WO2015141330A1 - Ice having multi-phase structure which is produced using electrolyzed water - Google Patents

Ice having multi-phase structure which is produced using electrolyzed water Download PDF

Info

Publication number
WO2015141330A1
WO2015141330A1 PCT/JP2015/053579 JP2015053579W WO2015141330A1 WO 2015141330 A1 WO2015141330 A1 WO 2015141330A1 JP 2015053579 W JP2015053579 W JP 2015053579W WO 2015141330 A1 WO2015141330 A1 WO 2015141330A1
Authority
WO
WIPO (PCT)
Prior art keywords
ice
phase
water
hypochlorous acid
aqueous solution
Prior art date
Application number
PCT/JP2015/053579
Other languages
French (fr)
Japanese (ja)
Inventor
横田 昌広
英男 太田
二階堂 勝
松田 秀三
Original Assignee
株式会社 東芝
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 東芝 filed Critical 株式会社 東芝
Priority to JP2016508593A priority Critical patent/JPWO2015141330A1/en
Publication of WO2015141330A1 publication Critical patent/WO2015141330A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25CPRODUCING, WORKING OR HANDLING ICE
    • F25C1/00Producing ice
    • F25C1/04Producing ice by using stationary moulds
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23BPRESERVING, e.g. BY CANNING, MEAT, FISH, EGGS, FRUIT, VEGETABLES, EDIBLE SEEDS; CHEMICAL RIPENING OF FRUIT OR VEGETABLES; THE PRESERVED, RIPENED, OR CANNED PRODUCTS
    • A23B4/00General methods for preserving meat, sausages, fish or fish products
    • A23B4/14Preserving with chemicals not covered by groups A23B4/02 or A23B4/12
    • A23B4/18Preserving with chemicals not covered by groups A23B4/02 or A23B4/12 in the form of liquids or solids
    • A23B4/24Inorganic compounds

Definitions

  • Embodiments of the present invention relate to ice having a multiphase structure using electrolyzed water.
  • Ice is generally used to store fresh products.
  • hypochlorous acid and sodium hypochlorite obtained by decomposing salt water into the water that forms ice itself is used for bactericidal effects or deodorization with hypochlorous acid and sodium hypochlorite. It has an effect.
  • a technique for preserving other fresh products a technique is generally used in which fresh products are sprayed with water to freeze only the surface layer.
  • hypochlorous acid and sodium hypochlorite have a problem with a chlorine odor.
  • Embodiment of this invention aims at providing the ice of the multiphase structure which can apply electrolyzed water and the aqueous solution from which composition differs from electrolyzed water as needed.
  • the multi-phase structure ice according to the embodiment includes a first phase formed using electrolyzed water and a second phase having a composition different from the composition of the first phase.
  • FIG. 1 is a cross-sectional view illustrating an example of ice having a multiphase structure according to the first embodiment.
  • FIG. 2A is a diagram illustrating an example of an ice manufacturing method used in the first embodiment.
  • FIG. 2B is a diagram illustrating an example of an ice manufacturing method used in the first embodiment.
  • FIG. 3 is a diagram showing a change in effective chlorine concentration of ice having a multiphase structure according to the first embodiment.
  • FIG. 4 is a graph showing the relationship between hypochlorous acid, ascorbic acid, and effective chlorine concentration.
  • FIG. 5 is a cross-sectional view illustrating an example of ice having a multiphase structure according to the second embodiment.
  • FIG. 6A is a diagram illustrating an example of an ice manufacturing method used in the second embodiment.
  • FIG. 6B is a diagram illustrating an example of an ice manufacturing method used in the second embodiment.
  • FIG. 7 is a view showing a change in pH of ice-dissolved water used in the second embodiment.
  • FIG. 8 is a diagram illustrating an electrolyzed water generating device used in the second embodiment.
  • FIG. 9 is a diagram illustrating an example of ice having a multiphase structure according to the third embodiment.
  • FIG. 10 is a diagram illustrating an example of ice having a multiphase structure according to the fourth embodiment.
  • FIG. 11A is a diagram illustrating an example of an ice manufacturing method used in the fourth embodiment.
  • FIG. 11B is a diagram illustrating an example of an ice manufacturing method used in the fourth embodiment.
  • FIG. 11C is a diagram illustrating an example of an ice manufacturing method used in the fourth embodiment.
  • FIG. 11D is a diagram illustrating an example of a method for producing ice used in the fourth embodiment.
  • FIG. 11E is a diagram illustrating an example of a method for producing ice used in the fourth embodiment.
  • FIG. 12 is a diagram illustrating a cross-section of another example of ice according to the fourth embodiment.
  • FIG. 13 is a cross-sectional view illustrating an example of ice having a multiphase structure according to the fifth embodiment.
  • FIG. 14A is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment.
  • FIG. 14A is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment.
  • FIG. 14B is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment.
  • FIG. 14C is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment.
  • FIG. 14D is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment.
  • FIG. 14E is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment.
  • FIG. 14F is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment.
  • FIG. 14G is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment.
  • FIG. 14H is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment.
  • FIG. 15 is a cross-sectional view illustrating an example of ice having a multiphase structure according to the sixth embodiment.
  • FIG. 16 is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the sixth embodiment.
  • the multi-phase structure ice according to the embodiment is a multi-phase structure ice including a first phase having a first composition and a second phase having a second composition different from the first composition.
  • the first phase is formed using electrolyzed water.
  • hypochlorous acid water acidic electrolyzed water
  • alkaline electrolyzed water alkaline electrolyzed water
  • the second phase can be formed using an ascorbic acid aqueous solution or using alkaline electrolyzed water.
  • the first phase can be arranged outside the second phase.
  • the above-mentioned multi-phase ice can be frozen directly on fresh products.
  • the above-mentioned multi-phase ice can be frozen directly on fresh products.
  • FIG. 1 is a cross-sectional view illustrating an example of ice having a multiphase structure according to the first embodiment.
  • the ice 10 has a weight of 100 g and has a two-phase configuration of the second phase 2 in the center and the first phase 1 in the surface layer.
  • the second phase 2 is formed with 50 g of an ascorbic acid aqueous solution containing 0.5 g of ascorbic acid per liter
  • the first phase 1 is formed with 50 g of hypochlorous acid water having an effective chlorine concentration of 50 ppm. .
  • FIG. 2A and FIG. 2B are schematic diagrams for explaining an example of the ice manufacturing method used in the first embodiment.
  • the ascorbic acid aqueous solution 2 ' is poured into an ice tray 11 having a length of 16 mm, a width of 16 mm, and a height of 20 mm to make ice.
  • the ice 2 in the ice tray 11 is transferred to an ice tray 12 having a length 20 mm, width 20 mm, and height 25 mm larger than the ice tray 11, and the periphery of the ice 2 is supported by the support member 3, and hypochlorous acid.
  • the ice is made by pouring water and fixing the position in the depth direction by covering the ice tray 12 with the lid 4 provided with the support member 3, and a second portion formed using an ascorbic acid aqueous solution at the center. It is possible to form an ice 10 having a laminated structure including the phase 2 and the first phase 1 formed using electrolyzed water as a surface layer. In the first phase 1 of the obtained ice 10, a groove 6 is formed at a location fixed using the support member 3.
  • FIG. 3 shows changes in the effective chlorine concentration of the dissolved water when the ice 10 is naturally melted.
  • FIG. 4 is a graph showing the relationship between the amount of ascorbic acid dissolved in 1 liter of water containing 50 ppm of hypochlorous acid and the effective chlorine concentration.
  • Hypochlorous acid water is generated as acidic electrolyzed water by electrolysis of salt water or the like. Hypochlorous acid has a strong sterilizing function and deodorizing function, but a unique chlorine odor is generated. Ice with hypochlorous acid water can be sterilized and deodorized with hypochlorous acid, but hypochlorous acid is stable and not decomposed even when neutralized, so the dissolved water will have a chlorine odor over a long period of time. Will occur.
  • the sterilizing and deodorizing function with hypochlorous acid often has no problem even if it is lowered after acting for a desired period of time, but rather the chlorine odor should disappear.
  • Ascorbic acid is a substance that effectively decomposes hypochlorous acid other than bacteria.
  • the graph 102 in FIG. 4 shows the change in effective chlorine concentration after ascorbic acid is added to hypochlorous acid water having a concentration of 50 ppm and stirred for 1 minute.
  • the ascorbic acid required for hypochlorous acid decomposition is not equivalent in terms of the number of molecules, but it seems that one ascorbic acid can basically decompose one hypochlorous acid over time. It is. This is thought to be because hypochlorous acid is decomposed by ascorbic acid being oxidized to hypochlorous acid.
  • ascorbic acid is safe for the human body and does not give off an unpleasant odor
  • 0.5 g in 1 liter is added more than the number of hypochlorous acid molecules to form the center of ice. .
  • the water in which the surface layer is dissolved shows an effective chlorine concentration of 50 ppm as hypochlorous acid water, but when the central portion starts to melt, the effective chlorine concentration decreases. After the time T1, the effective chlorine concentration became zero while leaving the center.
  • the addition amount of the ascorbic acid aqueous solution can be set so that the ratio of the number of hypochlorous acid molecules to the number of molecules of ascorbic acid is 0.01 to 10. If it is less than 0.01, the acidity peculiar to ascorbic acid tends to be felt strongly, and if it exceeds 10, there is a tendency that the chlorine odor cannot be sufficiently suppressed.
  • an appropriate amount of the concentration of the ascorbic acid aqueous solution to be used in the range of 10 to 1000 ppm.
  • concentration and quantity such as making 100 g of ice with 10 ppm ascorbic acid water and making 10 g of 50 ppm hypochlorous acid water on the outside, the change in composition due to melting shown in FIG. Can be adjusted as appropriate. If it is less than 10 ppm, there is a tendency that the effect is not sufficiently exhibited because it is too thin, and if it exceeds 1000 ppm, adjustment tends to be difficult because it is too thick.
  • FIG. 5 is a cross-sectional view illustrating an example of ice having a multiphase structure according to the second embodiment.
  • the ice 101 includes a first phase 1 made of acidic hypochlorous acid water ice provided on the surface layer and a second phase 5 made of alkaline sodium hydroxide aqueous ice provided in the center. And a laminated structure.
  • FIG. 6A and FIG. 6B are schematic diagrams for explaining an example of the ice manufacturing method used in the second embodiment.
  • this method is the same as the ice manufacturing method used in the first embodiment, except that the sodium hydroxide aqueous solution 5 ′ is poured into the ice tray 11 instead of the ascorbic acid aqueous solution 2 ′ to make ice. It is.
  • a second phase 5 formed using a sodium hydroxide aqueous solution 5 ′ instead of an ascorbic acid aqueous solution 2 ′ at the center, and a first phase 1 formed using electrolytic water as a surface layer. It is possible to form ice 101 having a laminated structure consisting of
  • FIG. 7 shows the pH change of the molten water when the ice 101 melts.
  • FIG. 8 shows an apparatus for generating hypochlorous acid water and sodium hydroxide aqueous solution used for the ice 101.
  • an electrolyzed water generating apparatus 50 includes an intermediate chamber 51 in which saturated saline is circulated, and an anode chamber 54 having an anode electrode 56 via ion exchange membranes 52 and 53 on the left and right sides thereof, and It has a three-chamber type electrolytic cell 58 in which a cathode chamber 55 provided with a cathode electrode 57 is arranged.
  • a voltage is applied to each of the anode electrode 56 and the cathode electrode 57.
  • the intermediate chamber 51 is connected to a saturated saline circulation system 63 including a saturated saline reservoir 61 and a salt water circulation pump 62, and a saturated saline 65 is always supplied.
  • the anode chamber 54 and the cathode chamber 55 are connected to a water supply system 64, and new water is always supplied.
  • anode chamber 54 chlorine ions in the intermediate chamber 51 are induced by the anode electrode 56 and chlorine gas is generated to generate hypochlorous acid water.
  • sodium ions in the intermediate chamber 51 are induced by the cathode electrode 57.
  • hydrogen gas is generated to produce an aqueous sodium hydroxide solution.
  • the former is hypochlorous acid water having an effective chlorine concentration of 20 to 60 ppm and a pH of about 2 to 5, and the latter is an aqueous sodium hydroxide solution having a pH of about 10 to 13.
  • the sodium hydroxide aqueous solution is taken out from the cathode chamber 55 through the discharge line 71 together with the generated hydrogen gas.
  • This hypochlorous acid water is a safe water that has an excellent bactericidal effect and is also approved for food additives. By generating ice with this hypochlorous acid water, ice useful for sterilization and preservation of seafood can be provided.
  • water containing hypochlorous acid can be generated while being neutral by mixing water obtained by diluting this sodium hydroxide aqueous solution about 4 times with the above-mentioned hypochlorous acid water.
  • This hypochlorous acid water near neutrality has no equilibrium reaction with chlorine gas, and can greatly reduce the chlorine odor.
  • hypochlorous acid the sodium hydroxide aqueous solution in the central portion is hypochlorous acid.
  • hypochlorous acid By neutralizing the acid water and maintaining hypochlorous acid itself, the sterilization and deodorizing function can be maintained to some extent, and the generation of chlorine gas can be suppressed by the neutralization to mitigate the chlorine odor.
  • the amount of sodium hydroxide aqueous solution added can be set so that the ratio of the number of hypochlorous acid molecules to the number of sodium hydroxide molecules is 0.1-10. If it is less than 0.1, the sodium hydroxide component remains harmful, and it tends to be alkaline and change the color of proteins and the like. If it exceeds 10, there is a tendency that it cannot be sufficiently neutralized.
  • the concentration of the aqueous sodium hydroxide solution used is preferably 1 to 1000 ppm. If it is less than 1 ppm, it tends to be too thin to produce a neutralizing effect, and if it exceeds 1000 ppm, the composition tends to change abruptly, or an adverse effect due to alkalinity tends to occur.
  • FIG. 9 is a schematic diagram illustrating an example of ice having a multiphase structure according to the third embodiment.
  • hypochlorous acid water similar to the first embodiment is sprayed on the fresh product 14 to freeze the first phase 7, and then the aqueous ascorbic acid solution similar to the first embodiment is sprayed.
  • a two-phase frozen structure in which the second phase 8 is frozen is used.
  • the sterilization function and chlorine odor can be controlled and adjusted well.
  • FIG. 10 is a cross-sectional view showing an example of ice having a multiphase structure according to the fourth embodiment.
  • this ice 30 has a weight of 100 g, a central portion composed of a second phase 23 formed of an aqueous solution 50 g similar to the ascorbic acid aqueous solution used in the first embodiment, It has a two-phase configuration with a surface layer composed of the first phase 22 formed of 50 g of hypochlorous acid water similar to the hypochlorous acid water used in the embodiment, and there is no groove in the first phase. Other than that, it has the same configuration as the ice having a multiphase structure according to the first embodiment.
  • FIGS. 11A to 11E are schematic diagrams for explaining an example of the ice manufacturing method used in the fourth embodiment.
  • hypochlorous acid water 22 ' similar to the hypochlorous acid water used in the first embodiment is poured into an ice tray 21 to make ice.
  • the hypochlorous acid water 22 ′ is cooled from the portion in contact with the ice tray 21 and begins to freeze.
  • FIG. 11B 40 g of hypochlorous acid water frozen along the ice tray is left, and the non-frozen hypochlorous acid water 22 is left. Remove all '. As a result, about 40 g of ice 22 having a recess 24 is obtained.
  • an aqueous solution 23 'similar to the ascorbic acid aqueous solution used in the first embodiment is introduced into the recess 24, and ice making is performed to obtain the ice 23 filling the recess 24.
  • the concentration of the ascorbic acid aqueous solution is 500 ppm and the amount added is 50 g.
  • hypochlorous acid water 22′10 g used for forming the ice 22 having the recess 24 is added to the ice tray 21 in which the ice 22 and the ice 23 filling the recess 24 are formed. Furthermore, by introducing and making ice as shown in FIG. 11E, as shown in FIG. 10, the center part composed of the second phase 23 formed with the ascorbic acid aqueous solution and the first formed with hypochlorous acid water are used. The ice 30 having a two-phase structure with the surface layer composed of the phase 22 is obtained.
  • ice produced in the process shown in FIG. 11C can be used.
  • FIG. 12 shows a cross-sectional view of another example of ice according to the fourth embodiment.
  • the ice 30 ′ produced in the step shown in FIG. 11C is composed of a first phase composed of ice 22 having a recess 24 and a second phase composed of ice 23 filling the recess 24. Since one phase does not cover the second phase, the second phase is partially exposed.
  • the composition change when the ice shown in FIGS. 3 and 7 melts can be changed gradually and quickly.
  • the function of sterilization and deodorization is initially exhibited by the acidic hypochlorous acid water when it comes into contact with the first seafood.
  • Ascorbic acid aqueous solution decomposed the hypochlorous acid water in the central part, and ascorbic acid remained in the water in which all the ice was dissolved, but there was no particular odor of chlorine.
  • a first phase formed by freezing hypochlorous acid water and a second phase formed by freezing ascorbic acid aqueous solution or sodium hydroxide aqueous solution are provided.
  • ice having a phase structure is used, various other combinations may be used, and a phase structure of three or more phases may be used.
  • FIG. 13 is a cross-sectional view showing an example of ice having a multiphase structure according to the fifth embodiment.
  • the ice 10 weighs 100 g, and the second phase 34 in the center, the first phase 32 in the surface layer, and the second phase 34 in the intermediate layer provided between the first phase 32 and the second phase 34. It has a three-phase configuration with three phases 33.
  • the second phase 34 is formed with 25 g of an ascorbic acid aqueous solution containing 0.5 g of ascorbic acid per liter, and the first phase 32 is formed with 25 g of hypochlorous acid water having an effective chlorine concentration of 50 ppm.
  • the third phase 33 is formed by 50 g of water.
  • FIGS. 14A to 14H are schematic views for explaining an example of a method for producing ice having a multiphase structure according to the fifth embodiment.
  • This method is a modification of the fourth embodiment.
  • ice is made by flowing hypochlorous acid water 32 ′ similar to the hypochlorous acid water used in the first embodiment to the ice tray 31.
  • the hypochlorous acid water 32 ′ is cooled from the portion in contact with the ice tray 31 and begins to freeze.
  • the non-frozen hypochlorous acid water 32'80g is removed. Thereby, the ice 32 which has the dent 35 is obtained.
  • the water 33 ′ is supplied to the ice 32 having the dent 35 to a depth D 2 that is sufficiently smaller than the depth D 1 of the dent 35, for example, 1 mm.
  • the portion is frozen to a certain thickness, for example, 2 to 3 mm, 33'30 g of water is removed.
  • the ice 33 which has the dent 36 is obtained.
  • an aqueous solution 34 'similar to the ascorbic acid aqueous solution used in the first embodiment is introduced into the recess 36, and ice is made to fill the recess 36 by making ice.
  • the addition amount of 500 ppm ascorbic acid aqueous solution was 25 g.
  • water 33′5 g used for forming the ice 33 having the dent 35 is further introduced into the ice tray 31 in which the ice 33 and the ice 34 filling the dent 36 are formed, By making ice, the periphery of the ice 34 can be covered with the ice 33.
  • hypochlorite water 32 ′ similar to the hypochlorous acid water used in the first embodiment into ice tray 31 to make ice, as shown in FIG. 14H. Further, the periphery of the ice 33 can be covered with the ice 32, and ice having a three-phase structure as shown in FIG. 13 is obtained.
  • the size of the ice is not limited to 100 g, and may be 10 g or 200 g.
  • the larger the ice size the longer it takes to melt, and the smaller the ice, the faster it melts.
  • the amount, concentration, and composition of each phase can also be set as appropriate. The longer the amount, the longer the time for melting, and the higher the concentration, the abrupt change to the corresponding phase composition.
  • FIG. 15 is a cross-sectional view illustrating an example of ice having a multiphase structure according to the sixth embodiment.
  • This method is a modification of the first embodiment, and a third phase 17 is provided as an intermediate layer between the second phase 2 in the center and the first phase 1 in the surface layer. Except for this, it is the same as the first embodiment.
  • FIG. 16 is a schematic diagram for explaining an example of a method for producing ice having a multiphase structure according to the sixth embodiment.
  • the periphery of the ice 2 is supported by the support member 3, and ice 7 is formed as an intermediate phase by supplying water to the ice tray 12 instead of hypochlorous acid water.
  • a groove 6 is formed at a location fixed using the support member 3.
  • the periphery of the ice 7 is supported by the support member 9, the hypochlorous acid water 1 ′ is poured, and the ice tray 13 is further moved by the lid body 41 provided with the support member 9.
  • a second phase 2 formed using an ascorbic acid aqueous solution at the center as shown in FIG. 15 and a second phase formed from water as an intermediate layer
  • a groove 42 is formed at a location fixed using the support member 9
  • the third phase 7 is formed at a location fixed using the support member 3.
  • a groove 6 is formed.
  • the first phase is slowly added only for the time during which the third phase is dissolved.
  • the composition can be changed so as to dilute the phase.
  • compositions and amount of each phase may be appropriately changed depending on the situation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Inorganic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)
  • Food Preservation Except Freezing, Refrigeration, And Drying (AREA)

Abstract

Ice having a multi-phase structure according to an embodiment comprises: a first phase which is formed using electrolyzed water; and a second phase which has a different chemical composition from that of the first phase.

Description

電解水を用いた多相構造の氷Multiphase ice using electrolyzed water
 本発明の実施形態は、電解水を用いた多相構造の氷に関する。 Embodiments of the present invention relate to ice having a multiphase structure using electrolyzed water.
 生鮮品などの保存には一般的に氷が使われている。 Ice is generally used to store fresh products.
 この氷による低温鮮度保存に加えて、氷に使われる水に殺菌性を有した電解水を用いる技術がある。 In addition to this low temperature freshness preservation with ice, there is a technology that uses electrolyzed water having bactericidal properties as the water used for ice.
 これは、氷を形成する水自体に塩水を分解して得られる次亜塩素酸や次亜塩素酸ナトリウムを含んだ水を用い、次亜塩素酸や次亜塩素酸ナトリウムによる殺菌効果あるいは除臭効果を持たせたものである。 This is because water containing hypochlorous acid and sodium hypochlorite obtained by decomposing salt water into the water that forms ice itself is used for bactericidal effects or deodorization with hypochlorous acid and sodium hypochlorite. It has an effect.
 また、別の生鮮品などの保存方法として生鮮品に水を噴霧して表層だけ氷結させる技術が一般的に使われている。 Also, as a method for preserving other fresh products, a technique is generally used in which fresh products are sprayed with water to freeze only the surface layer.
 ここでも、使用する水に殺菌性を有した電解水を用いる技術がある。 Here again, there is a technique using electrolyzed water having bactericidal properties as the water used.
 しかしながら、従来の氷では次亜塩素酸などにより殺菌機能や除臭機能を付与することができるが、次亜塩素酸や次亜塩素酸ナトリウムは塩素臭を伴う問題があった。 However, conventional ice can give a sterilizing function and a deodorizing function with hypochlorous acid and the like, but hypochlorous acid and sodium hypochlorite have a problem with a chlorine odor.
 また、溶解した水のpHにより生鮮品や容器が変質する問題があった。 Also, there was a problem that the quality of fresh products and containers changed due to the pH of the dissolved water.
特開2002-277118号公報JP 2002-277118 A 特開2005―333922号公報JP 2005-333922 A 特開2003-254652号公報JP 2003-254652 A
 本発明の実施形態は、電解水と、電解水とは組成が異なる水溶液とを必要に応じて適用し得る多相構造の氷を提供することを目的とする。 Embodiment of this invention aims at providing the ice of the multiphase structure which can apply electrolyzed water and the aqueous solution from which composition differs from electrolyzed water as needed.
 実施形態にかかる多相構造の氷は、電解水を用いて形成された第1の相、及び第1の相の組成とは異なる組成を有する第2の相を含むことを特徴とする。 The multi-phase structure ice according to the embodiment includes a first phase formed using electrolyzed water and a second phase having a composition different from the composition of the first phase.
図1は、第1の実施形態に係る多相構造を有する氷の一例を表す断面図である。FIG. 1 is a cross-sectional view illustrating an example of ice having a multiphase structure according to the first embodiment. 図2Aは、第1の実施形態に用いられる氷の製造方法の一例を表す図である。FIG. 2A is a diagram illustrating an example of an ice manufacturing method used in the first embodiment. 図2Bは、第1の実施形態に用いられる氷の製造方法の一例を表す図である。FIG. 2B is a diagram illustrating an example of an ice manufacturing method used in the first embodiment. 図3は、第1の実施形態に係る多相構造を有する氷の有効塩素濃度変化を示す図である。FIG. 3 is a diagram showing a change in effective chlorine concentration of ice having a multiphase structure according to the first embodiment. 図4は、次亜塩素酸とアスコルビン酸と有効塩素濃度との関係を表すグラフ図である。FIG. 4 is a graph showing the relationship between hypochlorous acid, ascorbic acid, and effective chlorine concentration. 図5は、第2の実施形態にかかる多相構造を有する氷の一例を表す断面図である。FIG. 5 is a cross-sectional view illustrating an example of ice having a multiphase structure according to the second embodiment. 図6Aは、第2の実施形態に用いられる氷の製造方法の一例を表す図である。FIG. 6A is a diagram illustrating an example of an ice manufacturing method used in the second embodiment. 図6Bは、第2の実施形態に用いられる氷の製造方法の一例を表す図である。FIG. 6B is a diagram illustrating an example of an ice manufacturing method used in the second embodiment. 図7は、第2の実施形態に用いられる氷の溶解水のpH変化を示す図である。FIG. 7 is a view showing a change in pH of ice-dissolved water used in the second embodiment. 図8は、第2の実施形態に用いられる電解水の生成装置を表す図である。FIG. 8 is a diagram illustrating an electrolyzed water generating device used in the second embodiment. 図9は、第3の実施形態に係る多相構造を有する氷の一例を示す図である。FIG. 9 is a diagram illustrating an example of ice having a multiphase structure according to the third embodiment. 図10は、第4の実施形態に係る多相構造を有する氷の一例を示す図である。FIG. 10 is a diagram illustrating an example of ice having a multiphase structure according to the fourth embodiment. 図11Aは、第4の実施形態に用いられる氷の製造方法の一例を表す図である。FIG. 11A is a diagram illustrating an example of an ice manufacturing method used in the fourth embodiment. 図11Bは、第4の実施形態に用いられる氷の製造方法の一例を表す図である。FIG. 11B is a diagram illustrating an example of an ice manufacturing method used in the fourth embodiment. 図11Cは、第4の実施形態に用いられる氷の製造方法の一例を表す図である。FIG. 11C is a diagram illustrating an example of an ice manufacturing method used in the fourth embodiment. 図11Dは、第4の実施形態に用いられる氷の製造方法の一例を表す図である。FIG. 11D is a diagram illustrating an example of a method for producing ice used in the fourth embodiment. 図11Eは、第4の実施形態に用いられる氷の製造方法の一例を表す図である。FIG. 11E is a diagram illustrating an example of a method for producing ice used in the fourth embodiment. 図12は、第4の実施形態に係る氷の他の一例の断面を表す図である。FIG. 12 is a diagram illustrating a cross-section of another example of ice according to the fourth embodiment. 図13は、第5の実施形態に係る多相構造を有する氷の一例を表す断面図である。FIG. 13 is a cross-sectional view illustrating an example of ice having a multiphase structure according to the fifth embodiment. 図14Aは、第5の実施形態に係る多相構造を有する氷の製造方法の一例を表す図である。FIG. 14A is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment. 図14Bは、第5の実施形態に係る多相構造を有する氷の製造方法の一例を表す図である。FIG. 14B is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment. 図14Cは、第5の実施形態に係る多相構造を有する氷の製造方法の一例を表す図である。FIG. 14C is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment. 図14Dは、第5の実施形態に係る多相構造を有する氷の製造方法の一例を表す図である。FIG. 14D is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment. 図14Eは、第5の実施形態に係る多相構造を有する氷の製造方法の一例を表す図である。FIG. 14E is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment. 図14Fは、第5の実施形態に係る多相構造を有する氷の製造方法の一例を表す図である。FIG. 14F is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment. 図14Gは、第5の実施形態に係る多相構造を有する氷の製造方法の一例を表す図である。FIG. 14G is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment. 図14Hは、第5の実施形態に係る多相構造を有する氷の製造方法の一例を表す図である。FIG. 14H is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the fifth embodiment. 図15は、第6の実施形態に係る多相構造を有する氷の一例を表す断面図である。FIG. 15 is a cross-sectional view illustrating an example of ice having a multiphase structure according to the sixth embodiment. 図16は、第6の実施形態に係る多相構造を有する氷の製造方法の一例を表す図である。FIG. 16 is a diagram illustrating an example of a method for producing ice having a multiphase structure according to the sixth embodiment.
 実施形態に係る多相構造の氷は、第1の組成を有する第1の相と、第1の組成とは異なる第2の組成を有する第2の相とを含む多相構造の氷であって、第1の相は電解水を用いて形成されている。 The multi-phase structure ice according to the embodiment is a multi-phase structure ice including a first phase having a first composition and a second phase having a second composition different from the first composition. The first phase is formed using electrolyzed water.
 電解水としては、例えば、次亜塩素酸水(酸性電解水)、あるいはアルカリ性電解水を用いることができる。 As the electrolyzed water, for example, hypochlorous acid water (acidic electrolyzed water) or alkaline electrolyzed water can be used.
 電解水が酸性電解水であるとき、第2の相は、アスコルビン酸水溶液を用いて形成するか、あるいはアルカリ性電解水を用いて形成することができる。 When the electrolyzed water is acidic electrolyzed water, the second phase can be formed using an ascorbic acid aqueous solution or using alkaline electrolyzed water.
 第1の相は第2の相よりも外側に配置することができる。 The first phase can be arranged outside the second phase.
 また、上記多相構造の氷を、生鮮品に直接氷結させることができる。 Also, the above-mentioned multi-phase ice can be frozen directly on fresh products.
 生鮮品の保存方法として、上記多相構造の氷を生鮮品に直接氷結させることができる。 As a method for preserving fresh products, the above-mentioned multi-phase ice can be frozen directly on fresh products.
 以下、実施の形態について、図面を参照して説明する。 Hereinafter, embodiments will be described with reference to the drawings.
(第1の実施形態)
 図1は、第1の実施形態に係る多相構造を有する氷の一例を表す断面図である。
(First embodiment)
FIG. 1 is a cross-sectional view illustrating an example of ice having a multiphase structure according to the first embodiment.
 氷10は100gの重さがあり、中心部の第2の相2と、表層の第1の相1との2相構成となっている。第2の相2は1リットルあたり0.5gのアスコルビン酸を含んだアスコルビン酸水溶液50gで形成され、第1の相1は50ppmの有効塩素濃度を示す次亜塩素酸水50gで形成されている。 The ice 10 has a weight of 100 g and has a two-phase configuration of the second phase 2 in the center and the first phase 1 in the surface layer. The second phase 2 is formed with 50 g of an ascorbic acid aqueous solution containing 0.5 g of ascorbic acid per liter, and the first phase 1 is formed with 50 g of hypochlorous acid water having an effective chlorine concentration of 50 ppm. .
 図2A及び図2Bは、第1の実施形態に用いられる氷の製造方法の一例を説明するための模式図である。 FIG. 2A and FIG. 2B are schematic diagrams for explaining an example of the ice manufacturing method used in the first embodiment.
 まず、図2Aに示すように、アスコルビン酸水溶液2’を縦16mm、横16mm、及び高さ20mmの製氷皿11に流して製氷する。 First, as shown in FIG. 2A, the ascorbic acid aqueous solution 2 'is poured into an ice tray 11 having a length of 16 mm, a width of 16 mm, and a height of 20 mm to make ice.
 次に、製氷皿11内の氷2を製氷皿11より大きい縦20mm、横20mm、及び高さ25mmの製氷皿12に移し、氷2の周囲を支持部材3によって支持して、次亜塩素酸水を流し、さらに、支持部材3が設けられた蓋体4により製氷皿12を覆うことにより深さ方向の位置を固定して製氷し、中心部にアスコルビン酸水溶液を用いて形成された第2の相2と、表面層として電解水を用いて形成された第1の相1とからなる積層構造の氷10を形成することができる。得られた氷10の第1の相1には、支持部材3を用いて固定された箇所に溝6が形成されている。 Next, the ice 2 in the ice tray 11 is transferred to an ice tray 12 having a length 20 mm, width 20 mm, and height 25 mm larger than the ice tray 11, and the periphery of the ice 2 is supported by the support member 3, and hypochlorous acid. The ice is made by pouring water and fixing the position in the depth direction by covering the ice tray 12 with the lid 4 provided with the support member 3, and a second portion formed using an ascorbic acid aqueous solution at the center. It is possible to form an ice 10 having a laminated structure including the phase 2 and the first phase 1 formed using electrolyzed water as a surface layer. In the first phase 1 of the obtained ice 10, a groove 6 is formed at a location fixed using the support member 3.
 図3は、氷10を自然溶融させたときの溶解水の有効塩素濃度変化を示したものである。 FIG. 3 shows changes in the effective chlorine concentration of the dissolved water when the ice 10 is naturally melted.
 また、図4は、50ppmの次亜塩素酸を含有する水1リットルに溶解したアスコルビン酸の量と、有効塩素濃度との関係を表すグラフ図である。 FIG. 4 is a graph showing the relationship between the amount of ascorbic acid dissolved in 1 liter of water containing 50 ppm of hypochlorous acid and the effective chlorine concentration.
 次亜塩素酸水は塩水などの電解により酸性電解水として生成される。次亜塩素酸には強い殺菌機能や除臭機能があるが、一方で独特の塩素臭が発生する。次亜塩素酸水を用いた氷では次亜塩素酸により殺菌や除臭をすることができるが、次亜塩素酸は中和しても安定で分解されないため溶解した水は長期に渡り塩素臭を発生してしまう。 Hypochlorous acid water is generated as acidic electrolyzed water by electrolysis of salt water or the like. Hypochlorous acid has a strong sterilizing function and deodorizing function, but a unique chlorine odor is generated. Ice with hypochlorous acid water can be sterilized and deodorized with hypochlorous acid, but hypochlorous acid is stable and not decomposed even when neutralized, so the dissolved water will have a chlorine odor over a long period of time. Will occur.
 一方、例えば生鮮品の保存の際、次亜塩素酸による殺菌除臭機能は、所望の期間作用させた後、低下しても問題ない場合が多く、むしろ、塩素臭は消失した方がよい。 On the other hand, for example, when storing fresh products, the sterilizing and deodorizing function with hypochlorous acid often has no problem even if it is lowered after acting for a desired period of time, but rather the chlorine odor should disappear.
 細菌以外で効果的に次亜塩素酸を分解する物質としてアスコルビン酸があげられる。 Ascorbic acid is a substance that effectively decomposes hypochlorous acid other than bacteria.
 図4のグラフ102は、アスコルビン酸を50ppmの濃度を持つ次亜塩素酸水に投入して1分間攪拌した後の有効塩素濃度変化を示している。図示するように、次亜塩素酸分解に必要なアスコルビン酸は分子数で同等とはなっていないが、時間をかければ基本的に1つのアスコルビン酸で1つの次亜塩素酸を分解できると思われる。これは、アスコルビン酸が次亜塩素酸に酸化されることで次亜塩素酸を分解しているものと考えている。 The graph 102 in FIG. 4 shows the change in effective chlorine concentration after ascorbic acid is added to hypochlorous acid water having a concentration of 50 ppm and stirred for 1 minute. As shown in the figure, the ascorbic acid required for hypochlorous acid decomposition is not equivalent in terms of the number of molecules, but it seems that one ascorbic acid can basically decompose one hypochlorous acid over time. It is. This is thought to be because hypochlorous acid is decomposed by ascorbic acid being oxidized to hypochlorous acid.
 また、アスコルビン酸は人体に対して安全でありいやな臭いも出ないため、実施形態では1リットル中に0.5gと次亜塩素酸分子数より多めに投入して氷の中心部を形成した。 In addition, ascorbic acid is safe for the human body and does not give off an unpleasant odor, in the embodiment, 0.5 g in 1 liter is added more than the number of hypochlorous acid molecules to form the center of ice. .
 このため、図3のグラフ101に示すように、表層が溶解した水は次亜塩素酸水通りの有効塩素濃度50ppmを示すが、中心部が溶融し始めると有効塩素濃度が低下し、実験では時間T1経過後、中心部を残したまま有効塩素濃度はゼロとなった。 For this reason, as shown in the graph 101 of FIG. 3, the water in which the surface layer is dissolved shows an effective chlorine concentration of 50 ppm as hypochlorous acid water, but when the central portion starts to melt, the effective chlorine concentration decreases. After the time T1, the effective chlorine concentration became zero while leaving the center.
 この実験では、氷10を大気圧で温度25℃、湿度50%の環境で発砲スチロール箱に氷を24時間放置した。時間T1は、10~15時間であった。 In this experiment, ice 10 was left in a foamed polystyrene box for 24 hours in an environment of 25 ° C. and 50% humidity at atmospheric pressure. Time T1 was 10 to 15 hours.
 この結果、氷が全て溶解した水にはアスコルビン酸が残留するが、特に塩素臭を感じることはなかった。 As a result, ascorbic acid remained in the water in which all the ice was dissolved, but no particular chlorine odor was felt.
 アスコルビン酸水溶液の添加量は、アスコルビン酸の分子数に対する次亜塩素酸分子数の割合が0.01~10になるように設定することができる。0.01未満であると、アスコルビン酸特有の酸味が強く感じられる傾向があり、10を越えると、十分に塩素臭を抑えることができなくなる傾向がある。 The addition amount of the ascorbic acid aqueous solution can be set so that the ratio of the number of hypochlorous acid molecules to the number of molecules of ascorbic acid is 0.01 to 10. If it is less than 0.01, the acidity peculiar to ascorbic acid tends to be felt strongly, and if it exceeds 10, there is a tendency that the chlorine odor cannot be sufficiently suppressed.
 また、使用するアスコルビン酸水溶液の濃度は、10ないし1000ppmの範囲で適量を選定することが好ましい。たとえば10ppmのアスコルビン酸水による氷を100g製氷し、その外側に50ppmの次亜塩素酸水を10g薄く製氷する、といった具合に濃度と分量を変えることで、図3に示した溶融による組成の変化を適宜調整することもできる。10ppm未満であると、薄すぎて十分な効果が発揮されにくい傾向があり、1000ppmを越えると、濃すぎて調整が難しい傾向がある。 Further, it is preferable to select an appropriate amount of the concentration of the ascorbic acid aqueous solution to be used in the range of 10 to 1000 ppm. For example, by changing the concentration and quantity, such as making 100 g of ice with 10 ppm ascorbic acid water and making 10 g of 50 ppm hypochlorous acid water on the outside, the change in composition due to melting shown in FIG. Can be adjusted as appropriate. If it is less than 10 ppm, there is a tendency that the effect is not sufficiently exhibited because it is too thin, and if it exceeds 1000 ppm, adjustment tends to be difficult because it is too thick.
(第2の実施形態)
 図5は、第2の実施形態にかかる多相構造を有する氷の一例を表す断面図である。
(Second Embodiment)
FIG. 5 is a cross-sectional view illustrating an example of ice having a multiphase structure according to the second embodiment.
 この氷101は、表層に設けられた酸性である次亜塩素酸水の氷からなる第1の相1と、中心部に設けられたアルカリ性の水酸化ナトリウム水溶液の氷からなる第2の相5との積層構造を有する。 The ice 101 includes a first phase 1 made of acidic hypochlorous acid water ice provided on the surface layer and a second phase 5 made of alkaline sodium hydroxide aqueous ice provided in the center. And a laminated structure.
 図6A及び図6Bは、第2の実施形態に用いられる氷の製造方法の一例を説明するための模式図である。 FIG. 6A and FIG. 6B are schematic diagrams for explaining an example of the ice manufacturing method used in the second embodiment.
 図示するように、この方法は、アスコルビン酸水溶液2’の代わりに水酸化ナトリウム水溶液5’を製氷皿11に流して製氷すること以外は、第1の実施形態に用いられる氷の製造方法と同様である。 As shown in the figure, this method is the same as the ice manufacturing method used in the first embodiment, except that the sodium hydroxide aqueous solution 5 ′ is poured into the ice tray 11 instead of the ascorbic acid aqueous solution 2 ′ to make ice. It is.
 この方法により、中心部にアスコルビン酸水溶液2’の代わりに水酸化ナトリウム水溶液5’を用いて形成された第2の相5と、表面層として電解水を用いて形成された第1の相1とからなる積層構造の氷101を形成することができる。 By this method, a second phase 5 formed using a sodium hydroxide aqueous solution 5 ′ instead of an ascorbic acid aqueous solution 2 ′ at the center, and a first phase 1 formed using electrolytic water as a surface layer. It is possible to form ice 101 having a laminated structure consisting of
 図7は、氷101が溶融したときの溶融水のpH変化を示している。 FIG. 7 shows the pH change of the molten water when the ice 101 melts.
 図8は、氷101に使われる次亜塩素酸水と水酸化ナトリウム水溶液の生成装置を示している。 FIG. 8 shows an apparatus for generating hypochlorous acid water and sodium hydroxide aqueous solution used for the ice 101.
 図示するように、電解水生成装置50は、飽和食塩水を循環させた中間室51と、その左右にイオン交換膜52,53を介して、各々、陽極電極56を備えた陽極室54、及び陰極電極57を備えた陰極室55を配置した三室型の電解槽58を有する。 As shown in the figure, an electrolyzed water generating apparatus 50 includes an intermediate chamber 51 in which saturated saline is circulated, and an anode chamber 54 having an anode electrode 56 via ion exchange membranes 52 and 53 on the left and right sides thereof, and It has a three-chamber type electrolytic cell 58 in which a cathode chamber 55 provided with a cathode electrode 57 is arranged.
 陽極電極56及び陰極電極57には各々電圧が印加されている。 A voltage is applied to each of the anode electrode 56 and the cathode electrode 57.
 中間室51は、飽和食塩水貯留器61及び塩水循環ポンプ62を備えた飽和食塩水循環システム63と接続され、常に飽和食塩水65が供給される。 The intermediate chamber 51 is connected to a saturated saline circulation system 63 including a saturated saline reservoir 61 and a salt water circulation pump 62, and a saturated saline 65 is always supplied.
 陽極室54及び陰極室55は、給水システム64と接続され、各々、常に新しい水が供給される。 The anode chamber 54 and the cathode chamber 55 are connected to a water supply system 64, and new water is always supplied.
 陽極室54では陽極電極56により中間室51の塩素イオンを誘因するとともに塩素ガスを発生して次亜塩素酸水を生成し、陰極室55では陰極電極57により中間室51のナトリウムイオンを誘因するとともに水素ガスを発生して水酸化ナトリウム水溶液を生成する。前者は、有効塩素濃度20~60ppm、pH2~5程度の次亜塩素酸水であり、後者はpH10~13程度の水酸化ナトリウム水溶液となる。水酸化ナトリウム水溶液は発生した水素ガスとともに陰極室55から排出ライン71を通して取り出される。排出ライン71に気液分離ユニット72を設けることにより、水素ガスを排出ライン71から外部に放出することができる。 In the anode chamber 54, chlorine ions in the intermediate chamber 51 are induced by the anode electrode 56 and chlorine gas is generated to generate hypochlorous acid water. In the cathode chamber 55, sodium ions in the intermediate chamber 51 are induced by the cathode electrode 57. At the same time, hydrogen gas is generated to produce an aqueous sodium hydroxide solution. The former is hypochlorous acid water having an effective chlorine concentration of 20 to 60 ppm and a pH of about 2 to 5, and the latter is an aqueous sodium hydroxide solution having a pH of about 10 to 13. The sodium hydroxide aqueous solution is taken out from the cathode chamber 55 through the discharge line 71 together with the generated hydrogen gas. By providing the gas-liquid separation unit 72 in the discharge line 71, hydrogen gas can be discharged from the discharge line 71 to the outside.
 この次亜塩素酸水は優れた殺菌効果を有するとともに食品添加物にも認可された安全な水である。この次亜塩素酸水により氷を生成することで、魚介類の殺菌と保存に役立つ氷を提供することができる。 This hypochlorous acid water is a safe water that has an excellent bactericidal effect and is also approved for food additives. By generating ice with this hypochlorous acid water, ice useful for sterilization and preservation of seafood can be provided.
 また、この水酸化ナトリウム水溶液を4倍程度に希釈した水を上述した次亜塩素酸水に混合することで中性でありながら次亜塩素酸を含む水を生成することができる。 Moreover, water containing hypochlorous acid can be generated while being neutral by mixing water obtained by diluting this sodium hydroxide aqueous solution about 4 times with the above-mentioned hypochlorous acid water.
 この中性付近の次亜塩素酸水は、塩素ガスへの平衡反応がなくなり、塩素臭を大きく緩和することができる。 This hypochlorous acid water near neutrality has no equilibrium reaction with chlorine gas, and can greatly reduce the chlorine odor.
 すなわち、第2の実施形態の氷では、魚介類に接触した当初は酸性の次亜塩素酸水により殺菌や除臭の機能を発揮するが、その後は中心部分の水酸化ナトリウム水溶液が次亜塩素酸水を中和し、次亜塩素酸自体は残留することで殺菌除臭機能をある程度維持しつつ、中和により塩素ガスの発生を抑制して塩素臭を緩和することができる。 That is, in the ice of the second embodiment, the function of sterilization and deodorization is demonstrated by acidic hypochlorous acid water at the beginning of contact with seafood, but thereafter, the sodium hydroxide aqueous solution in the central portion is hypochlorous acid. By neutralizing the acid water and maintaining hypochlorous acid itself, the sterilization and deodorizing function can be maintained to some extent, and the generation of chlorine gas can be suppressed by the neutralization to mitigate the chlorine odor.
 水酸化ナトリウム水溶液の添加量は、水酸化ナトリウムの分子数に対する次亜塩素酸分子数の割合が0.1~10になるように設定することができる。0.1未満であると、水酸化ナトリウム成分が残って有害であるとともにアルカリ性となってタンパク質などを変質変色させる傾向があり、10を越えると、十分に中和できなくなる傾向がある。 The amount of sodium hydroxide aqueous solution added can be set so that the ratio of the number of hypochlorous acid molecules to the number of sodium hydroxide molecules is 0.1-10. If it is less than 0.1, the sodium hydroxide component remains harmful, and it tends to be alkaline and change the color of proteins and the like. If it exceeds 10, there is a tendency that it cannot be sufficiently neutralized.
 また、使用する水酸化ナトリウム水溶液の濃度は、1ないし1000ppmであることが好ましい。1ppm未満であると、薄すぎて中和効果が出にくい傾向があり、1000ppmを越えると、組成が急激に変化したり、アルカリ性に起因する弊害が起こりやすくなる傾向がある。 The concentration of the aqueous sodium hydroxide solution used is preferably 1 to 1000 ppm. If it is less than 1 ppm, it tends to be too thin to produce a neutralizing effect, and if it exceeds 1000 ppm, the composition tends to change abruptly, or an adverse effect due to alkalinity tends to occur.
(第3の実施形態)
 図9は、第3の実施形態に係る多相構造を有する氷の一例を示す模式図である。
(Third embodiment)
FIG. 9 is a schematic diagram illustrating an example of ice having a multiphase structure according to the third embodiment.
 ここでは、生鮮品14に第1の実施形態と同様の次亜塩素酸水を噴霧して第1の相7を氷結させ、その後、第1の実施形態と同様のアスコルビン酸水溶液を噴霧して第2の相8を氷結させた2相氷結構造としている。 Here, the hypochlorous acid water similar to the first embodiment is sprayed on the fresh product 14 to freeze the first phase 7, and then the aqueous ascorbic acid solution similar to the first embodiment is sprayed. A two-phase frozen structure in which the second phase 8 is frozen is used.
 このため、生鮮品に対しては殺菌除臭機能を発揮するとともに、外部に対する塩素臭を大幅に緩和することができる。 For this reason, it is possible to exert a sterilizing and deodorizing function for fresh products and to greatly reduce the chlorine odor to the outside.
 このように、本発明の積層化された氷を用いることで殺菌機能と塩素臭をうまく制御調整することができる。 Thus, by using the laminated ice of the present invention, the sterilization function and chlorine odor can be controlled and adjusted well.
(第4の実施形態)
 図10は、第4の実施形態に係る多相構造を有する氷の一例を示す断面図である。
(Fourth embodiment)
FIG. 10 is a cross-sectional view showing an example of ice having a multiphase structure according to the fourth embodiment.
 図示するように、この氷30は100gの重さがあり、第1の実施形態に用いられるアスコルビン酸水溶液と同様の水溶液50gで形成された第2の相23からなる中心部と、第1の実施形態に用いられる次亜塩素酸水と同様の次亜塩素酸水50gで形成された第1の相22からなる表層との二相構成となっており、第1の相に溝がないこと以外は、第1の実施形態に係る多相構造を有する氷と同様の構成を有する。 As shown in the figure, this ice 30 has a weight of 100 g, a central portion composed of a second phase 23 formed of an aqueous solution 50 g similar to the ascorbic acid aqueous solution used in the first embodiment, It has a two-phase configuration with a surface layer composed of the first phase 22 formed of 50 g of hypochlorous acid water similar to the hypochlorous acid water used in the embodiment, and there is no groove in the first phase. Other than that, it has the same configuration as the ice having a multiphase structure according to the first embodiment.
 図11Aないし図11Eに、第4の実施形態に用いられる氷の製造方法の一例を説明するための模式図を示す。 FIGS. 11A to 11E are schematic diagrams for explaining an example of the ice manufacturing method used in the fourth embodiment.
 まず、図11Aに示すように、第1の実施形態に用いられる次亜塩素酸水と同様の次亜塩素酸水22’を製氷皿21に流して製氷する。このとき、次亜塩素酸水22’は、製氷皿21に接触している部分から冷却されて凍り始める。次亜塩素酸水22’の中心部が凍結する前に、図11Bに示すように、製氷皿に沿って凍結した次亜塩素酸水40gを残して、凍結していない次亜塩素酸水22’を全て取り除く。これにより、凹み24を有する約40gの氷22が得られる。 First, as shown in FIG. 11A, hypochlorous acid water 22 'similar to the hypochlorous acid water used in the first embodiment is poured into an ice tray 21 to make ice. At this time, the hypochlorous acid water 22 ′ is cooled from the portion in contact with the ice tray 21 and begins to freeze. Before the central portion of the hypochlorous acid water 22 ′ freezes, as shown in FIG. 11B, 40 g of hypochlorous acid water frozen along the ice tray is left, and the non-frozen hypochlorous acid water 22 is left. Remove all '. As a result, about 40 g of ice 22 having a recess 24 is obtained.
 次に、図11Cに示すように、凹み24に第1の実施形態に用いられるアスコルビン酸水溶液と同様の水溶液23’を導入し、製氷することにより、凹み24を埋める氷23を得る。このとき、アスコルビン酸水溶液は濃度500ppmで添加量は50gである。 Next, as shown in FIG. 11C, an aqueous solution 23 'similar to the ascorbic acid aqueous solution used in the first embodiment is introduced into the recess 24, and ice making is performed to obtain the ice 23 filling the recess 24. At this time, the concentration of the ascorbic acid aqueous solution is 500 ppm and the amount added is 50 g.
 続いて、図11Dに示すように、氷22と凹み24を埋める氷23とが形成された製氷皿21に、凹み24を有する氷22の形成に使用された次亜塩素酸水22’10gをさらに導入し、図11Eのように製氷することにより、図10に示すように、アスコルビン酸水溶液で形成された第2の相23からなる中心部と、次亜塩素酸水で形成された第1の相22からなる表層との二相構造を有する氷30が得られる。 Subsequently, as shown in FIG. 11D, hypochlorous acid water 22′10 g used for forming the ice 22 having the recess 24 is added to the ice tray 21 in which the ice 22 and the ice 23 filling the recess 24 are formed. Furthermore, by introducing and making ice as shown in FIG. 11E, as shown in FIG. 10, the center part composed of the second phase 23 formed with the ascorbic acid aqueous solution and the first formed with hypochlorous acid water are used. The ice 30 having a two-phase structure with the surface layer composed of the phase 22 is obtained.
 また、第4の実施形態に係る氷の他の例として、図11Cに示す工程で製氷された氷を使用することができる。 Also, as another example of ice according to the fourth embodiment, ice produced in the process shown in FIG. 11C can be used.
 図12に、第4の実施形態に係る氷の他の一例の断面を表す図を示す。 FIG. 12 shows a cross-sectional view of another example of ice according to the fourth embodiment.
 図示するように、図11Cに示す工程で製氷された氷30’は、凹み24を有する氷22からなる第1の相と、凹み24を埋める氷23からなる第2の相とからなり、第1の相は第2の相を被覆していないので、第2の相は部分的に露出されている。 As shown in the figure, the ice 30 ′ produced in the step shown in FIG. 11C is composed of a first phase composed of ice 22 having a recess 24 and a second phase composed of ice 23 filling the recess 24. Since one phase does not cover the second phase, the second phase is partially exposed.
 このように一部を最初から露出させることで図3,7に示した氷が溶けたときの組成変化を緩やかに早めに変えることができる。 Thus, by exposing a part from the beginning, the composition change when the ice shown in FIGS. 3 and 7 melts can be changed gradually and quickly.
 第4の実施形態の氷では、第1の実施形態の氷と同様に、第1の魚介類に接触した当初は酸性の次亜塩素酸水により殺菌や除臭の機能を発揮するが、その後は中心部分のアスコルビン酸水溶液が次亜塩素酸水を分解し、氷が全て溶解した水にはアスコルビン酸が残留するが、特に塩素臭を感じることはなかった。 In the ice of the fourth embodiment, as in the ice of the first embodiment, the function of sterilization and deodorization is initially exhibited by the acidic hypochlorous acid water when it comes into contact with the first seafood. Ascorbic acid aqueous solution decomposed the hypochlorous acid water in the central part, and ascorbic acid remained in the water in which all the ice was dissolved, but there was no particular odor of chlorine.
(第5の実施形態)
 上記第1ないし第4の実施形態では次亜塩素酸水を凍結して形成された第1の相と、アスコルビン酸水溶液もしくは水酸化ナトリウム水溶液を凍結して形成された第2の相を有する多相構造の氷としたが、その他様々な組み合わせであってもよいし、3相以上の相構造としてもよい。
(Fifth embodiment)
In the first to fourth embodiments, a first phase formed by freezing hypochlorous acid water and a second phase formed by freezing ascorbic acid aqueous solution or sodium hydroxide aqueous solution are provided. Although ice having a phase structure is used, various other combinations may be used, and a phase structure of three or more phases may be used.
 図13は、第5の実施形態に係る多相構造を有する氷の一例を表す断面図である。 FIG. 13 is a cross-sectional view showing an example of ice having a multiphase structure according to the fifth embodiment.
 氷10は100gの重さがあり、中心部の第2の相34と、表層の第1の相32と、第1の相32と第2の相34の間に設けられた中間層の第3の相33との3相構成となっている。第2の相34は1リットルあたり0.5gのアスコルビン酸を含んだアスコルビン酸水溶液25gで形成され、第1の相32は50ppmの有効塩素濃度を示す次亜塩素酸水25gで形成され、第3の相33は水50gで形成されている。 The ice 10 weighs 100 g, and the second phase 34 in the center, the first phase 32 in the surface layer, and the second phase 34 in the intermediate layer provided between the first phase 32 and the second phase 34. It has a three-phase configuration with three phases 33. The second phase 34 is formed with 25 g of an ascorbic acid aqueous solution containing 0.5 g of ascorbic acid per liter, and the first phase 32 is formed with 25 g of hypochlorous acid water having an effective chlorine concentration of 50 ppm. The third phase 33 is formed by 50 g of water.
 図14Aないし図14Hは、第5の実施形態に係る多相構造を有する氷の製造方法の一例を説明するための模式図である。 FIGS. 14A to 14H are schematic views for explaining an example of a method for producing ice having a multiphase structure according to the fifth embodiment.
 この方法は、第4の実施形態の変形例である。 This method is a modification of the fourth embodiment.
 図示するように、第1の実施形態に用いられる次亜塩素酸水と同様の次亜塩素酸水32’を製氷皿31に流して製氷する。このとき、次亜塩素酸水32’は、製氷皿31に接触している部分から冷却されて凍り始める。製氷皿31の側面と底面の部分がある程度の厚さ例えば1mm凍結した時点で、図14Bに示すように、凍結していない次亜塩素酸水32’80gを取り除く。これにより、凹み35を有する氷32が得られる。 As shown in the figure, ice is made by flowing hypochlorous acid water 32 ′ similar to the hypochlorous acid water used in the first embodiment to the ice tray 31. At this time, the hypochlorous acid water 32 ′ is cooled from the portion in contact with the ice tray 31 and begins to freeze. When the side and bottom portions of the ice tray 31 are frozen to a certain thickness, for example, 1 mm, as shown in FIG. 14B, the non-frozen hypochlorous acid water 32'80g is removed. Thereby, the ice 32 which has the dent 35 is obtained.
 続いて、図14Cに示すように、凹み35を有する氷32に、凹み35の深さD1よりも十分に少ない例えば1mm少ない深さD2まで水33’を供給し、凹み24の側面と底面の部分がある程度の厚さ例えば2~3mm凍結した時点で、水33’30gを取り除く。これにより、図14Dに示すように、凹み36を有する氷33が得られる。 Subsequently, as shown in FIG. 14C, the water 33 ′ is supplied to the ice 32 having the dent 35 to a depth D 2 that is sufficiently smaller than the depth D 1 of the dent 35, for example, 1 mm. When the portion is frozen to a certain thickness, for example, 2 to 3 mm, 33'30 g of water is removed. Thereby, as shown to FIG. 14D, the ice 33 which has the dent 36 is obtained.
 その後、図14Eに示すように、凹み36に第1の実施形態に用いられるアスコルビン酸水溶液と同様の水溶液34’を導入し、製氷することにより、凹み36を埋める氷34を得る。このとき、500ppmのアスコルビン酸水溶液の添加量は25gであった。 After that, as shown in FIG. 14E, an aqueous solution 34 'similar to the ascorbic acid aqueous solution used in the first embodiment is introduced into the recess 36, and ice is made to fill the recess 36 by making ice. At this time, the addition amount of 500 ppm ascorbic acid aqueous solution was 25 g.
 続いて、図14Fに示すように、氷33と凹み36を埋める氷34とが形成された製氷皿31に、凹み35を有する氷33の形成に使用された水33’5gをさらに導入し、製氷することにより、氷34の周囲を氷33で覆うことができる。 Subsequently, as shown in FIG. 14F, water 33′5 g used for forming the ice 33 having the dent 35 is further introduced into the ice tray 31 in which the ice 33 and the ice 34 filling the dent 36 are formed, By making ice, the periphery of the ice 34 can be covered with the ice 33.
 続いて、図14Gに示すように、第1の実施形態に用いられる次亜塩素酸水と同様の次亜塩素酸水32’を製氷皿31に流して製氷することにより、図14Hに示すように、氷33の周囲を氷32で覆うことができ、図13に示すような三相構造の氷が得られる。 Subsequently, as shown in FIG. 14G, by making hypochlorite water 32 ′ similar to the hypochlorous acid water used in the first embodiment into ice tray 31 to make ice, as shown in FIG. 14H. Further, the periphery of the ice 33 can be covered with the ice 32, and ice having a three-phase structure as shown in FIG. 13 is obtained.
 なお、氷の大きさは、100gに限るものではなく、10gにしてもよいし、200gにしてもよい。当然ながら、氷の大きさが大きいほど溶ける時間が長くなり、小さければ早く溶ける。また、各相の分量や濃度や組成も適宜設定可能で、分量が大きければ溶ける時間が長くなり、濃度が高ければ溶けたときに急激に該当する相の組成に変化していく。 It should be noted that the size of the ice is not limited to 100 g, and may be 10 g or 200 g. Of course, the larger the ice size, the longer it takes to melt, and the smaller the ice, the faster it melts. The amount, concentration, and composition of each phase can also be set as appropriate. The longer the amount, the longer the time for melting, and the higher the concentration, the abrupt change to the corresponding phase composition.
(第6の実施形態)
 図15は、第6の実施形態に係る多相構造を有する氷の一例を表す断面図である。
(Sixth embodiment)
FIG. 15 is a cross-sectional view illustrating an example of ice having a multiphase structure according to the sixth embodiment.
 この方法は、第1の実施形態の変形例であり、中心部の第2の相2と、表層の第1の相1との2相の間に中間層として第3の相17が設けられていること以外は、第1の実施形態と同様である。 This method is a modification of the first embodiment, and a third phase 17 is provided as an intermediate layer between the second phase 2 in the center and the first phase 1 in the surface layer. Except for this, it is the same as the first embodiment.
 図16は、第6の実施形態に係る多相構造を有する氷の製造方法の一例を説明するための模式図である。 FIG. 16 is a schematic diagram for explaining an example of a method for producing ice having a multiphase structure according to the sixth embodiment.
 まず、図2Bにおいて、氷2の周囲を支持部材3によって支持して、製氷皿12に、次亜塩素酸水の代わりに水を供給することにより中間相として氷7を形成する。支持部材3を用いて固定された箇所には溝6が形成される。 First, in FIG. 2B, the periphery of the ice 2 is supported by the support member 3, and ice 7 is formed as an intermediate phase by supplying water to the ice tray 12 instead of hypochlorous acid water. A groove 6 is formed at a location fixed using the support member 3.
 続いて、図16に示すように、氷7の周囲を支持部材9によって支持して、次亜塩素酸水1’を流し、さらに、支持部材9が設けられた蓋体41によって製氷皿13を覆うことにより深さ方向の位置を固定して製氷することにより、図15に示すよう中心部にアスコルビン酸水溶液を用いて形成された第2の相2と、中間層として水から形成された第3の層7と、表面層として電解水を用いて形成された第1の相1とからなる3相構造の氷50を形成することができる。得られた氷50の第1の相1には、支持部材9を用いて固定された箇所に溝42が形成され、第3の相7には、支持部材3を用いて固定された箇所に溝6が形成されている。 Subsequently, as shown in FIG. 16, the periphery of the ice 7 is supported by the support member 9, the hypochlorous acid water 1 ′ is poured, and the ice tray 13 is further moved by the lid body 41 provided with the support member 9. By making ice with the position in the depth direction fixed by covering, a second phase 2 formed using an ascorbic acid aqueous solution at the center as shown in FIG. 15 and a second phase formed from water as an intermediate layer It is possible to form an ice 50 having a three-phase structure including the third layer 7 and the first phase 1 formed using electrolyzed water as a surface layer. In the first phase 1 of the obtained ice 50, a groove 42 is formed at a location fixed using the support member 9, and the third phase 7 is formed at a location fixed using the support member 3. A groove 6 is formed.
 第5の実施形態及び第6の実施形態のように第1の相と第2の相の間に水からなる第3の相が介在すると、第3の相が溶ける時間だけゆっくりと第1の相を薄めていくように組成を変化させられるという利点がある。 When the third phase composed of water is interposed between the first phase and the second phase as in the fifth embodiment and the sixth embodiment, the first phase is slowly added only for the time during which the third phase is dissolved. There is an advantage that the composition can be changed so as to dilute the phase.
 このように、互いに組成の異なる相は3相以上あってもよく、各相の組成や量も状況に応じて適宜変更することができる。 As described above, there may be three or more phases having different compositions, and the composition and amount of each phase can be appropriately changed depending on the situation.
 第5の実施形態及び第6の実施形態の氷では、第1の実施形態の氷と同様に、第1の魚介類に接触した当初は酸性の次亜塩素酸水により殺菌や除臭の機能を発揮するが、その後は中心部分のアスコルビン酸水溶液が次亜塩素酸水を分解し、氷が全て溶解した水にはアスコルビン酸が残留するが、特に塩素臭を感じることはなかった。 In the ice of the fifth embodiment and the sixth embodiment, as in the ice of the first embodiment, the function of sterilization and deodorization by the acidic hypochlorous acid water at the beginning when it contacts the first seafood After that, the ascorbic acid aqueous solution in the central part decomposed the hypochlorous acid water, and ascorbic acid remained in the water in which all the ice was dissolved, but there was no particular odor of chlorine.
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although several embodiments of the present invention have been described, these embodiments are presented as examples and are not intended to limit the scope of the invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the scope of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.
 1,7,22,32…第1の相、2,5,8,23,34…第2の相、3…支持部材、6…溝、10,20,30,40,50…氷、11,12,21…製氷皿、14…生鮮品、17,33…第3の相、50…電解水生成装置、51…中間室、52,53…イオン交換膜、54…陽極室、55…陰極室、56…陽極電極、57…陰極電極、58…三室型電解槽、61…飽和食塩水貯留器、62…塩水循環ポンプ、63…給水システム 1, 7, 22, 32 ... 1st phase, 2, 5, 8, 23, 34 ... 2nd phase, 3 ... support member, 6 ... groove, 10, 20, 30, 40, 50 ... ice, 11 , 12, 21 ... Ice trays, 14 ... Fresh products, 17, 33 ... Third phase, 50 ... Electrolyzed water generator, 51 ... Intermediate chamber, 52, 53 ... Ion exchange membrane, 54 ... Anode chamber, 55 ... Cathode Chamber 56 ... Anode electrode 57 ... Cathode electrode 58 ... Three-chamber electrolytic cell 61 ... Saturated saline reservoir 62 ... Salt water circulation pump 63 ... Water supply system

Claims (8)

  1.  電解水を用いて形成された第1の相、及び該第1の相の組成とは異なる組成を有する第2の相を含むことを特徴とする多相構造の氷。 An ice having a multiphase structure comprising a first phase formed using electrolyzed water and a second phase having a composition different from the composition of the first phase.
  2.  前記電解水は、次亜塩素酸水であることを特徴とする請求項1記載の多相構造の氷。 The multiphase ice according to claim 1, wherein the electrolyzed water is hypochlorous acid water.
  3.  前記第2の相はアスコルビン酸水溶液を用いて形成されることを特徴とする請求項1または2に記載の多相構造の氷。 The multiphase ice according to claim 1 or 2, wherein the second phase is formed using an ascorbic acid aqueous solution.
  4.  前記第1の相は酸性電解水、前記第2の相はアルカリ性水を用いて形成されることを特徴とする請求項1または2に記載の多相構造の氷。 The multiphase ice according to claim 1 or 2, wherein the first phase is formed using acidic electrolyzed water, and the second phase is formed using alkaline water.
  5.  前記第1の相は前記第2の相よりも外側に配置されていることを特徴とする請求項1ないし4のいずれか1項に記載の多相構造の氷。 The multi-phase structure ice according to any one of claims 1 to 4, wherein the first phase is disposed outside the second phase.
  6.  前記第1の相の組成及び前記第2の相の組成とは異なる組成を有する第3の相をさらに含むことを特徴とする請求項1ないし5のいずれか1項に記載の多相構造の氷。 The multiphase structure according to any one of claims 1 to 5, further comprising a third phase having a composition different from the composition of the first phase and the composition of the second phase. ice.
  7.  生鮮品に直接氷結されていることを特徴とする請求項1ないし6のいずれか1項に記載の多相構造の氷。 The ice having a multiphase structure according to any one of claims 1 to 6, wherein the ice is frozen directly on a fresh product.
  8.  電解水を用いて形成された第1の相、及び該第1の相とは異なる組成を有する第2の相を含む多相構造の氷を生鮮品に直接氷結させることを特徴とする生鮮品の保存方法。 A fresh product characterized in that ice having a multiphase structure including a first phase formed using electrolyzed water and a second phase having a composition different from that of the first phase is directly frozen on the fresh product. How to save.
PCT/JP2015/053579 2014-03-19 2015-02-10 Ice having multi-phase structure which is produced using electrolyzed water WO2015141330A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016508593A JPWO2015141330A1 (en) 2014-03-19 2015-02-10 Multiphase ice using electrolyzed water

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-056863 2014-03-19
JP2014056863 2014-03-19

Publications (1)

Publication Number Publication Date
WO2015141330A1 true WO2015141330A1 (en) 2015-09-24

Family

ID=54144310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053579 WO2015141330A1 (en) 2014-03-19 2015-02-10 Ice having multi-phase structure which is produced using electrolyzed water

Country Status (2)

Country Link
JP (1) JPWO2015141330A1 (en)
WO (1) WO2015141330A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277118A (en) * 2001-03-22 2002-09-25 Kanebo Ltd Ice of electrolytic water and method for stabilizing electrolytic water
JP2004033053A (en) * 2002-07-01 2004-02-05 Hoshizaki Electric Co Ltd Method for freezing food
JP2007175699A (en) * 2005-12-02 2007-07-12 Chugoku Electric Manufacture Co Ltd System for producing electrolytic seawater ice, apparatus for producing electrolytic seawater, ice-making apparatus, method for producing electrolytic seawater ice, and method for preserving fresh fish

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002277118A (en) * 2001-03-22 2002-09-25 Kanebo Ltd Ice of electrolytic water and method for stabilizing electrolytic water
JP2004033053A (en) * 2002-07-01 2004-02-05 Hoshizaki Electric Co Ltd Method for freezing food
JP2007175699A (en) * 2005-12-02 2007-07-12 Chugoku Electric Manufacture Co Ltd System for producing electrolytic seawater ice, apparatus for producing electrolytic seawater, ice-making apparatus, method for producing electrolytic seawater ice, and method for preserving fresh fish

Also Published As

Publication number Publication date
JPWO2015141330A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP5688103B2 (en) Electrolyzed water production method and apparatus
JP2014518844A5 (en)
JP2006038444A (en) Refrigerator
NZ517172A (en) Electrolytic synthesis of peracetic acid
AU2008276573A1 (en) Cleansing agent generator and dispenser
US20150329385A1 (en) An electrolyzed water generating method and a generator
JP2007175699A (en) System for producing electrolytic seawater ice, apparatus for producing electrolytic seawater, ice-making apparatus, method for producing electrolytic seawater ice, and method for preserving fresh fish
TW201437572A (en) Deodorization and sterilization apparatus
KR20160042209A (en) Method of manufacturing ozonized composition of oil, and ozonized composition of oil manufactured by using the same
WO2015141330A1 (en) Ice having multi-phase structure which is produced using electrolyzed water
JP2010195645A (en) Ozone hydrate capsule and method of utilizing the same
JP2003050068A (en) Ice composition containing hydrogen peroxide, and method of preserving perishable food
US6869518B2 (en) Electrochemical generation of chlorine dioxide
KR100772322B1 (en) Cooling and freezing of electrolyzed ozone water for sterilization and cleaning
KR20200044904A (en) Apparatus for obtaining electrolysis products from alkali metal chloride solutions
KR20110109227A (en) Refrigerator and deorderizing method thereof
JP4685830B2 (en) Electrolyzed water production apparatus, electrolyzed water production method, and electrolyzed water
WO2013068599A2 (en) Process for producing an anolyte composition
JP3802815B2 (en) Sterilization and deodorization method and storage with sterilization and deodorization function
WO2016199443A1 (en) Electrolyzed water generating device and method for suppressing scale
JP2009006287A (en) Production apparatus of electrolytic water, production method of electrolytic water, and electrolytic water
JP2017158961A (en) Hypochlorous acid water-containing container, and method for adding flavor to hypochlorous acid water
JP2009035767A (en) Electrode
JP3183363U (en) Antibacterial agent in container
JP2019120480A (en) Ice making device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15764688

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508593

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15764688

Country of ref document: EP

Kind code of ref document: A1