JP2012072817A - Foil bearing - Google Patents

Foil bearing Download PDF

Info

Publication number
JP2012072817A
JP2012072817A JP2010217035A JP2010217035A JP2012072817A JP 2012072817 A JP2012072817 A JP 2012072817A JP 2010217035 A JP2010217035 A JP 2010217035A JP 2010217035 A JP2010217035 A JP 2010217035A JP 2012072817 A JP2012072817 A JP 2012072817A
Authority
JP
Japan
Prior art keywords
leaf
bearing
foil
shaft
foil bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2010217035A
Other languages
Japanese (ja)
Inventor
Hiroki Fujiwara
宏樹 藤原
Masato Yoshino
真人 吉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2010217035A priority Critical patent/JP2012072817A/en
Publication of JP2012072817A publication Critical patent/JP2012072817A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Support Of The Bearing (AREA)
  • Supercharger (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a foil bearing having a bearing surface whose flexibility can be easily adjusted.SOLUTION: The foil bearing includes a cylindrical external member 1, a shaft 2 inserted into the inner periphery of the external member 1, and a plurality of leaves 3 interposed between an inner peripheral face 1b of the external member 1 and an outer peripheral face 2a of the shaft 2, and each having one end mounted on the external member 1. On the inner peripheral face of each leaf 3, the bearing surface 3d is provided which forms a wedge-shaped radial bearing clearance. On each leaf 3, a protrusion 2b is provided in contact with the inner peripheral face 1b of the external member 1 at a position apart from the fixed end of the leaf 3. The side closer to the free end than the protrusion 2b of each leaf 3 is brought into contact with the free end of the other leaf 3.

Description

本発明は、外方部材の内周面と軸の外周面との間に薄膜状のフォイルを介在させたフォイル軸受に関する。   The present invention relates to a foil bearing in which a thin film foil is interposed between an inner peripheral surface of an outer member and an outer peripheral surface of a shaft.

ガスタービンやターボチャージャの主軸は高速で回転駆動される。また、主軸に取り付けられたタービン翼は高温に晒される。そのため、これらの主軸を支持する軸受には、高温・高速回転といった過酷な環境に耐え得ることが要求される。この種の用途の軸受として、油潤滑の転がり軸受や油動圧軸受を使用する場合もあるが、潤滑油などの液体による潤滑が困難な場合、エネルギー効率の観点から潤滑油循環系の補機を別途設けることが困難な場合、あるいは液体のせん断による抵抗が問題になる場合、等の条件下では、これらの軸受の使用は制約を受ける。そこで、そのような条件下での使用に適合する軸受として、空気動圧軸受が着目されている。   The main shaft of a gas turbine or turbocharger is driven to rotate at high speed. Moreover, the turbine blade attached to the main shaft is exposed to high temperature. Therefore, bearings that support these main shafts are required to be able to withstand severe environments such as high temperature and high speed rotation. Oil lubricated rolling bearings and hydrodynamic pressure bearings may be used as bearings for this type of application, but if lubrication with a liquid such as lubricating oil is difficult, the auxiliary equipment of the lubricating oil circulation system from the viewpoint of energy efficiency The use of these bearings is restricted under conditions such as when it is difficult to provide a separate or when resistance due to liquid shear becomes a problem. Therefore, an air dynamic pressure bearing has attracted attention as a bearing suitable for use under such conditions.

空気動圧軸受としては、回転側と固定側の双方の軸受面を剛体で構成したものが一般的である。しかしながら、この種の空気動圧軸受では、回転側と固定側の軸受面間に形成されるラジアル軸受隙間の管理が不十分であると、安定限界を超えた際にホワールと呼ばれる自励的な主軸の触れ回りを生じ易い。そのため、使用される回転速度に応じた隙間管理が重要となる。特に、ガスタービンやターボチャージャのように、温度変化の激しい環境では熱膨張の影響でラジアル軸受隙間の幅が変動するため、精度の良い隙間管理は極めて困難となる。   As an air dynamic pressure bearing, one in which both the rotating side and the fixed side bearing surfaces are made of a rigid body is generally used. However, in this type of air dynamic pressure bearing, if the radial bearing clearance formed between the rotating and stationary bearing surfaces is insufficiently managed, a self-excited so-called whirl is called when the stability limit is exceeded. Easy to touch around the spindle. Therefore, gap management according to the rotation speed used is important. In particular, in an environment such as a gas turbine or a turbocharger where the temperature changes drastically, the radial bearing gap varies due to the effect of thermal expansion, so accurate gap management becomes extremely difficult.

ホワールが生じにくく、かつ温度変化の大きい環境下でも隙間管理を容易にできる軸受としてフォイル軸受が知られている。フォイル軸受は、曲げに対して剛性の低い可撓性を有する薄膜(フォイル)で軸受面を構成し、軸受面のたわみを許容することで荷重を支持するものである。通常は、軸受の内周面をトップフォイルと呼ばれる薄板で構成し、その外径側にバックフォイルと呼ばれるばね状の部材を配置してトップフォイルが受ける荷重をバックフォイルで弾性的に支持している。この場合、軸の回転時には、軸の外周面とトップフォイルの内周面との間に空気膜が形成され、軸が非接触支持される。   A foil bearing is known as a bearing that is less likely to cause a whirl and can easily manage a gap even in an environment with a large temperature change. In the foil bearing, a bearing surface is constituted by a thin film (foil) having low rigidity with respect to bending, and the load is supported by allowing the bearing surface to bend. Normally, the inner peripheral surface of the bearing is composed of a thin plate called a top foil, and a spring-like member called a back foil is arranged on the outer diameter side to elastically support the load received by the top foil with the back foil. Yes. In this case, when the shaft rotates, an air film is formed between the outer peripheral surface of the shaft and the inner peripheral surface of the top foil, and the shaft is supported in a non-contact manner.

フォイル軸受では、フォイルの可撓性により、軸の回転速度や荷重、周囲温度等の運転条件に応じた適切なラジアル軸受隙間が形成されるため、安定性に優れるという特徴があり、一般的な空気動圧軸受と比較して高速での使用が可能である。また、一般的な動圧軸受のラジアル軸受隙間は軸直径の1/1000のオーダーで管理する必要があり、例えば直径数mm程度の軸では数μm程度のラジアル軸受隙間を常時確保する必要がある。従って、製造時の公差、さらには温度変化が激しい場合の熱膨張まで考慮すると、厳密な隙間管理は困難である。これに対して、フォイル軸受の場合には、数十μm程度のラジアル軸受隙間に管理すれば足り、その製造や隙間管理が容易となる利点を有する。   Foil bearings are characterized by excellent stability because of the flexibility of the foil, an appropriate radial bearing gap is formed according to the operating conditions such as shaft rotation speed, load, and ambient temperature. It can be used at a higher speed than an air dynamic pressure bearing. In addition, the radial bearing clearance of a general dynamic pressure bearing needs to be managed in the order of 1/1000 of the shaft diameter. For example, a radial bearing clearance of about several μm needs to be always secured for a shaft having a diameter of about several millimeters. . Therefore, when taking into account manufacturing tolerances, and even thermal expansion when the temperature change is severe, strict gap management is difficult. On the other hand, in the case of a foil bearing, it is sufficient to manage a radial bearing gap of about several tens of μm, and there is an advantage that its manufacture and gap management become easy.

フォイル軸受としては、バックフォイルに設けた切り起こしでトップフォイルを弾性的に支持するもの(特許文献1)、素線を網状に編成した弾性体で軸受フォイルを弾性的に支持するもの(特許文献2)、および、バックフォイルに、外輪内面に接触し周方向に移動しない支持部とトップフォイルからの面圧により弾性的に撓む弾性部とを設けたもの(特許文献3)等が公知である。   As the foil bearing, a top foil is elastically supported by a cut and raised provided in a back foil (Patent Document 1), and a bearing foil is elastically supported by an elastic body formed by meshing strands (Patent Document). 2) and those having a back foil provided with a support portion that contacts the inner surface of the outer ring and does not move in the circumferential direction and an elastic portion that is elastically bent by the surface pressure from the top foil (Patent Document 3), etc. are known. is there.

フォイル軸受の一種として、バックフォイルを設けず、トップフォイルを周方向で分割してリーフフォイルを形成し、リーフフォイルをその一部を重ね合わせながら周方向の複数個所に設け、リーフフォイルの重なり合った部分でばね性を得るリーフ型と呼ばれるものも存在する。このリーフ型のフォイル軸受としては、固定軸受環を周方向で複数の円弧状環部材に分割し、各円弧状環部材の接合端部にフォイルの一端を溶接すると共に、フォイルにレイリーステップを屈曲形成したもの(特許文献4)、リーフをピエゾバイモルフで形成したもの(特許文献5)、リーフフォイルを線膨張率の異なる2種類の金属からなるバイメタルにより形成したもの(特許文献6)、等が公知である。   As a type of foil bearing, the back foil is not provided, the top foil is divided in the circumferential direction to form a leaf foil, and the leaf foils are provided in multiple places in the circumferential direction while overlapping the parts, and the leaf foils overlap. There is also a so-called leaf type that obtains springiness at a portion. In this leaf type foil bearing, the fixed bearing ring is divided into a plurality of arc-shaped ring members in the circumferential direction, one end of the foil is welded to the joining end of each arc-shaped ring member, and a Rayleigh step is bent on the foil. One formed (Patent Document 4), one formed by a piezo bimorph (Patent Document 5), one formed by a bimetal made of two types of metals having different linear expansion coefficients (Patent Document 6), etc. It is known.

特開2002−364643公報JP 2002-364463 A 特開2003−262222号公報JP 2003-262222 A 特開2009−299748号公報JP 2009-299748 A 特公平2−20851号公報Japanese Examined Patent Publication No. 2-20851 特開平4−54309号公報JP-A-4-54309 特開2002−295467号公報JP 2002-295467 A

フォイル軸受では、軸受面の可撓性(剛性)が軸受性能に大きな影響を与えるため、設計条件や運転条件に応じた最適な可撓性を軸受面に具備させる必要がある。従来のフォイル軸受のうち、特許文献1〜3に示すフォイル軸受では、軸受面の可撓性の最適化は主にバックフォイルの弾性支持力を調整することで行われる。しかしながら、バックフォイルの構造は一般に複雑であるので、弾性支持力の調整は困難であり、軸受設計が難しくなる。   In a foil bearing, since the flexibility (rigidity) of the bearing surface has a great influence on the bearing performance, it is necessary to provide the bearing surface with the optimum flexibility in accordance with the design conditions and operating conditions. Among the conventional foil bearings, in the foil bearings shown in Patent Documents 1 to 3, the flexibility of the bearing surface is optimized mainly by adjusting the elastic supporting force of the back foil. However, since the structure of the back foil is generally complicated, it is difficult to adjust the elastic supporting force, and the bearing design becomes difficult.

一方、特許文献4〜6に示すリーフ型のフォイル軸受において、軸受面の可撓性を調整するためには、リーフの材質・寸法・形状等を変更する必要があり、同様に軸受設計が困難となる。   On the other hand, in the leaf-type foil bearings shown in Patent Documents 4 to 6, in order to adjust the flexibility of the bearing surface, it is necessary to change the material, dimensions, shape, etc. of the leaf, and it is similarly difficult to design the bearing. It becomes.

そこで、本発明は、軸受面の可撓性を簡単に調整可能としたフォイル軸受を提供することを目的とする。   Therefore, an object of the present invention is to provide a foil bearing in which the flexibility of the bearing surface can be easily adjusted.

上記目的を達成するため、本発明は、円筒状の外方部材と、外方部材の内周に挿入された軸と、フォイルで形成され、外方部材の内周面と軸の外周面との間の円周方向の複数個所に配置され、楔状のラジアル軸受隙間を形成する軸受面を備え、一端が軸もしくは外方部材の何れか一方からなる取り付け部材に固定され、他端が自由端である複数のリーフとを備え、ラジアル軸受隙間に生じた流体膜で軸と外方部材の相対回転を支持するフォイル軸受において、リーフに、その固定端から離反した位置で取り付け部材と接触する突起部を設け、各リーフの突起部よりも自由端側に他のリーフの自由端を接触させることを特徴とする。   In order to achieve the above object, the present invention provides a cylindrical outer member, a shaft inserted in the inner periphery of the outer member, and a foil, and an inner peripheral surface of the outer member and an outer peripheral surface of the shaft. Are arranged at a plurality of locations in the circumferential direction between them, and have a bearing surface forming a wedge-shaped radial bearing gap, one end is fixed to a mounting member consisting of either a shaft or an outer member, and the other end is a free end A foil bearing that supports the relative rotation of the shaft and the outer member with a fluid film generated in the radial bearing gap, and a protrusion that contacts the mounting member at a position away from the fixed end of the leaf. And a free end of another leaf is brought into contact with the free end side of the protruding portion of each leaf.

従来構成において、リーフの一端を取り付け部材に取り付けた場合、この取り付け位置がリーフの支点として固定される。そのため、リーフの可撓性(剛性)を調整するには、リーフの材質、形状、寸法等を変更することで対応せざるを得ない。これに対し、本願発明のように、取り付け部材への取り付け部とは別にリーフに突起部を設け、この突起部を取り付け部材と接触させれば、突起部がリーフを弾性変形させる際の支点となる。突起部よりも自由端側に他のリーフの自由端が接触すると、突起部よりも自由端側のリーフの弾性変形によって、他のリーフに弾性支持力が付与される。突起部の位置を移動させれば(特に周方向に移動させれば)、リーフの支点位置が変動して突起部よりも自由端側のリーフのばね定数が変化するため、これに接触するリーフ、さらにはその軸受面の可撓性を調整することができる。これにより、突起部の位置調整だけで、リーフの可撓性を自由に設定することが可能となり、軸受設計が容易化する。   In the conventional configuration, when one end of the leaf is attached to the attachment member, this attachment position is fixed as a fulcrum of the leaf. Therefore, in order to adjust the flexibility (rigidity) of the leaf, it is unavoidable to change the material, shape, dimensions, etc. of the leaf. On the other hand, as in the present invention, if a protrusion is provided on the leaf separately from the attachment portion to the attachment member, and this protrusion is brought into contact with the attachment member, the protrusion when the protrusion elastically deforms the leaf, Become. When the free end of another leaf comes into contact with the free end side of the protrusion, elastic support force is applied to the other leaf by elastic deformation of the leaf on the free end side of the protrusion. If the position of the protrusion is moved (especially if it is moved in the circumferential direction), the leaf fulcrum position changes and the spring constant of the leaf on the free end side of the protrusion changes, so that the leaf in contact with this Furthermore, the flexibility of the bearing surface can be adjusted. This makes it possible to freely set the flexibility of the leaf only by adjusting the position of the protrusion, and the bearing design is facilitated.

リーフの固定端側には、前記他のリーフと半径方向でオーバーラップするオーバーラップ部を設けるのが望ましい。これにより、リーフの突起部よりも自由端側に他のリーフの自由端を確実に接触させることができる。また、リーフをラジアル軸受隙間側から部分的に塑性変形させて突起部を形成した場合でも、塑性変形で形成された凹部がラジアル軸受隙間と対向することはなく、凹部による流体膜の破断を防止することができる。突起部はリーフの軸方向全長にわたって形成するのが望ましい。   It is desirable to provide an overlap portion that overlaps the other leaf in the radial direction on the fixed end side of the leaf. Thereby, the free end of another leaf can be reliably brought into contact with the free end side of the protruding portion of the leaf. In addition, even when the leaf is partially plastically deformed from the radial bearing gap side and the protrusion is formed, the recess formed by the plastic deformation does not face the radial bearing gap, preventing the fluid film from being broken by the recess. can do. The protrusion is preferably formed over the entire axial length of the leaf.

以上の構成は、外方部材を取り付け部材とし、軸を回転させる場合のみならず、軸を取り付け部材とし、外方部材を回転させる場合にも同様に適用することができる。   The above configuration can be applied not only when the outer member is an attachment member and the shaft is rotated, but also when the shaft is an attachment member and the outer member is rotated.

軸受の運転中は、突起部と、取り付け部材の突起部と接触する部分との間で円周方向の微小摺動が生じる。この摺動による振動の減衰効果を考えると、摺動部に作用する摩擦力をある程度大きくすることが望まれる。従って、突起部と、取り付け部材の突起部との接触部のうち、何れか一方又は双方に第1被膜を形成すれば、被膜材料を適宜選択することにより、フォイルや外方部材の材質とは無関係に両者の摺動部で最適な摩擦係数を得ることが可能となり、軸受設計の自由度が増す。   During the operation of the bearing, a minute sliding in the circumferential direction occurs between the protrusion and the portion that contacts the protrusion of the mounting member. Considering the damping effect of vibration due to this sliding, it is desirable to increase the frictional force acting on the sliding part to some extent. Therefore, if the first coating is formed on any one or both of the contact portion between the projection and the projection of the attachment member, the material of the foil or outer member can be determined by appropriately selecting the coating material. Regardless of this, it is possible to obtain an optimum coefficient of friction at both sliding parts, and the degree of freedom in bearing design is increased.

起動直後や停止直後の低速回転状態では、リーフの軸受面にラジアル軸受隙間を介して対向する部材が摺接する。従って、軸受面に、表面を低摩擦化する第2被膜を形成することにより、起動直後や停止直後の摩擦トルクを減じて低トルク化を図ることができる。また、軸受面を保護して摺接時における軸受面の摩耗を抑制することができる。   In a low-speed rotation state immediately after starting or immediately after stopping, a member facing the bearing surface of the leaf via a radial bearing gap comes into sliding contact. Accordingly, by forming the second coating on the bearing surface to reduce the friction, it is possible to reduce the friction torque immediately after starting and immediately after stopping to reduce the torque. Further, the bearing surface can be protected and wear of the bearing surface during sliding contact can be suppressed.

第1被膜と第2被膜は、摩擦係数の異なる材料で形成するのが望ましい。第1被膜および第2被膜としては、DLC被膜、チタンアルミナイトライド被膜、二流化モリブデン被膜の何れかを選択することができる。DLC被膜やチタンアルミナイトライド被膜は硬質被膜であるため、これらを使用すれば、低摩擦化に加えて、耐摩耗性の向上による軸受寿命の増大を図ることもできる。   The first coating and the second coating are desirably formed of materials having different friction coefficients. As the first film and the second film, any one of a DLC film, a titanium aluminum nitride film, and a diverted molybdenum film can be selected. Since the DLC coating and the titanium aluminum nitride coating are hard coatings, if they are used, in addition to reducing friction, it is possible to increase the bearing life by improving wear resistance.

以上に述べたフォイル軸受は、ガスタービンのロータの支持や、過給機のロータの支持に使用することができる。   The foil bearing described above can be used for supporting a rotor of a gas turbine or a rotor of a supercharger.

本発明によれば、突起部の位置を調整することにより、軸受面の可撓性を簡単に調整することができる。従って、運転条件や設計条件に適合した軸受設計が容易となり、フォイル軸受の低コスト化を図ることができる。   According to the present invention, the flexibility of the bearing surface can be easily adjusted by adjusting the position of the protrusion. Therefore, the bearing design suitable for the operating conditions and the design conditions becomes easy, and the cost of the foil bearing can be reduced.

本発明にかかるフォイル軸受の一実施形態を示す正面図である。It is a front view which shows one Embodiment of the foil bearing concerning this invention. 図1に示すフォイル軸受の斜視図である。It is a perspective view of the foil bearing shown in FIG. 本発明の他の実施形態を示す正面図である。It is a front view which shows other embodiment of this invention.

図1および図2に、本発明にかかるリーフ型フォイル軸受の一実施形態を示す。このフォイル軸受は、例えばガスタービンや過給機のロータの支持に適合するもので、円筒状の外方部材1と、外方部材1の内周に挿入され、前記ロータに結合した軸2と、外方部材の内周面と軸2の外周面との間の隙間に介在させた複数のリーフ3とで構成される。   1 and 2 show an embodiment of a leaf type foil bearing according to the present invention. The foil bearing is suitable for supporting a rotor of a gas turbine or a supercharger, for example, and includes a cylindrical outer member 1 and a shaft 2 inserted into the inner periphery of the outer member 1 and coupled to the rotor. And a plurality of leaves 3 interposed in a gap between the inner peripheral surface of the outer member and the outer peripheral surface of the shaft 2.

各リーフ3は金属製のフォイルで形成され、前記隙間の円周方向等配位置に配置される。各リーフ3の内周面は外径側を凸とする円弧状の軸受面3dを構成し、この軸受面3dと軸2の外周面2aとの間に、軸2の回転方向に向かって縮小する楔状のラジアル軸受隙間Cが形成される。   Each leaf 3 is formed of a metal foil, and is arranged at equal positions in the circumferential direction of the gap. The inner peripheral surface of each leaf 3 constitutes an arc-shaped bearing surface 3d that is convex on the outer diameter side, and shrinks in the rotational direction of the shaft 2 between the bearing surface 3d and the outer peripheral surface 2a of the shaft 2. A wedge-shaped radial bearing gap C is formed.

各リーフ3は、その一端を外方部材1の内周に取り付けることにより、外方部材1に固定される。例えば、図示のようにリーフ3の一端部に外径方向に起立する取り付け部3aを形成し、この取り付け部3aを外方部材1の内周に形成した嵌合溝1aに嵌合固定することで、各リーフ3を外方部材1に固定することができる。各リーフ3の外方部材1への取り付け方法は任意で、接着や溶接で固定することもできる。各リーフ3の他端は自由端になっている。各リーフ3の固定端側には、軸2の反回転方向に隣接した他のリーフ3の自由端側と半径方向でオーバーラップするオーバーラップ部Pが形成される。   Each leaf 3 is fixed to the outer member 1 by attaching one end thereof to the inner periphery of the outer member 1. For example, as shown in the drawing, an attachment portion 3a standing in the outer diameter direction is formed at one end portion of the leaf 3, and this attachment portion 3a is fitted and fixed in a fitting groove 1a formed on the inner periphery of the outer member 1. Thus, each leaf 3 can be fixed to the outer member 1. The attachment method of each leaf 3 to the outer member 1 is arbitrary, and can be fixed by adhesion or welding. The other end of each leaf 3 is a free end. On the fixed end side of each leaf 3, an overlap portion P is formed that overlaps in the radial direction with the free end side of another leaf 3 adjacent in the counter-rotating direction of the shaft 2.

各リーフ3のオーバーラップ部P内の外周面には、外径方向に突出する突起部3bが形成されている。この突起部3bは、リーフ3を内径側から外径方向に部分的に塑性変形させることにより形成され、例えば図2に示すようにリーフ3の軸方向全長にわたって形成された凸条で構成することができる。各リーフ3を外方部材1に取り付けた状態では、各突起部3bが外方部材1の内周面1bに弾性的に接触する。この状態で、フォイル3の内周に軸1を挿入することで、図1に示すフォイル軸受が得られる。   On the outer peripheral surface in the overlap portion P of each leaf 3, a protrusion 3b protruding in the outer diameter direction is formed. This protrusion 3b is formed by partially plastically deforming the leaf 3 from the inner diameter side to the outer diameter direction, and is constituted by a ridge formed over the entire axial length of the leaf 3, for example, as shown in FIG. Can do. In a state where each leaf 3 is attached to the outer member 1, each protrusion 3 b elastically contacts the inner peripheral surface 1 b of the outer member 1. In this state, the foil bearing shown in FIG. 1 is obtained by inserting the shaft 1 into the inner periphery of the foil 3.

以上の構成において、楔状のラジアル軸受隙間Cの縮小方向に軸2を回転させると、各リーフ3の軸受面3dと軸2の外周面2aとの間に空気膜が形成される。これにより、図1に示すように、軸2の周囲の円周方向複数個所に楔状のラジアル軸受隙間Cが形成され、軸2がフォイル3に対して非接触の状態でラジアル方向に回転自在に支持される(なお、実際のラジアル軸受隙間Cの幅は数十μm程度の微小なものであるが、図1ではその幅を誇張して描いている)。また、各リーフ3が有する可撓性により、各リーフ3の軸受面3dが荷重や軸2の回転速度、周囲温度等の運転条件に応じて任意に弾性変形するため、ラジアル軸受隙間Cは運転条件に応じた適切幅に自動調整される。そのため、ラジアル軸受隙間を最適幅に管理することができ、軸2を安定して支持することが可能となる。   In the above configuration, when the shaft 2 is rotated in the reduction direction of the wedge-shaped radial bearing gap C, an air film is formed between the bearing surface 3d of each leaf 3 and the outer peripheral surface 2a of the shaft 2. As a result, as shown in FIG. 1, wedge-shaped radial bearing gaps C are formed at a plurality of circumferential positions around the shaft 2, and the shaft 2 can rotate in the radial direction in a non-contact state with respect to the foil 3. (The actual radial bearing gap C has a very small width of about several tens of μm, but the width is exaggerated in FIG. 1). Further, due to the flexibility of each leaf 3, the bearing surface 3 d of each leaf 3 is arbitrarily elastically deformed according to the operating conditions such as the load, the rotational speed of the shaft 2, the ambient temperature, etc. It is automatically adjusted to an appropriate width according to the conditions. Therefore, the radial bearing gap can be managed to the optimum width, and the shaft 2 can be stably supported.

軸2の回転中は、ラジアル軸受隙間Cに形成された空気膜の圧力で各リーフ3が外径側に弾性変形し、図1に二点鎖線で示すように、その自由端が回転方向に隣接するリーフ3に接触する。この時、外径側のリーフ3が弾性変形することにより、これに接触した内径側のリーフ3が弾性的に支持され、軸受面3dの可撓性が高まる。従って、ラジアル軸受隙間Cの幅の自己調整能力が強化され、かつ振動の減衰効果も得られる。そのため、高温・高速回転といった過酷な運転条件でもラジアル軸受隙間を最適幅に管理することができ、軸2を安定して支持することが可能となる。   While the shaft 2 is rotating, each leaf 3 is elastically deformed to the outer diameter side by the pressure of the air film formed in the radial bearing gap C, and its free end is in the rotational direction as shown by a two-dot chain line in FIG. The adjacent leaf 3 is contacted. At this time, the leaf 3 on the outer diameter side is elastically deformed, so that the leaf 3 on the inner diameter side in contact with the leaf 3 is elastically supported and the flexibility of the bearing surface 3d is increased. Therefore, the self-adjustment ability of the width of the radial bearing gap C is enhanced, and a vibration damping effect is also obtained. Therefore, the radial bearing gap can be managed to the optimum width even under severe operating conditions such as high temperature and high speed rotation, and the shaft 2 can be stably supported.

本発明では、外方部材1への取り付け部3aとは別に各リーフ3に突起部3bを設け、この突起部3bを外方部材1に接触させている。この突起部3bは、各リーフ3が弾性変形する際の支点(起点)となるため、突起部3bよりも自由端側でリーフ3の弾性変形が生じる。従って、突起部3bの位置を周方向に移動させれば、突起部3bよりも自由端側でリーフ3のばね定数を変化させることができ、リーフ同士の接触時に他のリーフ3に与える弾性支持力を調整することができる。これにより、突起部3bの位置を周方向に調整するだけで、各リーフ3の可撓性を自由に設定することが可能となり、軸受設計が容易化する。突起部3bの位置は、オーバーラップ部Pの範囲内であって、突起部3よりも自由端側に他のリーフ3が接触できる範囲内で調整することができる。   In the present invention, a protruding portion 3 b is provided on each leaf 3 separately from the attaching portion 3 a to the outer member 1, and the protruding portion 3 b is in contact with the outer member 1. Since this protrusion 3b serves as a fulcrum (starting point) when each leaf 3 is elastically deformed, elastic deformation of the leaf 3 occurs on the free end side from the protrusion 3b. Therefore, if the position of the protrusion 3b is moved in the circumferential direction, the spring constant of the leaf 3 can be changed on the free end side relative to the protrusion 3b, and elastic support given to other leaves 3 when the leaves are in contact with each other. The power can be adjusted. Thereby, it becomes possible to freely set the flexibility of each leaf 3 only by adjusting the position of the protrusion 3b in the circumferential direction, and the bearing design is facilitated. The position of the protrusion 3b can be adjusted within the range of the overlap portion P and within a range in which another leaf 3 can contact the free end side of the protrusion 3.

突起部3bを塑性変形で形成することにより、リーフ3の内周面に凹部が形成されているが、この凹部は、オーバーラップ部Pの範囲内にあり、凹部がラジアル軸受隙間Cと対向することはない。そのため、凹部による空気膜の破断を防止することができ、軸2を安定して支持することができる。   By forming the protrusion 3b by plastic deformation, a recess is formed on the inner peripheral surface of the leaf 3, but this recess is in the range of the overlap portion P, and the recess faces the radial bearing gap C. There is nothing. Therefore, it is possible to prevent the air film from being broken by the recess and to support the shaft 2 stably.

フォイル軸受では、軸2の停止直前や起動直後の低速回転時に、各リーフ3の軸受面3dや軸2の外周面2aに表面粗さ以上の厚さの空気膜を形成することが困難となる。そのため、フォイル3と軸2の外周面2aとの間で金属接触を生じ、トルクの増大を招く。この時の摩擦力を減じてトルク低減を図るため、各リーフ3の軸受面3dには、表面を低摩擦化する第2被膜を形成するのが望ましい。この種の被膜としては、例えばDLC膜、チタンアルミナイトライド膜、あるいは二硫化モリブデン膜を使用することができる。DLC膜、チタンやアルミナイトライド膜はCVDやPVDで形成することができ、二硫化モリブデン膜はスプレーで簡単に形成することができる。特にDLC膜やチタンアルミナイトライド膜は硬質であるので、これらで被膜を形成することにより、軸受面3dの耐摩耗性をも向上させることができ、軸受寿命を増大させることができる。   In the foil bearing, it is difficult to form an air film having a thickness greater than the surface roughness on the bearing surface 3d of each leaf 3 and the outer peripheral surface 2a of each shaft 2 at the time of low-speed rotation immediately before the shaft 2 is stopped or immediately after starting. . For this reason, metal contact is generated between the foil 3 and the outer peripheral surface 2a of the shaft 2, and the torque is increased. In order to reduce the torque by reducing the frictional force at this time, it is desirable to form a second coating on the bearing surface 3d of each leaf 3 to reduce the friction of the surface. As this type of coating, for example, a DLC film, a titanium aluminum nitride film, or a molybdenum disulfide film can be used. The DLC film, titanium or aluminum nitride film can be formed by CVD or PVD, and the molybdenum disulfide film can be easily formed by spraying. In particular, since the DLC film and the titanium aluminum nitride film are hard, by forming a film with them, the wear resistance of the bearing surface 3d can be improved, and the bearing life can be increased.

また、軸受の運転中は、各リーフ3の突起部3bと外方部材1の内周面1bとの間でも円周方向の微小摺動が生じる。この摺動部分、すなわち突起部3bの外側面とこれに接触する外方部材1の内周面1bとの何れか一方または双方に第1被膜を形成することにより、この摺動部分での耐摩耗性の向上を図ることができる。なお、振動の減衰効果を向上させるためには、この摺動部である程度の摩擦力が必要となる場合もあり、第1被膜にはそれほど低摩擦性は要求されない。従って、第1被膜としては、二流化モリブデン膜よりも摩擦係数は大きいが耐摩耗性に優れるDLC膜やチタンやアルミナイトライド膜を使用するのが好ましい。例えば軸受面3dの第2被膜として二流化モリブデン膜を使用する一方で、突起部3bと外方部材1の摺動部分の第1被膜としてDLC膜等を使用し、両被膜の摩擦係数を異ならせることで、低トルク化と振動の減衰効果の向上とを両立することが可能となる。   Further, during the operation of the bearing, a minute sliding in the circumferential direction also occurs between the protrusion 3 b of each leaf 3 and the inner peripheral surface 1 b of the outer member 1. By forming a first coating on one or both of the sliding portion, that is, the outer surface of the protrusion 3b and the inner peripheral surface 1b of the outer member 1 in contact with the sliding portion, Abrasion can be improved. In order to improve the vibration damping effect, a certain amount of frictional force may be required at the sliding portion, and the first coating is not required to have a very low frictional property. Therefore, as the first coating, it is preferable to use a DLC film, titanium, or an aluminum nitride film that has a friction coefficient larger than that of the diverted molybdenum film but is excellent in wear resistance. For example, while using a disulfide molybdenum film as the second coating on the bearing surface 3d, a DLC film or the like is used as the first coating on the sliding portion of the protrusion 3b and the outer member 1, and the friction coefficients of the two coatings are different. This makes it possible to achieve both a reduction in torque and an improvement in the vibration damping effect.

以上の説明では、図1の構成において、軸2を回転側部材とし、外方部材1を固定側部材とした場合を例示したが、これとは逆に軸2を固定側部材とし、外方部材1を回転側部材とした場合にも図1の構成をそのまま適用することもできる。但し、この場合はリーフ3が回転側部材となるので、遠心力によるリーフ3の変形を加味してリーフ3の設計を行う必要がある。   In the above description, the case where the shaft 2 is a rotating side member and the outer member 1 is a fixed side member in the configuration of FIG. 1 is illustrated, but conversely, the shaft 2 is a fixed side member, Even when the member 1 is a rotation side member, the configuration of FIG. 1 can be applied as it is. However, in this case, since the leaf 3 is a rotation side member, it is necessary to design the leaf 3 in consideration of the deformation of the leaf 3 due to centrifugal force.

また、図1では、各リーフ3を外方部材1に固定した場合を例示したが、リーフ3は軸2に固定することもできる。図3は、その一例で、各リーフ3の一端の取り付け部3aを内径側に起立させ、これを例えば軸2に設けた嵌合溝2bに嵌合固定した場合を示す。取り付け部3aはこれ以外にも接着や溶接で軸2に固定しても構わない。各リーフ3の外周面は外径側を凸とする円弧状の軸受面3dを構成し、この軸受面3dと外方部材1の内周面1bとの間に、軸2の回転方向に向かって縮小する楔状のラジアル軸受隙間Cが形成される。各リーフ3の固定端側には、反回転方向に隣接する他のリーフ3の自由端側と半径方向でオーバーラップするオーバーラップ部Pが構成される。各リーフ3のオーバーラップ部Pには、リーフ3を外径側から内径側に向けて部分的に塑性変形させて突起部3bが形成され、突起部3bが軸2の外周面2aに接触している。外方部材1の回転中は、各リーフ3の突起部3bよりも自由端側に反回転方向側に隣接する他のリーフの自由端が接触する。以上の構成でも図1および図2に示す実施形態と同様の作用効果を得ることができる。   Further, in FIG. 1, the case where each leaf 3 is fixed to the outer member 1 is illustrated, but the leaf 3 can also be fixed to the shaft 2. FIG. 3 shows an example in which the attachment portion 3 a at one end of each leaf 3 stands up on the inner diameter side and is fitted and fixed in a fitting groove 2 b provided in the shaft 2, for example. In addition to this, the attachment portion 3a may be fixed to the shaft 2 by adhesion or welding. The outer peripheral surface of each leaf 3 constitutes an arc-shaped bearing surface 3d that is convex on the outer diameter side, and is directed in the rotational direction of the shaft 2 between the bearing surface 3d and the inner peripheral surface 1b of the outer member 1. As a result, a wedge-shaped radial bearing gap C is formed. On the fixed end side of each leaf 3, an overlap portion P that overlaps in the radial direction with the free end side of another leaf 3 adjacent in the counter-rotating direction is configured. In the overlap portion P of each leaf 3, a protrusion 3b is formed by partially plastically deforming the leaf 3 from the outer diameter side toward the inner diameter side, and the protrusion 3b contacts the outer peripheral surface 2a of the shaft 2. ing. During rotation of the outer member 1, the free ends of the other leaves adjacent to the anti-rotation direction side are in contact with the free end side of the protrusions 3 b of the leaves 3. With the above configuration, the same operation and effect as the embodiment shown in FIGS. 1 and 2 can be obtained.

図3では外方部材1を回転側としているが、外方部材1を固定側としてもよい。但し、外方部材1を固定側とすると、フォイル3が回転側となるので、フォイル3の設計時には遠心力によるフォイル3の変形を考慮する必要がある。   In FIG. 3, the outer member 1 is the rotating side, but the outer member 1 may be the fixed side. However, when the outer member 1 is on the fixed side, the foil 3 is on the rotating side. Therefore, when the foil 3 is designed, it is necessary to consider deformation of the foil 3 due to centrifugal force.

なお、以上に述べたフォイル軸受は、圧力発生流体として空気を使用した空気動圧軸受のみならず、圧力発生流体として潤滑油を使用した油動圧軸受としても使用することができる。   The foil bearing described above can be used not only as an air dynamic pressure bearing using air as a pressure generating fluid but also as an oil dynamic pressure bearing using lubricating oil as a pressure generating fluid.

1 外方部材
1a 嵌合溝
1b 内周面
2 軸
2a 外周面
2b 嵌合溝
3 リーフ
3a 取り付け部
3b 突起部
3d 軸受面
C ラジアル軸受隙間
P オーバーラップ部
DESCRIPTION OF SYMBOLS 1 Outer member 1a Fitting groove 1b Inner peripheral surface 2 Shaft 2a Outer peripheral surface 2b Fitting groove 3 Leaf 3a Attaching part 3b Protruding part 3d Bearing surface C Radial bearing gap P Overlap part

Claims (12)

円筒状の外方部材と、外方部材の内周に挿入された軸と、フォイルで形成され、外方部材の内周面と軸の外周面との間の円周方向の複数個所に配置され、楔状のラジアル軸受隙間を形成する軸受面を備え、一端が軸もしくは外方部材の何れか一方からなる取り付け部材に固定され、他端が自由端である複数のリーフとを備え、ラジアル軸受隙間に生じた流体膜で軸と外方部材の相対回転を支持するフォイル軸受において、
リーフに、その固定端から離反した位置で取り付け部材と接触する突起部を設け、各リーフの突起部よりも自由端側に、他のリーフの自由端を接触させることを特徴とするフォイル軸受。
A cylindrical outer member, a shaft inserted in the inner periphery of the outer member, and a foil, which are arranged at a plurality of locations in the circumferential direction between the inner peripheral surface of the outer member and the outer peripheral surface of the shaft. A radial bearing having a bearing surface forming a wedge-shaped radial bearing gap, one end fixed to an attachment member composed of either a shaft or an outer member, and the other end being a free end. In the foil bearing that supports the relative rotation of the shaft and the outer member with the fluid film generated in the gap,
A foil bearing characterized in that a protrusion is provided on a leaf to come into contact with the mounting member at a position away from the fixed end, and the free end of another leaf is brought into contact with the free end side of the protrusion of each leaf.
リーフの固定端側に、前記他のリーフと半径方向でオーバーラップするオーバーラップ部を設け、このオーバーラップ部に突起部を設けた請求項1記載のフォイル軸受。   The foil bearing according to claim 1, wherein an overlap portion that overlaps the other leaf in the radial direction is provided on a fixed end side of the leaf, and a protrusion is provided on the overlap portion. 突起部が、リーフをラジアル軸受隙間側から部分的に塑性変形させて形成された請求項1または2記載のフォイル軸受。   The foil bearing according to claim 1, wherein the protrusion is formed by partially plastically deforming the leaf from the radial bearing gap side. 突起部をリーフの軸方向全長にわたって形成した請求項1〜3何れか1項に記載のフォイル軸受。   The foil bearing of any one of Claims 1-3 which formed the protrusion part over the axial direction full length of the leaf. 外方部材を取り付け部材とし、軸を回転させる請求項1〜4何れか1項に記載のフォイル軸受。   The foil bearing according to any one of claims 1 to 4, wherein the outer member is an attachment member and the shaft is rotated. 軸を取り付け部材とし、外方部材を回転させる請求項1〜4何れか1項に記載のフォイル軸受。   The foil bearing according to any one of claims 1 to 4, wherein the shaft is used as a mounting member and the outer member is rotated. 突起部と、取り付け部材の突起部との接触部のうち、何れか一方又は双方に第1被膜を形成した請求項1〜6何れか1項に記載のフォイル軸受。   The foil bearing of any one of Claims 1-6 which formed the 1st film in any one or both among the contact parts of a projection part and the projection part of an attachment member. リーフの軸受面に、表面を低摩擦化する第2被膜を形成した請求項1〜7何れか1項に記載のフォイル軸受。   The foil bearing of any one of Claims 1-7 in which the 2nd film | membrane which makes the surface low friction was formed in the bearing surface of the leaf. 第1被膜と第2被膜を、摩擦係数の異なる材料で形成した請求項8記載のフォイル軸受。   The foil bearing according to claim 8, wherein the first coating and the second coating are formed of materials having different friction coefficients. 第1被膜および第2被膜として、DLC被膜、チタンアルミナイトライド被膜、二流化モリブデン被膜の何れかを選択した請求項8または9記載のフォイル軸受。   The foil bearing according to claim 8 or 9, wherein any one of a DLC film, a titanium aluminum nitride film, and a diverted molybdenum film is selected as the first film and the second film. ガスタービンのロータの支持に使用される請求項1〜10何れか1項に記載のフォイル軸受。   The foil bearing of any one of Claims 1-10 used for support of the rotor of a gas turbine. 過給機のロータの支持に使用される請求項1〜10何れか1項に記載のフォイル軸受。   The foil bearing of any one of Claims 1-10 used for support of the rotor of a supercharger.
JP2010217035A 2010-09-28 2010-09-28 Foil bearing Pending JP2012072817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010217035A JP2012072817A (en) 2010-09-28 2010-09-28 Foil bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010217035A JP2012072817A (en) 2010-09-28 2010-09-28 Foil bearing

Publications (1)

Publication Number Publication Date
JP2012072817A true JP2012072817A (en) 2012-04-12

Family

ID=46169205

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010217035A Pending JP2012072817A (en) 2010-09-28 2010-09-28 Foil bearing

Country Status (1)

Country Link
JP (1) JP2012072817A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758918A (en) * 2012-06-28 2012-10-31 北京航空航天大学 Gas cylinder surface sealing device with cantilever support and spiral chute
CN102797752A (en) * 2012-09-11 2012-11-28 哈尔滨工业大学 Multi-blade oil-lubricated foil bearing supported by horizontal springs
CN115076219A (en) * 2022-07-20 2022-09-20 天津飞旋科技股份有限公司 Laminated type foil dynamic pressure bearing and shaft system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102758918A (en) * 2012-06-28 2012-10-31 北京航空航天大学 Gas cylinder surface sealing device with cantilever support and spiral chute
CN102797752A (en) * 2012-09-11 2012-11-28 哈尔滨工业大学 Multi-blade oil-lubricated foil bearing supported by horizontal springs
CN115076219A (en) * 2022-07-20 2022-09-20 天津飞旋科技股份有限公司 Laminated type foil dynamic pressure bearing and shaft system
CN115076219B (en) * 2022-07-20 2022-11-15 天津飞旋科技股份有限公司 Laminated type foil dynamic pressure bearing and shaft system

Similar Documents

Publication Publication Date Title
US9784307B2 (en) Foil bearing
JP6113444B2 (en) Foil bearing
JP2012092969A (en) Foil bearing
JP6104597B2 (en) Foil bearing
JP5781402B2 (en) Foil bearing
JP6591179B2 (en) Foil bearing
JP5766562B2 (en) Thrust foil bearing
JP6104596B2 (en) Foil bearing
EP3364059B1 (en) Foil bearing
JP5840423B2 (en) Foil bearing
JP2013053645A (en) Thrust foil bearing
JP2012072817A (en) Foil bearing
JP2013044394A (en) Thrust foil bearing
JP2013032797A (en) Foil bearing
JP6144222B2 (en) Foil bearing
WO2018100949A1 (en) Foil bearing
JP2019082195A (en) Foil bearing, foil bearing unit and turbo machine
JP6219489B2 (en) Foil bearing
JP6622054B2 (en) Foil bearing
WO2017065176A1 (en) Foil bearing
JP2018059553A (en) Foil bearing
JP2018059554A (en) Foil bearing