WO2017073603A1 - Foil bearing - Google Patents

Foil bearing Download PDF

Info

Publication number
WO2017073603A1
WO2017073603A1 PCT/JP2016/081706 JP2016081706W WO2017073603A1 WO 2017073603 A1 WO2017073603 A1 WO 2017073603A1 JP 2016081706 W JP2016081706 W JP 2016081706W WO 2017073603 A1 WO2017073603 A1 WO 2017073603A1
Authority
WO
WIPO (PCT)
Prior art keywords
foil
bearing
underfoil
shaft
multilayer
Prior art date
Application number
PCT/JP2016/081706
Other languages
French (fr)
Japanese (ja)
Inventor
真人 吉野
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2017073603A1 publication Critical patent/WO2017073603A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C27/00Elastic or yielding bearings or bearing supports, for exclusively rotary movement
    • F16C27/02Sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/14Lubrication of pumps; Safety measures therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C7/00Features, components parts, details or accessories, not provided for in, or of interest apart form groups F02C1/00 - F02C6/00; Air intakes for jet-propulsion plants
    • F02C7/06Arrangements of bearings; Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/02Assembling sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines

Definitions

  • the present invention relates to a foil bearing.
  • the main shaft of a turbomachine (for example, a gas turbine or turbocharger) rotates at high speed in a high temperature environment.
  • a turbomachine for example, a gas turbine or turbocharger
  • a foil bearing is known as a bearing that can easily manage the gap width of a bearing gap even in an environment in which a whirl is unlikely to occur and a temperature change is large.
  • a foil bearing consists of a thin metal plate (foil) that has low rigidity against bending and supports the load by allowing the bearing surface to bend. It is characterized by being automatically adjusted to an appropriate width according to conditions and the like.
  • Patent Document 1 discloses an example of a radial foil bearing that supports a radial load.
  • the foil bearing described in Patent Document 1 has a plurality of foils arranged in the rotational direction, and each foil is provided with a top foil part having a bearing surface and an elastically deformable underfoil part.
  • the underfoil portion is disposed behind the top foil portion of another foil, and one end in the circumferential direction is configured as a free end that can move in the circumferential direction.
  • an object of the present invention is to increase the degree of freedom in designing the spring rigidity of the underfoil portion.
  • the present invention has a foil disposed at a plurality of locations in a relative rotational direction between the shaft to be supported, and a top foil portion having a bearing surface on each foil, and a top An under-foil portion that is elastically deformable disposed behind the foil portion, and a foil bearing in which one end in the circumferential direction of the under-foil portion is configured as a free end that is movable in the circumferential direction.
  • a plurality of foil materials are formed to overlap each other.
  • the underfoil part has a multilayer structure (multiple underfoil part) in which multiple foil materials are stacked, the spring rigidity can be adjusted by the individual foil material, so the spring rigidity of the entire underfoil part is optimal. It becomes easy to make it.
  • the spring rigidity of the underfoil portion is optimized by making the plurality of foil materials constituting the multi-layer underfoil portion different shapes or by making the materials or thicknesses of the plurality of foil materials different. be able to.
  • the plurality of foil materials constituting the underfoil portion have different lengths in the circumferential direction, it becomes easy to provide a difference in spring rigidity in the circumferential direction of the underfoil portion. Therefore, it becomes possible to increase the wedge angle in the wedge space, thereby increasing the pressure of the fluid film to stabilize the rotation side member, to make an early transition to the steady rotation of the rotation side member, and the like.
  • the plurality of foil materials constituting the underfoil portion have different width dimensions in the direction along the bearing surface and in the direction perpendicular to the circumferential direction, one end of the thickness direction of the foil is formed at both ends of the underfoil portion in the direction. It is possible to reduce the rigidity of the springs at both ends by removing the partial area. As a result, the top foil portion facing both ends can be easily deformed. For example, even when the rotation side member swings conically, it is possible to prevent the shaft and foil from hitting the edge.
  • the underfoil portion By engaging the other end in the circumferential direction of the underfoil portion with the other foil in the circumferential direction, the underfoil portion can be held by the other foil and can be prevented from falling off.
  • This engagement can be performed by crossing another foil at the boundary between the top foil portion and the under foil portion of each foil.
  • the crossing of the foils can be performed, for example, by inserting the other foil into a slit provided in one foil.
  • the degree of freedom in designing the spring rigidity of the underfoil portion can be increased. Therefore, it becomes easy to design a foil bearing suitable for various applications.
  • FIG. 1 conceptually shows a configuration of a gas turbine device called a micro gas turbine as an example of a turbo machine.
  • the gas turbine apparatus includes a turbine 1 having a blade row, a compressor 2, a generator 3, a combustor 4, and a regenerator 5 as main components.
  • the turbine 1 and the compressor 2 are attached to a shaft 6 extending in the horizontal direction and constitute a rotor on the rotating side together with the shaft 6.
  • One axial end of the shaft 6 is connected to the generator 3.
  • this micro gas turbine is operated, air is sucked from the air inlet 7, and the sucked air is compressed by the compressor 2 and heated by the regenerator 5 and then sent to the combustor 4.
  • the combustor 4 mixes fuel with compressed and heated air and burns the fuel to generate high-temperature and high-pressure gas, and the turbine 1 is rotated by the gas.
  • the turbine 1 rotates, the rotational force is transmitted to the generator 3 via the shaft 6, and the generator 3 is rotationally driven.
  • the electric power generated by rotating the generator 3 is output via the inverter 8. Since the gas after rotating the turbine 1 is at a relatively high temperature, the heat of the gas after combustion is regenerated by sending this gas to the regenerator 5 and exchanging heat with the compressed air before combustion. Use.
  • the gas that has been subjected to heat exchange in the regenerator 5 is discharged as exhaust gas after passing through the exhaust heat recovery device 9.
  • FIG. 2 conceptually shows an example of a rotor support structure in the micro gas turbine shown in FIG.
  • the radial bearing 10 is disposed around the shaft 6, and the thrust bearings 30 are disposed on both sides in the axial direction of the flange portion 6 b provided on the shaft 6.
  • the shaft 6 is supported by the radial bearing 10 and the thrust bearing 30 so as to be rotatable in both the radial direction and the thrust direction.
  • the region between the turbine 1 and the compressor 2 becomes a high temperature atmosphere because it is adjacent to the turbine 1 rotated by high temperature and high pressure gas.
  • the shaft 6 rotates at a rotational speed of tens of thousands rpm or more. Therefore, as the bearings 10 and 30 used in this support structure, an air dynamic pressure bearing, particularly a foil bearing is suitable.
  • each foil 12 of the foil bearing is formed of a plurality of foil materials stacked on each other.
  • FIG. 8 in order to facilitate understanding, the description will be made assuming that each foil 12 is formed of a single foil material.
  • the multi-arc radial foil bearing 10 includes a foil holder 11 having a cylindrical inner peripheral surface 11 a, and a plurality of rotational directions of the shaft 6 on the inner peripheral surface 11 a of the foil holder 11. And a foil 12 disposed at a location.
  • the foil bearing 10 of the example of illustration has illustrated the case where the foil 12 is arrange
  • the foil holder 11 can be formed of, for example, a metal (for example, a steel material) such as a sintered metal or a melted material.
  • a metal for example, a steel material
  • axial grooves 11 b serving as attachment portions of the foils 12 are formed at a plurality of locations (the same number as the number of foils) separated in the rotation direction R.
  • each foil 12 is processed into a predetermined shape by pressing or the like a belt-like foil having a thickness of about 20 ⁇ m to 200 ⁇ m made of a metal having high spring properties and good workability, such as a steel material or a copper alloy. Is formed.
  • a metal having high spring properties and good workability such as a steel material or a copper alloy.
  • Typical examples of steel materials and copper alloys include carbon steel and brass.
  • carbon steel there is no lubricating oil in the atmosphere and the antirust effect by oil cannot be expected. It tends to occur.
  • brass may cause cracks due to processing strain (this tendency becomes stronger as the Zn content in brass increases). Therefore, it is preferable to use a stainless steel or bronze foil as the belt-like foil.
  • the foil 12 has a first region 12a on the rotation direction R side of the shaft 6 and a second region 12b on the counter-rotation direction side.
  • the first region 12a includes a top foil portion 12a1 that forms the bearing surface X, and a plurality of directions N along the surface of the top foil portion 12a1 and orthogonal to the rotational direction R (hereinafter simply referred to as “orthogonal direction N”). And a convex portion 12a2 extending in a direction protruding to the rotation direction R side. In this embodiment, the case where the convex part 12a2 is formed in the three places of the said orthogonal direction is illustrated. A minute notch 12a3 extending in the counter-rotating direction from the foil edge is provided at the base end of each convex portion 12a2.
  • each cutout portion 12b2 that are spaced apart in the orthogonal direction N and recessed toward the rotation direction R are formed.
  • the width dimension in the orthogonal direction N of each notch 12b2 is gradually reduced toward the rotation direction R.
  • each cutout portion 12b2 can also be formed in a substantially V shape with the top portion being pointed.
  • Protruding portions 12b1 that protrude in the counter-rotating direction are formed on both sides of each cutout portion 12b2 in the orthogonal direction N.
  • 12c1 is provided.
  • the insertion ports 12 c 1 at both ends extend linearly in the orthogonal direction N and open at both ends of the foil 12.
  • the central insertion port 12c1 includes a linear cutout portion extending along the orthogonal direction N, and a wide cutout portion extending from the cutout portion in the counter-rotating direction and having a circular arc at the tip. Become.
  • the first region 12a and the second region 12b are connected by the region 12c3 between the insertion ports 12c1.
  • the two foils 12 can be connected by inserting each convex portion 12 a 2 of one foil 12 into the insertion port 12 c 1 of the adjacent foil 12.
  • one of the two foils 12 after the combination is given a gray color.
  • each foil 12 can be made into the state of a temporary assembly by connecting the three foils 12 in the periphery shape by the joint method similar to FIG.
  • the foil bearing 10 is assembled by making this temporary assembly into a cylindrical shape and inserting it into the inner periphery of the foil holder 11 in the direction of arrow B2, as shown in FIG.
  • the convex portion 12 a 2 of each foil 12 is opened in the axial groove 11 b (opened on one end face of the foil holder 11. 7)) from one side in the axial direction.
  • the three foils 12 are attached to the inner peripheral surface 11a of the foil holder 11 in a state of being arranged in the rotation direction R.
  • each foil 12 in the state where each foil 12 is attached to the foil holder 11, two adjacent foils 12 cross each other.
  • the convex portion 12a2 of one foil 12 wraps behind the other foil 12 through the insertion port 12c1 of the other foil 12, and the axial groove 11b of the foil holder 11 Has been inserted.
  • the top foil portion 12 a 1 of the other foil 12 constitutes the bearing surface X.
  • the top foil portion 12a1 of one foil 12 constitutes the bearing surface X
  • the second region 12b of the other foil wraps behind the one foil 12 and covers the underfoil portion.
  • the end of the underfoil portion 12b on the counter-rotation direction side is a free end, and the position of the end varies in the circumferential direction (rotation direction and counter-rotation direction) according to the elastic deformation of the underfoil portion 12b.
  • the end portion of the underfoil portion 12b on the rotation direction R side is in a state of being engaged with another foil 12 (the one foil) in the circumferential direction at the intersecting portion.
  • the foil overlapped portion W is formed at a plurality of locations in the rotation direction R (the same number as the foil 12 and three locations in the present embodiment).
  • each foil 12 In this foil bearing 10, one end (convex portion 12 a 2) on the rotation direction R side of each foil 12 is attached to the foil holder 11, and the region on the counter-rotation direction side is engaged with another foil 12 in the circumferential direction. is there.
  • the adjacent foils 12 are in a state of sticking to each other in the circumferential direction, so that the top foil portion 12a1 of each foil 12 projects to the foil holder 11 side, and has a shape along the inner peripheral surface 11a of the foil holder 11. Bend.
  • each foil 12 in the rotation direction R side is restricted because the convex portion 12a2 of each foil 12 hits the axial groove 11b, but the movement of each foil 12 in the counter rotation direction side is not restricted,
  • Each foil 12 is movable in the counter-rotating direction including the free end of the underfoil portion 12b.
  • the top foil portion 12a1 tends to bend in the direction opposite to the bending direction of the entire foil 12 (the bending direction of the inner peripheral surface 11a of the foil holder 11). Moreover, the top foil part 12a1 rises in a state inclined in a direction away from the inner peripheral surface 11a of the foil holder 11 by riding on the underfoil part 12b. Accordingly, a wedge space is formed between the bearing surface X of the top foil portion 12a1 and the outer peripheral surface of the shaft 6. The top foil portion 12a1 is supported by the elastically deformable underfoil portion 12b, so that the top foil portion 12a1 can be deformed following the displacement or thermal expansion of the shaft 6.
  • an annular radial bearing gap C is formed between the bearing surface X of each foil 12 and the shaft 6, and the shaft 6 is rotatably supported in a non-contact state with respect to the foil 12. Due to the elastic deformation of the top foil portion 12a1, the clearance width of the radial bearing clearance C is automatically adjusted to an appropriate width according to operating conditions and the like, so that the rotation of the shaft 6 is stably supported.
  • the radial width of the radial bearing gap C is exaggerated for easy understanding (the same applies to FIG. 9).
  • a notch 12b2 is provided at the rear end 12d of the second region 12b of each foil 12. While the shaft 6 is rotating, the top foil portion 12a1 of the foil overlapped portion W is pressed against the underfoil portion 12b and elastically deformed due to fluid pressure, so that the top foil 12a1 riding on the underfoil portion 12b has a bearing gap. A step in the width direction of C is formed. This level
  • step difference becomes a shape corresponding to the herringbone shape of the notch 12b2. Since the fluid flowing along the top foil portion 12a1 flows along the step (see the arrow), fluid pressure generating portions are formed at two locations in the orthogonal direction N in the bearing gap C.
  • FIG. 10 shows a plan view of the foil material 121 on the front side (side facing the bearing gap C) of the two foil materials 121 and 122, and the plane of the foil material 122 on the back side (side away from the bearing gap C).
  • each foil material 121, 122 has a first region 12 a having a top foil portion 12 a 1 and a convex portion 12 a 2 and an underfoil portion as in the foil 12 shown in FIG. 4.
  • a second region 12b and an insertion port 12c1 located at the boundary between the first region 12a and the second region 12b are formed.
  • the insertion port 12c1 and the region on the rotation direction R side of the insertion port 12c1 are formed in the same shape. Therefore, when the two foil members 121 and 122 are overlapped with the position of the insertion opening 12c1, the first regions 12a of both the foil members 121 and 122 are completely overlapped without one protruding from the other. It becomes a state.
  • the underfoil portions 12b of the two foil members 121 and 122 have different shapes by varying the lengths in the rotation direction R. 9 to 11 illustrate, as an example, a case where the length of the underfoil portion 12b of the front foil material 121 is made shorter than that of the underfoil portion 12b of the back foil material 122.
  • each foil material 121, 122 may be provided with the same number (three) of protrusions 12a2 and insertion ports 12c1 as the foil 12 shown in FIG. Moreover, you may form notch part 12b2 similar to the foil 12 shown in FIG. 4 in the rear end 12d of the 2nd area
  • the foil bearing 10 is assembled in the same procedure as described with reference to FIGS. At this time, the two foil members 121 and 122 stacked on each other are handled as one foil 12 shown in FIGS. That is, as shown in FIG. 5, when the foils 12 are connected to each other, another foil 12 made of the two foil members 121 and 122 is inserted into the insertion port 12 c 1 where the two foil members 121 and 122 overlap each other. The overlapping convex portions 12a2 are inserted. Further, when the three foils 12 connected in a circumferential shape are attached to the foil holder 11, the overlapping convex portions 12a2 of the foil materials 121 and 122 are inserted into the axial grooves 11b of the foil holder 11 (FIG. 9).
  • the foil bearing 10 includes a multilayer top foil portion 12 ⁇ / b> A ⁇ b> 1 in which the top foil portions 12 a 1 of the foil materials 121 and 122 are stacked, and a foil material of the separate foil 12.
  • a multi-layer underfoil portion 12B is formed by overlapping the underfoil portions 12b of 121 and 122.
  • the bearing surface X is formed on the surface of the top foil portion 12a1 on the front side of the multilayer top foil portion 12A1.
  • the multilayer underfoil portion 12B is behind (back side) the multilayer top foil portion 12A1 and elastically supports the multilayer top foil portion 12A1.
  • the end portions on the counter-rotation direction side of the multilayer underfoil portion 12 ⁇ / b> B constitute free ends, and the end portions on the rotation direction side are engaged with other foils 12 in the circumferential direction.
  • the foil overlap part W is formed by the multilayer top foil part 12A1 and the multilayer underfoil part 12B overlapping.
  • the multilayer underfoil portion 12B is formed with a multilayer portion E1 in which two underfoil portions 12b overlap each other and a single layer portion E2 composed of only one underfoil portion 12b out of the two underfoil portions 12b.
  • the multilayer part E1 is located on the rotation direction R side with respect to the single layer part E2.
  • FIG. 12 and FIG. 13 schematically show a cross-sectional structure of the foil overlap portion W when each of the foils 12 described above is attached to the foil holder 11.
  • FIG. 12 shows a state immediately after the start of rotation of the shaft 6
  • FIG. 13 shows a state during steady rotation of the shaft 6.
  • the multi-layer top foil portion 12A1 receives the air pressure P in the direction of the arrow generated in the bearing gap C and the width dimension of the bearing gap C increases (lower in the figure). ), And the multilayer top foil portion 12A1 is pressed against the multilayer underfoil portion 12B as shown in FIG. Further, in a region other than the foil overlapping portion W, the multilayer top foil portion 12A1 is pressed against the inner peripheral surface 11a of the foil holder 11.
  • the spring stiffness of the multilayer portion E1 formed by the two foil materials 121 and 122 is larger than the spring stiffness of the single layer portion E2 formed by the single foil material 122.
  • the multilayer top foil portion 12A1 bends slightly in the area facing the multilayer portion E1 (small deformation amount), and the single layer portion E2 It bends greatly in the area opposite to (large deformation amount). Therefore, when forming each foil 12 with one foil material, the wedge angle ⁇ of the wedge space formed between the bearing surface X of the multilayer top foil portion 12A1 and the outer peripheral surface of the shaft 6 (FIG. 8 and the like). Compared to the reference). As the wedge angle ⁇ of the wedge space increases, the air pressure generated in each wedge space increases, so that the shaft 3 can be shifted to steady rotation at an early stage, and the stability of the shaft 6 during steady rotation is enhanced. It becomes possible.
  • the multi-layer top foil portion 12A1 rides on the plurality of under-foil portions 12B having the foil thickness of two sheets, so that a step formed on the multi-layer top foil portion 12A1 ( The step in the width direction of the bearing gap C) increases. Also from this point, the wedge angle ⁇ of the wedge space can be increased, and the above effect can be made more remarkable.
  • the deformation modes of the respective foil materials 121 and 122 and the gaps formed between the respective foil materials 121 and 122 are illustrated as simplified as possible. Therefore, in the actual foil bearing 10, the foil materials 121 and 122 are not necessarily deformed in the mode shown in FIGS. 12 and 13, and in the mode shown in FIGS. 12 and 13 between the foil materials 121 and 122. A gap is not always formed.
  • the length of the underfoil portion 12b of the foil material 121 on the front side out of the two foil materials 121 and 122 constituting the multilayer underfoil portion 12B is longer than that of the underfoil portion 12b of the foil material 122 on the back side.
  • the case of shortening was illustrated, conversely, even if the length of the front side underfoil portion 12b is longer than the length of the backside underfoil portion 12b, the multilayer underfoil portion 12B is surrounded by the same manner as described above. A difference in spring rigidity can be formed in the direction, and an effect equivalent to the above can be obtained.
  • FIG. 14 and FIG. 15 show that the underfoil portion 12b is formed in different shapes by making the width dimension in the orthogonal direction N of the underfoil portions 12b of the two foil members 121 and 122 different.
  • the width dimension L2 of the underfoil portion 12b of the foil material 122 on the back side is made smaller than the width dimension L1 of the underfoil portion 12b of the foil material 121 on the front side (L2 ⁇ L1).
  • FIG. 16 illustrates the case where the width dimension of the underfoil portion 12b of the back foil material 122 in the multilayer underfoil portion 12B is reduced, but the underside of the front foil material 121 is opposite to FIG.
  • the same effect can be obtained even if the width dimension of the foil part 12b is made smaller than that of the underfoil part 12b on the back side.
  • the same effect can be obtained by removing the partial thickness region at both ends of the multilayer top foil portion 12A1. Can be obtained.
  • the top foil part 12a1 of the foil material 122 on the back side is similar to the above even if the width dimension is smaller than the width dimension of the top foil part 12a1 of the foil material 121 on the front side. An effect can be obtained.
  • the circumferential length of the underfoil portion 12 b of the rear foil material 122 is the circumferential length of the underfoil portion 12 b of the front foil material 121.
  • the underfoil portion of the foil bearing 10 is constituted by the multilayer underfoil portion 12B in which a plurality of foil materials 121 and 122 are stacked.
  • the spring rigidity of each part can be optimized in the multilayer underfoil part 12B as a whole by making the spring rigidity of each foil material 121, 122 different.
  • the degree of freedom in designing the underfoil portion is increased, and the foil bearing that is suitable for use conditions can be easily designed.
  • the under-foil portions 12 b of the foil members 121 and 122 have different shapes, so that the springs in the rotational direction R and the orthogonal direction N can be obtained.
  • a difference in stiffness can be provided.
  • the same effect can be obtained even if the multilayer underfoil portion 12B is configured by foil materials 121 and 122 (whether the shape is the same or different) having different materials and thicknesses.
  • the under foil portion of the foil bearing 10 and the top foil portion have a multilayer structure in which a plurality of foil materials 121 and 122 are stacked. Therefore, the micro sliding between the foil materials 121 and 122 which comprise the multilayer top foil part 12A1 and the multilayer underfoil part 12B can be permitted. As a result, the effect of absorbing the vibration of the shaft 6 is enhanced, so that the unstable behavior of the shaft 6 can be prevented and its rotation can be stably supported.
  • the axial groove 11b formed in the foil holder 11 is formed in a direction substantially tangential to the inner peripheral surface 11a as shown in FIG.
  • the axial groove 11b can be formed by wire cutting or the like.
  • the wire is simply reciprocated, as shown in FIG. This becomes the edge 11c ′.
  • the edge 11c ′ is formed at the outlet of the axial groove 11b as described above, the vicinity of the edge 11c ′ is deformed when the shaft 6 collides with this portion, and this influence affects the bearing surface X, thereby improving the bearing performance. May decrease.
  • the chamfer 11c can be formed, for example, by bending the wire traveling direction 90 ° toward the inner peripheral surface 11a at the final stage of the return stroke of the wire during wire cutting.
  • the chamfered portion 11c can be formed by dropping the edge 11c 'in post-processing (cutting or the like) after the formation of the axial groove 11b.
  • the form of the foil bearing is not limited to this, and an underfoil portion that can be elastically deformed behind the top foil portion.
  • the present invention can be applied to an arbitrary form of foil bearing in which the circumferential end of the underfoil portion is configured with a free end that is movable in the circumferential direction.
  • this invention is applicable not only to the radial foil bearing which supports a radial load but to the thrust foil bearing which supports a thrust load.
  • the shaft 6 is the rotation side member and the foil holder 11 is the fixed side member
  • the shaft 6 is the fixed side member and the foil holder 11 is the rotation side member.
  • the present invention can be applied.
  • the foil 12 serves as a rotation side member, it is necessary to design the foil 12 in consideration of deformation of the entire foil 12 due to centrifugal force.
  • each foil bearing of the present embodiment is an air dynamic pressure bearing using air as a pressure generating fluid, but is not limited thereto, and other gases can be used as the pressure generating fluid, or water or oil It is also possible to use a liquid such as

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Support Of The Bearing (AREA)
  • Supercharger (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

In this foil bearing, each of foils 12 is provided with: a top foil section 12A1 provided with a bearing surface X; and an under foil section 12B that is elastically deformable and that is arranged behind the top foil section. One end of the under foil section 12B in the circumferential direction is configured as a free end capable of movement in the circumferential direction. The under foil section 12B is formed by causing a plurality of foil materials 121, 122 having different shapes to overlap.

Description

フォイル軸受Foil bearing
 本発明は、フォイル軸受に関する。 The present invention relates to a foil bearing.
 ターボ機械(例えばガスタービンやターボチャージャ)の主軸は高温環境下で高速回転する。また、ターボ機械では、エネルギー効率の観点から油循環用の補機を別途設けることが困難な場合がある他、潤滑油のせん断抵抗が主軸の高速回転化の阻害要因となる場合がある。そのため、ターボ機械の主軸の支持用軸受としては、潤滑油を使用した転がり軸受や動圧軸受ではなく、圧力発生流体として空気を用いる空気動圧軸受を使用する場合が多い。 ¡The main shaft of a turbomachine (for example, a gas turbine or turbocharger) rotates at high speed in a high temperature environment. In addition, in turbomachinery, it may be difficult to separately provide an auxiliary machine for oil circulation from the viewpoint of energy efficiency, and the shear resistance of lubricating oil may be an obstacle to high-speed rotation of the spindle. Therefore, as the bearing for supporting the main shaft of the turbomachine, an air dynamic pressure bearing using air as a pressure generating fluid is often used instead of a rolling bearing or a dynamic pressure bearing using a lubricating oil.
 空気動圧軸受としては、回転側の軸受面と静止側の軸受面の双方を剛体で構成したものが一般的である。しかしながら、この種の空気動圧軸受では、両軸受面間に形成される軸受隙間の隙間幅管理が不十分であると、安定限界を超えた際にホワールと称される自励的な軸の振れ回りが生じ易くなる。従って、一般的な空気動圧軸受において、軸受性能を安定的に発揮するには、軸受隙間の隙間幅を高精度に管理する必要がある。しかしながら、ターボ機械のように温度変化の大きい環境では、熱膨張の影響で軸受隙間の隙間幅が変動し易いため、軸受性能を安定的に発揮させるのが困難である。 As an air dynamic pressure bearing, a structure in which both a rotating bearing surface and a stationary bearing surface are made of a rigid body is generally used. However, in this type of air dynamic pressure bearing, if the gap width management of the bearing gap formed between both bearing surfaces is insufficient, the self-excited shaft called a whirl when the stability limit is exceeded. Swing is likely to occur. Therefore, in a general air dynamic pressure bearing, in order to exhibit the bearing performance stably, it is necessary to manage the gap width of the bearing gap with high accuracy. However, in an environment where the temperature change is large, such as a turbo machine, the bearing gap width is likely to fluctuate due to the effect of thermal expansion, making it difficult to stably exhibit the bearing performance.
 ホワールが生じ難く、かつ温度変化の大きい環境下でも軸受隙間の隙間幅管理を容易にできる軸受としてフォイル軸受が知られている。フォイル軸受は、曲げに対して剛性の低い可撓性を有する金属薄板(フォイル)で軸受面を構成し、この軸受面のたわみを許容することで荷重を支持するものであり、軸受隙間が運転条件等に応じた適切な幅に自動調整されるという特徴を有する。例えば下記の特許文献1に、ラジアル荷重を支持するラジアルフォイル軸受の一例が開示されている。 A foil bearing is known as a bearing that can easily manage the gap width of a bearing gap even in an environment in which a whirl is unlikely to occur and a temperature change is large. A foil bearing consists of a thin metal plate (foil) that has low rigidity against bending and supports the load by allowing the bearing surface to bend. It is characterized by being automatically adjusted to an appropriate width according to conditions and the like. For example, Patent Document 1 below discloses an example of a radial foil bearing that supports a radial load.
特開2015-52345号公報Japanese Patent Laying-Open No. 2015-52345
  特許文献1に記載のフォイル軸受は、回転方向に複数のフォイルを配置し、各フォイルに、軸受面を備えたトップフォイル部と弾性変形可能なアンダーフォイル部とを設けたものである。アンダーフォイル部は、別フォイルのトップフォイル部の背後に配置されており、その周方向一端は、周方向に移動可能な自由端で構成されている。 The foil bearing described in Patent Document 1 has a plurality of foils arranged in the rotational direction, and each foil is provided with a top foil part having a bearing surface and an elastically deformable underfoil part. The underfoil portion is disposed behind the top foil portion of another foil, and one end in the circumferential direction is configured as a free end that can move in the circumferential direction.
  この種のフォイル軸受の軸受性能を左右する要因の一つにアンダーフォイル部のばね剛性がある。このばね剛性は、アンダーフォイル部の各部で最適な大きさに設計すべきであるが、従来では、アンダーフォイル部が一枚のフォイル材で形成されているため、アンダーフォイル部の各部でばね剛性を最適化することは難しく、この点がフォイル軸受の軸受性能を向上させる上での障害となっている。 ば ね One of the factors that influence the bearing performance of this type of foil bearing is the spring stiffness of the underfoil. This spring rigidity should be designed to the optimum size for each part of the underfoil part. Conventionally, since the underfoil part is made of a single foil material, the spring rigidity is set for each part of the underfoil part. This is difficult to optimize, and this is an obstacle to improving the bearing performance of the foil bearing.
 そこで、本発明は、アンダーフォイル部のばね剛性の設計自由度を高めることを目的とする。 Therefore, an object of the present invention is to increase the degree of freedom in designing the spring rigidity of the underfoil portion.
 上記の課題を解決するため、本発明は、支持すべき軸との間の相対回転方向の複数箇所に配置されるフォイルを有し、各フォイルに、軸受面を備えたトップフォイル部と、トップフォイル部の背後に配置される弾性変形可能なアンダーフォイル部とが設けられ、前記アンダーフォイル部の周方向一端を、周方向に移動可能な自由端で構成したフォイル軸受において、前記アンダーフォイル部を、複数のフォイル材を重ねて形成したことを特徴とする。 In order to solve the above-described problems, the present invention has a foil disposed at a plurality of locations in a relative rotational direction between the shaft to be supported, and a top foil portion having a bearing surface on each foil, and a top An under-foil portion that is elastically deformable disposed behind the foil portion, and a foil bearing in which one end in the circumferential direction of the under-foil portion is configured as a free end that is movable in the circumferential direction. A plurality of foil materials are formed to overlap each other.
  このようにアンダーフォイル部を、複数のフォイル材を重ねた複層構造(複層アンダーフォイル部)にすれば、個々のフォイル材でばね剛性を調整できるため、アンダーフォイル部全体のばね剛性を最適化することが容易となる。具体的には、複層アンダーフォイル部を構成する複数のフォイル材を異なる形状にしたり、複数のフォイル材の材質もしくは厚さを異ならせたりすることにより、アンダーフォイル部のばね剛性を最適化することができる。 In this way, if the underfoil part has a multilayer structure (multiple underfoil part) in which multiple foil materials are stacked, the spring rigidity can be adjusted by the individual foil material, so the spring rigidity of the entire underfoil part is optimal. It becomes easy to make it. Specifically, the spring rigidity of the underfoil portion is optimized by making the plurality of foil materials constituting the multi-layer underfoil portion different shapes or by making the materials or thicknesses of the plurality of foil materials different. be able to.
  また、かかる構成であれば、アンダーフォイル部を構成する複数のフォイル材の相互間で微小摺動を許容することができる。従って、回転側部材で生じる振動の吸収効果を高めることができる。 In addition, with such a configuration, it is possible to allow micro-sliding between a plurality of foil materials constituting the underfoil portion. Therefore, it is possible to enhance the effect of absorbing vibration generated in the rotation side member.
 アンダーフォイル部を構成する複数のフォイル材を、周方向で異なる長さにすれば、アンダーフォイル部の周方向においてばね剛性に差を設けることが容易となる。そのため、楔空間における楔角を大きくすることが可能となり、これにより流体膜の圧力を高めて回転側部材の安定化や回転側部材の定常回転への早期移行等を図ることができる。 If the plurality of foil materials constituting the underfoil portion have different lengths in the circumferential direction, it becomes easy to provide a difference in spring rigidity in the circumferential direction of the underfoil portion. Therefore, it becomes possible to increase the wedge angle in the wedge space, thereby increasing the pressure of the fluid film to stabilize the rotation side member, to make an early transition to the steady rotation of the rotation side member, and the like.
 アンダーフォイル部を構成する複数のフォイル材を、軸受面に沿う方向でかつ周方向と直交する方向で異なる幅寸法にすれば、アンダーフォイル部の前記方向の両端で、フォイルの厚さ方向の一部領域を除肉して当該両端のばね剛性を低下させることができる。これにより、当該両端に対向するトップフォイル部の変形が容易なものとなるため、例えば回転側の部材がコニカルに振れ回る際にも軸とフォイルのエッジ当たりを防止することが可能となる。 If the plurality of foil materials constituting the underfoil portion have different width dimensions in the direction along the bearing surface and in the direction perpendicular to the circumferential direction, one end of the thickness direction of the foil is formed at both ends of the underfoil portion in the direction. It is possible to reduce the rigidity of the springs at both ends by removing the partial area. As a result, the top foil portion facing both ends can be easily deformed. For example, even when the rotation side member swings conically, it is possible to prevent the shaft and foil from hitting the edge.
 アンダーフォイル部の周方向他端を、他のフォイルと周方向で係合させることで、アンダーフォイル部を他のフォイルで保持し、その脱落を防止することが可能となる。この係合は、各フォイルのトップフォイル部とアンダーフォイル部の境界部で、他のフォイルを交差させることで行うことができる。フォイル同士の交差は、例えば一方のフォイルに設けたスリットに他方のフォイルを挿入することで行うことができる。 By engaging the other end in the circumferential direction of the underfoil portion with the other foil in the circumferential direction, the underfoil portion can be held by the other foil and can be prevented from falling off. This engagement can be performed by crossing another foil at the boundary between the top foil portion and the under foil portion of each foil. The crossing of the foils can be performed, for example, by inserting the other foil into a slit provided in one foil.
 このように本発明によれば、アンダーフォイル部のばね剛性の設計自由度を高めることができる。従って、種々の用途に適合するフォイル軸受の設計が容易なものとなる。 Thus, according to the present invention, the degree of freedom in designing the spring rigidity of the underfoil portion can be increased. Therefore, it becomes easy to design a foil bearing suitable for various applications.
マイクロガスタービンの概略構成を示す図である。It is a figure which shows schematic structure of a micro gas turbine. マイクロガスタービンのロータ支持構造の概略構成を示す図である。It is a figure which shows schematic structure of the rotor support structure of a micro gas turbine. 本発明にかかるフォイル軸受の断面図である。It is sectional drawing of the foil bearing concerning this invention. フォイルの平面図である。It is a top view of foil. 連結した二枚のフォイルを裏面側から見た平面図である。It is the top view which looked at two foils connected from the back side. 三枚のフォイルを仮組みした状態を示す斜視図である。It is a perspective view showing the state where three foils were temporarily assembled. フォイルの仮組体をフォイルホルダに取り付ける様子を示す斜視図である。It is a perspective view which shows a mode that the temporary assembly of foil is attached to a foil holder. フォイル軸受のフォイル重複部を拡大して示す断面図である。It is sectional drawing which expands and shows the foil overlap part of a foil bearing. フォイル軸受のフォイル重複部を拡大して示す断面図である。It is sectional drawing which expands and shows the foil overlap part of a foil bearing. 表側のフォイル材の平面図である。It is a top view of the foil material on the front side. 裏側のフォイル材の平面図である。It is a top view of the foil material of a back side. フォイル重複部を模式的に表す拡大断面図である(軸の回転開始直後)。It is an expanded sectional view showing a foil duplication part typically (just after the start of rotation of a shaft). フォイル重複部を模式的に表す拡大断面図である(軸の定常回転中)。It is an expanded sectional view showing a foil overlap part typically (at the time of steady rotation of an axis). 表側のフォイル材の平面図である。It is a top view of the foil material on the front side. 裏側のフォイル材の平面図である。It is a top view of the foil material of a back side. フォイル重複部の回転方向と直交する方向Nにおける断面図である。It is sectional drawing in the direction N orthogonal to the rotation direction of a foil overlap part. フォイルホルダの要部の拡大断面図である。It is an expanded sectional view of the principal part of a foil holder.
  以下、本発明の実施の形態を図面に基づいて説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 図1に、ターボ機械の一例として、マイクロガスタービンと称されるガスタービン装置の構成を概念的に示す。このガスタービン装置は、主要な構成として、翼列を形成したタービン1と、圧縮機2と、発電機3と、燃焼器4と、再生器5とを備える。タービン1および圧縮機2は、水平方向に延びる軸6に取り付けられて軸6と共に回転側のロータを構成する。軸6の軸方向一端は発電機3に連結されている。このマイクロガスタービンが運転されると、吸気口7から空気が吸入され、吸入された空気は、圧縮機2で圧縮されると共に再生器5で加熱された上で燃焼器4に送り込まれる。燃焼器4は、圧縮・加熱された空気に燃料を混合してこれを燃焼させることにより高温・高圧のガスを発生させ、このガスによりタービン1を回転させる。タービン1が回転すると、その回転力が軸6を介して発電機3に伝達され、発電機3が回転駆動される。発電機3が回転駆動することにより生じた電力は、インバータ8を介して出力される。タービン1を回転させた後のガスは比較的高温であるため、このガスを再生器5に送り込んで燃焼前の圧縮空気との間で熱交換を行うことで、燃焼後のガスの熱を再利用する。再生器5で熱交換を終えたガスは、排熱回収装置9を通ってから排ガスとして排出される。 FIG. 1 conceptually shows a configuration of a gas turbine device called a micro gas turbine as an example of a turbo machine. The gas turbine apparatus includes a turbine 1 having a blade row, a compressor 2, a generator 3, a combustor 4, and a regenerator 5 as main components. The turbine 1 and the compressor 2 are attached to a shaft 6 extending in the horizontal direction and constitute a rotor on the rotating side together with the shaft 6. One axial end of the shaft 6 is connected to the generator 3. When this micro gas turbine is operated, air is sucked from the air inlet 7, and the sucked air is compressed by the compressor 2 and heated by the regenerator 5 and then sent to the combustor 4. The combustor 4 mixes fuel with compressed and heated air and burns the fuel to generate high-temperature and high-pressure gas, and the turbine 1 is rotated by the gas. When the turbine 1 rotates, the rotational force is transmitted to the generator 3 via the shaft 6, and the generator 3 is rotationally driven. The electric power generated by rotating the generator 3 is output via the inverter 8. Since the gas after rotating the turbine 1 is at a relatively high temperature, the heat of the gas after combustion is regenerated by sending this gas to the regenerator 5 and exchanging heat with the compressed air before combustion. Use. The gas that has been subjected to heat exchange in the regenerator 5 is discharged as exhaust gas after passing through the exhaust heat recovery device 9.
 図2に、図1に示したマイクロガスタービンにおけるロータの支持構造の一例を概念的に示す。この支持構造では、軸6の周囲にラジアル軸受10が配置され、軸6に設けたフランジ部6bの軸方向両側にそれぞれスラスト軸受30が配置される。これらラジアル軸受10およびスラスト軸受30により、軸6がラジアル方向およびスラスト両方向に回転自在に支持される。この支持構造において、タービン1と圧縮機2の間の領域は、高温・高圧のガスで回転されるタービン1に隣接している関係上高温雰囲気となる。加えて、軸6は、数万rpm以上の回転速度で回転する。そのため、この支持構造で使用する軸受10,30としては、空気動圧軸受、特にフォイル軸受が適合する。 FIG. 2 conceptually shows an example of a rotor support structure in the micro gas turbine shown in FIG. In this support structure, the radial bearing 10 is disposed around the shaft 6, and the thrust bearings 30 are disposed on both sides in the axial direction of the flange portion 6 b provided on the shaft 6. The shaft 6 is supported by the radial bearing 10 and the thrust bearing 30 so as to be rotatable in both the radial direction and the thrust direction. In this support structure, the region between the turbine 1 and the compressor 2 becomes a high temperature atmosphere because it is adjacent to the turbine 1 rotated by high temperature and high pressure gas. In addition, the shaft 6 rotates at a rotational speed of tens of thousands rpm or more. Therefore, as the bearings 10 and 30 used in this support structure, an air dynamic pressure bearing, particularly a foil bearing is suitable.
 上記のマイクロガスタービン用のラジアル軸受10に適合するフォイル軸受として、本発明では多円弧型と呼ばれるものが使用される。以下、この多円弧型フォイル軸受の基本的構成を図3~図8に基づいて説明する。なお、後述のように、本発明は、フォイル軸受の各フォイル12を、互いに重ねた複数のフォイル材で形成したことを特徴とするものであるが、以下の基本的構成の説明(図3~図8)では、理解の容易化のため、各フォイル12が一枚のフォイル材で形成されていると仮定して説明を進める。 In the present invention, a so-called multi-arc type is used as the foil bearing suitable for the radial bearing 10 for the micro gas turbine. The basic configuration of the multi-arc foil bearing will be described below with reference to FIGS. As will be described later, the present invention is characterized in that each foil 12 of the foil bearing is formed of a plurality of foil materials stacked on each other. In FIG. 8), in order to facilitate understanding, the description will be made assuming that each foil 12 is formed of a single foil material.
[多円弧型フォイル軸受の基本的構成]
 図3に示すように、多円弧型のラジアルフォイル軸受10は、円筒面状の内周面11aを有するフォイルホルダ11と、フォイルホルダ11の内周面11a上で、軸6の回転方向の複数箇所に配置されたフォイル12とを有する。図示例のフォイル軸受10は、内周面11aの三カ所にフォイル12を配置した場合を例示している。各フォイル12の内径側に軸6が挿入されている。
[Basic configuration of multi-arc foil bearing]
As shown in FIG. 3, the multi-arc radial foil bearing 10 includes a foil holder 11 having a cylindrical inner peripheral surface 11 a, and a plurality of rotational directions of the shaft 6 on the inner peripheral surface 11 a of the foil holder 11. And a foil 12 disposed at a location. The foil bearing 10 of the example of illustration has illustrated the case where the foil 12 is arrange | positioned in three places of the internal peripheral surface 11a. A shaft 6 is inserted on the inner diameter side of each foil 12.
 フォイルホルダ11は、例えば焼結金属や溶製材等の金属(例えば鋼材)で形成することができる。フォイルホルダ11の内周面11aのうち、回転方向Rに離隔した複数箇所(フォイル数と同数)には、各フォイル12の取り付け部となる軸方向溝11bが形成されている。 The foil holder 11 can be formed of, for example, a metal (for example, a steel material) such as a sintered metal or a melted material. On the inner peripheral surface 11 a of the foil holder 11, axial grooves 11 b serving as attachment portions of the foils 12 are formed at a plurality of locations (the same number as the number of foils) separated in the rotation direction R.
 各フォイル12を構成するフォイル材は、ばね性に富み、かつ加工性のよい金属、例えば鋼材料や銅合金からなる厚さ20μm~200μm程度の帯状フォイルを、プレス加工等により所定形状に加工することで形成される。鋼材料や銅合金の代表例として、炭素鋼や黄銅を挙げることができるが、一般的な炭素鋼では、雰囲気に潤滑油が存在せず油による防錆効果が期待できないため、錆による腐食が発生し易くなる。また、黄銅では加工ひずみによる置き割れを生じることがある(黄銅中のZnの含有量が多いほどこの傾向が強まる)。そのため、帯状フォイルとしては、ステンレス鋼もしくは青銅製のものを使用するのが好ましい。 The foil material constituting each foil 12 is processed into a predetermined shape by pressing or the like a belt-like foil having a thickness of about 20 μm to 200 μm made of a metal having high spring properties and good workability, such as a steel material or a copper alloy. Is formed. Typical examples of steel materials and copper alloys include carbon steel and brass. However, in general carbon steel, there is no lubricating oil in the atmosphere and the antirust effect by oil cannot be expected. It tends to occur. Further, brass may cause cracks due to processing strain (this tendency becomes stronger as the Zn content in brass increases). Therefore, it is preferable to use a stainless steel or bronze foil as the belt-like foil.
 図4に示すように、フォイル12は、軸6の回転方向R側の第一領域12aと、反回転方向側の第二領域12bとを有する。 As shown in FIG. 4, the foil 12 has a first region 12a on the rotation direction R side of the shaft 6 and a second region 12b on the counter-rotation direction side.
 第一領域12aは、軸受面Xを形成するトップフォイル部12a1と、トップフォイル部12a1の表面に沿い、かつ回転方向Rと直交する方向N(以下、単に「直交方向N」と呼ぶ)の複数箇所に設けられ、かつ、それぞれ回転方向R側に突出する方向に延びた凸部12a2とを有する。本実施形態では、前記直交方向の三カ所に凸部12a2を形成した場合を例示している。各凸部12a2の基端部には、フォイル縁部から反回転方向に延びる微小な切り込み12a3が設けられている。 The first region 12a includes a top foil portion 12a1 that forms the bearing surface X, and a plurality of directions N along the surface of the top foil portion 12a1 and orthogonal to the rotational direction R (hereinafter simply referred to as “orthogonal direction N”). And a convex portion 12a2 extending in a direction protruding to the rotation direction R side. In this embodiment, the case where the convex part 12a2 is formed in the three places of the said orthogonal direction is illustrated. A minute notch 12a3 extending in the counter-rotating direction from the foil edge is provided at the base end of each convex portion 12a2.
 第二領域12bの後端12d(反回転方向側の端部)には、前記直交方向Nに離隔して、回転方向Rに向けて凹んだ二つの切り欠き部12b2が形成される。各切り欠き部12b2の前記直交方向Nにおける幅寸法は、回転方向Rに向けて徐々に縮小している。本実施形態では、切り欠き部12b2全体を円弧状に形成した場合を例示しているが、各切り欠き部12b2は、頂部を尖端状とした略V字状に形成することもできる。各切り欠き部12b2の前記直交方向Nの両側には、それぞれ反回転方向に突出する突出部12b1が形成されている。 At the rear end 12d (end portion on the counter-rotation direction side) of the second region 12b, two cutout portions 12b2 that are spaced apart in the orthogonal direction N and recessed toward the rotation direction R are formed. The width dimension in the orthogonal direction N of each notch 12b2 is gradually reduced toward the rotation direction R. In the present embodiment, the case where the entire cutout portion 12b2 is formed in an arc shape is illustrated, but each cutout portion 12b2 can also be formed in a substantially V shape with the top portion being pointed. Protruding portions 12b1 that protrude in the counter-rotating direction are formed on both sides of each cutout portion 12b2 in the orthogonal direction N.
 第一領域12aと第二領域12bの境界部で、かつ前記直交方向Nの複数箇所(凸部12a2と同数)には、隣接するフォイル12の凸部12a2が差し込まれる、スリット状の差込口12c1が設けられる。このうち、両端の差込口12c1は、前記直交方向Nに直線状に延びて、フォイル12の両端部にそれぞれ開口している。中央の差込口12c1は、前記直交方向Nに沿って延びる直線状の切り欠き部分と、該切り欠き部分から反回転方向側に延び、その先端を円弧状とした幅広の切り欠き部分とからなる。各差込口12c1の間の領域12c3により、第一領域12aと第二領域12bが連結された状態にある。 A slit-like insertion port into which the convex portions 12a2 of the adjacent foils 12 are inserted at a boundary portion between the first region 12a and the second region 12b and at a plurality of locations in the orthogonal direction N (the same number as the convex portions 12a2). 12c1 is provided. Among these, the insertion ports 12 c 1 at both ends extend linearly in the orthogonal direction N and open at both ends of the foil 12. The central insertion port 12c1 includes a linear cutout portion extending along the orthogonal direction N, and a wide cutout portion extending from the cutout portion in the counter-rotating direction and having a circular arc at the tip. Become. The first region 12a and the second region 12b are connected by the region 12c3 between the insertion ports 12c1.
 図5に示すように、一方のフォイル12の各凸部12a2を、隣接するフォイル12の差込口12c1にそれぞれ差し込むことにより、2枚のフォイル12を連結する事ができる。同図中では、組み合わせ後の二つのフォイル12のうち、一方のフォイル12にグレーの色を付している。 As shown in FIG. 5, the two foils 12 can be connected by inserting each convex portion 12 a 2 of one foil 12 into the insertion port 12 c 1 of the adjacent foil 12. In the figure, one of the two foils 12 after the combination is given a gray color.
 そして、図6に示すように、3枚のフォイル12を図5と同様の結合手法により周状に連結する事で、各フォイル12を仮組みの状態にする事ができる。この仮組体を、図7に示すように、筒状にしてフォイルホルダ11の内周に矢印B2の方向へ挿入する事で、フォイル軸受10が組み立てられる。具体的には、3枚のフォイル12の仮組体をフォイルホルダ11の内周に挿入しながら、各フォイル12の凸部12a2を、フォイルホルダ11の一方の端面に開口した軸方向溝11b(図7参照)に軸方向一方側から差込む。以上により、3枚のフォイル12が、フォイルホルダ11の内周面11aに回転方向Rに並べた状態で取り付けられる。 And as shown in FIG. 6, each foil 12 can be made into the state of a temporary assembly by connecting the three foils 12 in the periphery shape by the joint method similar to FIG. The foil bearing 10 is assembled by making this temporary assembly into a cylindrical shape and inserting it into the inner periphery of the foil holder 11 in the direction of arrow B2, as shown in FIG. Specifically, while inserting the temporary assembly of the three foils 12 into the inner periphery of the foil holder 11, the convex portion 12 a 2 of each foil 12 is opened in the axial groove 11 b (opened on one end face of the foil holder 11. 7)) from one side in the axial direction. As described above, the three foils 12 are attached to the inner peripheral surface 11a of the foil holder 11 in a state of being arranged in the rotation direction R.
 図8に示すように、各フォイル12をフォイルホルダ11に取り付けた状態では、隣接する二つのフォイル12同士が交差した状態となる。この交差部分よりも回転方向R側では、一方のフォイル12の凸部12a2が、他方のフォイル12の差込口12c1を介して他方のフォイル12の背後に回り込み、フォイルホルダ11の軸方向溝11bに挿入されている。また、他方のフォイル12のトップフォイル部12a1が軸受面Xを構成している。交差部分よりも反回転方向側では、一方のフォイル12のトップフォイル部12a1が軸受面Xを構成し、他方のフォイルの第二領域12bが一方のフォイル12の背後に回り込んでアンダーフォイル部を構成する。このアンダーフォイル部12bの反回転方向側の端部は自由端であり、当該端部の位置は、アンダーフォイル部12bの弾性変形に応じて周方向(回転方向および反回転方向)に変動する。アンダーフォイル部12bの回転方向R側の端部は、前記交差部分で他のフォイル12(前記一方のフォイル)と周方向で係合した状態にある。 As shown in FIG. 8, in the state where each foil 12 is attached to the foil holder 11, two adjacent foils 12 cross each other. On the rotation direction R side with respect to the intersecting portion, the convex portion 12a2 of one foil 12 wraps behind the other foil 12 through the insertion port 12c1 of the other foil 12, and the axial groove 11b of the foil holder 11 Has been inserted. Further, the top foil portion 12 a 1 of the other foil 12 constitutes the bearing surface X. On the counter-rotation direction side of the intersecting portion, the top foil portion 12a1 of one foil 12 constitutes the bearing surface X, and the second region 12b of the other foil wraps behind the one foil 12 and covers the underfoil portion. Constitute. The end of the underfoil portion 12b on the counter-rotation direction side is a free end, and the position of the end varies in the circumferential direction (rotation direction and counter-rotation direction) according to the elastic deformation of the underfoil portion 12b. The end portion of the underfoil portion 12b on the rotation direction R side is in a state of being engaged with another foil 12 (the one foil) in the circumferential direction at the intersecting portion.
  トップフォイル部12a1とアンダーフォイル部12bが重なり合った部分で、フォイル同士が重複したフォイル重複部Wが構成される。このフォイル重複部Wは、回転方向Rの複数箇所(フォイル12と同数であり、本実施形態では三カ所)に形成される。 フ ォ A foil overlapping portion W in which the foils overlap each other at the portion where the top foil portion 12a1 and the underfoil portion 12b overlap each other. The foil overlapped portion W is formed at a plurality of locations in the rotation direction R (the same number as the foil 12 and three locations in the present embodiment).
  このフォイル軸受10では、各フォイル12の回転方向R側の一端(凸部12a2)がフォイルホルダ11に取り付けられると共に、反回転方向側の領域が他のフォイル12と周方向で係合した状態にある。これにより、隣接するフォイル12同士が周方向で互いに突っ張り合った状態となるため、各フォイル12のトップフォイル部12a1がフォイルホルダ11側に張り出し、フォイルホルダ11の内周面11aに沿った形状に湾曲する。各フォイル12の回転方向R側への移動は、各フォイル12の凸部12a2が軸方向溝11bに突き当たるために規制されるが、各フォイル12の反回転方向側への移動は規制されず、各フォイル12は、アンダーフォイル部12bの自由端も含めて反回転方向に移動可能である。 In this foil bearing 10, one end (convex portion 12 a 2) on the rotation direction R side of each foil 12 is attached to the foil holder 11, and the region on the counter-rotation direction side is engaged with another foil 12 in the circumferential direction. is there. As a result, the adjacent foils 12 are in a state of sticking to each other in the circumferential direction, so that the top foil portion 12a1 of each foil 12 projects to the foil holder 11 side, and has a shape along the inner peripheral surface 11a of the foil holder 11. Bend. The movement of each foil 12 in the rotation direction R side is restricted because the convex portion 12a2 of each foil 12 hits the axial groove 11b, but the movement of each foil 12 in the counter rotation direction side is not restricted, Each foil 12 is movable in the counter-rotating direction including the free end of the underfoil portion 12b.
 図8に示すように、軸方向溝11bがフォイルホルダ11の内周面の接線方向に対して角度θ1だけ僅かに傾斜して設けられるため、軸方向溝11に挿入された凸部12a2の近傍では、トップフォイル部12a1がフォイル12全体の湾曲方向(フォイルホルダ11の内周面11aの湾曲方向)と逆方向に湾曲しようとする。また、トップフォイル部12a1は、アンダーフォイル部12bに乗り上げることで、フォイルホルダ11の内周面11aから離反する方向に傾斜した状態で立ち上がる。従って、トップフォイル部12a1の軸受面Xと軸6の外周面の間に楔空間が形成される。また、トップフォイル部12a1は弾性変形可能なアンダーフォイル部12bに支持された状態となり、これによりトップフォイル部12a1が軸6の変位や熱膨張等に追従して変形可能となる。 As shown in FIG. 8, since the axial groove 11b is provided with a slight inclination by an angle θ1 with respect to the tangential direction of the inner peripheral surface of the foil holder 11, the vicinity of the convex portion 12a2 inserted into the axial groove 11 Then, the top foil portion 12a1 tends to bend in the direction opposite to the bending direction of the entire foil 12 (the bending direction of the inner peripheral surface 11a of the foil holder 11). Moreover, the top foil part 12a1 rises in a state inclined in a direction away from the inner peripheral surface 11a of the foil holder 11 by riding on the underfoil part 12b. Accordingly, a wedge space is formed between the bearing surface X of the top foil portion 12a1 and the outer peripheral surface of the shaft 6. The top foil portion 12a1 is supported by the elastically deformable underfoil portion 12b, so that the top foil portion 12a1 can be deformed following the displacement or thermal expansion of the shaft 6.
 軸6の一方向回転中は、楔空間に生じた空気膜が高圧となるため、軸6が浮上力を受ける。そのため、各フォイル12の軸受面Xと軸6の間に環状のラジアル軸受隙間Cが形成され、軸6がフォイル12に対して非接触の状態で回転自在に支持される。トップフォイル部12a1の弾性変形により、ラジアル軸受隙間Cの隙間幅は運転条件等に応じた適正幅に自動調整されるため、軸6の回転が安定的に支持される。なお、図3においては理解の容易化のためラジアル軸受隙間Cの隙間幅を誇張して描いている(図9も同じ)。 During the one-way rotation of the shaft 6, the air film generated in the wedge space becomes a high pressure, so that the shaft 6 receives a levitation force. Therefore, an annular radial bearing gap C is formed between the bearing surface X of each foil 12 and the shaft 6, and the shaft 6 is rotatably supported in a non-contact state with respect to the foil 12. Due to the elastic deformation of the top foil portion 12a1, the clearance width of the radial bearing clearance C is automatically adjusted to an appropriate width according to operating conditions and the like, so that the rotation of the shaft 6 is stably supported. In FIG. 3, the radial width of the radial bearing gap C is exaggerated for easy understanding (the same applies to FIG. 9).
 本実施形態では、図5に示すように、各フォイル12の第二領域12bの後端12dに切り欠き部12b2を設けている。軸6の回転中は、流体圧力により、フォイル重複部Wのトップフォイル部12a1がアンダーフォイル部12bに押さえ付けられて弾性変形するため、アンダーフォイル部12bに乗り上げたトップフォイル12a1には、軸受隙間Cの幅方向の段差が形成される。この段差は、切り欠き部12b2のヘリングボーン形状に対応した形状となる。トップフォイル部12a1に沿って流れる流体は、上記の段差に沿って流れるため(矢印を参照)、軸受隙間Cのうち、前記直交方向Nの二カ所に流体の圧力発生部が形成される。これにより、軸6の浮上効果を高めつつモーメント荷重を支持することが可能となる。本実施形態では、図4に示すように、トップフォイル部12a1に微小な切り込み12a3を形成してトップフォイル部12a1の剛性を低下させているため、トップフォイル部12a1が切り欠き部12b2に沿って変形する際にも、その変形がスムーズに行われる。 In this embodiment, as shown in FIG. 5, a notch 12b2 is provided at the rear end 12d of the second region 12b of each foil 12. While the shaft 6 is rotating, the top foil portion 12a1 of the foil overlapped portion W is pressed against the underfoil portion 12b and elastically deformed due to fluid pressure, so that the top foil 12a1 riding on the underfoil portion 12b has a bearing gap. A step in the width direction of C is formed. This level | step difference becomes a shape corresponding to the herringbone shape of the notch 12b2. Since the fluid flowing along the top foil portion 12a1 flows along the step (see the arrow), fluid pressure generating portions are formed at two locations in the orthogonal direction N in the bearing gap C. This makes it possible to support the moment load while enhancing the floating effect of the shaft 6. In the present embodiment, as shown in FIG. 4, since the notch 12a3 is formed in the top foil part 12a1 to reduce the rigidity of the top foil part 12a1, the top foil part 12a1 extends along the notch part 12b2. Even when deforming, the deformation is performed smoothly.
 [本発明の特徴的構成]
 本発明は、以上に述べた多円弧型のフォイル軸受において、図9に示すように、複数(本実施形態では二枚)のフォイル材121,122を重ねて各フォイル12を複層構造にした点を特徴的な構成とするものである。
[Characteristic configuration of the present invention]
In the multi-arc type foil bearing described above, as shown in FIG. 9, a plurality of (two in this embodiment) foil materials 121 and 122 are stacked to form each foil 12 in a multilayer structure. The point has a characteristic configuration.
  二枚のフォイル材121,122のうち、表側(軸受隙間Cと面する側)のフォイル材121の平面図を図10に示し、裏側(軸受隙間Cから離反する側)のフォイル材122の平面図を図11に示す。図10および図11に示すように、各フォイル材121,122には、図4に示すフォイル12と同様に、トップフォイル部12a1および凸部12a2を有する第一領域12aと、アンダーフォイル部としての第二領域12bと、第一領域12aと第二領域12bの境界部に位置する差込口12c1とが形成されている。 FIG. 10 shows a plan view of the foil material 121 on the front side (side facing the bearing gap C) of the two foil materials 121 and 122, and the plane of the foil material 122 on the back side (side away from the bearing gap C). The figure is shown in FIG. As shown in FIGS. 10 and 11, each foil material 121, 122 has a first region 12 a having a top foil portion 12 a 1 and a convex portion 12 a 2 and an underfoil portion as in the foil 12 shown in FIG. 4. A second region 12b and an insertion port 12c1 located at the boundary between the first region 12a and the second region 12b are formed.
  図10および図11に示す二つのフォイル材121,122では、差込口12c1および差込口12c1よりも回転方向R側の領域が同一形状に形成される。従って、差込口12c1の位置を合致させて二枚のフォイル材121,122を重ねた場合、両フォイル材121,122の第一領域12aは、一方が他方からはみだすことなく、完全に重なった状態となる。 In the two foil members 121 and 122 shown in FIGS. 10 and 11, the insertion port 12c1 and the region on the rotation direction R side of the insertion port 12c1 are formed in the same shape. Therefore, when the two foil members 121 and 122 are overlapped with the position of the insertion opening 12c1, the first regions 12a of both the foil members 121 and 122 are completely overlapped without one protruding from the other. It becomes a state.
  これに対し、二枚のフォイル材121,122のアンダーフォイル部12bは、その回転方向Rの長さを異ならせることにより、異なる形状としている。図9~図11は、その一例として、表側のフォイル材121のアンダーフォイル部12bの長さを、裏側のフォイル材122のアンダーフォイル部12bよりも短くした場合を例示している。 On the other hand, the underfoil portions 12b of the two foil members 121 and 122 have different shapes by varying the lengths in the rotation direction R. 9 to 11 illustrate, as an example, a case where the length of the underfoil portion 12b of the front foil material 121 is made shorter than that of the underfoil portion 12b of the back foil material 122.
  なお、図10および図11では、図4に示すフォイル12の形状を簡略化して表している。具体的には、第一領域12aの凸部12a2および差込口12c1は前記直交方向Nの二カ所に配置されている。また、第二領域12bの後端12dの切り欠き部12b2は省略されている。もちろん、各フォイル材121,122に、図4に示すフォイル12と同数(三つ)の凸部12a2や差込口12c1を設けてもよい。また、各フォイル材121,122の第二領域12bの後端12dに、図4に示すフォイル12と同様の切り欠き部12b2を形成してもよい。 Note that in FIGS. 10 and 11, the shape of the foil 12 shown in FIG. 4 is simplified. Specifically, the convex portion 12a2 and the insertion port 12c1 of the first region 12a are arranged at two places in the orthogonal direction N. Further, the notch 12b2 at the rear end 12d of the second region 12b is omitted. Of course, each foil material 121, 122 may be provided with the same number (three) of protrusions 12a2 and insertion ports 12c1 as the foil 12 shown in FIG. Moreover, you may form notch part 12b2 similar to the foil 12 shown in FIG. 4 in the rear end 12d of the 2nd area | region 12b of each foil material 121,122.
  このフォイル軸受10は、図5~図7に基づいて説明した手順と同様の手順で組み立てられる。その際、互いに重ねた二枚のフォイル材121,122が図5~図7に示す一枚のフォイル12として取り扱われる。すなわち、図5に示すように、フォイル12同士を連結する際には、二枚のフォイル材121,122の重なり合った差込口12c1に、二枚のフォイル材121,122からなる他のフォイル12の重なり合った凸部12a2が挿入される。また、周状に連結した3枚のフォイル12をフォイルホルダ11に取り付ける際には、各フォイル材121,122の重なり合った凸部12a2が、フォイルホルダ11の軸方向溝11bに挿入される(図9参照)。 The foil bearing 10 is assembled in the same procedure as described with reference to FIGS. At this time, the two foil members 121 and 122 stacked on each other are handled as one foil 12 shown in FIGS. That is, as shown in FIG. 5, when the foils 12 are connected to each other, another foil 12 made of the two foil members 121 and 122 is inserted into the insertion port 12 c 1 where the two foil members 121 and 122 overlap each other. The overlapping convex portions 12a2 are inserted. Further, when the three foils 12 connected in a circumferential shape are attached to the foil holder 11, the overlapping convex portions 12a2 of the foil materials 121 and 122 are inserted into the axial grooves 11b of the foil holder 11 (FIG. 9).
  以上の組み立て工程を経ることで、図9に示すように、フォイル軸受10には、フォイル材121,122の各トップフォイル部12a1を重ねた複層トップフォイル部12A1と、別フォイル12のフォイル材121,122の各アンダーフォイル部12bを重ねた複層アンダーフォイル部12Bとが形成される。複層トップフォイル部12A1の表側のトップフォイル部12a1の表面で軸受面Xが形成される。複層アンダーフォイル部12Bは、複層トップフォイル部12A1の背後(裏側)にあって、複層トップフォイル部12A1を弾性的に支持する。複層アンダーフォイル部12Bの反回転方向側の各端部は自由端を構成し、回転方向側の各端部は他のフォイル12と周方向で係合した状態にある。また、複層トップフォイル部12A1と複層アンダーフォイル部12Bとが重なることで、フォイル重複部Wが形成される。 Through the above assembly process, as shown in FIG. 9, the foil bearing 10 includes a multilayer top foil portion 12 </ b> A <b> 1 in which the top foil portions 12 a 1 of the foil materials 121 and 122 are stacked, and a foil material of the separate foil 12. A multi-layer underfoil portion 12B is formed by overlapping the underfoil portions 12b of 121 and 122. The bearing surface X is formed on the surface of the top foil portion 12a1 on the front side of the multilayer top foil portion 12A1. The multilayer underfoil portion 12B is behind (back side) the multilayer top foil portion 12A1 and elastically supports the multilayer top foil portion 12A1. The end portions on the counter-rotation direction side of the multilayer underfoil portion 12 </ b> B constitute free ends, and the end portions on the rotation direction side are engaged with other foils 12 in the circumferential direction. Moreover, the foil overlap part W is formed by the multilayer top foil part 12A1 and the multilayer underfoil part 12B overlapping.
  複層アンダーフォイル部12Bには、二つのアンダーフォイル部12bが重なった複層部E1と、二つのアンダーフォイル部12bのうち、一方のアンダーフォイル部12bのみからなる単層部E2とが形成される。複層部E1は、単層部E2よりも回転方向R側に位置する。 The multilayer underfoil portion 12B is formed with a multilayer portion E1 in which two underfoil portions 12b overlap each other and a single layer portion E2 composed of only one underfoil portion 12b out of the two underfoil portions 12b. The The multilayer part E1 is located on the rotation direction R side with respect to the single layer part E2.
  図12および図13は、以上に述べた各フォイル12をフォイルホルダ11に取り付けた時のフォイル重複部Wの断面構造を模式的に示すものである。両図のうち、図12は軸6の回転開始直後の状態を示し、図13は軸6の定常回転中の状態を示す。 FIG. 12 and FIG. 13 schematically show a cross-sectional structure of the foil overlap portion W when each of the foils 12 described above is attached to the foil holder 11. Of both figures, FIG. 12 shows a state immediately after the start of rotation of the shaft 6, and FIG. 13 shows a state during steady rotation of the shaft 6.
  図12に示すように、軸6が回転を始めると、軸受隙間Cに生じる矢印方向の空気圧Pを受けて複層トップフォイル部12A1が軸受隙間Cの幅寸法が拡大する方向(図中の下方)に弾性変形し、図13に示すように、複層トップフォイル部12A1が複層アンダーフォイル部12Bに押し付けられる。また、フォイル重複部W以外の領域では、複層トップフォイル部12A1がフォイルホルダ11の内周面11aに押し付けられる。 As shown in FIG. 12, when the shaft 6 starts to rotate, the multi-layer top foil portion 12A1 receives the air pressure P in the direction of the arrow generated in the bearing gap C and the width dimension of the bearing gap C increases (lower in the figure). ), And the multilayer top foil portion 12A1 is pressed against the multilayer underfoil portion 12B as shown in FIG. Further, in a region other than the foil overlapping portion W, the multilayer top foil portion 12A1 is pressed against the inner peripheral surface 11a of the foil holder 11.
  複層アンダーフォイル部12Bでは、二枚のフォイル材121,122で形成された複層部E1のばね剛性が、一枚のフォイル材122で形成された単層部E2のばね剛性よりも大きくなる。このばね剛性の差から、軸6の回転中は、図13に示すように、複層トップフォイル部12A1は、複層部E1との対向領域で小さく撓み(変形量小)、単層部E2との対向領域で大きく撓むようになる(変形量大)。そのため、複層トップフォイル部12A1の軸受面Xと軸6の外周面との間に形成される楔空間の楔角αを、各フォイル12を一枚のフォイル材で形成する場合(図8等参照)に比べて大きくすることができる。楔空間の楔角αが大きくなることで、各楔空間で生じる空気圧が増大するため、軸3を早期に定常回転に移行させることができ、また、定常回転中の軸6の安定性を高めることが可能となる。 In the multilayer underfoil portion 12B, the spring stiffness of the multilayer portion E1 formed by the two foil materials 121 and 122 is larger than the spring stiffness of the single layer portion E2 formed by the single foil material 122. . Due to the difference in spring rigidity, during the rotation of the shaft 6, as shown in FIG. 13, the multilayer top foil portion 12A1 bends slightly in the area facing the multilayer portion E1 (small deformation amount), and the single layer portion E2 It bends greatly in the area opposite to (large deformation amount). Therefore, when forming each foil 12 with one foil material, the wedge angle α of the wedge space formed between the bearing surface X of the multilayer top foil portion 12A1 and the outer peripheral surface of the shaft 6 (FIG. 8 and the like). Compared to the reference). As the wedge angle α of the wedge space increases, the air pressure generated in each wedge space increases, so that the shaft 3 can be shifted to steady rotation at an early stage, and the stability of the shaft 6 during steady rotation is enhanced. It becomes possible.
  加えて、フォイル重複部Wでは、複層トップフォイル部12A1が二枚分のフォイル厚さを有する複数アンダーフォイル部12Bの上に乗り上げているため、複層トップフォイル部12A1に形成される段差(軸受隙間Cの幅方向の段差)が大きくなる。この点からも楔空間の楔角αを大きくすることができ、上記の効果をより一層顕著なものとすることができる。 In addition, in the foil overlap portion W, the multi-layer top foil portion 12A1 rides on the plurality of under-foil portions 12B having the foil thickness of two sheets, so that a step formed on the multi-layer top foil portion 12A1 ( The step in the width direction of the bearing gap C) increases. Also from this point, the wedge angle α of the wedge space can be increased, and the above effect can be made more remarkable.
  なお、図12および図13では、理解の容易化のため、各フォイル材121,122の変形態様や各フォイル材121,122間に形成される隙間等を極力簡略化して描いている。そのため、実際のフォイル軸受10において、各フォイル材121,122が図12および図13に示す態様で変形するとは限らず、また、各フォイル材121,122間に図12および図13に示す態様で隙間が形成されるとは限らない。 Note that in FIG. 12 and FIG. 13, for ease of understanding, the deformation modes of the respective foil materials 121 and 122 and the gaps formed between the respective foil materials 121 and 122 are illustrated as simplified as possible. Therefore, in the actual foil bearing 10, the foil materials 121 and 122 are not necessarily deformed in the mode shown in FIGS. 12 and 13, and in the mode shown in FIGS. 12 and 13 between the foil materials 121 and 122. A gap is not always formed.
  以上の説明では、複層アンダーフォイル部12Bを構成する二つのフォイル材121,122のうち、表側のフォイル材121のアンダーフォイル部12bの長さを裏側のフォイル材122のアンダーフォイル部12bよりも短くした場合を例示したが、これとは逆に表側のアンダーフォイル部12bの長さを裏側のアンダーフォイル部12bの長さよりも長くしても、上記と同様に複層アンダーフォイル部12Bに周方向でばね剛性の差を形成することができ、上記と同等の効果を得ることができる。 In the above description, the length of the underfoil portion 12b of the foil material 121 on the front side out of the two foil materials 121 and 122 constituting the multilayer underfoil portion 12B is longer than that of the underfoil portion 12b of the foil material 122 on the back side. Although the case of shortening was illustrated, conversely, even if the length of the front side underfoil portion 12b is longer than the length of the backside underfoil portion 12b, the multilayer underfoil portion 12B is surrounded by the same manner as described above. A difference in spring rigidity can be formed in the direction, and an effect equivalent to the above can be obtained.
  図14および図15は、二枚のフォイル材121,122の各アンダーフォイル部12bの前記直交方向Nの幅寸法を異ならせることで、アンダーフォイル部12bを異なる形状に形成したものである。本実施形態では、裏側のフォイル材122のアンダーフォイル部12bの前記幅寸法L2を、表側のフォイル材121のアンダーフォイル部12bの前記幅寸法L1よりも小さくしている(L2<L1)。 FIG. 14 and FIG. 15 show that the underfoil portion 12b is formed in different shapes by making the width dimension in the orthogonal direction N of the underfoil portions 12b of the two foil members 121 and 122 different. In the present embodiment, the width dimension L2 of the underfoil portion 12b of the foil material 122 on the back side is made smaller than the width dimension L1 of the underfoil portion 12b of the foil material 121 on the front side (L2 <L1).
  かかる構成であれば、図16に示すように、フォイル重複部Wにおいて、複層アンダーフォイル部12Bの前記直交方向Nの両端が、その厚さ方向一部領域で除肉された形態となる。この場合、複層アンダーフォイル部12Bの両端のばね剛性が低下するため、複層トップフォイル部12A1の前記直交方向Nの両端が、その中央部に比べて軸6の変位等に追従して変形し易くなる。そのため、軸6がコニカルに振れ回る用途等で使用する場合のように、軸6と軸受面Xとのエッジ当たりが懸念される場合にも、そのようなエッジ当たりを防止することができる。軸6と軸受面Xとがエッジ当たりすると、接触面圧が大きくなるため、フォイル12や軸6が摩耗等し易くなるが、図16に示す構成であれば、そのような不具合を防止することができる。 If it is such a structure, as shown in FIG. 16, in the foil overlapping part W, the both ends of the orthogonal | vertical direction N of the multilayer underfoil part 12B will be the form which was thinned by the thickness direction partial area | region. In this case, since the spring stiffness at both ends of the multilayer underfoil portion 12B is reduced, both ends in the orthogonal direction N of the multilayer top foil portion 12A1 are deformed following the displacement of the shaft 6 as compared with the central portion. It becomes easy to do. Therefore, such edge contact can be prevented even when there is a concern about edge contact between the shaft 6 and the bearing surface X, such as when the shaft 6 is used in a conical manner. When the shaft 6 and the bearing surface X come into contact with the edge, the contact surface pressure increases, and thus the foil 12 and the shaft 6 are likely to be worn. However, the configuration shown in FIG. Can do.
  なお、図16では、複層アンダーフォイル部12Bのうち、裏側のフォイル材122のアンダーフォイル部12bの幅寸法を小さくする場合を例示したが、図16とは逆に表側のフォイル材121のアンダーフォイル部12bの幅寸法を裏側のアンダーフォイル部12bより小さくしても同様の効果を得ることができる。また、このように複層アンダーフォイル部12Bの両端の厚さ方向一部領域を除肉する他、複層トップフォイル部12A1の両端の厚さ方向一部領域を除肉しても同様の効果を得ることができる。例えば、複層トップフォイル部12A1のうち、裏側のフォイル材122のトップフォイル部12a1において、その幅寸法を表側のフォイル材121のトップフォイル部12a1の幅寸法よりも小さくしても上記と同様の効果を得ることができる。 FIG. 16 illustrates the case where the width dimension of the underfoil portion 12b of the back foil material 122 in the multilayer underfoil portion 12B is reduced, but the underside of the front foil material 121 is opposite to FIG. The same effect can be obtained even if the width dimension of the foil part 12b is made smaller than that of the underfoil part 12b on the back side. In addition to removing the partial thickness region at both ends of the multilayer underfoil portion 12B in this way, the same effect can be obtained by removing the partial thickness region at both ends of the multilayer top foil portion 12A1. Can be obtained. For example, in the multi-layer top foil part 12A1, the top foil part 12a1 of the foil material 122 on the back side is similar to the above even if the width dimension is smaller than the width dimension of the top foil part 12a1 of the foil material 121 on the front side. An effect can be obtained.
  また、図14および図15では、図9に示す実施形態と同様に、裏側のフォイル材122のアンダーフォイル部12bの周方向長さを、表側のフォイル材121のアンダーフォイル部12bの周方向長さよりも大きくしているが、両者の長短関係を逆にし、あるいは両者を同じ長さにしても構わない。 14 and 15, as in the embodiment shown in FIG. 9, the circumferential length of the underfoil portion 12 b of the rear foil material 122 is the circumferential length of the underfoil portion 12 b of the front foil material 121. However, it is also possible to reverse the long / short relationship between them, or to make them both the same length.
  以上に説明したように、本発明では、フォイル軸受10のアンダーフォイル部を、複数のフォイル材121,122を重ねた複層アンダーフォイル部12Bで構成している。この場合、各フォイル材121,122のばね剛性を異ならせることにより、複層アンダーフォイル部12B全体で各部のばね剛性を最適化することができる。そのため、アンダーフォイル部の設計自由度が高まり、使用条件に適合したフォイル軸受の設計が容易なものとなる。具体的には、図10、図11、図14、図15に示すように、各フォイル材121,122のアンダーフォイル部12bを異なる形状にすることで、回転方向Rや前記直交方向Nでばね剛性に差を設けることができる。この他、材質や厚さ等の異なるフォイル材121,122(形状が同一であるか異なるかは問わない)で複層アンダーフォイル部12Bを構成しても同様の効果を得ることができる。 As described above, in the present invention, the underfoil portion of the foil bearing 10 is constituted by the multilayer underfoil portion 12B in which a plurality of foil materials 121 and 122 are stacked. In this case, the spring rigidity of each part can be optimized in the multilayer underfoil part 12B as a whole by making the spring rigidity of each foil material 121, 122 different. For this reason, the degree of freedom in designing the underfoil portion is increased, and the foil bearing that is suitable for use conditions can be easily designed. Specifically, as shown in FIGS. 10, 11, 14, and 15, the under-foil portions 12 b of the foil members 121 and 122 have different shapes, so that the springs in the rotational direction R and the orthogonal direction N can be obtained. A difference in stiffness can be provided. In addition, the same effect can be obtained even if the multilayer underfoil portion 12B is configured by foil materials 121 and 122 (whether the shape is the same or different) having different materials and thicknesses.
  また、本実施形態では、フォイル軸受10のアンダーフォイル部、さらにはトップフォイル部が複数のフォイル材121,122を重ねた複層構造となっている。そのため、複層トップフォイル部12A1や複層アンダーフォイル部12Bを構成するフォイル材121,122間の微小摺動を許容することができる。これにより、軸6の振動の吸収効果が高まるため、軸6の不安定挙動を防止して、その回転を安定して支持することが可能となる。 In addition, in this embodiment, the under foil portion of the foil bearing 10 and the top foil portion have a multilayer structure in which a plurality of foil materials 121 and 122 are stacked. Therefore, the micro sliding between the foil materials 121 and 122 which comprise the multilayer top foil part 12A1 and the multilayer underfoil part 12B can be permitted. As a result, the effect of absorbing the vibration of the shaft 6 is enhanced, so that the unstable behavior of the shaft 6 can be prevented and its rotation can be stably supported.
  ところで、フォイルホルダ11に形成する軸方向溝11bは、図17に示すように内周面11aの概略接線方向に向けて形成される。この軸方向溝11bは、ワイヤカット加工等によって形成することができるが、単にワイヤを往復させるだけでは、同図に示すように、軸方向溝11bの出口部の回転方向R側の端部がエッジ11c’となる。このように軸方向溝11bの出口部にエッジ11c’が形成されると、この部分に軸6が衝突した際にエッジ11c’付近が変形し、この影響が軸受面Xに及んで軸受性能を低下させるおそれがある。かかる不具合を防止するため、図9に示すように、軸方向溝11bの出口部の回転方向R側の端部に面取り11cを設けるのが好ましい。この面取り11cは、例えばワイヤカット加工時のワイヤの復行程の終盤でワイヤの進行方向を内周面11a側に90°曲げることで形成することができる。もちろん軸方向溝11bの形成後の後加工(切削等)でエッジ11c’を落として面取り部11cを形成することもできる。 Incidentally, the axial groove 11b formed in the foil holder 11 is formed in a direction substantially tangential to the inner peripheral surface 11a as shown in FIG. The axial groove 11b can be formed by wire cutting or the like. However, when the wire is simply reciprocated, as shown in FIG. This becomes the edge 11c ′. When the edge 11c ′ is formed at the outlet of the axial groove 11b as described above, the vicinity of the edge 11c ′ is deformed when the shaft 6 collides with this portion, and this influence affects the bearing surface X, thereby improving the bearing performance. May decrease. In order to prevent such a problem, it is preferable to provide a chamfer 11c at the end of the outlet portion of the axial groove 11b on the rotation direction R side as shown in FIG. The chamfer 11c can be formed, for example, by bending the wire traveling direction 90 ° toward the inner peripheral surface 11a at the final stage of the return stroke of the wire during wire cutting. Of course, the chamfered portion 11c can be formed by dropping the edge 11c 'in post-processing (cutting or the like) after the formation of the axial groove 11b.
 以上の説明では、フォイル軸受10として、いわゆる多円弧型のラジアルフォイル軸受を例示したが、フォイル軸受の形態はこれに限られるものではなく、トップフォイル部の背後に弾性変形可能なアンダーフォイル部を配置し、かつアンダーフォイル部の周方向一端を、周方向に移動可能な自由端で構成した任意の形態のフォイル軸受に本発明を適用することができる。また、この構成を有するフォイル軸受であれば、ラジアル荷重を支持するラジアルフォイル軸受に限らず、スラスト荷重を支持するスラストフォイル軸受にも本発明を適用することができる。 In the above description, a so-called multi-arc radial foil bearing has been exemplified as the foil bearing 10. However, the form of the foil bearing is not limited to this, and an underfoil portion that can be elastically deformed behind the top foil portion. The present invention can be applied to an arbitrary form of foil bearing in which the circumferential end of the underfoil portion is configured with a free end that is movable in the circumferential direction. Moreover, if it is a foil bearing which has this structure, this invention is applicable not only to the radial foil bearing which supports a radial load but to the thrust foil bearing which supports a thrust load.
 また、以上の説明では、軸6を回転側部材とし、フォイルホルダ11を固定側部材とした場合を例示したが、これとは逆に軸6を固定側部材とし、フォイルホルダ11を回転側部材とする場合にも本発明を適用することができる。但し、この場合はフォイル12が回転側部材となるので、遠心力によるフォイル12全体の変形を考慮してフォイル12の設計を行う必要がある。 Further, in the above description, the case where the shaft 6 is the rotation side member and the foil holder 11 is the fixed side member is illustrated, but conversely, the shaft 6 is the fixed side member and the foil holder 11 is the rotation side member. In this case, the present invention can be applied. However, in this case, since the foil 12 serves as a rotation side member, it is necessary to design the foil 12 in consideration of deformation of the entire foil 12 due to centrifugal force.
 さらに、本発明にかかるフォイル軸受は、上述したガスタービンに限られず、例えば過給機のロータを支持するフォイル軸受としても使用することができる。以上の例示に限らず、本発明にかかるフォイル軸受は、自動車等の車両用軸受、さらには産業機器用の軸受として広く使用することが可能である。また、本実施形態の各フォイル軸受は、圧力発生流体として空気を使用した空気動圧軸受であるが、これに限らず、圧力発生流体としてその他のガスを使用することもでき、あるいは水や油などの液体を使用することも可能である。 Furthermore, the foil bearing according to the present invention is not limited to the gas turbine described above, and can be used as, for example, a foil bearing that supports a rotor of a supercharger. The foil bearing according to the present invention is not limited to the above examples, and can be widely used as a bearing for a vehicle such as an automobile and further as a bearing for industrial equipment. Further, each foil bearing of the present embodiment is an air dynamic pressure bearing using air as a pressure generating fluid, but is not limited thereto, and other gases can be used as the pressure generating fluid, or water or oil It is also possible to use a liquid such as
  6    軸
    10   フォイル軸受
  11   フォイルホルダ
  11a  内周面
  11b  軸方向溝(取り付け部)
  12   フォイル
  12a1 トップフォイル部
  12A1 複層トップフォイル部
  12b  アンダーフォイル部
  12B  複層アンダーフォイル部
  12d  後端
  121  フォイル材
  122  フォイル材
  C    軸受隙間
  R    回転方向
  N    回転方向と直交する方向
  X    軸受面
 
6 shaft 10 foil bearing 11 foil holder 11a inner peripheral surface 11b axial groove (mounting portion)
12 foil 12a1 top foil portion 12A1 multilayer top foil portion 12b under foil portion 12B multilayer under foil portion 12d rear end 121 foil material 122 foil material C bearing gap R rotational direction N direction orthogonal to rotational direction X bearing surface

Claims (6)

  1.   支持すべき軸との間の相対回転方向の複数箇所に配置されるフォイルを有し、各フォイルに、軸受面を備えたトップフォイル部と、トップフォイル部の背後に配置される弾性変形可能なアンダーフォイル部とが設けられ、前記アンダーフォイル部の周方向一端を、周方向に移動可能な自由端で構成したフォイル軸受において、
      前記アンダーフォイル部を、複数のフォイル材を重ねて形成したことを特徴とするフォイル軸受。
    There are foils arranged at a plurality of positions in the relative rotational direction between the shafts to be supported, and each foil has a top foil part having a bearing surface and an elastically deformable material arranged behind the top foil part. In the foil bearing which is provided with an underfoil portion, and configured with one end in the circumferential direction of the underfoil portion as a free end movable in the circumferential direction,
    A foil bearing, wherein the underfoil portion is formed by stacking a plurality of foil materials.
  2.   前記アンダーフォイル部を構成する複数のフォイル材を異なる形状にした請求項1に記載のフォイル軸受。 The foil bearing according to claim 1, wherein the plurality of foil members constituting the underfoil portion have different shapes.
  3.   前記アンダーフォイル部を構成する複数のフォイル材を、周方向で異なる長さにした請求項2記載のフォイル軸受。 The foil bearing according to claim 2, wherein the plurality of foil members constituting the underfoil portion have different lengths in the circumferential direction.
  4.   前記アンダーフォイル部を構成する複数のフォイル材を、周方向と直交する方向で異なる幅寸法にした請求項2記載のフォイル軸受。 The foil bearing according to claim 2, wherein the plurality of foil members constituting the underfoil portion have different width dimensions in a direction orthogonal to the circumferential direction.
  5.   前記アンダーフォイル部を構成する複数のフォイル材を、異なる材質もしくは厚さとした請求項1または2に記載のフォイル軸受。 The foil bearing according to claim 1 or 2, wherein the plurality of foil members constituting the underfoil portion are made of different materials or thicknesses.
  6.   前記アンダーフォイル部の周方向他端を、他のフォイルと周方向で係合させた請求項1~5何れか1項に記載のフォイル軸受。 The foil bearing according to any one of claims 1 to 5, wherein the other circumferential end of the underfoil portion is engaged with another foil in the circumferential direction.
PCT/JP2016/081706 2015-10-28 2016-10-26 Foil bearing WO2017073603A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015211916A JP6629042B2 (en) 2015-10-28 2015-10-28 Foil bearing
JP2015-211916 2015-10-28

Publications (1)

Publication Number Publication Date
WO2017073603A1 true WO2017073603A1 (en) 2017-05-04

Family

ID=58631533

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/081706 WO2017073603A1 (en) 2015-10-28 2016-10-26 Foil bearing

Country Status (2)

Country Link
JP (1) JP6629042B2 (en)
WO (1) WO2017073603A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022147351A (en) * 2021-03-23 2022-10-06 Ntn株式会社 foil bearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177542A (en) * 2004-12-21 2006-07-06 Shigeto Matsuo Spring foil bearing
JP2015052345A (en) * 2013-09-06 2015-03-19 Ntn株式会社 Foil bearing unit

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006177542A (en) * 2004-12-21 2006-07-06 Shigeto Matsuo Spring foil bearing
JP2015052345A (en) * 2013-09-06 2015-03-19 Ntn株式会社 Foil bearing unit

Also Published As

Publication number Publication date
JP6629042B2 (en) 2020-01-15
JP2017082912A (en) 2017-05-18

Similar Documents

Publication Publication Date Title
US10012109B2 (en) Foil bearing, and foil bearing unit and turbo machine each having same
EP2937584B1 (en) Foil bearing
US9689422B2 (en) Foil bearing unit
US9194422B2 (en) Foil bearing
JP5766562B2 (en) Thrust foil bearing
JP6104597B2 (en) Foil bearing
WO2017065181A1 (en) Foil bearing
JP2013053645A (en) Thrust foil bearing
JP5840423B2 (en) Foil bearing
JP6305749B2 (en) Foil bearing, foil bearing unit having the same, and turbomachine
JP2013044394A (en) Thrust foil bearing
WO2017073603A1 (en) Foil bearing
WO2017073613A1 (en) Foil bearing, production method therefor, and intermediate product of foil bearing
WO2020195488A1 (en) Thrust foil bearing, foil bearing unit, turbo machine, and foil
JP2017075680A (en) Foil bearing
JP6246574B2 (en) Foil bearing unit and turbomachine
JP6257965B2 (en) Foil bearing unit
JP6622054B2 (en) Foil bearing
WO2020179475A1 (en) Thrust foil bearing
JP6541946B2 (en) Foil bearing and foil provided thereto
JP6440999B2 (en) Foil bearing and foil provided on the same
WO2017065176A1 (en) Foil bearing
WO2018116740A1 (en) Foil bearing
JP6324774B2 (en) Foil bearing and turbomachine equipped with the same
WO2016031465A1 (en) Foil bearing and foil disposed in same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16859833

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16859833

Country of ref document: EP

Kind code of ref document: A1