WO2015141591A1 - Linear motor - Google Patents

Linear motor Download PDF

Info

Publication number
WO2015141591A1
WO2015141591A1 PCT/JP2015/057523 JP2015057523W WO2015141591A1 WO 2015141591 A1 WO2015141591 A1 WO 2015141591A1 JP 2015057523 W JP2015057523 W JP 2015057523W WO 2015141591 A1 WO2015141591 A1 WO 2015141591A1
Authority
WO
WIPO (PCT)
Prior art keywords
mover
linear motor
coil
yoke
cooling
Prior art date
Application number
PCT/JP2015/057523
Other languages
French (fr)
Japanese (ja)
Inventor
正喜 武富
栗山 義彦
正宏 増澤
幸英 赤木
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to JP2016508700A priority Critical patent/JPWO2015141591A1/en
Publication of WO2015141591A1 publication Critical patent/WO2015141591A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K41/00Propulsion systems in which a rigid body is moved along a path due to dynamo-electric interaction between the body and a magnetic field travelling along the path
    • H02K41/02Linear motors; Sectional motors
    • H02K41/03Synchronous motors; Motors moving step by step; Reluctance motors
    • H02K41/031Synchronous motors; Motors moving step by step; Reluctance motors of the permanent magnet type
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K9/00Arrangements for cooling or ventilating
    • H02K9/19Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
    • H02K9/197Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil in which the rotor or stator space is fluid-tight, e.g. to provide for different cooling media for rotor and stator

Definitions

  • the present invention relates to a linear motor.
  • a feeding device that can linearly move an object to be processed such as a large-area substrate at a high speed and accurately position the object at an appropriate moving position.
  • This type of feeding device is generally realized by converting the rotational motion of a motor as a drive source into a linear motion by a motion conversion mechanism such as a ball screw mechanism, but since a motion conversion mechanism is interposed, There is a limit to increasing the moving speed. There is also a problem that positioning accuracy is insufficient due to the presence of mechanical errors in the motion conversion mechanism.
  • the linear motor includes a linear stator and a mover that moves along the stator.
  • a moving coil type linear motor (a moving coil type linear motor) in which a large number of plate-like permanent magnets are arranged in parallel at regular intervals to constitute a stator, and an armature having magnetic pole teeth and energizing coils is used as a mover.
  • Patent Document 1 is used.
  • the amount of magnet to be used increases as the total length of the linear motor becomes longer (the moving distance of the mover becomes longer).
  • an increase in the amount of magnets used has caused an increase in cost.
  • the linear motor generates heat when the coil used for the mover is energized.
  • the thrust decreases.
  • the linear motor needs to include a coil cooling mechanism.
  • a cooling mechanism for a moving coil type linear motor has been proposed in which the entire coil is covered with a jacket and a refrigerant flows inside the jacket (Patent Document 2).
  • the magnetic force acting between the stator and the mover separates not only the thrust force that moves the mover relative to the stator, but also the attracting force in the direction in which the stator and the mover are brought close to each other, and pulling them apart from each other.
  • a repulsive force in the direction is generated. Stress is generated in the stator and the mover due to the suction force and the repulsive force. For this reason, when a jacket that allows a refrigerant to pass therethrough is attached to the coil for cooling, the jacket needs to be rigid enough to withstand the generated stress.
  • the loss of thrust can be suppressed by making the mover lightweight.
  • the jacket attached to the mover also needs to be lightweight. Therefore, when molding the jacket with a resin or the like in order to reduce the weight of the jacket, it is necessary to reinforce the resin or the like with glass fibers in order to ensure the rigidity of the entire jacket, leading to an increase in cost. Furthermore, a structure for reinforcing the jacket (referred to as a core part in Patent Document 2) is required in the hollow part of the air-core coil, and the jacket structure is complicated.
  • the present invention has been made in view of the circumstances as described above, and even if the total length of the linear motor is long, the amount of use of the magnet does not increase, and the miniaturization and weight reduction of the mover can be realized, and the heat generation of the mover. Can be suppressed. Also, it has a structure that can be cooled with a simple pipe-like structure without a resin molding process such as a jacket when cooling the mover, and even when cooling with a resin molded jacket, glass fiber etc.
  • An object of the present invention is to provide a linear motor equipped with a cooling mechanism that does not necessarily require a fiber reinforced plastic containing.
  • the linear motor according to the present invention is a linear motor including a stator and a mover, and the stator has two opposing plate-like portions that are magnetically coupled with a moving range of the mover in between.
  • the plurality of tooth portions are movable so that the tooth portions of one plate-like portion and the tooth portions of the other plate-like portion are staggered.
  • a plurality of permanent magnets and a plurality of yokes are alternately arranged in the coil along the movement direction, and the mover is arranged adjacent to each other via the yoke.
  • the magnets are magnetized in directions facing each other, and further include a cooling unit that cools the coil.
  • the mover has a plurality of permanent magnets and a plurality of yokes alternately arranged in the coil along the moving direction of the mover. Since the permanent magnet is disposed only on the mover, the amount of permanent magnet to be used does not increase even when the total length of the linear motor is increased. Moreover, it has a cooling unit for cooling the coil, and it is possible to remove the heat generated by the coil.
  • the linear motor according to the present invention is characterized in that the cooling part has a cooling pipe, and the cooling pipe is arranged on the outer surface of the coil.
  • the cooling part has a cooling pipe, and the cooling pipe is disposed on the outer surface of the coil, so that the heat generation of the coil can be removed with a simple structure.
  • the length of the coil and the cooling pipe in the direction perpendicular to the two plate-like portions is the length of the permanent magnet and the yoke in the direction perpendicular to the two plate-like portions. It is characterized by the following.
  • the gap between the yoke and the tooth portion can be reduced, so that the thrust can be increased.
  • the linear motor according to the present invention is characterized in that the cooling part is a cooling jacket containing the coil.
  • the cooling portion is a cooling jacket that encloses the coil, the coil can be efficiently cooled from the entire outer surface of the coil.
  • the length of the cooling jacket in the direction perpendicular to the two plate-like portions is equal to or less than the length of the permanent magnet and the yoke in the direction perpendicular to the two plate-like portions. It is characterized by that.
  • the gap with the tooth portion can be reduced, so that the thrust can be increased.
  • the linear motor according to the present invention is characterized in that the mover has two permanent magnets and three yokes.
  • the mover since the mover has a minimum configuration having two permanent magnets and three yokes, the dimension of the mover in the moving direction can be further reduced. In other words, the pitch of the teeth on the stator side can be relatively increased. Further, since permanent magnets are not used for the stator, the amount of permanent magnets used does not increase even when the total length of the linear motor is long.
  • the linear motor according to the present invention is characterized in that a yoke sandwiched between the two permanent magnets is longer in the moving direction than the other two yokes.
  • the yoke sandwiched between the two permanent magnets is longer in the moving direction than the other two yokes that are in contact with only one permanent magnet.
  • the length in the direction of movement that is, the length of the portion facing the teeth, is determined according to the amount of magnetic flux exchanged with the permanent magnet, so even if the amount of current flowing through the coil increases, the yoke is less likely to cause magnetic saturation. As a result, thrust reduction can be suppressed.
  • the linear motor according to the present invention is characterized in that the length of the yoke sandwiched between the two permanent magnets is twice as long as the other two yokes.
  • the length in the moving direction of the yoke sandwiched between two permanent magnets is twice as long as the other two yokes that are optimal for the amount of magnetic flux flowing. While reducing the length in the moving direction, it is possible to relax the magnetic saturation of the yoke and obtain a large thrust linear motor.
  • the linear motor according to the present invention is a linear motor including a stator and a mover, and the stator has two opposing plate-like portions that are magnetically coupled with a moving range of the mover in between.
  • the plurality of tooth portions are movable so that the tooth portions of one plate-like portion and the tooth portions of the other plate-like portion are staggered.
  • the mover has a cooling unit and a plurality of unit movers, and each unit mover has three coils arranged along the move direction, A plurality of permanent magnets and a plurality of yokes are alternately arranged in the coil along the moving direction, and the permanent magnets adjacent via the yoke are magnetized in directions facing each other. To do.
  • the mover has a plurality of permanent magnets and a plurality of yokes alternately arranged in the coil along the moving direction of the mover. Since the permanent magnet is disposed only on the mover, the amount of permanent magnet to be used does not increase even when the total length of the linear motor is increased. Moreover, it has a cooling unit for cooling the coil, and it is possible to remove the heat generated by the coil.
  • each cooling section is provided corresponding to each unit mover, and each cooling section has a hollow shape including the coils, and the plurality of permanent magnets and the plurality of yokes. It is characterized by surrounding.
  • the cooling unit contains the coil, the coil can be efficiently cooled.
  • the linear motor according to the present invention is characterized in that the cooling portion is hollow, includes all the coils of the mover, and surrounds the plurality of permanent magnets and the plurality of yokes.
  • the cooling unit since the cooling unit includes all the coils, the coils can be efficiently cooled.
  • the mover is configured to include a plurality of permanent magnets and a plurality of yokes, it is possible to reduce the size of the mover in the moving direction, and no magnet is used for the stator. Therefore, even when the total length of the linear motor is long, there is an effect that the amount of magnets used does not increase. Furthermore, by providing the coil cooling unit, the coil is efficiently cooled, and the effect of suppressing the reduction in thrust is achieved.
  • FIG. 1 is a partially broken perspective view showing an example of a schematic configuration of a linear motor according to Embodiment 1.
  • FIG. 3 is an explanatory diagram illustrating a configuration example of a mover of the linear motor according to Embodiment 1.
  • FIG. 3 is an explanatory diagram illustrating a configuration example of a mover of the linear motor according to Embodiment 1.
  • FIG. 1 is a cross-sectional view illustrating a schematic configuration of a linear motor according to a first embodiment.
  • 1 is a side view illustrating a schematic configuration of a linear motor according to a first embodiment.
  • FIG. 4 is a diagram for explaining the principle of thrust generation of the linear motor according to the first embodiment.
  • FIG. 4 is a diagram for explaining the principle of thrust generation of the linear motor according to the first embodiment.
  • FIG. 4 is a diagram for explaining the principle of thrust generation of the linear motor according to the first embodiment.
  • 6 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to Embodiment 2.
  • FIG. 6 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to Embodiment 2.
  • FIG. It is explanatory drawing which shows the structural example of the needle
  • 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to Embodiment 3.
  • FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to Embodiment 3.
  • FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to a fourth embodiment.
  • FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to a fourth embodiment.
  • Embodiment 4 it is explanatory drawing which shows the structural example of the needle
  • FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to a fifth embodiment.
  • FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to a fifth embodiment.
  • Embodiment 5 it is explanatory drawing which shows the structural example of the needle
  • FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to a fourth embodiment.
  • Embodiment 5 it is explanatory drawing which shows the structural example of the
  • FIG. 10 is a plan view illustrating a configuration example of a mover of a linear motor according to a sixth embodiment. It is explanatory drawing about the magnetic saturation of the yoke of a needle
  • FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to a seventh embodiment.
  • FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to a seventh embodiment.
  • FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to an eighth embodiment.
  • FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to an eighth embodiment.
  • FIG. 1 is a partially broken perspective view showing an example of a schematic configuration of the linear motor according to the first embodiment.
  • 2A and 2B are explanatory diagrams illustrating a configuration example of the mover 1 of the linear motor according to the first embodiment.
  • 2A is a plan view of the mover 1
  • FIG. 2B is a cross-sectional view taken along the line II-II of FIG. 2A.
  • FIG. 3 is a cross-sectional view showing a schematic configuration of the linear motor according to the first embodiment.
  • FIG. 4 is a side view showing a schematic configuration of the linear motor according to the first embodiment.
  • the linear motor includes a mover 1 and a stator 2.
  • the mover 1 includes three yokes 1b, two permanent magnets 1c and 1d, a coil 1a surrounding them, and a cooling pipe 11 surrounding the coil 1a.
  • the yoke 1b, the permanent magnet 1c, and the permanent magnet 1d are substantially the same shape and have a substantially rectangular parallelepiped shape. As shown in FIG. 1 or 2, the yoke 1b, the permanent magnet 1c, the yoke 1b, the permanent magnet 1d, the yoke 1b, and the yoke 1b, the permanent magnet 1c, or the permanent magnet 1d are alternately arranged in the connecting direction.
  • the yoke 1b, the permanent magnet 1c, and the permanent magnet 1d are aligned and connected so that the short sides are aligned and the long sides are in contact, and the coil 1a is wound around the periphery.
  • the cooling pipe 11 has a substantially rectangular frame shape and is provided in contact with the outer surface of the coil 1a.
  • the yoke 1b is disposed so as to sandwich the permanent magnet 1c and the permanent magnet 1d.
  • the white arrows shown in the permanent magnets 1c and 1d in FIGS. 2 and 4 indicate the magnetization directions of the permanent magnets 1c and 1d.
  • the end point of the white arrow indicates the N pole, and the start point indicates the S pole.
  • the permanent magnet 1c and the permanent magnet 1d are magnetized along the coupling direction, and the magnetization directions are opposed to each other.
  • the configuration in which the mover 1 includes three yokes 1b, one permanent magnet 1c, and one permanent magnet 1d as in the present embodiment is the minimum configuration of the mover 1.
  • the cooling pipe 11 surrounding the outer surface of the coil 1a is for cooling the coil 1a.
  • the cooling pipe 11 includes a liquid supply port 11a through which a refrigerant is sent by a pump provided in a cooling circuit (not shown), and a liquid discharge port 11b that discharges the refrigerant to the cooling circuit.
  • a perfluoropolyether refrigerant cooled by a heat exchanger (not shown) flows.
  • the refrigerant supplied from the liquid supply port 11a contacts the outer surface of the coil 1a, flows in the cooling pipe 11 surrounding the coil 1a, and is discharged from the liquid discharge port 11b. Thereby, it becomes possible to cool the whole coil 1a efficiently.
  • the cooling pipe 11 is preferably made of a nonmagnetic metal such as stainless steel, for example. Further, it is possible to efficiently cool only the coil that generates heat when energized. Since it is a pipe, the structure for allowing the refrigerant to pass therethrough is simple, and the weight of the cooling unit can be reduced. Moreover, it is not limited to nonmagnetic metals, and may be composed of fiber reinforced plastics or ceramics containing glass fibers or carbon fibers, and may be appropriately set to withstand the acceleration / deceleration speed of the mover 1 or the pressure of the refrigerant. Depending on the case, hard plastic may be used.
  • the refrigerant may be a fluorine-based inert liquid other than perfluoropolyether or a natural refrigerant (pure water).
  • the vertical lengths of the permanent magnet 1c, the permanent magnet 1d, and the yoke 1b are longer than the vertical lengths of the coil 1a and the cooling pipe 11. These lengths may be the same.
  • the stator 2 has a substantially U-shaped cross section (U shape).
  • the stator 2 connects two plate-like portions (upper plate portion 21 and lower plate portion 22) that are parallel to each other with a predetermined distance therebetween, and connects the upper plate portion 21 and the lower plate portion 22.
  • a side plate portion 23 having a plate shape is included.
  • the upper plate portion 21 and the lower plate portion 22 of the stator 2 are magnetically coupled by the side plate portion 23.
  • the upper plate portion 21 includes a plurality of tooth portions 21 a on one surface facing the lower plate portion 22.
  • a plurality of tooth portions 21a are juxtaposed at predetermined intervals.
  • the lower plate portion 22 includes a plurality of tooth portions 22 a on the surface facing the upper plate portion 21.
  • a plurality of tooth portions 22a are juxtaposed at predetermined intervals.
  • the tooth part 21a and the tooth part 22a have a substantially rectangular parallelepiped shape.
  • the stator 2 is formed by bending a flat soft magnetic metal, for example, a rolled steel material. In addition to forming the stator 2 by bending, a flat rolled steel material may be joined and fixed by welding, screwing, or the like.
  • the upper plate portion 21, the lower plate portion 22, and the side plate portion 23 may be formed by laminating soft magnetic metal plates such as steel plates.
  • the tooth portion 21a and the tooth portion 22a are each formed in a rectangular parallelepiped shape by laminating soft magnetic metal plates such as steel plates.
  • the tooth portions 21a and the tooth portions 22a formed in a rectangular parallelepiped shape are joined and fixed to the upper plate portion 21 and the lower plate portion 22 by welding or screwing, respectively.
  • a groove may be provided on one surface of the magnetic steel plate formed in a substantially U shape at a predetermined interval by digging or the like, and the formed land portion may be used as the tooth portion 21a and the tooth portion 22a. If it does in this way, it will become possible to reduce the number of parts of the stator 2 compared with the case where a tooth part is fixed by welding etc. by joining or screwing.
  • slits may be formed in the plate-like member at a predetermined interval, and portions sandwiched between the two slits may be used as the tooth portion 21a and the tooth portion 22a.
  • the plate-like member may be formed in a comb shape, and the comb teeth may be used as the tooth portion 21a and the tooth portion 22a.
  • stator 2 it is not an essential requirement of the stator 2 to be installed in the direction shown in FIG. It can be used in any orientation that can be installed. It may be placed upside down, placed in a U shape, or placed in a U shape upside down. Between the upper plate portion 21 and the lower plate portion 22 of the stator 2 configured as described above, the mover 1 moves in the direction in which the tooth portions 21a and the tooth portions 22a are arranged.
  • the tooth portion 21a and the tooth portion 22a have the same shape and the same dimensions.
  • the ratio between the length L1 of the tooth portion 21a (tooth portion 22a) along the moving direction of the mover 1 and the distance L2 between the two tooth portions 21a (tooth portion 22a) is 1: 1. That is, the width L1 in the juxtaposed direction of the tooth portion 21a (tooth portion 22a) is the same length as the juxtaposed interval L2 of the tooth portion 21a (22a).
  • the width of the mover 1 in the moving direction excluding the coil 1a and the cooling pipe 11 is narrower than the width (L1 + L2) of the width L1 of the tooth portion 21a (22a) and the interval L2 of the two tooth portions 21a (22a). It is.
  • the length of the tooth portion 21a and the tooth portion 22a in the left-right direction in the drawing is slightly longer than the yoke 1b and the permanent magnets 1c and 1d.
  • the air gap is virtually shortened by the fringing magnetic flux, and the magnetic flux from the permanent magnet 1c and the permanent magnet 1d of the mover 1 can be efficiently passed through the stator 2.
  • the lengths of the tooth portions 21a and the tooth portions 22a may be the same as the lengths of the yoke 1b, the permanent magnet 1c, and the permanent magnet 1d.
  • the tooth part 21a and the tooth part 22a are respectively arranged on the opposing surface side of the upper plate part 21 and the lower plate part 22 facing the stator 2 at equal intervals (L2).
  • the longitudinal direction of the tooth part 21a and the tooth part 22a is arranged substantially perpendicular to the moving direction of the mover 1.
  • the tooth portions 21a and the tooth portions 22a are arranged in a staggered manner (in a zigzag manner) along the moving direction of the mover 1 so that the central portions in the moving direction of the mover 1 on the surfaces facing each other do not overlap. .
  • no thrust is generated in the mover 1.
  • one surface of the mover 1 faces the tooth portion 21a, and the other surface faces the tooth portion 22a.
  • One of the yokes 1b arranged before and after the moving direction is opposed to the tooth portion 21a, and the other is opposed to the tooth portion 22a.
  • the central yoke 1b faces both the tooth portions 21a and 22a.
  • One tooth portion 21a and one tooth portion 22a are provided for each magnetic period.
  • the tooth portion 21a and the tooth portion 22a are provided at different positions (positions shifted by 1/2 magnetic cycle) at an electrical angle of 180 degrees. Length in the direction perpendicular to the moving direction of the mover 1 of the yoke 1b and the permanent magnet 1c and permanent magnet 1d (in FIG.
  • the direction perpendicular to the paper surface, in FIG. 3, the length in the vertical direction of the paper surface: the upper plate portions facing each other 21 and the length of the plate surface of the lower plate portion 22 in the normal direction) are preferably substantially the same.
  • the magnetic flux of the yoke 1b in the portion protruding from the permanent magnet 1c and the permanent magnet 1d is applied to the plate surface of the upper plate portion 21 or the lower plate portion 22. It does not flow in the normal direction but leaks in a direction parallel to the plate surface.
  • the amount of magnetic flux flowing from the yoke 1b to the tooth portion 21a or 22a of the stator 2 is reduced, and the thrust is reduced.
  • the length of the permanent magnet 1c and the permanent magnet 1d in the direction perpendicular to the moving direction of the mover 1 is longer than that of the yoke 1b, the plate surface of the upper plate portion 21 or the lower plate portion 22 of the magnetic flux contributing to thrust. Since it becomes difficult to secure a vertical component with respect to, thrust loss occurs.
  • the thrust of the present invention depends on the amount of magnetic flux flowing between the yoke 1b and the tooth portion 21a and between the yoke 1b and the tooth portion 22a, the permanent magnet 1c and the permanent magnet 1d are projected.
  • the distance between the tooth portion 21a and the yoke 1b and the distance between the tooth portion 22a and the yoke 1b are increased, and the thrust is reduced.
  • the yoke 1b or the permanent magnet 1c or the permanent magnet 1d protrudes, the heat conduction of the protruding portion is deteriorated, and the cooling efficiency is lowered.
  • substantially the same means that the dimensions are the same in designing the structure.
  • it since it includes a processing error due to processing equipment, it is described as substantially the same after including a tolerance in design dimension setting.
  • FIG. 5 are diagrams for explaining the principle of thrust generation of the linear motor according to the first embodiment.
  • the portion along the moving direction of the coil 1a and the cooling pipe 11 of the mover 1 is omitted, and only the cross section of the portion orthogonal to the moving direction is shown.
  • An alternating current is passed through the coil 1a of the mover 1.
  • black circles indicate energization from the back of the paper to the front, and crosses indicate energization from the front to the back of the paper.
  • the coil 1a is energized (showing the direction of the current at a certain time when an alternating current is passed)
  • a magnetic flux as shown by the dotted line in FIG. 5 is generated.
  • the magnetic flux flowing from the tooth portion 21a flows into the yokes 1b at both ends, passes through the permanent magnets 1c and 1d, and the yoke 1b in the central portion. Gathered to the tooth portion 22a. If it does in this way, the space
  • one movable element 1 is driven in a single phase, and the pitch of the tooth portions per phase can be relatively increased.
  • the thrust waveform per single phase needs to be substantially a sine wave. It is also necessary to ensure thrust.
  • the pitch is narrowed, the drive frequency is increased and the iron loss of the linear motor itself increases, but the tooth pitch is increased by the configuration of the first embodiment. Can do.
  • the configuration of the present invention in which the plurality of yokes 1b, the plurality of permanent magnets 1c, and the permanent magnet 1d are surrounded by the coil 1a does not increase the number of permanent magnets even when the linear motor becomes long.
  • the flow of magnetic flux as indicated by the dotted line is generated in the mover 1 in FIG. That is, the magnetic flux generated in the left and right yokes 1b passes through the permanent magnet 1c or the permanent magnet 1d and flows into the tooth portion 22a from the central yoke 1b.
  • the magnetic flux flowing into the tooth portion 22a passes through the lower plate portion 22, the side plate portion 23, and the upper plate portion 21, flows into the left and right yokes 1b from the tooth portion 21a, and the above-described magnetic flux loop is generated.
  • the tooth portion 21a is excited to the N pole and the tooth portion 22a is excited to the S pole.
  • each yoke 1b has a single pole.
  • the central yoke 1b is excited to the N pole, and the left and right yokes 1b are excited to the S pole.
  • the tooth portion 21a of the stator 2 is excited to the N pole, and the tooth portion 22a is excited to the S pole.
  • the magnetic pole generated in the tooth portion 21a and the tooth portion 22a and the magnetic pole of the yoke 1b excited by the permanent magnet 1c and the permanent magnet 1d are attracted or repelled, so that a thrust toward the left in FIG. To do.
  • FIG. 7 shows a state where the mover 1 has advanced a distance corresponding to an electrical angle of 180 degrees from the state of FIG.
  • the direction of the current flowing through the coil 1a is reversed.
  • the flow of magnetic flux in FIG. 7 is in the opposite direction to the flow of magnetic flux shown in FIG.
  • an S pole is generated at the tooth portion 21a
  • an N pole is generated at the tooth portion 22a. Since the excitation of the yoke 1b by the permanent magnet 1c and the permanent magnet 1d does not change, the tooth portion 21a and the tooth portion 22a that are attracted / repulsed are opposite to those in FIG.
  • a suction force is generated in the direction of the arrow shown in FIG.
  • the end effect means that in a linear motor, the influence of magnetic attraction and repulsive force generated at both ends of the mover affects the thrust characteristics (cogging characteristics, detent characteristics) of the motor.
  • measures such as making the shape of the tooth portions at both ends different from other shapes have been taken.
  • the end effect occurs because the magnetic flux loop flows in the same direction as the moving direction (see FIG. 2 of Patent Document 1).
  • the loop magnetic flux loop
  • the loop magnetic flux loop
  • the stator 2 does not need a permanent magnet, and the permanent magnet 1c and the permanent magnet 1d are used only for the mover 1. Therefore, even when the total length of the linear motor is lengthened, the amount of permanent magnets to be used does not increase and becomes constant, and the cost can be reduced. In addition, the influence of the end effect can be reduced.
  • the mover 1 has a minimum configuration of two yokes 1b, three permanent magnets 1c, and one permanent magnet 1d.
  • a cooling pipe 11 is provided so as to be in contact with the outer surface of the coil 1a and surround the coil 1a, and the refrigerant flows through the cooling pipe 11.
  • the movable element 1 is entirely sandwiched between the upper plate portion 21 and the lower plate portion 22, but in the present invention, the permanent magnet 1c, the permanent magnet 1d, and The yoke 1b only needs to be sandwiched between the upper plate portion 21 and the lower plate portion 22. A part or all of the coil 1 a may protrude from the stator 2 and may not be sandwiched between the upper plate portion 21 and the lower plate portion 22.
  • the yoke 1b, the permanent magnet 1c, and the permanent magnet 1d are rectangular parallelepiped, it is not limited thereto. Any magnetic flux circuit may be used as long as the magnetic flux generated by the excitation of the coil 1a constitutes a magnetic loop circuit in cooperation with the stator 2.
  • the yoke 1b, the permanent magnet 1c, and the permanent magnet 1d may be regular hexahedrons.
  • Embodiment 2 8A and 8B are explanatory views showing a configuration example of the mover 1 of the linear motor according to the second embodiment.
  • FIG. 8A is a plan view showing a configuration example of the mover 1.
  • 8B is a cross-sectional view taken along line VIII-VIII in FIG. 8A.
  • the movable element 1 in which the longitudinal lengths of the yoke 1b and the permanent magnets 1c and 1d in the first embodiment are increased.
  • mover 1 in the case of a three-phase drive is shown. Since other configurations are the same as those of the first embodiment, differences from the first embodiment will be mainly described in the following description.
  • the mover 1 according to the second embodiment is configured by arranging three similar single-phase units 1U, 1V, and 1W along the moving direction.
  • the single phase unit corresponding to the U phase is 1 U
  • the single phase unit corresponding to the V phase is 1 V
  • the single phase unit corresponding to the W phase is 1 W.
  • FIG. 9 is an explanatory view showing a configuration example of the mover 1 attached to the mover base 4.
  • the mover base 4 has a rectangular parallelepiped shape. On one surface of the mover base 4, grooves for fixing the single-phase units 1U, 1V, 1W are provided. The single-phase units 1U, 1V, and 1W are fitted and fixed in the grooves.
  • the mover base 4 is made of a nonmagnetic material such as aluminum or nonmagnetic stainless steel. When the mover base 4 is attached to a linear guide or the like, the mover 1 moves directly between the two plate-like portions 21 and 22 of the stator 2 facing each other.
  • the mover base 4 includes a liquid supply port 4a, a flow path 4b, and a liquid discharge port 4c.
  • a single-phase unit 1U, 1V, 1W cooling pipe 11 is connected to the middle of the flow path 4b.
  • the flow path 4b may be a metal pipe embedded in the movable element base 4.
  • the movable element base 4 is constituted by a member divided into two in the thickness direction, grooves are engraved on one surface of each member, the surfaces provided with the grooves are joined together, and the movable element is formed by the engraved grooves.
  • a space formed inside the base 4 may be used as the flow path 4b.
  • the liquid supply port 4a is connected to a cooling circuit (not shown), and a refrigerant is supplied from a pump (not shown).
  • the refrigerant supplied from the liquid supply port 4a is discharged from the liquid discharge port 4c through the following path and returns to the cooling circuit.
  • the refrigerant supplied from the liquid supply port 4a flows through the flow path 4b and flows into the cooling pipe 11 of the single-phase unit 1U from the liquid supply port 11a of the single-phase unit 1U.
  • the refrigerant flowing through the cooling pipe 11 is discharged from the liquid discharge port 11b of the single-phase unit 1U to the flow path 4b of the mover base 4.
  • the discharged refrigerant flows into the cooling pipe 11 of the single-phase unit 1V from the liquid supply port 11a of the single-phase unit 1V through the flow path 4b.
  • the refrigerant that has flowed through the cooling pipe 11 is discharged from the liquid discharge port 11b of the single-phase unit 1V to the flow path 4b of the mover base 4.
  • the discharged refrigerant flows into the cooling pipe 11 of the single-phase unit 1W from the liquid supply port 11a of the single-phase unit 1W via the flow path 4b.
  • the refrigerant that has flowed through the cooling pipe 11 is discharged to the flow path 4b of the mover base 4 from the liquid discharge port 11b of the single-phase unit 1W.
  • the discharged refrigerant passes through the flow path 4b and is discharged to the outside of the mover base 4 through the liquid discharge port 4c. As described above, when the refrigerant flows, the coils 1a of the single-phase units 1U, 1V, and 1W are cooled.
  • the cooling pipe 11 may be provided only in a portion protruding from the mover base 4 in FIG.
  • the part indicated by the dotted line in FIG. 9 may be a part different from the cooling pipe 11.
  • the refrigerant flows through a flow path formed in the mover base 4.
  • the linear motor according to the second embodiment has the following effects in addition to the effects exhibited by the linear motor according to the first embodiment. Since the longitudinal lengths of the yoke 1b and the permanent magnets 1c, 1d of the mover 1 are increased, a larger thrust can be obtained. Further, when the movable element 1 of the three-phase drive is used, a larger thrust can be obtained as compared with the case of the single phase.
  • Embodiment 3 10A and 10B are explanatory diagrams illustrating a configuration example of the mover 1 of the linear motor according to the third embodiment.
  • FIG. 10A is a plan view illustrating a configuration example of the mover 1.
  • FIG. 10B is a cross-sectional view taken along line XX of FIG. 10A.
  • the difference between the third embodiment and the first embodiment is the coil 1a and the cooling structure of the coil 1a.
  • the coil 1a is arranged in a cooling jacket 12 having substantially the same shape as the coil 1a, and the coil 1a is cooled by circulating a refrigerant between the inner wall of the cooling jacket 12 and the coil 1a.
  • the cooling jacket 12 has a rectangular frame shape.
  • a yoke 1b and permanent magnets 1c and 1d are arranged inside the frame shape of the cooling jacket 12.
  • the frame-like portion of the cooling jacket 12 is a tube having a rectangular cross section.
  • the cross section of the tube in which the coil 1a is housed is slightly larger than the cross section of the coil 1a.
  • the cooling jacket 12 includes a liquid supply port 12 a and a liquid discharge port 12 b through which the refrigerant flows. The refrigerant flowing in from the liquid supply port 12a proceeds through the cooling jacket 12 while cooling the coil 1a in the cooling jacket 12, and is discharged from the liquid discharge port 12b.
  • the cooling jacket 12 may be composed of, for example, two members whose overall shape is divided into two in the thickness direction, and the two members may be joined after the coil 1a is disposed on one of the members.
  • the resin may be molded (for example, injection molding) so as to have a gap between the coil 1a and the inner wall of the cooling jacket 12.
  • the coil 1a is fixed from above and below, right and left, up and down, and left and right by a piece-like protrusion (not shown) protruding from the inner wall of the cooling jacket 12.
  • the coil 1a is cooled only from the outer side surface.
  • the coil 1a is cooled from the inner side surface, the outer side surface, and both end surfaces.
  • the material of the cooling jacket 12 may be a non-magnetic metal, but may be a resin molded one.
  • the resin used for the cooling jacket 12 does not necessarily require a resin obtained by reinforcing the resin with glass fiber or the like, and does not require strength. The strength may be set as appropriate as long as it can withstand the acceleration / deceleration of the mover 1 and withstand the pressure of the necessary refrigerant. Depending on the conditions, hard plastics can also be used. Of course, a resin jacket reinforced with glass fiber may be used.
  • the mover 1 of the linear motor of the present invention excites the yoke 1b of the mover 1 with the coil 1a and moves the mover 1 relative to the stator 2 by interaction with the tooth portions 21a and 22a. Therefore, unlike the linear motor described in Patent Document 2 in which the magnetic force generated by the coil 1a is moved relative to the movable element 1 and the stator 2 by direct interaction with the magnetic force generated by the permanent magnets 1c and 1d, the coil 1a And the permanent magnets 1c and 1d have very little change in stress accompanying the movement of the mover 1.
  • the linear motor according to the third embodiment has the following effects. Since the permanent magnets 1 c and 1 d are used only for the mover 1, even when the total length of the linear motor is increased, the amount of permanent magnets used is constant without increasing, and the cost can be reduced. In addition, the influence of the end effect can be reduced. Further, the mover 1 has a minimum configuration of two yokes 1b and three permanent magnets 1c and 1d. Therefore, it is also possible to increase the width in the moving direction of the permanent magnets 1c and 1d included in the mover 1, and to increase the width in the moving direction of the mover 1 of the tooth portions 21a and 22a. Thereby, it becomes possible to obtain a larger thrust than a stator of the same size having a large number of yokes 1b and permanent magnets 1c and 1d.
  • the coil 1a is disposed in the cooling jacket 12 through which the refrigerant flows, the coil 1a is cooled from the inner side surface, the outer side surface, and both end surfaces, so that the coil 1a can be efficiently cooled. Thereby, it becomes possible to suppress the thrust drop by the heat_generation
  • Embodiment 4 11A and 11B are explanatory views showing a configuration example of the mover 1 of the linear motor according to the fourth embodiment.
  • FIG. 11A is a plan view illustrating a configuration example of the mover 1.
  • 11B is a cross-sectional view taken along line XI-XI in FIG. 11A.
  • the mover 1 of the linear motor according to the fourth embodiment is a three-phase array of movers according to the third embodiment. Since other configurations are the same as those of the third embodiment, description thereof is omitted.
  • FIG. 12 is an explanatory diagram showing a configuration example of the mover 1 attached to the mover base 4 in the fourth embodiment.
  • the difference from the second embodiment shown in FIG. 9 is that the coil 1a is arranged in the cooling jacket 12 having substantially the same shape as the coil 1a, and the refrigerant is circulated between the inner wall of the cooling jacket 12 and the coil 1a. Since the configuration of the mover base 4 is the same as that of the second embodiment, the description thereof is omitted.
  • the linear motor according to the fourth embodiment has the following effects in addition to the effects exhibited by the linear motor according to the third embodiment.
  • Embodiment 5 13A and 13B are explanatory diagrams illustrating a configuration example of the mover 1 of the linear motor according to the fifth embodiment.
  • 13A is a plan view showing a configuration example of the mover 1
  • FIG. 13B is a cross-sectional view taken along line XIII-XIII in FIG. 13A.
  • FIG. 14 is an explanatory diagram showing a configuration example of the mover 1 attached to the mover base 4 in the fifth embodiment.
  • the difference from the second embodiment (FIGS. 8 and 9) is that the number of yokes 1b and permanent magnets 1c and 1d is changed. Omitted.
  • the mover 1 since the number of yokes 1b and permanent magnets 1c and 1d is increased, the mover 1 can be moved more smoothly.
  • FIG. 15 is a plan view showing a configuration example of the mover 1 of the linear motor according to the sixth embodiment.
  • the difference from the first embodiment is the width in the moving direction of the yoke located at the center.
  • the width in the moving direction of the yoke 10b located in the center and the yoke 1b located on the left and right is different.
  • the width d2 of the yoke 10b is twice the width d1 of the yoke 1b. This is to make it difficult for magnetic saturation to occur when the magnetic flux flowing through the yokes 1b and 10b increases as the coil current increases.
  • the yoke 1b located on the left and right exchanges the magnetic flux from one permanent magnet 1c or 1d with the tooth portion 21a or 22a, whereas the yoke 10b located on the center receives the magnetic flux from the two permanent magnets 1c and 1d. Exchanges with the unit 21a or 22a. Therefore, it is preferable that the width d2 of the yoke 10b located at the center is twice the width d1 of the yoke 1b located on the left and right.
  • FIG. 16A and 16B are explanatory diagrams for the magnetic saturation of the yoke of the mover 1.
  • FIG. FIG. 16A shows the case of the mover 1 according to the sixth embodiment.
  • FIG. 16B shows the case of the mover 1 according to the first embodiment.
  • a dotted line from the tooth portion 21a through the yoke 1b, the permanent magnet 1c or 1d to the tooth portion 22a through the yoke 1b or 10b indicates the flow of magnetic flux.
  • the yoke sandwiched between the two permanent magnets 1c and 1d that is, the yoke 10b located in the center, has a wider width (length) in the moving direction than the yoke 1b in the first embodiment.
  • the width d2 is not limited to twice the width d1. If the width d2 is twice or more, the yoke 10b is less likely to be magnetically saturated. However, even if magnetic saturation does not occur at 10b, magnetic saturation occurs at the yokes 1b at both ends, so the width d2 is preferably twice the width d1.
  • width d2 When the width d2 is less than twice, magnetic saturation is less likely to occur in the yoke 10b than when the width d2 is equal to the width d1, but before the yoke 1b at both ends is subjected to magnetic saturation, the magnetic saturation occurs in the yoke 10b. Will happen. Since the dimension in the moving direction of the mover 1 is determined by the widths d1 and d2, how to set the widths d1 and d2 may be determined in consideration of the above points.
  • the pitch between each single-phase unit is n times 2/3 the pitch of the teeth 21a and 22a of the stator 2 (3 minutes). (Integer multiple of 2).
  • the value of the integer n may be set in consideration of the length of each single-phase unit in the moving direction.
  • Embodiment 7 17A and 17B are explanatory views showing a configuration example of the mover 1 of the linear motor according to the seventh embodiment.
  • FIG. 17A is a plan view illustrating a configuration example of the mover 1.
  • FIG. 17B is a cross-sectional view taken along line XVII-XVII in FIG. 17A.
  • the mover 1 of the linear motor according to the seventh embodiment has a configuration in which three unit movers 101, 102, 103 arranged in three phases are connected.
  • Each of the unit movers 101, 102, 103 has a cooling jacket (cooling unit) 12.
  • the cooling jacket 12 has a ladder shape in which rectangular frames are connected.
  • the inside of the cooling jacket 12 is a cavity (hollow).
  • a coil 1 a is disposed inside each cooling jacket 12. That is, the cooling jacket 12 includes a coil.
  • a yoke 1b and permanent magnets 1c and 1d are arranged in each space enclosed by a rectangular frame.
  • each of the unit movers 101, 102, 103 is the same as that of the fourth embodiment.
  • Each phase includes three yokes 1b and a set of permanent magnets 1c and 1d inside the coil 1a.
  • the yoke 1b and the permanent magnets 1c and 1d are alternately arranged along the moving direction.
  • the permanent magnets 1c and 1d sandwiching the central yoke 1b are magnetized along the moving direction, and the directions thereof are opposite to each other.
  • the unit movers 101, 102, and 103 are fixed by the mover base 4 shown in FIG.
  • the cooling jacket 12 is provided with a liquid supply port 12a and a liquid discharge port 12b, respectively.
  • the unit movers 101, 102, and 103 are cooled by supplying the refrigerant from the liquid supply port 12a and discharging the refrigerant from the liquid discharge port 12b.
  • the refrigerant flowing in from the liquid supply port 12a cools the periphery of each coil 1a in the order of the coil 1a close to the liquid supply port 12a, the central coil 1a, and the coil 1a close to the liquid discharge port 12b, and is discharged from the liquid discharge port 12b. Is done.
  • the configuration of the refrigerant flow path, the liquid supply port 12a, and the liquid discharge port 12b is not limited thereto.
  • the liquid supply port 12a may be provided at a position close to the central coil 1a, and the liquid discharge port 12b may be provided at two positions close to the coils 1a on both sides.
  • the refrigerant flowing in from the liquid supply port 12a is divided into two, and one of the divided refrigerants cools one of the central coil 1a and the coil 1a at both ends, and discharges it from one liquid discharge port 12b. The same applies to the cooling of the other coil.
  • the linear motor according to Embodiment 7 has the following effects. Since the mover 1 is composed of the three unit movers 101, 102, and 103, the winding of the coil 1a of each phase included in each unit mover is more than the case where the mover 1 is constituted by one unit mover. Can also be reduced. As a result, the amount of heat generated by the coil 1a can be reduced. By reducing the number of turns of the coil 1a, the thrust generated in each unit mover is reduced, but by increasing the number of unit movers, the thrust of the entire mover 1 can be ensured. By changing the number of unit movers from one to three, it is possible to reduce the number of turns of each coil 1a from 1 ⁇ 4 to 3.
  • the linear motor according to Embodiment 7 is effective when the required specifications are as follows. With one unit mover, the heat generation is too large and the ambient temperature does not meet the specifications. In this case, the cooling can be performed by increasing the flow rate of the refrigerant, but the flow rate of the refrigerant may not be increased in relation to other devices. In such a case, by reducing the number of turns of the coil 1a and reducing the heat generated by each unit mover, it is possible to ensure an appropriate ambient temperature without increasing the flow rate of the refrigerant. Since the number of unit movers is increased instead of increasing the number of windings of the coil 1a, the necessary thrust can be secured.
  • Embodiment 8 18A and 18B are explanatory views showing a configuration example of the mover 1 of the linear motor according to the eighth embodiment.
  • FIG. 18A is a plan view showing a configuration example of the mover 1.
  • 18B is a cross-sectional view taken along line XVIII-XVIII in FIG. 18A.
  • the mover 1 of the linear motor according to the eighth embodiment is different from the mover 1 of the seventh embodiment in the structure of the cooling jacket 12. Since the structure other than the structure of the cooling jacket 12 is the same as that of the seventh embodiment, the following description will mainly focus on the cooling jacket 12.
  • the cooling jacket 12 has a ladder shape in which a plurality of rectangular frame shapes are connected.
  • the inside of the cooling jacket 12 is a cavity.
  • a coil 1 a is disposed inside the cooling jacket 12.
  • a yoke 1b and permanent magnets 1c and 1d are arranged in each space enclosed by a rectangular frame.
  • the cooling jacket 12 has a structure capable of cooling unit movers 101, 102, and 103 having three phases together.
  • the cooling jacket 12 is provided with a liquid supply port 12a and a liquid discharge port 12b.
  • the whole movable element 1 is cooled by supplying the refrigerant from the liquid supply port 12a and discharging the refrigerant from the liquid discharge port 12b.
  • the coolant flow path flows in from the liquid supply port 12a, cools in order from the coil 1a near the liquid supply port 12a to the coil 1a near the liquid discharge port 12b, and then discharges from the liquid discharge port 12b. good.
  • you may provide a bypass and a branch in a flow path.
  • a plurality of liquid supply ports 12a and a plurality of liquid discharge ports 12b may be provided.
  • the linear motor according to the eighth embodiment has the following effects in addition to the effects exhibited by the linear motor according to the seventh embodiment.
  • the cooling jacket 12 is integrated, it is possible to efficiently cool the mover 1 as a whole by providing a bypass and a branch.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Linear Motors (AREA)

Abstract

A linear motor is provided in which, even when the total length of the linear motor is large, the movable element is smaller and lighter without the use of additional magnets, and which further has a cooling mechanism. This linear motor is provided with a stator (2) and a movable element (1), and the stator (2) has two plate sections (an upper plate section (21) and a lower plate section (22)) which are magnetically coupled and opposite of each other, the movement region of the movable element (1) being therebetween. On each of the facing surfaces of said two plate sections (21, 22), multiple teeth (21a, 22a) are arranged in a row in the movement direction of the movable element (1) such that the teeth (21a) on one plate section (21) and the teeth (22a) on the other plate section (22) are staggered. The movable element (1) is configured such that multiple magnets (1c, 1d) and multiple yokes (1b) are arranged alternately within a coil (1a) along the movement direction, the magnets (1c, 1d) that are adjacent with a yoke (1b) interposed therebetween are magnetized in opposite directions to each other, and further, and the movable element (1) comprises a cooling unit (a cooling pipe (11)) which cools the coil (1a).

Description

リニアモータLinear motor
 本発明はリニアモータに関する。 The present invention relates to a linear motor.
 例えば、半導体製造装置、液晶表示装置の製造分野においては、大面積の基板等の処理対象物を高速度にて直線移動させ、適宜の移動位置にて高精度に位置決めすることができる送り装置が必要である。この種の送り装置は、一般的には、駆動源としてのモータの回転運動をボールねじ機構等の運動変換機構により直線運動に変換して実現されるが、運動変換機構が介在することから、移動速度の高速化に限界がある。また運動変換機構の機械的な誤差の存在により、位置決め精度も不十分であるという問題がある。 For example, in the field of manufacturing semiconductor manufacturing devices and liquid crystal display devices, there is a feeding device that can linearly move an object to be processed such as a large-area substrate at a high speed and accurately position the object at an appropriate moving position. is necessary. This type of feeding device is generally realized by converting the rotational motion of a motor as a drive source into a linear motion by a motion conversion mechanism such as a ball screw mechanism, but since a motion conversion mechanism is interposed, There is a limit to increasing the moving speed. There is also a problem that positioning accuracy is insufficient due to the presence of mechanical errors in the motion conversion mechanism.
 この問題に対応するため、近年においては、直線運動出力が直接的に取り出し可能なリニアモータを駆動源とする送り装置が使用されている。リニアモータは、直線状の固定子と該固定子に沿って移動する可動子とを備えている。前述した送り装置においては、板状の永久磁石を一定間隔毎に多数並設して固定子を構成し、磁極歯と通電コイルとを備える電機子を可動子としたムービングコイル型のリニアモータ(例えば、特許文献1参照)が使用されている。 In order to cope with this problem, in recent years, a feeding device using a linear motor that can directly extract linear motion output as a driving source has been used. The linear motor includes a linear stator and a mover that moves along the stator. In the above-described feeding device, a moving coil type linear motor (a moving coil type linear motor) in which a large number of plate-like permanent magnets are arranged in parallel at regular intervals to constitute a stator, and an armature having magnetic pole teeth and energizing coils is used as a mover. For example, Patent Document 1) is used.
 ムービングコイル型のリニアモータでは、固定子に磁石を配置するため、リニアモータの全長が長くなるほど(可動子の移動距離が長くなるほど)、使用する磁石の量が増える。近年、希土類の価格上昇に伴い、使用する磁石量の増加は、コスト増加の原因となっていた。 In the moving coil type linear motor, since the magnet is arranged on the stator, the amount of magnet to be used increases as the total length of the linear motor becomes longer (the moving distance of the mover becomes longer). In recent years, with the increase in the price of rare earths, an increase in the amount of magnets used has caused an increase in cost.
 また、リニアモータは、可動子に使用するコイルへの通電により発熱する。発熱によりコイルの電気抵抗が増加すると推力が低減する。この推力の低減を抑制するために、リニアモータは、コイルの冷却機構を備える必要がある。このような問題に対応して、ムービングコイル型のリニアモータの冷却機構として、コイル全体をジャケットで覆い、ジャケット内部に冷媒を流すものが提案されている(特許文献2)。 Also, the linear motor generates heat when the coil used for the mover is energized. When the electric resistance of the coil increases due to heat generation, the thrust decreases. In order to suppress this reduction in thrust, the linear motor needs to include a coil cooling mechanism. In response to such a problem, a cooling mechanism for a moving coil type linear motor has been proposed in which the entire coil is covered with a jacket and a refrigerant flows inside the jacket (Patent Document 2).
特開平3-139160号公報JP-A-3-139160 特開2009-219206号公報JP 2009-219206 A
 リニアモータにおいては、固定子と可動子との間に作用する磁力によって、可動子を固定子に対して進行させる推力だけではなく、固定子と可動子とを互いに近付ける向きの吸引力および互いに引き離す向きの反発力が発生する。このような吸引力および反発力によって、固定子及び可動子には応力が発生する。そのため、冷却のために内部に冷媒を通過させるジャケットをコイルに装着した場合、ジャケットには発生する応力に耐えうる剛性が必要である。一方、コイルが可動するタイプのリニアモータにおいて、可動子を軽量とすることで推力のロスを抑えることができる。よって可動子に取り付けるジャケットも軽量である必要がある。したがって、ジャケットを軽量とするために樹脂等で成形する場合、ジャケット全体の剛性を確保するために、樹脂等をガラス繊維で補強する必要があり、コストの上昇を招いていた。
 さらには空芯コイルの中空部にジャケットの補強のための構造(特許文献2ではコア部と呼称)を必要としジャケット構造が複雑であった。
In a linear motor, the magnetic force acting between the stator and the mover separates not only the thrust force that moves the mover relative to the stator, but also the attracting force in the direction in which the stator and the mover are brought close to each other, and pulling them apart from each other. A repulsive force in the direction is generated. Stress is generated in the stator and the mover due to the suction force and the repulsive force. For this reason, when a jacket that allows a refrigerant to pass therethrough is attached to the coil for cooling, the jacket needs to be rigid enough to withstand the generated stress. On the other hand, in a linear motor of a type in which the coil is movable, the loss of thrust can be suppressed by making the mover lightweight. Therefore, the jacket attached to the mover also needs to be lightweight. Therefore, when molding the jacket with a resin or the like in order to reduce the weight of the jacket, it is necessary to reinforce the resin or the like with glass fibers in order to ensure the rigidity of the entire jacket, leading to an increase in cost.
Furthermore, a structure for reinforcing the jacket (referred to as a core part in Patent Document 2) is required in the hollow part of the air-core coil, and the jacket structure is complicated.
 本発明は上述のごとき事情に鑑みてなされたものであり、リニアモータの全長が長くても磁石の使用量が増加せず、可動子の小型化及び軽量化を実現できるとともに、可動子の発熱を抑えることができる。また可動子の冷却に際しジャケット等の樹脂成形工程を伴うことなくパイプ状の簡単な構成で冷却できる構造を有し、更に樹脂成形のジャケットで冷却を行う際でも、樹脂であるジャケットにガラス繊維等を含有させた繊維強化プラスチックは必ずしも必要のない、冷却機構を具備したリニアモータを提供することを目的とする。 The present invention has been made in view of the circumstances as described above, and even if the total length of the linear motor is long, the amount of use of the magnet does not increase, and the miniaturization and weight reduction of the mover can be realized, and the heat generation of the mover. Can be suppressed. Also, it has a structure that can be cooled with a simple pipe-like structure without a resin molding process such as a jacket when cooling the mover, and even when cooling with a resin molded jacket, glass fiber etc. An object of the present invention is to provide a linear motor equipped with a cooling mechanism that does not necessarily require a fiber reinforced plastic containing.
 本発明に係るリニアモータは、固定子及び可動子を備えたリニアモータにおいて、前記固定子は、前記可動子の移動域を間にして、磁気的に結合した対向する2つの板状部を有し、該2つの板状部の互いに対向する面それぞれには、複数の歯部が、一方の板状部の歯部と他方の板状部の歯部とで千鳥状となるように前記可動子の移動方向に並設してあり、前記可動子は、コイル内部に、前記移動方向に沿って複数の永久磁石及び複数のヨークが交互に配列してあり、前記ヨークを介して隣り合う永久磁石は、互いに対向する向きに磁化されており、さらに、前記コイルを冷却する冷却部を有することを特徴とする。 The linear motor according to the present invention is a linear motor including a stator and a mover, and the stator has two opposing plate-like portions that are magnetically coupled with a moving range of the mover in between. In each of the opposing surfaces of the two plate-like portions, the plurality of tooth portions are movable so that the tooth portions of one plate-like portion and the tooth portions of the other plate-like portion are staggered. A plurality of permanent magnets and a plurality of yokes are alternately arranged in the coil along the movement direction, and the mover is arranged adjacent to each other via the yoke. The magnets are magnetized in directions facing each other, and further include a cooling unit that cools the coil.
 本発明にあっては、可動子はコイル内部に、前記可動子の移動方向に沿って複数の永久磁石及び複数のヨークが交互に配置してある。永久磁石は可動子にのみ配置するので、リニアモータの全長を長くした場合でも、使用する永久磁石の量は増加しない。また、コイルを冷却する冷却部を有しておりコイルの発熱を取り除くことが可能となる。 In the present invention, the mover has a plurality of permanent magnets and a plurality of yokes alternately arranged in the coil along the moving direction of the mover. Since the permanent magnet is disposed only on the mover, the amount of permanent magnet to be used does not increase even when the total length of the linear motor is increased. Moreover, it has a cooling unit for cooling the coil, and it is possible to remove the heat generated by the coil.
 本発明に係るリニアモータは、前記冷却部は冷却パイプを有し、該冷却パイプは前記コイルの外側面に配してあることを特徴とする。 The linear motor according to the present invention is characterized in that the cooling part has a cooling pipe, and the cooling pipe is arranged on the outer surface of the coil.
 本発明にあっては、冷却部は冷却パイプを有し、当該冷却パイプはコイルの外側面に配置するので、簡単な構造でコイルの発熱を取り除くことができる。 In the present invention, the cooling part has a cooling pipe, and the cooling pipe is disposed on the outer surface of the coil, so that the heat generation of the coil can be removed with a simple structure.
 本発明に係るリニアモータは、前記コイルおよび前記冷却パイプの前記2つの板状部に垂直な方向の長さは、前記永久磁石及び前記ヨークの前記2つの板状部に垂直な方向の長さ以下であることを特徴とする。 In the linear motor according to the present invention, the length of the coil and the cooling pipe in the direction perpendicular to the two plate-like portions is the length of the permanent magnet and the yoke in the direction perpendicular to the two plate-like portions. It is characterized by the following.
 本発明にあっては、前記ヨーク及び前記永久磁石がコイル及び冷却パイプより突出するか面一のため歯部との間のギャップを小さくすることができるので推力を大きくできる。 In the present invention, since the yoke and the permanent magnet protrude from the coil and the cooling pipe or are flush with each other, the gap between the yoke and the tooth portion can be reduced, so that the thrust can be increased.
 本発明に係るリニアモータは、前記冷却部は前記コイルを内包する冷却ジャケットであることを特徴とする。 The linear motor according to the present invention is characterized in that the cooling part is a cooling jacket containing the coil.
 本発明にあっては、冷却部はコイルを内包する冷却ジャケットであるので、コイル外周面全面からコイルを効率的に冷却することができる。 In the present invention, since the cooling portion is a cooling jacket that encloses the coil, the coil can be efficiently cooled from the entire outer surface of the coil.
 本発明に係るリニアモータは、前記冷却ジャケットの前記2つの板状部に垂直な方向の長さは、前記永久磁石及び前記ヨークの前記2つの板状部に垂直な方向の長さ以下であることを特徴とする。 In the linear motor according to the present invention, the length of the cooling jacket in the direction perpendicular to the two plate-like portions is equal to or less than the length of the permanent magnet and the yoke in the direction perpendicular to the two plate-like portions. It is characterized by that.
 本発明にあっては前記ヨーク及び前記永久磁石が前記冷却ジャケットより突出するか面一のため歯部とのギャップを小さくすることができるので推力を大きくできる。 In the present invention, since the yoke and the permanent magnet protrude from the cooling jacket or are flush with each other, the gap with the tooth portion can be reduced, so that the thrust can be increased.
 本発明に係るリニアモータは、前記可動子は永久磁石を2つ、前記ヨークを3つ有することを特徴とする。 The linear motor according to the present invention is characterized in that the mover has two permanent magnets and three yokes.
 本発明にあっては、可動子は永久磁石を2つ、ヨークを3つ有するという最小構成としてあるので、可動子の移動方向の寸法をより小さくすることが可能となる。言い換えると固定子側の歯部のピッチを相対的に大きくすることができる。また、固定子には永久磁石を使用しないので、リニアモータの全長が長い場合であっても永久磁石の使用量が増加しない。 In the present invention, since the mover has a minimum configuration having two permanent magnets and three yokes, the dimension of the mover in the moving direction can be further reduced. In other words, the pitch of the teeth on the stator side can be relatively increased. Further, since permanent magnets are not used for the stator, the amount of permanent magnets used does not increase even when the total length of the linear motor is long.
 本発明に係るリニアモータは、前記2つの永久磁石に挟まれているヨークが他の2つのヨークより前記移動方向に長いことを特徴とする。 The linear motor according to the present invention is characterized in that a yoke sandwiched between the two permanent magnets is longer in the moving direction than the other two yokes.
 本発明にあっては、2つの永久磁石に挟まれているヨークは、1つの永久磁石としか接しない他の2つのヨークより移動方向に長くしてある。永久磁石とやり取りする磁束量に合わせて移動方向の長さ、すなわち歯部と対向する部分の長さを定めているので、コイルに流す電流量が増加しても、ヨークが磁気飽和をしにくくなるので推力低下を抑えることができる。 In the present invention, the yoke sandwiched between the two permanent magnets is longer in the moving direction than the other two yokes that are in contact with only one permanent magnet. The length in the direction of movement, that is, the length of the portion facing the teeth, is determined according to the amount of magnetic flux exchanged with the permanent magnet, so even if the amount of current flowing through the coil increases, the yoke is less likely to cause magnetic saturation. As a result, thrust reduction can be suppressed.
 本発明に係るリニアモータは、前記2つの永久磁石に挟まれているヨークの前記移動方向の長さは、他の2つのヨークの2倍の長さであることを特徴とする。 The linear motor according to the present invention is characterized in that the length of the yoke sandwiched between the two permanent magnets is twice as long as the other two yokes.
 本発明にあっては、2つの永久磁石に挟まれているヨークの前記移動方向の長さは、流れる磁束量に最適な他の2つのヨークの2倍の長さとしてあるので、可動子の移動方向の長さを小さくしながら、ヨークの磁気飽和を緩和して大推力のリニアモータを得ることが可能となる。 In the present invention, the length in the moving direction of the yoke sandwiched between two permanent magnets is twice as long as the other two yokes that are optimal for the amount of magnetic flux flowing. While reducing the length in the moving direction, it is possible to relax the magnetic saturation of the yoke and obtain a large thrust linear motor.
 本発明に係るリニアモータは、固定子及び可動子を備えたリニアモータにおいて、前記固定子は、前記可動子の移動域を間にして、磁気的に結合した対向する2つの板状部を有し、該2つの板状部の互いに対向する面それぞれには、複数の歯部が、一方の板状部の歯部と他方の板状部の歯部とで千鳥状となるように前記可動子の移動方向に並設してあり、前記可動子は、冷却部及び複数の単位可動子を有し、各単位可動子は、前記移動方向に沿って並んだ3つのコイルを有し、各コイル内部に、前記移動方向に沿って複数の永久磁石及び複数のヨークが交互に配列してあり、前記ヨークを介して隣り合う永久磁石は、互いに対向する向きに磁化されていることを特徴とする。 The linear motor according to the present invention is a linear motor including a stator and a mover, and the stator has two opposing plate-like portions that are magnetically coupled with a moving range of the mover in between. In each of the opposing surfaces of the two plate-like portions, the plurality of tooth portions are movable so that the tooth portions of one plate-like portion and the tooth portions of the other plate-like portion are staggered. The mover has a cooling unit and a plurality of unit movers, and each unit mover has three coils arranged along the move direction, A plurality of permanent magnets and a plurality of yokes are alternately arranged in the coil along the moving direction, and the permanent magnets adjacent via the yoke are magnetized in directions facing each other. To do.
 本発明にあっては、可動子はコイル内部に、前記可動子の移動方向に沿って複数の永久磁石及び複数のヨークが交互に配置してある。永久磁石は可動子にのみ配置するので、リニアモータの全長を長くした場合でも、使用する永久磁石の量は増加しない。また、コイルを冷却する冷却部を有しておりコイルの発熱を取り除くことが可能となる。 In the present invention, the mover has a plurality of permanent magnets and a plurality of yokes alternately arranged in the coil along the moving direction of the mover. Since the permanent magnet is disposed only on the mover, the amount of permanent magnet to be used does not increase even when the total length of the linear motor is increased. Moreover, it has a cooling unit for cooling the coil, and it is possible to remove the heat generated by the coil.
 本発明に係るリニアモータは、前記冷却部は、前記単位可動子毎に対応して設けられ、各冷却部は、前記各コイルを内包する中空状をなし、前記複数の永久磁石及び複数のヨークを囲繞していることを特徴とする。 In the linear motor according to the present invention, the cooling section is provided corresponding to each unit mover, and each cooling section has a hollow shape including the coils, and the plurality of permanent magnets and the plurality of yokes. It is characterized by surrounding.
 本発明にあっては、冷却部はコイルを内包しているため、効率的にコイルを冷却することができる。 In the present invention, since the cooling unit contains the coil, the coil can be efficiently cooled.
 本発明に係るリニアモータは、前記冷却部は中空状をなし、前記可動子の有するすべてのコイル夫々を内包し、前記複数の永久磁石及び複数のヨークを囲繞していることを特徴とする。 The linear motor according to the present invention is characterized in that the cooling portion is hollow, includes all the coils of the mover, and surrounds the plurality of permanent magnets and the plurality of yokes.
 本発明にあっては、冷却部は全てのコイル夫々を内包しているので、効率的にコイルを冷却することができる。 In the present invention, since the cooling unit includes all the coils, the coils can be efficiently cooled.
 本発明にあっては、可動子は永久磁石を複数、ヨークを複数備えるという構成としてあるので、可動子の移動方向の寸法を小さくすることが可能となり、また、固定子には磁石を使用しないので、リニアモータの全長が長い場合であっても磁石の使用量が増加しないという効果を奏する。
 さらに、コイル冷却部を備えることにより、コイルの冷却を効率よく行い、推力の低下を抑制するという効果を奏する。
In the present invention, since the mover is configured to include a plurality of permanent magnets and a plurality of yokes, it is possible to reduce the size of the mover in the moving direction, and no magnet is used for the stator. Therefore, even when the total length of the linear motor is long, there is an effect that the amount of magnets used does not increase.
Furthermore, by providing the coil cooling unit, the coil is efficiently cooled, and the effect of suppressing the reduction in thrust is achieved.
実施の形態1に係るリニアモータの概略構成の一例を示す部分破断斜視図である。1 is a partially broken perspective view showing an example of a schematic configuration of a linear motor according to Embodiment 1. FIG. 実施の形態1に係るリニアモータの可動子の構成例を示す説明図である。3 is an explanatory diagram illustrating a configuration example of a mover of the linear motor according to Embodiment 1. FIG. 実施の形態1に係るリニアモータの可動子の構成例を示す説明図である。3 is an explanatory diagram illustrating a configuration example of a mover of the linear motor according to Embodiment 1. FIG. 実施の形態1に係るリニアモータの概略構成を示す断面図である。1 is a cross-sectional view illustrating a schematic configuration of a linear motor according to a first embodiment. 実施の形態1に係るリニアモータの概略構成を示す側面図である。1 is a side view illustrating a schematic configuration of a linear motor according to a first embodiment. 実施の形態1に係るリニアモータの推力発生原理を説明するための図である。FIG. 4 is a diagram for explaining the principle of thrust generation of the linear motor according to the first embodiment. 実施の形態1に係るリニアモータの推力発生原理を説明するための図である。FIG. 4 is a diagram for explaining the principle of thrust generation of the linear motor according to the first embodiment. 実施の形態1に係るリニアモータの推力発生原理を説明するための図である。FIG. 4 is a diagram for explaining the principle of thrust generation of the linear motor according to the first embodiment. 実施の形態2に係るリニアモータの可動子の構成例を示す説明図である。6 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to Embodiment 2. FIG. 実施の形態2に係るリニアモータの可動子の構成例を示す説明図である。6 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to Embodiment 2. FIG. 可動子ベースに取り付けた可動子の構成例を示す説明図である。It is explanatory drawing which shows the structural example of the needle | mover attached to the needle | mover base. 実施の形態3に係るリニアモータの可動子の構成例を示す説明図である。10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to Embodiment 3. FIG. 実施の形態3に係るリニアモータの可動子の構成例を示す説明図である。10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to Embodiment 3. FIG. 実施の形態4に係るリニアモータの可動子の構成例を示す説明図である。FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to a fourth embodiment. 実施の形態4に係るリニアモータの可動子の構成例を示す説明図である。FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to a fourth embodiment. 実施の形態4において、可動子ベースに取り付けた可動子の構成例を示す説明図である。In Embodiment 4, it is explanatory drawing which shows the structural example of the needle | mover attached to the needle | mover base. 実施の形態5に係るリニアモータの可動子の構成例を示す説明図である。FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to a fifth embodiment. 実施の形態5に係るリニアモータの可動子の構成例を示す説明図である。FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to a fifth embodiment. 実施の形態5において、可動子ベースに取り付けた可動子の構成例を示す説明図である。In Embodiment 5, it is explanatory drawing which shows the structural example of the needle | mover attached to the needle | mover base. 実施の形態6に係るリニアモータの可動子の構成例を示す平面図である。FIG. 10 is a plan view illustrating a configuration example of a mover of a linear motor according to a sixth embodiment. 可動子のヨークの磁気飽和についての説明図である。It is explanatory drawing about the magnetic saturation of the yoke of a needle | mover. 可動子のヨークの磁気飽和についての説明図である。It is explanatory drawing about the magnetic saturation of the yoke of a needle | mover. 実施の形態7に係るリニアモータの可動子の構成例を示す説明図である。FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to a seventh embodiment. 実施の形態7に係るリニアモータの可動子の構成例を示す説明図である。FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to a seventh embodiment. 実施の形態8に係るリニアモータの可動子の構成例を示す説明図である。FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to an eighth embodiment. 実施の形態8に係るリニアモータの可動子の構成例を示す説明図である。FIG. 10 is an explanatory diagram illustrating a configuration example of a mover of a linear motor according to an eighth embodiment.
発明を実施するため最良の形態BEST MODE FOR CARRYING OUT THE INVENTION
 実施の形態1
 図1は実施の形態1に係るリニアモータの概略構成の一例を示す部分破断斜視図である。図2A及び図2Bは実施の形態1に係るリニアモータの可動子1の構成例を示す説明図である。図2Aは可動子1の平面図であり、図2Bは図2AのII-II線による断面図である。図3は実施の形態1に係るリニアモータの概略構成を示す断面図である。図4は実施の形態1に係るリニアモータの概略構成を示す側面図である。
Embodiment 1
FIG. 1 is a partially broken perspective view showing an example of a schematic configuration of the linear motor according to the first embodiment. 2A and 2B are explanatory diagrams illustrating a configuration example of the mover 1 of the linear motor according to the first embodiment. 2A is a plan view of the mover 1, and FIG. 2B is a cross-sectional view taken along the line II-II of FIG. 2A. FIG. 3 is a cross-sectional view showing a schematic configuration of the linear motor according to the first embodiment. FIG. 4 is a side view showing a schematic configuration of the linear motor according to the first embodiment.
 本実施の形態に係るリニアモータは可動子1と固定子2とを含む。可動子1は3つのヨーク1b、2つの永久磁石(磁石)1c、1d、それらを囲繞するコイル1a、さらにコイル1aを囲繞する冷却パイプ11を含む。ヨーク1b、永久磁石1c、永久磁石1dは略同形で、略直方体状をなしている。図1又は図2に示すようにヨーク1b、永久磁石1c、ヨーク1b、永久磁石1d、ヨーク1bと、ヨーク1b、永久磁石1c又は永久磁石1dは連結方向に交互に配列されている。ヨーク1b、永久磁石1c、永久磁石1dは短辺が揃い、長辺が接触するように並べて連結され、その周囲にコイル1aが巻き回されている。冷却パイプ11は略矩形枠状をなし、コイル1aの外側面に接するように設けられている。ヨーク1bは、永久磁石1c及び永久磁石1dを挟むように配置されている。図2、図4の各永久磁石1c、1dに示す白抜矢印は各永久磁石1c、1dの磁化方向を示している。白抜矢印の終点はN極、始点はS極を示す。永久磁石1c及び永久磁石1dは連結方向に沿って磁化してあり、磁化方向が互いに対向している。本実施の形態のように、可動子1がヨーク1bを3つ、永久磁石1c、永久磁石1dを各1つ備える構成は、可動子1の最小構成としてある。 The linear motor according to the present embodiment includes a mover 1 and a stator 2. The mover 1 includes three yokes 1b, two permanent magnets 1c and 1d, a coil 1a surrounding them, and a cooling pipe 11 surrounding the coil 1a. The yoke 1b, the permanent magnet 1c, and the permanent magnet 1d are substantially the same shape and have a substantially rectangular parallelepiped shape. As shown in FIG. 1 or 2, the yoke 1b, the permanent magnet 1c, the yoke 1b, the permanent magnet 1d, the yoke 1b, and the yoke 1b, the permanent magnet 1c, or the permanent magnet 1d are alternately arranged in the connecting direction. The yoke 1b, the permanent magnet 1c, and the permanent magnet 1d are aligned and connected so that the short sides are aligned and the long sides are in contact, and the coil 1a is wound around the periphery. The cooling pipe 11 has a substantially rectangular frame shape and is provided in contact with the outer surface of the coil 1a. The yoke 1b is disposed so as to sandwich the permanent magnet 1c and the permanent magnet 1d. The white arrows shown in the permanent magnets 1c and 1d in FIGS. 2 and 4 indicate the magnetization directions of the permanent magnets 1c and 1d. The end point of the white arrow indicates the N pole, and the start point indicates the S pole. The permanent magnet 1c and the permanent magnet 1d are magnetized along the coupling direction, and the magnetization directions are opposed to each other. The configuration in which the mover 1 includes three yokes 1b, one permanent magnet 1c, and one permanent magnet 1d as in the present embodiment is the minimum configuration of the mover 1.
 コイル1aの外側面に接するように囲繞する冷却パイプ11は、コイル1aを冷却するためのものである。冷却パイプ11は、図示しない冷却回路が備えるポンプにより冷媒が送り込まれる給液口11a、冷却回路に冷媒を排出する排液口11bを備える。冷却パイプ11の中には、図示しない熱交換器により冷却された、例えばパーフルオロポリエーテルの冷媒が流動している。給液口11aから供給された冷媒は、コイル1aの外側面に接し、コイル1aを囲繞している冷却パイプ11内を流動し、排液口11bより排出される。これにより、コイル1a全体を効率的に冷却することが可能となる。冷却パイプ11は、例えば、ステンレスといった非磁性金属で構成することが望ましい。
 また通電により発熱するコイルのみを効率的に冷却することが可能である。
 パイプであるため冷媒を通過させる構造が簡便であり、冷却部の軽量化を図ることができる。また、非磁性金属に限らず、ガラス繊維や炭素繊維を含有する繊維強化プラスチックやセラミックスで構成してもよく、可動子1の加減速度や冷媒の圧力に耐えるように適宜設定すれば良く、条件によっては硬質プラスチックでも良い。また、冷媒は、パーフルオロポリエーテル以外のフッ素系不活性液体や自然冷媒(純水)でも良い。永久磁石1c、永久磁石1d及びヨーク1bの上下方向の長さ(二つの板状部の垂直方向の長さ)はコイル1a及び冷却パイプ11の上下方向の長さより長くなっている。なお、これらの長さは同じでも良い。
The cooling pipe 11 surrounding the outer surface of the coil 1a is for cooling the coil 1a. The cooling pipe 11 includes a liquid supply port 11a through which a refrigerant is sent by a pump provided in a cooling circuit (not shown), and a liquid discharge port 11b that discharges the refrigerant to the cooling circuit. In the cooling pipe 11, for example, a perfluoropolyether refrigerant cooled by a heat exchanger (not shown) flows. The refrigerant supplied from the liquid supply port 11a contacts the outer surface of the coil 1a, flows in the cooling pipe 11 surrounding the coil 1a, and is discharged from the liquid discharge port 11b. Thereby, it becomes possible to cool the whole coil 1a efficiently. The cooling pipe 11 is preferably made of a nonmagnetic metal such as stainless steel, for example.
Further, it is possible to efficiently cool only the coil that generates heat when energized.
Since it is a pipe, the structure for allowing the refrigerant to pass therethrough is simple, and the weight of the cooling unit can be reduced. Moreover, it is not limited to nonmagnetic metals, and may be composed of fiber reinforced plastics or ceramics containing glass fibers or carbon fibers, and may be appropriately set to withstand the acceleration / deceleration speed of the mover 1 or the pressure of the refrigerant. Depending on the case, hard plastic may be used. The refrigerant may be a fluorine-based inert liquid other than perfluoropolyether or a natural refrigerant (pure water). The vertical lengths of the permanent magnet 1c, the permanent magnet 1d, and the yoke 1b (the vertical lengths of the two plate-like portions) are longer than the vertical lengths of the coil 1a and the cooling pipe 11. These lengths may be the same.
 図3に示すように、固定子2は断面略コの字状(U字状)である。固定子2は、所定の距離を隔てて平行に対向する板状をなす2つの板状部(上板部21、下板部22)、及び上板部21と下板部22とを連結する板状をなす側板部23を含む。固定子2の上板部21と下板部22とは側板部23により磁気的に結合してある。上板部21は下板部22と対向する一面に複数の歯部21aを備えている。歯部21aは所定間隔で複数、並置してある。同様に、下板部22は上板部21に対向する面に複数の歯部22aを備えている。歯部22aは所定間隔で複数、並置してある。歯部21a、歯部22aはそれぞれ略直方体状をなしている。固定子2は平板状をなす軟磁性金属、例えば圧延鋼材を折り曲げることにより形成する。固定子2は折り曲げにより形成する他に平板状の圧延鋼材を溶接やねじ止め等により接合し、固定して形成しても良い。上板部21、下板部22、側板部23は、例えば鋼板などの軟磁性金属板を積層することにより、形成してもよい。歯部21a、歯部22aは、それぞれ軟磁性金属板、例えば鋼板等を積層して直方体状に形成する。直方体状に形成した歯部21a、歯部22aはそれぞれ、上板部21、下板部22に溶接又はねじ止め等により接合し固定する。 As shown in FIG. 3, the stator 2 has a substantially U-shaped cross section (U shape). The stator 2 connects two plate-like portions (upper plate portion 21 and lower plate portion 22) that are parallel to each other with a predetermined distance therebetween, and connects the upper plate portion 21 and the lower plate portion 22. A side plate portion 23 having a plate shape is included. The upper plate portion 21 and the lower plate portion 22 of the stator 2 are magnetically coupled by the side plate portion 23. The upper plate portion 21 includes a plurality of tooth portions 21 a on one surface facing the lower plate portion 22. A plurality of tooth portions 21a are juxtaposed at predetermined intervals. Similarly, the lower plate portion 22 includes a plurality of tooth portions 22 a on the surface facing the upper plate portion 21. A plurality of tooth portions 22a are juxtaposed at predetermined intervals. The tooth part 21a and the tooth part 22a have a substantially rectangular parallelepiped shape. The stator 2 is formed by bending a flat soft magnetic metal, for example, a rolled steel material. In addition to forming the stator 2 by bending, a flat rolled steel material may be joined and fixed by welding, screwing, or the like. The upper plate portion 21, the lower plate portion 22, and the side plate portion 23 may be formed by laminating soft magnetic metal plates such as steel plates. The tooth portion 21a and the tooth portion 22a are each formed in a rectangular parallelepiped shape by laminating soft magnetic metal plates such as steel plates. The tooth portions 21a and the tooth portions 22a formed in a rectangular parallelepiped shape are joined and fixed to the upper plate portion 21 and the lower plate portion 22 by welding or screwing, respectively.
 また、略コの字に形成した磁性鋼板の一面に所定間隔で、掘り込み加工などにより溝を設け、形成されたランド部を歯部21a、歯部22aとしてもよい。このようにすると、歯部を溶接等で接合又はねじ止め等により固定する場合に比べて、固定子2の部品点数を減らすことが可能となる。さらにまた、板状部材に所定間隔でスリットを形成し、2つのスリットで挟まれた部分を歯部21a、歯部22aとしてもよい。板状部材をくし歯状に形成し、くし歯を歯部21a、歯部22aとしてもよい。なお、図3に示す向きで設置されることが固定子2の必須の要件ではない。設置可能な如何なる向きで使用することも可能である。左右を反転した置き方でも良いし、U字となるように置いたり、上下が反転したU字のように置いたりしても良い。以上のように構成した固定子2の上板部21、下板部22の間を、可動子1は歯部21a、歯部22aの並設方向に移動する。 Further, a groove may be provided on one surface of the magnetic steel plate formed in a substantially U shape at a predetermined interval by digging or the like, and the formed land portion may be used as the tooth portion 21a and the tooth portion 22a. If it does in this way, it will become possible to reduce the number of parts of the stator 2 compared with the case where a tooth part is fixed by welding etc. by joining or screwing. Furthermore, slits may be formed in the plate-like member at a predetermined interval, and portions sandwiched between the two slits may be used as the tooth portion 21a and the tooth portion 22a. The plate-like member may be formed in a comb shape, and the comb teeth may be used as the tooth portion 21a and the tooth portion 22a. It is not an essential requirement of the stator 2 to be installed in the direction shown in FIG. It can be used in any orientation that can be installed. It may be placed upside down, placed in a U shape, or placed in a U shape upside down. Between the upper plate portion 21 and the lower plate portion 22 of the stator 2 configured as described above, the mover 1 moves in the direction in which the tooth portions 21a and the tooth portions 22a are arranged.
 図3及び図4に示すように、歯部21a及び歯部22aは同一形状、同一寸法であることが望ましい。歯部21a(歯部22a)の可動子1の移動方向に沿う長さL1と、2つの歯部21a(歯部22a)の間隔L2との比は1対1としてある。すなわち、歯部21a(歯部22a)の並設方向の幅L1は歯部21a(22a)の並設間隔L2と同じ長さとなっている。 As shown in FIGS. 3 and 4, it is desirable that the tooth portion 21a and the tooth portion 22a have the same shape and the same dimensions. The ratio between the length L1 of the tooth portion 21a (tooth portion 22a) along the moving direction of the mover 1 and the distance L2 between the two tooth portions 21a (tooth portion 22a) is 1: 1. That is, the width L1 in the juxtaposed direction of the tooth portion 21a (tooth portion 22a) is the same length as the juxtaposed interval L2 of the tooth portion 21a (22a).
 可動子1のコイル1aと冷却パイプ11を除く移動方向の幅は、歯部21a(22a)の幅L1と2つの歯部21a(22a)の間隔L2とを合わせた幅(L1+L2)より、狭くしてある。図3において歯部21a及び歯部22aの紙面左右方向の長さは、ヨーク1b、永久磁石1c、1dよりも、やや長くしてある。この場合フリンジング磁束により仮想的にエアギャップが短くなり、可動子1の永久磁石1c、永久磁石1dからの磁束を効率よく固定子2に流すことができる。また、歯部21a、歯部22aの長さと、ヨーク1b、永久磁石1c、永久磁石1dとの長さを同じとしても良い。 The width of the mover 1 in the moving direction excluding the coil 1a and the cooling pipe 11 is narrower than the width (L1 + L2) of the width L1 of the tooth portion 21a (22a) and the interval L2 of the two tooth portions 21a (22a). It is. In FIG. 3, the length of the tooth portion 21a and the tooth portion 22a in the left-right direction in the drawing is slightly longer than the yoke 1b and the permanent magnets 1c and 1d. In this case, the air gap is virtually shortened by the fringing magnetic flux, and the magnetic flux from the permanent magnet 1c and the permanent magnet 1d of the mover 1 can be efficiently passed through the stator 2. Further, the lengths of the tooth portions 21a and the tooth portions 22a may be the same as the lengths of the yoke 1b, the permanent magnet 1c, and the permanent magnet 1d.
 歯部21aと歯部22aとはそれぞれ、等間隔(L2)で固定子2の対向する上板部21、下板部22の対向面側にそれぞれ配置してある。歯部21a、歯部22aの長手方向は、可動子1の移動方向に略直角に配置してある。また、歯部21aと歯部22aは互いに対向する面の可動子1の移動方向の中央部が重ならないように可動子1の移動方向に沿って互い違いに(千鳥状に)並設してある。なお、歯部21aと歯部22aは互いに対向する面の全面が重なると可動子1には推力が発生しない。 The tooth part 21a and the tooth part 22a are respectively arranged on the opposing surface side of the upper plate part 21 and the lower plate part 22 facing the stator 2 at equal intervals (L2). The longitudinal direction of the tooth part 21a and the tooth part 22a is arranged substantially perpendicular to the moving direction of the mover 1. Further, the tooth portions 21a and the tooth portions 22a are arranged in a staggered manner (in a zigzag manner) along the moving direction of the mover 1 so that the central portions in the moving direction of the mover 1 on the surfaces facing each other do not overlap. . In addition, if the whole surface of the tooth part 21a and the tooth part 22a facing each other overlaps, no thrust is generated in the mover 1.
 図4に示すように、可動子1の一方の面が歯部21aに対向し、他方の面が歯部22aに対向する。移動方向の前後に配置してあるヨーク1bは一方が歯部21aと対向し、他方が歯部22aと対向している。中央のヨーク1bは歯部21a、22aの両方に対向している。歯部21a、歯部22aは1磁気周期毎に1つずつ設けてある。歯部21aと歯部22aとは電気角で180度の異なる位置(1/2磁気周期ずれた位置)に設けられている。
 ヨーク1b並びに永久磁石1c及び永久磁石1dの可動子1の移動方向に垂直な方向の長さ(図2Aでは紙面に対して垂直方向、図3では紙面上下方向の長さ:対向する上板部21及び下板部22の板面の法線方向の長さ)は略同じであることが望ましい。ここでヨーク1bが永久磁石1c及び永久磁石1dよりも長い場合には、永久磁石1c及び永久磁石1dより突出した部分におけるヨーク1bの磁束が、上板部21又は下板部22の板面の法線方向に流れずに板面に平行な方向へ漏れてしまう。その結果、ヨーク1bから固定子2の歯部21a又は22aへ流れる磁束量が低減して推力が低下する。
 また永久磁石1c及び永久磁石1dの可動子1の移動方向に垂直な方向の長さがヨーク1bよりも長い場合には、推力に寄与する磁束の上板部21又は下板部22の板面に対する垂直成分を確保しにくくなるため、推力ロスが発生する。後述する様に、本発明の推力はヨーク1bと歯部21aとの間、及びヨーク1bと歯部22aとの間に流れる磁束量によるため、永久磁石1c及び永久磁石1dが突出している場合には歯部21aとヨーク1bとの距離及び歯部22aとヨーク1bとの距離が遠くなり、推力が低減する。
 さらにヨーク1b又は永久磁石1c及び永久磁石1dのどちらかが突出している場合には突出した部分の熱伝導が悪くなり、冷却効率が低下する。
 なおここで略同じとは構造部を設計する上での寸法設定では同じということを意味している。そして加工設備による加工誤差を含むため、設計上の寸法設定に公差を含めた上で略同じと表記している。
As shown in FIG. 4, one surface of the mover 1 faces the tooth portion 21a, and the other surface faces the tooth portion 22a. One of the yokes 1b arranged before and after the moving direction is opposed to the tooth portion 21a, and the other is opposed to the tooth portion 22a. The central yoke 1b faces both the tooth portions 21a and 22a. One tooth portion 21a and one tooth portion 22a are provided for each magnetic period. The tooth portion 21a and the tooth portion 22a are provided at different positions (positions shifted by 1/2 magnetic cycle) at an electrical angle of 180 degrees.
Length in the direction perpendicular to the moving direction of the mover 1 of the yoke 1b and the permanent magnet 1c and permanent magnet 1d (in FIG. 2A, the direction perpendicular to the paper surface, in FIG. 3, the length in the vertical direction of the paper surface: the upper plate portions facing each other 21 and the length of the plate surface of the lower plate portion 22 in the normal direction) are preferably substantially the same. Here, when the yoke 1b is longer than the permanent magnet 1c and the permanent magnet 1d, the magnetic flux of the yoke 1b in the portion protruding from the permanent magnet 1c and the permanent magnet 1d is applied to the plate surface of the upper plate portion 21 or the lower plate portion 22. It does not flow in the normal direction but leaks in a direction parallel to the plate surface. As a result, the amount of magnetic flux flowing from the yoke 1b to the tooth portion 21a or 22a of the stator 2 is reduced, and the thrust is reduced.
Further, when the length of the permanent magnet 1c and the permanent magnet 1d in the direction perpendicular to the moving direction of the mover 1 is longer than that of the yoke 1b, the plate surface of the upper plate portion 21 or the lower plate portion 22 of the magnetic flux contributing to thrust. Since it becomes difficult to secure a vertical component with respect to, thrust loss occurs. As will be described later, since the thrust of the present invention depends on the amount of magnetic flux flowing between the yoke 1b and the tooth portion 21a and between the yoke 1b and the tooth portion 22a, the permanent magnet 1c and the permanent magnet 1d are projected. The distance between the tooth portion 21a and the yoke 1b and the distance between the tooth portion 22a and the yoke 1b are increased, and the thrust is reduced.
Further, when either the yoke 1b or the permanent magnet 1c or the permanent magnet 1d protrudes, the heat conduction of the protruding portion is deteriorated, and the cooling efficiency is lowered.
Here, “substantially the same” means that the dimensions are the same in designing the structure. In addition, since it includes a processing error due to processing equipment, it is described as substantially the same after including a tolerance in design dimension setting.
 図5、図6及び図7は実施の形態1に係るリニアモータの推力発生原理を説明するための図である。可動子1のコイル1a及び冷却パイプ11の移動方向に沿う部分は説明の都合上、省略して移動方向と直交する部分の断面のみ表示してある。可動子1のコイル1aに交流電流を流す。図5、6のコイル1aに示す黒丸印は紙面の裏から表への通電、バツ印は紙面の表から裏への通電を表している。(交流電流を流した際のある時点の電流の向きを示した)コイル1aの通電により、図5に点線で示したような磁束の流れが発生する。 5, 6 and 7 are diagrams for explaining the principle of thrust generation of the linear motor according to the first embodiment. For convenience of explanation, the portion along the moving direction of the coil 1a and the cooling pipe 11 of the mover 1 is omitted, and only the cross section of the portion orthogonal to the moving direction is shown. An alternating current is passed through the coil 1a of the mover 1. 5 and 6, black circles indicate energization from the back of the paper to the front, and crosses indicate energization from the front to the back of the paper. When the coil 1a is energized (showing the direction of the current at a certain time when an alternating current is passed), a magnetic flux as shown by the dotted line in FIG. 5 is generated.
 可動子1が備えるヨーク1bの個数が3個の場合、図5に示す様に歯部21aから流れる磁束が両端のヨーク1bに流れ込み、永久磁石1c、永久磁石1d内を通り中央部のヨーク1bに集まり、歯部22aへ抜けていく。このようにすると、並設する歯部21aの並設方向中央部の間隔(ピッチ)(L1+L2)よりも、両端のヨーク1bの移動方向中央部の間隔(L3)を小さくすることができる。すなわち、可動子1の移動方向の長さを小さくすることが可能となる。
 本発明の場合、一つの可動子1を単相で駆動しており、1相あたりの歯部のピッチを相対的に大きくすることができる。
 3相リニアモータでは可動子1の位置により変動する3相の合成推力の変動幅を抑えるため、単相あたりの推力波形をほぼ正弦波とする必要がある。また推力を確保する必要がある。その手段の一つとして、各相に複数の磁極を設けて狭ピッチ化を図るのが一般的であり、そのことが可動子構造の簡素化や固定子2及び可動子1の小型化、軽量化を阻み、また狭ピッチ化した場合には駆動周波数の高周波化を招き、リニアモータ自体の鉄損が増大するという問題があったが実施の形態1の構成により歯部のピッチを大きくすることができる。
When the number of yokes 1b provided in the mover 1 is 3, as shown in FIG. 5, the magnetic flux flowing from the tooth portion 21a flows into the yokes 1b at both ends, passes through the permanent magnets 1c and 1d, and the yoke 1b in the central portion. Gathered to the tooth portion 22a. If it does in this way, the space | interval (L3) of the moving direction center part of the yoke 1b of both ends can be made smaller than the space | interval (pitch) (L1 + L2) of the parallel direction direction center part of the tooth part 21a arranged in parallel. That is, the length of the mover 1 in the moving direction can be reduced.
In the case of the present invention, one movable element 1 is driven in a single phase, and the pitch of the tooth portions per phase can be relatively increased.
In the three-phase linear motor, in order to suppress the fluctuation range of the three-phase combined thrust that varies depending on the position of the mover 1, the thrust waveform per single phase needs to be substantially a sine wave. It is also necessary to ensure thrust. As one of the means, it is common to reduce the pitch by providing a plurality of magnetic poles in each phase, which simplifies the structure of the mover and makes the stator 2 and the mover 1 smaller and lighter. However, when the pitch is narrowed, the drive frequency is increased and the iron loss of the linear motor itself increases, but the tooth pitch is increased by the configuration of the first embodiment. Can do.
 これに対して、可動子1が備えるヨーク1bの個数が4個以上の場合には、並設する歯部21aの移動方向中央部の間隔(ピッチ)(L1+L2)に対して、それぞれのヨーク1bの移動方向中央部の間隔をその1/2とする必要がある。図5でたとえるならL1+L2=L3/2+L3/2=L3にする必要があるため、可動子1の移動方向の長さを小さくすることが困難になる。つまり、ヨーク1bが4個以上の場合には次のような問題がある。L1+L2>L3にすると、隣り合うヨーク1bの間隔が小さくなる。永久磁石1c、永久磁石1dを介して隣り合うヨーク1bの永久磁石1c、永久磁石1dによる界磁方向はそれぞれ逆向きになるので、一つの歯部21a(22a)との間で吸引と反発とが短い距離で行われることとなり、可動子1と固定子2の間で発生する推力を低下させる。
 しかしこの構成においても、複数のヨーク1bと複数の永久磁石1c、永久磁石1dをコイル1aで囲繞した本発明の構成はリニアモータが長くなった場合でも永久磁石の個数が増加することは無い。
On the other hand, when the number of the yokes 1b included in the mover 1 is four or more, each yoke 1b with respect to the interval (pitch) (L1 + L2) of the central portion in the moving direction of the tooth portions 21a arranged side by side. It is necessary to reduce the distance between the central portions in the moving direction to ½. If it compares in FIG. 5, it is necessary to make it L1 + L2 = L3 / 2 + L3 / 2 = L3, Therefore It becomes difficult to make the length of the moving direction of the needle | mover 1 small. That is, when there are four or more yokes 1b, there are the following problems. When L1 + L2> L3, the interval between adjacent yokes 1b is reduced. Since the field directions of the permanent magnet 1c and the permanent magnet 1d of the adjacent yoke 1b through the permanent magnet 1c and the permanent magnet 1d are opposite to each other, they are attracted and repelled with the one tooth portion 21a (22a). Is performed at a short distance, and the thrust generated between the mover 1 and the stator 2 is reduced.
However, even in this configuration, the configuration of the present invention in which the plurality of yokes 1b, the plurality of permanent magnets 1c, and the permanent magnet 1d are surrounded by the coil 1a does not increase the number of permanent magnets even when the linear motor becomes long.
 次に、図5、図6及び図7を参照して、実施の形態1に係るリニアモータの推力発生原理について説明する。上述したように図5において可動子1には、点線で示したような磁束の流れが発生する。すなわち、左右のヨーク1bに発生した磁束は永久磁石1c又は永久磁石1dを通り、中央のヨーク1bより歯部22aに流れ込む。歯部22aに流れ込んだ磁束は下板部22、側板部23、上板部21を通り歯部21aより左右のヨーク1bに流れ込み上記のような磁束ループが発生する。磁束ループにより、歯部21aはN極に励磁され、歯部22aはS極に励磁される。 Next, the principle of thrust generation of the linear motor according to the first embodiment will be described with reference to FIGS. As described above, the flow of magnetic flux as indicated by the dotted line is generated in the mover 1 in FIG. That is, the magnetic flux generated in the left and right yokes 1b passes through the permanent magnet 1c or the permanent magnet 1d and flows into the tooth portion 22a from the central yoke 1b. The magnetic flux flowing into the tooth portion 22a passes through the lower plate portion 22, the side plate portion 23, and the upper plate portion 21, flows into the left and right yokes 1b from the tooth portion 21a, and the above-described magnetic flux loop is generated. By the magnetic flux loop, the tooth portion 21a is excited to the N pole and the tooth portion 22a is excited to the S pole.
 次に、永久磁石による磁極の発生と推力の発生を、図6を用いて説明する。図6に示すように永久磁石1c、永久磁石1dがヨーク1bに対して着磁方向が対向して配置してある場合、各ヨーク1b全体が単極となる。中央のヨーク1bはN極に励磁され、左右のヨーク1bはS極に励磁される。
 一方、固定子2の歯部21aはN極、歯部22aはS極に励磁されている。歯部21a、歯部22aに発生した磁極と、永久磁石1c、永久磁石1dにより励磁されたヨーク1bの磁極が吸引又は反発することにより、可動子1には図6の紙面左向きの推力が発生する。
Next, generation of magnetic poles and generation of thrust by a permanent magnet will be described with reference to FIG. As shown in FIG. 6, when the permanent magnet 1c and the permanent magnet 1d are arranged so that the magnetization direction is opposed to the yoke 1b, each yoke 1b has a single pole. The central yoke 1b is excited to the N pole, and the left and right yokes 1b are excited to the S pole.
On the other hand, the tooth portion 21a of the stator 2 is excited to the N pole, and the tooth portion 22a is excited to the S pole. The magnetic pole generated in the tooth portion 21a and the tooth portion 22a and the magnetic pole of the yoke 1b excited by the permanent magnet 1c and the permanent magnet 1d are attracted or repelled, so that a thrust toward the left in FIG. To do.
 図6の状態から、可動子1が電気角180度に相当する距離を進んだ場合の状態を示しているのが図7である。図7ではコイル1aに流す電流の向きが逆向きとなる。この結果、図7における磁束の流れは、図5に示した磁束の流れとは逆方向になる。このため、歯部21aにはS極、歯部22aにはN極の磁極が発生する。永久磁石1c、永久磁石1dによるヨーク1bの励磁は変わらないため、図6の場合と吸引/反発する歯部21a、歯部22aが逆の関係となる。図7に示した矢印の方向に吸引力が発生し、可動子1は図7において紙面に対して左向きの推力が発生する。図7の状態から、可動子1が電気角180度に相当する距離を進んだ場合、図6と同様な状態となる。以上の動作を繰り返すことにより、可動子1は移動を継続する。 FIG. 7 shows a state where the mover 1 has advanced a distance corresponding to an electrical angle of 180 degrees from the state of FIG. In FIG. 7, the direction of the current flowing through the coil 1a is reversed. As a result, the flow of magnetic flux in FIG. 7 is in the opposite direction to the flow of magnetic flux shown in FIG. For this reason, an S pole is generated at the tooth portion 21a and an N pole is generated at the tooth portion 22a. Since the excitation of the yoke 1b by the permanent magnet 1c and the permanent magnet 1d does not change, the tooth portion 21a and the tooth portion 22a that are attracted / repulsed are opposite to those in FIG. A suction force is generated in the direction of the arrow shown in FIG. 7, and the mover 1 generates a leftward thrust with respect to the paper surface in FIG. 7. When the mover 1 advances a distance corresponding to an electrical angle of 180 degrees from the state of FIG. 7, the state is the same as that of FIG. By repeating the above operation, the mover 1 continues to move.
 次に端効果による影響の改善について説明する。端効果とは、リニアモータにおいて、可動子両端に発生する磁気的な吸引、反発力の影響がモータの推力特性(コギング特性、ディテント特性)に影響を及ぼすことを言う。従来、端効果を減少させるために、両端の歯部の形状を、他の形状と異なるようにするなどの対策が取られている。端効果が発生するのは、磁束ループが移動方向と同じ方向に流れるためである(特許文献1の第2図参照)。しかしながら、実施の形態1に係るリニアモータでは、固定子2を通る磁路を含めたループ(磁束ループ)は進行方向と直角な方向に流れるため、端効果の影響を低減させることが可能となる。 Next, the improvement of the impact due to the edge effect will be explained. The end effect means that in a linear motor, the influence of magnetic attraction and repulsive force generated at both ends of the mover affects the thrust characteristics (cogging characteristics, detent characteristics) of the motor. Conventionally, in order to reduce the end effect, measures such as making the shape of the tooth portions at both ends different from other shapes have been taken. The end effect occurs because the magnetic flux loop flows in the same direction as the moving direction (see FIG. 2 of Patent Document 1). However, in the linear motor according to the first embodiment, since the loop (magnetic flux loop) including the magnetic path passing through the stator 2 flows in a direction perpendicular to the traveling direction, it is possible to reduce the influence of the end effect. .
 以上のように、実施の形態1に係るリニアモータでは、従来のムービングコイル型リニアモータと異なり、固定子2に永久磁石は必要なく、永久磁石1c、永久磁石1dは可動子1のみに使用するので、リニアモータの全長を長くした場合においても、使用する永久磁石の量は増加せず一定となり、コストを低減させることが可能となる。加えて、端効果の影響を低減させることが可能となる。
 また、可動子1はヨーク1bを3個、永久磁石1c、永久磁石1dを各1個の計2個という最小の構成としている。そのため、可動子1の備える永久磁石1c、永久磁石1dの移動方向の幅を広くすること、及び歯部21a、歯部22aの可動子1の移動方向の幅を大きくすることも可能となる。それによって、ヨーク1b、永久磁石1c、永久磁石1dの数が多い同一サイズの固定子よりも大きな推力を得ることが可能となる。
As described above, in the linear motor according to the first embodiment, unlike the conventional moving coil linear motor, the stator 2 does not need a permanent magnet, and the permanent magnet 1c and the permanent magnet 1d are used only for the mover 1. Therefore, even when the total length of the linear motor is lengthened, the amount of permanent magnets to be used does not increase and becomes constant, and the cost can be reduced. In addition, the influence of the end effect can be reduced.
The mover 1 has a minimum configuration of two yokes 1b, three permanent magnets 1c, and one permanent magnet 1d. Therefore, it becomes possible to widen the width in the moving direction of the permanent magnet 1c and the permanent magnet 1d provided in the mover 1, and to increase the width in the moving direction of the mover 1 of the tooth portion 21a and the tooth portion 22a. Thereby, it becomes possible to obtain a larger thrust than a stator of the same size having a large number of yokes 1b, permanent magnets 1c, and permanent magnets 1d.
 さらにまた、コイル1aの外側面に接し、コイル1aを囲繞するように、冷却パイプ11を設け、冷却パイプ11に冷媒を流動させる。それにより、コイル1aを効率的に冷却するので、発熱による推力低下を抑制することが可能となる。 Furthermore, a cooling pipe 11 is provided so as to be in contact with the outer surface of the coil 1a and surround the coil 1a, and the refrigerant flows through the cooling pipe 11. Thereby, since the coil 1a is cooled efficiently, it becomes possible to suppress the thrust drop by heat_generation | fever.
 なお、実施の形態1では可動子1がすべて上板部21と下板部22とに挟まれている形態を示したが、本発明においては可動子1のうち永久磁石1c、永久磁石1dとヨーク1bが上板部21と下板部22とに挟まれていればよい。コイル1aの一部又は全部が固定子2から突出し、上板部21と下板部22とに挟まれていなくてもよい。
 また、ヨーク1b、永久磁石1c、永久磁石1dは直方体状としたが、それに限られない。コイル1aの励磁により発生した磁束が固定子2と協同した磁気ループ回路を構成するものであれば良い。例えば、ヨーク1b、永久磁石1c、永久磁石1dが正六面体であっても良い。
In the first embodiment, the movable element 1 is entirely sandwiched between the upper plate portion 21 and the lower plate portion 22, but in the present invention, the permanent magnet 1c, the permanent magnet 1d, and The yoke 1b only needs to be sandwiched between the upper plate portion 21 and the lower plate portion 22. A part or all of the coil 1 a may protrude from the stator 2 and may not be sandwiched between the upper plate portion 21 and the lower plate portion 22.
Moreover, although the yoke 1b, the permanent magnet 1c, and the permanent magnet 1d are rectangular parallelepiped, it is not limited thereto. Any magnetic flux circuit may be used as long as the magnetic flux generated by the excitation of the coil 1a constitutes a magnetic loop circuit in cooperation with the stator 2. For example, the yoke 1b, the permanent magnet 1c, and the permanent magnet 1d may be regular hexahedrons.
 実施の形態2
 図8A及び図8Bは実施の形態2に係るリニアモータの可動子1の構成例を示す説明図である。図8Aは可動子1の構成例を示す平面図である。図8Bは図8AのVIII-VIII線による断面図である。実施の形態2では、実施の形態1においてヨーク1b及び永久磁石1c、1dの長手方向の長さを長くした可動子1となっている。また、3相駆動の場合の可動子1の配列を示している。他の構成は実施の形態1と同様であるので、以下の説明においては、実施の形態1との異なる点を主に説明する。
Embodiment 2
8A and 8B are explanatory views showing a configuration example of the mover 1 of the linear motor according to the second embodiment. FIG. 8A is a plan view showing a configuration example of the mover 1. 8B is a cross-sectional view taken along line VIII-VIII in FIG. 8A. In the second embodiment, the movable element 1 in which the longitudinal lengths of the yoke 1b and the permanent magnets 1c and 1d in the first embodiment are increased. Moreover, the arrangement | sequence of the needle | mover 1 in the case of a three-phase drive is shown. Since other configurations are the same as those of the first embodiment, differences from the first embodiment will be mainly described in the following description.
 実施の形態2の可動子1は、同様な3つの単相ユニット1U、1V、1Wを移動方向に沿って配置したものである。U相に対応する単相ユニットが1U、V相に対応する単相ユニットが1V、W相に対応する単相ユニットが1Wである。 The mover 1 according to the second embodiment is configured by arranging three similar single- phase units 1U, 1V, and 1W along the moving direction. The single phase unit corresponding to the U phase is 1 U, the single phase unit corresponding to the V phase is 1 V, and the single phase unit corresponding to the W phase is 1 W.
 図9は可動子ベース4に取り付けた可動子1の構成例を示す説明図である。可動子ベース4は、直方体状をなしている。可動子ベース4の一面には、各単相ユニット1U、1V、1Wを固定する溝が設けられている。当該溝に各単相ユニット1U、1V、1Wをはめ込み固定する。可動子ベース4は、アルミニウム、非磁性ステンレス鋼などの非磁性体で構成する。可動子ベース4がリニアガイド等に取り付けられることで可動子1は固定子2の対向する二つの板状部21、22間を直動する。 FIG. 9 is an explanatory view showing a configuration example of the mover 1 attached to the mover base 4. The mover base 4 has a rectangular parallelepiped shape. On one surface of the mover base 4, grooves for fixing the single- phase units 1U, 1V, 1W are provided. The single- phase units 1U, 1V, and 1W are fitted and fixed in the grooves. The mover base 4 is made of a nonmagnetic material such as aluminum or nonmagnetic stainless steel. When the mover base 4 is attached to a linear guide or the like, the mover 1 moves directly between the two plate- like portions 21 and 22 of the stator 2 facing each other.
 可動子ベース4は給液口4a、流路4b、排液口4cを含む。流路4bの中間には、単相ユニット1U、1V、1Wの冷却パイプ11が接続されている。流路4bは、可動子ベース4の内部に埋め込んだ金属製パイプでも良い。また、可動子ベース4を厚さ方向に2分割した部材により構成し、それぞれの部材の一面に溝を刻設した後、溝を設けた面同士を合わせ接合し、刻設した溝により可動子ベース4の内部に形成される空間を流路4bとしても良い。 The mover base 4 includes a liquid supply port 4a, a flow path 4b, and a liquid discharge port 4c. A single- phase unit 1U, 1V, 1W cooling pipe 11 is connected to the middle of the flow path 4b. The flow path 4b may be a metal pipe embedded in the movable element base 4. Further, the movable element base 4 is constituted by a member divided into two in the thickness direction, grooves are engraved on one surface of each member, the surfaces provided with the grooves are joined together, and the movable element is formed by the engraved grooves. A space formed inside the base 4 may be used as the flow path 4b.
 給液口4aは冷却回路(不図示)に接続され、ポンプ(不図示)より冷媒が供給される。給液口4aから供給された冷媒は、次のような経路を経て、排液口4cから排出され、冷却回路に戻る。給液口4aから供給された冷媒は、流路4bを通り、単相ユニット1Uの給液口11aから単相ユニット1Uの冷却パイプ11に流入する。冷却パイプ11を流動した冷媒は、単相ユニット1Uの排液口11bから、可動子ベース4の流路4bに排出される。排出された冷媒は、流路4bを経て、単相ユニット1Vの給液口11aから単相ユニット1Vの冷却パイプ11に流入する。冷却パイプ11を流動した冷媒は、単相ユニット1Vの排液口11bから、可動子ベース4の流路4bに排出される。排出された冷媒は、流路4bを経て、単相ユニット1Wの給液口11aから単相ユニット1Wの冷却パイプ11に流入する。冷却パイプ11を流動した冷媒は、単相ユニット1Wの排液口11bより、可動子ベース4の流路4bに排出される。排出された冷媒は、流路4bを経て、排液口4cより、可動子ベース4の外部に排出される。以上のように、冷媒が流動することにより、各単相ユニット1U、1V、1Wのコイル1aが冷却される。 The liquid supply port 4a is connected to a cooling circuit (not shown), and a refrigerant is supplied from a pump (not shown). The refrigerant supplied from the liquid supply port 4a is discharged from the liquid discharge port 4c through the following path and returns to the cooling circuit. The refrigerant supplied from the liquid supply port 4a flows through the flow path 4b and flows into the cooling pipe 11 of the single-phase unit 1U from the liquid supply port 11a of the single-phase unit 1U. The refrigerant flowing through the cooling pipe 11 is discharged from the liquid discharge port 11b of the single-phase unit 1U to the flow path 4b of the mover base 4. The discharged refrigerant flows into the cooling pipe 11 of the single-phase unit 1V from the liquid supply port 11a of the single-phase unit 1V through the flow path 4b. The refrigerant that has flowed through the cooling pipe 11 is discharged from the liquid discharge port 11b of the single-phase unit 1V to the flow path 4b of the mover base 4. The discharged refrigerant flows into the cooling pipe 11 of the single-phase unit 1W from the liquid supply port 11a of the single-phase unit 1W via the flow path 4b. The refrigerant that has flowed through the cooling pipe 11 is discharged to the flow path 4b of the mover base 4 from the liquid discharge port 11b of the single-phase unit 1W. The discharged refrigerant passes through the flow path 4b and is discharged to the outside of the mover base 4 through the liquid discharge port 4c. As described above, when the refrigerant flows, the coils 1a of the single- phase units 1U, 1V, and 1W are cooled.
 なお、冷却パイプ11は図9において可動子ベース4の外に出ている部分のみに設けても良い。図9に点線で示している部分は、冷却パイプ11とは異なる部品であっても良い。可動子ベース4内では、冷媒は、可動子ベース4に刻設した流路を流動するようにする。 In addition, the cooling pipe 11 may be provided only in a portion protruding from the mover base 4 in FIG. The part indicated by the dotted line in FIG. 9 may be a part different from the cooling pipe 11. In the mover base 4, the refrigerant flows through a flow path formed in the mover base 4.
 実施の形態2に係るリニアモータは、実施の形態1に係るリニアモータが奏する効果に加えて、次のような効果を奏する。可動子1のヨーク1b及び永久磁石1c、1dの長手方向の長さを長くしたので、より大きな推力を得ることが可能となる。また、3相駆動の可動子1とした場合、単相の場合に比べ、さらに大きな推力を得ることが可能となる。 The linear motor according to the second embodiment has the following effects in addition to the effects exhibited by the linear motor according to the first embodiment. Since the longitudinal lengths of the yoke 1b and the permanent magnets 1c, 1d of the mover 1 are increased, a larger thrust can be obtained. Further, when the movable element 1 of the three-phase drive is used, a larger thrust can be obtained as compared with the case of the single phase.
 実施の形態3
 図10A及び図10Bは、実施の形態3に係るリニアモータの可動子1の構成例を示す説明図である。図10Aは、可動子1の構成例を示す平面図である。図10Bは、図10AのX-X線による断面図である。実施の形態3と実施の形態1との違いはコイル1aとコイル1aの冷却構造にある。実施の形態3ではコイル1aをコイル1aと略同形状の冷却ジャケット12内に配置し冷却ジャケット12内壁とコイル1aの間に冷媒を流通させることでコイル1aの冷却を行う構造である。
Embodiment 3
10A and 10B are explanatory diagrams illustrating a configuration example of the mover 1 of the linear motor according to the third embodiment. FIG. 10A is a plan view illustrating a configuration example of the mover 1. FIG. 10B is a cross-sectional view taken along line XX of FIG. 10A. The difference between the third embodiment and the first embodiment is the coil 1a and the cooling structure of the coil 1a. In the third embodiment, the coil 1a is arranged in a cooling jacket 12 having substantially the same shape as the coil 1a, and the coil 1a is cooled by circulating a refrigerant between the inner wall of the cooling jacket 12 and the coil 1a.
 冷却ジャケット12は矩形枠状をなしている。冷却ジャケット12の枠状内部にヨーク1b、永久磁石1c、1dが配される。冷却ジャケット12の枠状部分は、断面が矩形状の管となっている。コイル1aが収納される管の断面は、コイル1aの断面よりも、やや大きくなっている。冷却パイプ11と同様に冷却ジャケット12は冷媒が流入する給液口12a、排液口12bを備えている。給液口12aから流入した冷媒は冷却ジャケット12内のコイル1aを冷却しつつ、冷却ジャケット12内を進み、排液口12bより排出される。 The cooling jacket 12 has a rectangular frame shape. A yoke 1b and permanent magnets 1c and 1d are arranged inside the frame shape of the cooling jacket 12. The frame-like portion of the cooling jacket 12 is a tube having a rectangular cross section. The cross section of the tube in which the coil 1a is housed is slightly larger than the cross section of the coil 1a. Similar to the cooling pipe 11, the cooling jacket 12 includes a liquid supply port 12 a and a liquid discharge port 12 b through which the refrigerant flows. The refrigerant flowing in from the liquid supply port 12a proceeds through the cooling jacket 12 while cooling the coil 1a in the cooling jacket 12, and is discharged from the liquid discharge port 12b.
 冷却ジャケット12は、例えば全体の形状を厚さ方向上下に2分割した2つの部材から構成し、部材の一方にコイル1aを配置した後に、2つの部材を接合してもよい。またはコイル1aと冷却ジャケット12内壁に間隙を有するように樹脂を成形(たとえば射出成形)してもよい。コイル1aは冷却ジャケット12内壁から突出したコマ状の突起(図示しない)にて上下あるいは左右又は上下及び左右から固定されている。 The cooling jacket 12 may be composed of, for example, two members whose overall shape is divided into two in the thickness direction, and the two members may be joined after the coil 1a is disposed on one of the members. Alternatively, the resin may be molded (for example, injection molding) so as to have a gap between the coil 1a and the inner wall of the cooling jacket 12. The coil 1a is fixed from above and below, right and left, up and down, and left and right by a piece-like protrusion (not shown) protruding from the inner wall of the cooling jacket 12.
 実施の形態1はコイル1aを外側面からのみ冷却したが、実施の形態3ではコイル1aを内側面、外側面、両端面から冷却するため、冷却される面積が増えるので、冷却効率が高まる。冷却ジャケット12の材質は非磁性の金属でもよいが、樹脂で成形したものを使用してもよい。冷却ジャケット12に使用する樹脂は樹脂をガラス繊維等で補強した樹脂は必ずしも必要でなく強度は要求されない。可動子1の加減速度に耐え、必要な冷媒の圧力に耐えればよく強度は適宜設定すれば良い。条件によっては硬質プラスチックも使用可能である。
 もちろんガラス繊維で補強した樹脂ジャケットを使用してもよい。
In the first embodiment, the coil 1a is cooled only from the outer side surface. However, in the third embodiment, the coil 1a is cooled from the inner side surface, the outer side surface, and both end surfaces. The material of the cooling jacket 12 may be a non-magnetic metal, but may be a resin molded one. The resin used for the cooling jacket 12 does not necessarily require a resin obtained by reinforcing the resin with glass fiber or the like, and does not require strength. The strength may be set as appropriate as long as it can withstand the acceleration / deceleration of the mover 1 and withstand the pressure of the necessary refrigerant. Depending on the conditions, hard plastics can also be used.
Of course, a resin jacket reinforced with glass fiber may be used.
 本発明のリニアモータの可動子1は可動子1のヨーク1bをコイル1aで励磁させ歯部21a、22aとの相互作用によって可動子1を固定子2に対して相対的に移動させる。よってコイル1aで発生させた磁力を永久磁石1c、1dが発生する磁力と直接的な相互作用にて可動子1と固定子2を相対移動させる特許文献2に記載のリニアモータと異なり、コイル1aと永久磁石1c、1dとの間に可動子1の移動に伴う応力の変化は極めて少ない。 The mover 1 of the linear motor of the present invention excites the yoke 1b of the mover 1 with the coil 1a and moves the mover 1 relative to the stator 2 by interaction with the tooth portions 21a and 22a. Therefore, unlike the linear motor described in Patent Document 2 in which the magnetic force generated by the coil 1a is moved relative to the movable element 1 and the stator 2 by direct interaction with the magnetic force generated by the permanent magnets 1c and 1d, the coil 1a And the permanent magnets 1c and 1d have very little change in stress accompanying the movement of the mover 1.
 特許文献2のリニアモータにおいてはこの応力の変化に耐えるようにコイル1aの固定やコイル1aを固定する冷却ジャケット12の強度についても上げておく必要がある。しかし、本発明においてはその必要は無く冷却ジャケット12の強度は冷媒を通過させる際の冷媒の圧力にのみ耐えればよい。よって、冷却ジャケット12の材質についてはガラス繊維等で補強する必要は無い。 In the linear motor of Patent Document 2, it is necessary to increase the strength of the coil 1a and the cooling jacket 12 for fixing the coil 1a so as to withstand this change in stress. However, this is not necessary in the present invention, and the strength of the cooling jacket 12 only needs to withstand the pressure of the refrigerant when the refrigerant is passed. Therefore, it is not necessary to reinforce the material of the cooling jacket 12 with glass fiber or the like.
 実施の形態3に係るリニアモータは、以下の様な効果を奏する。永久磁石1c、1dは可動子1のみに使用するので、リニアモータの全長を長くした場合においても、使用する永久磁石の量は増加せず一定となり、コストを低減させることが可能となる。加えて、端効果の影響を低減させることが可能となる。
 また、可動子1はヨーク1bを3個、永久磁石1c、1dを各1個の計2個という最小の構成としている。そのため、可動子1の備える永久磁石1c、1dの移動方向の幅を大きくすること、及び歯部21a、22aの可動子1の移動方向の幅を大きくすることも可能となる。それによって、ヨーク1b、永久磁石1c、1dの数が多い同一サイズの固定子よりも大きな推力を得ることが可能となる。
The linear motor according to the third embodiment has the following effects. Since the permanent magnets 1 c and 1 d are used only for the mover 1, even when the total length of the linear motor is increased, the amount of permanent magnets used is constant without increasing, and the cost can be reduced. In addition, the influence of the end effect can be reduced.
Further, the mover 1 has a minimum configuration of two yokes 1b and three permanent magnets 1c and 1d. Therefore, it is also possible to increase the width in the moving direction of the permanent magnets 1c and 1d included in the mover 1, and to increase the width in the moving direction of the mover 1 of the tooth portions 21a and 22a. Thereby, it becomes possible to obtain a larger thrust than a stator of the same size having a large number of yokes 1b and permanent magnets 1c and 1d.
 さらにまた、コイル1aを冷媒が流動する冷却ジャケット12内に配置したので、コイル1aを内側面、外側面、両端面から冷却するため、効率よくコイル1aを冷却することが可能となる。それにより、コイル1aの発熱による推力低下を抑制することが可能となる。 Furthermore, since the coil 1a is disposed in the cooling jacket 12 through which the refrigerant flows, the coil 1a is cooled from the inner side surface, the outer side surface, and both end surfaces, so that the coil 1a can be efficiently cooled. Thereby, it becomes possible to suppress the thrust drop by the heat_generation | fever of the coil 1a.
 実施の形態4
 図11A及び図11Bは実施の形態4に係るリニアモータの可動子1の構成例を示す説明図である。図11Aは可動子1の構成例を示す平面図である。図11Bは図11AのXI-XI線による断面図である。実施の形態4に係るリニアモータの可動子1は、実施の形態3に係る可動子を3相配列したものである。他の構成は実施の形態3と同じであるため、説明を省略する。
Embodiment 4
11A and 11B are explanatory views showing a configuration example of the mover 1 of the linear motor according to the fourth embodiment. FIG. 11A is a plan view illustrating a configuration example of the mover 1. 11B is a cross-sectional view taken along line XI-XI in FIG. 11A. The mover 1 of the linear motor according to the fourth embodiment is a three-phase array of movers according to the third embodiment. Since other configurations are the same as those of the third embodiment, description thereof is omitted.
 図12は実施の形態4において、可動子ベース4に取り付けた可動子1の構成例を示す説明図である。図9に示した実施の形態2と異なるのは、コイル1aを当該コイル1aと略同形状の冷却ジャケット12内に配置し、冷却ジャケット12内壁とコイル1aの間に冷媒を流通させることであり、可動子ベース4の構成は、実施の形態2と同様であるので、説明を省略する。 FIG. 12 is an explanatory diagram showing a configuration example of the mover 1 attached to the mover base 4 in the fourth embodiment. The difference from the second embodiment shown in FIG. 9 is that the coil 1a is arranged in the cooling jacket 12 having substantially the same shape as the coil 1a, and the refrigerant is circulated between the inner wall of the cooling jacket 12 and the coil 1a. Since the configuration of the mover base 4 is the same as that of the second embodiment, the description thereof is omitted.
 実施の形態4に係るリニアモータは、実施の形態3に係るリニアモータが奏する効果に加えて、以下の様な効果を奏する。3相駆動とすることにより、単相の場合に比べ、さらに大きな推力を得ることが可能となる。 The linear motor according to the fourth embodiment has the following effects in addition to the effects exhibited by the linear motor according to the third embodiment. By using three-phase driving, it is possible to obtain a larger thrust than in the case of a single phase.
 実施の形態5
 図13A及び図13Bは実施の形態5に係るリニアモータの可動子1の構成例を示す説明図である。図13Aは可動子1の構成例を示す平面図であり、図13Bは、図13AのXIII-XIII線による断面図である。図14は実施の形態5において、可動子ベース4に取り付けた可動子1の構成例を示す説明図である。実施の形態2(図8及び図9)との相違は、ヨーク1bと永久磁石1c、1dの数を変更したものであり、その他の構成は、実施の形態2と同様であるので、説明を省略する。
Embodiment 5
13A and 13B are explanatory diagrams illustrating a configuration example of the mover 1 of the linear motor according to the fifth embodiment. 13A is a plan view showing a configuration example of the mover 1, and FIG. 13B is a cross-sectional view taken along line XIII-XIII in FIG. 13A. FIG. 14 is an explanatory diagram showing a configuration example of the mover 1 attached to the mover base 4 in the fifth embodiment. The difference from the second embodiment (FIGS. 8 and 9) is that the number of yokes 1b and permanent magnets 1c and 1d is changed. Omitted.
 実施の形態5に係るリニアモータは、ヨーク1bと永久磁石1c、1dの数を増加させたので、可動子1をよりスムーズに可動させることが可能となる。 In the linear motor according to the fifth embodiment, since the number of yokes 1b and permanent magnets 1c and 1d is increased, the mover 1 can be moved more smoothly.
 実施の形態6
 図15は実施の形態6に係るリニアモータの可動子1の構成例を示す平面図である。実施の形態1との相違は、中央に位置するヨークの移動方向の幅である。実施の形態6においては、可動子1の移動方向に沿って並ぶ3つのヨーク1b、10bのうち、中央に位置するヨーク10bと左右に位置するヨーク1bの移動方向の幅が異なることを特徴とする。ヨーク10bの幅d2はヨーク1bの幅d1の2倍としてある。これはコイル電流増加に伴いヨーク1b、10bを流れる磁束が増加した場合において、磁気飽和を起きにくくするためである。左右に位置するヨーク1bは1つの永久磁石1c又は1dからの磁束を歯部21a又は22aとやり取りするのに対して、中央に位置するヨーク10bは2つの永久磁石1c及び1dからの磁束を歯部21a又は22aとやり取りをする。そのため、中央に位置するヨーク10bの幅d2は左右に位置するヨーク1bの幅d1の2倍とすることが好適である。
Embodiment 6
FIG. 15 is a plan view showing a configuration example of the mover 1 of the linear motor according to the sixth embodiment. The difference from the first embodiment is the width in the moving direction of the yoke located at the center. In the sixth embodiment, among the three yokes 1b and 10b arranged along the moving direction of the mover 1, the width in the moving direction of the yoke 10b located in the center and the yoke 1b located on the left and right is different. To do. The width d2 of the yoke 10b is twice the width d1 of the yoke 1b. This is to make it difficult for magnetic saturation to occur when the magnetic flux flowing through the yokes 1b and 10b increases as the coil current increases. The yoke 1b located on the left and right exchanges the magnetic flux from one permanent magnet 1c or 1d with the tooth portion 21a or 22a, whereas the yoke 10b located on the center receives the magnetic flux from the two permanent magnets 1c and 1d. Exchanges with the unit 21a or 22a. Therefore, it is preferable that the width d2 of the yoke 10b located at the center is twice the width d1 of the yoke 1b located on the left and right.
 図16A及び図16Bは可動子1のヨークの磁気飽和についての説明図である。図16Aは実施の形態6に係る可動子1の場合を示している。図16Bは上述の実施の形態1に係る可動子1の場合を示している。歯部21aからヨーク1b、永久磁石1c又は1dを通り、ヨーク1b又は10bを経て歯部22aに至る点線が磁束の流れを示している。実施の形態6において、2つの永久磁石1c、1dに挟まれているヨーク、すなわち中央に位置するヨーク10bは実施の形態1におけるヨーク1bよりも移動方向の幅(長さ)が広くなっているため、磁束の密度が高くなり難くなっており、磁気飽和が起きにくくなっている。このように、コイル1aの電流を増加した場合であってもヨーク10bが磁気飽和を起こしにくくなるので、リニアモータの電流増加時における推力リニアリティが改善される。なお、図16に示した磁束の流れは一例として示したものである。
 なお、幅d2は幅d1の2倍に限られない。幅d2が2倍以上であれば、ヨーク10bが磁気飽和しにくくなる。しかしながら、10bで磁気飽和が起きない場合でも、両端のヨーク1bで磁気飽和するので、幅d2は幅d1の2倍が好適である。幅d2が2倍以下である場合は、幅d2と幅d1が等しい場合よりもヨーク10bで磁気飽和を起こしにくくなるが、両端のヨーク1bが磁気飽和を起こす前に、ヨーク10bで磁気飽和が起こることとなる。幅d1、d2により可動子1の移動方向の寸法が決まるので、幅d1、d2をどのように設定するかは、上述した点を考慮して決定すれば良い。
16A and 16B are explanatory diagrams for the magnetic saturation of the yoke of the mover 1. FIG. FIG. 16A shows the case of the mover 1 according to the sixth embodiment. FIG. 16B shows the case of the mover 1 according to the first embodiment. A dotted line from the tooth portion 21a through the yoke 1b, the permanent magnet 1c or 1d to the tooth portion 22a through the yoke 1b or 10b indicates the flow of magnetic flux. In the sixth embodiment, the yoke sandwiched between the two permanent magnets 1c and 1d, that is, the yoke 10b located in the center, has a wider width (length) in the moving direction than the yoke 1b in the first embodiment. Therefore, the density of magnetic flux is difficult to increase, and magnetic saturation is difficult to occur. Thus, even if the current of the coil 1a is increased, the yoke 10b is less likely to cause magnetic saturation, and thus the thrust linearity when the current of the linear motor increases is improved. The flow of magnetic flux shown in FIG. 16 is shown as an example.
The width d2 is not limited to twice the width d1. If the width d2 is twice or more, the yoke 10b is less likely to be magnetically saturated. However, even if magnetic saturation does not occur at 10b, magnetic saturation occurs at the yokes 1b at both ends, so the width d2 is preferably twice the width d1. When the width d2 is less than twice, magnetic saturation is less likely to occur in the yoke 10b than when the width d2 is equal to the width d1, but before the yoke 1b at both ends is subjected to magnetic saturation, the magnetic saturation occurs in the yoke 10b. Will happen. Since the dimension in the moving direction of the mover 1 is determined by the widths d1 and d2, how to set the widths d1 and d2 may be determined in consideration of the above points.
 なお、上述のリニアモータにおいて、3相駆動の構成とする場合には、各単相ユニット間のピッチを、固定子2の歯部21a、22aのピッチの2/3のn倍(3分の2の整数倍)にすれば良い。整数nの値は、各単相ユニットの移動方向の長さを考慮して設定すれば良い。 In the above-described linear motor, when a three-phase drive configuration is adopted, the pitch between each single-phase unit is n times 2/3 the pitch of the teeth 21a and 22a of the stator 2 (3 minutes). (Integer multiple of 2). The value of the integer n may be set in consideration of the length of each single-phase unit in the moving direction.
 実施の形態7
 図17A及び図17Bは実施の形態7に係るリニアモータの可動子1の構成例を示す説明図である。図17Aは可動子1の構成例を示す平面図である。図17Bは図17AのXVII-XVII線による断面図である。実施の形態7に係るリニアモータの可動子1は、3相配列した3つの単位可動子101、102、103を連結した構成としてある。単位可動子101、102、103それぞれは冷却ジャケット(冷却部)12を有している。冷却ジャケット12は、矩形枠が連結したような梯子状をなしている。冷却ジャケット12の内部は空洞(中空)としてある。冷却ジャケット12それぞれの内部には、コイル1aが配されている。すなわち、冷却ジャケット12はコイルを内包している。矩形枠状に囲われた空間内それぞれには、ヨーク1b、永久磁石1c、1dが配されている。
Embodiment 7
17A and 17B are explanatory views showing a configuration example of the mover 1 of the linear motor according to the seventh embodiment. FIG. 17A is a plan view illustrating a configuration example of the mover 1. FIG. 17B is a cross-sectional view taken along line XVII-XVII in FIG. 17A. The mover 1 of the linear motor according to the seventh embodiment has a configuration in which three unit movers 101, 102, 103 arranged in three phases are connected. Each of the unit movers 101, 102, 103 has a cooling jacket (cooling unit) 12. The cooling jacket 12 has a ladder shape in which rectangular frames are connected. The inside of the cooling jacket 12 is a cavity (hollow). A coil 1 a is disposed inside each cooling jacket 12. That is, the cooling jacket 12 includes a coil. A yoke 1b and permanent magnets 1c and 1d are arranged in each space enclosed by a rectangular frame.
 単位可動子101、102、103それぞれが有する構成は、実施の形態4と同様である。各相は、コイル1aの内部に、ヨーク1bが3個、2個一組の永久磁石1c、1dを備えている。ヨーク1b、永久磁石1c、1dは、移動方向に沿って交互に配列してある。中央のヨーク1bを挟む永久磁石1c、1dは、移動方向に沿って磁化してあり、その向きは対向する向きとなっている。単位可動子101、102、103は、例えば、図9に示した可動子ベース4により固定され、一体化した可動子1となる。 The configuration of each of the unit movers 101, 102, 103 is the same as that of the fourth embodiment. Each phase includes three yokes 1b and a set of permanent magnets 1c and 1d inside the coil 1a. The yoke 1b and the permanent magnets 1c and 1d are alternately arranged along the moving direction. The permanent magnets 1c and 1d sandwiching the central yoke 1b are magnetized along the moving direction, and the directions thereof are opposite to each other. The unit movers 101, 102, and 103 are fixed by the mover base 4 shown in FIG.
 冷却ジャケット12はそれぞれ給液口12a、排液口12bが備えられている。リニアモータ動作時には、給液口12aから冷媒を供給し、排液口12bから冷媒を排出することにより、単位可動子101、102、103それぞれを冷却する。給液口12aから流入した冷媒は、給液口12aに近いコイル1a、中央のコイル1a、排液口12bに近いコイル1aの順に各コイル1aの周縁を冷却して、排液口12bから排出される。冷媒の流路、給液口12a、排液口12bの構成はこれに限らない。例えば、中央のコイル1aに近い位置に給液口12aを設け、両脇のコイル1aに近い位置2箇所に排液口12bを設けても良い。この場合、給液口12aから流入した冷媒は2つに分かれ、分かれた一方の冷媒は中央のコイル1a、両端のコイル1aの一方を冷却して、一方の排液口12bより排出する。他方のコイルの冷却も同様である。 The cooling jacket 12 is provided with a liquid supply port 12a and a liquid discharge port 12b, respectively. During operation of the linear motor, the unit movers 101, 102, and 103 are cooled by supplying the refrigerant from the liquid supply port 12a and discharging the refrigerant from the liquid discharge port 12b. The refrigerant flowing in from the liquid supply port 12a cools the periphery of each coil 1a in the order of the coil 1a close to the liquid supply port 12a, the central coil 1a, and the coil 1a close to the liquid discharge port 12b, and is discharged from the liquid discharge port 12b. Is done. The configuration of the refrigerant flow path, the liquid supply port 12a, and the liquid discharge port 12b is not limited thereto. For example, the liquid supply port 12a may be provided at a position close to the central coil 1a, and the liquid discharge port 12b may be provided at two positions close to the coils 1a on both sides. In this case, the refrigerant flowing in from the liquid supply port 12a is divided into two, and one of the divided refrigerants cools one of the central coil 1a and the coil 1a at both ends, and discharges it from one liquid discharge port 12b. The same applies to the cooling of the other coil.
 実施の形態7に係るリニアモータは次のような効果を奏する。可動子1を3つの単位可動子101、102、103から構成したので、各単位可動子に含まれる各相のコイル1aの巻線を、可動子1を1つの単位可動子で構成する場合よりも少なくすることが可能となる。それにより、コイル1aの発熱量を低減することが可能となる。コイル1aの巻数を減らすことにより、各単位可動子で発生する推力は低下するが、単位可動子を増やすことにより、可動子1全体の推力を確保することが可能となる。単位可動子を1つから3つとすることにより、各コイル1aの巻数を1/4から1/3に低減することが可能である。 The linear motor according to Embodiment 7 has the following effects. Since the mover 1 is composed of the three unit movers 101, 102, and 103, the winding of the coil 1a of each phase included in each unit mover is more than the case where the mover 1 is constituted by one unit mover. Can also be reduced. As a result, the amount of heat generated by the coil 1a can be reduced. By reducing the number of turns of the coil 1a, the thrust generated in each unit mover is reduced, but by increasing the number of unit movers, the thrust of the entire mover 1 can be ensured. By changing the number of unit movers from one to three, it is possible to reduce the number of turns of each coil 1a from ¼ to 3.
 実施の形態7に係るリニアモータは要求仕様が次のような場合に有効である。単位可動子が1つでは、発熱が大きすぎ、雰囲気温度が仕様を満たさない場合である。この場合、冷媒の流量を増やせば冷却は可能であるが、他の装置との関係で冷媒の流量を増やせないときがある。このようなときに、コイル1aの巻数を減らすことにより、各単位可動子で発生する熱を低減させることにより、冷媒の流量を増やさずに適切な雰囲気温度を確保可能となる。コイル1aの巻線を増やす代わりに単位可動子の個数を増やすので、必要な推力も確保可能である。 The linear motor according to Embodiment 7 is effective when the required specifications are as follows. With one unit mover, the heat generation is too large and the ambient temperature does not meet the specifications. In this case, the cooling can be performed by increasing the flow rate of the refrigerant, but the flow rate of the refrigerant may not be increased in relation to other devices. In such a case, by reducing the number of turns of the coil 1a and reducing the heat generated by each unit mover, it is possible to ensure an appropriate ambient temperature without increasing the flow rate of the refrigerant. Since the number of unit movers is increased instead of increasing the number of windings of the coil 1a, the necessary thrust can be secured.
 実施の形態8
 図18A及び18Bは実施の形態8に係るリニアモータの可動子1の構成例を示す説明図である。図18Aは可動子1の構成例を示す平面図である。図18Bは図18AのXVIII-XVIII線による断面図である。実施の形態8に係るリニアモータの可動子1は、実施の形態7の可動子1と冷却ジャケット12の構造が異なる。冷却ジャケット12の構造以外は、実施の形態7と同様であるので、以下の説明では、主に冷却ジャケット12について説明する。
Embodiment 8
18A and 18B are explanatory views showing a configuration example of the mover 1 of the linear motor according to the eighth embodiment. FIG. 18A is a plan view showing a configuration example of the mover 1. 18B is a cross-sectional view taken along line XVIII-XVIII in FIG. 18A. The mover 1 of the linear motor according to the eighth embodiment is different from the mover 1 of the seventh embodiment in the structure of the cooling jacket 12. Since the structure other than the structure of the cooling jacket 12 is the same as that of the seventh embodiment, the following description will mainly focus on the cooling jacket 12.
 冷却ジャケット12は、矩形枠状のものが複数連結したような梯子状をなしている。冷却ジャケット12の中は空洞としてある。冷却ジャケット12の内部には、コイル1aが配されている。矩形枠状に囲われた空間内それぞれには、実施の形態7と同様に、ヨーク1b、永久磁石1c、1dが配されている。 The cooling jacket 12 has a ladder shape in which a plurality of rectangular frame shapes are connected. The inside of the cooling jacket 12 is a cavity. A coil 1 a is disposed inside the cooling jacket 12. As in the seventh embodiment, a yoke 1b and permanent magnets 1c and 1d are arranged in each space enclosed by a rectangular frame.
 冷却ジャケット12は3相からなる単位可動子101、102、103をまとめて冷却可能な構造となっている。冷却ジャケット12は給液口12a、排液口12bが備えられている。リニアモータ動作時には、給液口12aから冷媒を供給し、排液口12bから冷媒を排出することにより、可動子1の全体を冷却する。 The cooling jacket 12 has a structure capable of cooling unit movers 101, 102, and 103 having three phases together. The cooling jacket 12 is provided with a liquid supply port 12a and a liquid discharge port 12b. During the linear motor operation, the whole movable element 1 is cooled by supplying the refrigerant from the liquid supply port 12a and discharging the refrigerant from the liquid discharge port 12b.
 冷媒の流路は、給液口12aから流入し、給液口12aに近いコイル1aから排液口12bに近いコイル1aに向かって、順に冷却し、排液口12bから排出するようにすれば良い。なお、流路にはバイパスや分岐を設けても良い。また、給液口12a、排液口12bを複数設けても良い。 The coolant flow path flows in from the liquid supply port 12a, cools in order from the coil 1a near the liquid supply port 12a to the coil 1a near the liquid discharge port 12b, and then discharges from the liquid discharge port 12b. good. In addition, you may provide a bypass and a branch in a flow path. Further, a plurality of liquid supply ports 12a and a plurality of liquid discharge ports 12b may be provided.
 実施の形態8に係るリニアモータは、実施の形態7に係るリニアモータが奏する効果に加えて、次のような効果を奏する。冷却ジャケット12を一体化したことにより、各単位可動子101、102、103を一体とする固定の強度を上げることが可能となる。また、冷却ジャケット12を一体化したので、バイパスや分岐を設けることにより、可動子1の冷却を全体で効率的に行うことが可能となる。 The linear motor according to the eighth embodiment has the following effects in addition to the effects exhibited by the linear motor according to the seventh embodiment. By integrating the cooling jacket 12, it is possible to increase the strength of fixing the unit movers 101, 102, and 103 together. In addition, since the cooling jacket 12 is integrated, it is possible to efficiently cool the mover 1 as a whole by providing a bypass and a branch.
 各実施の形態で記載されている技術的特徴(構成要件)はお互いに組合せ可能であり、組み合わせすることにより、新しい技術的特徴を形成することができる。
 今回開示された実施の形態はすべての点で例示であって、制限的なものでは無いと考えられるべきである。本発明の範囲は、上記した意味では無く、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
The technical features (components) described in each embodiment can be combined with each other, and a new technical feature can be formed by combining them.
The embodiments disclosed herein are illustrative in all respects and should not be considered as restrictive. The scope of the present invention is defined not by the above-mentioned meaning but by the scope of the claims, and is intended to include all modifications within the meaning and scope equivalent to the scope of the claims.
 1 可動子
 1a コイル
 1b ヨーク
 1c、1d 永久磁石(磁石)
 11 冷却パイプ
 11a 給液口
 11b 排液口
 12 冷却ジャケット
 12a 給液口
 12b 排液口
 2 固定子
 21 上板部(板状部)
 21a 歯部
 22 下板部(板状部)
 22a 歯部
 23 側板部
 4 可動子ベース
 4a 給液口
 4b 流路
 4c 排液口
1 Movable Element 1a Coil 1b Yoke 1c, 1d Permanent Magnet (Magnet)
DESCRIPTION OF SYMBOLS 11 Cooling pipe 11a Liquid supply port 11b Drainage port 12 Cooling jacket 12a Liquid supply port 12b Drainage port 2 Stator 21 Upper plate part (plate-shaped part)
21a tooth part 22 lower plate part (plate-like part)
22a tooth part 23 side plate part 4 movable element base 4a liquid supply port 4b flow path 4c drainage port

Claims (11)

  1.  固定子及び可動子を備えたリニアモータにおいて、
     前記固定子は、
     前記可動子の移動域を間にして、磁気的に結合した対向する2つの板状部を有し、
     該2つの板状部の互いに対向する面それぞれには、複数の歯部が、一方の板状部の歯部と他方の板状部の歯部とで千鳥状となるように前記可動子の移動方向に並設してあり、
     前記可動子は、
     コイル内部に、前記移動方向に沿って複数の永久磁石及び複数のヨークが交互に配列してあり、
     前記ヨークを介して隣り合う永久磁石は、互いに対向する向きに磁化されており、
     さらに、前記コイルを冷却する冷却部を有すること
     を特徴とするリニアモータ。
    In a linear motor having a stator and a mover,
    The stator is
    Having two plate-like portions facing each other magnetically coupled with the moving range of the mover in between,
    On each of the two plate-like portions facing each other, a plurality of tooth portions are staggered between the tooth portions of one plate-like portion and the tooth portions of the other plate-like portion. It is juxtaposed in the moving direction,
    The mover is
    Inside the coil, a plurality of permanent magnets and a plurality of yokes are alternately arranged along the moving direction,
    The permanent magnets adjacent via the yoke are magnetized in directions facing each other,
    Furthermore, it has a cooling part which cools the said coil, The linear motor characterized by the above-mentioned.
  2.  前記冷却部は冷却パイプを有し、該冷却パイプは前記コイルの外側面に配してあることを特徴とする請求項1に記載のリニアモータ。 The linear motor according to claim 1, wherein the cooling unit includes a cooling pipe, and the cooling pipe is disposed on an outer surface of the coil.
  3.  前記コイルおよび前記冷却パイプの前記2つの板状部に垂直な方向の長さは、前記永久磁石及び前記ヨークの前記2つの板状部に垂直な方向の長さ以下であること
     を特徴とする請求項2に記載のリニアモータ。
    A length of the coil and the cooling pipe in a direction perpendicular to the two plate-like portions is equal to or less than a length of the permanent magnet and the yoke in a direction perpendicular to the two plate-like portions. The linear motor according to claim 2.
  4.  前記冷却部は前記コイルを内包する冷却ジャケットであること
     を特徴とする請求項1に記載のリニアモータ。
    The linear motor according to claim 1, wherein the cooling unit is a cooling jacket including the coil.
  5.  前記冷却ジャケットの前記2つの板状部に垂直な方向の長さは、前記永久磁石及び前記ヨークの前記2つの板状部に垂直な方向の長さ以下であること
     を特徴とする請求項4記載のリニアモータ。
    The length of the cooling jacket in the direction perpendicular to the two plate-like portions is equal to or less than the length of the permanent magnet and the yoke in the direction perpendicular to the two plate-like portions. The linear motor described.
  6.  前記可動子は前記永久磁石を2つ、前記ヨークを3つ有すること
     を特徴とする請求項1から請求項5のいずれか一に記載のリニアモータ。
    The linear motor according to any one of claims 1 to 5, wherein the mover has two permanent magnets and three yokes.
  7.  前記2つの永久磁石に挟まれているヨークが他の2つのヨークより前記移動方向に長いこと
     を特徴とする請求項6に記載のリニアモータ。
    The linear motor according to claim 6, wherein a yoke sandwiched between the two permanent magnets is longer in the moving direction than the other two yokes.
  8.  前記2つの永久磁石に挟まれているヨークの前記移動方向の長さは、他の2つのヨークの2倍の長さであること
     を特徴とする請求項7に記載のリニアモータ。
    The linear motor according to claim 7, wherein a length of the yoke sandwiched between the two permanent magnets is twice as long as the other two yokes.
  9.  固定子及び可動子を備えたリニアモータにおいて、
     前記固定子は、
     前記可動子の移動域を間にして、磁気的に結合した対向する2つの板状部を有し、
     該2つの板状部の互いに対向する面それぞれには、複数の歯部が、一方の板状部の歯部と他方の板状部の歯部とで千鳥状となるように前記可動子の移動方向に並設してあり、
     前記可動子は、
     冷却部及び複数の単位可動子を有し、
     各単位可動子は、前記移動方向に沿って並んだ3つのコイルを有し、
     各コイル内部に、前記移動方向に沿って複数の永久磁石及び複数のヨークが交互に配列してあり、
     前記ヨークを介して隣り合う永久磁石は、互いに対向する向きに磁化されていること
     を特徴とするリニアモータ。
    In a linear motor having a stator and a mover,
    The stator is
    Having two plate-like portions facing each other magnetically coupled with the moving range of the mover in between,
    On each of the two plate-like portions facing each other, a plurality of tooth portions are staggered between the tooth portions of one plate-like portion and the tooth portions of the other plate-like portion. It is juxtaposed in the moving direction,
    The mover is
    A cooling unit and a plurality of unit movers;
    Each unit mover has three coils arranged along the moving direction,
    Inside each coil, a plurality of permanent magnets and a plurality of yokes are alternately arranged along the moving direction,
    A linear motor characterized in that the permanent magnets adjacent via the yoke are magnetized in directions facing each other.
  10.  前記冷却部は、前記単位可動子毎に対応して設けられ、
     各冷却部は、前記各コイルを内包する中空状をなし、前記複数の永久磁石及び複数のヨークを囲繞していること
     を特徴とする請求項9に記載のリニアモータ。
    The cooling unit is provided corresponding to each unit mover,
    10. The linear motor according to claim 9, wherein each cooling unit has a hollow shape including each coil, and surrounds the plurality of permanent magnets and the plurality of yokes.
  11.  前記冷却部は中空状をなし、前記可動子の有するすべてのコイル夫々を内包し、前記複数の永久磁石及び複数のヨークを囲繞していること
     を特徴とする請求項9に記載のリニアモータ。
    The linear motor according to claim 9, wherein the cooling section is hollow, includes all the coils of the mover, and surrounds the plurality of permanent magnets and the plurality of yokes.
PCT/JP2015/057523 2014-03-19 2015-03-13 Linear motor WO2015141591A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016508700A JPWO2015141591A1 (en) 2014-03-19 2015-03-13 Linear motor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-057048 2014-03-19
JP2014057048 2014-03-19
JP2014225187 2014-11-05
JP2014-225187 2014-11-05

Publications (1)

Publication Number Publication Date
WO2015141591A1 true WO2015141591A1 (en) 2015-09-24

Family

ID=54144560

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/057523 WO2015141591A1 (en) 2014-03-19 2015-03-13 Linear motor

Country Status (2)

Country Link
JP (1) JPWO2015141591A1 (en)
WO (1) WO2015141591A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157643A (en) * 1986-12-18 1988-06-30 Canon Inc Linear motor
JPH08502880A (en) * 1992-11-04 1996-03-26 エコル ノルマル シュペリユール ド カシャン(レジール) Electromechanical transducer for generating linear motion
JP2001275336A (en) * 2000-03-29 2001-10-05 Sodick Co Ltd Modularized coil side linear motor
JP2005237059A (en) * 2004-02-17 2005-09-02 Sanyo Denki Co Ltd Armature winding cooling structure
JP2006054966A (en) * 2004-08-12 2006-02-23 Nikon Corp Magnet unit, linear motor, stage device, and exposure apparatus, and manufacturing method of magnet unit
JP2012157233A (en) * 2010-08-27 2012-08-16 Yaskawa Electric Corp Linear motor armature and linear motor including the same
WO2013122031A1 (en) * 2012-02-16 2013-08-22 日立金属株式会社 Linear motor
JP2013207838A (en) * 2012-03-27 2013-10-07 Sumitomo Heavy Ind Ltd Linear motor cooling structure

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157643A (en) * 1986-12-18 1988-06-30 Canon Inc Linear motor
JPH08502880A (en) * 1992-11-04 1996-03-26 エコル ノルマル シュペリユール ド カシャン(レジール) Electromechanical transducer for generating linear motion
JP2001275336A (en) * 2000-03-29 2001-10-05 Sodick Co Ltd Modularized coil side linear motor
JP2005237059A (en) * 2004-02-17 2005-09-02 Sanyo Denki Co Ltd Armature winding cooling structure
JP2006054966A (en) * 2004-08-12 2006-02-23 Nikon Corp Magnet unit, linear motor, stage device, and exposure apparatus, and manufacturing method of magnet unit
JP2012157233A (en) * 2010-08-27 2012-08-16 Yaskawa Electric Corp Linear motor armature and linear motor including the same
WO2013122031A1 (en) * 2012-02-16 2013-08-22 日立金属株式会社 Linear motor
JP2013207838A (en) * 2012-03-27 2013-10-07 Sumitomo Heavy Ind Ltd Linear motor cooling structure

Also Published As

Publication number Publication date
JPWO2015141591A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
EP1883151B1 (en) Permanent magnet excited transverse flux linear motor with normal force compensation structure
US8569916B2 (en) Electrical machine apparatus
JP5991326B2 (en) Linear motor
JP5370313B2 (en) Linear motor
US8198760B2 (en) Linear motor
KR101657276B1 (en) Movable element, armature, and linear motor
JP6128206B2 (en) Linear motor
JP2003209963A (en) Linear motor
JP2005176464A (en) Linear motor
JP3539493B2 (en) Canned linear motor armature and canned linear motor
JP5447308B2 (en) Linear motor
WO2015141591A1 (en) Linear motor
JP2014204471A (en) Linear motor
JP6677048B2 (en) Moving coil type linear motor
KR100870448B1 (en) Stator core shape of Transverse Flux Linear Motor reducing the simple winding and small volume
JP6197346B2 (en) Linear motor
JP5514513B2 (en) Linear motor
JP6764797B2 (en) Linear motor and cooling method for linear motor
JP2004187376A (en) Linear actuator
JP2013176269A (en) Linear motor
JP2014147276A (en) Linear motor
JP5201161B2 (en) Linear motor and table feeder using the same
JP2004312869A (en) Linear motor
JPH10323011A (en) Linear motor
JP2005057822A (en) Linear motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764535

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508700

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764535

Country of ref document: EP

Kind code of ref document: A1