WO2015141705A1 - 耐酸耐塩性付与方法と耐酸耐塩性酵母を用いた有用物質生産 - Google Patents

耐酸耐塩性付与方法と耐酸耐塩性酵母を用いた有用物質生産 Download PDF

Info

Publication number
WO2015141705A1
WO2015141705A1 PCT/JP2015/057979 JP2015057979W WO2015141705A1 WO 2015141705 A1 WO2015141705 A1 WO 2015141705A1 JP 2015057979 W JP2015057979 W JP 2015057979W WO 2015141705 A1 WO2015141705 A1 WO 2015141705A1
Authority
WO
WIPO (PCT)
Prior art keywords
lgs1
gene
strain
yeast
acid
Prior art date
Application number
PCT/JP2015/057979
Other languages
English (en)
French (fr)
Inventor
昭則 松鹿
徹也 五島
星野 保
Original Assignee
独立行政法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2016508752A priority Critical patent/JP6343754B2/ja
Publication of WO2015141705A1 publication Critical patent/WO2015141705A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y306/00Hydrolases acting on acid anhydrides (3.6)
    • C12Y306/01Hydrolases acting on acid anhydrides (3.6) in phosphorus-containing anhydrides (3.6.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1048Glycosyltransferases (2.4)
    • C12N9/1051Hexosyltransferases (2.4.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • C12P7/04Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
    • C12P7/06Ethanol, i.e. non-beverage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Definitions

  • the present invention introduces genes and proteins that are resistant to acids and salts derived from acid- and salt-tolerant yeasts into yeasts that are excellent in fermentation production, or improves their expression levels to provide acid-tolerant and salt-tolerant strong acids.
  • the present invention relates to a method for producing yeast exhibiting various growth inhibition resistance and fermentation inhibition resistance under an environment of (low pH) or high salt concentration, and producing useful substances such as ethanol using the yeast.
  • bioethanol ethanol produced from biomass, which is a plant-derived material
  • biomass which is a plant-derived material
  • microorganisms such as yeast. Production is the basic flow.
  • yeast Sacharomyces cerevisiae
  • Zymomonas mobilis and corynebacterium glutamicum are also known as ethanol-fermenting microorganisms.
  • bacteria have low ethanol resistance, and yeast is around pH 4.5. In most cases, yeast is used in the fermentation process of industrial plants that are currently in operation because, for example, continuous production can be achieved while minimizing contamination by other microorganism species.
  • Yeast growth and fermentation ability is affected by various environmental factors. Most yeasts can grow and ferment under normal environmental conditions of normal temperature and pressure, but cannot grow or ferment in special environments of high temperature, acidity, alkalinity or high salt concentration. However, recently, the existence of yeast (Issatchenkia orientalis) that can grow in such a special environment has been clarified (see Patent Document 1, Non-Patent Document 1, Non-Patent Document 2, and Non-Patent Document 3). Issatchenkia orientalis, which excels in heat resistance, acid resistance, and salt resistance, is not only a material suitable for adaptation to special environments or elucidation of resistance mechanisms, but also used as a new genetic resource and enzyme resource for industrial use It is important from the viewpoint of doing.
  • the present inventors analyzed the genome sequence of Issatchenkia orientalis NBRC1279 strain using a next-generation sequencer, and from the obtained genomic information, the gene unique to Issatchenkia orientalis related to stress resistance and fermentation inhibition resistance such as acid resistance and salt resistance. Is expected to exist. However, from Issatchenkia orientalis, we identified useful genes related to stress resistance and fermentation inhibition resistance such as acid resistance and salt resistance, and in addition to drawing out further resistance performance, they can grow and ferment only under normal environmental conditions There has been no study to impart resistance to yeast.
  • yeast growth inhibition or fermentation inhibition is prevented under conditions of low pH stress such as pH 2.0 or high salt concentrations such as sodium sulfate.
  • low pH stress such as pH 2.0
  • high salt concentrations such as sodium sulfate.
  • the target product could not be produced efficiently.
  • Lignocellulosic biomass in particular, is often hydrolyzed into simple sugars (glucose and xylose) that become raw materials for fermentation by treatment with acids such as sulfuric acid, so the fermentation solution is neutralized for fermentation with Saccharomyces cerevisiae.
  • a process is required, leading to an increase in cost. For this purpose, it is necessary to proceed with technological development related to imparting acid resistance and salt resistance to yeast.
  • the present invention it is possible to grow in an environment of strong acid or high salt concentration, glucose, a mixed sugar containing glucose, a useful substance such as ethanol can be produced in high yield from a biomass saccharified solution, and the sugar consumption rate is improved.
  • the present invention provides an effective method for producing a useful substance such as ethanol using the produced genetically modified yeast.
  • the present inventors introduced the Issatchenkia orientalis NBRC1279 strain genomic library into the Saccharomyces cerevisiae BY4742 strain, which can grow on NBRC1279 strain, but cannot grow on BY4742 strain, and can be grown under low pH conditions of pH 2.0. Acquired shares. This strain was resistant to pH 2.5 and 7.5% Na 2 SO 4 under strong acid and high salt conditions. From this acid-resistant yeast strain, the LGS1 gene contributing to acid-tolerance and salt tolerance was identified and isolated (see FIG. 1). The function of the LGS1 gene that contributes to acid and salt tolerance has not been reported so far, and this is a surprising finding.
  • the LGS1 gene derived from Issatchenkia orientalis in order to produce useful substances such as ethanol with high efficiency from glucose, mixed sugar containing glucose, and biomass saccharified liquid using acid-tolerant yeast, attention is paid to the LGS1 gene derived from Issatchenkia orientalis, and Saccharomyces
  • the LGS1 gene was introduced into cerevisiae and expressed constitutively.
  • the transformant expressing the LGS1 gene under the conditions of strong acid or strong acid / high salt concentration has significantly improved aerobic growth ability and anaerobic ethanol fermentation ability. Therefore, expression of the LGS1 gene derived from Issatchenkia orientalis in Saccharomyces cerevisiae is important for imparting acid and salt tolerance.
  • yeasts imparting acid and salt tolerance have lower pH and higher than conventional yeast strains. The inventors have found that tolerance can be obtained in an environment of salt concentration, and have completed the present invention.
  • the present invention includes the following.
  • a genetically modified yeast capable of producing ethanol from glucose with high efficiency including a plasmid that expresses the LGS1 gene or a homologous gene of LGS1 belonging to the GH72 family.
  • a genetically modified yeast capable of producing ethanol from glucose with high efficiency wherein the LGS1 gene or a homologous gene of LGS1 belonging to the GH72 family is introduced by chromosomal integration.
  • LGS1 homologous genes belonging to the GH72 family are GAS1, GAS2, GAS3, GAS4, GAS5, Gel1, Gel2, Gel3, Gel4, Gel5, Gel6, Gel7, Glt1, PHR1, PHR2, PHR3, EPD1, EPD2, and GCW2
  • [15] A method for producing ethanol from glucose using the genetically modified yeast according to any one of [1] to [14].
  • [16] A method for producing ethanol from xylose using the genetically modified yeast according to any one of [9] to [14].
  • [17] A method for producing ethanol from a mixed sugar of glucose and xylose using the genetically modified yeast according to any one of [9] to [14].
  • [18] A method for producing ethanol from a saccharified solution prepared from cellulosic biomass, using the genetically modified yeast according to any one of [9] to [14].
  • [19] The method according to any one of [15] to [18], wherein the culture solution has a pH of 2.0 to 5.0.
  • [20] The method according to any one of [15] to [19], wherein the culture solution contains 5% or more of Na 2 SO 4 .
  • the growth inhibition resistance / fermentation inhibition resistance in a strong acid or high salt environment is improved, and glucose, xylose, xylose, and glucose are improved as compared with conventionally known wild-type yeast and genetically modified yeast having excellent fermentation production.
  • a genetically modified yeast capable of producing ethanol and other useful substances with high efficiency from a mixed sugar contained in a mixed sugar and lignocellulosic biomass saccharified liquid.
  • FIG. 1 is an explanatory diagram showing a flow until an acid- and salt-tolerant gene derived from the acid- and salt-tolerant yeast Issatchenkia orientalis in the present invention is identified.
  • genomic DNA extracted from Issatchenkia orientalis NBRC1279 strain is cleaved with a restriction enzyme, and a genomic fragment is inserted into a plasmid (pPGK) to prepare a genomic DNA (shotgun) library.
  • pPGK plasmid
  • This library is transformed into the Saccharomyces cerevisiae BY4742 strain and cultured under conditions of strong acid (pH 2.0) that can grow on the NBRC1279 strain but cannot grow on the BY4742 strain.
  • FIG. 2 shows the schematic structure (A) of genomic DNA on a plasmid and four gene sets in SCD agar medium adjusted to various low pH (+ high salt concentration) in acid-resistant yeast strains obtained by screening. It is a characteristic view which shows the growth ability (B) of replacement yeast (B42-Con strain, B42-Clone1 strain, B42-LPR1, and B42-LGS1 strain).
  • FIG. 3 is a characteristic diagram showing alignment of amino acid sequences deduced from four kinds of genes derived from yeast (LGS1 of Issatchenkia orientalis, GAS1 of Saccharomyces cerevisiae, PHR1 and PHR2 of Candida albicans).
  • Io Lgs1p is the LGS1 gene product from Issatchenkia orientalis
  • ScSGas1p is the GAS1 gene product from Saccharomyces cerevisiae
  • Ca Phr1p is the PHR1 gene product from Candida albicans
  • Ca Phr2p is the HR from the Candida albicans gene.
  • Open circles ( ⁇ ) indicate positions where amino acids are identical in 3 sequences out of 4 sequences
  • solid circles ( ⁇ ) indicate positions where amino acids are identical in 4 sequences out of 4 sequences.
  • FIG. 4 shows four types of genetically modified yeasts (DG1-Con strain, DG1-LGS1 strain, B42-Con strain, and B42-LGS1 strain) in SCD agar medium adjusted to various pH (+ high salt concentration).
  • FIG. 5 is a characteristic diagram showing aerobic growth of two types of genetically modified yeast (B42-Con strain and B42-LGS1 strain) in SCD medium.
  • FIG. 6 shows two types of genetically modified yeasts (B42-Con strain and B42-) in SCD-2 medium adjusted to pH 5.0 (A), 4.0 (B), 3.0 (C), and 2.0 (D).
  • FIG. 7 shows two types of genetically modified yeasts (B42-Con strain and B42-) in SCD-3 medium adjusted to pH 3.0 (A), 2.5 (B), 2.2 (C), and 2.0 (D). It is a characteristic view which shows the anaerobic ethanol fermentation ability (glucose consumption and ethanol production amount) of LGS1 strain
  • the LGS1 protein is a protein having high identity with Gac1 of Saccharomyces cerevisiae, PHR1 and PHR2 of Candida albicans, etc., and the GH72 family (Carotti C et al., European Journal Biochemistry, Vol.271, pp.3635-3645 (2004) ).
  • the members of the GH72 family are also described in Zhang et al., Applied and Environmental Microbiology, 2011, vol. 77, No.8, pp. 2676-2684, Ragni et al., Yeast 2007, 24, pp. 297-308, It can also be obtained from a known database (CAZY etc.).
  • Saccharomyces cerevisiae GAS1 gene encodes a GPI-anchored glucanosyltransferase, and its deficiency impairs cell wall synthesis (Nuoffer C, et al., Molecular and Cellular Biology, 11Vol.11, pp.27-37 ( 1991) and Popolo L et al., Journal of Bacteriology, Vol.175, pp.1879-1885 (1993)).
  • Candida albicans PHR1 and PHR2 are also functionally related and their expression is controlled by the pH of the growth environment (Saporito-Irwin SM et al., Molecular and Cellular Biology, Vol.15, pp.601-613 (1995) and Muehlschlegel FA, et al., Molecular and Cellular Biology, Vol. 17, pp. 5960-5967 (1997)).
  • the homologous gene of LGS1 refers to a gene having the same function as the LGS1 gene with respect to the acid resistance and salt tolerance of yeast.
  • a homologous gene of LGS1 belonging to the GH72 family for example, Examples include GAS1, GAS2, GAS3, GAS4, GAS5, Gel1, Gel2, Gel3, Gel4, Gel5, Gel6, Gel7, Glt1, PHR1, PHR2, PHR3, EPD1, EPD2, and GCW2.
  • the LGS1 gene and LGS1 homologous genes are not particularly limited as long as they are genes encoding such proteins.
  • the LGS1 homologous gene is derived from a yeast such as Saccharomyces cerevisiae, Kluyveromyces marxianus, Schefffersomyces (Pichia) stipitis, and Issatchenkia orientalis.
  • the LGS1 gene is derived from Issatchenkia orientalis.
  • Issatchenkia orientalis LGS1 gene (SEQ ID NO: 1) can be used from the draft genome information of Pichia kudriavzevii, which is synonymous with Issatchenkia orientalis (registered as ALNQ01000000 in DDBJ / EMBL / GeneBank) (Chan GF et al., Eukaryotic Cell, Vol .11, pp.1300-1301 (2012)).
  • LGS1 homologous genes include, for example, the amino acid sequence of LGS1 protein derived from Issatchenkia orientalis and at least 55%, 60%, 70%, 80%, 90%, 95%, for example, 96% or more, 97 %, 98% or more, or 99% or more of an amino acid sequence having an identity and encoding a protein having LGS1 activity; one or several amino acids are deleted in the amino acid sequence of LGS1 from Issatchenkia orientalis, A gene consisting of a substituted and / or added amino acid sequence and encoding a protein having LGS1 activity; under stringent conditions with a gene consisting of the base sequence of the LGS1 gene derived from Issatchenkia orientalis or a base sequence complementary thereto Genetics that encodes a protein that hybridizes and has LGS1 activity It is included.
  • LGS1 activity includes an activity that imparts acid and salt tolerance to yeast. The identity and homology of amino acid sequences or base sequences can be determined
  • the number of “several” in one or several amino acids is not particularly limited, but is, for example, 20 or less, preferably 10 or less, more preferably 7 or less, and even more preferably about 5 or less. For example, 5 or less, 4 or less, or 3 or less.
  • stringent conditions refers to conditions under which so-called specific hybrids are formed and non-specific hybrids are not formed.
  • a complementary strand of DNA consisting of a base sequence having at least 80% or more, preferably 90% or more, more preferably 95% or more identity with DNA having high identity hybridizes, and DNA having lower identity than that
  • the condition that the complementary strands of these do not hybridize is mentioned. More specifically, it refers to conditions under which the sodium concentration is 150 to 900 mM, preferably 600 to 900 mM, and the temperature is 60 to 68 ° C., preferably 65 ° C.
  • GAS1, PHR1, and PHR2 genes belong to the GH72 family.
  • the present inventors have found that the LGS1 gene complements the function of the GAS1 gene and imparts acid and salt tolerance to the yeast.
  • the GAS1 gene is also considered to contribute to acid and salt tolerance, like the LGS1 gene. Therefore, from these findings, it is considered that other members belonging to the GH72 family such as PHR1 and PHR2 also contribute to the acid and salt tolerance of yeast.
  • LPR1 is a protein having high identity with PXR1 of Saccharomyces cerevisiae.
  • the PXR1 gene of Saccharomyces cerevisiae encodes a protein essential for ripening ribosomal RNA and small nucleolar RNA (Guglielmi B et al., Journal of Biological Chemistry, Vol.277, pp.35712-35719 (2002)).
  • LPR1 gene and LPR1 homologous gene are not particularly limited as long as they encode such proteins, but are derived from yeasts such as Saccharomyces cerevisiae, Kluyveromyces marxianus, Scheffersomyces (Pichia) stipitis, and Issatchenkia orientalis .
  • yeasts such as Saccharomyces cerevisiae, Kluyveromyces marxianus, Scheffersomyces (Pichia) stipitis, and Issatchenkia orientalis .
  • the LPR1 gene is derived from Issatchenkia orientalis.
  • Issatchenkia orientalis LPR1 gene (SEQ ID NO: 2) can be used from the draft genome information of Pichia kudriavzevii, which is synonymous with Issatchenkia orientalis (Registered as ALNQ01000000 in DDBJ / EMBL / GeneBank) (Chan GF et al., Eukaryotic Cell, Vol .11, pp.1300-1301 (2012)).
  • the above genes can be obtained by a general method well known to those skilled in the art, for example, a hybridization method, a PCR method, etc., based on each gene sequence. Furthermore, methods for disrupting (deleting) or inactivating LGS1 gene and LGS1 homologous genes (genes encoding proteins belonging to the GH72 family such as GAS1, PHR1, and PHR2 genes) are well known to those skilled in the art. For example, a deletion plasmid inserted with a deletion DNA fragment prepared by the SOE-PCR method (Gene, 77, 61 (1989)) can be performed using molecular biological techniques. The gene can be deleted or inactivated from the host cell by the homologous recombination used.
  • these target enzyme genes are expressed in host cells.
  • the method can be performed using general molecular biology techniques known to those skilled in the art (Sambrook J. et al., “Molecular Cloning A LBORATORY MANUAL / second edition”, Cold Spring Harbor Laboratory Press (1989) reference). That is, it can be carried out by incorporating a gene encoding the enzyme into an appropriate vector and transforming an appropriate host organism using the vector.
  • a general yeast expression vector known to those skilled in the art for gene introduction and expression can be used.
  • a vector used for introduction into yeast any of a multicopy type (YEp type), a single copy type (YCp type), and a chromosome integration type (YIp type) can be used.
  • the vector can contain one or more genes encoding the protein.
  • the vector includes an origin of replication that allows replication in the host cell, and a selectable marker that identifies the transformant.
  • Translation control sequences can optionally be included linked to the enzyme gene sequence. Examples of regulatory sequences include transcription promoters, operators or enhancers, mRNA ribosome binding sites, and appropriate sequences that regulate transcription and translation initiation and termination.
  • the transcription promoter that can be used is not particularly limited as long as it can drive gene expression in the host cell.
  • GAL1 promoter GAL10 promoter, heat shock protein promoter, MF ⁇ 1 promoter, PHO5 promoter, PGK promoter, GAP promoter, ADH1 A promoter, AOX1 promoter or the like can be used, but it is preferable to use a PGK promoter capable of constitutively expressing the gene.
  • a commonly used marker can be used by a conventional method. Examples include tetracycline, ampicillin, antibiotic resistance genes such as kanamycin or neomycin, hygromycin or spectinomycin, and auxotrophic genes such as HIS3 and TRP1.
  • yeasts such as Saccharomyces cerevisiae, Kluyveromyces marxianus, Schefersomyces (Pichia) stipitis, and Issatchenkia orientalis, with Saccharomyces cerevisiae being particularly preferred.
  • Examples of a method for introducing a vector into a host cell include a calcium phosphate method or a calcium chloride / rubidium chloride method, an electroporation method, an electroinjection method, a method using chemical treatment such as PEG, and a method using a gene gun. .
  • the LGS1 gene or a homologous gene of LGS1 (a gene encoding a protein belonging to the GH72 family such as GAS1, PHR1, and PHR2 genes) is constitutively expressed in the host cell.
  • the LGS1 gene or the homologous gene of LGS1 may be expressed on a multi-copy plasmid, or after introduction into a chromosome integration type vector or the like, integration into a yeast chromosome and expression in a single or several copies.
  • the LGS1 gene or a homologous gene of LGS1 is expressed on a multicopy plasmid.
  • a genetically modified yeast in which xylose reductase XR, xylitol dehydrogenase XDH, and xylulokinase XK genes described in JP-A-2009-195220 are incorporated into chromosomal DNA.
  • the XR gene can be derived from Scheffersomyces stipitis, GeneBank accession number XM_001385144, SEQ ID NO: 12).
  • the XDH gene can be derived from Scheffersomyces stipitis (GeneBank accession number AF127801 or X55392, SEQ ID NO: 13).
  • the XK gene can be derived from Saccharomyces cerevisiae (GeneBank accession number NC — 001139.7, SEQ ID NO: 14).
  • LGS1 gene or LGS1 homologous genes genes encoding proteins belonging to the GH72 family such as GAS1, PHR1, and PHR2 genes
  • acid resistance and salt tolerance can be imparted and strengthened.
  • a genetically modified yeast that can efficiently produce useful substances by avoiding growth inhibition and fermentation inhibition is obtained, compared with the case of using conventionally known yeast with excellent fermentation production. be able to.
  • acid resistance means that microorganisms (such as yeast) can survive or grow even under acidic conditions.
  • pH 2.0 to 5.0, 2.0 to 4.0, 2.0 to 3.0, 2.0 to 2.5, 2.0 to 2.4, 2.0-2.3, 2.0-2.2 or 2.0-2.1, preferably 2.0 means that it can survive or proliferate.
  • salt tolerance means that microorganisms can survive or grow even under conditions of high salt concentration. Specifically, 1% or more, 2% or more, 3% or more, 4% or more, 5% or more, 6 % Or 7% or 7.5% or more in the presence of Na 2 SO 4 .
  • both acid resistance and salt resistance may be collectively referred to as acid resistance and salt resistance.
  • the genetically modified yeast of the present invention preferably has acid and salt resistance.
  • the genetically modified yeast of the present invention having acid and salt tolerance has a pH of 2.0 to 5.0, 2.0 to 4.0, 2.0 to 3.0, 2.0 to 2.5, 2.0 to 2.4, 2.0 to 2.3, 2.0 to 2.2, or 2.0 to 2.1.
  • Na 2 SO 4 for example, pH 2.0 to 5.0 and 5%
  • pH 2.0 to 4.0 and 6% Na 2 SO 4 pH 2.0 to 3.0 and 7% Na 2 SO 4 , or pH 2.0 to 2.5 and 7.5% Na 2 SO 4 It can grow in the presence.
  • a concentration for example, a salt concentration or the like is described as%, this means that the final concentration is expressed in weight% unless otherwise specified.
  • the introduction of a gene for example, LGS1 gene or LGS1 homologous gene
  • a gene for example, LGS1 gene or LGS1 homologous gene
  • the resulting genetically modified yeast can survive or grow under acidic and high salt conditions.
  • GAS1-deficient yeast cannot survive or proliferate under acidic and high salt conditions, but can be proliferated by introducing the LGS1 gene thereto, and is imparted with acid and salt tolerance (FIG. 4A).
  • a host cell and a method for transformation using a gene in which the host cell has been deleted or inactivated are as defined above.
  • the genetic recombinant yeast according to the present invention may be immobilized on a solid phase.
  • the solid phase include, but are not limited to, polyacrylamide gel, polystyrene resin, porous glass, and metal oxide.
  • the genetically modified yeast according to the present invention can produce useful substances such as ethanol from hexoses such as glucose and xylose of pentoses under aerobic and anaerobic conditions. At that time, the concentration of sugar contained in the medium is 0.1 to 20%, preferably 0.5% to 10%, and more preferably 2% to 4%.
  • the genetically modified yeast according to the present invention can produce useful substances such as ethanol from a saccharified solution prepared from lignocellulosic biomass by fermentation reaction.
  • the saccharified solution is not particularly limited, but can be prepared from one derived from lignocellulosic biomass such as woody materials (hardwood and coniferous trees) and herbs such as agricultural waste.
  • a saccharification technique for preparing a saccharified solution a general method in the field can be used, and either an acid decomposition method or an enzymatic saccharification method may be used, but it is preferable that high efficiency and low environmental impact can be expected. This is a sulfuric acid pretreatment / enzymatic saccharification method.
  • a saccharified solution that has not been detoxified may be used directly, or a saccharified solution that has been detoxified may be used.
  • the pH of the saccharified solution may be an untreated acidic saccharified solution or may be used after being adjusted to near neutral, but preferably an untreated acidic saccharified solution is used.
  • the ethanol production reaction by the culture can be performed by a general method known to those skilled in the art.
  • the culture temperature is controlled at 25 ° C to 38 ° C, preferably 27 ° C to 33 ° C, more preferably 30 ° C.
  • the pH of the medium is controlled to 1.5 to 6.0, preferably 2.0 to 5.0, 2.0 to 4.0, 2.0 to 3.0, 2.0 to 2.5, 2.0 to 2.4, 2.0 to 2.3, 2.0 to 2.2 or 2.0 to 2.1, more preferably 2.0.
  • the reaction may be performed continuously or batchwise.
  • the salt concentration of the medium may be high, which can suppress the growth of contaminating microorganisms.
  • the medium may contain 1%, 2%, 3%, 4%, 5%, 6%, 7%, or 7.5% Na 2 SO 4 .
  • the salt can be other salts such as NaCl, KCl, etc. as long as they do not affect ethanol production.
  • the culture medium after 0 to 192 hours, preferably 0 to 96 hours, more preferably 72 hours after the start of the culture is collected to separate ethanol.
  • a method for separating ethanol from the medium known methods such as distillation and pervaporation membrane are used, but a method by distillation is preferred.
  • ethanol can be obtained by further purifying the separated ethanol (a known method such as distillation can be used as an ethanol purification method).
  • the present inventors made a GAS1 gene deletion strain of yeast and confirmed that the LGS1 gene complements the GAS1 function. Like the LGS1 gene, the GAS1 gene is considered to have a function that contributes to acid and salt tolerance. From these findings, other members belonging to the GH72 family such as PHR1 and PHR2 are considered to contribute to the acid and salt tolerance of yeast as well. A person skilled in the art can easily confirm whether other genes belonging to the GH72 family have the activity of imparting acid resistance and salt tolerance to yeast using conventional techniques. For this, for example, the GAS1 gene-deficient yeast strain of the present invention can be used. This GAS1-deficient strain may be transformed with a recombinant vector having a gene belonging to the GH72 family to confirm the acid resistance and salt resistance of the genetically modified yeast.
  • Example 1 Search for acid-salt-tolerant yeast strains Issatchenkia orientalis Issatchenkia orientalis, a gene specific to Issatchenkia orientalis related to stress resistance and fermentation inhibition resistance, such as acid resistance and salt resistance, from the genomic information obtained from the results of genome analysis of NBRC1279 strain Was expected to. Therefore, an attempt was made to identify these useful genes.
  • the flow up to the identification of an acid / salt-tolerant gene derived from the acid-salt-tolerant yeast Issatchenkia orientalis in the present invention is shown in FIG.
  • genomic DNA extracted from Issatchenkia orientalis NBRC1279 strain is randomly cleaved with restriction enzymes, then DNA fragments of 3-5 kp or more are fractionated, the fractionated DNA ends are smoothed, and inserted into a plasmid (pPGK).
  • pPGK plasmid
  • the prepared genomic DNA library was transformed into Saccharomyces cerevisiae BY4742 so that the genome coverage was 10 times or more, and an auxotrophic agar medium adjusted to pH 2.0 (6.7 g / l yeast nitrogen base w / o amino) acids, 20 g / l glucose, 2 g / l drop out mix excluding the amino acid to be assayed, 17 g / l agar (SCD agar medium), and cultured at 30 ° C. It has been confirmed that NBRC1279 strain can grow on this agar medium, but BY4742 strain cannot grow. As a result, 1 colony (1 clone) was obtained as a viable acid-resistant yeast strain and named B42-Clone1 strain.
  • the B42-Clone1 strain was resistant to pH 2.5 and 7.5% Na 2 SO 4 under strong acid and high salt conditions. From these results, it was predicted that the acid-salt-tolerant gene derived from the Issatchenkia orientalis NBRC1279 strain functions effectively in the obtained acid-salt-tolerant yeast strain.
  • Example 2 Identification of acid-tolerant salt-tolerant gene A plasmid (named pPGK-Clone1) was isolated from the obtained acid-tolerant yeast-tolerant yeast strain (B42-Clone1 strain) and cleaved with a restriction enzyme. As a result, 3819 bp on pPGK It was confirmed that a gene fragment (named Clone 1) (SEQ ID NO: 3) was inserted.
  • the alignment of the deduced amino acid sequence of LGS1 showed 60% identity with Saccharomyces cerevisiae GAS1 and 61% and 58% identity with Candida albicans PHR1 and PHR2, respectively, indicating high identity.
  • the Saccharomyces cerevisiae PXR1 gene encodes a protein essential for ripening ribosomal RNA and small nucleolar RNA, while the GAS1 gene encodes a GPI-anchored glucanosyltransferase and is required for cell wall synthesis Therefore, the gene that contributes to the function of acid tolerance in the acid-tolerance-resistant yeast strain obtained this time was predicted to be LGS1, a homologous gene of GAS1.
  • Example 3 Production of pPGK-LPR1
  • the following two primers were designed with reference to the information of the base sequence obtained as a result of sequence analysis of Clone1 derived from Issatchenkia orientalis. A sequence recognizing an EcoR I cleavage site at the 5 ′ end of the LPR1 gene and a BamH I cleavage site at the 3 ′ end were added to the primer.
  • Example 4 Production of pPGK-LGS1
  • the following two primers were designed with reference to the information of the base sequence obtained as a result of sequence analysis of Clone1 derived from Issatchenkia orientalis. A sequence recognizing an EcoR I cleavage site at the 5 ′ end and a BamH I cleavage site at the 3 ′ end of the LGS1 gene was added to the primer.
  • Example 5 Production of genetically modified yeast strain (1)
  • the plasmids pPGK-LPR1 and pPGK-LGS1 were transformed into Saccharomyces cerevisiae BY4742 strain by the lithium acetic acid method using YEASTMAKER yeast transformation system 2 (Clontech).
  • BY4742 strain was transformed with pPGK-LPR1 to produce genetically modified yeast B42-LPR1 strain.
  • pPGK-LGS1 was transformed into BY4742 strain to produce genetically modified yeast B42-LGS1 strain.
  • a B42-Con strain was prepared by transformation into BY4742 strain using pPGK not containing any gene, and used as a control strain.
  • Example 6 Culture of genetically modified yeast (1)
  • the B42-LPR1 and B42-LGS1 strains and their control yeast (B42-Con) strains were added to a normal auxotrophic agar medium ( SCD agar medium grown at 30 ° C on SCD agar medium and then adjusted to various low pH (pH 2.5, 2.3, 2.2, 2.1, and 2.0) and low pH / high salt concentration (pH 2.5, 7.5% Na 2) It was transferred to a SCD agar medium of SO 4 ) and cultured at 30 ° C.
  • B in FIG. 2 shows the results (pH 2.1) of culturing in the above SCD agar medium using four types of genetically modified yeasts (B42-Con strain, B42-Clone1 strain, B42-LPR1 strain, and B42-LGS1 strain). And 13 days for 2.0 and 2.0 SCD media, and 6 days for other SCD media).
  • B42-Con strain B42-Clone1 strain
  • B42-LPR1 strain B42-LGS1 strain
  • Example 7 Production of genetically modified yeast strain (2)
  • a transformed yeast was prepared by introducing the LGS1 gene into a knockout yeast lacking the GAS1 gene. The acid resistance and salt resistance performance of the yeast strain was examined.
  • a yeast ⁇ GAS1 strain lacking the GAS1 gene was acquired from the collection of knockout yeasts from Open Biosystems (parent strain BY4742), and the above plasmid pPGK-LGS1 was used using YEASTMAKER yeast transformation system 2 (Clontech). Then, transformation was performed by the lithium acetic acid method to produce a genetically modified yeast strain DG1-LGS1.
  • DG1-Con strain was prepared by transforming into ⁇ GAS1 strain using pPGK not containing LGS1 gene, and used as a control strain.
  • Example 8 Culture of genetically modified yeast (2)
  • the previously prepared B42-Con and B42-LGS1 strains were incubated at 30 ° C in a normal auxotrophic agar medium (SCD agar medium).
  • SCD agar medium a normal auxotrophic agar medium
  • SCD agar medium adjusted to low pH (pH 2.5 and 2.2) and low pH / high salt concentration (pH 2.5, 7.5% Na 2 SO 4 ) SCD agar medium at 30 ° C. Cultured.
  • FIG. 4A shows the results (pH 2.5) of culturing in the above SCD agar medium using four types of genetically modified yeasts (DG1-Con strain, DG1-LGS1 strain, B42-Con strain, and B42-LGS1 strain). 3 days for SCD agar medium, 6 days for pH 2.2 SCD agar medium, 9 days for pH 2.5 and 7.5% Na 2 SO 4 SCD agar medium).
  • the DG1-Con strain did not grow even when cultured on an SCD agar medium at pH 2.5 for 16 days or more, but grew on the third day on an SCD agar medium at pH 2.8.
  • the B42-Con strain could not grow in addition to the DG1-Con strain, but the DG1-LGS1 and B42-LGS1 strains could grow well.
  • the DG1-LGS1 strain and the B42-LGS1 strain could grow, but the DG1-Con strain and the B42-Con strain could not grow.
  • the DG1-LGS1 strain expressing the LGS1 gene in the ⁇ GAS1 strain and its control yeast DG1-Con strain were adjusted to pH ⁇ 4.0 auxotrophic medium (6.7 (g / l yeast nitro base w / o amino acids, 20 g / l glucose, 2 g / l drop out mix: SCD medium) excluding the amino acids to be assayed, aerobically cultured at 30 ° C for 12 hours, and the morphology of each yeast cell was observed with a microscope (B in Fig. 4). See).
  • the DG1-Con strain has a large cell size, a large percentage of vacuoles, and one or more daughter cells that budding, and the GAS1 gene-deficient strains reported so far (Popolo L et al., Journal of Bacteriology, Vol.175, pp.1879-1885 (1993)).
  • the DG1-LGS1 strain did not show the characteristic morphology observed in the DG1-Con strain, and showed the same morphology as the wild strain.
  • the LGS1 gene was able to complement the function of the GAS1 gene.
  • the GAS1, PHR1, and PHR2 genes belong to the GH72 family.
  • the LGS1 gene complements the function of the GAS1 gene.
  • the GAS1 gene is considered to have a function contributing to acid and salt tolerance, similar to the LGS1 gene. Therefore, from these, it is considered that other LGS1 homologous genes belonging to the GH72 family such as PHR1 and PHR2 also contribute to the acid and salt tolerance of yeast.
  • Example 9 Culture of genetically modified yeast (3) For aerobic growth experiments, the B42-LGS1 strain expressing the LGS1 gene in the BY4742 strain and its control yeast B42-Con strain were mixed with an auxotrophic medium containing 20 g / l glucose (6.7 g / l yeast nitrogen base).
  • w / o amino acids 20 g / l glucose, 2 g / l drop out mix (amino acid to be assayed: SCD medium) was aerobically cultured at 30 ° C. for 12 hours. Bacteria were collected by centrifugation, washed with sterilized water, and an appropriate amount was inoculated into 300 ⁇ l of SCD medium adjusted to pH 2.2 (unified cell mass). The culture was aerobically cultured at 30 ° C. for 216 hours with gentle shaking in a microplate reader HiTS (Scinics). As a result, the B42-Con strain hardly grew, while the B42-LGS1 strain grew well.
  • Example 10 Culture of genetically modified yeast (4)
  • the B42-LGS1 strain that expresses the LGS1 gene in the BY4742 strain and its control yeast B42-Con strain were cultured in an auxotrophic medium containing 20 g / l glucose (6.7 g / l yeast nitrogen base w / o Amino acids, 20 g / l glucose, 2 g / l Dropout mix (amino acid to be assayed: SCD medium) was aerobically cultured at 30 ° C.
  • Example 11 Measurement of ethanol concentration (1) The concentrations of ethanol, glucose, glycerol, and acetic acid were measured using high performance liquid chromatography (HPLC; JASCO Corporation).
  • the separation column was an HPX-87H column (Bio-Rad), and the HPLC apparatus was run at 65 ° C. with 5 mM H 2 SO 4 at a flow rate of 0.6 ml / min.
  • Yeast growth was measured at a wavelength of 600 nm using a spectrophotometer Biowave II (WPA).
  • WPA Biowave II
  • FIG. 6 shows these two types of genetically modified yeasts (B42-Con strain and B42-LGS1 strain) in anaerobic culture using a fermentation medium (SCD-2 medium) containing 40 g / L glucose. It is the figure which showed the glucose consumption of the genetically modified yeast strain
  • SCD-2 media with pH adjusted to 5.0, 4.0, 3.0 and 2.0 are shown in A, B, C and D of FIG.
  • the B42-Con strain produced 13.0 g / L ethanol after 72 hours, whereas the B42-LGS1 strain produced 15.0 g / L ethanol after 72 hours, and the ethanol yield from glucose consumption was B42 -Con and B42-LGS1 were 86% and 94%, respectively (relative to 100% of the theoretical yield).
  • the final ethanol production and ethanol yield were higher in the B42-LGS1 strain than in the B42-Con strain.
  • Both yeast strains produced small amounts of by-products glycerol and acetic acid in SCD-2 medium adjusted to pH 3.0-5.0 (less than 0.9 g / l and 0.6 g / l, respectively).
  • yeast strains in terms of glucose consumption and ethanol production (see D in FIG. 6). That is, the control strain B42-Con strain consumed only 42% glucose after 72 hours, whereas the B42-LGS1 strain consumed 77% glucose after 72 hours, and the glucose consumption rate was B42-Con strain.
  • the B42-LGS1 strain was significantly faster than that.
  • the ethanol production rate was significantly faster in the B42-LGS1 strain than in the B42-Con strain.
  • the B42-Con strain produced only 6.7 g / L ethanol after 72 hours, whereas the B42-LGS1 strain was able to produce 13.3 g / L ethanol after 72 hours.
  • control strain B42-Con strain markedly decreased ethanol productivity from glucose in the fermentation medium at pH 2.0, but the B42-LGS1 strain expressing the LGS1 gene had a pH of 2.0, even in the fermentation medium.
  • the ethanol fermentability was hardly impaired, as was the case with 5.0, 4.0, and 3.0 fermentation media.
  • Example 12 Culture of genetically modified yeast (5)
  • B42-LGS1 and B42-Con strains were aerobically cultured in SCD medium at 30 ° C for 24 hours, collected by centrifugation, washed with sterile water, and washed with 40 g Appropriate amounts were inoculated into 20 ml of 4 types of fermentation media (SCD-3 media) containing 1 / l glucose and 7.5% Na 2 SO 4 (unified bacterial mass).
  • the pH of the fermentation medium (SCD-3 medium) was adjusted to 3.0, 2.5, 2.2, and 2.0, respectively.
  • each fermentation broth was gently added in a 50 ml sealed vial containing a stir bar. Cultured anaerobically at 30 ° C.
  • Example 13 Measurement of ethanol concentration (2) As in Example 11, the concentrations of ethanol, glucose, glycerol and acetic acid were measured using high performance liquid chromatography (HPLC; JASCO Corporation), and the separation column was HPX-87H column (Bio-Rad). The HPLC apparatus was flowed with 5 mM H 2 SO 4 at a flow rate of 0.6 ml / min and operated at 65 ° C. Yeast growth was measured at a wavelength of 600 nm using a spectrophotometer Biowave II (WPA).
  • WPA spectrophotometer Biowave II
  • FIG. 7 two types of genetically modified yeast (B42-Con strain and B42-LGS1 strain) were used, and a fermentation medium (SCD-3 medium) containing 40 ⁇ g / L glucose and 7.5% Na 2 SO 4 was used. It is the figure which showed the glucose consumption and ethanol production amount of these genetically modified yeast strains in anaerobic culture over time.
  • SCD-3 medium a fermentation medium containing 40 ⁇ g / L glucose and 7.5% Na 2 SO 4
  • the B42-Con strain produced 18.2 g / L ethanol after 72 hours, whereas the B42-LGS1 strain produced 19.4 g / L ethanol after 72 hours, and the ethanol yield from glucose consumption was B42 -Con and B42-LGS1 were 86% and 92%, respectively (relative to 100% of the theoretical yield).
  • the final ethanol production and ethanol yield were slightly higher in the B42-LGS1 strain than in the B42-Con strain.
  • Both yeast strains produced small amounts of by-products glycerol and acetic acid in SCD-3 medium adjusted to pH 3.0 (less than 2.2 g / l and 0.8 g / l, respectively).
  • the B42-Con strain produced only 9.8 g / L ethanol after 72 hours, whereas the B42-LGS1 strain was able to produce 19.6 g / L ethanol after 72 hours. Yields were 80% and 95% for B42-Con and B42-LGS1 strains (relative to 100% of theoretical yield), respectively.
  • the control B42-Con strain consumed only 36% glucose after 72 hours, whereas the B42-LGS1 strain consumed 86% glucose after 72 hours.
  • the glucose consumption rate was significantly faster in the B42-LGS1 strain than in the B42-Con strain.
  • the ethanol production rate was significantly faster in the B42-LGS1 strain than in the B42-Con strain.
  • the B42-Con strain produced only 6.2 g / L ethanol after 72 hours, whereas the B42-LGS1 strain was able to produce 16.0 g / L ethanol after 72 hours.
  • the final ethanol production was higher in the B42-LGS1 strain than in the B42-Con strain not only under the condition of pH 2.5 but also under the low pH and high salt concentration conditions of pH 2.2.
  • the ethanol yield from glucose consumption was 82% and 83% for B42-Con and B42-LGS1 strains (relative to 100% of the theoretical yield), respectively.
  • the B42-Con strain produced 4.0 g / L ethanol after 72 hours, while the B42-LGS1 strain produced 7.7 g / L ethanol after 72 hours, and the ethanol yield from glucose consumption was B42 -Con and B42-LGS1 strains (relative to 100% of theoretical yield) were 59% and 77%, respectively.
  • the final ethanol production and ethanol yield were higher in the B42-LGS1 strain than in the B42-Con strain even under the low pH / high salt concentration conditions of pH 2.0.
  • Both strains produced a small amount of glycerol (1.9 g / l or less) on SCD-3 medium adjusted to pH 2.0, but no acetic acid.
  • the B42-LGS1 strain expressing the LGS1 gene is less isolated from glucose than the control strain B42-Con, even in fermentation media with pH 2.0 and 7.5% Na 2 SO 4 at low pH and high salt concentration. Ethanol productivity was high.
  • the genetically modified yeast of the present invention (B42-LGS1 strain) produced by constitutively high expression of the LGS1 gene involved in acid and salt tolerance is capable of inhibiting growth under low pH and high salt environments. It became clear that fermentation inhibition was avoided, sugars such as glucose were successfully grown using carbon as a carbon source, and useful substances such as ethanol could be produced with high efficiency.
  • LGS1 was able to complement GAS1 (Example 8, FIG. 4), it is considered that other LGS1 homologous genes belonging to the GH72 family also impart acid and salt tolerance to yeast, as with LGS1 and GAS1. Yeast to which such acid and salt resistance is imparted can also be used for ethanol production.
  • the method for imparting acid and salt tolerance, and the acid and salt tolerant yeast produced thereby avoid ethanol growth and fermentation inhibition as compared with the case of using a conventionally known yeast with excellent fermentation production.

Abstract

 耐酸耐塩性酵母由来の酸や塩に耐性を示す遺伝子およびタンパク質を発酵生産の優れた酵母に導入する、またはそれらの発現量を向上させることにより耐酸耐塩性を付与することで強酸(低pH)や高塩濃度の環境下で様々な生育阻害耐性および発酵阻害耐性を示す酵母を作製し、それを用いてエタノールなどの有用物質を生産する方法の提供。 Issatchenkia orientalis由来のLGS1遺伝子あるいは他酵母由来のGH72ファミリーに属するLGS1相同遺伝子(GAS1、PHR1、およびPHR2遺伝子など)を恒常的に発現する遺伝子組換え酵母およびそれを用いた低pHや高塩濃度の環境下で耐性を獲得する方法およびグルコースやグルコースを含む糖化液からエタノールなどの有用物質を高効率に生産する方法。

Description

耐酸耐塩性付与方法と耐酸耐塩性酵母を用いた有用物質生産
 本発明は、耐酸耐塩性酵母由来の酸や塩に耐性を示す遺伝子およびタンパク質を発酵生産の優れた酵母に導入する、またはそれらの発現量を向上させることにより耐酸耐塩性を付与することで強酸(低pH)や高塩濃度の環境下で様々な生育阻害耐性および発酵阻害耐性を示す酵母を作製し、それを用いてエタノールなどの有用物質を生産する方法に関するものである。
 近年、石油の枯渇や地球温暖化問題を解決するための代替エネルギーとしてバイオエタノール(植物由来原料であるバイオマスから生産されるエタノール)が注目されている。バイオマスからのエタノール生産方法は多種多様であるが、破砕や分解(糖化)等の処理によりバイオマスから糖液を調製した後、酵母等の微生物による反応(発酵)を利用して糖液からエタノールを生産することが基本の流れである。エタノール発酵微生物として、酵母(Saccharomyces cerevisiae)以外に、ザイモモナス菌(Zymomonas mobilis)やコリネ型細菌(Corynebacterium glutamicum)等も知られているが、細菌類はエタノール耐性が低い、酵母はpH4.5付近で用いることで他の微生物種の混入を極力抑えた連続生産ができる等の理由から、現在稼働している産業プラントの発酵工程では、酵母を利用している場合がほとんどである。
 酵母の増殖や発酵の能力は様々な環境因子によって影響される。大多数の酵母は、常温・常圧という通常の環境条件下では増殖や発酵が可能であるが、高温、酸性、アルカリ性あるいは高塩濃度という特殊な環境では生育や発酵することができない。しかし、最近このような特殊環境下に生育できる酵母(Issatchenkia orientalis)の存在が明らかにされている(特許文献1、非特許文献1、非特許文献2、非特許文献3を参照)。耐熱性、耐酸性、耐塩性に優れたIssatchenkia orientalisは、特殊環境への適応または耐性機構の解明に適した材料であるだけでなく、新たな遺伝子資源および酵素資源として活用して産業利用へ応用するという観点からも重要である。
 先に、本発明者らは次世代シークエンサーによりIssatchenkia orientalis NBRC1279株のゲノム配列を解析し、得られたゲノム情報から、耐酸性や耐塩性などストレス耐性や発酵阻害耐性に関係するIssatchenkia orientalis特有の遺伝子が存在することを予想している。しかしながらIssatchenkia orientalisから、耐酸性や耐塩性などストレス耐性や発酵阻害耐性に関連する有用な遺伝子を同定し、さらなる耐性能を引き出すことに加えて、通常の環境条件下でしか増殖や発酵が可能な酵母に耐性能を付与する検討は行われていない。
特開2008-278825公報
Kitagawa Tら、Applied Microbiology and Biotechnology, Vol.87, pp.1841-1853 (2010) Isono Nら、Journal of Bioscience and Bioengineering, Vol.113, pp.76-78 (2012) Kwon YJら、Bioresource Technology, Vol.102, pp.8099-8104 (2011)
 従来法では、酵母Saccharomyces cerevisiaeを用いたアルコール発酵や有用物質生産の際に、pH 2.0等の低pHストレス条件下や硫酸ナトリウム等の塩濃度が高い条件下では、酵母の増殖阻害や発酵阻害が生じ、効率良く目的の生産物を製造することができなかった。特にリグノセルロース系バイオマスは、硫酸などの酸で処理することで発酵の原料となる単糖(グルコースやキシロース)に加水分解することが多いため、Saccharomyces cerevisiaeで発酵するには発酵液を中和する工程が必要となり、コストアップに繋がってしまう。そのために、酵母への耐酸耐塩性付与に関する技術開発を進める必要がある。
 そこで、本発明では、強酸や高塩濃度の環境下でも生育可能で、グルコースやグルコースを含む混合糖、バイオマス糖化液からエタノール等の有用物質を高収率生産でき、かつ糖の消費速度が改善された遺伝子組換え酵母の作製およびそれを用いたエタノール等の有用物質の効果的な生産方法を提供する。
 本発明者らは、Issatchenkia orientalis NBRC1279株のゲノムライブラリーをSaccharomyces cerevisiae BY4742株に導入し、NBRC1279株では生育可能でBY4742株では生育不可能なpH 2.0の低pHの条件下において生育可能な耐酸性株を取得した。また、この株はpH 2.5、7.5% Na2SO4の強酸・高塩濃度の条件下でも耐性を示した。この耐酸性酵母株から耐酸耐塩性に寄与するLGS1遺伝子を同定・単離した(図1を参照)。LGS1遺伝子の耐酸耐塩性に寄与するという機能はこれまでに報告例がなく、これは驚くべき知見である。
 本発明では、耐酸性を付与した酵母を用いてグルコースやグルコースを含む混合糖、バイオマス糖化液から高効率でエタノールなどの有用物質を生産するために、Issatchenkia orientalis由来のLGS1遺伝子に注目し、Saccharomyces cerevisiae にLGS1遺伝子を導入して恒常的発現させた。強酸や強酸・高塩濃度の条件下で、LGS1遺伝子を発現する形質転換体は、好気的増殖能や嫌気的エタノール発酵能が顕著に向上した。したがって、Saccharomyces cerevisiaeにおいてIssatchenkia orientalis由来のLGS1遺伝子を発現させることが、耐酸耐塩性付与する上で重要であり、これにより耐酸耐塩性を付与した酵母は、従来公知の酵母株よりも低pHや高塩濃度の環境下で耐性を獲得できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は以下を包含する。
[1] LGS1遺伝子あるいはGH72ファミリーに属するLGS1の相同遺伝子を発現するプラスミドを含む、グルコースからエタノールを高効率に生産できる遺伝子組換え酵母。  
[2] LGS1遺伝子あるいはGH72ファミリーに属するLGS1の相同遺伝子が染色体組込みにより導入されている、グルコースからエタノールを高効率に生産できる遺伝子組換え酵母。   
[3] GH72ファミリーに属するLGS1の相同遺伝子がGAS1、GAS2、GAS3、GAS4、GAS5、Gel1、Gel2、Gel3、Gel4、Gel5、Gel6、Gel7、Glt1、PHR1、PHR2、PHR3、EPD1、EPD2、およびGCW2からなる群より選択されるものである、[1]または[2]に記載の遺伝子組換え酵母。
[4] LGS1遺伝子およびGH72ファミリーに属するLGS1の相同遺伝子が酵母または細菌由来である、[1]~[3]のいずれかに記載の遺伝子組換え酵母。  
[5] LGS1遺伝子およびGH72ファミリーに属するLGS1の相同遺伝子が、Issatchenkia orientalisに由来する、[4]に記載の遺伝子組換え酵母。  
[6] LGS1遺伝子およびGH72ファミリーに属するLGS1の相同遺伝子が、Saccharomyces cerevisiaeに由来する、[4]に記載の遺伝子組換え酵母。  
[7] LGS1遺伝子およびGH72ファミリーに属するLGS1の相同遺伝子が、Kluyveromyces marxianusに由来する、[4]に記載の遺伝子組換え酵母。  
[8] LGS1遺伝子およびGH72ファミリーに属するLGS1の相同遺伝子が、Scheffersomyces (Pichia) stipitisに由来する、[4]に記載の遺伝子組換え酵母。  
[9] さらに、キシロースレダクターゼ遺伝子、キシリトールデヒドロゲナーゼ遺伝子およびキシルロキナーゼ遺伝子が導入されている、[1]~[8]のいずれかに記載の遺伝子組換え酵母。  
[10] キシロースレダクターゼ遺伝子およびキシリトールデヒドロゲナーゼ遺伝子がScheffersomyces (Pichia) stipitisに由来し、かつキシルロキナーゼ遺伝子がSaccharomyces cerevisiaeに由来する、[9]に記載の遺伝子組換え酵母。  
[11] 遺伝子組換え酵母がSaccharomyces cerevisiaeを宿主として作製される、[1]~[10]のいずれかの遺伝子組換え酵母。  
[12] 遺伝子組換え酵母がKluyveromyces marxianusを宿主として作製される、[1]~[10]のいずれかの遺伝子組換え酵母。  
[13] 遺伝子組換え酵母がScheffersomyces (Pichia) stipitisを宿主として作製される、[1]~[10]のいずれかの遺伝子組換え酵母。  
[14] 遺伝子組換え酵母がIssatchenkia orientalisを宿主として作製される、[1]~[10]のいずれかの遺伝子組換え酵母。  
[15] [1]~[14]のいずれかの遺伝子組換え酵母を用いた、グルコースからエタノールを生産する方法。  
[16] [9]~[14]のいずれかの遺伝子組換え酵母を用いた、キシロースからエタノールを生産する方法。  
[17] [9]~[14]のいずれかの遺伝子組換え酵母を用いた、グルコースとキシロースの混合糖からエタノールを生産する方法。  
[18] [9]~[14]のいずれかの遺伝子組換え酵母を用いた、セルロース系バイオマスから調製した糖化液からエタノールを生産する方法。  
[19] 培養液のpHが2.0~5.0である、[15]~[18]のいずれかの方法。
[20] 培養液が5%以上のNa2SO4を含む、[15]~[19]のいずれかの方法。  
 本明細書は本願の優先権の基礎である日本国特許出願2014-056001号の明細書および/または図面に記載される内容を包含する。
 本発明により、発酵生産の優れた従来公知の野性型酵母や遺伝子組換え酵母よりも、強酸や高塩環境下における増殖阻害耐性・発酵阻害耐性が向上し、グルコース、キシロース、キシロースとグルコースを含む混合糖、リグノセルロース系バイオマス糖化液に含まれる混合糖からエタノールや他の有用物質を高効率に生産できる遺伝子組換え酵母を提供する。
図1は、本発明における耐酸耐塩性酵母Issatchenkia orientalis由来の耐酸耐塩性遺伝子を同定するまでの流れを示す説明図である。まず、Issatchenkia orientalis NBRC1279株から抽出したゲノムDNAを制限酵素で切断し、ゲノム断片をプラスミド(pPGK)に挿入し、ゲノムDNA(ショットガン)ライブラリーを作製する。このライブラリーをSaccharomyces cerevisiae BY4742株に形質転換し、NBRC1279株では生育可能でBY4742株では生育不可能な強酸(pH 2.0)の条件下で培養する。その結果、生育可能な耐酸性酵母株として1クローン取得し、この株はpH 2.5および7.5% Na2SO4の強酸・高塩濃度の条件下でも耐性を示すことを確認した。この耐酸耐塩性酵母株からプラスミドを単離し(約3.8 kbpの遺伝子断片が挿入)、シークエンス解析により挿入されたDNAの塩基配列を決定した結果、2種類のタンパク質をコードする遺伝子が含まれていることを確認した。他酵母とのホモロジー検索の結果を基に、 2種類の遺伝子の機能を類推し、各々の遺伝子をクローニングし、再度BY4742株に形質転換した。これら形質転換酵母株を強酸(pH 2.0)および強酸・高塩濃度(pH 2.5、7.5% Na2SO4)の条件下で培養し、いずれの条件下でも生育可能な株が観察された。この耐酸耐塩性酵母株の保持するLGS1遺伝子が耐酸耐塩性に寄与していることを明らかにし、耐酸耐塩性に関わる遺伝子を同定した。この遺伝子を構成的に高発現することによって、本発明における遺伝子組換え酵母は強酸や高塩濃度の環境下でも耐性を獲得し、良好な増殖能を示すと共に、グルコースやキシロースなどの糖からエタノール等の有用物質を高効率的に生産することが可能である。 図2は、スクリーニングにより取得した耐酸性酵母株において、プラスミド上のゲノムDNAの模式的な構造(A)および様々な低pH(+高塩濃度)に調整したSCD寒天培地における4種類の遺伝子組換え酵母(B42-Con株、B42-Clone1株、B42-LPR1、およびB42-LGS1株)の生育能(B)を示す特性図である。 図3は、酵母由来の4種類の遺伝子(Issatchenkia orientalisのLGS1、Saccharomyces cerevisiaeのGAS1、Candida albicansのPHR1およびPHR2)から推定されるアミノ酸配列のアライメントを示す特性図である。Io Lgs1pはIssatchenkia orientalis由来のLGS1遺伝子産物、Sc Gas1pはSaccharomyces cerevisiae由来のGAS1遺伝子産物、Ca Phr1pはCandida albicans由来のPHR1遺伝子産物、およびCa Phr2pはCandida albicans由来のPHR2遺伝子産物を示す。白抜きの丸(○)は4配列中3配列についてアミノ酸が同一である位置を、黒塗りの丸(●)は4配列中4配列についてアミノ酸が同一である位置を示す。 図4は、様々なpH(+高塩濃度)に調整したSCD寒天培地における4種類の遺伝子組換え酵母(DG1-Con株、DG1-LGS1株、B42-Con株、およびB42-LGS1株)の生育能(A)およびpH 4.0に調整したSCD培地で培養した2種類の遺伝子組換え酵母(DG1-Con株およびDG1-LGS1株)の細胞形態(B)を示す特性図である。 図5は、2種類の遺伝子組換え酵母(B42-Con株およびB42-LGS1株)の、SCD培地における好気的増殖を示す特性図である。 図6は、pHを5.0(A)、4.0(B)、3.0(C)、および2.0(D)に調整したSCD-2培地における、2種類の遺伝子組換え酵母(B42-Con株およびB42-LGS1株)の嫌気的エタノール発酵能(グルコース消費量およびエタノール生産量)を示す特性図である。 図7は、pHを3.0(A)、2.5(B)、2.2(C)、および2.0(D)に調整したSCD-3培地における、2種類の遺伝子組換え酵母(B42-Con株およびB42-LGS1株)の嫌気的エタノール発酵能(グルコース消費量およびエタノール生産量)を示す特性図である。
 LGS1タンパク質は、Saccharomyces cerevisiaeのGAS1やCandida albicansのPHR1およびPHR2等と高い同一性を持つタンパク質であり、GH72ファミリー(Carotti Cら、European Journal of Biochemistry, Vol.271, pp.3635-3645 (2004))に属している。GH72ファミリーのメンバーはZhangら, Applied and Environmental Microbiology, 2011, vol. 77, No.8, pp. 2676-2684、Ragniら, Yeast 2007, 24, pp. 297-308等にも記載されており、また公知のデータベース(CAZY等)から取得することもできる。Saccharomyces cerevisiaeのGAS1遺伝子はGPIアンカーを持つグルカノシルトランスフェラーゼをコードしており、その欠損は細胞壁の合成に障害を与える(Nuoffer Cら、Molecular and Cellular Biology, Vol.11, pp.27-37 (1991)およびPopolo Lら、Journal of Bacteriology, Vol.175, pp.1879-1885 (1993))。またCandida albicansのPHR1およびPHR2は機能的に関連しており、それらの発現は生育環境のpHによって制御されている(Saporito-Irwin SMら、Molecular and Cellular Biology, Vol.15, pp.601-613 (1995)およびMuehlschlegel FAら、Molecular and Cellular Biology, Vol.17, pp.5960-5967 (1997))。本明細書においてLGS1の相同遺伝子とは、酵母の耐酸耐塩性に関しLGS1遺伝子と同等の機能を有する遺伝子をいい、例としては、限定するものではないが、GH72ファミリーに属するLGS1の相同遺伝子、例えばGAS1、GAS2、GAS3、GAS4、GAS5、Gel1、Gel2、Gel3、Gel4、Gel5、Gel6、Gel7、Glt1、PHR1、PHR2、PHR3、EPD1、EPD2、GCW2等が挙げられる。LGS1遺伝子およびLGS1の相同遺伝子(GAS1、PHR1、およびPHR2遺伝子などGH72ファミリーに属するタンパク質をコードする遺伝子)は、かかるタンパク質をコードする遺伝子であれば由来は特に限定されないが、例えばAspergillus fumigatus、Aspergillus nidulans、Aspergillus oryzae、Candida albicans、Candida dubliniensis、Candida glabrata、Candida maltosa、Coccidioides posadasii、Cryptococcus neoformans、Debaryomyces hansenii、Eromothecium gossypii、Fusarium oxysporum、Issatchenkia orientalis 、Kluyveromyces lactis、Kluyveromyces marxianus、Magnaporthe grisea、Neurospora crassa、Paracoccidioides brasiliensis、Pneumocystis carinii、Saccharomyces cerevisiae、Schizosaccharomyces pombe、Scheffersomyces (Pichia) stipitis、およびYarrowia lipolytica由来のものが挙げられる。ある実施形態において、LGS1相同遺伝子はSaccharomyces cerevisiae、Kluyveromyces marxianus、Scheffersomyces (Pichia) stipitis、およびIssatchenkia orientalisなどの酵母に由来する。好ましくは、LGS1遺伝子は、Issatchenkia orientalisに由来するものである。Issatchenkia orientalisのLGS1遺伝子(配列番号1)は、Issatchenkia orientalis と同義であるPichia kudriavzeviiのドラフトゲノム情報(DDBJ/EMBL/GeneBankにALNQ01000000として登録)から利用することができる(Chan GFら、Eukaryotic Cell, Vol.11, pp.1300-1301 (2012))。
 LGS1の相同遺伝子としては、例えば、Issatchenkia orientalis由来のLGS1タンパク質のアミノ酸配列と少なくとも55%以上、60%以上、70%以上、80%以上、90%以上または95%以上、例えば96%以上、97%以上、98%以上または99%以上の同一性を有するアミノ酸配列からなり、かつLGS1活性を有するタンパク質をコードする遺伝子;Issatchenkia orientalis由来のLGS1のアミノ酸配列において1若しくは数個のアミノ酸が欠失、置換、および/または付加されたアミノ酸配列からなり、かつLGS1活性を有するタンパク質をコードする遺伝子;Issatchenkia orientalis由来のLGS1遺伝子の塩基配列またはそれと相補的な塩基配列からなる遺伝子とストリンジェントな条件下でハイブリダイズし、かつLGS1活性を有するタンパク質をコードする遺伝子が含まれる。ある実施形態においてLGS1活性は酵母に耐酸耐塩性を付与する活性を含む。アミノ酸配列または塩基配列の同一性や相同性は、BLAST、ClustalXやGenetyxといった公知のソフトウェアを使用して決定することができる。
 上記のアミノ酸列において1若しくは数個のアミノ酸における「数個」の数は特には限定されないが、例えば20個以下、好ましくは10個以下、より好ましくは7個以下、さらに好ましくは5個以下程度、例えば5個以下、4個以下または3個以下を意味する。
 また、上記の「ストリンジェントな条件」とは、いわゆる特異的なハイブリッドが形成され、非特異的なハイブリッドが形成されない条件をいう。例えば、同一性が高いDNAと少なくとも80%以上、好ましくは90%以上、より好ましくは95%以上の同一性を有する塩基配列からなるDNAの相補鎖がハイブリダイズし、それより同一性が低いDNAの相補鎖がハイブリダイズしない条件が挙げられる。より具体的には、ナトリウム濃度が150~900mM、好ましくは600~900mMであり、温度が60~68℃、好ましく65℃での条件をいう。
 上記のとおりGAS1、PHR1、およびPHR2遺伝子などはGH72ファミリーに属する。本発明者らはLGS1遺伝子がGAS1遺伝子の機能を相補し酵母に耐酸耐塩性を付与することを見出した。またGAS1遺伝子もLGS1遺伝子と同様に、耐酸耐塩性に寄与すると考えられる。したがってこれらの知見から、PHR1、PHR2等のGH72ファミリーに属する他のメンバーについても、同様に酵母の耐酸耐塩性に寄与すると考えられる。
 LPR1は、Saccharomyces cerevisiaeのPXR1と高い同一性を持つタンパク質である。Saccharomyces cerevisiaeのPXR1遺伝子はリボソームRNAおよび核小体低分子 RNAの熟成に必須なタンパク質をコードしている(Guglielmi Bら、Journal of Biological Chemistry, Vol.277, pp.35712-35719 (2002))。LPR1遺伝子およびLPR1の相同遺伝子(PXR1遺伝子など)は、かかるタンパク質をコードする遺伝子であれば、特に限定されないが、Saccharomyces cerevisiae、Kluyveromyces marxianus、Scheffersomyces (Pichia) stipitis、およびIssatchenkia orientalisなどの酵母に由来する。好ましくは、LPR1遺伝子は、Issatchenkia orientalisに由来するものである。Issatchenkia orientalisのLPR1遺伝子(配列番号2)は、Issatchenkia orientalis と同義であるPichia kudriavzeviiのドラフトゲノム情報(DDBJ/EMBL/GeneBankにALNQ01000000として登録)から利用することができる(Chan GFら、Eukaryotic Cell, Vol.11, pp.1300-1301 (2012))。
 上記の遺伝子は、それぞれの遺伝子配列に基づいて、当業者に周知である一般的な方法、例えば、ハイブリダイゼーション法、PCR法等によって得ることができる。さらにLGS1遺伝子およびLGS1の相同遺伝子(GAS1、PHR1、およびPHR2遺伝子などGH72ファミリーに属するタンパク質をコードする遺伝子)の破壊(欠失)または不活性化させる方法は、当業者に周知である一般的な分子生物学的手法を用いて行うことができ、特に限定されないが例えば、SOE-PCR法(Gene,77,61 (1989))によって調製される欠失用DNA断片を挿入した欠失用プラスミドを用いた相同組換えにより、宿主細胞より当該遺伝子を欠失または不活性化させることができる。また、PCRを利用した遺伝子破壊やランダム変異および部位特異的変異によっても得ることができる。一般的に、PCRを利用した遺伝子破壊では、プライマーで抗生物質耐性遺伝子カセットをPCRで増幅してターゲット遺伝子と置き換える。ランダム変異法では、遺伝子シャッフリングやエラープローンPCRを用いて変異体プールを構築し、その中から目的の性質に改変された変異体をスクリーニングする。部位特異的変異法では、既知のLGS1遺伝子配列およびLGS1の相同遺伝子配列を基に設計した、所定の位置に変異を導入したLGS1クローニング用プライマーを用いてPCRを行うことによって、クローニングされたLGS1遺伝子の所定の位置に変異を導入することができる。
 本発明の一実施形態において、これら目的の酵素遺伝子を宿主細胞内にて発現させる。その方法は、当業者に公知である一般的な分子生物学的手法を用いて行うことができる(Sambrook J.ら、“Molecular Cloning A LBORATORY MANUAL /second edition”, Cold Spring Harbor Laboratory Press (1989)参照)。すなわち、当該酵素をコードする遺伝子を適当なベクターに組み込み、そのベクターを用いて適当な宿主生物を形質転換することにより行うことができる。
 ベクターとしては、遺伝子の導入および発現のために当業者に公知である一般的な酵母発現ベクターを用いることができる。酵母に導入する際に用いるベクターとしては、多コピー型(YEp型)、単コピー型(YCp型)、染色体組み込み型(YIp型)のいずれも用いることが可能である。
 ベクターには、上記タンパク質をコードする遺伝子を一または複数を含めることができる。また、ベクターには、目的のタンパク質をコードする遺伝子の他に、宿主細胞における複製を可能とする複製起点、および形質転換体を同定する選択マーカー、さらに、好ましくは、酵母由来の適切な転写または翻訳制御配列が、所望により酵素の遺伝子配列に連結されて含まれ得る。制御配列の例には、転写プロモーター、オペレーター、またはエンハンサー、mRNAリボソーム結合部位、ならびに転写および翻訳開始および終結を調節する適切な配列が含まれる。用いることができる転写プロモーターは、宿主細胞内にて遺伝子発現を駆動できる限り、特に限定されず、例えばGAL1プロモーター、GAL10プロモーター、ヒートショックタンパク質プロモーター、MFα1プロモーター、PHO5プロモーター、PGKプロモーター、GAPプロモーター、ADH1プロモーター、AOX1プロモーター等を用いることができるが、遺伝子を構成的に発現可能であるPGKプロモーターを用いるのが好ましい。選択マーカーとしては、通常使用されるものを常法により用いることができる。例えばテトラサイクリン、アンピシリン、またはカナマイシンもしくはネオマイシン、ハイグロマイシンまたはスペクチノマイシン等の抗生物質耐性遺伝子やHIS3、TRP1などの栄養要求性遺伝子などが例示される。
 宿主細胞として用いることができるものとしては、特に限定するものではないがSaccharomyces cerevisiae、Kluyveromyces marxianus、Scheffersomyces (Pichia) stipitis、およびIssatchenkia orientalisなどの酵母が挙げられ、特にSaccharomyces cerevisiaeが好ましい。
 ベクターを宿主細胞に導入する方法としては、リン酸カルシウム法または塩化カルシウム/塩化ルビジウム法、エレクトロポレーション法、エレクトロインジェクション法、PEGなどの化学的な処理による方法、遺伝子銃などを用いる方法などが挙げられる。
 好ましくは、LGS1遺伝子あるいはLGS1の相同遺伝子(GAS1、PHR1、およびPHR2遺伝子などGH72ファミリーに属するタンパク質をコードする遺伝子)は、宿主細胞において構成的に発現させる。例えば、LGS1遺伝子あるいはLGS1の相同遺伝子をマルチコピープラスミド上で発現させても良いし、染色体組込み型ベクター等に導入した後、酵母染色体上に組込み、シングルまたは数コピーで発現させても良い。好ましくは、LGS1遺伝子あるいはLGS1の相同遺伝子をマルチコピープラスミド上で発現させる。また、本発明においては、特開2009-195220号公報に記載のキシロース還元酵素XR、キシリトール脱水素酵素XDH、およびキシルロキナーゼXK遺伝子が染色体DNAに組込まれた遺伝子組換え酵母を利用することができる。XR遺伝子は、Scheffersomyces stipitisに由来するものであり得るGeneBank登録番号XM_001385144、配列番号12)。XDH遺伝子は、Scheffersomyces stipitisに由来するものであり得る(GeneBank登録番号AF127801またはX55392、配列番号13)。XK遺伝子は、Saccharomyces cerevisiaeに由来するものであり得る(GeneBank登録番号NC_001139.7、配列番号14)。
 上記LGS1遺伝子あるいはLGS1の相同遺伝子(GAS1、PHR1、およびPHR2遺伝子などGH72ファミリーに属するタンパク質をコードする遺伝子)を構成的に過剰発現させることによって耐酸耐塩性を付与・強化することができ、これにより作製される耐酸耐塩性酵母を用いて、従来公知である発酵生産の優れた酵母を用いた場合よりも、増殖阻害や発酵阻害を回避して有用物質を効率良く生産できる遺伝子組換え酵母を得ることができる。
 本明細書において耐酸性とは、酸性条件下でも微生物(酵母等)が生存または増殖できることをいい、具体的にはpH2.0~5.0、2.0~4.0、2.0~3.0、2.0~2.5、2.0~2.4、2.0~2.3、2.0~2.2または2.0~2.1、好ましくは2.0でも生存または増殖できることをいう。本明細書において耐塩性とは、塩濃度の高い条件下でも微生物が生存または増殖できることをいい、具体的には1%以上、2%以上、3%以上、4%以上、5%以上、6%以上、7%以上、または7.5%以上のNa2SO4存在下でも生存または増殖できることをいう。また本明細書では耐酸性及び耐塩性の両方をまとめて耐酸耐塩性ということがある。本発明の遺伝子組み換え酵母は好ましくは耐酸耐塩性を有する。例えばある実施形態において耐酸耐塩性を有する本発明の遺伝子組み換え酵母はpH2.0~5.0、2.0~4.0、2.0~3.0、2.0~2.5、2.0~2.4、2.0~2.3、2.0~2.2または2.0~2.1かつ1%以上、2%以上、3%以上、4%以上、5%以上、6%以上、7%以上、または7.5%以上のNa2SO4存在下、例えばpH2.0~5.0かつ5%Na2SO4存在下、pH2.0~4.0かつ6%Na2SO4存在下、pH2.0~3.0かつ7%Na2SO4存在下、またはpH2.0~2.5かつ7.5%Na2SO4存在下で増殖可能である。本明細書において濃度、例えば塩濃度等を%として記載するとき、特に断らない限り、これは終濃度を重量%にて表記したものを意味する。 本明細書において酵母に耐酸耐塩性を付与する、とは、酸性かつ高塩濃度条件下で生存または増殖できなかった酵母にある遺伝子(例えばLGS1遺伝子あるいはLGS1の相同遺伝子)を導入し、その結果得られる遺伝子組換え酵母が酸性かつ高塩濃度条件下で生存または増殖できるようになることをいう。例えばGAS1欠失酵母は酸性かつ高塩濃度条件下では生存または増殖できないが、これにLGS1遺伝子を導入することにより増殖可能となり耐酸耐塩性が付与される(図4A)。
 宿主細胞および当該宿主細胞を欠失または不活性化させた遺伝子を用いて形質転換する方法は、上に定義するとおりである。
 本発明に係る遺伝子組換え酵母は、固相に固定化されていても良い。固相としては例えば、ポリアクリルアミドゲル、ポリスチレン樹脂、多孔性ガラス、金属酸化物などが挙げられる(特にこれらに限定されない)。本発明に係る遺伝子組換え酵母を固相に固定することによって、連続反復使用が可能となる点において有利である。
 本発明に係る遺伝子組換え酵母は、好気および嫌気条件下でグルコースなどの六炭糖や五炭糖のキシロースからエタノールなどの有用物質を生産することが可能である。その際、培地に含まれる糖の濃度は、0.1~20 %、好ましくは0.5 %~10 %、さらに好ましくは、2 %~4 %である。
 また、本発明に係る遺伝子組換え酵母は、発酵反応によりリグノセルロース系バイオマスから調整した糖化液からエタノールなどの有用物質を生産することが可能である。糖化液は、特に限定するものではないが、木質(広葉樹および針葉樹)や農産廃棄物等の草本などのリグノセルロース系バイオマスを由来するものから調製することが可能である。糖化液を調製するための糖化技術は、当該分野において一般的な手法を用いることができ、酸分解法でも良いし酵素糖化法でも良いが、好ましくは、高効率と低環境負荷が期待できる非硫酸前処理・酵素糖化法である。実際、酵母を用いて発酵させる際には、解毒処理していない糖化液を直接用いても良いし、解毒処理した糖化液を用いても良い。糖化液のpHは未処理の酸性糖化液を用いても良いし、中性付近に調整してから用いても良いが、好ましくは未処理の酸性糖化液を用いる。
 上記培養によるエタノール生産反応は、当業者に公知である一般的な方法によって行うことが可能である。培養温度は25 ℃~38 ℃、好ましくは27 ℃~33 ℃、さらに好ましくは30 ℃に制御する。培地のpHは、1.5~6.0、好ましくは、2.0~5.0、2.0~4.0、2.0~3.0、2.0~2.5、2.0~2.4、2.0~2.3、2.0~2.2または2.0~2.1、さらに好ましくは2.0に制御する。発酵は嫌気条件で進行するので、酸素が存在しない状態が必要であり、そのため、発酵させる前に系内の酸素および培地中の溶存酸素を除去する操作、すなわち、窒素ガスを培地中に吹き込む操作を行うことが好ましい。反応は、連続式で行っても、バッチ式で行っても良い。さらに培地の塩濃度は高くてもよく、これにより混入微生物の増殖が抑制されうる。例えば培地は1%、2%、3%、4%、5%、6%、7%、または7.5%のNa2SO4を含み得る。塩はエタノール生産に影響を及ぼさない限りNaCl、KCl等の他の塩であり得る。
 培養開始から0~192時間、好ましくは0~96時間、さらに好ましくは、72時間後の培地を回収してエタノールを分離する。培地よりエタノールを分離する方法は、蒸留、浸透気化膜等の公知の方法が用いられるが、蒸留による方法が好ましい。次いで、分離したエタノールをさらに精製(エタノール精製法としては、公知の方法、例えば蒸留等を用いることができる)することによって、エタノールを得ることができる。
 本発明者らは酵母のGAS1遺伝子欠失株を作製し、GAS1機能をLGS1遺伝子が相補することを確認した。GAS1遺伝子もLGS1遺伝子と同様に、耐酸耐塩性に寄与する機能を有すると考えられる。これらの知見から、PHR1、PHR2等のGH72ファミリーに属する他のメンバーについても、同様に酵母の耐酸耐塩性に寄与すると考えられる。当業者であれば、慣用の手法を用いて、GH72ファミリーに属する他の遺伝子が酵母に耐酸耐塩性を付与する活性を有するか容易に確認することができる。これには例えば本発明のGAS1遺伝子欠失酵母株を用いることができる。このGAS1欠失株を、GH72ファミリーに属する遺伝子を有する組換えベクターで形質転換し、遺伝子組換え酵母の耐酸耐塩性を確認すればよい。
 本発明を以下の実施例によって具体的に説明するが、本発明はこれらの実施例によって限定されるものではない。
実施例1:耐酸耐塩性酵母株の探索
 Issatchenkia orientalis NBRC1279株のゲノム解析の結果により得られたゲノム情報から、耐酸性や耐塩性などストレス耐性や発酵阻害耐性に関係するIssatchenkia orientalis特有の遺伝子が存在することが予想された。そこで、これら有用な遺伝子を同定することを試みた。本発明における耐酸耐塩性酵母Issatchenkia orientalis由来の耐酸・耐塩性遺伝子を同定するまでの流れを図1に示した。まずIssatchenkia orientalis NBRC1279株から抽出したゲノムDNAを制限酵素でランダムに切断後、3~5 kp以上のDNA断片を分画し、分画したDNA末端を平滑化してプラスミド(pPGK)に挿入し、ゲノムDNA(ショットガン)ライブラリーを作製した。ゲノムカバー率が10倍以上になるように、作製したゲノムDNAライブラリーをSaccharomyces cerevisiae BY4742株に形質転換し、pH 2.0に調整した栄養要求性寒天培地(6.7 g/l yeast nitrogen base w/o amino acids、 20 g/l グルコース、2 g/l 検定したいアミノ酸を除いたdrop out mix、17 g/l agar : SCD寒天培地)において30℃で培養した。尚、この寒天培地上ではNBRC1279株は生育できるが、BY4742株は生育できないことを確認している。その結果、生育可能な耐酸性酵母株として1コロニー(1クローン)取得し、B42-Clone1株と命名した。B42-Clone1株はpH 2.5および7.5% Na2SO4の強酸・高塩濃度の条件下でも耐性を示した。これらの結果から、取得した耐酸耐塩性酵母株においてIssatchenkia orientalis NBRC1279株由来の耐酸耐塩性遺伝子が効果的に機能していることが予測された。
実施例2:耐酸耐塩性遺伝子の同定
 取得した耐酸耐塩性性酵母株(B42-Clone1株)からプラスミド(pPGK-Clone1と命名)を単離し、制限酵素により切断した結果、pPGK上に3819 bpの遺伝子断片(Clone1と命名)(配列番号3)が挿入されていることが確認された。シークエンス解析により挿入されたゲノムDNAの塩基配列を決定した結果、2種類のタンパク質をコードする遺伝子が含まれていることを確認した(図2のAを参照)。これらの遺伝子の推定アミノ酸配列を基に他酵母とのホモロジー検索を実施したところ、Saccharomyces cerevisiaeのPXR1およびGAS1とそれぞれ高い同一性を持つことが分かり、LPR1(Like PXR1)およびLGS1(Like GAS1)と命名した。また、Issatchenkia orientalis のLGS1は、Candida albicansやCandida glabrataなど病原カンジダ菌種のPHR1およびPHR2等と同一性を持ち、GH72ファミリーに属することも分かった(図3を参照)。LGS1の推定アミノ酸配列のアライメントから、Saccharomyces cerevisiaeのGAS1と60%一致し、Candida albicansのPHR1およびPHR2とそれぞれ61%および58%一致し、それぞれ高い同一性を示した。Saccharomyces cerevisiaeのPXR1遺伝子はリボソームRNAおよび核小体低分子 RNAの熟成に必須なタンパク質をコードしている一方、GAS1遺伝子はGPIアンカーを持つグルカノシルトランスフェラーゼをコードしており、細胞壁の合成に必要であることから、今回取得した耐酸耐塩性酵母株において耐酸耐塩性の機能に寄与する遺伝子は、GAS1の相同遺伝子であるLGS1と予想された。そこで、pPGK-Clone1上に含まれる2種類の遺伝子(LPR1およびLGS1遺伝子)のうち、LGS1遺伝子が耐酸耐塩性に寄与するかどうか検討するために、LGS1遺伝子に加えてLPR1遺伝子のクローニングを行った。
実施例3:pPGK-LPR1の作製   
 野生型LPR1遺伝子を作製するため、Issatchenkia orientalis 由来Clone1の シークエンス解析の結果得られた塩基配列の情報を参考にして、下記の二つのプライマーを設計した。尚、LPR1遺伝子の5’末端にEcoR I切断部位、3’末端にBamH I切断部位を認識する配列をプライマーに付加した。
5’-ATgaattcATGGGTCTCGCAGGAACAAG-3’(配列番号4)
5’-GAggatccTCATTTGATCATGAAGATTTC-3’ (配列番号5)
 PCRは、PrimeSTAR Max DNAポリメラーゼ(タカラバイオ株式会社)を用いて行った。20 pmolの各プライマーと100 ngのIssatchenkia orientalisゲノムDNAを用い、変性反応を98℃で10秒間、アニーリング反応を55℃で5秒間、伸長反応を72℃で5秒間の条件でLPR1遺伝子を増幅した。得られたDNA断片を、プラスミドpPGKのEcoR IおよびBamH I制限酵素切断部位に導入し、これをpPGK-LPR1と名付けた。
実施例4:pPGK-LGS1の作製   
 野生型LGS1遺伝子を作製するため、Issatchenkia orientalis 由来Clone1の シークエンス解析の結果得られた塩基配列の情報を参考にして、下記の二つのプライマーを設計した。尚、LGS1遺伝子の5’末端にEcoR I切断部位、3’末端にBamH I切断部位を認識する配列をプライマーに付加した。
5’-ATgaattcATGAAGTTCTCAAAGTCTCTCGC-3’(配列番号6)
5’-GAggatccTCAGATCAAAATCATAGAGATGGAGC-3’ (配列番号7)
 PCRは、PrimeSTAR Max DNAポリメラーゼ(タカラバイオ株式会社)を用いて行った。20 pmolの各プライマーと100 ngのIssatchenkia orientalisゲノムDNAを用い、変性反応を98℃で10秒間、アニーリング反応を55℃で5秒間、伸長反応を72℃で5秒間の条件でLGS1遺伝子を増幅した。得られたDNA断片を、プラスミドpPGKのEcoR IおよびBamH I制限酵素切断部位に導入し、これをpPGK-LGS1と名付けた。
実施例5:遺伝子組換え酵母株の作製(1)
 上記プラスミドpPGK-LPR1およびpPGK-LGS1をYEASTMAKER yeast transformation system 2(クロンテック社)を用いてリチウム酢酸法によりSaccharomyces cerevisiae BY4742株に形質転換した。BY4742株をpPGK-LPR1を用いて形質転換して、遺伝子組換え酵母B42-LPR1株を作製した。また、pPGK-LGS1をBY4742株に形質転換して、遺伝子組換え酵母B42-LGS1株を作製した。一方、いずれの遺伝子も含まないpPGKを用いてBY4742株に形質転換してB42-Con株を作製し、コントロール株として用いた。
実施例6:遺伝子組換え酵母の培養(1)
 耐酸耐塩性能を調べるために、まずスクリーニングにより取得したB42-Clone1株に加えてB42-LPR1株およびB42-LGS1株とそれらのコントロール酵母(B42-Con)株を、通常の栄養要求性寒天培地(SCD寒天培地)において30℃で生育させ、その後様々な低pH(pH 2.5、2.3、2.2、2.1、および2.0)に調整したSCD寒天培地および低pH・高塩濃度(pH 2.5、7.5% Na2SO4)のSCD寒天培地に植え継いで30℃で培養した。
 図2のBは、4種類の遺伝子組換え酵母(B42-Con株、B42-Clone1株、B42-LPR1株、およびB42-LGS1株)を用いて、上記SCD寒天培地において培養した結果(pH 2.1および2.0のSCD培地では13日目、それ以外のSCD培地では6日目)、これら遺伝子組換え酵母株の生育能示した図である。まずpH 2.5では、4種類いずれの遺伝子組換え酵母も良好に生育した。しかしpH 2.3では、B42-Clone1株およびB42-LGS1株は良好に生育したものの、コントロール株のB42-Con株およびB42-LPR1株の生育能は悪くなった。pH 2.2以下では(pH 2.2、2.1、2.0)、B42-Clone1株およびB42-LGS1株は生育したが、B42-Con株およびB42-LPR1株はほとんど生育しなかった。また、pH 2.5および7.5% Na2SO4の条件下でも、B42-Clone1株およびB42-LGS1株は生育できたが、B42-Con株およびB42-LPR1株は生育できなかった。pH 2.2以下、pH 2.5および7.5% Na2SO4の条件下では、B42-Clone1株と比べてB42-LGS1株の生育能の方が良かった。これらの結果から、耐酸耐塩性に寄与する遺伝子はLGS1であることが明らかとなった。
実施例7:遺伝子組換え酵母株の作製(2)
 Issatchenkia orientalis 由来LGS1遺伝子がSaccharomyces cerevisiae 由来GAS1遺伝子の機能を相補するか否かを検討するために、GAS1遺伝子を欠損したノックアウト酵母にLGS1遺伝子を導入して形質転換酵母を作製し、この遺伝子組換え酵母株の耐酸耐塩性能を調べた。
 そのために、ノックアウト酵母のコレクションの中からGAS1遺伝子を欠損した酵母ΔGAS1株をオープンバイオシステムズ社から取得し(親株はBY4742株)、上記プラスミドpPGK-LGS1をYEASTMAKER yeast transformation system 2(クロンテック社)を用いてリチウム酢酸法により形質転換して、遺伝子組換え酵母DG1-LGS1株を作製した。また、LGS1遺伝子を含まないpPGKを用いてΔGAS1株に形質転換してDG1-Con株を作製し、コントロール株として用いた。
実施例8:遺伝子組換え酵母の培養(2)
 耐酸耐塩性能を調べるために、DG1-Con株およびDG1-LGS1株に加えて先に作製したB42-Con株およびB42-LGS1株を、通常の栄養要求性寒天培地(SCD寒天培地)において30℃で生育させた後、低pH(pH 2.5および2.2)に調整したSCD寒天培地および低pH・高塩濃度(pH2.5、7.5% Na2SO4)のSCD寒天培地に植え継いで30℃で培養した。
 図4のAは、4種類の遺伝子組換え酵母(DG1-Con株、DG1-LGS1株、B42-Con株、およびB42-LGS1株)を用いて、上記SCD寒天培地において培養した結果(pH 2.5のSCD寒天培地では3日目、pH 2.2のSCD寒天培地では6日目、pH2.5および7.5% Na2SO4のSCD寒天培地では9日目)、これら遺伝子組換え酵母株の生育能を示した図である。まずpH 2.5のSCD寒天培地では、DG1-Con株のみ生育することができなかったが、残り3種類の遺伝子組換え酵母株はいずれも良好に生育した。DG1-Con株は、pH 2.5のSCD寒天培地で16日以上培養しても生育しなかったが、pH 2.8のSCD寒天培地では3日目に生育してきた。pH 2.2のSCD寒天培地では、DG1-Con株に加えてB42-Con株も生育できなかったが、DG1-LGS1株およびB42-LGS1株は良好に生育可能であった。また、pH 2.5および7.5% Na2SO4の条件下でも、DG1-LGS1株およびB42-LGS1株は生育できたが、DG1-Con株およびB42-Con株は生育できなかった。これらの結果から、GAS1遺伝子を欠損すると耐酸耐塩性能が低下するが、LGS1遺伝子を発現することで耐酸耐塩性能が野性株よりも増加することが分かった。さらに、GAS1遺伝子もLGS1遺伝子と同様に、耐酸耐塩性に寄与する機能を有することが示唆された。
 次に、ΔGAS1株においてLGS1遺伝子を発現するDG1-LGS1株とそのコントロール酵母DG1-Con株を、pH 4.0に調整した栄養要求性培地(6.7 g/l yeast nitrogen base w/o amino acids、 20 g/l グルコース、2 g/l 検定したいアミノ酸を除いたdrop out mix : SCD培地)において30℃で12時間好気的に培養し、顕微鏡でそれぞれの酵母細胞の形態を観察した(図4のBを参照)。DG1-Con株は、細胞のサイズが大きく、液胞の占める割合が多く、出芽する娘細胞が1個以上の細胞が多く見られ、これまでに報告されているGAS1遺伝子の欠損株の形態と一致した(Popolo Lら、Journal of Bacteriology, Vol.175, pp.1879-1885 (1993))。一方、DG1-LGS1株では、DG1-Con株で観察された特徴的な形態は見られず、野生株と同様の形態を示した。このように、LGS1遺伝子はGAS1遺伝子の機能を相補することが可能であった。
 GAS1、PHR1、およびPHR2遺伝子などはGH72ファミリーに属する。上記のようにLGS1遺伝子はGAS1遺伝子の機能を相補する。またGAS1遺伝子もLGS1遺伝子と同様に、耐酸耐塩性に寄与する機能を有すると考えられる。したがってこれらのことから、PHR1、PHR2等のGH72ファミリーに属する他のLGS1の相同遺伝子についても、同様に酵母の耐酸耐塩性に寄与すると考えられる。
実施例9:遺伝子組換え酵母の培養(3)
 好気的増殖実験のために、BY4742株においてLGS1遺伝子を発現するB42-LGS1株とそのコントロール酵母B42-Con株を、20 g/lグルコースを含む栄養要求性培地(6.7 g/l yeast nitrogen base w/o amino acids、 20 g/l グルコース、2 g/l 検定したいアミノ酸を除いたdrop out mix : SCD培地)において30℃で12時間、好気的に培養した。遠心分離により集菌後、滅菌水で洗浄し、pH 2.2に調整したSCD培地300 μlに適量を接種した(菌体量を統一)。培養液はマイクロプレートリーダーHiTS(Scinics社)において、緩やかに振盪しながら30℃で216時間、好気的に培養した。その結果、B42-Con株はほとんど増殖しなかったのに対し、B42-LGS1株は良好に増殖した。同様に、強酸・高塩濃度(pH2.2、5% Na2SO4)のSCD培地においても、B42-Con株は増殖しなかったが、B42-LGS1株は良好に増殖することができた。図5を参照されたい。
実施例10:遺伝子組換え酵母の培養(4)
 エタノール発酵実験のために、BY4742株においてLGS1遺伝子を発現するB42-LGS1株とそのコントロール酵母B42-Con株を、20 g/lグルコースを含む栄養要求性培地(6.7 g/l yeast nitrogen base w/o amino acids、 20 g/l グルコース、2 g/l 検定したいアミノ酸を除いたdrop out mix : SCD培地)において30℃で24時間、好気的に培養した。遠心分離により集菌後、滅菌水で洗浄し、40 g/lグルコースを含む4種類の発酵培地(SCD-2培地)20 mlに適量を接種した(菌体量を統一)。発酵培地(SCD-2培地)のpHは5.0、4.0、3.0、2.0にそれぞれ調整し、各発酵液は攪拌棒を入れた50 mlの密封型のバイアルにおいて、緩やかに攪拌しながら30℃で72時間、嫌気的に培養した。
実施例11:エタノール濃度の測定(1)
 エタノール、グルコース、グリセロール、酢酸の濃度は高速液体クロマトグラフィー(HPLC; 日本分光株式会社)を用いて測定した。分離カラムはHPX-87Hカラム(Bio-Rad社)を用い、HPLC装置は5 mM H2SO4で0.6 ml/minの流速で流し、65℃で運転した。酵母の増殖は分光光度計Biowave II(WPA社)を用いて600 nmでの波長を測定した。解析の結果、pHを5.0、4.0、および3.0に調整したSCD-2培地では、B42-Con株とB42-LGS1株の間で増殖速度にそれほど違いがみられなかったが、pHを2.0に調整したSCD-2培地では、これら遺伝子組換え酵母株間で増殖速度に顕著な違いがみられた。すなわち、B42-Con株はほとんど増殖しなかったのに対し、B42-LGS1株は良好に増殖した。
 図6は、2種類の遺伝子組換え酵母(B42-Con株およびB42-LGS1株)を用いて、40 g/Lのグルコースを含む発酵培地(SCD-2培地)を用いた嫌気培養における、これら遺伝子組換え酵母株のグルコース消費量およびエタノール生産量を経時的に示した図である。それぞれpHを5.0、4.0、3.0、および2.0に調整したSCD-2培地での発酵実験の結果を図6のA、B、C、およびDに示している。
 まずpHを5.0および4.0に調整したSCD-2培地では、72時間後、コントロール株のB42-Con株と比べてLGS1遺伝子を発現するB42-LGS1株の方がややエタノール生産量が多くなったものの、グルコース消費量およびエタノール生産量は共に、2株の間でほとんど変化しなかった(図6のAおよびBを参照)。いずれの条件下でも、72時間後に75~78%のグルコースを消費し、13.8~14.8 g/Lのエタノールを生産した。
 pHを3.0に調整したSCD-2培地では、グルコース消費量およびエタノール生産量について、酵母株間で差が生じた(図6のCを参照)。すなわち、コントロール株のB42-Con株は72時間後に72%のグルコースを消費したのに対し、B42-LGS1株は72時間後に80%のグルコースを消費し、グルコース消費速度はB42-Con株よりもB42-LGS1株の方が速くなった。また、グルコース消費速度と比例して、エタノール生産速度はB42-Con株よりもB42-LGS1株の方が速くなった。B42-Con株は72時間後に13.0 g/Lのエタノールを生産したのに対し、B42-LGS1株は72時間後に15.0 g/Lのエタノールを生産し、グルコース消費量からのエタノール収率は、B42-Con株およびB42-LGS1株で(理論収率の100%に対して)それぞれ86%および94%であった。このように、最終的なエタノール生産量およびエタノール収率はB42-Con株よりもB42-LGS1株の方が高かった。両酵母株とも、pH 3.0~5.0に調整したSCD-2培地では、副産物であるグリセロールおよび酢酸は少量生産された(それぞれ0.9 g/lおよび0.6 g/l以下)。
 さらにpHを2.0に調整したSCD-2培地では、グルコース消費量およびエタノール生産量について、酵母株間でさらに差が生じた(図6のDを参照)。すなわち、コントロール株のB42-Con株は72時間後に42%しかグルコースを消費できなかったのに対し、B42-LGS1株は72時間後に77%のグルコースを消費し、グルコース消費速度はB42-Con株よりもB42-LGS1株の方が顕著に速くなった。また、グルコース消費速度と比例して、エタノール生産速度もB42-Con株と比べてB42-LGS1株の方が顕著に速くなった。B42-Con株は72時間後に6.7 g/Lしかエタノールを生産できなかったのに対し、B42-LGS1株は72時間後に13.3 g/Lのエタノールを生産することができ、グルコース消費量からのエタノール収率は、B42-Con株およびB42-LGS1株で(理論収率の100%に対して)それぞれ81%および87%であった。このように、pH 3.0の条件下のみならずpH 2.0の低pH条件下でも、最終的なエタノール生産量およびエタノール収率はB42-Con株よりもB42-LGS1株の方が高くなった。両株とも、pH 2.0に調整したSCD-2培地では、少量のグルセロールと酢酸を生産したが(それぞれ1.3 g/lおよび0.8 g/l以下)、pH 3.0~5.0の条件下におけるこれら副産物量よりもやや増加した。このように、コントロール株のB42-Con株はpH 2.0の発酵培地で顕著にグルコースからのエタノール生産性が低下したが、LGS1遺伝子を発現するB42-LGS1株はpHが2.0の発酵培地でも、pHが5.0、4.0、および3.0の発酵培地にいける結果とほぼ同様で、エタノール発酵性がほとんど損なわれなかった。これらの結果から、LGS1遺伝子を発現する酵母株では低pH条件下でもエタノール発酵能が阻害をほとんど受けないことが明らかになり、LGS1遺伝子が耐酸性の獲得において重要な働きをしていることが示唆された。
実施例12:遺伝子組換え酵母の培養(5)
 さらなるエタノール発酵実験のために、B42-LGS1株とB42-Con株をSCD培地において30℃で24時間、好気的に培養した後、遠心分離により集菌後、滅菌水で洗浄し、40 g/lグルコースおよび7.5%のNa2SO4を含む4種類の発酵培地(SCD-3培地)20 mlに適量を接種した(菌体量を統一)。発酵培地(SCD-3培地)のpHは3.0、2.5、2.2、2.0にそれぞれ調整し、実施例10と同様に、各発酵液は攪拌棒を入れた50 mlの密封型のバイアルにおいて、緩やかに攪拌しながら30℃で72時間、嫌気的に培養した。
実施例13:エタノール濃度の測定(2)
 実施例11と同様に、エタノール、グルコース、グリセロール、酢酸の濃度は高速液体クロマトグラフィー(HPLC; 日本分光株式会社)を用いて測定し、分離カラムはHPX-87Hカラム(Bio-Rad社)を用い、HPLC装置は5 mM H2SO4で0.6 ml/minの流速で流し、65℃で運転した。酵母の増殖は分光光度計Biowave II(WPA社)を用いて600 nmでの波長を測定した。解析の結果、pHを3.0に調整したSCD-3培地では、B42-Con株とB42-LGS1株の間で増殖速度にそれほど違いがみられなかったが、pHを2.5、2.2、および2.0に調整したSCD-3培地では、これら遺伝子組換え酵母株間で増殖速度に顕著な違いがみられた。すなわち、B42-Con株と比べてB42-LGS1株はより良好に増殖した。
 図7は、2種類の遺伝子組換え酵母(B42-Con株およびB42-LGS1株)を用いて、40 g/Lのグルコースおよび7.5%のNa2SO4を含む発酵培地(SCD-3培地)を用いた嫌気培養における、これら遺伝子組換え酵母株のグルコース消費量およびエタノール生産量を経時的に示した図である。それぞれpHを3.0、2.5、2.2、および2.0に調整したSCD-3培地での発酵実験の結果を図7のA、B、C、およびDに示している。
 まず、pHを3.0に調整したSCD-3培地では、グルコース消費量およびエタノール生産量について、酵母株間で差が生じた(図7のAを参照)。すなわち、コントロール株のB42-Con株は72時間後に全てのグルコースを消費したのに対し、B42-LGS1株は55時間後に全てのグルコースを消費し、グルコース消費速度はB42-Con株よりもB42-LGS1株の方がやや速くなった。また、グルコース消費速度と比例して、エタノール生産速度はB42-Con株よりもB42-LGS1株の方がやや速くなった。B42-Con株は72時間後に18.2 g/Lのエタノールを生産したのに対し、B42-LGS1株は72時間後に19.4 g/Lのエタノールを生産し、グルコース消費量からのエタノール収率は、B42-Con株およびB42-LGS1株で(理論収率の100%に対して)それぞれ86%および92%であった。このように、最終的なエタノール生産量およびエタノール収率はB42-Con株よりもB42-LGS1株の方がやや高かった。両酵母株とも、pH 3.0に調整したSCD-3培地では、副産物であるグリセロールおよび酢酸は少量生産された(それぞれ2.2 g/lおよび0.8 g/l以下)。
 pHを2.5および2.2に調整したSCD-3培地では、グルコース消費量およびエタノール生産量について、酵母株間でさらに差が生じた(図7のBおよびCを参照)。すなわち、pH2.5のSCD-3培地では、コントロール株のB42-Con株は72時間後に57%しかグルコースを消費できなかったのに対し、B42-LGS1株は72時間後に全てのグルコースを消費し、グルコース消費速度はB42-Con株よりもB42-LGS1株の方が顕著に速くなった。また、グルコース消費速度と比例して、エタノール生産速度もB42-Con株と比べてB42-LGS1株の方が顕著に速くなった。B42-Con株は72時間後に9.8 g/Lしかエタノールを生産できなかったのに対し、B42-LGS1株は72時間後に19.6 g/Lのエタノールを生産することができ、グルコース消費量からのエタノール収率は、B42-Con株およびB42-LGS1株で(理論収率の100%に対して)それぞれ80%および95%であった。また、pH2.2のSCD-3培地では、コントロール株のB42-Con株は72時間後に36%しかグルコースを消費できなかったのに対し、B42-LGS1株は72時間後に86%のグルコースを消費し、pH2.5の場合と同様に、グルコース消費速度はB42-Con株よりもB42-LGS1株の方が顕著に速くなった。また、グルコース消費速度と比例して、エタノール生産速度もB42-Con株と比べてB42-LGS1株の方が顕著に速くなった。B42-Con株は72時間後に6.2 g/Lしかエタノールを生産できなかったのに対し、B42-LGS1株は72時間後に16.0 g/Lのエタノールを生産することができた。このように、pH 2.5の条件下のみならずpH 2.2の低pH・高塩濃度条件下でも、最終的なエタノール生産量はB42-Con株よりもB42-LGS1株の方が高くなった。グルコース消費量からのエタノール収率は、B42-Con株およびB42-LGS1株で(理論収率の100%に対して)それぞれ82%および83%であった。両酵母株とも、pH 2.5および2.2に調整したSCD-3培地では、副産物であるグリセロール(それぞれ2.2 g/lおよび3.0 g/l以下)および酢酸(それぞれ0.6 g/lおよび0.5 g/l以下)を少量生産した。
 さらにpHを2.0に調整したSCD-3培地でも、グルコース消費量およびエタノール生産量について、酵母株間で差が生じたが(図7のDを参照)、pH3.0~2.2のSCD-3培地における場合と比べて、B42-LGS1株の発酵能がやや弱くなった。すなわち、コントロール株のB42-Con株は72時間後に31%のグルコースを消費し、B42-LGS1株は72時間後に46%のグルコースを消費した。この場合でも、グルコース消費速度はB42-Con株よりもB42-LGS1株の方が速くなった。また、グルコース消費速度と比例して、エタノール生産速度もB42-Con株と比べてB42-LGS1株の方が速くなった。B42-Con株は72時間後に4.0 g/Lのエタノールを生産したのに対し、B42-LGS1株は72時間後に7.7 g/Lのエタノールを生産し、グルコース消費量からのエタノール収率は、B42-Con株およびB42-LGS1株で(理論収率の100%に対して)それぞれ59%および77%であった。このように、pH 2.0の低pH・高塩濃度条件下でも、最終的なエタノール生産量およびエタノール収率はB42-Con株よりもB42-LGS1株の方が高くなった。両株とも、pH 2.0に調整したSCD-3培地では、少量のグルセロールを生産したが(1.9 g/l以下)、酢酸は生産しなかった。このように、LGS1遺伝子を発現するB42-LGS1株は、コントロール株のB42-Con株と比べて、pH 2.0および7.5%のNa2SO4の低pH・高塩濃度の発酵培地でもグルコースからのエタノール生産性が高かった。これらの結果から、LGS1遺伝子を発現する酵母株では低pH・高塩濃度の条件下でもエタノール発酵能が阻害を受けにくくなっていることが明らかになり、LGS1遺伝子が耐酸耐塩性の獲得において重要な働きをしていることが示唆された。
 これらの実施例から、耐酸耐塩性に関わるLGS1遺伝子を構成的に高発現することによって作製した本発明の遺伝子組換え酵母(B42-LGS1株)は、低pHや高塩環境下における増殖阻害・発酵阻害を回避し、グルコースなどの糖を炭素源として良好に増殖し、エタノールなどの有用物質を高効率に生産できることが明らかとなった。
 LGS1がGAS1を相補できたことから(実施例8、図4)、GH72ファミリーに属する他のLGS1の相同遺伝子についてもLGS1やGAS1と同様に酵母に耐酸耐塩性を付与すると考えられる。こうした耐酸耐塩性を付与した酵母も同様にエタノール生産に用いることができる。
 本発明において、耐酸耐塩性付与方法およびこれにより作製される耐酸耐塩性酵母を用いて、従来公知である発酵生産の優れた酵母を用いた場合よりも、増殖阻害や発酵阻害を回避してエタノール等の有用物質を効率良く生産できる。これにより、強酸や高塩環境下などの環境ストレス条件下でも、バイオマス由来の糖を次世代の液体エネルギーとして期待されているエタノールや他の有用物質への高効率変換を実現可能にするので、バイオマス資源の実用化および発酵工程の経済性向上に大きく貢献することができる。
 本明細書で引用した全ての刊行物、特許および特許出願をそのまま参考として本明細書にとり入れるものとする。
配列の簡単な説明
配列番号1 LGS1遺伝子の塩基配列
配列番号2 LPR1遺伝子の塩基配列
配列番号3 Clone 1遺伝子の塩基配列
配列番号4-7 プライマー
配列番号8 LGS1タンパク質のアミノ酸配列
配列番号9 GAS1タンパク質のアミノ酸配列
配列番号10 PHR1の推定アミノ酸配列
配列番号11 PHR2の推定アミノ酸配列
配列番号12 XR遺伝子
配列番号13 XDH遺伝子
配列番号14 XK遺伝子

Claims (18)

  1.  LGS1遺伝子あるいはGH72ファミリーに属するLGS1の相同遺伝子を発現するプラスミドを含む、グルコースからエタノールを高効率に生産できる遺伝子組換え酵母。
  2.  LGS1遺伝子あるいはGH72ファミリーに属するLGS1の相同遺伝子が染色体組込みにより導入されている、グルコースからエタノールを高効率に生産できる遺伝子組換え酵母。
  3.  GH72ファミリーに属するLGS1の相同遺伝子がGAS1、GAS2、GAS3、GAS4、GAS5、Gel1、Gel2、Gel3、Gel4、Gel5、Gel6、Gel7、Glt1、PHR1、PHR2、PHR3、EPD1、EPD2、およびGCW2からなる群より選択されるものである、請求項1または2に記載の遺伝子組換え酵母。
  4.  LGS1遺伝子およびGH72ファミリーに属するLGS1の相同遺伝子が酵母または細菌由来である、請求項1~3のいずれか1項に記載の遺伝子組換え酵母。
  5.  LGS1遺伝子およびGH72ファミリーに属するLGS1の相同遺伝子が、Issatchenkia orientalisに由来する、請求項4に記載の遺伝子組換え酵母。
  6.  LGS1遺伝子およびGH72ファミリーに属するLGS1の相同遺伝子が、Saccharomyces cerevisiaeに由来する、請求項4に記載の遺伝子組換え酵母。
  7.  LGS1遺伝子およびGH72ファミリーに属するLGS1の相同遺伝子が、Kluyveromyces marxianusに由来する、請求項4に記載の遺伝子組換え酵母。
  8.  LGS1遺伝子およびGH72ファミリーに属するLGS1の相同遺伝子が、Scheffersomyces (Pichia) stipitisに由来する、請求項4に記載の遺伝子組換え酵母。
  9.  さらに、キシロースレダクターゼ遺伝子、キシリトールデヒドロゲナーゼ遺伝子およびキシルロキナーゼ遺伝子が導入されている、請求項1~8のいずれか1項に記載の遺伝子組換え酵母。
  10.  キシロースレダクターゼ遺伝子およびキシリトールデヒドロゲナーゼ遺伝子がScheffersomyces (Pichia) stipitisに由来し、かつキシルロキナーゼ遺伝子がSaccharomyces cerevisiaeに由来する、請求項9に記載の遺伝子組換え酵母。
  11.  遺伝子組換え酵母がSaccharomyces cerevisiaeを宿主として作製される、請求項1~10のいずれかの遺伝子組換え酵母。
  12.  遺伝子組換え酵母がKluyveromyces marxianusを宿主として作製される、請求項1~10のいずれかの遺伝子組換え酵母。
  13.  遺伝子組換え酵母がScheffersomyces (Pichia) stipitisを宿主として作製される、請求項1~10のいずれかの遺伝子組換え酵母。
  14.  遺伝子組換え酵母がIssatchenkia orientalisを宿主として作製される、請求項1~10のいずれかの遺伝子組換え酵母。
  15.  請求項1~14のいずれかの遺伝子組換え酵母を用いた、グルコースからエタノールを生産する方法。
  16.  請求項9~14のいずれかの遺伝子組換え酵母を用いた、キシロースからエタノールを生産する方法。
  17.  請求項9~14のいずれかの遺伝子組換え酵母を用いた、グルコースとキシロースの混合糖からエタノールを生産する方法。
  18.  請求項9~14のいずれかの遺伝子組換え酵母を用いた、セルロース系バイオマスから調製した糖化液からエタノールを生産する方法。
PCT/JP2015/057979 2014-03-19 2015-03-18 耐酸耐塩性付与方法と耐酸耐塩性酵母を用いた有用物質生産 WO2015141705A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016508752A JP6343754B2 (ja) 2014-03-19 2015-03-18 耐酸耐塩性付与方法と耐酸耐塩性酵母を用いた有用物質生産

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014056001 2014-03-19
JP2014-056001 2014-03-19

Publications (1)

Publication Number Publication Date
WO2015141705A1 true WO2015141705A1 (ja) 2015-09-24

Family

ID=54144669

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057979 WO2015141705A1 (ja) 2014-03-19 2015-03-18 耐酸耐塩性付与方法と耐酸耐塩性酵母を用いた有用物質生産

Country Status (2)

Country Link
JP (1) JP6343754B2 (ja)
WO (1) WO2015141705A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111647622A (zh) * 2020-05-19 2020-09-11 上海市农业科学院 一种利用OsPHR3基因在拟南芥中超表达提高植物氮磷吸收利用的方法
CN115160417A (zh) * 2022-06-24 2022-10-11 西南大学 盔形毕赤酵母Glyco_hydro类分泌蛋白及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043234A (ja) * 2006-08-11 2008-02-28 National Institute Of Advanced Industrial & Technology Gpiアンカー型タンパク質の脂質リモデリングに関与する遺伝子、タンパク質、およびその利用法。
JP2009195220A (ja) * 2008-01-24 2009-09-03 National Institute Of Advanced Industrial & Technology キシロース発酵能が優れた六炭糖・五炭糖同時発酵酵母およびそれを用いたエタノールの高効率生産方法
JP2012510808A (ja) * 2008-12-04 2012-05-17 コリア リサーチ インスティテュート オブ バイオサイエンス アンド バイオテクノロジー 高分泌性蛋白質のスクリーニングおよび組換え蛋白質の生産のための融合パートナーとしてのその用途
KR20150025898A (ko) * 2013-08-30 2015-03-11 삼성전자주식회사 효모에 내산성을 부여하는 폴리펩티드, 그를 코딩하는 폴리뉴클레오티드, 그 양이 증가되어 있는 효모 세포, 상기 효모 세포를 이용한 산물의 생산 방법 및 내산성 효모 세포를 생산하는 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008043234A (ja) * 2006-08-11 2008-02-28 National Institute Of Advanced Industrial & Technology Gpiアンカー型タンパク質の脂質リモデリングに関与する遺伝子、タンパク質、およびその利用法。
JP2009195220A (ja) * 2008-01-24 2009-09-03 National Institute Of Advanced Industrial & Technology キシロース発酵能が優れた六炭糖・五炭糖同時発酵酵母およびそれを用いたエタノールの高効率生産方法
JP2012510808A (ja) * 2008-12-04 2012-05-17 コリア リサーチ インスティテュート オブ バイオサイエンス アンド バイオテクノロジー 高分泌性蛋白質のスクリーニングおよび組換え蛋白質の生産のための融合パートナーとしてのその用途
KR20150025898A (ko) * 2013-08-30 2015-03-11 삼성전자주식회사 효모에 내산성을 부여하는 폴리펩티드, 그를 코딩하는 폴리뉴클레오티드, 그 양이 증가되어 있는 효모 세포, 상기 효모 세포를 이용한 산물의 생산 방법 및 내산성 효모 세포를 생산하는 방법

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
CHAN, GIEK FAR ET AL.: "Genome Sequence of Pichia kudriavzevii M12, a Potential Producer of Bioethanol and Phytase", EUKARYOT. CELL, vol. 11, 2012, pages 1300 - 1301, XP055226847 *
DATABASE GenBank [o] 15 January 2014 (2014-01-15), "Definition: probable 1,3-beta- glucanosyltransferase GAS3 [Kluyveromyces marxianus DMKU3-1042", Database accession no. BA 037942 *
JEFFRIES, THOMAS W ET AL.: "Genome sequence of the lignocellulose-bioconverting and xylose- fermenting yeast Pichia stipitis", NAT. BIOTECHNOL., vol. 25, 2007, pages 319 - 326, XP008091168 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111647622A (zh) * 2020-05-19 2020-09-11 上海市农业科学院 一种利用OsPHR3基因在拟南芥中超表达提高植物氮磷吸收利用的方法
CN115160417A (zh) * 2022-06-24 2022-10-11 西南大学 盔形毕赤酵母Glyco_hydro类分泌蛋白及其应用

Also Published As

Publication number Publication date
JP6343754B2 (ja) 2018-06-20
JPWO2015141705A1 (ja) 2017-04-13

Similar Documents

Publication Publication Date Title
US10533181B2 (en) Fermentative glycerol-free ethanol production
JP6061862B2 (ja) 3‐ヒドロキシプロピオン酸生産用の組成物及び方法
CA3045740A1 (en) Improved glycerol free ethanol production
CN107406821B (zh) 用于生产3-羟基丙酸的突变宿主细胞
CA2956184C (en) Method for producing acetoin
JP2022025108A (ja) Fdcaの真菌による生産
WO2021133171A1 (en) Recombinant fungal cell
WO2016193540A1 (en) Direct conversion of sugars to glycolic acid
WO2015160257A1 (en) Use of acetaldehyde in the fermentative production of ethanol
Lee et al. Cas9-based metabolic engineering of Issatchenkia orientalis for enhanced utilization of cellulosic hydrolysates
JP6343754B2 (ja) 耐酸耐塩性付与方法と耐酸耐塩性酵母を用いた有用物質生産
EP2812430B1 (en) Pentose fermenting microorganisms
JP2010136627A (ja) 酵母にガラクトースを利用させる方法
US10619174B2 (en) Microorganism strains for the production of 2.3-butanediol
WO2013158749A2 (en) Engineered microorganisms with improved growth properties
WO2020023890A1 (en) Increased alcohol production from yeast producing an increased amount of active crz1 protein
WO2020032233A1 (ja) 組換え酵母、及びそれを用いたエタノールの製造方法
JP6316629B2 (ja) 代謝変換酵母によるエタノール産生の改良方法
WO2014021163A1 (ja) 組換え酵母を用いたエタノールの製造方法
JP7452900B2 (ja) 乳酸耐性の向上を有する酵母およびその使用
NL2024578B1 (en) Recombinant fungal cell
US20230227769A1 (en) Means and Methods to Improve Yeast Fermentation Efficiency
US20210032642A1 (en) Increased alcohol production from yeast producing an increased amount of active hac1 protein
Schwartz Development and Application of Advanced Synthetic Biology Tools for Engineering Chemical Production in Yarrowia lipolytica
WO2019226972A1 (en) Overexpression of fumarate reductase results in an increased fermentation rate in yeast

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764484

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508752

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764484

Country of ref document: EP

Kind code of ref document: A1