JP6219489B2 - Foil bearing - Google Patents

Foil bearing Download PDF

Info

Publication number
JP6219489B2
JP6219489B2 JP2016239405A JP2016239405A JP6219489B2 JP 6219489 B2 JP6219489 B2 JP 6219489B2 JP 2016239405 A JP2016239405 A JP 2016239405A JP 2016239405 A JP2016239405 A JP 2016239405A JP 6219489 B2 JP6219489 B2 JP 6219489B2
Authority
JP
Japan
Prior art keywords
foil
bearing
outer member
shaft
peripheral surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016239405A
Other languages
Japanese (ja)
Other versions
JP2017058019A (en
Inventor
真人 吉野
真人 吉野
藤原 宏樹
宏樹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp filed Critical NTN Corp
Priority to JP2016239405A priority Critical patent/JP6219489B2/en
Publication of JP2017058019A publication Critical patent/JP2017058019A/en
Application granted granted Critical
Publication of JP6219489B2 publication Critical patent/JP6219489B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C17/00Sliding-contact bearings for exclusively rotary movement
    • F16C17/02Sliding-contact bearings for exclusively rotary movement for radial load only
    • F16C17/024Sliding-contact bearings for exclusively rotary movement for radial load only with flexible leaves to create hydrodynamic wedge, e.g. radial foil bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C43/00Assembling bearings
    • F16C43/02Assembling sliding-contact bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/23Gas turbine engines
    • F16C2360/24Turbochargers

Description

本発明はフォイル軸受に関する。   The present invention relates to a foil bearing.

ガスタービンやターボチャージャの主軸は高速で回転駆動される。また、主軸に取り付けられたタービン翼は高温に晒される。そのため、これらの主軸を支持する軸受には、高温・高速回転といった過酷な環境に耐え得ることが要求される。この種の用途の軸受として、油潤滑の転がり軸受や油動圧軸受を使用する場合もあるが、潤滑油などの液体による潤滑が困難な場合、エネルギー効率の観点から潤滑油循環系の補機を別途設けることが困難な場合、あるいは液体のせん断による抵抗が問題になる場合、等の条件下では、これらの軸受の使用は制約を受ける。そこで、そのような条件下での使用に適合する軸受として、空気動圧軸受が着目されている。   The main shaft of a gas turbine or turbocharger is driven to rotate at high speed. Moreover, the turbine blade attached to the main shaft is exposed to high temperature. Therefore, bearings that support these main shafts are required to be able to withstand severe environments such as high temperature and high speed rotation. Oil lubricated rolling bearings and hydrodynamic pressure bearings may be used as bearings for this type of application, but if lubrication with a liquid such as lubricating oil is difficult, the auxiliary equipment of the lubricating oil circulation system from the viewpoint of energy efficiency The use of these bearings is restricted under conditions such as when it is difficult to provide a separate or when resistance due to liquid shear becomes a problem. Therefore, an air dynamic pressure bearing has attracted attention as a bearing suitable for use under such conditions.

空気動圧軸受としては、回転側と固定側の双方の軸受面を剛体で構成したものが一般的である。しかしながら、この種の空気動圧軸受では、回転側と固定側の軸受面間に形成されるラジアル軸受隙間の管理が不十分であると、安定限界を超えた際にホワールと呼ばれる自励的な主軸の振れ回りを生じ易い。そのため、使用される回転速度に応じた隙間管理が重要となる。特に、ガスタービンやターボチャージャのように、温度変化の激しい環境では熱膨張の影響でラジアル軸受隙間の幅が変動するため、精度の良い隙間管理は極めて困難となる。   As an air dynamic pressure bearing, one in which both the rotating side and the fixed side bearing surfaces are made of a rigid body is generally used. However, in this type of air dynamic pressure bearing, if the radial bearing clearance formed between the rotating and stationary bearing surfaces is insufficiently managed, a self-excited so-called whirl is called when the stability limit is exceeded. It is easy for the spindle to run out. Therefore, gap management according to the rotation speed used is important. In particular, in an environment such as a gas turbine or a turbocharger where the temperature changes drastically, the radial bearing gap varies due to the effect of thermal expansion, so accurate gap management becomes extremely difficult.

ホワールが生じにくく、かつ温度変化の大きい環境下でも隙間管理を容易にできる軸受としてフォイル軸受が知られている。フォイル軸受は、曲げに対して剛性の低い可撓性を有する薄膜(フォイル)で軸受面を構成し、軸受面のたわみを許容することで荷重を支持するものである。通常は、軸受の内周面をトップフォイルと呼ばれる薄板で構成し、その外径側にバックフォイルと呼ばれるばね状の部材を配置してトップフォイルが受ける荷重をバックフォイルで弾性的に支持している。この場合、軸の回転時には、軸の外周面とトップフォイルの内周面との間に空気膜が形成され、軸が非接触支持される。   A foil bearing is known as a bearing that is less likely to cause a whirl and can easily manage a gap even in an environment with a large temperature change. In the foil bearing, a bearing surface is constituted by a thin film (foil) having low rigidity with respect to bending, and the load is supported by allowing the bearing surface to bend. Normally, the inner peripheral surface of the bearing is composed of a thin plate called a top foil, and a spring-like member called a back foil is arranged on the outer diameter side to elastically support the load received by the top foil with the back foil. Yes. In this case, when the shaft rotates, an air film is formed between the outer peripheral surface of the shaft and the inner peripheral surface of the top foil, and the shaft is supported in a non-contact manner.

フォイル軸受では、フォイルの可撓性により、軸の回転速度や荷重、周囲温度等の運転条件に応じた適切なラジアル軸受隙間が形成されるため、安定性に優れるという特徴があり、一般的な空気動圧軸受と比較して高速での使用が可能である。また、一般的な動圧軸受のラジアル軸受隙間は軸直径の1/1000のオーダーで管理する必要があり、例えば直径数mm程度の軸では数μm程度のラジアル軸受隙間を常時確保する必要がある。従って、製造時の公差、さらには温度変化が激しい場合の熱膨張まで考慮すると、厳密な隙間管理は困難である。これに対して、フォイル軸受の場合には、数十μm程度のラジアル軸受隙間に管理すれば足り、その製造や隙間管理が容易となる利点を有する。   Foil bearings are characterized by excellent stability because of the flexibility of the foil, an appropriate radial bearing gap is formed according to the operating conditions such as shaft rotation speed, load, and ambient temperature. It can be used at a higher speed than an air dynamic pressure bearing. In addition, the radial bearing clearance of a general dynamic pressure bearing needs to be managed in the order of 1/1000 of the shaft diameter. For example, a radial bearing clearance of about several μm needs to be always secured for a shaft having a diameter of about several millimeters. . Therefore, when taking into account manufacturing tolerances, and even thermal expansion when the temperature change is severe, strict gap management is difficult. On the other hand, in the case of a foil bearing, it is sufficient to manage a radial bearing gap of about several tens of μm, and there is an advantage that its manufacture and gap management become easy.

フォイル軸受としては、バックフォイルに設けた切り起こしでトップフォイルを弾性的に支持するもの(特許文献1)、素線を網状に編成した弾性体で軸受フォイルを弾性的に支持するもの(特許文献2)、および、バックフォイルに、外輪内面に接触し周方向に移動しない支持部とトップフォイルからの面圧により弾性的に撓む弾性部とを設けたもの(特許文献3)等が公知である。また、特許文献4及び5には、複数のフォイルを周方向に並べて配置し、各フォイルの周方向両端を外方部材に取り付けた、いわゆる多円弧型のフォイル軸受が示されている。   As the foil bearing, a top foil is elastically supported by a cut and raised provided in a back foil (Patent Document 1), and a bearing foil is elastically supported by an elastic body formed by meshing strands (Patent Document). 2) and those having a back foil provided with a support portion that contacts the inner surface of the outer ring and does not move in the circumferential direction and an elastic portion that is elastically bent by the surface pressure from the top foil (Patent Document 3), etc. are known. is there. Patent Documents 4 and 5 show so-called multi-arc type foil bearings in which a plurality of foils are arranged side by side in the circumferential direction, and both circumferential ends of each foil are attached to an outer member.

特開2002−364643公報JP 2002-364463 A 特開2003−262222号公報JP 2003-262222 A 特開2009−299748号公報JP 2009-299748 A 特開2009−216239号公報JP 2009-216239 A 特開2006−57828号公報JP 2006-57828 A

上記特許文献4及び5のフォイル軸受では、外方部材の内周面から内径に突出した突出部(特許文献4の偏移抑制部62、特許文献5の峰70)に各フォイルの周方向両端を突き当てることで、各フォイルの周方向両端がフォイルホルダに保持されている。   In the foil bearings of Patent Documents 4 and 5 above, both ends in the circumferential direction of each foil are provided on the projecting parts (the shift restraining part 62 of Patent Document 4 and the peak 70 of Patent Document 5) projecting from the inner peripheral surface of the outer member to the inner diameter. The both ends of each foil in the circumferential direction are held by the foil holder.

本発明は、多円弧型のフォイル軸受による軸の振動減衰効果を高めることを目的とする。   An object of the present invention is to enhance the vibration damping effect of a shaft by a multi-arc type foil bearing.

上記目的を達成するため、本発明は、外方部材と、前記外方部材の内周面に取り付けられた複数のフォイルとを備えたフォイル軸受であって、各フォイルが、周方向一方の端部に設けられ、前記外方部材に接触した状態で保持される一方の保持部と、周方向他方の端部に設けられ、前記外方部材に接触した状態で保持される他方の保持部と、両保持部の周方向間に設けられ、軸受面を有する本体部とからなり、各フォイルの前記一方の保持部が、前記外方部材の内周面に形成された一方の固定溝に隙間を有した状態で挿入され、各フォイルの前記本体部と前記一方の保持部との接続部が折れ曲がることなく滑らかに連続し、各フォイルの前記一方の保持部が、外径に向けて周方向一方に傾斜した状態で前記一方の固定溝に挿入されたものである。 In order to achieve the above object, the present invention provides a foil bearing including an outer member and a plurality of foils attached to the inner peripheral surface of the outer member, wherein each foil has one end in the circumferential direction. One holding portion that is provided in the portion and held in contact with the outer member, and the other holding portion that is provided in the other end portion in the circumferential direction and held in contact with the outer member; A body portion having a bearing surface, which is provided between the two holding portions in the circumferential direction, and the one holding portion of each foil has a gap in one fixing groove formed on the inner peripheral surface of the outer member. The connection portion between the main body portion and the one holding portion of each foil is smoothly continuous without bending, and the one holding portion of each foil is circumferentially directed toward the outer diameter. Monodea in a state where the other hand is inclined is inserted into the one fixing groove .

以上のように、本発明のフォイル軸受によれば、フォイルの保持部と固定溝とを摺動させることで、フォイルの摺動による軸の振動減衰効果を高めることができる。   As described above, according to the foil bearing of the present invention, the vibration damping effect of the shaft due to the sliding of the foil can be enhanced by sliding the foil holding portion and the fixing groove.

ガスタービンの構成を概念的に示す図である。It is a figure which shows notionally the structure of a gas turbine. 上記ガスタービンにおけるロータの支持構造を示す断面図である。It is sectional drawing which shows the support structure of the rotor in the said gas turbine. 本発明の一実施形態にかかるフォイル軸受を軸方向から見た正面図である。It is the front view which looked at the foil bearing concerning one Embodiment of this invention from the axial direction. (a)は、上記フォイル軸受で使用されるフォイルの斜視図であり、(b)は同フォイルを複数組み合せた状態を示す斜視図である。(A) is a perspective view of the foil used with the said foil bearing, (b) is a perspective view which shows the state which combined multiple foils. 上記フォイル軸受の拡大断面図である。It is an expanded sectional view of the foil bearing. 上記フォイル軸受を、周方向を直線方向に変換して示す展開図である。It is an expanded view which converts the circumferential direction into the linear direction, and shows the said foil bearing. 軸とフォイルとが接触した状態を示す図であり、(a)はフォイルと外方部材との摺動面の摩擦係数を大きくした場合、(b)は同摩擦係数を小さくした場合を示す。It is a figure which shows the state which the axis | shaft and foil contacted, (a) shows the case where the friction coefficient of the sliding surface of foil and an outer member is enlarged, (b) shows the case where the same friction coefficient is made small. 他の実施形態に係るフォイル軸受の拡大断面図である。It is an expanded sectional view of the foil bearing which concerns on other embodiment. 図8のフォイル軸受を、周方向を直線方向に変換して示す展開図である。FIG. 9 is a development view showing the foil bearing of FIG. 8 by converting the circumferential direction into a linear direction. (a)は、他の実施形態に係るフォイル軸受で使用されるフォイルの斜視図であり、(b)は同フォイルを複数組み合せた状態を示す斜視図である。(A) is a perspective view of the foil used with the foil bearing which concerns on other embodiment, (b) is a perspective view which shows the state which combined multiple foils. 他の実施形態に係るフォイル軸受の拡大断面図である。It is an expanded sectional view of the foil bearing which concerns on other embodiment. 図11に示すフォイル軸受を、周方向を直線方向に変換して示す展開図である。FIG. 12 is a development view showing the foil bearing shown in FIG. 11 by converting the circumferential direction into a linear direction. (a)は、他の実施形態に係るフォイル軸受で使用されるフォイルの斜視図であり、(b)は同フォイルを複数組み合せた状態を示す斜視図である。(A) is a perspective view of the foil used with the foil bearing which concerns on other embodiment, (b) is a perspective view which shows the state which combined multiple foils. 過給機の構成を概念的に示す側面図である。It is a side view which shows notionally the structure of a supercharger.

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に、ガスタービンと呼ばれるガスタービン装置の構成を概念的に示す。このガスタービンは、翼列を形成したタービン1および圧縮機2と、発電機3と、燃焼器4と、再生器5とを主に備える。タービン1、圧縮機2、および発電機3には、水平方向に延びる共通の軸6が設けられ、この軸6と、タービン1および圧縮機2とで一体回転可能のロータが構成される。吸気口7から吸入された空気は、圧縮機2で圧縮され、再生器5で加熱された上で燃焼器4に送り込まれる。この圧縮空気に燃料を混合して燃焼させ、高温、高圧のガスでタービン1を回転させる。タービン1の回転力が軸6を介して発電機3に伝達され、発電機3が回転することにより発電し、この電力がインバータ8を介して出力される。タービン1を回転させた後のガスは比較的高温であるため、このガスを再生器5に送り込んで燃焼前の圧縮空気との間で熱交換を行うことで、燃焼後のガスの熱を再利用する。再生器5で熱交換を終えたガスは、排熱回収装置9を通ってから排ガスとして排出される。   FIG. 1 conceptually shows the configuration of a gas turbine device called a gas turbine. This gas turbine mainly includes a turbine 1 and a compressor 2 that form blade cascades, a generator 3, a combustor 4, and a regenerator 5. The turbine 1, the compressor 2, and the generator 3 are provided with a common shaft 6 that extends in the horizontal direction, and the shaft 6, the turbine 1, and the compressor 2 constitute a rotor that can rotate integrally. Air sucked from the intake port 7 is compressed by the compressor 2, heated by the regenerator 5, and then sent to the combustor 4. Fuel is mixed with this compressed air and burned, and the turbine 1 is rotated by high-temperature and high-pressure gas. The rotational force of the turbine 1 is transmitted to the generator 3 via the shaft 6, and the generator 3 rotates to generate electric power, and this electric power is output via the inverter 8. Since the gas after rotating the turbine 1 is at a relatively high temperature, the heat of the gas after combustion is regenerated by sending this gas to the regenerator 5 and exchanging heat with the compressed air before combustion. Use. The gas that has been subjected to heat exchange in the regenerator 5 is discharged as exhaust gas after passing through the exhaust heat recovery device 9.

図2に、上記ガスタービンにおけるロータの支持構造の一例を示す。この支持構造では、軸方向の2箇所にラジアル軸受10が配置され、軸6のフランジ部6bの軸方向両側にスラスト軸受20、20が配置される。このラジアル軸受10およびスラスト軸受20により、軸6がラジアル方向及び両スラスト方向に回転自在に支持されている。   FIG. 2 shows an example of a support structure for the rotor in the gas turbine. In this support structure, radial bearings 10 are disposed at two axial positions, and thrust bearings 20 and 20 are disposed on both axial sides of the flange portion 6 b of the shaft 6. The shaft 6 is supported by the radial bearing 10 and the thrust bearing 20 so as to be rotatable in the radial direction and in both thrust directions.

この支持構造において、タービン1と圧縮機2の間の領域は、高温、高圧のガスで回転されるタービン1に隣接しているために高温雰囲気となる。この高温雰囲気では、潤滑油やグリース等からなる潤滑剤が変質・蒸発してしまうため、これらの潤滑剤を使用する通常の軸受(転がり軸受等)を適用することは難しい。そのため、この種の支持構造で使用される軸受10、20としては、空気動圧軸受、特にフォイル軸受が適合する。   In this support structure, the region between the turbine 1 and the compressor 2 is adjacent to the turbine 1 that is rotated by high-temperature, high-pressure gas, and therefore has a high-temperature atmosphere. In this high temperature atmosphere, the lubricant composed of lubricating oil, grease and the like is altered and evaporated, so it is difficult to apply a normal bearing (such as a rolling bearing) using these lubricants. Therefore, as the bearings 10 and 20 used in this type of support structure, an air dynamic pressure bearing, particularly a foil bearing is suitable.

以下、上記ガスタービン用のラジアル軸受に適合するフォイル軸受10の構成を図面に基づいて説明する。   Hereinafter, the structure of the foil bearing 10 suitable for the radial bearing for the gas turbine will be described with reference to the drawings.

このフォイル軸受10は、図3に示すように、ハウジング(図示省略)の内周に固定され、内周に軸6が挿入される外方部材11と、外方部材11の内周面11aに取り付けられた複数のフォイル13とで構成される。このフォイル軸受10は、外方部材11の内周面11aが円筒面状をなし、この内周面11aに3枚のフォイル13が周方向に並べて配された、いわゆる多円弧型のフォイル軸受である。外方部材11の内周面11aとフォイル13との間には、フォイル13に弾性を付与するための部材(例えばバックフォイル)は設けられておらず、フォイル13の外径面13c1と外方部材11の内周面11aとが半径方向で直接対向している。   As shown in FIG. 3, the foil bearing 10 is fixed to an inner periphery of a housing (not shown), and an outer member 11 into which the shaft 6 is inserted and an inner peripheral surface 11 a of the outer member 11. It consists of a plurality of attached foils 13. The foil bearing 10 is a so-called multi-arc type foil bearing in which the inner peripheral surface 11a of the outer member 11 has a cylindrical surface shape, and three foils 13 are arranged in the circumferential direction on the inner peripheral surface 11a. is there. A member (for example, a back foil) for imparting elasticity to the foil 13 is not provided between the inner peripheral surface 11 a of the outer member 11 and the foil 13, and the outer diameter surface 13 c 1 of the foil 13 and the outer side are not provided. The inner peripheral surface 11a of the member 11 is directly opposed in the radial direction.

各フォイル13は、周方向両端に設けられた保持部13a、13bと、両保持部13a、13bの周方向間に設けられた本体部13cとからなる。各フォイル13は、保持部13a、13b、および本体部13cを含めて一枚のフォイルからプレス加工等により一体に形成される。保持部13a、13bは、外方部材11に接触した状態で保持されている。隣接するフォイル10の保持部13a、13bは、軸方向視(図3参照)で互いに交差して設けられ、各フォイル10の保持部13a、13bは、隣接するフォイル10の本体部13cの外径側に配される。図示例では、保持部13a、13bが、外方部材11の内周面11aに設けられた固定溝11b、11cに差し込まれている。固定溝11b、11cは、例えばワイヤカット加工により形成され、外方部材11の軸方向全長に亘って形成される。保持部13a、13bの少なくとも一方は固定溝11b、11cに完全に固定されておらず、摺動可能な状態で保持される。固定溝11bは外径に向けて周方向一方(軸6の回転方向先行側、図3の矢印参照)に傾斜し、固定溝11cは外径に向けて周方向他方に傾斜している。固定溝11b、11cは同じ周方向位置に開口している。フォイル13の本体部13cは、矩形状の平板を略円弧状に湾曲させてなり、内径面13c2に軸受面Aを有する。   Each foil 13 includes a holding portion 13a, 13b provided at both ends in the circumferential direction and a main body portion 13c provided between the holding portions 13a, 13b in the circumferential direction. Each foil 13 including the holding portions 13a and 13b and the main body portion 13c is integrally formed from a single foil by pressing or the like. The holding portions 13 a and 13 b are held in contact with the outer member 11. The holding portions 13a and 13b of the adjacent foils 10 are provided so as to intersect each other when viewed in the axial direction (see FIG. 3), and the holding portions 13a and 13b of the respective foils 10 are the outer diameters of the main body portions 13c of the adjacent foils 10. Arranged on the side. In the illustrated example, the holding portions 13 a and 13 b are inserted into the fixing grooves 11 b and 11 c provided on the inner peripheral surface 11 a of the outer member 11. The fixing grooves 11b and 11c are formed by wire cutting, for example, and are formed over the entire axial length of the outer member 11. At least one of the holding portions 13a and 13b is not completely fixed to the fixing grooves 11b and 11c, and is held in a slidable state. The fixed groove 11b is inclined in one circumferential direction toward the outer diameter (see the arrow in FIG. 3), and the fixed groove 11c is inclined in the other circumferential direction toward the outer diameter. The fixing grooves 11b and 11c are opened at the same circumferential position. The body 13c of the foil 13 is formed by bending a rectangular flat plate into a substantially arc shape, and has a bearing surface A on the inner diameter surface 13c2.

図4(a)に示すように、各フォイル13の周方向一方の保持部13aは、本体部13cの軸方向一部領域(図示例では軸方向中央部)を周方向一方に延在させた凸部で構成される。一方、各フォイル13の周方向他方の保持部13bは、本体部13cの軸方向一部を周方向他方に延在させた凸部で構成される。周方向他方の保持部13bは、軸方向に離隔して設けられた複数(図示例では2つ)の凸部で構成され、これらの軸方向間に凹部13b1が設けられる。フォイル13の一端に設けられた保持部13aを、隣接するフォイルの他端に設けられた保持部13b間の凹部13b1に挿入することにより、保持部13a、13bが軸方向視で交差する(図4(b)参照)。   As shown in FIG. 4 (a), one holding portion 13a in the circumferential direction of each foil 13 extends a partial region in the axial direction of the main body portion 13c (in the illustrated example, the central portion in the axial direction) to one circumferential direction. Consists of convex parts. On the other hand, the other holding portion 13b in the circumferential direction of each foil 13 is formed by a convex portion in which a part in the axial direction of the main body portion 13c extends in the other circumferential direction. The other holding portion 13b in the circumferential direction is composed of a plurality of (two in the illustrated example) convex portions that are spaced apart in the axial direction, and a concave portion 13b1 is provided between these axial directions. By inserting the holding portion 13a provided at one end of the foil 13 into the recess 13b1 between the holding portions 13b provided at the other end of the adjacent foil, the holding portions 13a and 13b intersect in the axial direction (see FIG. 4 (b)).

図4(b)に示すように、フォイル13の一方の保持部13aを、これに隣接するフォイル13の他方の保持部13bの軸方向間に設けられた凹部13b1挿入して、複数(図示例では3枚)のフォイル10を一体化した状態で、保持部13a、13bを固定溝11b、11cにそれぞれ差し込むことにより、複数のフォイル13が外方部材11の内周面11aに取り付けられる。このように、隣接するフォイル13の保持部13a、13bを交差させ、フォイル13の外径側(裏側)で固定溝11b、11cに差し込むことで、外方部材11の内周面11aの全周をフォイル13の本体部13cで覆うことができるため、軸受面の面積を最大限確保することができる。また、フォイル13の周方向端部(保持部13a、13b)が軸6との摺動面に露出しないため、フォイル13の周方向端部が内径側にめくれる事態を確実に防止できる。   As shown in FIG. 4 (b), one holding portion 13a of the foil 13 is inserted into the recess 13b1 provided between the axial directions of the other holding portion 13b of the foil 13 adjacent thereto, and a plurality of (illustrated examples) are inserted. The three foils 13 are attached to the inner peripheral surface 11a of the outer member 11 by inserting the holding portions 13a and 13b into the fixing grooves 11b and 11c, respectively, in a state where the three foils 10 are integrated. In this way, by holding the holding portions 13a and 13b of the adjacent foils 13 and inserting them into the fixing grooves 11b and 11c on the outer diameter side (back side) of the foil 13, the entire circumference of the inner peripheral surface 11a of the outer member 11 is obtained. Can be covered with the main body 13c of the foil 13, the area of the bearing surface can be ensured to the maximum. Further, since the circumferential end portions (holding portions 13a and 13b) of the foil 13 are not exposed on the sliding surface with the shaft 6, it is possible to reliably prevent the circumferential end portion of the foil 13 from turning to the inner diameter side.

図5に示すように、各フォイル13の本体部13cの周方向両端(保持部13a、13bとの境界部)は、外方部材11の内周面11aに沿って延びているのではなく、内周面11aに対して各本体部13cの周方向中央に向けて内径側に立ち上がっている。図示例では、本体部13cの周方向両端と各保持部13a、13bとの境界部が折れ曲がることなく滑らかに連続し、本体部13cの周方向端部が内径に向けて凸となるように湾曲している。これにより、各フォイル13の本体部13cの周方向両端において、各フォイル13の外径面13c1と外方部材11の内周面11aとの間には半径方向の隙間δが形成される。各フォイル13は、この半径方向隙間δを小さくする方向に弾性変形可能とされる。すなわち、軸6が回転して軸6の外周面6aとフォイル13の軸受面Aとの間のラジアル軸受隙間Rの圧力が高まり、フォイル13が外径側に押し込まれて半径方向隙間δが小さくなったときに、フォイル13の変形が弾性範囲内で留まる(塑性変形しない)ように設計される。このように、フォイル13の本体部13cの端部近傍が弾性変形することにより、フォイル13に内径向きの弾性力が付与される。フォイル13に付与される弾性力は、保持部13a、13bの軸方向寸法や数、配置箇所、あるいは後述する本体部13cの両端の立ち上がり角度θ1、θ2により調整することができる。   As shown in FIG. 5, both ends in the circumferential direction of the body portion 13c of each foil 13 (boundary portions with the holding portions 13a and 13b) do not extend along the inner peripheral surface 11a of the outer member 11, With respect to the inner peripheral surface 11a, the main body portion 13c rises toward the inner diameter side toward the center in the circumferential direction. In the illustrated example, the boundary between the circumferential ends of the main body portion 13c and the holding portions 13a and 13b is smoothly continuous without being bent, and the circumferential end portion of the main body portion 13c is curved so as to protrude toward the inner diameter. doing. As a result, a radial gap δ is formed between the outer diameter surface 13c1 of each foil 13 and the inner peripheral surface 11a of the outer member 11 at both circumferential ends of the main body 13c of each foil 13. Each foil 13 can be elastically deformed in a direction to reduce the radial gap δ. That is, the shaft 6 rotates to increase the pressure in the radial bearing gap R between the outer peripheral surface 6a of the shaft 6 and the bearing surface A of the foil 13, and the foil 13 is pushed toward the outer diameter side, so that the radial gap δ is reduced. When it becomes, it is designed so that the deformation of the foil 13 remains within the elastic range (not plastically deformed). Thus, the elastic force in the inner diameter direction is applied to the foil 13 by elastically deforming the vicinity of the end of the main body 13c of the foil 13. The elastic force applied to the foil 13 can be adjusted by the axial dimensions and number of the holding portions 13a and 13b, the arrangement location, or rising angles θ1 and θ2 at both ends of the main body portion 13c described later.

本実施形態では、外方部材11の内周面11aに対する各フォイル13の本体部13cの両端の立ち上がり角度が異なっている。本体部13cの端部の立ち上がり角度とは、本体部13cの端部における接線と、外方部材11の内周面11aのうち、フォイル13と交差する点(すなわち固定溝11bの開口部)における接線との間の角度を言う。本実施形態では、図5に示すように、本体部13cの一端(保持部13a側)における立ち上がり角度θ1が、他端(保持部13b側)における立ち上がり角度θ2よりも大きくなっている。このように、本体部13cの両端の立ち上がり角度がθ1>θ2となっていることで、図6の展開図に示すように、各フォイル13のピーク位置(最も内径側に迫り出す位置)Pが、各フォイル13の本体部13cの周方向中央部Oよりも一端側(保持部13a側)に設けられる。軸6が周方向一方側に回転すると(図6の矢印参照)、軸6の外周面6aとフォイル13の軸受面Aとの間に、回転方向先行側へ向けて徐々に狭くなったラジアル軸受隙間Rが形成される。このとき、上記のように、各フォイル13のピーク位置Pが一端側に偏在することで、正圧を発生させる軸受面Aがピーク位置Pの他端側の広い領域に形成されるため、ラジアル軸受隙間Rの周方向領域を大きく取ることができ、ラジアル方向の支持力が高められる。尚、本実施形態では、フォイル13の保持部13a、13bと本体部13cとの接続部が滑らかに連続しているため、本体部13cの立ち上がり角度θ1、θ2は固定溝11b、11cの傾斜角度とほぼ一致する。   In the present embodiment, the rising angles of both ends of the main body 13c of each foil 13 with respect to the inner peripheral surface 11a of the outer member 11 are different. The rising angle of the end portion of the main body portion 13c is a tangent at the end portion of the main body portion 13c and a point that intersects the foil 13 (that is, the opening portion of the fixing groove 11b) on the inner peripheral surface 11a of the outer member 11. Says the angle between tangents. In the present embodiment, as shown in FIG. 5, the rising angle θ1 at one end (the holding portion 13a side) of the main body 13c is larger than the rising angle θ2 at the other end (the holding portion 13b side). As described above, since the rising angles at both ends of the main body 13c are θ1> θ2, as shown in the development view of FIG. The main body 13c of each foil 13 is provided on one end side (the holding portion 13a side) with respect to the central portion O in the circumferential direction. When the shaft 6 rotates to one side in the circumferential direction (see the arrow in FIG. 6), the radial bearing gradually narrows toward the leading side in the rotational direction between the outer peripheral surface 6a of the shaft 6 and the bearing surface A of the foil 13. A gap R is formed. At this time, as described above, since the peak position P of each foil 13 is unevenly distributed on one end side, the bearing surface A that generates positive pressure is formed in a wide region on the other end side of the peak position P. The circumferential region of the bearing gap R can be made large, and the supporting force in the radial direction can be increased. In the present embodiment, since the connecting portions between the holding portions 13a and 13b of the foil 13 and the main body portion 13c are smoothly continuous, the rising angles θ1 and θ2 of the main body portion 13c are the inclination angles of the fixing grooves 11b and 11c. Almost matches.

フォイル13の本体部13cの立ち上がり角度θ1、θ2が大きすぎると、フォイル13が内径側に大きく迫り出してしまうため、軸6との干渉により折れ曲がる恐れが高くなる。従って、立ち上がり角度θ1、θ2は、30°以下、好ましくは20°以下に設定することが望ましい。   If the rising angles θ1 and θ2 of the main body portion 13c of the foil 13 are too large, the foil 13 is greatly pushed out toward the inner diameter side, so that the possibility of bending due to interference with the shaft 6 increases. Therefore, it is desirable to set the rising angles θ1 and θ2 to 30 ° or less, preferably 20 ° or less.

フォイル13は、ばね性に富み、かつ加工性のよい金属、例えば鋼材料や銅合金からなる厚さ20μm〜200μm程度の帯状フォイルで形成される。本実施形態のように流体膜として空気を用いる空気動圧軸受では、雰囲気に潤滑油が存在しないため、油による防錆効果は期待できない。鋼材料や銅合金の代表例として、炭素鋼や黄銅を挙げることができるが、一般的な炭素鋼では錆による腐食が発生し易く、黄銅では加工ひずみによる置き割れを生じることがある(黄銅中のZnの含有量が多いほどこの傾向が強まる)。そのため、帯状フォイルとしては、ステンレス鋼もしくは青銅製のものを使用するのが好ましい。   The foil 13 is formed of a strip-like foil having a thickness of about 20 μm to 200 μm made of a metal having a high spring property and good workability, such as a steel material or a copper alloy. In an air dynamic pressure bearing using air as a fluid film as in the present embodiment, since no lubricating oil exists in the atmosphere, the antirust effect by the oil cannot be expected. Typical examples of steel materials and copper alloys include carbon steel and brass, but general carbon steel is susceptible to corrosion due to rust, and brass may cause cracks due to processing strain (in brass) This tendency increases as the Zn content increases.) Therefore, it is preferable to use a stainless steel or bronze foil as the belt-like foil.

以上の構成において、周方向一方(図3の矢印方向)、すなわち楔状のラジアル軸受隙間Rの縮小方向に軸6を回転させると、各フォイル13の軸受面Aと軸6の外周面6aとの間に空気膜が形成される。この空気膜の圧力が高まると、フォイル13の本体部13cの端部が外径側に押し込まれ、半径方向隙間δが小さくなる方向に弾性変形する。こうして本体部13cが外径側に押し込まれたとき、本体部13cと保持部13a、13bとの境界部にはモーメント力が加わる。このとき、保持部13a、13bが固定溝11b、11cに差し込まれているため、保持部13a、13bの両面が固定溝11b、11cの内壁で保持される。これにより、保持部13a、13bの角度が変わらないため、これと連続した本体部13cの周方向端部の立ち上がり角度が維持され、本体部13cの端部を湾曲させることで効率的に弾性力を発揮することが可能となる。   In the above configuration, when the shaft 6 is rotated in one circumferential direction (the direction of the arrow in FIG. 3), that is, in the reduction direction of the wedge-shaped radial bearing gap R, the bearing surface A of each foil 13 and the outer peripheral surface 6a of the shaft 6 An air film is formed between them. When the pressure of the air film increases, the end portion of the main body portion 13c of the foil 13 is pushed into the outer diameter side, and elastically deforms in the direction in which the radial gap δ decreases. When the main body portion 13c is pushed into the outer diameter side in this way, moment force is applied to the boundary portion between the main body portion 13c and the holding portions 13a and 13b. At this time, since the holding portions 13a and 13b are inserted into the fixing grooves 11b and 11c, both surfaces of the holding portions 13a and 13b are held by the inner walls of the fixing grooves 11b and 11c. Thereby, since the angle of the holding portions 13a and 13b does not change, the rising angle of the circumferential end portion of the main body portion 13c that is continuous with the holding portion 13a is maintained, and the elastic force is efficiently generated by curving the end portion of the main body portion 13c. Can be achieved.

そして、軸6の周囲の周方向複数個所(図示例では3箇所)に楔状のラジアル軸受隙間Rが形成され、軸6がフォイル13に対して非接触の状態でラジアル方向に回転自在に支持される。このとき、フォイル13の弾性力と、ラジアル軸受隙間Rに形成される空気膜の圧力とが釣り合う位置で、フォイル13の形状が保持される。なお、実際のラジアル軸受隙間Rの幅は数十μm程度の微小なものであるが、図3や図6ではその幅を誇張して描いている。また、フォイル13が有する可撓性により、各フォイル13の軸受面Aが荷重や軸6の回転速度、周囲温度等の運転条件に応じて任意に変形するため、ラジアル軸受隙間Rは運転条件に応じた適切幅に自動調整される。そのため、高温・高速回転といった過酷な条件下でも、ラジアル軸受隙間Rを最適幅に管理することができ、軸6を安定して支持することが可能となる。   A wedge-shaped radial bearing gap R is formed at a plurality of circumferential locations around the shaft 6 (three locations in the illustrated example), and the shaft 6 is supported so as to be rotatable in the radial direction in a non-contact state with respect to the foil 13. The At this time, the shape of the foil 13 is maintained at a position where the elastic force of the foil 13 and the pressure of the air film formed in the radial bearing gap R are balanced. Note that the actual radial bearing gap R has a very small width of about several tens of μm, but the width is exaggerated in FIGS. Further, due to the flexibility of the foil 13, the bearing surface A of each foil 13 is arbitrarily deformed depending on the operating conditions such as the load, the rotational speed of the shaft 6, the ambient temperature, etc. It is automatically adjusted to the appropriate width. Therefore, the radial bearing gap R can be managed to the optimum width even under severe conditions such as high temperature and high speed rotation, and the shaft 6 can be stably supported.

フォイル軸受10では、軸6の停止直前や起動直後の低速回転時に、各フォイル13の軸受面Aや軸6の外周面6aに表面粗さ以上の厚さの空気膜を形成することが困難となる。そのため、各フォイル13の軸受面Aと軸6の外周面6aとの間で金属接触を生じ、トルクの増大を招く。この時の摩擦力を減じてトルク低減を図るため、各フォイル13の軸受面A(内径面13c2)と、これと摺動する部材の表面(本実施形態では軸6の外周面6a)との何れか一方または双方に、表面を低摩擦化する被膜(第一被膜)を形成するのが望ましい。この被膜としては、例えばDLC膜、チタンアルミナイトライド膜、あるいは二硫化モリブデン膜を使用することができる。DLC膜、チタンやアルミナイトライド膜はCVDやPVDで形成することができ、二硫化モリブデン膜はスプレーで簡単に形成することができる。特にDLC膜やチタンアルミナイトライド膜は硬質であるので、これらで被膜を形成することにより、軸受面Aの耐摩耗性をも向上させることができ、軸受寿命を増大させることができる。   In the foil bearing 10, it is difficult to form an air film having a thickness equal to or greater than the surface roughness on the bearing surface A of each foil 13 and the outer peripheral surface 6 a of the shaft 6 at the time of low-speed rotation immediately before the shaft 6 is stopped or immediately after starting. Become. Therefore, a metal contact is produced between the bearing surface A of each foil 13 and the outer peripheral surface 6a of the shaft 6, thereby causing an increase in torque. In order to reduce the torque by reducing the frictional force at this time, the bearing surface A (inner diameter surface 13c2) of each foil 13 and the surface of the sliding member (in this embodiment, the outer peripheral surface 6a of the shaft 6). It is desirable to form a coating (first coating) that reduces the surface friction on either or both. As this coating, for example, a DLC film, a titanium aluminum nitride film, or a molybdenum disulfide film can be used. The DLC film, titanium or aluminum nitride film can be formed by CVD or PVD, and the molybdenum disulfide film can be easily formed by spraying. In particular, since the DLC film and the titanium aluminum nitride film are hard, by forming a film with them, the wear resistance of the bearing surface A can be improved, and the bearing life can be increased.

また、軸受の運転中は、ラジアル軸受隙間に形成された空気膜の影響でフォイル13が全体的に拡径して外方部材11の内周面11aに押し付けられ、これに伴ってフォイル13の外径面13c1と外方部材11の内周面11aとの間、及び、フォイル13の保持部13a、13bと固定溝11b、11cとの間で周方向の微小摺動が生じる。従って、フォイル13の外径面13c1と、これに接触する外方部材11の内周面11aとの何れか一方または双方、あるいは、フォイル13の保持部13a、13bと、これに接触する固定溝11b、11cとの何れか一方または双方に被膜(第二被膜)を形成することにより、これらの摺動部での耐摩耗性の向上を図ることができる。尚、上記のフォイル軸受10では、フォイル13の本体部13cの周方向両端が外方部材11の内周面11aに対して内径側に立ち上がっているため、本体部13cの外径面13c1と外方部材11の内周面11aとの接触は僅かである。従って、上記の第二被膜は、フォイル13の保持部13a、13bとこれに接触する固定溝11b、11cに設けることが効果的である。   Further, during the operation of the bearing, the foil 13 is expanded in diameter under the influence of an air film formed in the radial bearing gap and is pressed against the inner peripheral surface 11a of the outer member 11, and accordingly, the foil 13 Minute sliding in the circumferential direction occurs between the outer diameter surface 13c1 and the inner peripheral surface 11a of the outer member 11, and between the holding portions 13a and 13b of the foil 13 and the fixing grooves 11b and 11c. Accordingly, one or both of the outer diameter surface 13c1 of the foil 13 and the inner peripheral surface 11a of the outer member 11 that contacts the outer diameter surface 13c1, or the holding portions 13a and 13b of the foil 13 and the fixing groove that contacts the outer surface 11c. By forming a coating (second coating) on one or both of 11b and 11c, it is possible to improve the wear resistance at these sliding portions. In the foil bearing 10 described above, since both ends in the circumferential direction of the main body portion 13c of the foil 13 are raised on the inner diameter side with respect to the inner peripheral surface 11a of the outer member 11, the outer peripheral surface 13c1 of the main body portion 13c and the outer The contact with the inner peripheral surface 11a of the side member 11 is slight. Therefore, it is effective to provide the second coating in the holding portions 13a and 13b of the foil 13 and the fixing grooves 11b and 11c in contact therewith.

また、フォイル13と外方部材11との摺動面の摩擦係数を制御することにより、軸受特性を調整することが可能となる。例えば、フォイル13と外方部材11の摺動面の少なくとも一方(例えば、フォイル13の保持部13a、13bの表面)の摩擦係数を大きくすると、外方部材11(例えば、固定溝11b、11cの内面)との摺動による摩擦エネルギーが増大するため、軸6の回転による振動の減衰作用を向上させることができる。この場合、第二被膜としては、二流化モリブデン膜よりも摩擦係数は大きいが耐摩耗性に優れるDLC膜やチタンアルミナイトライド膜を使用するのが好ましい。例えば軸受面Aに形成する第一被膜として二流化モリブデン膜を使用する一方で、フォイル13と外方部材11の摺動部に形成する第二被膜としてチタンアルミナイトライドやDLC膜等を使用し、両被膜の摩擦係数を異ならせることで、低トルク化と振動の減衰性の向上とを両立することが可能となる。   Further, the bearing characteristics can be adjusted by controlling the friction coefficient of the sliding surface between the foil 13 and the outer member 11. For example, when the friction coefficient of at least one of the sliding surfaces of the foil 13 and the outer member 11 (for example, the surfaces of the holding portions 13a and 13b of the foil 13) is increased, the outer member 11 (for example, the fixing grooves 11b and 11c) Since frictional energy due to sliding with the inner surface increases, the vibration damping effect due to rotation of the shaft 6 can be improved. In this case, as the second coating, it is preferable to use a DLC film or a titanium aluminum nitride film that has a friction coefficient larger than that of the diverted molybdenum film but is excellent in wear resistance. For example, a molybdenum disulfide film is used as the first coating formed on the bearing surface A, while a titanium aluminum nitride or DLC film is used as the second coating formed on the sliding portion between the foil 13 and the outer member 11. By making the friction coefficients of the two coatings different, it is possible to achieve both a reduction in torque and an improvement in vibration damping.

一方、フォイル13と外方部材11の摺動面の少なくとも一方(例えば、フォイル13の保持部13a、13bの表面)の摩擦係数を小さくすると、軸6との接触摺動に対するフォイル13の耐摩耗性を高めることができる。すなわち、軸6の回転直後や停止直前等の低速回転時に軸6とフォイル13とが接触した場合、その接触圧力により各フォイル13の保持部13a、13bが外方部材11の固定溝11b、11cに対して滑り、各フォイル13が軸6の外周面6aに倣って変形する。このとき、フォイル13と外方部材11との摺動面の摩擦係数が大きいと、図7(a)に示すように、フォイル13の保持部13a、13bが固定溝11b、11cに対して滑りにくいため、フォイル13が軸6の外周面6aに倣いにくい。この場合、フォイル13と軸6の外周面6aとの接触領域T1が小さくなるため、単位面積あたりの接触圧力が大きくなり、フォイル13や軸6が摩耗しやすい。これに対し、フォイル13と外方部材11との摺動面の摩耗係数が小さいと、図7(b)に示すように、フォイル13の保持部13a、13bが固定溝11b、11cに対して滑りやすいため、フォイル13が軸6の外周面6aに倣いやすい。この場合、フォイル13と軸6の外周面6aとの接触領域T2が大きくなるため、単位面積あたりの接触圧力が小さくなり、フォイル13や軸6が摩耗しにくくなる。   On the other hand, when the friction coefficient of at least one of the sliding surfaces of the foil 13 and the outer member 11 (for example, the surfaces of the holding portions 13a and 13b of the foil 13) is reduced, the wear resistance of the foil 13 against contact sliding with the shaft 6 is reduced. Can increase the sex. That is, when the shaft 6 and the foil 13 come into contact with each other at the time of low speed rotation such as immediately after the rotation of the shaft 6 or just before stopping, the holding portions 13a and 13b of the foils 13 are fixed to the fixing grooves 11b and 11c of the outer member 11 by the contact pressure. Each foil 13 is deformed following the outer peripheral surface 6 a of the shaft 6. At this time, if the friction coefficient of the sliding surface between the foil 13 and the outer member 11 is large, the holding portions 13a and 13b of the foil 13 slide against the fixing grooves 11b and 11c as shown in FIG. Therefore, it is difficult for the foil 13 to follow the outer peripheral surface 6 a of the shaft 6. In this case, since the contact region T1 between the foil 13 and the outer peripheral surface 6a of the shaft 6 is reduced, the contact pressure per unit area is increased, and the foil 13 and the shaft 6 are easily worn. On the other hand, when the wear coefficient of the sliding surface between the foil 13 and the outer member 11 is small, as shown in FIG. 7B, the holding portions 13a and 13b of the foil 13 are fixed to the fixing grooves 11b and 11c. Since it is slippery, the foil 13 can easily follow the outer peripheral surface 6 a of the shaft 6. In this case, since the contact region T2 between the foil 13 and the outer peripheral surface 6a of the shaft 6 is increased, the contact pressure per unit area is reduced, and the foil 13 and the shaft 6 are not easily worn.

本発明は、上記の実施形態に限られない。上記の実施形態では、フォイル13の本体部13cの両端における立ち上がり角度θ1、θ2を異ならせた場合を示したが、例えば図8に示すように、立ち上がり角度θ1、θ2を等しくしてもよい(θ1=θ2)。この場合、図9に示すように、各フォイル13の周方向中央部Oにピーク位置Pが配される。このとき、フォイル13はピーク位置Pに関して周方向で対称な形状となり、ピーク位置Pの周方向両側に等しい面積の軸受面A、A’が形成される。これにより、軸6が一方に回転した場合(図9の実線矢印参照)、ピーク位置Pの周方向他方側に設けられた軸受面Aと軸6の外周面6aとの間に、回転方向先行側に向けて縮小したラジアル軸受隙間Rが形成される。一方、軸6が他方に回転した場合(図9の点線矢印参照)、ピーク位置Pの周方向一方側に設けられた軸受面A’と軸6の外周面6aとの間に、回転方向先行側に向けて縮小したラジアル軸受隙間R’が形成される。このように、立ち上がり角度θ1、θ2を等しくすることで、軸6が何れの方向に回転する場合でも同じ支持力を発揮することができる。   The present invention is not limited to the above embodiment. In the above-described embodiment, the case where the rising angles θ1 and θ2 at the both ends of the main body portion 13c of the foil 13 are made different is shown, but the rising angles θ1 and θ2 may be made equal as shown in FIG. θ1 = θ2). In this case, as shown in FIG. 9, the peak position P is arranged at the circumferential center O of each foil 13. At this time, the foil 13 has a symmetrical shape in the circumferential direction with respect to the peak position P, and bearing surfaces A and A ′ having the same area are formed on both sides of the peak position P in the circumferential direction. Thus, when the shaft 6 rotates in one direction (see the solid line arrow in FIG. 9), the rotation direction precedes between the bearing surface A provided on the other circumferential side of the peak position P and the outer peripheral surface 6a of the shaft 6. A radial bearing gap R that is reduced toward the side is formed. On the other hand, when the shaft 6 rotates in the other direction (see the dotted arrow in FIG. 9), the rotation direction precedes between the bearing surface A ′ provided on one side in the circumferential direction of the peak position P and the outer peripheral surface 6a of the shaft 6. A radial bearing gap R ′ reduced toward the side is formed. Thus, by making the rising angles θ1 and θ2 equal, the same supporting force can be exhibited regardless of the direction in which the shaft 6 rotates.

図10に示す実施形態は、フォイル13の本体部13cと他端側の保持部13bとの境界にスリット13dが設けられている点で、上記の実施形態と異なる。スリット13dは、フォイル13の一端側の保持部13aと同じ軸方向位置に設けられ、保持部13aを差し込み可能とされる(図10(b)参照)。保持部13aを、隣接するフォイル13のスリット13dに差し込んで、複数のフォイル13を環状に連結した状態で、各フォイル13の保持部13a、13bを外方部材11の固定溝11b、11cに差し込むことにより、フォイル13が外方部材11の内周面11aに取り付けられる。このフォイル軸受10の軸方向視は、図3と同様の状態となる。この場合、フォイル13の保持部13aが、隣接するフォイル13のスリット13dを貫通して固定溝11bに差し込まれるため、保持部13aとスリット13dとが周方向で係合することでフォイル13の他端(保持部13b)の周方向の移動が確実に規制される。   The embodiment shown in FIG. 10 differs from the above-described embodiment in that a slit 13d is provided at the boundary between the main body portion 13c of the foil 13 and the holding portion 13b on the other end side. The slit 13d is provided at the same axial position as the holding portion 13a on one end side of the foil 13, and the holding portion 13a can be inserted (see FIG. 10B). The holding portion 13a is inserted into the slit 13d of the adjacent foil 13, and the holding portions 13a and 13b of each foil 13 are inserted into the fixing grooves 11b and 11c of the outer member 11 in a state where the plurality of foils 13 are connected in a ring shape. Thus, the foil 13 is attached to the inner peripheral surface 11 a of the outer member 11. The axial view of the foil bearing 10 is the same as in FIG. In this case, since the holding portion 13a of the foil 13 passes through the slit 13d of the adjacent foil 13 and is inserted into the fixing groove 11b, the holding portion 13a and the slit 13d are engaged in the circumferential direction so that Movement of the end (holding portion 13b) in the circumferential direction is reliably restricted.

図11に示す実施形態は、外方部材11に固定溝11cが設けられず、フォイル13の他端側の保持部13bが外方部材11の内周面11aに沿って設けられている点で、上記の実施形態と異なる。具体的には、隣接するフォイル13の保持部13a、13bを軸方向視で交差させ(図4(b)あるいは図9(b)参照)、この状態で、一端側の保持部13aを外方部材11の固定溝11bに差し込むと共に、フォイル13の他端側の保持部13bを、隣接するフォイル13と外方部材11の内周面11aとの間に挿入する。これにより、フォイル13の他端側の保持部13bが、隣接するフォイル13で内径側から押さえられ、外方部材11の内周面11aに接触した状態で保持される。尚、この場合でも、上記の実施形態と同様に、フォイル13の保持部13bと外方部材11の内周面11aとの摺動面の摩擦係数を制御することで、軸受特性を調整することが可能となる(図7参照)。   In the embodiment shown in FIG. 11, the fixing groove 11 c is not provided in the outer member 11, and the holding portion 13 b on the other end side of the foil 13 is provided along the inner peripheral surface 11 a of the outer member 11. , Different from the above embodiment. Specifically, the holding portions 13a and 13b of the adjacent foils 13 are crossed in the axial direction (see FIG. 4B or FIG. 9B), and in this state, the holding portion 13a on one end side is moved outward. While being inserted into the fixing groove 11 b of the member 11, the holding portion 13 b on the other end side of the foil 13 is inserted between the adjacent foil 13 and the inner peripheral surface 11 a of the outer member 11. As a result, the holding portion 13 b on the other end side of the foil 13 is held from the inner diameter side by the adjacent foil 13 and is held in contact with the inner peripheral surface 11 a of the outer member 11. Even in this case, the bearing characteristics can be adjusted by controlling the friction coefficient of the sliding surface between the holding portion 13b of the foil 13 and the inner peripheral surface 11a of the outer member 11 as in the above embodiment. (See FIG. 7).

この場合、フォイル13の周方向一方(図11の実線矢印方向)への移動は、保持部13aが固定溝11bの奥部に突き当たることにより、または、スリットが保持部13aと突き当たることにより規制される。一方、フォイル13は、周方向他方(同図点線矢印方向)へは移動可能であるため、軸6が周方向他方(同図点線矢印方向)に回転すると、軸6との摺動によりフォイル13が周方向他方に移動して、フォイル13の一端側の保持部13aが固定溝11bから抜けてしまう恐れがある。また、このフォイル軸受10は、フォイル13の他端側の保持部13bが外方部材11の内周面11aに沿って設けられるため、図12に示すように、本体部13cの他端側の立ち上がり角度θ2が実質的に0になり、フォイル13のピーク位置Pが本体部13cの周方向中央部Oよりも一端側(図中左側)に偏在した位置に設けられる。このため、軸6が周方向一方(実線矢印方向)に回転すると、本体部13cの外径面13c1のうち、ピーク位置Pよりも他端側(図中右側)の広い領域が軸受面Aとして機能する。以上より、このフォイル軸受10は、周方向一方(実線矢印方向)にのみ相対回転する軸6を支持する用途に用いられる。   In this case, the movement of the foil 13 in one circumferential direction (the direction indicated by the solid line in FIG. 11) is restricted by the holding portion 13a hitting the back of the fixing groove 11b or by the slit hitting the holding portion 13a. The On the other hand, since the foil 13 is movable in the other circumferential direction (indicated by the dotted arrow in the figure), when the shaft 6 rotates in the other circumferential direction (in the direction indicated by the dotted arrow), the foil 13 is slid by sliding with the shaft 6. May move to the other circumferential direction, and the holding portion 13a on one end side of the foil 13 may come out of the fixing groove 11b. Further, in the foil bearing 10, since the holding portion 13b on the other end side of the foil 13 is provided along the inner peripheral surface 11a of the outer member 11, as shown in FIG. 12, the other end side of the main body portion 13c is provided. The rising angle θ2 is substantially 0, and the peak position P of the foil 13 is provided at a position unevenly distributed on one end side (left side in the drawing) from the circumferential center O of the main body 13c. For this reason, when the shaft 6 rotates in one circumferential direction (in the direction of the solid line arrow), a wide area on the other end side (right side in the figure) of the outer diameter surface 13c1 of the main body portion 13c becomes the bearing surface A. Function. As described above, the foil bearing 10 is used for the purpose of supporting the shaft 6 that relatively rotates only in one circumferential direction (the direction of the solid line arrow).

図13に示す実施形態は、フォイル13の周方向一方の保持部13aを、軸方向に離隔した複数の凸部で構成した点で、上記の実施形態と異なる。このように、軸方向に離隔した複数の凸部(保持部13a)を外方部材11の固定溝11bに差し込むことで、フォイル13の端部が軸方向に離隔した2箇所で固定溝11bに保持されるため、フォイル13を軸方向でバランスよく保持することができる。本実施形態では、図10に示す実施形態と同様に、フォイル13の他端にスリット13dを設け、このスリット13dに保持部13aを挿入している。これに限らず、図示は省略するが、図4に示す実施形態と同様に、フォイル13の他端に、本体部13cを延在させた複数の凸部からなる保持部13bを設け、この保持部13bの間の凹部に一方の保持部13aを挿入してもよい。また、フォイル13の外方部材11への取付は、図3に示すように保持部13a、13bを共に固定溝11b、11cに差し込んでもよいし、図11に示すように一方の保持部13aのみを固定溝11bに差し込んで、他方の保持部13bは外方部材11の内周面11aに沿わせるようにしてもよい。また、図13では保持部13aを構成する凸部を2個の凸部で構成しているが、これに限らず、保持部13aを構成する凸部の数を3個以上としてもよい。この場合、保持部13aの凸部と同数のスリット13dが設けられる。   The embodiment shown in FIG. 13 is different from the above-described embodiment in that one holding portion 13a in the circumferential direction of the foil 13 is configured by a plurality of convex portions spaced apart in the axial direction. In this way, by inserting a plurality of convex portions (holding portions 13a) spaced apart in the axial direction into the fixed grooves 11b of the outer member 11, the end portions of the foil 13 are formed in the fixed grooves 11b at two locations separated in the axial direction. Since it is held, the foil 13 can be held in a balanced manner in the axial direction. In the present embodiment, similarly to the embodiment shown in FIG. 10, a slit 13d is provided at the other end of the foil 13, and the holding portion 13a is inserted into the slit 13d. Not only this but illustration is omitted, but similarly to the embodiment shown in FIG. 4, a holding portion 13 b composed of a plurality of convex portions extending from the main body portion 13 c is provided at the other end of the foil 13, and this holding is performed. One holding portion 13a may be inserted into the recess between the portions 13b. Further, the attachment of the foil 13 to the outer member 11 may be performed by inserting the holding portions 13a and 13b into the fixing grooves 11b and 11c as shown in FIG. 3, or only one holding portion 13a as shown in FIG. May be inserted into the fixing groove 11b, and the other holding portion 13b may be along the inner peripheral surface 11a of the outer member 11. Further, in FIG. 13, the convex portion constituting the holding portion 13 a is constituted by two convex portions, but not limited to this, the number of convex portions constituting the holding portion 13 a may be three or more. In this case, the same number of slits 13d as the convex portions of the holding portion 13a are provided.

以上の説明では、フォイル軸受10にフォイル13を3枚設けた場合を示したが、これに限らず、フォイル13を2枚、あるいは4枚以上設けてもよい。   Although the case where three foils 13 are provided on the foil bearing 10 has been described above, the present invention is not limited thereto, and two or four or more foils 13 may be provided.

また、以上の説明では、軸6を回転側部材とし、外方部材11を固定側部材とした場合を例示したが、これとは逆に軸6を固定側部材とし、外方部材11を回転側部材とした場合にも図3の構成をそのまま適用することもできる。但し、この場合はフォイル13が回転側部材となるので、遠心力によるフォイル13全体の変形を考慮してフォイル13の設計を行う必要がある。   Further, in the above description, the case where the shaft 6 is a rotation side member and the outer member 11 is a fixed side member is illustrated, but conversely, the shaft 6 is a fixed side member and the outer member 11 is rotated. Even in the case of the side member, the configuration of FIG. 3 can be applied as it is. However, in this case, since the foil 13 serves as a rotating member, it is necessary to design the foil 13 in consideration of deformation of the entire foil 13 due to centrifugal force.

本発明にかかるフォイル軸受10の適用対象は、上述したガスタービンに限られず、例えば過給機のロータを支持する軸受としても使用することができる。過給機は、図14に示すように、エンジン53で生じた排気ガスでタービン51を駆動し、その駆動力で圧縮機52を回転させて吸入エアを圧縮し、エンジン53のトルクアップや効率改善を図るものである。タービン51、圧縮機52、および軸6でロータが構成され、軸6を支持するラジアル軸受10として、上記各実施形態のフォイル軸受10を使用することができる。   The application object of the foil bearing 10 according to the present invention is not limited to the gas turbine described above, and can be used as a bearing for supporting a rotor of a supercharger, for example. As shown in FIG. 14, the supercharger drives the turbine 51 with exhaust gas generated in the engine 53, rotates the compressor 52 with the driving force to compress the intake air, and increases the torque and efficiency of the engine 53. It is intended to improve. The rotor is constituted by the turbine 51, the compressor 52, and the shaft 6, and the foil bearing 10 of each of the above embodiments can be used as the radial bearing 10 that supports the shaft 6.

本発明にかかるフォイル軸受は、ガスタービンや過給機等のターボ機械に限らず、潤滑油などの液体による潤滑が困難である、エネルギー効率の観点から潤滑油循環系の補機を別途設けることが困難である、あるいは液体のせん断による抵抗が問題になる等の制限下で使用される自動車等の車両用軸受、さらには産業機器用の軸受として広く使用することが可能である。   The foil bearing according to the present invention is not limited to a turbo machine such as a gas turbine or a supercharger, and a lubricating oil circulation system auxiliary machine is provided separately from the viewpoint of energy efficiency, which is difficult to lubricate with a liquid such as lubricating oil. Therefore, it can be used widely as a bearing for vehicles such as automobiles, which is used under the restriction that resistance due to shearing of liquid becomes a problem, and for industrial equipment.

また、以上に説明した各フォイル軸受は、圧力発生流体として空気を使用した空気動圧軸受であるが、これに限らず、圧力発生流体としてその他のガスを使用することもでき、あるいは水や油などの液体を使用することもできる。さらに、軸6と外方部材11のどちらか一方を回転側の部材、他方を固定側の部材として用いる場合を例示したが、双方の部材を、速度差を持つ回転側の部材として使用することもできる。   Each of the foil bearings described above is an air dynamic pressure bearing that uses air as a pressure generating fluid. However, the present invention is not limited to this, and other gases can be used as the pressure generating fluid, or water or oil can be used. A liquid such as can also be used. Furthermore, although the case where either one of the shaft 6 or the outer member 11 is used as a rotation-side member and the other as a fixed-side member is illustrated, both members should be used as a rotation-side member having a speed difference. You can also.

10 フォイル軸受
11 外方部材
11b、11c 固定溝
13 フォイル
13a、13b 保持部
13c 本体部
A 軸受面
O フォイルの本体部の周方向中央部
P ピーク位置
R ラジアル軸受隙間
δ 半径方向隙間
θ1、θ2 フォイルの立ち上がり角度
DESCRIPTION OF SYMBOLS 10 Foil bearing 11 Outer member 11b, 11c Fixing groove 13 Foil 13a, 13b Holding | maintenance part 13c Main-body part A Bearing surface O The circumferential center part P of the main-body part of a foil P Position R Radial bearing clearance delta Radial clearance (theta) 1, (theta) 2 Foil Rising angle

Claims (3)

外方部材と、前記外方部材の内周面に取り付けられた複数のフォイルとを備えたフォイル軸受であって、A foil bearing comprising an outer member and a plurality of foils attached to the inner peripheral surface of the outer member,
各フォイルが、周方向一方の端部に設けられ、前記外方部材に接触した状態で保持される一方の保持部と、周方向他方の端部に設けられ、前記外方部材に接触した状態で保持される他方の保持部と、両保持部の周方向間に設けられ、軸受面を有する本体部とからなり、Each foil is provided at one end in the circumferential direction and held in contact with the outer member, and is provided at the other end in the circumferential direction and in contact with the outer member The other holding part held in the circumferential direction of both holding parts, and a main body part having a bearing surface,
各フォイルの前記一方の保持部が、前記外方部材の内周面に形成された一方の固定溝に隙間を有した状態で挿入され、The one holding portion of each foil is inserted with a gap in one fixing groove formed on the inner peripheral surface of the outer member,
各フォイルの前記本体部と前記一方の保持部との接続部が折れ曲がることなく滑らかに連続し、The connection part of the main body part and the one holding part of each foil is smoothly continuous without bending,
各フォイルの前記一方の保持部が、外径に向けて周方向一方に傾斜した状態で前記一方の固定溝に挿入されたフォイル軸受。A foil bearing inserted into the one fixed groove in a state where the one holding portion of each foil is inclined in one circumferential direction toward the outer diameter.
各フォイルの前記他方の保持部が、前記外方部材の内周面に形成された他方の固定溝に隙間を有した状態で挿入された請求項1記載のフォイル軸受。The foil bearing according to claim 1, wherein the other holding portion of each foil is inserted in a state having a gap in the other fixing groove formed on the inner peripheral surface of the outer member. 各フォイルの前記他方の保持部が、隣接するフォイルと前記外方部材の内周面との間に配された請求項1記載のフォイル軸受。The foil bearing according to claim 1, wherein the other holding portion of each foil is disposed between an adjacent foil and an inner peripheral surface of the outer member.
JP2016239405A 2016-12-09 2016-12-09 Foil bearing Active JP6219489B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016239405A JP6219489B2 (en) 2016-12-09 2016-12-09 Foil bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016239405A JP6219489B2 (en) 2016-12-09 2016-12-09 Foil bearing

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2014062237A Division JP6144222B2 (en) 2014-03-25 2014-03-25 Foil bearing

Publications (2)

Publication Number Publication Date
JP2017058019A JP2017058019A (en) 2017-03-23
JP6219489B2 true JP6219489B2 (en) 2017-10-25

Family

ID=58391394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016239405A Active JP6219489B2 (en) 2016-12-09 2016-12-09 Foil bearing

Country Status (1)

Country Link
JP (1) JP6219489B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5045148A (en) * 1973-08-27 1975-04-23
JPS5935723U (en) * 1982-08-31 1984-03-06 石川島播磨重工業株式会社 gas bearing structure
JP2004190762A (en) * 2002-12-10 2004-07-08 Koyo Seiko Co Ltd Foil for radial foil bearing, and radial foil bearing using the same
JP2008241015A (en) * 2007-03-29 2008-10-09 Daido Metal Co Ltd Multirobe foil fluid bearing and its manufacturing method
JP5817449B2 (en) * 2011-11-09 2015-11-18 株式会社Ihi Radial foil bearing

Also Published As

Publication number Publication date
JP2017058019A (en) 2017-03-23

Similar Documents

Publication Publication Date Title
WO2014098005A1 (en) Foil bearing
JP6104597B2 (en) Foil bearing
JP2012092969A (en) Foil bearing
JP6113444B2 (en) Foil bearing
JP5781402B2 (en) Foil bearing
JP5766562B2 (en) Thrust foil bearing
JP6591179B2 (en) Foil bearing
WO2015087675A1 (en) Foil bearing, and foil bearing unit and turbo machine each having same
JP6104596B2 (en) Foil bearing
JP2013053645A (en) Thrust foil bearing
JP5840423B2 (en) Foil bearing
JP6144222B2 (en) Foil bearing
JP2013044394A (en) Thrust foil bearing
JP6305749B2 (en) Foil bearing, foil bearing unit having the same, and turbomachine
US20190078613A1 (en) Foil bearing
JP2013032797A (en) Foil bearing
JP6219489B2 (en) Foil bearing
JP2019082195A (en) Foil bearing, foil bearing unit and turbo machine
JP2012072817A (en) Foil bearing
WO2020195488A1 (en) Thrust foil bearing, foil bearing unit, turbo machine, and foil
JP6622054B2 (en) Foil bearing
JP6324774B2 (en) Foil bearing and turbomachine equipped with the same
JP2021067353A (en) Foil bearing and rotating machine comprising the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170921

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170927

R150 Certificate of patent or registration of utility model

Ref document number: 6219489

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250