JPS59231395A - Geothermal energy storage system - Google Patents

Geothermal energy storage system

Info

Publication number
JPS59231395A
JPS59231395A JP58105748A JP10574883A JPS59231395A JP S59231395 A JPS59231395 A JP S59231395A JP 58105748 A JP58105748 A JP 58105748A JP 10574883 A JP10574883 A JP 10574883A JP S59231395 A JPS59231395 A JP S59231395A
Authority
JP
Japan
Prior art keywords
water
underground
temperature
stored
upper layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58105748A
Other languages
Japanese (ja)
Other versions
JPH0417353B2 (en
Inventor
Hideo Sekiguchi
秀夫 関口
Shigeaki Urakawa
浦川 茂明
Shinji Yosomiya
四十宮 眞次
Toshiaki Koga
古賀 敏昭
Yukio Haga
芳賀 幸雄
Masayoshi Miyazawa
宮沢 正芳
Takashi Yukimura
幸村 敬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Plant Construction Co Ltd
Ebara Corp
Furukawa Electric Co Ltd
IHI Corp
Hitachi Zosen Corp
Engineering Advancement Association of Japan
Nippon Steel Corp
Hitachi Plant Technologies Ltd
Hazama Ando Corp
Original Assignee
Hitachi Plant Construction Co Ltd
Ebara Corp
Furukawa Electric Co Ltd
Hazama Gumi Ltd
IHI Corp
Hitachi Zosen Corp
Engineering Advancement Association of Japan
Hitachi Plant Technologies Ltd
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Plant Construction Co Ltd, Ebara Corp, Furukawa Electric Co Ltd, Hazama Gumi Ltd, IHI Corp, Hitachi Zosen Corp, Engineering Advancement Association of Japan, Hitachi Plant Technologies Ltd, Sumitomo Metal Industries Ltd filed Critical Hitachi Plant Construction Co Ltd
Priority to JP58105748A priority Critical patent/JPS59231395A/en
Publication of JPS59231395A publication Critical patent/JPS59231395A/en
Publication of JPH0417353B2 publication Critical patent/JPH0417353B2/ja
Granted legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24TGEOTHERMAL COLLECTORS; GEOTHERMAL SYSTEMS
    • F24T10/00Geothermal collectors
    • F24T10/20Geothermal collectors using underground water as working fluid; using working fluid injected directly into the ground, e.g. using injection wells and recovery wells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy

Abstract

PURPOSE:To contrive to store simultaneously and effectively the cool-heat and the hot-heat energy by utilizing high heat insulating properties existing originally in the underground, and contrive to utilize timely the stored heat energy by a method wherein a water shut-off wall is provided at suitable location in the underground, a temperature stratification is formed in the geothermal water storage part for obtaining the temperature difference between a lower layer and an upper layer. CONSTITUTION:A water shut-off wall 5 is constructed contacting on a base rock 2, located at the downstream side of a city area 1' for an underground water flow 4 and provided to be high as nearly correspond to the thickness of an underground water containing layer 3. The underground water flow 4 is shut-off by the water shut-off wall 5, the underground dam 6 is constructed under the lower part of the city area 1'. By selecting the injected water temperature and injected location for the underground dam 6, relatively lower temperature water in a lower layer 6a and higher temperature water than said water in an upper layer 6b are stored in a temperature stratification.

Description

【発明の詳細な説明】 この発明は地中熱エネルギー貯蔵システムに関するもの
であシ、特に温度の余シ高くない熱エネルギーを複数の
温度レベルで同時に地中にて水に蓄えさせこれを大規模
かつ長期にわたって貯蔵し適時に該エネルギーを取シ出
し利用するシステムを提供しようとするものである。
[Detailed Description of the Invention] This invention relates to a geothermal energy storage system, and in particular, it stores thermal energy in water at multiple temperature levels simultaneously underground, and uses it on a large scale. The purpose of the present invention is to provide a system that stores the energy over a long period of time and extracts and utilizes the energy at the appropriate time.

かかる地中熱エネルギー貯蔵システムの目的の一つとし
て、冬期の冷熱全夏期まで、あるいは夏期の温熱を冬期
まで大規模に貯蔵し、夏期及び冬期にこれを取シ出して
それぞれ冷房及び暖房用に利用しようとするにある。
One of the purposes of such a geothermal energy storage system is to store cold heat in winter until the entire summer, or heat heat in summer until winter, on a large scale, and extract it in summer and winter for cooling and heating, respectively. I'm trying to use it.

一般にローカルエネルギーと云われている太陽熱エネル
ギー、風力エネルギーあるいは各種農林畜産廃棄物に由
来する熱エネルギーの有効利用に対する関心は著しく高
いが、これらに共通する重大な欠点は、該エネルギーの
供給に不連続性が避け難いこと、及び該エネルギーの需
要期及び供給期に大きな不一致があり希望の需要に適切
に応じ得ないこと等が挙げられ、これらの欠点を解消す
るためKは経済性等に満足し得る長期間のエネルギー貯
蔵システムの確立が強く望まれている。
There is considerable interest in the effective use of solar thermal energy, wind energy, or thermal energy derived from various types of agricultural, forestry, and livestock waste, which are generally referred to as local energy, but a serious drawback common to these is that the supply of the energy is discontinuous. In order to eliminate these disadvantages, K is satisfied with the economic efficiency, etc. There is a strong desire to establish a long-term energy storage system.

従来夏期の温熱エネルギー及び冬期の冷熱エネルギーを
長期に貯蔵する方法として地下帯水層を利用する方法が
試みらnている。
Conventionally, attempts have been made to utilize underground aquifers as a method for long-term storage of thermal energy in the summer and cold energy in the winter.

即ち地下水の流れの小さい地下帯水層を利用して蓄熱を
行うもので、具体的な一例としては夏期に該帯水層の水
を汲み上げ高温外気や積極的に太陽熱などによりこれを
昇温させ別の帯水層中にこの昇温水を注入して熱エネル
ギーを貯蔵するものである。
In other words, heat is stored by using an underground aquifer with a small flow of groundwater.One specific example is pumping up water from the aquifer in the summer and raising its temperature using high-temperature outside air or active solar heat. This heated water is injected into another aquifer to store thermal energy.

周知の如く帯水層は熱伝導率の小さい土壌中に存在し、
いわば天然の優九た断熱材で囲まれた蓄熱槽とでも云う
べく、熱損失が非常に少なく効率的な蓄熱が可能である
As is well known, aquifers exist in soil with low thermal conductivity.
It can be said to be a heat storage tank surrounded by excellent natural heat insulating material, allowing efficient heat storage with very little heat loss.

そしてかかる温水は適時、−例として冬期にこれを汲み
上げ、積雪地での屋根、道路等の融雪用に、更に時には
該温水をヒートポンプ等にて昇温しで給湯用あるいは、
暖房用に利用することが行われている。一方、上記融雪
によシ熱交換された冷水はこれを別の帯水層に還元して
貯蔵し、夏期の冷房用の使用に備えることも可能である
Then, such hot water is pumped up at appropriate times, for example in winter, and used for melting snow on roofs and roads in snowy areas, and sometimes heated by heat pumps etc. for hot water supply,
It is used for heating purposes. On the other hand, it is also possible to return the cold water heat-exchanged by the snow melting to another aquifer and store it for use in summer cooling.

しかしかかる熱エネルギーの貯蔵に好適な上記帯水層の
存在は地域的に著しく限られているのが普通であり、更
に上記の如き温熱エネルギー又は冷熱エネルギーの需要
地の近くのど′こにでもその立地を求めることは著しく
困難となるのが実情で)ある。
However, the existence of the above-mentioned aquifers suitable for storing such thermal energy is usually extremely limited regionally, and furthermore, the existence of the above-mentioned aquifers suitable for storing such thermal energy is generally limited anywhere near the above-mentioned hot energy or cold energy demand areas. The reality is that finding a location is extremely difficult.

ここに発明者等はかかる地中熱エネルギー貯蔵システム
に関して、特に上記立地上の制約を解消させるべく鋭意
検討を重ねた結果本発明を完成したのである。
The inventors have completed the present invention as a result of extensive studies regarding such a geothermal energy storage system, particularly in order to eliminate the above-mentioned location constraints.

即ち本発明は、地中の適地に遮水壁を設け、該遮水壁に
てせきとめ形成される地中貯水部にその下層と上層に安
定して温度差を有する温度成層を形成させ、前記貯水部
の下層水及び上層水の出し入A’(rそれぞれの水層に
到達する↓う設置しfc揚水、注水装置にて個別に行い
、かつ上記貯水部の貯蔵水に蓄えられた熱エネルギーの
供給系及び該貯水部から取出しこれを利用する消費系の
いづ九も密閉循環系で運転するようにしたことを特徴と
する地中熱エネルギー貯蔵システムである。
That is, the present invention provides an impermeable wall at a suitable location underground, forms a temperature stratification having a stable temperature difference between the lower layer and the upper layer in the underground water storage part that is dammed by the impermeable wall, and Input/output of the lower layer water and upper layer water in the water storage section A' (r reaches each water layer ↓ is carried out separately with fc pumping and water injection equipment, and the thermal energy stored in the stored water in the above water storage section This geothermal energy storage system is characterized in that both the supply system for water and the consumption system for taking water out of the water storage section and utilizing it are operated in a closed circulation system.

以下図面全参照しつつこの発明の詳細な説明する。第1
図は本発明における地中貯水部(以下地下ダムとも云う
)の概略的な断面図であシ、1は地表、1′はこの地表
上に構築された市街地赤物等、2は地下岩盤、3は上述
の地下帯水層、4は地下水流である。
The present invention will be described in detail below with reference to all the drawings. 1st
The figure is a schematic cross-sectional view of the underground water storage part (hereinafter also referred to as underground dam) in the present invention, where 1 is the ground surface, 1' is the urban area built on the ground surface, 2 is the underground bedrock, 3 is the above-mentioned underground aquifer, and 4 is an underground water flow.

ぞして5は第1図Bの例では岩盤2上に接して構築され
た遮水壁であり、前記地下水流4に対して市街地1′の
下流に位置させかつ上記地下帯水層3の厚みに略匹敵す
る高さに設けられている。この遮水壁5によって上記地
下水流4はせきとめられ図の如く市街地1′下部に地下
ダム6が形成され、該地下ダム6の水は注入する水の温
度、注入する位置を選ぶことによりその下層6aに比較
的低温の水、及び上層6bにこれよシ温度の高い水がそ
れぞれ所謂温度成層をなして貯水される。
In the example shown in FIG. 1B, 5 is an impermeable wall built in contact with the bedrock 2, and is located downstream of the urban area 1' with respect to the underground water flow 4 and close to the underground aquifer 3. The height is approximately equal to the thickness. The above-mentioned underground water flow 4 is blocked by this impermeable wall 5, and an underground dam 6 is formed in the lower part of the city area 1' as shown in the figure. Water at a relatively low temperature is stored in the upper layer 6a, and water with a higher temperature is stored in the upper layer 6b, forming so-called temperature stratification.

第1図Cの例では、上記遮水壁5はその基部を岩盤2に
接触することなく設けられて居り、したがってこの場合
は上記地下水は地下ダム底部から常時流れ去る。
In the example shown in FIG. 1C, the impermeable wall 5 is provided without its base touching the bedrock 2, and therefore, in this case, the groundwater always flows away from the bottom of the underground dam.

かかる地下ダムの構築については今日その技術が略確立
されて居シ、具体的には該地下ダム設置位置に地表から
垂直または斜方向に多数の注入用プーリング孔を穿ち、
該ポーリンj孔を介して孔底よシセメントベントナイト
液等全注入して、更に上記岩盤の透水係数金低く抑え、
更に又低粘度の水ガラス液等の注入によシ遮水壁5の構
築を行う。上記遮水壁5の設置によシ、第1図B及びC
のいづれの場合も地下水が満水時にオーバーフローする
か又は遮水壁下に伏流するので、該地下水流を大きく変
化させることはなく地下ダム下流の地下水位の変化に起
因する地盤法下等の発生の憂いは殆んど生じない。
The technology for constructing such underground dams is almost established today, and specifically, a large number of injection pooling holes are drilled vertically or diagonally from the ground surface at the location where the underground dam is installed.
Inject all of the cicement bentonite liquid into the hole bottom through the Porin J hole, further suppressing the hydraulic conductivity of the rock mass to a low value,
Furthermore, the water-shielding wall 5 is constructed by injecting a low-viscosity water glass liquid or the like. Due to the installation of the above-mentioned water-shielding wall 5, Fig. 1 B and C
In either case, the groundwater overflows when the water is full or flows underground under the impermeable wall, so it does not significantly change the groundwater flow and prevents occurrences under the ground law etc. due to changes in the groundwater level downstream of the subsurface dam. I almost never feel sad.

そして貯水部は概ね砂れき鳩ヲなしていることから貯め
られた水の温度差による対流は起υにくく上述の温度成
層が容易に形成されるためこの発明の目的とする後記複
数のエネルイーの同時保存に著しく適するものとなる。
Since the water storage section is generally shaped like a gravel pit, convection due to temperature differences in the stored water is difficult to occur, and the above-mentioned temperature stratification is easily formed, which is the purpose of this invention to simultaneously preserve multiple energies as described below. It becomes eminently suitable for

次に地表から図の如く地下ダムの上記上層及び下層に達
する井戸10′ft設置し、更にこれらの井戸10を揚
水及び注水装置11に接輯しておく。
Next, 10' of wells are installed from the ground surface to reach the upper and lower layers of the underground dam as shown in the figure, and these wells 10 are connected to a water pumping and water injection device 11.

この際第1図Bの例では、上層が地乍水のオーバーフロ
ーによって流出するので、低温水の貯蔵に適し、)号C
の例では底部で地下水が常時流出するので高温水の貯蔵
に適している。但しいづれの場合も貯蔵さnた水の出し
入れは、そ九ぞれの層に直接到達させた井戸を通じて別
個に行うことが必要で、相互の成層全乱すような誤まっ
た地下水の出入は避けなけれはならない。
In this case, in the example shown in Figure 1B, the upper layer flows out due to overflow of groundwater, so it is suitable for storing low-temperature water.
In this example, groundwater constantly flows out at the bottom, making it suitable for storing high-temperature water. However, in either case, it is necessary to take in and out the stored water separately through wells that reach each layer directly, and to avoid mistaken inflow and outflow of groundwater that would disturb the mutual stratification. Must have.

そしてこれら揚水及び注水装置11は全て密閉循環系に
て運転されるよう常用の手段を施しておく。
All of these water pumping and water injection devices 11 are provided with conventional means to operate in a closed circulation system.

次に以上のように構築された地下ダムに熱エネルギーを
貯蔵するシステムの一例を、積雪地における冬期融雪及
び夏期冷房に利用する場合について説明する。
Next, a case will be described in which an example of a system for storing thermal energy in an underground dam constructed as described above is used for winter snow melting and summer cooling in snowy areas.

第2図においてl’aは地上の建物、10a。In FIG. 2, l'a is a building on the ground, 10a.

10bは地下ダム6の下層及び上層に到達するように設
置された井戸、12は前記建物1’aの屋根に配置され
た融雪用パイプである。
10b is a well installed to reach the lower and upper layers of the underground dam 6, and 12 is a snow melting pipe placed on the roof of the building 1'a.

今冬期積雪時図示しないポンプによシ井戸10bを介し
て地下ダム6の上層から比較的温度の高い水を汲み上げ
融雪用フィン付パイプ12に通し屋根上の融雪を行い、
そしてここで熱°交換さn2て冷却された冷水は井戸1
0a’r介して図示しない注入ポンプによシ地下ダム6
の下層に還元される。
When it snows this winter, a pump (not shown) pumps relatively high temperature water from the upper layer of the underground dam 6 through the well 10b and passes it through the snow melting finned pipe 12 to melt snow on the roof.
And here, the cold water which is cooled by heat exchange n2 is sent to the well 1.
An underground dam 6 is connected to an injection pump (not shown) through 0a'r.
is reduced to the lower layer.

次に夏期は逆、に、井戸10aを介して下層の冷水を汲
み上け、屋内に設置さ八た空調器13のコイル13aに
て熱変換して該屋内を冷房し、温度の上った水金井戸1
0b’に介して地下ダム6の上層に戻すものである。
Next, in the summer, the cold water from the lower layer is pumped up through the well 10a and converted into heat by the coil 13a of the air conditioner 13 installed indoors to cool the indoor area and raise the temperature. water well 1
It returns to the upper layer of the underground dam 6 via 0b'.

上述の冬期地下グム6の下層に戻された冷水、及び夏期
の同上層に戻された温水は、該地下ダム6が対流を起し
にくいこと及び天然の断熱性雰囲気にあることから上記
熱エネルギーが長期間適切に貯蔵され、こ九ら融雪及び
冷房に充分応じ得るものとなる。
The cold water returned to the lower layer of the underground dam 6 in the winter and the hot water returned to the upper layer in the summer use the above-mentioned thermal energy because the underground dam 6 is difficult to cause convection and is in a natural insulating atmosphere. will be stored properly for a long period of time, and will be able to adequately respond to snow melting and air conditioning.

かかる設備は、その使用目的、特に地域的な配慮から上
記冬期あるいは夏期のみの使用に適合するよう上記井戸
、配管及び諸設備等を一部省略しても良いが、この場合
は地下ダム6に還元する水に別途の熱変換設備を設ける
ことが必要である。
Such facilities may be partially omitted from the wells, piping, and various other facilities so that they are suitable for use only in the winter or summer season due to the purpose of use, especially regional considerations; however, in this case, the underground dam 6 It is necessary to provide separate heat conversion equipment for the water to be reduced.

又かかる地下水の急激な汲み上げは地盤法下等の不測の
欠陥を招くことがちシ、予めこれらを予測した汲上げ量
あるいは還元注入量等を決めて行うことが望まれる。
In addition, such rapid pumping of groundwater tends to lead to unexpected defects under the ground law, so it is desirable to determine the amount of pumping or reinjection in advance to anticipate these problems.

そして上記汲上げ及び注入に際しての熱損失を少なくす
るよう、エネルギー利用場所にできるだけ近い地点に上
記設備を設けることが得策であシ、又循環系を密閉方式
とすることによシ、使用目的に種々応じ得ることになる
はかシでなく、該取シ出しあるいは注入井戸の目詰シや
水質変化等が予防できこのため、直接に水の洒養が可能
となシ、特に好ましい。
In order to reduce the heat loss during pumping and injection, it is advisable to install the above equipment as close as possible to the place where the energy is used, and to make the circulation system a closed system, so as to reduce the heat loss during the pumping and injection. It is particularly preferable that water can be replenished directly, since clogging of the extraction or injection well, changes in water quality, etc., can be prevented, in addition to the various problems that may occur.

上記第2図のシステムが芙際に運転されると、冬期は上
層水の汲上げ及び下層への注水、夏期はこの逆となシそ
の境界即ち上記の温度成層は長期的な構成としては大き
く変動するが全体の水量のバランスは保たれる。
When the system shown in Figure 2 above is operated at full capacity, water from the upper layer is pumped up and water is injected into the lower layer in the winter, and vice versa in the summer. Although it fluctuates, the overall water volume remains balanced.

特に好ましいのは、かかるシステムを地域全体として一
括して取シ入れ、上述の地下ダムを大容量化することで
あるが、この場合、集中的な取水、還元を行うことによ
シ中央集中型設備を設置することもできるし、一つの大
規模地1ダムに対し、地区毎に取水、注水を分散して行
ない、これらによって該地域中に個別に貯蔵エネルギー
を分散使用することもできる。
It is particularly preferable to introduce such a system for the entire region and increase the capacity of the above-mentioned underground dams. Equipment can be installed, or water intake and water injection can be distributed to each district within a single large-scale dam, thereby allowing stored energy to be distributed and used individually throughout the area.

上記のシステムの例は、冬期融雪、夏期冷房と云う単一
目的であシ、これら熱収支には一定のバランスの取れる
ことを前提としているが、一般的には積雪地での融雪エ
ネルギーが〃)なシ大きく占めるのが普通である。
The above system example has a single purpose of snow melting in the winter and cooling in the summer, and it is assumed that a certain balance can be achieved in the heat balance, but in general, the energy for melting snow in snow-covered areas is ) usually occupies a large proportion of the population.

かかるエネルギーバランスの見地から、地域全体でのエ
ネルギー利用を総合的に判断してシステム化する必要が
ある。かかる目的で上記エネルギ−バランスを補うため
の一例を第3図に示す。
From the perspective of such energy balance, it is necessary to comprehensively judge and systemize energy use in the entire region. An example of supplementing the energy balance for this purpose is shown in FIG.

同図において、22は米などの農産物貯蔵用の冷温倉庫
、23はえのき茸などの比較的低温栽培を目的とする栽
培工場、24はごみ焼却場で、これらはいづれも地下ダ
ム6の下層から冷水全取水して熱変換し、温水を同上層
に還元し得るもので、これらを上記システムに組入れ上
記熱貯蔵システムのエネルギー収支全バランスさせ得る
ものである。
In the figure, 22 is a cold warehouse for storing agricultural products such as rice, 23 is a cultivation factory for the purpose of relatively low-temperature cultivation of enoki mushrooms, etc., and 24 is a garbage incinerator, all of which are connected to the lower layer of underground dam 6. It is possible to take in all of the cold water, convert it into heat, and return hot water to the upper layer, and by incorporating these into the system, it is possible to balance the energy balance of the heat storage system.

同図において24′は焼却工場煙突、25は各熱変換器
、26は集中取水管、27は各注水管である。
In the figure, 24' is an incineration plant chimney, 25 is each heat converter, 26 is a central water intake pipe, and 27 is each water injection pipe.

次に都市ごみ焼却場においては、ごみ焼却発生熱によっ
て蒸気を発生させこれをタービン発電に供する場合があ
シ、該蒸気タービンの復水器冷却水として上記冷水を用
いることができる。その−例を第4図に示す。
Next, in municipal waste incineration plants, steam is sometimes generated by the heat generated from waste incineration and used for turbine power generation, and the above-mentioned cold water can be used as condenser cooling water for the steam turbine. An example of this is shown in FIG.

同図において28μ焼却メイラ、29は蒸気タービン、
30は発電機、31は復水器である。具体的にはダム6
の下層水を該復水器31の冷却用に使用し温水を上層に
還元し得るのである。
In the same figure, 28 μ incineration mailer, 29 is a steam turbine,
30 is a generator, and 31 is a condenser. Specifically, dam 6
The lower layer water can be used for cooling the condenser 31 and hot water can be returned to the upper layer.

ここで上記の遮水壁5として不透水性岩盤2に直接接し
ないようにした第1図Cの例を採用すれば、地下ダム6
の下層水は常時流れ去シ上層水は比較的静かに貯蔵され
ることになるため、特に比較的高温水の長期貯蔵に適す
るものとなる。
Here, if we adopt the example shown in FIG.
Since the lower layer water constantly flows away and the upper layer water is stored relatively quietly, it is particularly suitable for long-term storage of relatively high temperature water.

これを上記第2図の例示システムに応用し、しかも冬期
における融雪のための屋根上のフィン付循環パイプに冷
水を循環させ熱エネルギー源豊富な夏期の太陽熱にて温
水を作りこれを冬期まで貯蔵するシステムを作シ得る。
Applying this to the example system shown in Figure 2 above, cold water is circulated through a finned circulation pipe on the roof for snow melting in the winter, and hot water is generated using solar heat in the summer, when thermal energy sources are abundant, and this water is stored until the winter. Build a system to do this.

特に融雪量の多い地域にあっては、かかる温水貯蔵量を
増やし上記屋根上の融雪の外、道路上等の融雪に備え得
るかかるシステムも非常に有効である。
Particularly in areas where there is a large amount of snow melting, such a system is also very effective because it can increase the amount of hot water stored and prepare for melting snow not only on roofs but also on roads.

本発明は以上詳述したように、地中に遮水壁を設けて地
下ダムを積極的に形成させ、この地中の本来有する高断
熱性を利用して冷熱及び温熱エネルギーを同時に効率的
に貯蔵しこれを適時に利用するようなシステムとしたも
のであるから、特に前述した立地上の制約が著しく改善
される優れた効果を奏する。
As described in detail above, the present invention actively forms a subterranean dam by installing a water-shielding wall underground, and utilizes the high thermal insulation properties inherent in the underground to efficiently utilize cold and thermal energy at the same time. Since it is a system that stores and utilizes it in a timely manner, it has an excellent effect in that the above-mentioned location constraints are significantly improved.

そしてかかるこの発明の本来の効果に加えて、(1)例
えば上記融雪等のための地下水汲み上げによる地盤法下
等の重大な問題が著しく軽減される。
In addition to the original effects of the present invention, (1) Serious problems under ground laws caused by pumping up groundwater for snow melting, etc., are significantly alleviated.

(11)該融雪等のための温水作成の燃料を使用するも
のに比し著しく経済性が高い。
(11) It is significantly more economical than those that use fuel for producing hot water for snow melting, etc.

(110本来、水源を隣接地に求めにくい市街地域にあ
っても上記地下ダムの利用にょシこ九が可能となる。
(110) Even in urban areas where it is difficult to find a water source in the vicinity, the use of the underground dam becomes possible.

4V)本来地下水のない場所に遮水壁を設け、こ\に冷
水又は温水を注入貯蔵するなど、全く人工的な地下貯水
層を形成することも可能となる。
4V) It is also possible to form a completely artificial underground water storage layer, such as by installing an impermeable wall in a place where there is no underground water and injecting and storing cold or hot water there.

等の効果を有し、上記融雪用、暖房用等にとどまらずそ
の利用範囲が非常に広く、結局不連続的なエネルギー源
でおるローカルエネルギーの利用促進が可能となシ特に
地域経済に寄与し得る工業的効果はまことに大きい。
It has the following effects, and its range of use is very wide, not only for snow melting and heating, etc., and it ultimately makes it possible to promote the use of local energy, which is a discontinuous energy source, and particularly contributes to the local economy. The industrial effects obtained are truly great.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明システムを説明するための地下ダム断面
図で同Aは縦断面図、四Bは横断面図、同Cは他の実施
例の横断面図、第2図は同システムを融雪及び暖房に利
用した一例の概略図、第3図は更に同システムを他の利
用分野に拡大した例の概略図、第4図は特にごみ焼却時
の発生熱によるタービン発電冷却水の熱エネルギー還元
システムへの利用例を示した概略図である。 1・・・地表、1′・・・市街地建物、2・・・地下岩
盤、3・・・地下帯水層、4・・・地下水流、5・・・
°遮水壁、6・・・地下ダム(貯水部)、6a、6b・
・・上層、下層(温度成層)、10a、10b・・・井
戸、11・・・揚水、注水装置、12・・・融雪用フィ
ン付パイプ、13・・・窒調器、25・・・熱交換器、
26.27・・・集中配管、29・・・蒸気タービン、
3o・・発電機、31・・・復水器。 特許出願人 代理人 第1図 (8) 第3図 第4図 第1頁の続き [相]発 明 者 幸村敬 松戸市上本郷字船付537日立プ ラント建設株式会社研究所内 ■出 願 人 古河電気工業株式会社 東京都千代田区丸の内2−6− ■出 願 人 石川島播磨重工業株式会社東京都千代田
区大手町2−2− ■出 願 人 株式会社荏原製作所 東京都大田区羽田旭町11−1 ■出 願 人 住友金属工業株式会社 大阪市東区北浜5−15 @出 願 人 株式会社間組 東京都港区北青山2−5−8 ■出 願 人 日立造船株式会社 大阪市西区江戸堀1−6−14 ■出 願 人 日立プラント建設株式会社東京都千代田
区内神田1−1−
Figure 1 is a cross-sectional view of an underground dam for explaining the system of the present invention, A is a vertical cross-sectional view, B is a cross-sectional view, C is a cross-sectional view of another embodiment, and Figure 2 is a cross-sectional view of the same system. A schematic diagram of an example of the system being used for snow melting and heating; Figure 3 is a schematic diagram of an example in which the same system has been expanded to other fields of use; Figure 4 shows the thermal energy of turbine-generated cooling water, especially from the heat generated during garbage incineration. It is a schematic diagram showing an example of use in a reduction system. 1...Ground surface, 1'...Urban buildings, 2...Underground bedrock, 3...Underground aquifer, 4...Groundwater flow, 5...
° Waterproof wall, 6... Underground dam (water storage part), 6a, 6b.
... Upper layer, lower layer (temperature stratification), 10a, 10b... Well, 11... Pumping water, water injection device, 12... Pipe with fins for snow melting, 13... Nitrogen regulator, 25... Heat exchanger,
26.27... Central piping, 29... Steam turbine,
3o... Generator, 31... Condenser. Patent Applicant Agent Figure 1 (8) Figure 3 Figure 4 Continuation of page 1 [Phase] Inventor Kei Yukimura Hitachi Plant Construction Co., Ltd. Research Center, 537 Funatsuki, Kamihongo, Matsudo City ■Applicant Furukawa Electric Kogyo Co., Ltd. 2-6 Marunouchi, Chiyoda-ku, Tokyo ■Applicant Ishikawajima Harima Heavy Industries Co., Ltd. 2-2 Otemachi, Chiyoda-ku, Tokyo ■Applicant Ebara Corporation 11-1 Haneda Asahi-cho, Ota-ku, Tokyo ■ Applicant: Sumitomo Metal Industries, Ltd. 5-15 Kitahama, Higashi-ku, Osaka @Applicant: Hazama Co., Ltd. 2-5-8 Kita-Aoyama, Minato-ku, Tokyo ■Applicant: Hitachi Zosen Corporation 1-6-14 Edobori, Nishi-ku, Osaka ■ Applicant: Hitachi Plant Construction Co., Ltd. 1-1- Uchikanda, Chiyoda-ku, Tokyo

Claims (1)

【特許請求の範囲】[Claims] (1)地中の適地に遮水壁を設け、該遮水壁にてせきと
め形成される地中貯水部にその下層と上層に温度差を有
する温度成層を形成させ、前記貯水部の下層水及び上層
水の出し入れをそれぞれの水層に到達するよう設置した
揚水、注水装置にて個別に行い、かつ上記貯水部の貯蔵
水に蓄えられた熱エネルギーの供給系及び該貯水部から
取出しこれを利用する消費系のいづれも密閉循環系で運
転するようにしたことを特徴とする地中熱エネルギー貯
蔵システム。 に)前記(1)項における遮水壁を不透水性岩盤上に設
置し、貯水部下層に通常の地下水よ)低温の水を貯蔵す
るようにしたことfc4?徴とする前(1)項記載の地
中熱エネルギー貯蔵システム。 <37前記(1)項における遮水壁を不透水性岩盤上に
直接液することなしに設置し、貯水部の特に上層に通常
の地下水よ多温度の高い水を貯蔵するようにしたことを
特徴とする前(1)項記載の地中熱エネルギー貯蔵シス
テム。
(1) An impermeable wall is provided in a suitable location underground, and a temperature stratification having a temperature difference between the lower layer and the upper layer is formed in the underground water storage part that is dammed by the impermeable wall, and the lower layer water of the water storage part is The upper layer water is taken in and taken out separately by pumping and water injection devices installed to reach each water layer, and a supply system for thermal energy stored in the water stored in the water storage section and a system for extracting it from the water storage section. A geothermal energy storage system characterized in that all of the consumption systems used are operated in a closed circulation system. 2) The impermeable wall in item (1) above was installed on an impermeable bedrock, and low-temperature water (as well as normal groundwater) was stored in the lower layer of the water storage fc4? The geothermal energy storage system described in the preceding paragraph (1). <37 The impermeable wall in item (1) above is installed without directly pouring liquid onto the impermeable bedrock, and water with a higher temperature than normal groundwater is stored especially in the upper layer of the water storage area. The geothermal energy storage system described in the preceding item (1), characterized by:
JP58105748A 1983-06-15 1983-06-15 Geothermal energy storage system Granted JPS59231395A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58105748A JPS59231395A (en) 1983-06-15 1983-06-15 Geothermal energy storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58105748A JPS59231395A (en) 1983-06-15 1983-06-15 Geothermal energy storage system

Publications (2)

Publication Number Publication Date
JPS59231395A true JPS59231395A (en) 1984-12-26
JPH0417353B2 JPH0417353B2 (en) 1992-03-25

Family

ID=14415869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58105748A Granted JPS59231395A (en) 1983-06-15 1983-06-15 Geothermal energy storage system

Country Status (1)

Country Link
JP (1) JPS59231395A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076422A (en) * 2002-08-20 2004-03-11 Haruhiko Morinaga Warm water dam
JP2016502634A (en) * 2012-11-01 2016-01-28 スカンスカ スヴェーリエ アクチボラグSkanska Sverige Ab Operation method of thermal energy storage equipment
US9791217B2 (en) 2012-11-01 2017-10-17 Skanska Sverige Ab Energy storage arrangement having tunnels configured as an inner helix and as an outer helix
US9823026B2 (en) 2012-11-01 2017-11-21 Skanska Sverige Ab Thermal energy storage with an expansion space

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5731127B2 (en) * 2010-02-26 2015-06-10 株式会社安藤・間 Geothermal utilization system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298345A (en) * 1976-02-16 1977-08-18 Ohbayashigumi Ltd Heat storage water tank
JPS56124859A (en) * 1979-12-28 1981-09-30 Svenska Vaeg Ab Heat storage device
JPS59145487A (en) * 1983-02-05 1984-08-20 Tsutomu Arimizu Apparatus for accumulating heat in aquifer and for preventing ground from subsiding and method for controlling subterranean water

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5298345A (en) * 1976-02-16 1977-08-18 Ohbayashigumi Ltd Heat storage water tank
JPS56124859A (en) * 1979-12-28 1981-09-30 Svenska Vaeg Ab Heat storage device
JPS59145487A (en) * 1983-02-05 1984-08-20 Tsutomu Arimizu Apparatus for accumulating heat in aquifer and for preventing ground from subsiding and method for controlling subterranean water

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004076422A (en) * 2002-08-20 2004-03-11 Haruhiko Morinaga Warm water dam
JP2016502634A (en) * 2012-11-01 2016-01-28 スカンスカ スヴェーリエ アクチボラグSkanska Sverige Ab Operation method of thermal energy storage equipment
US9518787B2 (en) 2012-11-01 2016-12-13 Skanska Svergie Ab Thermal energy storage system comprising a combined heating and cooling machine and a method for using the thermal energy storage system
US9657998B2 (en) 2012-11-01 2017-05-23 Skanska Sverige Ab Method for operating an arrangement for storing thermal energy
US9791217B2 (en) 2012-11-01 2017-10-17 Skanska Sverige Ab Energy storage arrangement having tunnels configured as an inner helix and as an outer helix
US9823026B2 (en) 2012-11-01 2017-11-21 Skanska Sverige Ab Thermal energy storage with an expansion space

Also Published As

Publication number Publication date
JPH0417353B2 (en) 1992-03-25

Similar Documents

Publication Publication Date Title
Soni et al. Ground coupled heat exchangers: A review and applications
US4577679A (en) Storage systems for heat or cold including aquifers
Omer Ground-source heat pumps systems and applications
Milenić et al. Criteria for use of groundwater as renewable energy source in geothermal heat pump systems for building heating/cooling purposes
Terziotti et al. Modeling seasonal solar thermal energy storage in a large urban residential building using TRNSYS 16
Sanner Shallow geothermal energy
Paksoy et al. Heating and cooling of a hospital using solar energy coupled with seasonal thermal energy storage in an aquifer
US4173304A (en) Building structure with heat storage and recovery
Hengel et al. System efficiency of pvt collector-driven heat pumps
US20070039715A1 (en) System and method for seasonal energy storage
Gondal Prospects of Shallow geothermal systems in HVAC for NZEB
Belz et al. Thermal energy storage systems for heating and hot water in residential buildings
US20190162451A1 (en) Thermal And Moisture Enhanced Gradient Strata For Heat Exchangers
Givoni Underground longterm storage of solar energy—An overview
Wong et al. Recent inter-seasonal underground thermal energy storage applications in Canada
Dincer et al. Thermal Energy Storage (TES)
Midttømme et al. Ground-source heat pumps and underground thermal energy storage: energy for the future
KR20190030844A (en) Subterranean seasonal thermal storage system
JPS59231395A (en) Geothermal energy storage system
Bakema et al. Underground thermal energy storage: state of the art 1994
CN102692097A (en) Energy storage circulating system for underground water-containing structural layer
Lund Geothermal heat pumps-trends and comparisons
Assad et al. Heating and cooling by geothermal energy
Ali et al. Analysis of ground-source heat pumps in north-of-England homes
Pokhrel et al. Evaluation of a novel integrated solar-borehole thermal energy storage system for residential high-rise building heating applications