possible to provide a heat pump system with high heat exchange efficiency using groundwater that maintains a stable temperature throughout the year as a heat source for heat exchange of the refrigerant.
[0023]
In addition, since these wells are shallow wells constructed by the driving method, they can be constructed more easily than when a deep well is constructed by the boring method, and the construction cost is greatly reduced. can do. Thereby, it can be set as the system which can be spread widely also in a common house. In addition, since the well interval is 8 m or more, even if groundwater is reduced to the well on the reduction side, the thermal effect of the groundwater hardly reaches the well on the upper side, thereby improving the efficiency of air conditioning and hot water supply. be able to.
[Brief description of the drawings]
FIG. 1 is a diagram showing an entire circuit during cooling of a heat pump system according to an embodiment of the present invention.
FIG. 2 is a diagram similarly showing the entire circuit during heating.
FIG. 3 is a view showing a well constructed by a driving method.
[Explanation of symbols]
(11) Ground
(12) (13) Well
(20) Strainer
(21) Casing
(30) Underground aquifer

Claims (2)

地盤に複数の井戸を設け、それら井戸のうち一部の井戸から汲み上げた地下帯水層の地下水を、冷媒との熱交換に利用した後、他の井戸に注入して地下帯水層へ還元するようにした地下水を利用したヒートポンプシステムであって、各井戸は、深さ10m以内の浅井戸とされ、各井戸は、ストレーナー付きのケーシングを地上から直接打ち込む打込工法によって施工されており、前記ケーシングにおいては、ストレーナーの外周に複数の集水口を有すると共に、その外周には砂進入防止用金網が巻き付けられ、さらにストレーナーの先端に矢尻が取り付けられていることを特徴とする地下水を利用したヒートポンプシステム。A number of wells are provided in the ground, and the groundwater from the groundwater aquifer pumped from some of the wells is used for heat exchange with the refrigerant and then injected into other wells to be returned to the groundwater aquifer. It is a heat pump system using groundwater that is made to be, each well is a shallow well within a depth of 10 m, each well is constructed by a driving method in which a casing with a strainer is directly driven from the ground, In the casing, there is a plurality of water collecting ports on the outer periphery of the strainer, and a sand net preventing wire mesh is wound around the outer periphery, and an arrowhead is attached to the tip of the strainer . Heat pump system. 各井戸は、少なくとも8mの間隔をあけて設けられている請求項1に記載の地下水を利用したヒートポンプシステム。The heat pump system using groundwater according to claim 1, wherein each well is provided with an interval of at least 8 m.
JP2000242130A 2000-08-10 2000-08-10 Heat pump system using groundwater Expired - Fee Related JP3970505B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000242130A JP3970505B2 (en) 2000-08-10 2000-08-10 Heat pump system using groundwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000242130A JP3970505B2 (en) 2000-08-10 2000-08-10 Heat pump system using groundwater

Publications (2)

Publication Number Publication Date
JP2002054856A JP2002054856A (en) 2002-02-20
JP3970505B2 true JP3970505B2 (en) 2007-09-05

Family

ID=18733193

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000242130A Expired - Fee Related JP3970505B2 (en) 2000-08-10 2000-08-10 Heat pump system using groundwater

Country Status (1)

Country Link
JP (1) JP3970505B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661635A (en) * 2012-05-29 2012-09-12 吉林大学 Arrangement method and pumping and recharging mode of pumping and recharging wells
CN102661642A (en) * 2012-05-29 2012-09-12 吉林大学 Bias-flow-state underground water source heat pump pumping and filling control method
CN102661636A (en) * 2012-05-29 2012-09-12 吉林大学 Intermittent well control method for pumping-injecting well groups by pumping and recharging in different wells
CN105890231A (en) * 2014-12-30 2016-08-24 王庆鹏 Ground-source heat pump system with combination of ground source pump and underground water source pump

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100530005B1 (en) * 2003-10-31 2005-11-22 코오롱건설주식회사 Heat pump system for underground water source using artificial water vein
JP4827191B2 (en) 2004-11-12 2011-11-30 株式会社前川製作所 Operation method of heat pump using CO2 as refrigerant
JP2006292313A (en) * 2005-04-13 2006-10-26 Nippon Steel Engineering Co Ltd Geothermal unit
JP4485465B2 (en) * 2005-12-27 2010-06-23 野本 哲嗣 Underground equipment in groundwater heat utilization facilities
JP5042716B2 (en) * 2007-06-13 2012-10-03 ゼネラルヒートポンプ工業株式会社 Heat pump system and geothermal well
JP5808632B2 (en) * 2011-09-30 2015-11-10 オルガノ株式会社 System and method for removing volatile substances in groundwater
CN103292518B (en) * 2013-04-27 2015-07-08 杨家华 Novel heat removal device for super cooling gas-water
KR101706280B1 (en) 2016-02-03 2017-02-15 동아대학교 산학협력단 Method for optimizing a well design in a land-deformation controlling system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102661635A (en) * 2012-05-29 2012-09-12 吉林大学 Arrangement method and pumping and recharging mode of pumping and recharging wells
CN102661642A (en) * 2012-05-29 2012-09-12 吉林大学 Bias-flow-state underground water source heat pump pumping and filling control method
CN102661636A (en) * 2012-05-29 2012-09-12 吉林大学 Intermittent well control method for pumping-injecting well groups by pumping and recharging in different wells
CN105890231A (en) * 2014-12-30 2016-08-24 王庆鹏 Ground-source heat pump system with combination of ground source pump and underground water source pump

Also Published As

Publication number Publication date
JP2002054856A (en) 2002-02-20

Similar Documents

Publication Publication Date Title
Omer Ground-source heat pumps systems and applications
CA2728280C (en) Thermal energy system and method of operation
JP4486663B2 (en) Highly efficient heat collection system for geothermal wells
JP3970505B2 (en) Heat pump system using groundwater
US20080128108A1 (en) Convective earrh coil
JP3375474B2 (en) Heat pump air conditioning system using underground thermal convection layer
KR101535384B1 (en) Heating system of heat pump using solar energy and underground heat storage
CN106120854A (en) A kind of underground pipe gallery
JP2002054857A (en) Heat pump system utilizing underground water
JP2005127612A (en) Underground heat utilizing system with underground water tank water heat source heat pump
Omer Direct expansion ground source heat pumps for heating and cooling
CN109869935B (en) Geothermal energy composite operation system
CN202304084U (en) Horizontal buried pipe type ground source heat pump water heating and air conditioning system
JP3438093B2 (en) Manufacturing method of building air-conditioning equipment
US20080006046A1 (en) Self contained water-to-water heat pump
JP2004537704A (en) Geothermal air conditioning system
KR101579458B1 (en) Hybrid cooling and warming system having complex heat source
KR20040045780A (en) Setting method and structure for geothermal exchanger
Assad et al. Heating and cooling by geothermal energy
CN2752324Y (en) Gathering pile for underground source
Mertoglu Geothermal district heating experience in Turkey
GB2463237A (en) Geothermal heating or cooling apparatus and method
O’Connell et al. Recent large scale ground-source heat pump installations in Ireland
CN1786615A (en) Underground energy resource collecting pile
JPH0417353B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20050624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070508

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070606

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees