WO2015141236A1 - Current sensor array and current visualization device using same - Google Patents

Current sensor array and current visualization device using same Download PDF

Info

Publication number
WO2015141236A1
WO2015141236A1 PCT/JP2015/001576 JP2015001576W WO2015141236A1 WO 2015141236 A1 WO2015141236 A1 WO 2015141236A1 JP 2015001576 W JP2015001576 W JP 2015001576W WO 2015141236 A1 WO2015141236 A1 WO 2015141236A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
current sensor
sensor array
amplifier
component
Prior art date
Application number
PCT/JP2015/001576
Other languages
French (fr)
Japanese (ja)
Inventor
浩章 辻本
Original Assignee
公立大学法人大阪市立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公立大学法人大阪市立大学 filed Critical 公立大学法人大阪市立大学
Priority to JP2016508548A priority Critical patent/JPWO2015141236A1/en
Publication of WO2015141236A1 publication Critical patent/WO2015141236A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/207Constructional details independent of the type of device used
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks
    • G01R15/20Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices
    • G01R15/205Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks using galvano-magnetic devices, e.g. Hall-effect devices, i.e. measuring a magnetic field via the interaction between a current and a magnetic field, e.g. magneto resistive or Hall effect devices using magneto-resistance devices, e.g. field plates

Definitions

  • the present invention relates to a current sensor array in which magnetic elements are arranged on a straight line, and a current visualization device that visualizes a current flowing in an electric wire using the current sensor array.
  • a clamp type ammeter (for example, Patent Document 1) is usually used to measure the current flowing in the electric wire.
  • the clamp-type ammeter needs to clamp the electric wire.
  • the clamp-type ammeter can accurately measure the current flowing in the electric wire, but cannot measure it when wired on a flat surface.
  • the clamp-type ammeter has a mechanical clamp mechanism, it is not easy to measure current at a minute portion such as a substrate on which a semiconductor is mounted.
  • Patent Document 2 relates to an electromagnetic field strength calculation device that calculates the electromagnetic field strength radiated by an electric circuit device, and displays the state of current flowing on the electric circuit device in an easy-to-see and easy-to-understand manner regardless of the shape of the element.
  • a technique for enabling the acquisition of influential information for elucidating the electromagnetic radiation mechanism is disclosed.
  • JP 2009-14366 A Japanese Patent Laid-Open No. 9-5375
  • Patent Document 2 if the state of the current flowing in an actual electric circuit can be visualized, there are many aspects that are useful.
  • a bundle of wirings are arranged vertically and horizontally in a state where they are actually connected. In such a state, displaying in what state the current is flowing at present greatly improves the convenience in the field.
  • the present invention has been conceived in view of the above problems, and relates to a current sensor array using a magnetic element. More specifically, A plurality of current sensors having magnetic elements arranged on a straight line; A current circuit having an open / close switch for passing a current through the magnetic element of the current sensor; A drive circuit for sequentially opening and closing the open / close switch; An amplifier for amplifying the output of the magnetic element is provided.
  • the present invention relates to a device for visualizing the current flowing in the electric wire using the current sensor array.
  • a display unit is connected to the drive circuit and the amplifier, and displays a position of the current sensor as an X component and an output of the amplifier as a Z component.
  • the current sensor array according to the present invention arranges a plurality of magnetic elements on a straight line, sequentially measures and outputs the measurement result, the current flow can be visualized even with the wiring arranged in a plane. it can.
  • FIG. 1 It is a figure which shows the structure of the current visualization apparatus of this invention. It is a figure which shows the structure of a current sensor. It is a figure which shows the structure of other embodiment of an electric current visualization apparatus. It is the figure which showed typically scanning an electric wire with the electric current visualization apparatus of FIG. It is the figure which showed typically scanning an electric wire with the electric current visualization apparatus of FIG. It is a figure which shows the structure of embodiment of the current visualization apparatus when a current sensor is arrange
  • FIG. 1 shows a configuration of a current visualization apparatus according to the present invention.
  • the current visualization device 1 of the present invention includes a current sensor array 10 and a display unit 40.
  • the current sensor array 10 includes a current sensor 12, a current circuit 20, an amplifier 22, and a drive circuit 24.
  • the plurality of current sensors 12 are arranged in parallel.
  • the arrangement direction A is on a straight line and arranged at equal intervals. However, it is not excluded to arrange them at unequal intervals.
  • the current circuit 20 includes a current source 18 and an opening / closing switch 14.
  • the current source 18 allows a current to flow in parallel to each of the plurality of current sensors 12 arranged on a straight line. That is, each current sensor 12 is connected in parallel to the current source 18.
  • the open / close switch 14 is installed in each current sensor 12.
  • the open / close switch 14 is arranged in series with the current sensor 12. Accordingly, each current sensor 12 can be individually turned on / off. Here, the point that the current sensor 12 is turned on will be described.
  • FIG. 2 shows a detailed configuration example of the current sensor 12.
  • the current sensor 12 includes a magnetic element 30 and a resistor 36.
  • the magnetic element 30 includes a magnetic film 32 and a conductor portion 34.
  • the magnetic film 32 is preferably formed in a strip shape and has an easy axis of magnetization guided in the longitudinal direction of the strip shape.
  • the current sensor 12 may use a plurality of magnetic elements 30. For example, the sensitivity can be increased by assembling a plurality of magnetic elements 30 in a bridge circuit.
  • element terminals 30a and 30b are provided at both ends of the strip shape in the longitudinal direction. This is because a current flows through the magnetic element 30. That is, the magnetoresistive effect of the magnetic element 30 is used as the current sensor 12.
  • a conductor portion 34 is provided on the magnetic film 32. The conductor portion 34 is provided in a strip shape inclined with respect to the longitudinal direction of the strip shape. This is a pattern called barber pole.
  • the magnetic element 30 configured in this way can set the apparent operating point in the middle of the change of the magnetoresistive effect without applying a bias magnetic field. Therefore, values above and below the operating point can be output with respect to the magnetic field from the direction perpendicular to the longitudinal direction of the strip.
  • the output is output as a voltage between the element terminals 30a and 30b of the magnetic element 30.
  • a resistor 36 is connected to the magnetic element 30 in series.
  • the resistor 36 is arranged to allow a constant current to flow through each magnetic element 30. That is, when there is a difference in sensitivity among the individual magnetic elements 30, the resistance 36 may be used for adjustment. Moreover, when the difference in the characteristics of the individual magnetic elements 30 is small enough to be ignored, it may be omitted.
  • the current sensor 12 configured as described above can obtain the voltage of the element terminals 30a and 30b of the current sensor 12 as an output when a current flows through the magnetic element 30. That is, a state in which a current flows through the magnetic element 30 is referred to as the current sensor 12 being turned on.
  • the open / close switch 14 is connected in series to the resistor 36 of the current sensor 12.
  • the open / close switch 14 is illustrated as a transistor, it is not limited to this.
  • the open / close switch 14 can make the open / close switch 14 conductive by an open / close signal Ss via the switch line 15. When the open / close switch 14 is turned on, the current sensor 12 is turned on.
  • the element terminals 30a and 30b of the magnetic element 30 of the current sensor 12 are connected by output terminal lines 21a and 21b. End portions of the output terminal lines 21 a and 21 b are connected to the amplifier 22. That is, the amplifier 22 outputs a voltage between the element terminals 30a and 30b of the magnetic element 30 when any one of the plurality of current sensors 12 is turned on. The output of the amplifier 22 is set as an output Vs.
  • the switch line 15 is connected to the drive circuit 24.
  • the drive circuit 24 turns on the switch lines 15 in order. In the order, in the plurality of current sensors 12 arranged in the direction A, ON / OFF is sequentially repeated from the current sensor 12 at one end toward the current sensor 12 at the other end.
  • the time for turning on one current sensor 12 may be a time when the voltage between the element terminals 30a and 30b of the current sensor 12 can be measured. Note that the drive circuit 24 outputs the timing signal Ts at the timing when the switch line 15 is turned on.
  • the display unit 40 receives the timing signal Ts from the drive circuit 24 and the output Vs from the amplifier 22.
  • the display unit 40 displays the timing signal Ts on the horizontal axis 44 and the output Vs on the vertical axis 42.
  • the horizontal axis 44 shifts the coordinate of the horizontal axis 44 every time the timing signal Ts is received.
  • the output Vs when the timing signal Ts is received is displayed on the coordinate in the direction of the vertical axis 42 of the timing signal Ts.
  • the display unit 40 sets the timing signal Ts as the X coordinate to X 0 + n.
  • X 0 is the starting point of the X axis when displaying
  • n is a number indicating that the n-th current sensor 12 has been turned on from one end of the current sensor 12.
  • the output Vs of the amplifier 22 at that time is set as Vs as the Y coordinate. That is, the display unit 40 displays a signal at a position corresponding to (X 0 + n, Vs) on the display screen. By connecting these points with a line, the position of the current detected by the current sensor array 10 can be displayed on the display unit 40.
  • the point (X 0 + k, 0) and the point (X 0 + k + 1) on the X axis represent the arrangement interval (distance) between the k-th and k + 1-th current sensors 12 in the current sensor array 10.
  • the current visualization device 1 arranges a plurality of current sensors 12 on a straight line, and sequentially repeats on / off, and the position of the current sensor 12 turned on and the output Vs at that time are two-dimensionally increased. Therefore, it is possible to visualize where the current is flowing in the place where the current sensor array 10 is placed.
  • the current visualization device 1 according to the first embodiment is provided with a position sensor 50.
  • the position sensor 50 measures the position of the current sensor array 10 and outputs the movement distance from the measurement start point.
  • the current visualization device 2 according to the first embodiment is operated in accordance with the movement of the position sensor 50, the current state in the two-dimensional plane can be visualized.
  • FIG. 3 shows the configuration of the current visualization device 2 according to the present embodiment.
  • the current sensor array 10 is the same as that in the first embodiment.
  • the current visualization device 2 includes a position sensor 50.
  • the position sensor 50 outputs position information Py in which the current sensor array 10 has moved in a direction perpendicular to the arrangement direction A of the current sensors 12 (referred to as direction B) from the reference point.
  • the start command Cst is given to the position sensor 50.
  • the position sensor 50 outputs position information Py when the current sensor array 10 moves in the direction B by a predetermined distance L.
  • the position information Py is sent to the display unit 40.
  • the position information Py is also sent to the drive circuit 24.
  • the open / close switch 14 is sequentially turned on and off via the switch line 15. This on / off timing is sent to the display unit 40 by a timing signal Ts.
  • the display unit 40 obtains the output Vs of the amplifier 22 every time it receives the timing signal Ts. In this manner, three-dimensional data including position information Py in the B direction of the current sensor array 10, the timing signal Ts, and the output Vs of the amplifier 22 can be obtained.
  • the position information Py is transmitted every predetermined distance L, it can be said that the position information Py is also created every distance L in the B direction.
  • the display unit 40 displays these data three-dimensionally.
  • the three-dimensional display means displaying a three-dimensional graph on a two-dimensional plane.
  • FIGS. 4A and 4B An example is shown in FIGS. 4A and 4B.
  • FIG. 4A shows a state in which the current sensor array 10 is scanned over the electric wire 99.
  • FIG. 4B is a display example on the display unit 40 at this time.
  • the axis (X axis) is the distance in the A direction.
  • the distance in the A direction can be obtained by accumulating the distance between the current sensor arrays 10.
  • the vertical axis (Y-axis) is the distance in the B direction. This is obtained by accumulating the position information Py.
  • the height axis (Z axis) is the output Vs of the current sensor array 10.
  • FIG. 4A shows a state where a current I flows through one electric wire 99.
  • the position of the current sensor 12 that feels the magnetic field from the electric wire 99 through which the current I flows is changed, and is drawn on the display unit 40.
  • the current visualization device 2 can indicate how the current is flowing on the two-dimensionally arranged wiring.
  • the position sensor 50 may be replaced with a speed / acceleration sensor.
  • the speed / acceleration sensor By using the speed / acceleration sensor, the position information Py can be accurately obtained even if the current sensor array 10 is manually moved. Further, the current sensor 12 can detect direct current as well as alternating current. Therefore, the constant voltage line and the ground line can be easily found in complicated wiring.
  • the current sensor 12 uses the magnetoresistive effect, the direction of the current can be checked simultaneously.
  • the magnetic field heading from the right to the left of the axis with the longitudinal direction of the strip-shaped magnetic film 32 as the axis can be output in the reverse direction centering on the operating point. Therefore, if the operating point is the ground potential, the difference in direction can be expressed as the difference in output polarity.
  • FIG. 5 shows the configuration of the current visualization device 3 according to the present embodiment.
  • the current visualization device 3 arranges a plurality of two-dimensional current sensor arrays 10 by arranging the current sensor arrays 10 in a plurality of stages. Further, a switching circuit 60 for supplying a driving current to each current sensor array 10 is provided.
  • the switch line 15 is provided for each open / close switch 14 of each current sensor 12, but is omitted with one dotted line. Also, the resistor 36 of the current sensor 12 is not shown.
  • the operation of the current visualization device 3 will be described.
  • the start command Cst is transmitted to the switching circuit 60.
  • the switching circuit 60 sequentially switches the current sensor array 10 through which the current source 18 flows current.
  • a switching signal Sb indicating the switching is sent from the switching circuit 60 to the display unit 40. Further, it is also sent to the drive circuit 24 of the current sensor array 10.
  • the driving circuit 24 When receiving the switching signal Sb, the driving circuit 24 sequentially turns on and off the open / close switch 14 through the switch line 15.
  • the current sensor array 10 to which current is supplied from the current source 18 can output the output Vs.
  • the current sensor array 10 is selected by the switching circuit 60 one after another.
  • the selected current sensor array 10 outputs an output Vs for each open / close switch 14.
  • the display unit 40 receives the output Vs of each current sensor 12 for each selected current sensor array 10. Therefore, the selected current sensor array 10 is displayed on the vertical axis (Y axis), the position for each current sensor 12 is set on the horizontal axis (X axis), and the output Vs of each current sensor 12 is set on the height axis (Z axis). ), The current distribution in the two-dimensional plane as in the second embodiment (see FIG. 4B) can be visualized.
  • a linear shape and a two-dimensional planar shape are exemplified, but a spiral shape or a shape in which ring-shaped bodies overlap each other may be used.
  • the present invention has been described as a current sensor array, it may be a power sensor.
  • the current visualization apparatus can visualize the current flowing through a complicated wiring, it can be widely used for checking in a current circuit.

Abstract

In a complex electrical circuit, the state of actual wire connection is when wire bundles are disposed vertically and horizontally. In such a state, displaying in which state current is currently flowing markedly increases on-site convenience. The present invention is a current sensor array characterized by having: a plurality of current sensors having magnetic elements and disposed on a line; a current circuit having an opening/closing switch and that flows current to the magnetic elements of the aforementioned current sensors; a drive circuit that successively opens/closes the opening/closing switch; and an amplifier that amplifies the output of the plurality of magnetic elements. The present invention is also a current visualization device characterized by being connected to the drive circuit and the amplifier, and by having a display unit that displays the output of the amplifier as a Z component and the position of the current sensor as an X component.

Description

電流センサアレイとそれを用いた電流可視化装置Current sensor array and current visualization device using the same
 本発明は磁性素子を直線上に配置した電流センサアレイと、それを用いて電線中を流れる電流を可視化する電流可視化装置に関するものである。 The present invention relates to a current sensor array in which magnetic elements are arranged on a straight line, and a current visualization device that visualizes a current flowing in an electric wire using the current sensor array.
 電線中を流れる電流を測定するには、通常クランプ式電流計(例えば特許文献1)が利用される。しかし、クランプ式電流計は、電線をクランプする必要がある。クランプ式電流計は、電線中に流れる電流を正確に測定することができる反面、平面上に配線された状態では測定することができない。また、クランプ式電流計は、機械的なクランプ機構を有するため、半導体が搭載された基板等の微小な部分での電流測定も容易ではない。 A clamp type ammeter (for example, Patent Document 1) is usually used to measure the current flowing in the electric wire. However, the clamp-type ammeter needs to clamp the electric wire. The clamp-type ammeter can accurately measure the current flowing in the electric wire, but cannot measure it when wired on a flat surface. In addition, since the clamp-type ammeter has a mechanical clamp mechanism, it is not easy to measure current at a minute portion such as a substrate on which a semiconductor is mounted.
 特許文献2では、電気回路装置が放射する電磁界強度を算出する電磁界強度算出装置に関し、電気回路装置上を流れる電流の様子を、要素の形状によらずに見やすく、わかりやすい態様で表示することにより、電磁波放射メカニズムを解明する有力な情報を得ることができるようにする技術が開示されている。  Patent Document 2 relates to an electromagnetic field strength calculation device that calculates the electromagnetic field strength radiated by an electric circuit device, and displays the state of current flowing on the electric circuit device in an easy-to-see and easy-to-understand manner regardless of the shape of the element. Thus, a technique for enabling the acquisition of influential information for elucidating the electromagnetic radiation mechanism is disclosed.
特開2009-14366号公報JP 2009-14366 A 特開平9-5375号公報Japanese Patent Laid-Open No. 9-5375
 特許文献2に示すように、実際の電気回路に流れている電流の様子を可視化することができれば、有用である局面は多い。複雑な電気回路では、実際に結線された状態では、配線の束が縦横に配置されている。そのような状態で、現在電流がどのような状態で流れているかを表示することは現場での利便性が著しく向上する。 As shown in Patent Document 2, if the state of the current flowing in an actual electric circuit can be visualized, there are many aspects that are useful. In a complicated electric circuit, a bundle of wirings are arranged vertically and horizontally in a state where they are actually connected. In such a state, displaying in what state the current is flowing at present greatly improves the convenience in the field.
 本発明は上記の課題に鑑みて想到されたもので、磁性素子を用いた電流センサアレイに関する。より具体的には、
 直線上に配置した、磁性素子を有する複数の電流センサと、
 前記電流センサの磁性素子に電流を流す、開閉スイッチを有する電流回路と、
 前記開閉スイッチを順次開閉する駆動回路と、
 前記磁性素子の出力を増幅するアンプを有することを特徴とする。 
The present invention has been conceived in view of the above problems, and relates to a current sensor array using a magnetic element. More specifically,
A plurality of current sensors having magnetic elements arranged on a straight line;
A current circuit having an open / close switch for passing a current through the magnetic element of the current sensor;
A drive circuit for sequentially opening and closing the open / close switch;
An amplifier for amplifying the output of the magnetic element is provided.
 また、上記電流センサアレイを用いた、電線中に流れる電流を可視化する装置に関する。 Also, the present invention relates to a device for visualizing the current flowing in the electric wire using the current sensor array.
 より具体的には、
 前記電流センサアレイと、
 前記駆動回路と前記アンプに接続され、前記電流センサの位置をX成分とし、前記アンプの出力をZ成分として表示する表示部を有することを特徴とする。
More specifically,
The current sensor array;
A display unit is connected to the drive circuit and the amplifier, and displays a position of the current sensor as an X component and an output of the amplifier as a Z component.
 本発明に係る電流センサアレイは、複数の磁性素子を直線上に配置し、順次計測し測定結果を出力するので、平面的に配置された配線であっても、電流の流れを可視化することができる。  Since the current sensor array according to the present invention arranges a plurality of magnetic elements on a straight line, sequentially measures and outputs the measurement result, the current flow can be visualized even with the wiring arranged in a plane. it can.
本発明の電流可視化装置の構成を示す図である。It is a figure which shows the structure of the current visualization apparatus of this invention. 電流センサの構成を示す図である。It is a figure which shows the structure of a current sensor. 電流可視化装置の他の実施形態の構成を示す図である。It is a figure which shows the structure of other embodiment of an electric current visualization apparatus. 図3の電流可視化装置で電線を走査することを模式的に示した図である。It is the figure which showed typically scanning an electric wire with the electric current visualization apparatus of FIG. 図3の電流可視化装置で電線を走査することを模式的に示した図である。It is the figure which showed typically scanning an electric wire with the electric current visualization apparatus of FIG. 電流センサを2次元配置した時の電流可視化装置の実施形態の構成を示す図である。It is a figure which shows the structure of embodiment of the current visualization apparatus when a current sensor is arrange | positioned two-dimensionally.
 以下に本発明に係る電流センサアレイと、電流可視化装置について図面を参照しながら説明する。なお、以下の説明は本発明の実施形態を例示するものであり、本発明は以下の実施形態に限定されるものではない。以下の実施形態は本発明の趣旨を逸脱しない限りにおいて改変することができる。 Hereinafter, a current sensor array and a current visualization apparatus according to the present invention will be described with reference to the drawings. In addition, the following description illustrates embodiment of this invention and this invention is not limited to the following embodiment. The following embodiments can be modified without departing from the spirit of the present invention.
 (実施の形態1)
 図1には、本発明に係る電流可視化装置の構成を示す。本発明の電流可視化装置1は、電流センサアレイ10と、表示部40を含む。
(Embodiment 1)
FIG. 1 shows a configuration of a current visualization apparatus according to the present invention. The current visualization device 1 of the present invention includes a current sensor array 10 and a display unit 40.
 電流センサアレイ10は、電流センサ12と、電流回路20と、アンプ22と駆動回路24を含む。複数個の電流センサ12は並列に配置される。また配置の方向Aは、直線上であって、かつ等間隔に配置される。ただし、不等間隔に配置することを排除しない。 The current sensor array 10 includes a current sensor 12, a current circuit 20, an amplifier 22, and a drive circuit 24. The plurality of current sensors 12 are arranged in parallel. In addition, the arrangement direction A is on a straight line and arranged at equal intervals. However, it is not excluded to arrange them at unequal intervals.
 電流回路20は、電流源18と開閉スイッチ14を含む。電流源18は、直線上に配置された複数の電流センサ12のそれぞれに並列的に電流を流す。すなわち、電流源18に対して各電流センサ12は並列に接続される。 The current circuit 20 includes a current source 18 and an opening / closing switch 14. The current source 18 allows a current to flow in parallel to each of the plurality of current sensors 12 arranged on a straight line. That is, each current sensor 12 is connected in parallel to the current source 18.
 開閉スイッチ14は、各電流センサ12それぞれに設置される。開閉スイッチ14は電流センサ12と直列に配置される。したがって、各電流センサ12は、個々にオンオフできる。ここで電流センサ12がオンになるという点を説明する。 The open / close switch 14 is installed in each current sensor 12. The open / close switch 14 is arranged in series with the current sensor 12. Accordingly, each current sensor 12 can be individually turned on / off. Here, the point that the current sensor 12 is turned on will be described.
 図2には、電流センサ12の詳細な構成例を示す。電流センサ12は磁性素子30と抵抗36で構成される。磁性素子30は、磁性膜32と導体部34を含む。磁性膜32は、短冊状に形成され短冊状の長手方向に磁化容易軸を誘導されているものが望ましい。なお、電流センサ12は磁性素子30を複数使用してもよい。例えば、複数の磁性素子30をブリッジ回路に組むことで感度を高めることもできる。 FIG. 2 shows a detailed configuration example of the current sensor 12. The current sensor 12 includes a magnetic element 30 and a resistor 36. The magnetic element 30 includes a magnetic film 32 and a conductor portion 34. The magnetic film 32 is preferably formed in a strip shape and has an easy axis of magnetization guided in the longitudinal direction of the strip shape. The current sensor 12 may use a plurality of magnetic elements 30. For example, the sensitivity can be increased by assembling a plurality of magnetic elements 30 in a bridge circuit.
 また短冊状の長手方向の両端には、素子端子30a、30bが設けられる。磁性素子30に電流を流すためである。つまり、磁性素子30の磁気抵抗効果を電流センサ12として利用する。磁性膜32上には導体部34が設けられる。導体部34は短冊状の長手方向に対して傾斜した帯状に設けられる。これはバーバーポールと呼ばれるパターンである。 Further, element terminals 30a and 30b are provided at both ends of the strip shape in the longitudinal direction. This is because a current flows through the magnetic element 30. That is, the magnetoresistive effect of the magnetic element 30 is used as the current sensor 12. A conductor portion 34 is provided on the magnetic film 32. The conductor portion 34 is provided in a strip shape inclined with respect to the longitudinal direction of the strip shape. This is a pattern called barber pole.
 このように構成された磁性素子30は、バイアス磁界をかけなくても見かけ上動作点を磁気抵抗効果が変化する途中に設定することができる。したがって、短冊状の長手方向に対して直角方向からの磁界に対して、動作点の上下の値を出力することができる。なお、出力は磁性素子30の素子端子30a、30b間の電圧として出力される。 The magnetic element 30 configured in this way can set the apparent operating point in the middle of the change of the magnetoresistive effect without applying a bias magnetic field. Therefore, values above and below the operating point can be output with respect to the magnetic field from the direction perpendicular to the longitudinal direction of the strip. The output is output as a voltage between the element terminals 30a and 30b of the magnetic element 30.
 磁性素子30には抵抗36が直列に接続される。抵抗36は、個々の磁性素子30に一定の電流を流すために配置するものである。つまり、個々の磁性素子30に感度の差がある場合は、この抵抗36で調整してよい。また、個々の磁性素子30の特性の差が無視できる程度に小さい場合は、省略してもよい。 A resistor 36 is connected to the magnetic element 30 in series. The resistor 36 is arranged to allow a constant current to flow through each magnetic element 30. That is, when there is a difference in sensitivity among the individual magnetic elements 30, the resistance 36 may be used for adjustment. Moreover, when the difference in the characteristics of the individual magnetic elements 30 is small enough to be ignored, it may be omitted.
 以上のように構成される電流センサ12は、磁性素子30に電流が流れれば電流センサ12の素子端子30a、30bの電圧が出力として得られる。つまり、磁性素子30に電流が流れる状態を電流センサ12がオンになると呼ぶ。 The current sensor 12 configured as described above can obtain the voltage of the element terminals 30a and 30b of the current sensor 12 as an output when a current flows through the magnetic element 30. That is, a state in which a current flows through the magnetic element 30 is referred to as the current sensor 12 being turned on.
 再び図1を参照して、電流センサ12の抵抗36には、開閉スイッチ14が直列に接続される。開閉スイッチ14は、トランジスタとして図示したが、これに限定されるものではない。開閉スイッチ14は、スイッチ線15を介する開閉信号Ssで開閉スイッチ14を導通状態にすることができる。開閉スイッチ14が導通すると、電流センサ12はオン状態になる。 Referring again to FIG. 1, the open / close switch 14 is connected in series to the resistor 36 of the current sensor 12. Although the open / close switch 14 is illustrated as a transistor, it is not limited to this. The open / close switch 14 can make the open / close switch 14 conductive by an open / close signal Ss via the switch line 15. When the open / close switch 14 is turned on, the current sensor 12 is turned on.
 電流センサ12の磁性素子30の素子端子30a、30bは、出力端子線21a、21bによって連結される。出力端子線21a、21bの端部はアンプ22に接続される。すなわち、アンプ22は、複数の電流センサ12のうち、どれかの電流センサ12がオンになれば、その磁性素子30の素子端子30a、30b間の電圧を出力する。アンプ22の出力を出力Vsとする。 The element terminals 30a and 30b of the magnetic element 30 of the current sensor 12 are connected by output terminal lines 21a and 21b. End portions of the output terminal lines 21 a and 21 b are connected to the amplifier 22. That is, the amplifier 22 outputs a voltage between the element terminals 30a and 30b of the magnetic element 30 when any one of the plurality of current sensors 12 is turned on. The output of the amplifier 22 is set as an output Vs.
 また、スイッチ線15は、駆動回路24に接続される。駆動回路24は、スイッチ線15を順番にオンにする。順番とは、方向Aに向かって配置された複数の電流センサ12において、一方の端の電流センサ12から他方の端の電流センサ12に向かって、順次オンオフを繰り返す。 Further, the switch line 15 is connected to the drive circuit 24. The drive circuit 24 turns on the switch lines 15 in order. In the order, in the plurality of current sensors 12 arranged in the direction A, ON / OFF is sequentially repeated from the current sensor 12 at one end toward the current sensor 12 at the other end.
 1つの電流センサ12をオンにする時間は、電流センサ12の素子端子30a、30b間の電圧を測定できる時間であればよい。なお、駆動回路24は、スイッチ線15をオンにするタイミングでタイミング信号Tsを出力する。 The time for turning on one current sensor 12 may be a time when the voltage between the element terminals 30a and 30b of the current sensor 12 can be measured. Note that the drive circuit 24 outputs the timing signal Ts at the timing when the switch line 15 is turned on.
 表示部40には、駆動回路24からのタイミング信号Tsと、アンプ22からの出力Vsが入力される。表示部40は、タイミング信号Tsを横軸44に、出力Vsを縦軸42にして表示する。この際に、横軸44は、タイミング信号Tsを受信する毎に横軸44の座標をずらす。そして、タイミング信号Tsを受信した時の出力Vsをタイミング信号Tsの縦軸42方向の座標上に表示する。 The display unit 40 receives the timing signal Ts from the drive circuit 24 and the output Vs from the amplifier 22. The display unit 40 displays the timing signal Ts on the horizontal axis 44 and the output Vs on the vertical axis 42. At this time, the horizontal axis 44 shifts the coordinate of the horizontal axis 44 every time the timing signal Ts is received. Then, the output Vs when the timing signal Ts is received is displayed on the coordinate in the direction of the vertical axis 42 of the timing signal Ts.
 より詳細に説明すると、タイミング信号Tsを受信する毎に表示部40は、タイミング信号TsをX座標としてX+nとする。ここでXは、表示する際のX軸の始点であり、nは電流センサ12の一方の端から、n個目の電流センサ12をオンにしたことを示す番号である。そしてその時のアンプ22の出力VsをY座標としてVsとする。つまり表示部40は表示画面上に(X+n、Vs)に相当する位置に信号を表示する。この点同士を線で繋ぐことで、表示部40には、電流センサアレイ10が検出する電流の位置を表示することができる。 More specifically, every time the timing signal Ts is received, the display unit 40 sets the timing signal Ts as the X coordinate to X 0 + n. Here, X 0 is the starting point of the X axis when displaying, and n is a number indicating that the n-th current sensor 12 has been turned on from one end of the current sensor 12. Then, the output Vs of the amplifier 22 at that time is set as Vs as the Y coordinate. That is, the display unit 40 displays a signal at a position corresponding to (X 0 + n, Vs) on the display screen. By connecting these points with a line, the position of the current detected by the current sensor array 10 can be displayed on the display unit 40.
 なお、X軸について点(X+k、0)と、点(X+k+1)とは、電流センサアレイ10において、k番目とk+1番目の電流センサ12の配置間隔(距離)を表す。以上のように本発明に係る電流可視化装置1は、複数の電流センサ12を直線上に配置し、順次オンオフを繰り返し、オンになった電流センサ12の位置と、その時の出力Vsを2次元上に表示するので、電流センサアレイ10が置かれた場所で、どこに電流が流れているかを可視化することができる。  Note that the point (X 0 + k, 0) and the point (X 0 + k + 1) on the X axis represent the arrangement interval (distance) between the k-th and k + 1-th current sensors 12 in the current sensor array 10. As described above, the current visualization device 1 according to the present invention arranges a plurality of current sensors 12 on a straight line, and sequentially repeats on / off, and the position of the current sensor 12 turned on and the output Vs at that time are two-dimensionally increased. Therefore, it is possible to visualize where the current is flowing in the place where the current sensor array 10 is placed.
 (実施の形態2)
 本実施の形態では、実施の形態1の電流可視化装置1に位置センサ50が備えられる。位置センサ50は、電流センサアレイ10の位置を測定し、測定開始点からの移動距離を出力する。この位置センサ50の動きに応じて実施の形態1の電流可視化装置2を動作させると、2次元平面内での電流の状態を可視化することができる。
(Embodiment 2)
In the present embodiment, the current visualization device 1 according to the first embodiment is provided with a position sensor 50. The position sensor 50 measures the position of the current sensor array 10 and outputs the movement distance from the measurement start point. When the current visualization device 2 according to the first embodiment is operated in accordance with the movement of the position sensor 50, the current state in the two-dimensional plane can be visualized.
 図3に本実施の形態に係る電流可視化装置2の構成を示す。電流センサアレイ10については、実施の形態1と同じである。電流可視化装置2には、位置センサ50が備えられている。位置センサ50は、基準点から電流センサアレイ10が電流センサ12の配列方向Aと直角方向(これを方向Bと呼ぶ。)に移動した位置情報Pyを出力する。 FIG. 3 shows the configuration of the current visualization device 2 according to the present embodiment. The current sensor array 10 is the same as that in the first embodiment. The current visualization device 2 includes a position sensor 50. The position sensor 50 outputs position information Py in which the current sensor array 10 has moved in a direction perpendicular to the arrangement direction A of the current sensors 12 (referred to as direction B) from the reference point.
 次に電流可視化装置2の動作について説明する。起動指令Cstは、位置センサ50に与えられる。位置センサ50は、電流センサアレイ10が方向Bに所定距離Lだけ移動したら位置情報Pyを出力する。位置情報Pyは表示部40に送られる。また位置情報Pyは、駆動回路24にも送られる。 Next, the operation of the current visualization device 2 will be described. The start command Cst is given to the position sensor 50. The position sensor 50 outputs position information Py when the current sensor array 10 moves in the direction B by a predetermined distance L. The position information Py is sent to the display unit 40. The position information Py is also sent to the drive circuit 24.
 駆動回路24は位置情報Pyを受信したら、スイッチ線15を介して開閉スイッチ14を順次オンオフさせる。このオンオフのタイミングはタイミング信号Tsによって表示部40に送られる。また、表示部40は、タイミング信号Tsを受信する毎にアンプ22の出力Vsを得る。このようにして、電流センサアレイ10のB方向の位置情報Pyと、タイミング信号Tsとアンプ22の出力Vsからなる3次元データを得ることができる。ここで、位置情報Pyは、所定の距離L毎に送信されるので、位置情報PyもB方向に距離L毎に作られると言ってよい。 When the drive circuit 24 receives the position information Py, the open / close switch 14 is sequentially turned on and off via the switch line 15. This on / off timing is sent to the display unit 40 by a timing signal Ts. The display unit 40 obtains the output Vs of the amplifier 22 every time it receives the timing signal Ts. In this manner, three-dimensional data including position information Py in the B direction of the current sensor array 10, the timing signal Ts, and the output Vs of the amplifier 22 can be obtained. Here, since the position information Py is transmitted every predetermined distance L, it can be said that the position information Py is also created every distance L in the B direction.
 表示部40はこれらのデータを3次元表示する。ここで3次元表示とは、2次元平面上に3次元グラフを表示することを意味する。図4(A)および図4(B)には、その一例を示す。図4(A)は、電流センサアレイ10を電線99上を走査させる様子を示す。図4(B)は、このときの表示部40における表示例である。 The display unit 40 displays these data three-dimensionally. Here, the three-dimensional display means displaying a three-dimensional graph on a two-dimensional plane. An example is shown in FIGS. 4A and 4B. FIG. 4A shows a state in which the current sensor array 10 is scanned over the electric wire 99. FIG. 4B is a display example on the display unit 40 at this time.
 軸(X軸)はA方向の距離である。A方向の距離は、電流センサアレイ10同士の間の距離を累積することで求められる。縦軸(Y軸)はB方向の距離である。これは位置情報Pyを累積することで求められる。高さ軸(Z軸)は、電流センサアレイ10の出力Vsである。 The axis (X axis) is the distance in the A direction. The distance in the A direction can be obtained by accumulating the distance between the current sensor arrays 10. The vertical axis (Y-axis) is the distance in the B direction. This is obtained by accumulating the position information Py. The height axis (Z axis) is the output Vs of the current sensor array 10.
 図4(A)は、1本の電線99に電流Iが流れている状態を示している。電流センサアレイ10をスキャンさせることで、電流Iが流れている電線99からの磁界を感じる電流センサ12の位置が代わり、それが表示部40上に描き出される。このように、本実施の形態の電流可視化装置2は、2次元に配置された配線上で、現在電流がどのように流れているかを示すことができる。 FIG. 4A shows a state where a current I flows through one electric wire 99. By scanning the current sensor array 10, the position of the current sensor 12 that feels the magnetic field from the electric wire 99 through which the current I flows is changed, and is drawn on the display unit 40. As described above, the current visualization device 2 according to the present embodiment can indicate how the current is flowing on the two-dimensionally arranged wiring.
 なお、位置センサ50は、速度・加速度センサと入れ替えてもよい。速度・加速度センサにすることで、電流センサアレイ10の移動を手動で行っても、位置情報Pyを正確に求めることができる。また、電流センサ12は直流を検知するようにも、交流を検知するようにもできる。したがって、複雑な配線中で、定電圧ラインと接地ラインを容易に見つけ出すことができる。 The position sensor 50 may be replaced with a speed / acceleration sensor. By using the speed / acceleration sensor, the position information Py can be accurately obtained even if the current sensor array 10 is manually moved. Further, the current sensor 12 can detect direct current as well as alternating current. Therefore, the constant voltage line and the ground line can be easily found in complicated wiring.
 また、電流センサ12は、磁気抵抗効果を用いているので、電流の向きも同時に調べることができる。すなわち、図2において、短冊状の磁性膜32の長手方向を軸として軸の右から左へ向かう磁界と逆方向に向かう磁界は動作点を中心に逆方向の出力とすることができる。したがって、動作点を接地電位とすれば、向きの違いを出力の極性の違いとして表すことができる。 In addition, since the current sensor 12 uses the magnetoresistive effect, the direction of the current can be checked simultaneously. In other words, in FIG. 2, the magnetic field heading from the right to the left of the axis with the longitudinal direction of the strip-shaped magnetic film 32 as the axis can be output in the reverse direction centering on the operating point. Therefore, if the operating point is the ground potential, the difference in direction can be expressed as the difference in output polarity.
 (実施の形態3)
 図5に本実施の形態に係る電流可視化装置3の構成を示す。電流可視化装置3は、電流センサアレイ10を複数段に並べて2次元の電流センサアレイ10を複数配置する。そして、それぞれの電流センサアレイ10に駆動電流を流すための切換回路60が付与されている。なお、スイッチ線15は、個々の電流センサ12の開閉スイッチ14毎に配設されているが、1本の点線で省略した。また、電流センサ12の抵抗36も記載を省略した。
(Embodiment 3)
FIG. 5 shows the configuration of the current visualization device 3 according to the present embodiment. The current visualization device 3 arranges a plurality of two-dimensional current sensor arrays 10 by arranging the current sensor arrays 10 in a plurality of stages. Further, a switching circuit 60 for supplying a driving current to each current sensor array 10 is provided. The switch line 15 is provided for each open / close switch 14 of each current sensor 12, but is omitted with one dotted line. Also, the resistor 36 of the current sensor 12 is not shown.
 電流可視化装置3の動作を説明する。起動指令Cstは、切換回路60に送信される。切換回路60は、電流源18が電流を流す電流センサアレイ10を順次切り替える。切り換えた事を示す切換信号Sbは、切換回路60から表示部40に送られる。また、電流センサアレイ10の駆動回路24にも送られる。 The operation of the current visualization device 3 will be described. The start command Cst is transmitted to the switching circuit 60. The switching circuit 60 sequentially switches the current sensor array 10 through which the current source 18 flows current. A switching signal Sb indicating the switching is sent from the switching circuit 60 to the display unit 40. Further, it is also sent to the drive circuit 24 of the current sensor array 10.
 駆動回路24は、切換信号Sbを受信したら、スイッチ線15によって、開閉スイッチ14を順次オンオフする。ここで、電流源18から電流が流されている電流センサアレイ10だけが、出力Vsを出力することができる。このようにして、電流センサアレイ10が次々と切換回路60で選択される。そして選択された電流センサアレイ10が、開閉スイッチ14毎に出力Vsを出力する。 When receiving the switching signal Sb, the driving circuit 24 sequentially turns on and off the open / close switch 14 through the switch line 15. Here, only the current sensor array 10 to which current is supplied from the current source 18 can output the output Vs. In this way, the current sensor array 10 is selected by the switching circuit 60 one after another. The selected current sensor array 10 outputs an output Vs for each open / close switch 14.
 表示部40は、選択された電流センサアレイ10毎に、各電流センサ12の出力Vsを受信する。したがって、選択された電流センサアレイ10を縦軸(Y軸)に表示し、各電流センサ12毎の位置を横軸(X軸)とし、各電流センサ12の出力Vsを高さ軸(Z軸)とすれば、実施の形態2同様(図4(B)参照)の2次元平面における電流分布を可視化することができる。 The display unit 40 receives the output Vs of each current sensor 12 for each selected current sensor array 10. Therefore, the selected current sensor array 10 is displayed on the vertical axis (Y axis), the position for each current sensor 12 is set on the horizontal axis (X axis), and the output Vs of each current sensor 12 is set on the height axis (Z axis). ), The current distribution in the two-dimensional plane as in the second embodiment (see FIG. 4B) can be visualized.
 なお、本発明の電流センサアレイでは、直線状および2次元平面状を例示したが、螺旋状や輪形体が重なり合った形状などであってもよい。また本発明では電流センサアレイとして説明を行ったが、電力センサとしてもよい。 In the current sensor array of the present invention, a linear shape and a two-dimensional planar shape are exemplified, but a spiral shape or a shape in which ring-shaped bodies overlap each other may be used. Although the present invention has been described as a current sensor array, it may be a power sensor.
 本発明に係る電流可視化装置は、複雑な配線に流れる電流を可視化することができるので、電流回路におけるチェックに広く利用することができる。 Since the current visualization apparatus according to the present invention can visualize the current flowing through a complicated wiring, it can be widely used for checking in a current circuit.
1 電流可視化装置
2 電流可視化装置
3 電流可視化装置
10 電流センサアレイ
12 電流センサ
14 開閉スイッチ
15 スイッチ線
18 電流源
20 電流回路
21a、21b 出力端子線
22 アンプ
24 駆動回路
30 磁性素子
30a、30b 素子端子
32 磁性膜
34 導体部
36 抵抗
40 表示部
42 縦軸
44 横軸
50 位置センサ
60 切換回路
99 電線 
Vs 出力
Ts タイミング信号
Cst 起動指令
Py 位置情報
Sb 切換信号

 
DESCRIPTION OF SYMBOLS 1 Current visualization apparatus 2 Current visualization apparatus 3 Current visualization apparatus 10 Current sensor array 12 Current sensor 14 On-off switch 15 Switch line 18 Current source 20 Current circuit 21a, 21b Output terminal line 22 Amplifier 24 Drive circuit 30 Magnetic element 30a, 30b Element terminal 32 Magnetic film 34 Conductor part 36 Resistance 40 Display part 42 Vertical axis 44 Horizontal axis 50 Position sensor 60 Switching circuit 99 Electric wire
Vs output Ts timing signal Cst start command Py position information Sb switching signal

Claims (6)

  1.  直線上に配置した、磁性素子を有する複数の電流センサと、
     前記電流センサの磁性素子に電流を流す、開閉スイッチを有する電流回路と、
     前記開閉スイッチを順次開閉する駆動回路と、
     前記磁性素子の出力を増幅するアンプを有することを特徴とする電流センサアレイ。
    A plurality of current sensors having magnetic elements arranged on a straight line;
    A current circuit having an open / close switch for passing a current through the magnetic element of the current sensor;
    A drive circuit for sequentially opening and closing the open / close switch;
    A current sensor array comprising an amplifier for amplifying the output of the magnetic element.
  2.  請求項1に記載された電流センサアレイと、
     前記駆動回路と前記アンプに接続され、前記電流センサの位置をX成分とし、前記アンプの出力をZ成分として表示する表示部を有することを特徴とする電流可視化装置。
    A current sensor array according to claim 1;
    A current visualization apparatus, comprising: a display unit connected to the drive circuit and the amplifier, and displaying a position of the current sensor as an X component and an output of the amplifier as a Z component.
  3.  さらに前記表示部に接続される位置センサを有し、
     前記表示部は、
     前記電流センサアレイの位置をY成分とし、
     前記電流センサの位置をX成分とし、
     前記アンプの出力をZ成分として表示する表示部を有することを特徴とする請求項2に記載された電流可視化装置。
    Furthermore, it has a position sensor connected to the display unit,
    The display unit
    The position of the current sensor array is a Y component,
    The position of the current sensor is an X component,
    The current visualization apparatus according to claim 2, further comprising a display unit that displays an output of the amplifier as a Z component.
  4.  前記電流センサが配列された方向と直角方向に配列された、請求項1に記載された複数の電流センサアレイと、
     電流源からの電流を順次個々の前記電流センサアレイに流す切換回路と、
     前記駆動回路と前記アンプに接続され、
      前記電流センサアレイの位置をY成分とし、
      前記電流センサの位置をX成分とし、
      前記アンプの出力をZ成分として表示する表示部と、を有することを特徴とする電流可視化装置。
    The plurality of current sensor arrays according to claim 1, wherein the current sensors are arranged in a direction perpendicular to the direction in which the current sensors are arranged.
    A switching circuit for flowing current from a current source sequentially to each of the current sensor arrays;
    Connected to the drive circuit and the amplifier;
    The position of the current sensor array is a Y component,
    The position of the current sensor is an X component,
    A current visualization apparatus comprising: a display unit configured to display an output of the amplifier as a Z component.
  5.  前記複数の電流センサのそれぞれは、前記磁性素子と、前記磁性素子と直列接続された抵抗と、を有することを特徴とする請求項1に記載の電流センサアレイ。 The current sensor array according to claim 1, wherein each of the plurality of current sensors includes the magnetic element and a resistor connected in series with the magnetic element.
  6.  前記磁性膜は、短冊状の磁性膜を含み、その長手方向に磁化容易軸が誘導されていることを特徴とする請求項1に記載の電流センサアレイ。

     
    The current sensor array according to claim 1, wherein the magnetic film includes a strip-shaped magnetic film, and an easy axis of magnetization is induced in a longitudinal direction thereof.

PCT/JP2015/001576 2014-03-20 2015-03-20 Current sensor array and current visualization device using same WO2015141236A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016508548A JPWO2015141236A1 (en) 2014-03-20 2015-03-20 Current sensor array and current visualization device using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014059174 2014-03-20
JP2014-059174 2014-03-20

Publications (1)

Publication Number Publication Date
WO2015141236A1 true WO2015141236A1 (en) 2015-09-24

Family

ID=54144216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001576 WO2015141236A1 (en) 2014-03-20 2015-03-20 Current sensor array and current visualization device using same

Country Status (2)

Country Link
JP (1) JPWO2015141236A1 (en)
WO (1) WO2015141236A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291647A (en) * 1992-04-09 1993-11-05 Murata Mfg Co Ltd Current sensor
JPH07501402A (en) * 1992-09-02 1995-02-09 サンタ・バーバラ・リサーチ・センター Temperature compensated magnetoresistive sensor circuit with high output voltage swing
JPH0815398A (en) * 1994-07-05 1996-01-19 Sharp Corp Superconducting magnetic sensor
JP2004153133A (en) * 2002-10-31 2004-05-27 Ricoh Co Ltd Mi sensor, ic chip therefor, and electronic equipment equipped therewith
JP2005345249A (en) * 2004-06-02 2005-12-15 Masato Niizoe Current distribution measuring device
JP2011102730A (en) * 2009-11-10 2011-05-26 Ricoh Co Ltd Magnetic sensor
JP2012088177A (en) * 2010-10-20 2012-05-10 Pulstec Industrial Co Ltd Battery inspection device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05291647A (en) * 1992-04-09 1993-11-05 Murata Mfg Co Ltd Current sensor
JPH07501402A (en) * 1992-09-02 1995-02-09 サンタ・バーバラ・リサーチ・センター Temperature compensated magnetoresistive sensor circuit with high output voltage swing
JPH0815398A (en) * 1994-07-05 1996-01-19 Sharp Corp Superconducting magnetic sensor
JP2004153133A (en) * 2002-10-31 2004-05-27 Ricoh Co Ltd Mi sensor, ic chip therefor, and electronic equipment equipped therewith
JP2005345249A (en) * 2004-06-02 2005-12-15 Masato Niizoe Current distribution measuring device
JP2011102730A (en) * 2009-11-10 2011-05-26 Ricoh Co Ltd Magnetic sensor
JP2012088177A (en) * 2010-10-20 2012-05-10 Pulstec Industrial Co Ltd Battery inspection device

Also Published As

Publication number Publication date
JPWO2015141236A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
US10539701B2 (en) Minute magnetic body detecting sensor and foreign substance detecting device
US10101413B2 (en) Magnetic field detection device
US10007300B2 (en) Array substrate, display panel and method for detecting bent degree of the same
KR101697895B1 (en) Magnetic field sensor system
TW201115166A (en) Magnetic field sensor
US10126330B2 (en) Clamp-type ammeter
US20170108559A1 (en) Magnetic field sensing apparatus
JP6563282B2 (en) Measuring device and inspection device
WO2016063417A1 (en) Magnetic position detection device and magnetic position detection method
JP6006345B2 (en) Inspection wafer and test system
JP4833766B2 (en) measuring device
WO2015141236A1 (en) Current sensor array and current visualization device using same
US9558880B2 (en) Microtechnical component for a magnetic sensor device or a magnetic actuator and production method for a microtechnical component for a magnetic sensor device or a magnetic actuator
TWI730591B (en) Inspection equipment for glass substrate and method thereof
TWI724749B (en) Inspection equipment for glass substrate and method thereof
JP2004264158A (en) Current sensor for vehicle
KR101699404B1 (en) Current measurement device of electric power supply using the plural of hall sensor
JPH0526739A (en) Multiple-point temperature-measuring circuit
JP6732563B2 (en) Sensors and current measuring devices
CN112051523B (en) Magnetic field sensing device
KR20180069192A (en) Multi-clamp current measuring apparatus and curretn measuring system
US20190079116A1 (en) Device for measuring electric currents
JP2016125967A (en) Magnetic sensor device and magnetic detection device
JP2017129521A (en) Current detector
JP2019027819A (en) Clamp sensor and measuring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15765674

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016508548

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15765674

Country of ref document: EP

Kind code of ref document: A1