WO2015141357A1 - Foil bearing, turbo machine, and foil holder - Google Patents

Foil bearing, turbo machine, and foil holder Download PDF

Info

Publication number
WO2015141357A1
WO2015141357A1 PCT/JP2015/054321 JP2015054321W WO2015141357A1 WO 2015141357 A1 WO2015141357 A1 WO 2015141357A1 JP 2015054321 W JP2015054321 W JP 2015054321W WO 2015141357 A1 WO2015141357 A1 WO 2015141357A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
bearing
peripheral surface
holder
diameter portion
Prior art date
Application number
PCT/JP2015/054321
Other languages
French (fr)
Japanese (ja)
Inventor
藤原 宏樹
Original Assignee
Ntn株式会社
藤原 宏樹
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社, 藤原 宏樹 filed Critical Ntn株式会社
Publication of WO2015141357A1 publication Critical patent/WO2015141357A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/18Lubricating arrangements
    • F01D25/22Lubricating arrangements using working-fluid or other gaseous fluid as lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/02Assembling sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2220/00Application
    • F05D2220/40Application in turbochargers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/002Cooling of bearings of fluid bearings

Definitions

  • the present invention relates to a foil bearing, and more particularly to a foil bearing that supports a radial load of a main shaft provided in a turbo machine such as a gas turbine.
  • the main shaft of a turbo machine such as a gas turbine or a turbocharger rotates at an ultra high speed, and the turbine blade connected to the main shaft is in a high temperature environment.
  • the main shaft is often supported by an oil-lubricated rolling bearing or an oil dynamic bearing, but it is difficult to use oil (for example, when lubrication with oil is difficult or resistance due to shearing of oil becomes a problem)
  • an air dynamic pressure bearing that supports the shaft in a non-contact manner so as to be relatively rotatable by the dynamic pressure action of the air film is used.
  • a foil bearing is configured to support a load by forming a bearing surface with a thin film (foil) having low rigidity with respect to bending, and allowing deflection of the bearing surface (for example, the following patent document). 1 to 3).
  • a fluid film for example, an air film
  • the flexibility of the foil automatically forms an appropriate bearing gap according to the operating conditions such as shaft rotation speed, load, and ambient temperature. It can be used at a higher speed than a pressure bearing.
  • the present applicant has proposed a foil bearing 200 as shown in FIG. 11 in Japanese Patent Application No. 2013-256843.
  • a foil bearing 200 a plurality of axial grooves 212 are provided on the inner peripheral surface 211 of the foil holder 210, and the ends of the foils 220 are inserted into the axial grooves 212, so that the foils 220 are connected to the inner surfaces of the foil holders 210. It is attached to the peripheral surface 211.
  • the foil holder 210 including the axial groove 212 is formed of sintered metal.
  • the outer peripheral surface of the foil holder 210 is a cylindrical surface.
  • the foil holder 210 has the thinnest circumferential region (groove formation region) in which the axial groove 212 is formed, the outer diameter dimension is set so that the required strength can be obtained in this groove formation region.
  • regions other than the groove forming region of the foil holder 210 are thicker than the groove forming region.
  • the foil bearing supports the shaft with the pressure of the fluid (usually air) in the radial bearing gap between the bearing surface provided on the foil and the outer peripheral surface of the shaft, and the support load is relatively small.
  • the strength required for the holder 210 is also relatively small.
  • the area other than the groove forming area of the foil holder 210 is thicker than necessary in terms of strength, leading to an increase in weight as a product and an increase in the amount of shaped material used.
  • the problem to be solved by the present invention is to reduce the weight and reduce the amount of shaped material used for the foil holder in which the groove for attaching the foil is formed on the inner peripheral surface.
  • the present invention comprises a plurality of foils having bearing surfaces, and a foil holder having a cylindrical shape and having a plurality of grooves on the inner peripheral surface, and the circumferential ends of the respective foils are provided.
  • a foil bearing having a groove is provided.
  • the thickness of the foil holder in the groove forming portion is ensured and the necessary strength is obtained. be able to.
  • the thickness in this region is reduced, so the weight of the foil holder and the amount of shaped material used can be reduced. Reduction is achieved.
  • the thickness of the foil holder in the radial direction is reduced.
  • the thickness can be made substantially uniform over the entire circumference.
  • the foil holder can be made of, for example, a metal plate that has been subjected to drawing.
  • the foil inserted in the groove of the foil holder moves in the axial direction, the foil may come off the foil holder. Therefore, if at least one end in the axial direction of the plurality of grooves of the foil holder is provided with a locking portion that engages with the end of the foil inserted into the groove in the axial direction, it is possible to prevent the foil from being detached from the foil holder. .
  • the above foil bearing can be incorporated into a turbo machine having a housing that holds the foil bearing on the inner periphery.
  • the large diameter portion of the outer peripheral surface of the foil holder is fixed to the inner peripheral surface of the housing, and a gap is formed between the small diameter portion of the outer peripheral surface of the foil holder and the inner peripheral surface of the housing. Is preferred.
  • this gap is used as a cooling medium passage, the foil bearing can be efficiently cooled.
  • the foil bearing of the present invention by providing a large-diameter portion and a small-diameter portion on the outer peripheral surface of the foil holder, and by providing a groove for attaching the foil in the circumferential region of the large-diameter portion, It is possible to reduce the weight of the foil holder and reduce the amount of shaped material used.
  • FIG. 1 It is sectional drawing of the axial direction of the foil holder of the foil bearing which concerns on other embodiment. It is a perspective view which shows the manufacturing method of the foil holder of FIG. 1 is a cross-sectional view of a foil bearing described in a previous application by the applicant.
  • Fig. 1 conceptually shows the configuration of a gas turbine that is a type of turbomachine.
  • This gas turbine mainly includes a turbine 1 and a compressor 2 that form blade cascades, a generator 3, a combustor 4, and a regenerator 5.
  • the turbine 1, the compressor 2, and the generator 3 are provided with a common main shaft 6 that extends in the horizontal direction, and the main shaft 6, the turbine 1, and the compressor 2 constitute a rotor that can rotate integrally.
  • Air sucked from the intake port 7 is compressed by the compressor 2, heated by the regenerator 5, and then sent to the combustor 4. Fuel is mixed with this compressed air and burned, and the turbine 1 is rotated by high-temperature and high-pressure gas.
  • the rotational force of the turbine 1 is transmitted to the generator 3 via the main shaft 6, and the generator 3 rotates to generate electric power, and this electric power is output via the inverter 8. Since the gas after rotating the turbine 1 is at a relatively high temperature, the heat of the gas after combustion is regenerated by sending this gas to the regenerator 5 and exchanging heat with the compressed air before combustion. Use.
  • the gas that has been subjected to heat exchange in the regenerator 5 is discharged as exhaust gas after passing through the exhaust heat recovery device 9.
  • FIG. 2 shows an example of a rotor support structure in the gas turbine.
  • radial bearings 10 are disposed at two axial positions
  • thrust bearings 20, 20 are disposed on both axial sides of the flange portion 6 b provided on the main shaft 6.
  • the radial bearing 10 and the thrust bearing 20 support the main shaft 6 so as to be rotatable in the radial direction and in both thrust directions.
  • the region between the turbine 1 and the compressor 2 is adjacent to the turbine 1 that is rotated by high-temperature and high-pressure gas, and therefore has a high-temperature atmosphere.
  • the lubricant composed of lubricating oil, grease and the like is altered and evaporated, so it is difficult to apply a normal bearing (such as a rolling bearing) using these lubricants. Therefore, as the bearings 10 and 20 used in this type of support structure, an air dynamic pressure bearing, particularly a foil bearing is suitable.
  • the foil bearing 10 includes a tubular (cylindrical in the illustrated example) foil holder 11, and a plurality (three in the illustrated example) of foils 12 attached to the inner peripheral surface of the foil holder 11.
  • the outer peripheral surface of the foil holder 11 is provided with large diameter portions 11a and small diameter portions 11b alternately in the circumferential direction.
  • the large diameter part 11a and the small diameter part 11b are each formed in three places at equal pitches.
  • a stepped surface that extends in the radial direction between these circumferential end portions and extends along the axial direction.
  • a plurality of grooves 11 c are formed on the inner peripheral surface of the foil holder 11.
  • grooves 11c extending along the axial direction are provided at a plurality of locations (three locations in the illustrated example) at equal intervals in the circumferential direction of the foil holder 11.
  • a region between the circumferential directions of the plurality of grooves 11c is a cylindrical surface 11d.
  • the circumferential end of each foil 12 is inserted into the groove 11c.
  • a locking portion 11e is provided at one axial end of each groove 11c.
  • the inner peripheral surface of the locking portion 11e is a cylindrical surface having the same diameter that is continuous with the cylindrical surface 11d.
  • each groove 11c is open to the end face of the foil holder 11.
  • the extending direction of the groove 11c is set according to the shape of the foil 12, and for example, the groove 11c may be extended in a direction inclined with respect to the axial direction.
  • the groove 11c is provided in a circumferential region of the large diameter portion 11a on the outer peripheral surface. As shown in FIG. 6, each groove 11 c is provided with a groove bottom surface 11 c 1 having a diameter larger than that of the cylindrical surface 11 d, and a side surface 11 c 2 that is continuous with both ends of the groove bottom surface 11 c 1 in the circumferential direction and the cylindrical surface 11 d. A circumferential end (convex portion 12d) of the foil 12 abuts against a corner portion 11c3 provided at the boundary between the groove bottom surface 11c1 and one side surface 11c2.
  • the groove 11c in the circumferential region of the large-diameter portion 11a on the outer peripheral surface of the foil holder 11, it is possible to ensure the thickness of the foil holder 11 in the radial direction in the region where the groove 11c is formed. it can. Further, by providing the small-diameter portion 11b in a region other than the region where the groove 11c is formed in the outer peripheral surface of the foil holder 11, the thickness of the foil holder 11 is reduced, the weight of the foil bearing 10 is reduced, and the shape material is used. The amount is reduced.
  • the large-diameter portion 11a and the small-diameter portion 11b on the outer peripheral surface of the foil holder 11, and the cylindrical surface 11d and the groove bottom surface 11c1 on the inner peripheral surface are all coaxial cylindrical surfaces.
  • the thickness of the foil holder 11 can be made substantially uniform over the entire circumference.
  • the thickness difference of the large diameter portion 11a and the groove bottom surface 11c1 of the groove 11c and the diameter difference of the small diameter portion 11b and the cylindrical surface 11d are made the same, thereby making the thickness of the foil holder 11 uniform. Can do.
  • the foil holder 11 can be constituted by a metal plate that has been subjected to drawing processing.
  • the metal plate W is formed into a bottomed cylindrical shape by drawing the flat metal plate W (see the left figure) with a press molding machine (see the center figure). ).
  • the formed metal plate W is provided with a cylindrical portion W1, a flange portion W2 provided at one axial end of the cylindrical portion W1, and a bottom portion W3 that closes an opening at the other axial end of the cylindrical portion W1.
  • a large diameter portion 11a and a small diameter portion 11b are formed on the outer peripheral surface of the cylindrical portion W1, and a groove 11c and a cylindrical surface 11d are formed on the inner peripheral surface of the cylindrical portion W1.
  • the foil holder 11 is completed by removing the flange part W2 and bottom part W3 of the bottomed cylindrical metal plate W by cutting (see the right figure). At this time, a part of the bottom portion W3 remains as a locking portion 11e that closes one axial end of the groove 11c.
  • the foil 12 is formed by pressing a metal foil having a thickness of about 20 ⁇ m to 200 ⁇ m made of a metal having a high spring property and good workability, such as a steel material or a copper alloy.
  • a metal having a high spring property and good workability such as a steel material or a copper alloy.
  • each foil 12 is arranged on the inner peripheral surface of the foil holder 11 in the circumferential direction.
  • each foil 12 includes a convex portion 12a provided at one end in the circumferential direction, a concave portion 12b provided at the other circumferential end, and a main body portion provided between these circumferential directions. 12c.
  • the three foils 12 can be temporarily assembled into a cylindrical shape by fitting the convex portions 12 a of each foil 12 into the concave portions 12 b of the adjacent foils 12. In this case, when viewed in the axial direction shown in FIG.
  • This temporary assembly is inserted into the inner periphery of the foil holder 11 in a state where the three foils 12 are temporarily assembled in a cylindrical shape.
  • the convex portions 12d provided on both axial sides of the concave portions 12b at the other circumferential ends of the foils 12, It inserts in the groove
  • each foil 12 is disposed between the outer diameter surface of the adjacent foil 12 and the cylindrical surface 11d of the inner peripheral surface of the foil holder 11 (see FIG. 6). Moreover, the convex part 12d of the circumferential direction other end of each foil 12 is only inserted in the groove
  • the other end of the one foil 12 both ends in the axial direction of the concave portion 12b
  • one end of the other foil 12 (the root portion of the convex portion 12a) are engaged with each other in a circumferential direction so as to stick to each other.
  • the main-body part 12c of each foil 12 protrudes on the outer diameter side, and curves in the shape along the inner peripheral surface (cylindrical surface 11d) of the foil holder 11.
  • the inner peripheral surface of the main body 12c of each foil 12 functions as a bearing surface.
  • a multi-arc bearing surface is formed by three foils 12.
  • the outer diameter surface of each foil 12 and the inner peripheral surface (groove 11c and cylindrical surface 11d) of the foil holder 11 are slidable.
  • the convex part 12a of the circumferential direction one end of each foil 12 functions as an underfoil part which supports the main-body part 12c of the adjacent foil 12 from an outer diameter side.
  • the foil bearing 10 having the above configuration is assembled to the gas turbine by fixing the outer peripheral surface of the foil holder 11 to the inner peripheral surface 31 of the housing 30 of the gas turbine (see FIG. 3).
  • the large-diameter portion 11a on the outer peripheral surface of the foil holder 11 and the cylindrical inner peripheral surface 31 of the housing 30 are fixed by press-fitting, welding, or the like.
  • the large-diameter portion 11a and the small-diameter portion 11b on the outer peripheral surface of the foil holder 11 the following advantages can be obtained in the fixing portion with the housing 30. For example, as shown in FIG.
  • a gap P is formed between the small diameter portion 11 b on the outer peripheral surface of the foil holder 11 and the inner peripheral surface 31 of the housing 30.
  • the cooling medium supply part (illustration omitted) which supplies a cooling medium (for example, air) positively is provided in this clearance gap P, and the clearance gap P is made into a cooling-medium channel
  • a convex part is provided in the internal peripheral surface 31 of the housing 30, and this convex part and the step part of the large diameter part 11a and the small diameter part 11b of the outer peripheral surface of the foil holder 11 are circumferential. If engaged, the foil holder 11 can be prevented from rotating.
  • the main shaft 6 is inserted into the inner periphery of the foil bearing 10 fixed to the housing 30. At this time, it is preferable to insert the main shaft 6 from one end side in the axial direction of the foil bearing 10 (opening side of the groove 11c). In this case, the foil 12 tends to move to the other end side in the axial direction due to friction with the main shaft 6, but the convex portion 12 d at the other circumferential end of each foil 12 is engaged with the engaging portion 11 e of the groove 11 c of the foil holder 11. As a result, the axial movement of each foil 12 relative to the foil holder 11 is restricted. Thereby, the situation where the foil 12 remove
  • each foil 12 is pushed to the outer diameter side.
  • the main body portion 12c of each foil 12 rides on the underfoil portion (convex portion 12a) of the adjacent foil, so that this portion is curved.
  • each foil 12 is pushed to the front side in the rotation direction due to friction with the fluid (air) flowing along with the rotation of the main shaft 6, and as shown in FIG. 6, the groove 11 c of the foil holder 11.
  • the foil 12 bends against the corner 11c3.
  • the shape of the foil 12 is maintained at a position where the elastic force of the curved portion of the foil 12 and the pressure of the air film formed in the radial bearing gap are balanced.
  • a radial bearing gap gradually narrowing toward the rotation direction leading side is formed between the bearing surface of each foil 12 and the outer peripheral surface 6a of the main shaft 6, and air is pushed into the narrow side of the radial bearing gap. It is.
  • the pressure of the air film in the radial bearing gap is increased, and the main shaft 6 is supported in a non-contact manner in the radial direction by this pressure.
  • the bearing surface of each foil 12 is arbitrarily deformed according to the operating conditions such as the load, the rotational speed of the spindle 6, the ambient temperature, etc. It is automatically adjusted to the appropriate width. Therefore, even under severe conditions such as high temperature and high speed rotation, the radial bearing gap can be managed to the optimum width, and the main shaft 6 can be stably supported. Further, while the main shaft 6 is rotating, the foil 12 is pressed against the foil holder 11 due to the influence of the air film formed in the radial bearing gap, and accordingly, a slight sliding occurs between the two. The vibration of the main shaft 6 can be attenuated by the frictional energy generated by the minute sliding.
  • each foil 12 and the outer peripheral surface of the main shaft 6 are in sliding contact with each other at the time of low-speed rotation immediately before the main shaft 6 is stopped or immediately after starting.
  • a low friction coating such as a ride film, a tungsten disulfide film, or a molybdenum disulfide film may be formed.
  • the above-described low friction coating may be formed on one or both of them.
  • the present invention is not limited to the above embodiment.
  • the case where the locking portion 11e is provided at one end in the axial direction of the groove 11c of the foil holder 11 is shown, but not limited to this, as shown in FIG.
  • an end portion (convex portion 12d) of the foil 12 inserted into the groove 11c may be provided with an engaging portion that can be engaged in the axial direction.
  • the foil holder 11 including the engaging portions 11e at both ends of the groove 11c cannot be formed by drawing, the foil holder 11 is formed by cutting, for example.
  • the locking portion 11e at one end in the axial direction of the groove 11c is formed by drawing, and a protruding portion 11f protruding in the axial direction from the end surface of the foil holder 11 is formed.
  • the locking portion 11e at the other end in the axial direction may be provided by bending 11f in the direction of the arrow in the figure.
  • locking part 11e may be abbreviate
  • the application object of the foil bearing according to the present invention is not limited to the gas turbine described above, and can be used as a bearing for supporting a rotor of a turbocharger (supercharger), for example.
  • the foil bearing according to the present invention is not limited to turbomachines such as gas turbines and turbochargers, but can be widely used as vehicle bearings and industrial equipment bearings in which the use of oil is restricted.
  • Each of the foil bearings described above is an air dynamic pressure bearing that uses air as a pressure generating fluid.
  • the present invention is not limited to this, and other gases can be used as the pressure generating fluid, or water or oil can be used. A liquid such as can also be used.

Abstract

This foil bearing (10) comprises: a plurality of foils (12) having a bearing surface; and a foil holder (11) forming a cylindrical shape and having a plurality of grooves (11c) on the inner circumferential surface thereof. A circumferential direction end section (protruding section (12d)) of each foil (12) is inserted into the grooves (11c) in the foil holder (11). On the outer circumferential surface of this foil holder (11), a large diameter section (11a) and a small diameter section (11b) are alternately provided in the circumferential direction and the grooves (11c) are provided inside the circumferential direction area of the large diameter section (11a).

Description

フォイル軸受、ターボ機械、及びフォイルホルダFoil bearing, turbomachine, and foil holder
 本発明は、フォイル軸受、特に、ガスタービン等のターボ機械に設けられた主軸のラジアル荷重を支持するフォイル軸受に関する。 The present invention relates to a foil bearing, and more particularly to a foil bearing that supports a radial load of a main shaft provided in a turbo machine such as a gas turbine.
 ガスタービンやターボチャージャ等のターボ機械の主軸は、超高速で回転し、且つ、主軸に接続されたタービン翼は高温環境下にある。主軸は、油潤滑の転がり軸受や油動圧軸受によって支持されることも多いが、油の使用が困難な場合(例えば、油による潤滑が困難な場合や、油のせん断による抵抗が問題となる場合)には、空気膜の動圧作用で軸を相対回転自在に非接触支持する空気動圧軸受が使用される。 The main shaft of a turbo machine such as a gas turbine or a turbocharger rotates at an ultra high speed, and the turbine blade connected to the main shaft is in a high temperature environment. The main shaft is often supported by an oil-lubricated rolling bearing or an oil dynamic bearing, but it is difficult to use oil (for example, when lubrication with oil is difficult or resistance due to shearing of oil becomes a problem) In this case, an air dynamic pressure bearing that supports the shaft in a non-contact manner so as to be relatively rotatable by the dynamic pressure action of the air film is used.
 空気動圧軸受では、使用される回転速度に応じた軸受隙間の管理が重要であり、安定限界を超えるとホワールと呼ばれる振れ回りが生じる。このため、軸受隙間を厳密に設定しなければ、所定の回転速度で運転することはできない。しかし、軸受及び軸が剛体で構成される一般的な空気動圧軸受の場合、軸受隙間を高精度に設定するためには、各部材を高精度に製造する必要があり、高コスト化を招く。特に、ガスタービンやターボチャージャのように温度変化の激しい環境で使用される空気動圧軸受では、各部材の熱膨張の影響により軸受隙間の管理が極めて困難となる。 In air dynamic pressure bearings, it is important to manage the bearing clearance according to the rotational speed used, and if the stability limit is exceeded, whirling called whirl occurs. For this reason, it is impossible to operate at a predetermined rotational speed unless the bearing gap is set strictly. However, in the case of a general air dynamic pressure bearing in which the bearing and the shaft are made of a rigid body, in order to set the bearing clearance with high accuracy, it is necessary to manufacture each member with high accuracy, resulting in high cost. . In particular, in an air dynamic pressure bearing used in an environment where the temperature changes rapidly, such as a gas turbine or a turbocharger, it is extremely difficult to manage the bearing clearance due to the influence of thermal expansion of each member.
 そこで、上記のような条件下での使用に適合する軸受として、フォイル軸受が着目されている。フォイル軸受は、曲げに対して剛性の低い可撓性を有する薄膜(フォイル)で軸受面を構成し、軸受面のたわみを許容することで荷重を支持するものである(例えば、下記の特許文献1~3参照)。軸の回転時には、軸の外周面とフォイルの軸受面との間に流体膜(例えば空気膜)が形成され、軸が非接触支持される。フォイル軸受の場合、フォイルの可撓性により軸の回転速度や荷重、周囲温度等の運転条件に応じた適切な軸受隙間が自動的に形成されるため、安定性に優れ、一般的な空気動圧軸受と比べて高速での使用が可能となる。 Therefore, foil bearings are attracting attention as bearings suitable for use under the above conditions. A foil bearing is configured to support a load by forming a bearing surface with a thin film (foil) having low rigidity with respect to bending, and allowing deflection of the bearing surface (for example, the following patent document). 1 to 3). When the shaft rotates, a fluid film (for example, an air film) is formed between the outer peripheral surface of the shaft and the bearing surface of the foil, and the shaft is supported in a non-contact manner. In the case of foil bearings, the flexibility of the foil automatically forms an appropriate bearing gap according to the operating conditions such as shaft rotation speed, load, and ambient temperature. It can be used at a higher speed than a pressure bearing.
特開2002-364643号公報JP 2002-364463 A 特開2003-262222号公報JP 2003-262222 A 特開2009-299748号公報JP 2009-299748 A
 本出願人は、特願2013-256843において、図11に示すようなフォイル軸受200を提案している。このフォイル軸受200では、フォイルホルダ210の内周面211に複数の軸方向溝212を設け、この軸方向溝212に各フォイル220の端部を差し込むことで、各フォイル220をフォイルホルダ210の内周面211に取り付けている。同文献では、軸方向溝212を含め、フォイルホルダ210を焼結金属で成形している。 The present applicant has proposed a foil bearing 200 as shown in FIG. 11 in Japanese Patent Application No. 2013-256843. In the foil bearing 200, a plurality of axial grooves 212 are provided on the inner peripheral surface 211 of the foil holder 210, and the ends of the foils 220 are inserted into the axial grooves 212, so that the foils 220 are connected to the inner surfaces of the foil holders 210. It is attached to the peripheral surface 211. In this document, the foil holder 210 including the axial groove 212 is formed of sintered metal.
 このフォイル軸受200では、フォイルホルダ210の外周面が円筒面とされる。この場合、フォイルホルダ210は、軸方向溝212が形成された円周方向領域(溝形成領域)が最も薄肉となるため、この溝形成領域で必要強度が得られるように外径寸法が設定される。このため、フォイルホルダ210のうち、溝形成領域以外の領域は、溝形成領域よりも厚肉となる。フォイル軸受は、フォイルに設けられた軸受面と軸の外周面との間のラジアル軸受隙間の流体(通常は空気)の圧力で軸を支持するものであり、支持荷重は比較的小さいため、フォイルホルダ210に求められる強度も比較的小さい。このため、フォイルホルダ210の溝形成領域以外の領域は、強度上、必要以上の肉厚となり、製品としての重量増及び素形材使用量の増加を招く。 In the foil bearing 200, the outer peripheral surface of the foil holder 210 is a cylindrical surface. In this case, since the foil holder 210 has the thinnest circumferential region (groove formation region) in which the axial groove 212 is formed, the outer diameter dimension is set so that the required strength can be obtained in this groove formation region. The For this reason, regions other than the groove forming region of the foil holder 210 are thicker than the groove forming region. The foil bearing supports the shaft with the pressure of the fluid (usually air) in the radial bearing gap between the bearing surface provided on the foil and the outer peripheral surface of the shaft, and the support load is relatively small. The strength required for the holder 210 is also relatively small. For this reason, the area other than the groove forming area of the foil holder 210 is thicker than necessary in terms of strength, leading to an increase in weight as a product and an increase in the amount of shaped material used.
 以上のような事情から、本発明が解決すべき課題は、フォイルを取り付けるための溝が内周面に形成されたフォイルホルダについて、軽量化及び素形材使用量の低減を図ることにある。 From the above circumstances, the problem to be solved by the present invention is to reduce the weight and reduce the amount of shaped material used for the foil holder in which the groove for attaching the foil is formed on the inner peripheral surface.
 前記課題を解決するために、本発明は、軸受面を有する複数のフォイルと、筒状を成し、内周面に複数の溝を有するフォイルホルダとを備え、各フォイルの周方向端部が前記フォイルホルダの溝に差し込まれたフォイル軸受であって、前記フォイルホルダの外周面に大径部と小径部とを円周方向で交互に設け、前記大径部の円周方向領域内に前記溝を設けたフォイル軸受を提供する。 In order to solve the above-mentioned problems, the present invention comprises a plurality of foils having bearing surfaces, and a foil holder having a cylindrical shape and having a plurality of grooves on the inner peripheral surface, and the circumferential ends of the respective foils are provided. A foil bearing inserted into a groove of the foil holder, wherein a large diameter portion and a small diameter portion are alternately provided in a circumferential direction on the outer peripheral surface of the foil holder, and the circumferential direction region of the large diameter portion A foil bearing having a groove is provided.
 このように、フォイルホルダの外周面に大径部を設け、この大径部の円周方向領域内に溝を設けることにより、溝形成部におけるフォイルホルダの肉厚を確保し、必要強度を得ることができる。一方、フォイルホルダの外周面のうち、溝形成部以外の円周方向領域に小径部を設けることで、この領域における肉厚が低減されるため、フォイルホルダの軽量化及び素形材使用量の低減が図られる。 Thus, by providing a large diameter portion on the outer peripheral surface of the foil holder and providing a groove in a circumferential region of the large diameter portion, the thickness of the foil holder in the groove forming portion is ensured and the necessary strength is obtained. be able to. On the other hand, by providing a small-diameter portion in the circumferential region other than the groove forming portion on the outer peripheral surface of the foil holder, the thickness in this region is reduced, so the weight of the foil holder and the amount of shaped material used can be reduced. Reduction is achieved.
 前記フォイルホルダの外周面の大径部及び小径部、並びに、前記フォイルホルダの内周面及び前記複数の溝の溝底面を、何れも同軸の円筒面とすれば、フォイルホルダの半径方向の肉厚を全周で略均一にすることが可能となる。この場合、フォイルホルダを、例えば絞り加工が施された金属板で構成することができる。 If the large-diameter portion and the small-diameter portion of the outer peripheral surface of the foil holder, and the inner peripheral surface of the foil holder and the groove bottom surfaces of the plurality of grooves are all coaxial cylindrical surfaces, the thickness of the foil holder in the radial direction is reduced. The thickness can be made substantially uniform over the entire circumference. In this case, the foil holder can be made of, for example, a metal plate that has been subjected to drawing.
 フォイルホルダの溝に差し込まれたフォイルが軸方向に移動すると、フォイルがフォイルホルダから外れてしまう恐れがある。そこで、フォイルホルダの複数の溝の少なくとも軸方向一端に、当該溝に差し込まれたフォイルの端部と軸方向に係合する係止部を設ければ、フォイルがフォイルホルダから外れる事態を防止できる。 If the foil inserted in the groove of the foil holder moves in the axial direction, the foil may come off the foil holder. Therefore, if at least one end in the axial direction of the plurality of grooves of the foil holder is provided with a locking portion that engages with the end of the foil inserted into the groove in the axial direction, it is possible to prevent the foil from being detached from the foil holder. .
 上記のフォイル軸受は、このフォイル軸受を内周に保持するハウジングを備えたターボ機械に組み込むことができる。この場合、前記フォイルホルダの外周面の大径部を前記ハウジングの内周面に固定すると共に、前記フォイルホルダの外周面の小径部と前記ハウジングの内周面との間に隙間を形成することが好ましい。このように、ハウジングとフォイルホルダとの間に隙間を形成することで、これらの間の熱移動を抑制し、フォイル軸受の温度上昇を抑えることができる。特に、この隙間を冷却媒体通路とすれば、フォイル軸受を効率的に冷却することが可能となる。 The above foil bearing can be incorporated into a turbo machine having a housing that holds the foil bearing on the inner periphery. In this case, the large diameter portion of the outer peripheral surface of the foil holder is fixed to the inner peripheral surface of the housing, and a gap is formed between the small diameter portion of the outer peripheral surface of the foil holder and the inner peripheral surface of the housing. Is preferred. In this way, by forming a gap between the housing and the foil holder, it is possible to suppress heat transfer between them and suppress an increase in the temperature of the foil bearing. In particular, if this gap is used as a cooling medium passage, the foil bearing can be efficiently cooled.
 以上のように、本発明のフォイル軸受によれば、フォイルホルダの外周面に大径部及び小径部を設け、大径部の円周方向領域内にフォイルを取り付けるための溝を設けることで、フォイルホルダの軽量化及び素形材使用量の低減を図ることができる。 As described above, according to the foil bearing of the present invention, by providing a large-diameter portion and a small-diameter portion on the outer peripheral surface of the foil holder, and by providing a groove for attaching the foil in the circumferential region of the large-diameter portion, It is possible to reduce the weight of the foil holder and reduce the amount of shaped material used.
ガスタービンの構成を概念的に示す図である。It is a figure which shows notionally the structure of a gas turbine. 上記ガスタービンにおけるロータの支持構造を示す断面図である。It is sectional drawing which shows the support structure of the rotor in the said gas turbine. 上記支持構造に組み込まれた、本発明の一実施形態に係るフォイル軸受の軸方向と直交する方向の断面図である。It is sectional drawing of the direction orthogonal to the axial direction of the foil bearing which concerns on one Embodiment of this invention integrated in the said support structure. 上記フォイル軸受のフォイルホルダの軸方向の断面図である。It is sectional drawing of the axial direction of the foil holder of the said foil bearing. 上記フォイルホルダの斜視図である。It is a perspective view of the foil holder. 図3のフォイル軸受の拡大断面図である。It is an expanded sectional view of the foil bearing of FIG. 上記フォイルホルダの成形方法を示す断面図である。It is sectional drawing which shows the shaping | molding method of the said foil holder. 上記フォイル軸受のフォイルの斜視図である。It is a perspective view of the foil of the said foil bearing. 3枚のフォイルを仮組みした状態の斜視図である。It is a perspective view in the state where three foils were temporarily assembled. 他の実施形態に係るフォイル軸受のフォイルホルダの軸方向の断面図である。It is sectional drawing of the axial direction of the foil holder of the foil bearing which concerns on other embodiment. 図9のフォイルホルダの製造方法を示す斜視図である。It is a perspective view which shows the manufacturing method of the foil holder of FIG. 本出願人による先の出願に記載されたフォイル軸受の断面図である。1 is a cross-sectional view of a foil bearing described in a previous application by the applicant.
 図1に、ターボ機械の一種であるガスタービンの構成を概念的に示す。このガスタービンは、翼列を形成したタービン1および圧縮機2と、発電機3と、燃焼器4と、再生器5とを主に備える。タービン1、圧縮機2、および発電機3には、水平方向に延びる共通の主軸6が設けられ、この主軸6と、タービン1および圧縮機2とで一体回転可能のロータが構成される。吸気口7から吸入された空気は、圧縮機2で圧縮され、再生器5で加熱された上で燃焼器4に送り込まれる。この圧縮空気に燃料を混合して燃焼させ、高温、高圧のガスでタービン1を回転させる。タービン1の回転力が主軸6を介して発電機3に伝達され、発電機3が回転することにより発電し、この電力がインバータ8を介して出力される。タービン1を回転させた後のガスは比較的高温であるため、このガスを再生器5に送り込んで燃焼前の圧縮空気との間で熱交換を行うことで、燃焼後のガスの熱を再利用する。再生器5で熱交換を終えたガスは、排熱回収装置9を通ってから排ガスとして排出される。 Fig. 1 conceptually shows the configuration of a gas turbine that is a type of turbomachine. This gas turbine mainly includes a turbine 1 and a compressor 2 that form blade cascades, a generator 3, a combustor 4, and a regenerator 5. The turbine 1, the compressor 2, and the generator 3 are provided with a common main shaft 6 that extends in the horizontal direction, and the main shaft 6, the turbine 1, and the compressor 2 constitute a rotor that can rotate integrally. Air sucked from the intake port 7 is compressed by the compressor 2, heated by the regenerator 5, and then sent to the combustor 4. Fuel is mixed with this compressed air and burned, and the turbine 1 is rotated by high-temperature and high-pressure gas. The rotational force of the turbine 1 is transmitted to the generator 3 via the main shaft 6, and the generator 3 rotates to generate electric power, and this electric power is output via the inverter 8. Since the gas after rotating the turbine 1 is at a relatively high temperature, the heat of the gas after combustion is regenerated by sending this gas to the regenerator 5 and exchanging heat with the compressed air before combustion. Use. The gas that has been subjected to heat exchange in the regenerator 5 is discharged as exhaust gas after passing through the exhaust heat recovery device 9.
 図2に、上記ガスタービンにおけるロータの支持構造の一例を示す。この支持構造では、軸方向の2箇所にラジアル軸受10が配置され、主軸6に設けられたフランジ部6bの軸方向両側にスラスト軸受20、20が配置される。このラジアル軸受10およびスラスト軸受20により、主軸6がラジアル方向及び両スラスト方向に回転自在に支持される。 FIG. 2 shows an example of a rotor support structure in the gas turbine. In this support structure, radial bearings 10 are disposed at two axial positions, and thrust bearings 20, 20 are disposed on both axial sides of the flange portion 6 b provided on the main shaft 6. The radial bearing 10 and the thrust bearing 20 support the main shaft 6 so as to be rotatable in the radial direction and in both thrust directions.
 この支持構造において、タービン1と圧縮機2の間の領域は、高温、高圧のガスで回転されるタービン1に隣接しているために高温雰囲気となる。この高温雰囲気では、潤滑油やグリース等からなる潤滑剤が変質・蒸発してしまうため、これらの潤滑剤を使用する通常の軸受(転がり軸受等)を適用することは難しい。そのため、この種の支持構造で使用される軸受10、20としては、空気動圧軸受、特にフォイル軸受が適合する。 In this support structure, the region between the turbine 1 and the compressor 2 is adjacent to the turbine 1 that is rotated by high-temperature and high-pressure gas, and therefore has a high-temperature atmosphere. In this high temperature atmosphere, the lubricant composed of lubricating oil, grease and the like is altered and evaporated, so it is difficult to apply a normal bearing (such as a rolling bearing) using these lubricants. Therefore, as the bearings 10 and 20 used in this type of support structure, an air dynamic pressure bearing, particularly a foil bearing is suitable.
 以下、上記ガスタービン用のラジアル軸受に適合するフォイル軸受10の構成を図面に基づいて説明する。 Hereinafter, the configuration of the foil bearing 10 that is suitable for the radial bearing for the gas turbine will be described with reference to the drawings.
 フォイル軸受10は、図3に示すように、筒状(図示例では円筒状)のフォイルホルダ11と、フォイルホルダ11の内周面に取り付けられた複数(図示例では3枚)のフォイル12とを有する。 As shown in FIG. 3, the foil bearing 10 includes a tubular (cylindrical in the illustrated example) foil holder 11, and a plurality (three in the illustrated example) of foils 12 attached to the inner peripheral surface of the foil holder 11. Have
 フォイルホルダ11の外周面には、大径部11aと小径部11bとが円周方向交互に設けられる。図示例では、大径部11a及び小径部11bがそれぞれ等ピッチで3箇所ずつに形成される。大径部11aと小径部11bとの間には、これらの周方向端部同士を半径方向に連続し、軸方向に沿って延びる段差面が設けられる。 The outer peripheral surface of the foil holder 11 is provided with large diameter portions 11a and small diameter portions 11b alternately in the circumferential direction. In the example of illustration, the large diameter part 11a and the small diameter part 11b are each formed in three places at equal pitches. Between the large-diameter portion 11a and the small-diameter portion 11b, there is provided a stepped surface that extends in the radial direction between these circumferential end portions and extends along the axial direction.
 フォイルホルダ11の内周面には、複数の溝11cが形成される。本実施形態では、フォイルホルダ11の円周方向等間隔の複数箇所(図示例では3箇所)に、軸方向に沿って延びる溝11cが設けられる。複数の溝11cの円周方向間領域は、円筒面11dとされる。溝11cには、各フォイル12の周方向端部が差し込まれる。図4及び図5に示すように、各溝11cの軸方向一端には係止部11eが設けられる。係止部11eの内周面は円筒面11dと連続した同一径の円筒面である。各溝11cの軸方向他端は、フォイルホルダ11の端面に開口している。尚、溝11cの延在方向は、フォイル12の形状に応じて設定され、例えば、溝11cを、軸方向に対して傾斜した方向に延在させてもよい。 A plurality of grooves 11 c are formed on the inner peripheral surface of the foil holder 11. In the present embodiment, grooves 11c extending along the axial direction are provided at a plurality of locations (three locations in the illustrated example) at equal intervals in the circumferential direction of the foil holder 11. A region between the circumferential directions of the plurality of grooves 11c is a cylindrical surface 11d. The circumferential end of each foil 12 is inserted into the groove 11c. As shown in FIGS. 4 and 5, a locking portion 11e is provided at one axial end of each groove 11c. The inner peripheral surface of the locking portion 11e is a cylindrical surface having the same diameter that is continuous with the cylindrical surface 11d. The other axial end of each groove 11c is open to the end face of the foil holder 11. The extending direction of the groove 11c is set according to the shape of the foil 12, and for example, the groove 11c may be extended in a direction inclined with respect to the axial direction.
 溝11cは、外周面の大径部11aの円周方向領域内に設けられる。各溝11cには、図6に示すように、円筒面11dよりも大径な溝底面11c1と、溝底面11c1の周方向両端と円筒面11dとを連続する側面11c2とが設けられる。溝底面11c1と一方の側面11c2との境界に設けられた角部11c3に、フォイル12の周方向端部(凸部12d)が突き当たる。 The groove 11c is provided in a circumferential region of the large diameter portion 11a on the outer peripheral surface. As shown in FIG. 6, each groove 11 c is provided with a groove bottom surface 11 c 1 having a diameter larger than that of the cylindrical surface 11 d, and a side surface 11 c 2 that is continuous with both ends of the groove bottom surface 11 c 1 in the circumferential direction and the cylindrical surface 11 d. A circumferential end (convex portion 12d) of the foil 12 abuts against a corner portion 11c3 provided at the boundary between the groove bottom surface 11c1 and one side surface 11c2.
 上記のように、フォイルホルダ11の外周面の大径部11aの円周方向領域内に溝11cを設けることで、溝11cの形成領域におけるフォイルホルダ11の半径方向の肉厚を確保することができる。また、フォイルホルダ11の外周面のうち、溝11cの形成領域以外の領域に小径部11bを設けることで、フォイルホルダ11の肉厚を低減して、フォイル軸受10の軽量化及び素形材使用量の低減が図られる。図示例では、フォイルホルダ11の外周面の大径部11a及び小径部11b、並びに、内周面の円筒面11d及び溝底面11c1が、何れも同軸の円筒面である。これにより、フォイルホルダ11の肉厚を、全周で略均一にすることができる。特に、大径部11aと溝11cの溝底面11c1との径差と、小径部11bと円筒面11dとの径差を同じ大きさにすることで、フォイルホルダ11の肉厚を均一化することができる。 As described above, by providing the groove 11c in the circumferential region of the large-diameter portion 11a on the outer peripheral surface of the foil holder 11, it is possible to ensure the thickness of the foil holder 11 in the radial direction in the region where the groove 11c is formed. it can. Further, by providing the small-diameter portion 11b in a region other than the region where the groove 11c is formed in the outer peripheral surface of the foil holder 11, the thickness of the foil holder 11 is reduced, the weight of the foil bearing 10 is reduced, and the shape material is used. The amount is reduced. In the illustrated example, the large-diameter portion 11a and the small-diameter portion 11b on the outer peripheral surface of the foil holder 11, and the cylindrical surface 11d and the groove bottom surface 11c1 on the inner peripheral surface are all coaxial cylindrical surfaces. Thereby, the thickness of the foil holder 11 can be made substantially uniform over the entire circumference. In particular, the thickness difference of the large diameter portion 11a and the groove bottom surface 11c1 of the groove 11c and the diameter difference of the small diameter portion 11b and the cylindrical surface 11d are made the same, thereby making the thickness of the foil holder 11 uniform. Can do.
 上記のように、フォイルホルダ11の肉厚を均一とすることで、フォイルホルダ11を、絞り加工が施された金属板で構成することが可能となる。具体的には、図7に示すように、平板状の金属板W(左図参照)にプレス成形機で絞り加工を施すことにより、金属板Wを有底筒状に成形する(中央図参照)。成形された金属板Wには、円筒部W1と、円筒部W1の軸方向一端に設けられたフランジ部W2と、円筒部W1の軸方向他端の開口部を閉塞する底部W3が設けられる。円筒部W1の外周面には大径部11a及び小径部11bが成形され、円筒部W1の内周面には溝11c及び円筒面11dが成形される。その後、有底筒状の金属板Wのフランジ部W2及び底部W3を切断加工で除去することで、フォイルホルダ11が完成する(右図参照)。このとき、底部W3の一部が、溝11cの軸方向一端を塞ぐ係止部11eとして残る。 As described above, by making the thickness of the foil holder 11 uniform, the foil holder 11 can be constituted by a metal plate that has been subjected to drawing processing. Specifically, as shown in FIG. 7, the metal plate W is formed into a bottomed cylindrical shape by drawing the flat metal plate W (see the left figure) with a press molding machine (see the center figure). ). The formed metal plate W is provided with a cylindrical portion W1, a flange portion W2 provided at one axial end of the cylindrical portion W1, and a bottom portion W3 that closes an opening at the other axial end of the cylindrical portion W1. A large diameter portion 11a and a small diameter portion 11b are formed on the outer peripheral surface of the cylindrical portion W1, and a groove 11c and a cylindrical surface 11d are formed on the inner peripheral surface of the cylindrical portion W1. Then, the foil holder 11 is completed by removing the flange part W2 and bottom part W3 of the bottomed cylindrical metal plate W by cutting (see the right figure). At this time, a part of the bottom portion W3 remains as a locking portion 11e that closes one axial end of the groove 11c.
 フォイル12は、ばね性に富み、かつ加工性のよい金属、例えば鋼材料や銅合金からなる厚さ20μm~200μm程度の金属フォイルにプレス加工を施すことで形成される。本実施形態のように流体膜として空気を用いる空気動圧軸受では、雰囲気に潤滑油が存在しないため、金属フォイルとしてステンレス鋼もしくは青銅製のものを使用するのが好ましい。 The foil 12 is formed by pressing a metal foil having a thickness of about 20 μm to 200 μm made of a metal having a high spring property and good workability, such as a steel material or a copper alloy. In an air dynamic pressure bearing using air as a fluid film as in this embodiment, since there is no lubricating oil in the atmosphere, it is preferable to use a stainless steel or bronze metal foil.
 フォイル12は、フォイルホルダ11の内周面に周方向に並べて配置される。各フォイル12は、図8(a)に示すように、周方向一端に設けられた凸部12aと、周方向他端に設けられた凹部12bと、これらの周方向間に設けられた本体部12cとを備える。図8(b)に示すように、各フォイル12の凸部12aを、隣接するフォイル12の凹部12bに嵌め込むことで、3枚のフォイル12を筒状に仮組みすることができる。この場合、図3に示す軸方向視において、各フォイル12の周方向一端(凸部12a)と、隣接するフォイル12の周方向他端(凹部12bの軸方向両側の凸部12d)とが交差した状態となる。 The foil 12 is arranged on the inner peripheral surface of the foil holder 11 in the circumferential direction. As shown in FIG. 8A, each foil 12 includes a convex portion 12a provided at one end in the circumferential direction, a concave portion 12b provided at the other circumferential end, and a main body portion provided between these circumferential directions. 12c. As shown in FIG. 8B, the three foils 12 can be temporarily assembled into a cylindrical shape by fitting the convex portions 12 a of each foil 12 into the concave portions 12 b of the adjacent foils 12. In this case, when viewed in the axial direction shown in FIG. 3, one end in the circumferential direction (convex portion 12a) of each foil 12 and the other end in the circumferential direction of the adjacent foil 12 (convex portions 12d on both sides in the axial direction of the concave portion 12b) intersect. It will be in the state.
 3枚のフォイル12を筒状に仮組みした状態で、この仮組体がフォイルホルダ11の内周に挿入される。具体的には、3枚のフォイル12の仮組体をフォイルホルダ11の内周に挿入しながら、各フォイル12の周方向他端の凹部12bの軸方向両側に設けられた凸部12dを、フォイルホルダ11の溝11cに軸方向一端側(開口側)から差し込む。そして、各フォイル12の周方向他端の凸部12dがフォイルホルダ11の溝11cの係止部11eに当接したら、挿入が完了する。このとき、各フォイル12の周方向一端の凸部12aは、隣接するフォイル12の外径面とフォイルホルダ11の内周面の円筒面11dとの間に配される(図6参照)。また、各フォイル12の周方向他端の凸部12dは、フォイルホルダ11の溝11cに差し込まれているだけであり、溝11cの内部で自由に移動可能とされる。以上により、各フォイル12の周方向両端が、フォイルホルダ11の内周面に保持される。このとき、一方のフォイル12の他端(凹部12bの軸方向両端)と他方のフォイル12の一端(凸部12aの根元部)は、周方向で係合して互いに突っ張り合っている。これにより、各フォイル12の本体部12cが外径側に張り出し、フォイルホルダ11の内周面(円筒面11d)に沿った形状に湾曲する。 This temporary assembly is inserted into the inner periphery of the foil holder 11 in a state where the three foils 12 are temporarily assembled in a cylindrical shape. Specifically, while inserting the temporary assembly of the three foils 12 into the inner periphery of the foil holder 11, the convex portions 12d provided on both axial sides of the concave portions 12b at the other circumferential ends of the foils 12, It inserts in the groove | channel 11c of the foil holder 11 from an axial direction one end side (opening side). And if the convex part 12d of the circumferential direction other end of each foil 12 contact | abuts to the latching | locking part 11e of the groove | channel 11c of the foil holder 11, insertion will be completed. At this time, the convex portion 12a at one circumferential end of each foil 12 is disposed between the outer diameter surface of the adjacent foil 12 and the cylindrical surface 11d of the inner peripheral surface of the foil holder 11 (see FIG. 6). Moreover, the convex part 12d of the circumferential direction other end of each foil 12 is only inserted in the groove | channel 11c of the foil holder 11, and can be freely moved inside the groove | channel 11c. As described above, both ends in the circumferential direction of each foil 12 are held on the inner peripheral surface of the foil holder 11. At this time, the other end of the one foil 12 (both ends in the axial direction of the concave portion 12b) and one end of the other foil 12 (the root portion of the convex portion 12a) are engaged with each other in a circumferential direction so as to stick to each other. Thereby, the main-body part 12c of each foil 12 protrudes on the outer diameter side, and curves in the shape along the inner peripheral surface (cylindrical surface 11d) of the foil holder 11.
 各フォイル12の本体部12cの内周面は、軸受面として機能する。本実施形態では、図3に示すように、3枚のフォイル12で多円弧型の軸受面を形成している。各フォイル12の外径面とフォイルホルダ11の内周面(溝11c及び円筒面11d)とは摺動可能とされる。各フォイル12の周方向一端の凸部12aは、隣接するフォイル12の本体部12cを外径側から支持するアンダーフォイル部として機能する。 The inner peripheral surface of the main body 12c of each foil 12 functions as a bearing surface. In the present embodiment, as shown in FIG. 3, a multi-arc bearing surface is formed by three foils 12. The outer diameter surface of each foil 12 and the inner peripheral surface (groove 11c and cylindrical surface 11d) of the foil holder 11 are slidable. The convex part 12a of the circumferential direction one end of each foil 12 functions as an underfoil part which supports the main-body part 12c of the adjacent foil 12 from an outer diameter side.
 上記構成のフォイル軸受10は、フォイルホルダ11の外周面を、ガスタービンのハウジング30の内周面31に固定することにより、ガスタービンに組みつけられる(図3参照)。本実施形態では、フォイルホルダ11の外周面の大径部11aとハウジング30の円筒面状の内周面31とが、圧入や溶接等により固定される。このとき、フォイルホルダ11の外周面に、大径部11a及び小径部11bが設けられることで、ハウジング30との固定部において以下のような利点が得られる。例えば、図3に示すように、ハウジング30の内周面31が円筒面である場合、フォイルホルダ11の外周面の小径部11bとハウジング30の内周面31との間に隙間Pが形成される。この隙間Pに積極的に冷却媒体(例えば、空気)を供給する冷却媒体供給部(図示省略)を設け、隙間Pを冷却媒体通路とすれば、フォイル軸受10を効率的に冷却することができる。あるいは、図示は省略するが、ハウジング30の内周面31に凸部を設け、この凸部と、フォイルホルダ11の外周面の大径部11aと小径部11bとの段差部とを周方向で係合させれば、フォイルホルダ11の回り止めを行うことができる。 The foil bearing 10 having the above configuration is assembled to the gas turbine by fixing the outer peripheral surface of the foil holder 11 to the inner peripheral surface 31 of the housing 30 of the gas turbine (see FIG. 3). In the present embodiment, the large-diameter portion 11a on the outer peripheral surface of the foil holder 11 and the cylindrical inner peripheral surface 31 of the housing 30 are fixed by press-fitting, welding, or the like. At this time, by providing the large-diameter portion 11a and the small-diameter portion 11b on the outer peripheral surface of the foil holder 11, the following advantages can be obtained in the fixing portion with the housing 30. For example, as shown in FIG. 3, when the inner peripheral surface 31 of the housing 30 is a cylindrical surface, a gap P is formed between the small diameter portion 11 b on the outer peripheral surface of the foil holder 11 and the inner peripheral surface 31 of the housing 30. The If the cooling medium supply part (illustration omitted) which supplies a cooling medium (for example, air) positively is provided in this clearance gap P, and the clearance gap P is made into a cooling-medium channel | path, the foil bearing 10 can be cooled efficiently. . Or although illustration is abbreviate | omitted, a convex part is provided in the internal peripheral surface 31 of the housing 30, and this convex part and the step part of the large diameter part 11a and the small diameter part 11b of the outer peripheral surface of the foil holder 11 are circumferential. If engaged, the foil holder 11 can be prevented from rotating.
 ハウジング30に固定されたフォイル軸受10の内周に、主軸6が挿入される。このとき、フォイル軸受10の軸方向一端側(溝11cの開口側)から主軸6を挿入することが好ましい。この場合、主軸6との摩擦によりフォイル12が軸方向他端側に移動しようとするが、各フォイル12の周方向他端の凸部12dがフォイルホルダ11の溝11cの係止部11eと係合することで、各フォイル12のフォイルホルダ11に対する軸方向移動が規制される。これにより、ターボ機械の組立時に、フォイルホルダ11からフォイル12が外れる事態を防止できる。 The main shaft 6 is inserted into the inner periphery of the foil bearing 10 fixed to the housing 30. At this time, it is preferable to insert the main shaft 6 from one end side in the axial direction of the foil bearing 10 (opening side of the groove 11c). In this case, the foil 12 tends to move to the other end side in the axial direction due to friction with the main shaft 6, but the convex portion 12 d at the other circumferential end of each foil 12 is engaged with the engaging portion 11 e of the groove 11 c of the foil holder 11. As a result, the axial movement of each foil 12 relative to the foil holder 11 is restricted. Thereby, the situation where the foil 12 remove | deviates from the foil holder 11 at the time of the assembly of a turbomachine can be prevented.
 主軸6が図3の矢印方向に回転すると、フォイル軸受10の各フォイル12の本体部12cの内周面(軸受面)と主軸6の外周面6aとの間のラジアル軸受隙間の空気膜の圧力が高められ、各フォイル12が外径側に押し込まれる。このとき、各フォイル12の本体部12cが、隣接するフォイルのアンダーフォイル部(凸部12a)に乗り上げることにより、この部分が湾曲する。さらに、本実施形態では、主軸6の回転に伴って流動する流体(空気)との摩擦により、各フォイル12が回転方向先行側に押し込まれ、図6に示すように、フォイルホルダ11の溝11cの角部11c3に突き当たって、フォイル12が湾曲する。以上のようなフォイル12の湾曲部分の弾性力と、ラジアル軸受隙間に形成される空気膜の圧力とが釣り合う位置で、フォイル12の形状が保持される。こうして、各フォイル12の軸受面と主軸6の外周面6aとの間に、回転方向先行側へ向けて徐々に狭くなったラジアル軸受隙間が形成され、ラジアル軸受隙間の幅狭側に空気が押し込まれる。これにより、ラジアル軸受隙間の空気膜の圧力が高められ、この圧力により主軸6がラジアル方向に非接触支持される。 When the main shaft 6 rotates in the direction of the arrow in FIG. 3, the pressure of the air film in the radial bearing gap between the inner peripheral surface (bearing surface) of the main body portion 12 c of each foil 12 of the foil bearing 10 and the outer peripheral surface 6 a of the main shaft 6. The foil 12 is pushed to the outer diameter side. At this time, the main body portion 12c of each foil 12 rides on the underfoil portion (convex portion 12a) of the adjacent foil, so that this portion is curved. Further, in the present embodiment, each foil 12 is pushed to the front side in the rotation direction due to friction with the fluid (air) flowing along with the rotation of the main shaft 6, and as shown in FIG. 6, the groove 11 c of the foil holder 11. The foil 12 bends against the corner 11c3. The shape of the foil 12 is maintained at a position where the elastic force of the curved portion of the foil 12 and the pressure of the air film formed in the radial bearing gap are balanced. Thus, a radial bearing gap gradually narrowing toward the rotation direction leading side is formed between the bearing surface of each foil 12 and the outer peripheral surface 6a of the main shaft 6, and air is pushed into the narrow side of the radial bearing gap. It is. As a result, the pressure of the air film in the radial bearing gap is increased, and the main shaft 6 is supported in a non-contact manner in the radial direction by this pressure.
 このとき、フォイル12が有する可撓性により、各フォイル12の軸受面が、荷重や主軸6の回転速度、周囲温度等の運転条件に応じて任意に変形するため、ラジアル軸受隙間は運転条件に応じた適切幅に自動調整される。そのため、高温・高速回転といった過酷な条件下でも、ラジアル軸受隙間を最適幅に管理することができ、主軸6を安定して支持することが可能となる。また、主軸6の回転中は、ラジアル軸受隙間に形成された空気膜の影響でフォイル12がフォイルホルダ11に押し付けられ、これに伴って両者の間で微小摺動が生じる。この微小摺動による摩擦エネルギーにより、主軸6の振動を減衰させることができる。 At this time, due to the flexibility of the foil 12, the bearing surface of each foil 12 is arbitrarily deformed according to the operating conditions such as the load, the rotational speed of the spindle 6, the ambient temperature, etc. It is automatically adjusted to the appropriate width. Therefore, even under severe conditions such as high temperature and high speed rotation, the radial bearing gap can be managed to the optimum width, and the main shaft 6 can be stably supported. Further, while the main shaft 6 is rotating, the foil 12 is pressed against the foil holder 11 due to the influence of the air film formed in the radial bearing gap, and accordingly, a slight sliding occurs between the two. The vibration of the main shaft 6 can be attenuated by the frictional energy generated by the minute sliding.
 尚、主軸6の停止直前や起動直後の低速回転時には、各フォイル12の軸受面と主軸6の外周面とが接触摺動するため、これらの何れか一方または双方に、DLC膜、チタンアルミナイトライド膜、二硫化タングステン膜、あるいは二硫化モリブデン膜等の低摩擦化被膜を形成してもよい。また、フォイル12とフォイルホルダ11との間の微小摺動による摩擦力を調整するために、これらの何れか一方または双方に、上記のような低摩擦化被膜を形成してもよい。 Note that the bearing surface of each foil 12 and the outer peripheral surface of the main shaft 6 are in sliding contact with each other at the time of low-speed rotation immediately before the main shaft 6 is stopped or immediately after starting. A low friction coating such as a ride film, a tungsten disulfide film, or a molybdenum disulfide film may be formed. Moreover, in order to adjust the frictional force caused by the minute sliding between the foil 12 and the foil holder 11, the above-described low friction coating may be formed on one or both of them.
 本発明は、上記の実施形態に限られない。例えば上記の実施形態では、フォイルホルダ11の溝11cの軸方向一端に係止部11eを設けた場合を示したが、これに限らず、図9に示すように、溝11cの軸方向両端に、溝11cに差し込まれたフォイル12の端部(凸部12d)と軸方向に係合可能な係止部を設けてもよい。この場合、溝11cの両端の係止部11eを含めて、フォイルホルダ11を絞り加工で成形することはできないため、フォイルホルダ11は例えば切削加工で形成される。あるいは、図10に示すように、絞り加工で、溝11cの軸方向一端の係止部11eを成形すると共に、フォイルホルダ11の端面から軸方向に突出する突出部11fを成形し、この突出部11fを図中矢印方向に折り曲げることで、軸方向他端の係止部11eを設けてもよい。尚、係止部が特に不要な場合は、係止部11eを省略して溝11cの軸方向両側をフォイルホルダ11の端面に開口させてもよい。 The present invention is not limited to the above embodiment. For example, in the above-described embodiment, the case where the locking portion 11e is provided at one end in the axial direction of the groove 11c of the foil holder 11 is shown, but not limited to this, as shown in FIG. Further, an end portion (convex portion 12d) of the foil 12 inserted into the groove 11c may be provided with an engaging portion that can be engaged in the axial direction. In this case, since the foil holder 11 including the engaging portions 11e at both ends of the groove 11c cannot be formed by drawing, the foil holder 11 is formed by cutting, for example. Alternatively, as shown in FIG. 10, the locking portion 11e at one end in the axial direction of the groove 11c is formed by drawing, and a protruding portion 11f protruding in the axial direction from the end surface of the foil holder 11 is formed. The locking portion 11e at the other end in the axial direction may be provided by bending 11f in the direction of the arrow in the figure. In addition, when the latching | locking part is especially unnecessary, the latching | locking part 11e may be abbreviate | omitted and the axial direction both sides of the groove | channel 11c may be opened to the end surface of the foil holder 11. FIG.
 本発明にかかるフォイル軸受の適用対象は、上述したガスタービンに限られず、例えばターボチャージャ(過給機)のロータを支持する軸受としても使用することができる。また、本発明にかかるフォイル軸受は、ガスタービンやターボチャージャ等のターボ機械に限らず、油の使用が制限される車両用軸受や産業機器用軸受として広く使用することが可能である。 The application object of the foil bearing according to the present invention is not limited to the gas turbine described above, and can be used as a bearing for supporting a rotor of a turbocharger (supercharger), for example. The foil bearing according to the present invention is not limited to turbomachines such as gas turbines and turbochargers, but can be widely used as vehicle bearings and industrial equipment bearings in which the use of oil is restricted.
 また、以上に説明した各フォイル軸受は、圧力発生流体として空気を使用した空気動圧軸受であるが、これに限らず、圧力発生流体としてその他のガスを使用することもでき、あるいは水や油などの液体を使用することもできる。 Each of the foil bearings described above is an air dynamic pressure bearing that uses air as a pressure generating fluid. However, the present invention is not limited to this, and other gases can be used as the pressure generating fluid, or water or oil can be used. A liquid such as can also be used.
1     タービン
6     主軸
10   フォイル軸受
11   フォイルホルダ
11a 大径部
11b 小径部
11c 溝
11e 係止部
12   フォイル
20   スラスト軸受
30   ハウジング
P     隙間
 
1 Turbine 6 Main shaft 10 Foil bearing 11 Foil holder 11a Large diameter portion 11b Small diameter portion 11c Groove 11e Locking portion 12 Foil 20 Thrust bearing 30 Housing P Clearance

Claims (7)

  1.  軸受面を有する複数のフォイルと、筒状を成し、内周面に複数の溝を有するフォイルホルダとを備え、各フォイルの周方向端部が前記フォイルホルダの溝に差し込まれたフォイル軸受であって、
     前記フォイルホルダの外周面に大径部と小径部とを円周方向で交互に設け、前記大径部の円周方向領域内に前記溝を設けたフォイル軸受。
    A foil bearing comprising a plurality of foils having a bearing surface and a foil holder having a cylindrical shape and having a plurality of grooves on an inner peripheral surface thereof, and a circumferential end portion of each foil is inserted into the groove of the foil holder. There,
    A foil bearing in which a large diameter portion and a small diameter portion are alternately provided in a circumferential direction on the outer peripheral surface of the foil holder, and the groove is provided in a circumferential region of the large diameter portion.
  2.  前記フォイルホルダの外周面の大径部及び小径部、並びに、前記フォイルホルダの内周面及び前記複数の溝の溝底面を、何れも同軸の円筒面とした請求項1記載のフォイル軸受。 The foil bearing according to claim 1, wherein the large-diameter portion and the small-diameter portion of the outer peripheral surface of the foil holder, and the inner peripheral surface of the foil holder and the groove bottom surfaces of the plurality of grooves are all coaxial cylindrical surfaces.
  3.  前記フォイルホルダが、絞り加工が施された金属板からなる請求項1又は2に記載のフォイル軸受。 The foil bearing according to claim 1 or 2, wherein the foil holder is made of a drawn metal plate.
  4.  前記フォイルホルダの複数の溝の少なくとも軸方向一端に、当該溝に差し込まれた前記フォイルの端部と軸方向に係合する係止部を設けた請求項1~3の何れかに記載のフォイル軸受。 The foil according to any one of claims 1 to 3, wherein at least one end in the axial direction of the plurality of grooves of the foil holder is provided with a locking portion that engages with an end of the foil inserted into the groove in the axial direction. bearing.
  5.  請求項1~4の何れかに記載のフォイル軸受と、前記フォイル軸受を内周に保持するハウジングとを備え、前記フォイルホルダの外周面の大径部を前記ハウジングの内周面に固定すると共に、前記フォイルホルダの外周面の小径部と前記ハウジングの内周面との間に隙間を形成したターボ機械。 A foil bearing according to any one of claims 1 to 4 and a housing that holds the foil bearing on an inner periphery thereof, and a large-diameter portion of an outer peripheral surface of the foil holder is fixed to the inner peripheral surface of the housing. A turbomachine in which a gap is formed between the small diameter portion of the outer peripheral surface of the foil holder and the inner peripheral surface of the housing.
  6.  前記隙間を冷却媒体通路とした請求項5記載のターボ機械。 The turbomachine according to claim 5, wherein the gap is a cooling medium passage.
  7.  筒状を成し、内周面に複数のフォイルが取り付けられるフォイルホルダであって、
     各フォイルの端部が差し込まれる複数の溝を有すると共に、外周面に大径部と小径部とを円周方向で交互に有し、前記大径部の円周方向領域内に前記溝を設けたフォイルホルダ。
     
    A foil holder having a cylindrical shape and having a plurality of foils attached to the inner peripheral surface thereof,
    It has a plurality of grooves into which the end portions of the respective foils are inserted, and has a large diameter portion and a small diameter portion alternately in the circumferential direction on the outer peripheral surface, and the groove is provided in a circumferential region of the large diameter portion. Foil holder.
PCT/JP2015/054321 2014-03-17 2015-02-17 Foil bearing, turbo machine, and foil holder WO2015141357A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-053647 2014-03-17
JP2014053647A JP6324774B2 (en) 2014-03-17 2014-03-17 Foil bearing and turbomachine equipped with the same

Publications (1)

Publication Number Publication Date
WO2015141357A1 true WO2015141357A1 (en) 2015-09-24

Family

ID=54144336

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054321 WO2015141357A1 (en) 2014-03-17 2015-02-17 Foil bearing, turbo machine, and foil holder

Country Status (2)

Country Link
JP (1) JP6324774B2 (en)
WO (1) WO2015141357A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893733A (en) * 1972-12-13 1975-07-08 Garrett Corp Foil bearing arrangements
JPS52143359A (en) * 1976-05-24 1977-11-29 Garrett Corp Fluid bearing
JP2001227535A (en) * 1999-12-03 2001-08-24 Mitsubishi Heavy Ind Ltd Foil gas bearing
JP2004011839A (en) * 2002-06-10 2004-01-15 Mitsubishi Heavy Ind Ltd Foil gas bearing
WO2013015098A1 (en) * 2011-07-22 2013-01-31 株式会社Ihi Radial foil bearing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3893733A (en) * 1972-12-13 1975-07-08 Garrett Corp Foil bearing arrangements
JPS52143359A (en) * 1976-05-24 1977-11-29 Garrett Corp Fluid bearing
JP2001227535A (en) * 1999-12-03 2001-08-24 Mitsubishi Heavy Ind Ltd Foil gas bearing
JP2004011839A (en) * 2002-06-10 2004-01-15 Mitsubishi Heavy Ind Ltd Foil gas bearing
WO2013015098A1 (en) * 2011-07-22 2013-01-31 株式会社Ihi Radial foil bearing

Also Published As

Publication number Publication date
JP6324774B2 (en) 2018-05-16
JP2015175473A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
US9784307B2 (en) Foil bearing
WO2015087675A1 (en) Foil bearing, and foil bearing unit and turbo machine each having same
JP2012092969A (en) Foil bearing
JP6104597B2 (en) Foil bearing
JP5766562B2 (en) Thrust foil bearing
JP6104596B2 (en) Foil bearing
JP2013053645A (en) Thrust foil bearing
JP5840423B2 (en) Foil bearing
JP6305749B2 (en) Foil bearing, foil bearing unit having the same, and turbomachine
JP2013044394A (en) Thrust foil bearing
JP2013032797A (en) Foil bearing
JP6324774B2 (en) Foil bearing and turbomachine equipped with the same
JP2019082195A (en) Foil bearing, foil bearing unit and turbo machine
JP6144222B2 (en) Foil bearing
WO2020195488A1 (en) Thrust foil bearing, foil bearing unit, turbo machine, and foil
WO2018116740A1 (en) Foil bearing
JP6541946B2 (en) Foil bearing and foil provided thereto
WO2017073603A1 (en) Foil bearing
JP6440999B2 (en) Foil bearing and foil provided on the same
JP6219489B2 (en) Foil bearing
JP2023148086A (en) foil bearing
WO2022202255A1 (en) Foil bearing
JP2021067353A (en) Foil bearing and rotating machine comprising the same
WO2016031465A1 (en) Foil bearing and foil disposed in same
JP2024053880A (en) Foil Bearings

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765842

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765842

Country of ref document: EP

Kind code of ref document: A1