WO2015140986A1 - Hydraulic device - Google Patents

Hydraulic device Download PDF

Info

Publication number
WO2015140986A1
WO2015140986A1 PCT/JP2014/057756 JP2014057756W WO2015140986A1 WO 2015140986 A1 WO2015140986 A1 WO 2015140986A1 JP 2014057756 W JP2014057756 W JP 2014057756W WO 2015140986 A1 WO2015140986 A1 WO 2015140986A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
pressure
chamber
piston
hydraulic
Prior art date
Application number
PCT/JP2014/057756
Other languages
French (fr)
Japanese (ja)
Inventor
常冨信秀
哲朗 細川
Original Assignee
住友精密工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友精密工業株式会社 filed Critical 住友精密工業株式会社
Priority to PCT/JP2014/057756 priority Critical patent/WO2015140986A1/en
Priority to JP2014543377A priority patent/JP5654717B1/en
Publication of WO2015140986A1 publication Critical patent/WO2015140986A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03CPOSITIVE-DISPLACEMENT ENGINES DRIVEN BY LIQUIDS
    • F03C2/00Rotary-piston engines
    • F03C2/08Rotary-piston engines of intermeshing-engagement type, i.e. with engagement of co- operating members similar to that of toothed gearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C14/00Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations
    • F04C14/04Control of, monitoring of, or safety arrangements for, machines, pumps or pumping installations specially adapted for reversible machines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • F04C15/0042Systems for the equilibration of forces acting on the machines or pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2/00Rotary-piston machines or pumps
    • F04C2/08Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C2/12Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C2/14Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C2/18Rotary-piston machines or pumps of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with similar tooth forms
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01CROTARY-PISTON OR OSCILLATING-PISTON MACHINES OR ENGINES
    • F01C21/00Component parts, details or accessories not provided for in groups F01C1/00 - F01C20/00
    • F01C21/02Arrangements of bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2270/00Control; Monitoring or safety arrangements
    • F04C2270/16Wear

Definitions

  • the present invention relates to a hydraulic apparatus including a pair of helical gears whose tooth surfaces mesh with each other, and more specifically, a usage mode in which a helical gear is rotated in the forward direction about its axis, and a reverse direction. It is related with the hydraulic apparatus which can be used conveniently in both aspects of the use aspect rotated to 1).
  • a pair of gears is appropriately rotated by a drive motor, and a hydraulic pump that pressurizes and discharges the working liquid by a rotating operation of the gears, or a pressurized hydraulic fluid is introduced to introduce the gears.
  • a hydraulic pump that pressurizes and discharges the working liquid by a rotating operation of the gears, or a pressurized hydraulic fluid is introduced to introduce the gears.
  • hydraulic motors that rotate and use the rotational force of the rotating shaft as power.
  • the hydraulic device has a pair of gears meshing with each other housed in a housing, and rotating shafts extending outward from both end surfaces of the gears are housed in the housing.
  • a structure is provided that is rotatably supported by bearing members disposed on both sides of each gear.
  • a pair of gears of various shapes are used, and among them, there is a hydraulic device using a helical gear.
  • this helical gear has a structure in which the teeth are inclined obliquely, the tooth contact of the gear is dispersed, so that it has a characteristic that the noise is low.
  • this is used as a hydraulic device.
  • an axial thrust force (meshing thrust force) is generated by the meshing of the teeth, and a thrust force (pressure receiving thrust force) is similarly generated by receiving the pressure of the working liquid on the tooth surface.
  • This thrust force is periodically changed by the rotation of the gear, and this periodic change causes the gear and the bearing member to vibrate and generates noise, or the vibration causes the end face of the gear and the end face of the bearing member to be generated.
  • the gear pump 100 includes a main body 101 in which a hydraulic chamber 101a is formed and a pair of helical screws inserted into the hydraulic chamber 101a in a state where teeth are engaged with each other.
  • Gears 115 and 120 are provided.
  • the pair of gears 115 and 120 is configured such that the gear 115 is a driving gear and the gear 120 is a driven gear, and the rotation shafts 116 and 121 are similarly supported by bearings 110a, 110b, 110c, and 110d inserted into the hydraulic chamber 101a.
  • Bearings 110a, 110b, 110c, and 110d inserted into the hydraulic chamber 101a.
  • a front cover 102 is fixed on the front end surface of the main body 101 in a liquid-tight manner by a seal
  • an intermediate plate 106 is fixed on the rear end surface of the main body 101 in a liquid-tight manner by a seal
  • a rear cover 104 is fixed to the rear end surface of the intermediate plate 106 in a liquid-tight manner by a seal.
  • the hydraulic chamber 101a is divided into a high pressure side and a low pressure side with a meshing portion of the pair of gears 115 and 120 as a boundary, and the drive gear 115 is driven to rotate by a driving source as appropriate, so that the pair of gears 115 is driven.
  • 120 is rotated about its axis, the working liquid is introduced into the low-pressure side from an intake port (not shown), and the introduced working liquid is guided to the high-pressure side while being pressurized by the action of the pair of gears 115, 120, The working liquid that has become is discharged from a discharge port (not shown).
  • the intermediate plate 106 has through holes 106a and 106b in portions corresponding to the rotary shafts 116 and 121, and pistons 108 and 109 are inserted into the through holes 106a and 106b, respectively. Yes.
  • a concave hydraulic chamber 104a corresponding to a region including the through holes 106a and 106b is formed on a surface (front surface) of the rear cover 104 that contacts the intermediate plate 106.
  • the concave hydraulic chamber 104a is appropriately formed in the hydraulic chamber 104a.
  • the high-pressure side working liquid is supplied through a flow path. Further, a high-pressure side working liquid is supplied between the front surface of the intermediate plate 106 and the rear surfaces of the bearings 110a and 110c as appropriate.
  • the gear pump 100 having the above configuration, during the operation of the gear pump 100, the high-pressure side working liquid is supplied to the hydraulic pressure chamber 104a of the rear cover 104, and the pistons 108 and 109 are respectively caused by the high-pressure working liquid.
  • the gears 115 and 120 are pressed forward by the pistons 108 and 109 via the rotating shafts 116 and 121 by the pistons 108 and 109, and the front surface of the intermediate plate 106 and the rear surfaces of the bearings 110a and 110c.
  • the bearings 110a and 110c are respectively pressed forward by the high-pressure working liquid supplied therebetween, and the bearings 110a and 110c, the gears 115 and 120, and the bearings 110b and 110d are integrally pressed forward by these actions.
  • the bearings 110b and 110d are pressed against the rear end surface of the front cover 102.
  • the pressure receiving areas (cross-sectional areas) of the pistons 108 and 109 are set according to the thrust force acting on the drive gear 115 and the driven gear 120, and the cross-sectional area of the piston 108 is larger than the cross-sectional area of the piston 109. ing.
  • the thrust force generated by the rotation of the helical gear causes vibration and noise, or leaks from the high pressure side to the low pressure side.
  • the structure including the bearings 110a and 110c, the gears 115 and 120, and the bearings 110b and 110d is integrally pressed forward with a force exceeding the thrust force, and the rear end surface of the front cover 102 is pressed. Therefore, the gears 115 and 120 and the bearings 110a, 110b, 110c, and 110d do not vibrate, and the problem of noise and leakage due to the vibration described above is prevented.
  • Patent Document 2 As a gear pump using a helical gear, in addition to the gear pump disclosed in Patent Document 1, the gear pump disclosed in Japanese Patent Laid-Open No. 2-95789 (Patent Document 2), A gear pump disclosed in Japanese Utility Model Publication No. 47-16424 (Patent Document 3) is also known.
  • the thrust force acting on each gear when each gear of the gear pump is rotated in one direction and the thrust force acting on each gear when rotated in the opposite direction are such that the acting direction is The opposite is true.
  • the conventional gear pump has a structure in which the drag force against the thrust force acting on each gear can be applied only in one direction. In the case of use, however, an appropriate drag can be applied to the thrust force in one rotation direction of the gear, but a drag is applied to the thrust force in the other rotation direction of the gear. There is a problem that the above-mentioned problems due to the thrust force acting on the gear cannot be solved.
  • An object of the present invention is to provide a hydraulic device capable of appropriately mitigating the thrust force acting on each gear.
  • a first and a second pair of helical gears having first and second rotating shafts provided so as to extend outward from both end faces, respectively, and the tooth portions mesh with each other;
  • the hydraulic chamber has a main body having an arcuate inner peripheral surface;
  • a front-side front cover and a rear-side end cover which are fixed in a liquid-tight manner on both end faces of the main body and seal the hydraulic chamber,
  • the hydraulic chamber is set to one side on the low pressure side and the other side to the high pressure side with the meshing portion of the first and second gears as a boundary,
  • a meshing thrust force received by the meshing and a pressure receiving thrust force received by the high-pressure side working fluid act in the same direction on
  • the present invention relates to a hydraulic device provided with a drag application mechanism.
  • a meshing thrust force is generated by meshing of teeth, and a pressure-receiving thrust force is generated by the tooth surface receiving the pressure of the working liquid.
  • the pressure-receiving thrust force acts on the tooth surfaces of the pair of gears in the same manner, and thus acts on the pair of gears in the same direction.
  • the meshing thrust force is generated by the meshing of the tooth portions and acts as a reaction force with each other, and thus acts in the opposite direction to the pair of gears. Therefore, for one gear, the meshing thrust force and the pressure-receiving thrust force are in the same direction, and a thrust force as a resultant force of the meshing thrust force and the pressure-receiving thrust force acts on the one gear.
  • the meshing thrust force and the pressure-receiving thrust force are in opposite directions, and a thrust force that is the difference between the meshing thrust force and the pressure-receiving thrust force acts on the other gear.
  • the meshing thrust force and the pressure-receiving thrust force are applied to the first gear in the same direction, and the meshing force and the pressure-receiving thrust force are applied to the second gear. Acts in the opposite direction.
  • the first rotation shaft of the first gear functions as an input shaft or an output shaft.
  • the first gear is unidirectionally (forward rotation direction) with respect to at least one of the first and second rotation shafts of the first gear by the first drag application mechanism.
  • a drag force acting on the first gear when it rotates and resisting the resultant force of the meshing thrust force and the pressure-receiving thrust force is applied, and when the first gear rotates in the reverse rotation direction, it acts on the first gear. Then, a resistance against the resultant force of the meshing thrust force and the pressure-receiving thrust force is applied.
  • the first piston has a front pressure-receiving surface that is formed in a front portion thereof and receives a pressure directed in the rear direction, and a rear pressure-receiving surface that is formed in a rear portion and receives a pressure directed in the front direction.
  • a first cylinder chamber in which the front pressure receiving surface is located and a second cylinder chamber in which the rear pressure receiving surface is located are formed in the first cylinder hole in a state where the first piston is fitted.
  • a high-pressure working fluid is applied to the front pressure-receiving surface of the first piston so as to communicate with the hydraulic chamber and the first cylinder chamber, which become high when the resultant force acts in the forward direction.
  • the first drag application mechanism having this configuration, when the direction in which the resultant force acts is the front direction, high-pressure working liquid is supplied from the hydraulic chamber to the first cylinder chamber through the first flow path. A high-pressure working liquid acts on the front pressure-receiving surface of the first piston, and the first piston is urged backward, and this attachment is applied to the second rotation shaft of the first gear engaged with the first piston. Power is acting. Thereby, the urging
  • the high pressure working liquid is supplied from the hydraulic pressure chamber to the second cylinder chamber through the second flow path, and the high pressure is applied to the rear pressure receiving surface of the first piston.
  • the working liquid acts to urge the first piston forward, and this urging force acts on the second rotating shaft of the first gear engaged with the first piston.
  • the first piston may be configured to be separated between the front pressure receiving surface and the rear pressure receiving surface so as to contact and separate from each other. Even if configured in this way, when the high-pressure working liquid is supplied to the second cylinder chamber, the rear pressure-receiving surface side is urged forward and comes into contact with the front pressure-receiving surface side, and the front pressure-receiving surface side Thus, the second rotation shaft of the first gear can be biased forward.
  • a fourth cylinder chamber is formed, Further, a third hydraulic fluid chamber communicates with the hydraulic chamber which becomes high when the direction in which the resultant force acts is the forward direction, and the third cylinder chamber, and causes a high-pressure working liquid to act on the front end surface of the large-diameter member.
  • the first drag application mechanism having this configuration, when the direction in which the resultant force acts is the front direction, high-pressure working liquid is supplied from the hydraulic chamber to the third cylinder chamber through the third flow path, A high-pressure working liquid acts on the front end surface of the large-diameter member, and the first rotating shaft of the first gear is urged backward. Thereby, the urging
  • the high pressure working liquid is supplied from the hydraulic pressure chamber to the fourth cylinder chamber through the fourth flow path, and the high pressure operation is applied to the rear end surface of the second piston.
  • the liquid acts and the second piston is urged forward, abuts against the end surface of the second rotation shaft of the first gear, and urges the second rotation shaft forward.
  • a fourth cylinder hole formed in the through hole portion of the front cover through which the first rotation shaft of the first gear passes, and having a diameter larger than the through hole and opened to the first gear side;
  • a large-diameter member having a ring shape larger than the outer diameter of the first rotating shaft of the first gear, engaged with the first rotating shaft, and fitted into the fourth cylinder hole;
  • a fifth cylinder chamber which is a closed space, is formed on the front side of the large diameter member
  • a sixth cylinder chamber which is a closed space, is formed on the rear side of the large diameter member.
  • a fifth fluid pressure chamber communicates with the hydraulic chamber which becomes high when the direction in which the resultant force acts is the front direction, and the fifth cylinder chamber, and causes a high-pressure working fluid to act on the front end surface of the large-diameter member.
  • the high pressure working liquid is supplied from the fluid pressure chamber to the sixth cylinder chamber through the sixth flow path, and the high pressure operation is performed on the rear end surface of the large-diameter member.
  • the liquid acts to urge the first rotation shaft of the first gear in the forward direction.
  • a fifth cylinder hole formed in the end cover along the extending direction of the second rotating shaft of the first gear and into which the second rotating shaft is inserted;
  • a large-diameter member having a ring shape larger than the outer diameter of the second rotating shaft of the first gear, engaged with the second rotating shaft, and fitted into the fifth cylinder hole;
  • a seventh cylinder chamber that is a closed space is formed on the front side of the large-diameter member, and an eighth cylinder chamber that is a closed space is formed on the rear side of the large-diameter member.
  • a seventh hydraulic fluid chamber communicates with the hydraulic chamber which becomes high when the direction in which the resultant force acts is the forward direction and the seventh cylinder chamber, and causes a high-pressure working liquid to act on the front end surface of the large-diameter member.
  • the high pressure working liquid is supplied from the hydraulic pressure chamber to the eighth cylinder chamber through the eighth flow path, and the high pressure operation is performed on the rear end surface of the large-diameter member.
  • the liquid acts to bias the second rotation shaft of the first gear forward.
  • first rotating shaft of the first gear may have a stepped shaft shape having a large diameter portion and a small diameter portion in order toward the extending direction.
  • the through-hole portion of the front cover through which the first rotation shaft of the first gear penetrates is larger in diameter than the through-hole through which the small-diameter portion of the first rotation shaft passes, and opens to the first gear side.
  • a sixth cylinder hole that is formed and into which the large-diameter portion of the first rotating shaft is inserted;
  • a ninth cylinder chamber which is a closed space, is formed on the front side of the large-diameter portion of the first rotation shaft, and in the seventh cylinder hole, the third piston is provided.
  • a tenth cylinder chamber which is a closed space, is formed on the rear side, Further, a high-pressure working liquid is connected to the front end face of the large-diameter portion of the first rotating shaft, and communicates with the hydraulic chamber that becomes high when the resultant force acts in the forward direction and the ninth cylinder chamber.
  • a ninth flow path for causing A tenth flow path that communicates with the hydraulic chamber that is high when the direction in which the resultant force acts is the backward direction and the tenth cylinder chamber, and causes the high pressure working liquid to act on the rear end surface of the third piston.
  • the high pressure working liquid is supplied from the hydraulic pressure chamber to the tenth cylinder chamber through the tenth flow path, and the high pressure operation is applied to the rear end surface of the third piston.
  • the liquid acts and the third piston is urged forward, abuts against the end surface of the second rotation shaft of the first gear, and urges the second rotation shaft forward.
  • biasing force drag
  • the first and second rotating shafts are centered on the shaft in the positive rotation direction with respect to at least one of the first and second rotating shafts of the second gear.
  • the counteracting force acting on the second gear when it rotates and acting against the resultant force of the meshing thrust force and the pressure-receiving thrust force is applied.
  • the meshing thrust force and the pressure-receiving thrust force act on the second gear in opposite directions. That is, the difference between the meshing thrust force and the pressure receiving thrust force, in other words, the thrust force related to the resultant force of the meshing thrust force and the pressure receiving thrust force acts on the second gear.
  • the first and second rotating shafts are centered on at least one of the first and second rotating shafts of the second gear by the second drag applying mechanism.
  • a drag acting against the resultant force of the meshing thrust force and the pressure-receiving thrust force acting on the second gear when rotating in the forward rotation direction, and the first and second rotation shafts in the reverse rotation direction.
  • a drag force acting on the second gear when it rotates and acting against the resultant force of the meshing thrust force and the pressure-receiving thrust force is applied.
  • the fourth piston has a front pressure-receiving surface that is formed at a front portion thereof and receives a pressure directed in the rearward direction, and a rear pressure-receiving surface that is formed at a rear portion and receives a pressure directed toward the front.
  • Have An eleventh cylinder chamber in which the rear pressure receiving surface is located and a twelfth cylinder chamber in which the front pressure receiving surface is located are formed in the eighth cylinder hole in a state where the fourth piston is inserted.
  • a high-pressure working fluid is applied to the rear pressure-receiving surface of the fourth piston so as to communicate with the hydraulic chamber which becomes high when the direction in which the resultant force acts is the backward direction and the eleventh cylinder chamber.
  • the high-pressure working liquid is supplied from the hydraulic chamber to the eleventh cylinder chamber through the eleventh flow path.
  • a high-pressure working liquid acts on the rear pressure receiving surface of the fourth piston, and the fourth piston is urged forward, and this urging force is applied to the first rotating shaft of the second gear engaged with the fourth piston.
  • biasing force (drag) toward the front which resists the said resultant force acts on a 2nd gearwheel.
  • the fourth piston may be configured to be separated between the front pressure receiving surface and the rear pressure receiving surface so as to contact and separate from each other. Even if configured in this way, when the high-pressure working liquid is supplied to the twelfth cylinder chamber, the front pressure-receiving surface side is urged rearward, abuts on the rear pressure-receiving surface side, and the rear pressure-receiving surface side is Thus, the first rotation shaft of the second gear can be urged rearward.
  • a ninth cylinder hole formed in the end cover in the extending direction of the second rotating shaft of the second gear;
  • a fifth piston fitted into the ninth cylinder hole and having a front end engaged with a second rotating shaft of the second gear;
  • the fifth piston has a front pressure-receiving surface that is formed at a front portion thereof and receives a pressure directed in the rearward direction, and a rear pressure-receiving surface that is formed at a rear portion and receives a pressure directed toward the front.
  • a thirteenth cylinder chamber in which the front pressure-receiving surface is located and a fourteenth cylinder chamber in which the rear pressure-receiving surface is located are formed in a state where the fifth piston is fitted.
  • a high-pressure working liquid is applied to the front pressure-receiving surface of the fifth piston so as to communicate with the hydraulic chamber that becomes high when the resultant force acts in the forward direction and the thirteenth cylinder chamber.
  • a thirteenth flow path, A fourteenth fluid pressure chamber communicates with the fourteenth cylinder chamber, which is high when the direction in which the resultant force acts is the rearward direction, and the fourteenth cylinder chamber, and causes the high pressure working liquid to act on the rear pressure receiving surface of the fifth piston.
  • the aspect provided with the flow path can be mentioned.
  • the fifth piston may be configured to be separated between the front pressure receiving surface and the rear pressure receiving surface so as to contact and separate from each other. Even if configured in this way, when the high-pressure working liquid is supplied to the twelfth cylinder chamber, the rear pressure-receiving surface side is urged in the forward direction and comes into contact with the front pressure-receiving surface side, and the front pressure-receiving surface side The second rotation shaft of the second gear can be urged forward via the.
  • a sixteenth cylinder chamber is formed, Further, a fifteenth fifteenth fluid is communicated with the hydraulic chamber which becomes high when the direction in which the resultant force acts is the front direction, and the fifteenth cylinder chamber, and a high-pressure working liquid acts on the front end surface of the sixth piston.
  • the high pressure working liquid is supplied from the hydraulic pressure chamber to the sixteenth cylinder chamber through the sixteenth flow path, and the high pressure operation is applied to the rear end surface of the seventh piston.
  • the liquid acts and the seventh piston is urged forward, and abuts against the end surface of the second rotating shaft of the second gear, and urges it forward.
  • biasing force drag
  • the first drag application mechanism causes the first gear and the second gear to rotate in either the forward or reverse direction.
  • a drag force against the thrust force can be applied to the first gear, and problems caused by the thrust force can be prevented from occurring.
  • FIG. 1 is a cross-sectional plan view showing a hydraulic apparatus according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along line AA in FIG. (A) is the enlarged view which expanded the B section in FIG. 1, (b) is sectional drawing of the CC direction of the arrow. It is explanatory drawing for demonstrating operation
  • the hydraulic device of this example is a hydraulic pump, and hydraulic oil is used as the hydraulic fluid.
  • the hydraulic pump 1 includes a housing 2 in which a hydraulic chamber 4 is formed, and a pair of helical gears (hereinafter referred to as a helical gear) disposed in the hydraulic chamber 4. 10 and 15), a pair of bearings 20 and 25, a pair of side plates 30 and 35, a first drag application mechanism 40, and a second drag application mechanism 60.
  • a helical gear a pair of helical gears
  • the housing 2 includes a main body 3 in which the hydraulic pressure chamber 4 having a space having a cross-sectional shape of approximately 8 is formed from one end face toward the other end face, and a liquid is formed on the front end face of the main body 3.
  • the front cover 5 is tightly fixed and the end cover 7 is also liquid-tightly fixed to the rear end surface of the main body 3.
  • the hydraulic chamber 4 is closed by the front cover 5 and the end cover 7.
  • a seal plate 6 is embedded in the rear end surface of the front cover 5, and similarly, a seal plate 8 is embedded in the front end surface of the end cover 7.
  • One of the pair of gears 10 and 15 is a drive gear (first gear) 10, and the other is a driven gear (second gear) 15.
  • the tooth portion of the drive gear 10 is right-handed, and the tooth portion of the driven gear 15. Is left-handed.
  • the gear 10 has a first rotary shaft 11 and a second rotary shaft 12 extending from the both end surfaces along the axial direction, respectively.
  • the gear 15 has the first rotary shaft 16 from the both end surfaces along the axial direction.
  • the 2nd rotating shaft 17 is extended.
  • the pair of gears 10 and 15 are inserted into the hydraulic pressure chamber 4 in a state of being engaged with each other, and the outer surface of the tooth tip is in sliding contact with the inner peripheral surface 3a of the hydraulic pressure chamber 4,
  • the hydraulic chamber 4 is divided into a high pressure side and a low pressure side with the meshing portion of the pair of gears 10 and 15 as a boundary.
  • the first rotating shaft 11 of the gear 10 extends outward through a through hole 6 a formed in the seal plate 6 and through holes 5 a and 5 b formed in the front cover 5.
  • the first rotary shaft 11 is fitted into the through holes 5a and 6a, and the oil seal 13 seals between the outer peripheral surface and the inner peripheral surface of the through hole 5b.
  • the main body 3 is formed with a first port 3b that communicates with the hydraulic chamber 4 on one side surface, and a second port 3c that communicates with the hydraulic chamber 4 on the other side surface opposite to the first port 3b. Is formed.
  • the first port 3b and the second port 3c are provided such that their respective axes are positioned at the center between the pair of gears 10 and 15.
  • the pair of side plates 30 and 35 are plate-like members having two through-holes 31 and 32 and through-holes 36 and 37, respectively, each having a cross-sectional shape of approximately 8 characters.
  • the first rotary shaft 11 of the gear 10 is fitted, the second rotary shaft 12 is fitted in the through hole 36, the first rotary shaft 16 of the gear 15 is fitted in the through hole 32, and the first rotary shaft 12 is inserted in the through hole 37.
  • the gears 10 and 15 are disposed on both sides, respectively, and one end surface thereof is in contact with the entire end surface including the tooth portion of each gear 10 and 15. Yes.
  • the bearings 20 and 25 are metal bearings each having two support holes 21 and 22 and support holes 26 and 27 and made of a member having a cross-sectional shape of approximately eight.
  • the first rotation shaft 11 is inserted, the second rotation shaft 12 is inserted into the support hole 26, the first rotation shaft 16 of the gear 15 is inserted into the support hole 22, and the second rotation shaft 17 is inserted into the support hole 27.
  • seal plate 6, the bearing 20, the side plate 30, the gear 10 and the gear 15, the side plate 35, the bearing 25, and the seal plate 8 that are sequentially arranged are in contact with each other, and the gears 10, 15, A preload is applied to the side plates 30 and 35 and the bearings 20 and 25, respectively.
  • the first drag applying mechanism 40 is formed on the end cover 7 in the extension direction of the second rotating shaft 12 of the gear 10 in order.
  • a cylinder hole 41 having a diameter larger than the diameter
  • a cylinder hole 43 having an inner diameter smaller than the inner diameter of the cylinder hole 41
  • a large-diameter portion 46 fitted into the cylinder hole 41
  • the cylinder hole 43 and a piston 45 having a small diameter portion 47.
  • the second rotary shaft 12 of the gear 10 has an end portion positioned in the cylinder hole 41 in a state of being fitted into the through hole 8a of the seal plate 8, and an ant formed at the same end portion.
  • a cylinder chamber 44 is formed between the bottom of the cylinder hole 43 and the rear end surface of the small diameter portion 47, and a cylinder is formed between the front end surface of the large diameter portion 46 and the rear end surface of the seal plate 8.
  • a chamber 42 is formed.
  • the cylinder chamber 42 is communicated with the first port 3b by a flow path 50 formed in the end cover 7 and a flow path 51 formed in the main body 3.
  • the chamber 44 is communicated with the second port 3 c by a flow path 52 formed in the end cover 7 and a flow path 53 formed in the main body 3.
  • a drain hole 49 communicating with a space between the rear end surface of the large diameter portion 46 and the bottom surface of the cylinder hole 41 is formed in the end cover 7.
  • the second drag applying mechanism 60 is formed on the front cover 5 in the extension direction of the first rotating shaft 16 of the gear 15, and the diameter of the first rotating shaft 16 is sequentially formed.
  • a piston 65 having 67.
  • the first rotary shaft 16 of the gear 15 has an end portion located in the cylinder hole 61 in a state of being fitted into the through hole 6b of the seal plate 6, and an ant formed at the same end portion.
  • a cylinder chamber 64 is formed between the bottom of the cylinder hole 63 and the front end surface of the small diameter portion 67, and a cylinder is formed between the rear end surface of the large diameter portion 66 and the front end surface of the seal plate 6.
  • a chamber 62 is formed.
  • the cylinder chamber 62 is communicated with the second port 3c by a flow path 70 formed in the front cover 5 and a flow path 71 formed in the main body 3.
  • the chamber 64 is communicated with the first port 3 b by a flow path 72 formed in the front cover 5 and a flow path 73 formed in the main body 3.
  • a drain hole 69 communicating with the space between the front end surface of the large diameter portion 66 and the bottom surface of the cylinder hole 61 is formed in the front cover 5.
  • the tooth portion of the gear 10 of this example is right-handed, and the tooth portion of the gear 15 is left-handed. Therefore, when the gear 10 is rotated in the direction indicated by the arrow D, a pressure-receiving thrust force [F pa ] indicated by a solid line directed toward the rear direction generated by the high-pressure hydraulic oil acting on the tooth portion of the gear 10 is indicated in FIG. Then, a meshing thrust force [F ma ] indicated by a solid line acting in the rearward direction caused by the meshing of the gears 10 and 15 acts, and the resultant force of the pressure receiving thrust force [F pa ] and the meshing thrust force [F ma ] Act.
  • the gear 15 has a pressure-receiving thrust force [F pa ] indicated by a solid line and a forward direction generated by the meshing of the gears 10 and 15, which are generated when high-pressure hydraulic oil acts on the tooth portion.
  • the meshing thrust force [ ⁇ F ma ] indicated by the solid line is applied, and the resultant force of the pressure receiving thrust force [F pa ] and the meshing thrust force [ ⁇ F ma ] is applied.
  • the relationship between the pressure-receiving thrust force and the meshing thrust force is F pa > F ma . Therefore, the resultant force of the pressure receiving thrust force [F pa ] and the meshing thrust force [ ⁇ F ma ] acts on the gear 15 in the backward direction.
  • the drag by the first drag application mechanism 40 is obtained by multiplying the area of the rear end surface (pressure receiving surface) of the small diameter portion 47 by the pressure of the hydraulic oil, and meshes with the pressure receiving thrust force [F pa ] and the thrust force [ F ma ] is sufficient as long as it resists the resultant force, and may be a force equal to the resultant force, a smaller force than the resultant force, or a larger force than the resultant force. It is preferable to have an equal drag.
  • the high-pressure hydraulic oil in the second port 3 c flows into the cylinder chamber 62 through the flow paths 71 and 70 of the second drag application mechanism 60, and the rear end surface of the large-diameter portion 66 of the piston 65.
  • the piston 65 is urged forward.
  • the forward biasing force against the resultant force of the pressure-receiving thrust force [F pa ] and the meshing thrust force [ ⁇ F ma ] via the first rotating shaft 16 engaged with the piston 65. (Drag) acts on the gear 15.
  • a drag force acting in the forward direction against the resultant force of the pressure-receiving thrust force [F pa ] and the meshing thrust force [ ⁇ F ma ] acts on the gear 15 by the second drag applying mechanism 60. .
  • the drag of the second drag applying mechanism 60 is activated to an effective pressure receiving area of the rear end surface of the large diameter portion 66, that is, an area obtained by subtracting the cross sectional area of the first rotating shaft 16 from the cross sectional area of the large diameter portion 66.
  • this drag force is sufficient if it resists the resultant force of the pressure-receiving thrust force [F pa ] and the meshing thrust force [ ⁇ F ma ].
  • Either a drag force equal to the resultant force, a drag force smaller than the resultant force, or a drag force greater than the resultant force may be used, but a drag force equal to the resultant force is preferable.
  • a mode of rotating the gear 10 in the direction of arrow E When the gear 10 is rotated in the direction of arrow E by the drive motor, the gear 15 meshed with the gear 10 rotates in the opposite direction to the gear 10 and the hydraulic chamber
  • the hydraulic oil in the space sandwiched between the inner peripheral surface 3a of 4 and the tooth portions of the gears 10 and 15 is transferred to the first port 3b side by the rotation of the gears 10 and 15, and the pair of gears 10 and 15
  • the first port 3b side is at a high pressure and the second port 3c side is at a low pressure at the meshing portion, and the hydraulic oil in the hydraulic servomechanism is sucked into the second port 3c. Discharge from the first port 3b toward the hydraulic servo mechanism.
  • the gear 15 has a pressure receiving thrust force [ ⁇ F pa ] indicated by a broken line and a rearward direction generated by meshing of the gears 10 and 15, which is generated in the forward direction due to the action of high-pressure hydraulic oil on the tooth portion.
  • the meshing thrust force [F ma ] indicated by the broken line is applied to the pressure, and the resultant force of the pressure receiving thrust force [ ⁇ F pa ] and the meshing thrust force [F ma ] is applied.
  • the relationship between the pressure-receiving thrust force and the meshing thrust force is F pa > F ma , and therefore the gear 15 has a pressure-receiving thrust force [ ⁇ F pa ] and a meshing thrust force [F ma ].
  • the resultant force acts in the forward direction.
  • the second thrust shaft 12 engaged with the piston 45 is directed rearward against the resultant force of the pressure-receiving thrust force [ ⁇ F pa ] and the meshing thrust force [ ⁇ F ma ].
  • An urging force acts on the gear 10.
  • the gear 10 has a drag force in the backward direction against the resultant force of the pressure-receiving thrust force [ ⁇ F pa ] and the meshing thrust force [ ⁇ F ma ] by the first drag applying mechanism 40.
  • the drag of the first drag application mechanism 40 is activated to an effective pressure receiving area of the front end surface of the large diameter portion 46, that is, an area obtained by subtracting the cross sectional area of the second rotating shaft 12 from the cross sectional area of the large diameter portion 46.
  • the drag force is multiplied by the oil pressure, and the drag force is sufficient as long as it resists the resultant force of the received thrust force [ ⁇ F pa ] and the thrust force [ ⁇ F ma ].
  • Either a drag force equal to the resultant force, a drag force smaller than the resultant force, or a drag force greater than the resultant force may be used, but a drag force equal to the resultant force is preferable.
  • the high pressure hydraulic oil in the first port 3 b flows into the cylinder chamber 64 through the flow paths 73 and 71 of the second drag application mechanism 60, and reaches the front end surface of the small diameter portion 67 of the piston 65. Acts and urges the piston 65 in the rearward direction as in the case of the first drag application mechanism 40.
  • a biasing force in the backward direction against the resultant force of the pressure receiving thrust force [ ⁇ F pa ] and the meshing thrust force [F ma ] via the first rotating shaft 16 engaged with the piston 65. (Drag) acts on the gear 15.
  • a drag force acting in the backward direction against the resultant force of the pressure-receiving thrust force [ ⁇ F pa ] and the meshing thrust force [F ma ] is applied to the gear 15 by the second drag applying mechanism 60.
  • the drag force by the second drag application mechanism 60 is obtained by multiplying the area of the front end face (pressure receiving surface) of the small diameter portion 67 by the pressure of the hydraulic oil.
  • the pressure receiving thrust force [ ⁇ F pa ] And meshing thrust force [F ma ] it is sufficient if it resists the resultant force, either as a force equal to the resultant force, as a drag smaller than the resultant force, or as a drag greater than the resultant force. Although it is good, it is preferable to set the drag equal to the resultant force.
  • the gear 10 A drag force resisting the acting thrust force can be applied to the gear 10 by the first drag applying mechanism 40, and a drag force resisting the thrust force acting on the gear 15 is applied by the second drag applying mechanism 60. Since it can act on the gear 15, various problems caused by the thrust force, for example, in this example, the side plates 30, 35 that are in sliding contact with both end faces of the pair of gears 10, 15 are seized, or It is possible to prevent the problem that they are damaged.
  • the first embodiment of the present invention has been described above, the first embodiment can further take the following aspects.
  • the relationship between the pressure-receiving thrust force F pa acting on the gear 15 and the meshing thrust force F ma is F pa > F ma , but when F pa ⁇ F ma , the second When the flow path 70 and the flow path 71 communicated with the port 3c are communicated with the cylinder chamber 64, and the flow path 72 and the flow path 73 communicated with the first port 3b are communicated with the cylinder chamber 62. good.
  • FIG. 5 is a plan sectional view showing a hydraulic pump according to the second embodiment of the present invention.
  • this hydraulic pump 1A is provided with a second drag application mechanism 60 ′ on the end cover 7 side instead of the second drag application mechanism 60.
  • This is the same as the hydraulic pump 1 according to the first embodiment. Accordingly, the same components as those of the hydraulic pump 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the second drag applying mechanism 60 ′ is formed in the end cover 7 sequentially in the extending direction of the second rotating shaft 17 of the gear 15 and has a cylinder hole 61 having a diameter larger than the diameter of the second rotating shaft 17. ', A cylinder hole 63' that is a blind hole whose inner diameter is smaller than the inner diameter of the cylinder hole 61 ', a large-diameter portion 66' that is inserted into the cylinder hole 61 ', and a small-diameter portion that is inserted into the cylinder hole 63'. And a piston 65 ′ having 67 ′.
  • the second rotary shaft 17 of the gear 15 has an end portion located in the cylinder hole 61 ′ in a state of being fitted into the through hole 8 b of the seal plate 8, and is formed at the same end portion.
  • a cylinder chamber 64 ′ is formed between the bottom of the cylinder hole 63 ′ and the rear end surface of the small diameter portion 67 ′, and the front end surface of the large diameter portion 66 ′ and the rear end surface of the seal plate 8 are formed.
  • a cylinder chamber 62 ' is formed in the middle.
  • the cylinder chamber 64 ′ is formed in the end cover 7.
  • the cylinder chamber 62 ′ is communicated with the second port 3 c by a flow path and a flow path formed in the main body 3, and the flow path formed in the end cover 7 and the flow path formed in the main body 3.
  • the cylinder chamber 64 ′ is formed by the flow path drilled in the end cover 7 and the flow path drilled in the main body 3.
  • the cylinder chamber 62 ′ is communicated with the second port 3 c through a flow path drilled in the end cover 7 and a flow path drilled in the main body 3.
  • a drain hole communicating with the space between the rear end surface of the large-diameter portion 66 'and the bottom surface of the cylinder hole 61', as in the first embodiment.
  • FIG. 6 shows, as a representative, a modification example related to the first drag application mechanism 40 according to the first embodiment.
  • the large-diameter portion 74 shown in FIG. 6A is made of a ring-shaped member and is fitted to a small-diameter portion 12a formed at the end of the second rotating shaft 12.
  • a retaining ring 75 is fitted in the small diameter portion 12 a behind the large diameter portion 74, and the rearward movement of the large diameter portion 74 is stopped by the retaining ring 75.
  • the large diameter portion 76 shown in FIG. 6B is also made of a ring-shaped member, is fitted into the small diameter portion 12 a formed at the end of the second rotating shaft 12, and is The rotary shaft 12 is fixed.
  • the large-diameter portion 78 shown in FIG. 6C is made of a cylindrical member, and has a blind hole fitting hole 78a on the front end surface thereof.
  • the fitting hole 78a has a second rotating shaft. 12 is fixed to the second rotary shaft 12 by a bolt 79 in a state in which the small diameter portion 12a formed at the end of 12 is fitted.
  • FIG. 7 is an enlarged cross-sectional view showing a B ′ portion corresponding to the B portion in FIG. 1, and is an enlarged cross-sectional view showing a first drag applying mechanism 40 ′ of this example.
  • the same components as those of the drag application mechanism 40 are denoted by the same reference numerals.
  • the first drag application mechanism 40 ′ includes a large-diameter cylinder hole 41 ′ formed in the end cover 7 sequentially in the extending direction of the second rotation shaft 12 of the gear 10,
  • a piston having a cylinder hole 43 that is a blind hole whose inner diameter is smaller than the inner diameter of the cylinder hole 41 ′, a large diameter portion 46 ′ that is inserted into the cylinder hole 41 ′, and a small diameter portion 47 ′ that is inserted into the cylinder hole 43. 45 ′, and the inner diameter of the cylinder hole 41 ′ is smaller than the outer diameter of the second rotating shaft 12.
  • Reference numeral 9 denotes a cup-shaped seal member, which is embedded in the end cover 7 so that the cup bottom surface side seals the opening on the front side of the cylinder hole 41 '. Further, the rear end portion of the second rotary shaft 12 is fitted into the hole 9b of the seal member 9, and the piston 45 'is formed from the large diameter portion 46' formed in front of the large diameter portion 46 '. In a state where the small-diameter shaft portion 46 a ′ is fitted in a through hole 9 c formed in the bottom portion of the seal member 9, the front end flange portion 48 ′ is formed at the rear end portion of the second rotary shaft 12. The dovetail groove 13 is engaged.
  • Reference numeral 49 ' denotes a drain hole.
  • the cylinder chamber 42 ′ is communicated with the first port 3 b by the flow path 50 formed in the end cover 7 and the flow path 51 formed in the main body 3, similarly to the first drag application mechanism 40.
  • the cylinder chamber 44 is communicated with the second port 3 c by the flow path 52 formed in the end cover 7 and the flow path 53 formed in the main body 3.
  • the high-pressure hydraulic oil acts on the front end surface of the large-diameter portion 46 ′ of the piston 45 ′ similarly to the first drag application mechanism 40.
  • the piston 45 ′ is urged rearward, and the urging force directed rearward acts on the first gear 10 via the second rotating shaft 12 engaged therewith.
  • the high-pressure hydraulic oil acts on the rear end surface of the small diameter portion 47 of the piston 45 ', and the piston 45' is urged forward, A forward biasing force is applied to the first gear 10 via the second rotating shaft 12 engaged with the first gear 10.
  • the configuration of the first drag application mechanism 40 ′ also causes the gear 10 to move in the direction indicated by the arrow D and the direction indicated by the arrow E in the same manner as in the first drag application mechanism 40.
  • a drag force against the thrust force acting on the gear 10 can be applied to the gear 10 in any case.
  • FIG. 8 is a plan sectional view showing a hydraulic pump according to a fifth embodiment of the present invention.
  • the hydraulic pump 1 ⁇ / b> B is provided with a first drag application mechanism 80 having a configuration different from the first drag application mechanism 40 of the hydraulic pump 1 according to the first embodiment, Instead of the drag imparting mechanism 60, a second drag imparting mechanism 90 having a different configuration is provided, and the seal plates 6 and 8 are omitted.
  • the other configurations are related to the first embodiment. Similar to the hydraulic pump 1. Accordingly, the same components as those of the hydraulic pump 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the first drag applying mechanism 80 is provided coaxially with the through hole 5a so as to open at the rear end surface of the front cover 5, and a cylinder hole 81 having a diameter larger than the through hole 5a, and the gear 10 A large-diameter member 83 fitted on the first rotating shaft 11, a cylinder hole 84 formed in the end cover 7 so as to face the end surface of the second rotating shaft 12 of the gear 10, and the cylinder And a piston 85 fitted in the hole 84.
  • the large-diameter member 83 has a ring shape having a larger diameter than the outer diameter of the first rotary shaft 11, and movement along the axial direction of the first rotary shaft 11 is performed by retaining rings 83 a provided at both ends thereof. It is regulated.
  • the large-diameter member 83 is inserted into the cylinder hole 81, and a cylinder chamber 82 is formed between the bottom surface of the cylinder hole 81 and the front end surface of the large-diameter member 83.
  • a cylinder chamber 86 is formed between the bottom surface of the cylinder hole 84 and the rear end surface of the piston 85.
  • the cylinder chamber 86 is communicated with the second port 3c through a flow path drilled in the end cover 7 and a flow path drilled in the main body 3, and the cylinder chamber 82. Is communicated with the first port 3b by a flow path drilled in the front cover 5 and a flow path drilled in the main body 3.
  • the second drag applying mechanism 90 includes a cylinder hole 91 formed in the front cover 5 so as to face the end surface of the first rotation shaft 16 of the gear 15, and a piston 93 fitted into the cylinder hole 91. And a cylinder hole 94 formed in the end cover 7 so as to face the end surface of the second rotary shaft 17 of the gear 15, and a piston 96 fitted into the cylinder hole 94.
  • a cylinder chamber 92 is formed between the bottom surface of the piston 93 and the front end surface of the piston 93, and a cylinder chamber 95 is formed between the bottom surface of the cylinder hole 94 and the rear end surface of the piston 96.
  • the cylinder chamber 95 is a flow path formed in the end cover 7.
  • the cylinder chamber 92 communicates with the second port 3 c by a flow path drilled in the main body 3, and the cylinder chamber 92 is formed by the flow path drilled in the front cover 5 and the flow path drilled in the main body 3.
  • the cylinder chamber 92 is connected to the port 3b by the flow path drilled in the front cover 5 and the flow path drilled in the main body 3.
  • the cylinder chamber 95 is communicated with the first port 3 b through a flow path drilled in the end cover 7 and a flow path drilled in the main body 3.
  • a drag force against the thrust force can be applied to the gear 10 by the first drag application mechanism 80, and a drag force against the thrust force applied to the gear 15 is applied to the gear 15 by the second drag application mechanism 90. Can act.
  • FIG. 9 is a plan sectional view showing a hydraulic pump according to a sixth embodiment of the present invention.
  • the hydraulic pump 1 ⁇ / b> C of this example relates to a modification of the hydraulic pump 1 ⁇ / b> B according to the fifth embodiment. Accordingly, the same components as those of the hydraulic pump 1B are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the first rotating shaft 11 of the first gear 10 of the present example has a stepped shaft shape having a large diameter portion 11a and a small diameter portion 11b in order in the extending direction.
  • the large-diameter portion 11a of the first rotating shaft 11 is inserted into a cylinder hole 81 'formed in the front cover 5, and the small-diameter portion 11b is inserted into the through hole 5a.
  • a cylinder chamber 82 ′ is formed between the bottom surface of the cylinder hole 81 ′ and the front end surface of the large diameter portion 11 a of the first rotating shaft 11, and the cylinder chamber 82 ′ is formed in the front cover 5.
  • the cylinder chamber 86 communicates with the first port 3 b by a flow path and a flow path drilled in the main body 3, and the cylinder chamber 86 is secondly formed by the flow path drilled in the end cover 7 and the flow path drilled in the main body 3. It communicates with the port 3c.
  • Reference numeral 80 ' represents a first drag application mechanism.
  • FIG. 10 is a plan sectional view showing a hydraulic pump according to a seventh embodiment of the present invention.
  • the hydraulic pump 1 ⁇ / b> D of this example relates to a modification of the hydraulic pump 1 ⁇ / b> B according to the fifth embodiment. Accordingly, the same components as those of the hydraulic pump 1B are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the hydraulic pump 1D omits the configuration related to the cylinder hole 84, the piston 85, the cylinder chamber 86, and the flow path connecting the cylinder chamber 86 and the second port 3c of the hydraulic pump 1B described above.
  • a cylinder chamber 82a is formed between the bottom surface and the front end surface of the large-diameter member 83.
  • a cylinder chamber 82b is formed between the front end surface of the bearing 20 and the rear end surface of the large-diameter member 83.
  • the first port 3b is communicated with the flow path formed in the front cover 5 and the flow path formed in the main body 3, and the cylinder chamber 82b is formed in the flow path and the main body 3 similarly formed in the front cover 5.
  • the second channel 3c communicates with the established flow path.
  • Reference numeral 80 ′′ denotes a first drag application mechanism.
  • FIG. 11 is a plan sectional view showing a hydraulic pump according to an eighth embodiment of the present invention.
  • the hydraulic pump 1 ⁇ / b> E of this example relates to a modification of the hydraulic pump 1 ⁇ / b> D according to the seventh embodiment. Accordingly, the same components as those of the hydraulic pump 1D are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the hydraulic pump 1E includes a configuration related to the first drag application mechanism 80 ′′ of the hydraulic pump 1D, that is, a cylinder hole 81, cylinder chambers 82a and 82b, a large-diameter member 83 and a retaining ring 83a, and a cylinder chamber 82a. While omitting the flow path communicating with the first port 3b and the flow path communicating the cylinder chamber 82b with the second port 3c, a first drag application mechanism 80A is provided on the end cover 7 side.
  • the first drag application mechanism 80A includes a cylinder hole 81 ′ and a support hole 7a that are sequentially formed in the end cover 7 along the extending direction of the second rotating shaft 12 ′ of the first gear 10. And a ring-shaped large-diameter member 83 ′ fitted on the rotary shaft 12 ′.
  • the second rotating shaft 12 ' is inserted into the cylinder hole 81', and its rear end is inserted into the support hole 7a.
  • the large-diameter member 83 ′ is inserted into the cylinder hole 81 ′ in a state in which movement along the axial direction is restricted by retaining rings 83a ′ provided at both ends thereof, and a cylinder chamber 82a on the front side thereof.
  • the cylinder chamber 82 a ′ communicates with the first port 3 b through a flow path drilled in the end cover 7 and a flow path drilled in the main body 3, and the cylinder chamber 82 b ′ is similarly drilled in the end cover 7.
  • the second port 3 c communicates with the provided channel and the channel formed in the main body 3.
  • the hydraulic pump is illustrated as an example of the hydraulic device according to the present invention, but the hydraulic pump is not limited thereto, and other hydraulic devices such as a hydraulic motor may be used.
  • Hydraulic pump (hydraulic device) 2 housing 3 body 3b first port 3c second port 4 hydraulic chamber 5 front cover 7 end cover 10 helical gear (gear, first gear) 11 First rotating shaft 12 Second rotating shaft 15 Helical gear (gear, second gear) 16 First Rotating Shaft 17 Second Rotating Shaft 20, 25 Bearing 40 First Drag Applying Mechanism 41 Cylinder Hole 42 Cylinder Chamber 43 Cylinder Hole 44 Cylinder Chamber 45 Piston 46 Large Diameter Portion 47 Small Diameter Portion 60 Second Drag Applying Mechanism 61 Cylinder Hole 62 Cylinder chamber 63 Cylinder hole 64 Cylinder chamber 65 Piston 66 Large diameter portion 67 Small diameter portion

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Rotary Pumps (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)
  • Hydraulic Motors (AREA)

Abstract

A hydraulic device is provided with: a first gear (10) and a second gear (15), which have teeth meshing with each other; a body (3) having a hydraulic chamber (4) for receiving the first gear (10) and the second gear (15); bearing members (20, 25) for rotatably supporting the first and second rotating shafts (11, 12) of the first gear (10) and also rotatably supporting the first and second rotating shafts (16, 17) of the second gear (15); and a front cover (5) and an end cover (7), the front and end cover being respectively liquid-tightly provided and affixed to the opposite end surfaces of the body (3). The direction of a meshing thrust force which acts on the first gear (10) due to the meshing and the direction of a pressure receiving thrust force which acts on the first gear (10) due to an operating fluid on the high-pressure side are the same. The hydraulic device is further provided with a first reaction force application mechanism (40) for applying a reaction force to either the first rotating shaft (11) and/or the second rotating shaft (12) of the first gear (10), the reaction force acting against the resultant of the meshing thrust force and the pressure receiving thrust force, which act on the first gear (10) when the first gear (10) rotates in the forward direction, the first reaction force application mechanism (40) also applying a reaction force to either the first rotating shaft (11) and/or the second rotating shaft (12) of the first gear (10), the reaction force acting against the resultant of the meshing thrust force and the pressure receiving thrust force, which act on the first gear (10) when the first gear (10) rotates in the reverse direction.

Description

液圧装置Hydraulic device
 本発明は、歯面が相互に噛み合う一対のはすば歯車を備えた液圧装置に関し、更に詳しくは、はすば歯車をその軸中心に、正方向に回転させた使用態様、及び逆方向に回転させた使用態様の両態様で、好適に使用することが可能な液圧装置に関する。 The present invention relates to a hydraulic apparatus including a pair of helical gears whose tooth surfaces mesh with each other, and more specifically, a usage mode in which a helical gear is rotated in the forward direction about its axis, and a reverse direction. It is related with the hydraulic apparatus which can be used conveniently in both aspects of the use aspect rotated to 1).
 前記液圧装置には、一対の歯車を適宜駆動モータによって回転させ、この歯車の回転動作により作動液体を加圧して吐出する液圧ポンプや、加圧された作動液体を導入して前記歯車を回転させ、その回転軸の回転力を動力として使用する液圧モータなどがある。 In the hydraulic device, a pair of gears is appropriately rotated by a drive motor, and a hydraulic pump that pressurizes and discharges the working liquid by a rotating operation of the gears, or a pressurized hydraulic fluid is introduced to introduce the gears. There are hydraulic motors that rotate and use the rotational force of the rotating shaft as power.
 この液圧装置は、一般に、相互に噛み合う一対の歯車がハウジング内に収納されるとともに、該各歯車の両端面からそれぞれ外方に延設された各回転軸が、同ハウジング内に収納され且つ前記各歯車の両側に配設された軸受部材によって回転自在に支持された構造を備えている。 In general, the hydraulic device has a pair of gears meshing with each other housed in a housing, and rotating shafts extending outward from both end surfaces of the gears are housed in the housing. A structure is provided that is rotatably supported by bearing members disposed on both sides of each gear.
 従来、前記一対の歯車には各種形状のものが使用されており、その中に、はすば歯車を用いた液圧装置がある。このはすば歯車は、歯が斜めに傾斜した構造であるが故に、歯車の歯当たりが分散され、このため騒音が小さいという特性を有するものの、その一方で、これを液圧装置として用いた場合、歯の噛み合いによって軸方向のスラスト力(噛み合いスラスト力)を生じ、また、作動液体の圧力を歯面に受けることによって同様にスラスト力(受圧スラスト力)を生じるという特性を有する。 Conventionally, a pair of gears of various shapes are used, and among them, there is a hydraulic device using a helical gear. Although this helical gear has a structure in which the teeth are inclined obliquely, the tooth contact of the gear is dispersed, so that it has a characteristic that the noise is low. On the other hand, this is used as a hydraulic device. In this case, there is a characteristic that an axial thrust force (meshing thrust force) is generated by the meshing of the teeth, and a thrust force (pressure receiving thrust force) is similarly generated by receiving the pressure of the working liquid on the tooth surface.
 このスラスト力は歯車の回転によって周期的に変動するものであり、この周期的な変動により、歯車及び軸受部材が振動して騒音が発生する、或いは、振動によって歯車の端面と軸受部材の端面との間に隙間を生じ、この隙間を通じて高圧側から低圧側に向けたリークを生じるといった問題が引き起こされる。 This thrust force is periodically changed by the rotation of the gear, and this periodic change causes the gear and the bearing member to vibrate and generates noise, or the vibration causes the end face of the gear and the end face of the bearing member to be generated. A problem arises in that a gap is formed between the two and a leak from the high pressure side toward the low pressure side is caused through the gap.
 そこで、このような問題を解決するために、各回転軸に、前記スラスト力を超える反対方向の力(抗力)を作用させて、歯車の軸方向への変位を制止するように構成された液圧装置(具体的には、歯車ポンプ)が提案されている(米国特許第6887055号明細書(特許文献1)参照)。この特許文献1に記載された歯車ポンプの構成を図12に示す。 Therefore, in order to solve such a problem, a liquid configured to restrain displacement in the axial direction of the gear by applying a force (resistance force) in the opposite direction exceeding the thrust force to each rotating shaft. A pressure device (specifically, a gear pump) has been proposed (see US Pat. No. 6,888,055 (Patent Document 1)). The structure of the gear pump described in this patent document 1 is shown in FIG.
 同図12に示すように、この歯車ポンプ100は、内部に液圧室101aが形成された本体101と、歯部が相互に噛み合った状態で前記液圧室101aに挿入された一対のはすば歯車115,120とを備えている。この一対の歯車115,120は、歯車115が駆動歯車、歯車120が従動歯車であり、同じく前記液圧室101a内に挿入された軸受110a,110b,110c,110dによって、その回転軸116,121がそれぞれ回転自在に支持されている。 As shown in FIG. 12, the gear pump 100 includes a main body 101 in which a hydraulic chamber 101a is formed and a pair of helical screws inserted into the hydraulic chamber 101a in a state where teeth are engaged with each other. Gears 115 and 120 are provided. The pair of gears 115 and 120 is configured such that the gear 115 is a driving gear and the gear 120 is a driven gear, and the rotation shafts 116 and 121 are similarly supported by bearings 110a, 110b, 110c, and 110d inserted into the hydraulic chamber 101a. Are supported rotatably.
 また、本体101の前端面には、シールによって液密状にフロントカバー102が固設され、他方、本体101の後端面には、同じくシールによって液密状に中間プレート106が固設され、この中間プレート106の後端面には、同様にシールによって液密状にリアカバー104が固設されている。斯くして、これら本体101、フロントカバー102、中間プレート106及びリアカバー104によって、前記液圧室101aが封止されたハウジングが構成される。 Further, a front cover 102 is fixed on the front end surface of the main body 101 in a liquid-tight manner by a seal, while an intermediate plate 106 is fixed on the rear end surface of the main body 101 in a liquid-tight manner by a seal. Similarly, a rear cover 104 is fixed to the rear end surface of the intermediate plate 106 in a liquid-tight manner by a seal. Thus, the main body 101, the front cover 102, the intermediate plate 106, and the rear cover 104 constitute a housing in which the hydraulic chamber 101a is sealed.
 そして、前記液圧室101aは、一対の歯車115,120の噛み合い部を境に、高圧側と低圧側とに二分され、適宜駆動源により前記駆動歯車115が回転駆動されて、一対の歯車115,120が軸中心に回転すると、図示しない取入れ口から低圧側に作動液体が導入され、導入された作動液体が一対の歯車115,120の作用により加圧されながら高圧側に導かれて、高圧になった作動液体が図示しない吐出し口から吐出される。 The hydraulic chamber 101a is divided into a high pressure side and a low pressure side with a meshing portion of the pair of gears 115 and 120 as a boundary, and the drive gear 115 is driven to rotate by a driving source as appropriate, so that the pair of gears 115 is driven. , 120 is rotated about its axis, the working liquid is introduced into the low-pressure side from an intake port (not shown), and the introduced working liquid is guided to the high-pressure side while being pressurized by the action of the pair of gears 115, 120, The working liquid that has become is discharged from a discharge port (not shown).
 また、前記中間プレート106には、前記回転軸116,121のそれぞれに対応する部分に貫通孔106a,106bが穿孔されており、この貫通孔106a,106bにそれぞれピストン108,109が嵌挿されている。また、前記リアカバー104の中間プレート106と当接する面(前面)には、前記貫通孔106a,106bを含む領域に対応する凹状の液圧室104aが形成されており、この液圧室104aに適宜流路を介して前記高圧側の作動液体が供給されるようになっている。更に、中間プレート106の前面と軸受110a,110cの後面との間には、適宜流路を介して高圧側の作動液体が供給されるようになっている。 The intermediate plate 106 has through holes 106a and 106b in portions corresponding to the rotary shafts 116 and 121, and pistons 108 and 109 are inserted into the through holes 106a and 106b, respectively. Yes. In addition, a concave hydraulic chamber 104a corresponding to a region including the through holes 106a and 106b is formed on a surface (front surface) of the rear cover 104 that contacts the intermediate plate 106. The concave hydraulic chamber 104a is appropriately formed in the hydraulic chamber 104a. The high-pressure side working liquid is supplied through a flow path. Further, a high-pressure side working liquid is supplied between the front surface of the intermediate plate 106 and the rear surfaces of the bearings 110a and 110c as appropriate.
 以上の構成を備えた歯車ポンプ100によれば、歯車ポンプ100の作動中、高圧側の作動液体がリアカバー104の液圧室104aに供給され、この高圧の作動液体によって、ピストン108,109がそれぞれ前方向に押圧されて、このピストン108,109により、回転軸116,121を介して、歯車115,120が前方向に押圧されるとともに、中間プレート106の前面と軸受110a,110cの後面との間に供給される高圧の作動液体によって、軸受110a,110cがそれぞれ前方向に押圧され、これらの作用によって、軸受110a,110c、歯車115,120及び軸受110b,110dが一体的に前方向に押圧され、軸受110b,110dがフロントカバー102の後端面に押し付けられる。 According to the gear pump 100 having the above configuration, during the operation of the gear pump 100, the high-pressure side working liquid is supplied to the hydraulic pressure chamber 104a of the rear cover 104, and the pistons 108 and 109 are respectively caused by the high-pressure working liquid. The gears 115 and 120 are pressed forward by the pistons 108 and 109 via the rotating shafts 116 and 121 by the pistons 108 and 109, and the front surface of the intermediate plate 106 and the rear surfaces of the bearings 110a and 110c. The bearings 110a and 110c are respectively pressed forward by the high-pressure working liquid supplied therebetween, and the bearings 110a and 110c, the gears 115 and 120, and the bearings 110b and 110d are integrally pressed forward by these actions. The bearings 110b and 110d are pressed against the rear end surface of the front cover 102.
 図12に示すように、この歯車ポンプ100では、駆動歯車115を矢示方向に回転させると、駆動歯車115には、ピストン108側に向けた受圧スラスト力Fpa及び噛み合いスラスト力Fmaが生じ、従動歯車120には、ピストン109側に向けた受圧スラスト力Fpa及びその反対側に向けた噛み合いスラスト力Fmaが生じる。前記軸受110a,110c、歯車115,120及び軸受110b,110dからなる構造体を一体的に前方向に押圧する押圧力は、歯車115,120の回転によって生じるこのスラスト力を上回るように設定されている。また、ピストン108,109の受圧面積(断面積)は、駆動歯車115及び従動歯車120に作用するスラスト力に応じて設定されており、ピストン108の断面積がピストン109の断面積よりも大きくなっている。 As shown in FIG. 12, in this gear pump 100, when the drive gear 115 is rotated in the direction of the arrow, a pressure receiving thrust force F pa and a meshing thrust force F ma directed toward the piston 108 are generated in the drive gear 115. , the driven gear 120, the pressure receiving thrust force directed to the piston 109 side F pa and the thrust force F ma meshing thereof toward the opposite occurs. The pressing force that integrally presses the structure including the bearings 110a and 110c, the gears 115 and 120, and the bearings 110b and 110d in the forward direction is set to exceed the thrust force generated by the rotation of the gears 115 and 120. Yes. The pressure receiving areas (cross-sectional areas) of the pistons 108 and 109 are set according to the thrust force acting on the drive gear 115 and the driven gear 120, and the cross-sectional area of the piston 108 is larger than the cross-sectional area of the piston 109. ing.
 上述したように、はすば歯車を用いた液圧装置では、はすば歯車の回転によって生じるスラスト力によって、振動や騒音が生じたり、高圧側から低圧側に向けたリークを生じるが、この歯車ポンプ100によれば、軸受110a,110c、歯車115,120及び軸受110b,110dからなる構造体を、前記スラスト力を超える力で、一体的に前方向に押圧してフロントカバー102の後端面に押し付けるようにしているので、歯車115,120及び軸受110a,110b,110c,110dが振動することは無く、上述の振動に起因した騒音やリークの問題が生じるのが防止される。 As described above, in the hydraulic device using the helical gear, the thrust force generated by the rotation of the helical gear causes vibration and noise, or leaks from the high pressure side to the low pressure side. According to the gear pump 100, the structure including the bearings 110a and 110c, the gears 115 and 120, and the bearings 110b and 110d is integrally pressed forward with a force exceeding the thrust force, and the rear end surface of the front cover 102 is pressed. Therefore, the gears 115 and 120 and the bearings 110a, 110b, 110c, and 110d do not vibrate, and the problem of noise and leakage due to the vibration described above is prevented.
 尚、はすば歯車を用いた歯車ポンプとしては、上記特許文献1に開示された歯車ポンプの他に、従来、特開平2-95789号公報(特許文献2)に開示された歯車ポンプや、実公昭47-16424号公報(特許文献3)に開示された歯車ポンプも知られている。 As a gear pump using a helical gear, in addition to the gear pump disclosed in Patent Document 1, the gear pump disclosed in Japanese Patent Laid-Open No. 2-95789 (Patent Document 2), A gear pump disclosed in Japanese Utility Model Publication No. 47-16424 (Patent Document 3) is also known.
 前記特許文献2に開示された歯車ポンプでは、駆動歯車の出力側とは反対側の軸端面に被駆動流体の圧力を作用させ、この圧力によって駆動軸に作用するスラスト力と、歯車の噛み合いによって駆動軸に作用するスラスト力とを相殺させるようにしている。 In the gear pump disclosed in Patent Document 2, the pressure of the driven fluid is applied to the shaft end surface opposite to the output side of the drive gear, and the thrust force acting on the drive shaft by this pressure and the meshing of the gear The thrust force acting on the drive shaft is offset.
 また、前記特許文献3に開示された歯車ポンプでは、前記特許文献1に開示された歯車ポンプと同様に、駆動歯車及び従動歯車の軸端にそれぞれ圧液によるスラスト力を作用させて、このスラスト力と、駆動歯車及び従動歯車に作用するスラスト力とを相殺させるようにしている。 Further, in the gear pump disclosed in Patent Document 3, similar to the gear pump disclosed in Patent Document 1, a thrust force caused by pressurized liquid is applied to the shaft ends of the drive gear and the driven gear, respectively. The force and the thrust force acting on the drive gear and the driven gear are offset.
米国特許第6887055号明細書US Pat. No. 6,888,055 特開平2-95789号公報Japanese Patent Laid-Open No. 2-95789 実公昭47-16424号公報Japanese Utility Model Publication No. 47-16424
 ところで、例えば、油圧式サーボ機構に適用される歯車ポンプの場合には、その歯車を予め定められた一方向に回転させる使用態様ではなく、歯車の回転方向を正逆に適宜選択的に切り換えながら使用する態様が採られている。 By the way, for example, in the case of a gear pump applied to a hydraulic servomechanism, it is not a usage mode in which the gear is rotated in a predetermined direction, and the rotation direction of the gear is selectively switched between forward and reverse. The mode of use is taken.
 この場合、歯車ポンプの各歯車を一方向に回転させた際に当該各歯車に作用するスラスト力と、逆方向に回転させた際に当該各歯車に作用するスラスト力とは、その作用方向が正反対になる。 In this case, the thrust force acting on each gear when each gear of the gear pump is rotated in one direction and the thrust force acting on each gear when rotated in the opposite direction are such that the acting direction is The opposite is true.
 例えば、図12に示した歯車ポンプ100を例にとると、同図12に示すように、駆動歯車115を矢示D方向(この方向を正方向とする)に回転させると、実線の矢印で示すように、駆動歯車115には、ピストン108側に向けた噛み合いスラスト力[Fma]及び受圧スラスト力[Fpa]が作用し、従動歯車120には、ピストン109側に向けた受圧スラスト力[Fpa]及びその反対側に向けた噛み合いスラスト力[-Fma]が作用する。 For example, taking the gear pump 100 shown in FIG. 12 as an example, as shown in FIG. 12, when the drive gear 115 is rotated in the direction indicated by the arrow D (this direction is the positive direction), As shown, a meshing thrust force [F ma ] and a pressure receiving thrust force [F pa ] toward the piston 108 act on the drive gear 115, and a pressure receiving thrust force toward the piston 109 side acts on the driven gear 120. [F pa ] and the meshing thrust force [−F ma ] directed to the opposite side act.
 一方、この歯車ポンプ100の駆動歯車115を、図13に示すように、矢示E方向、即ち、逆方向に回転させると、破線の矢印で示すように、駆動歯車115には、ピストン108とは反対側に向けた噛み合いスラスト力[-Fma]及び受圧スラスト力[-Fpa]が作用し、従動歯車120には、ピストン109側に向けた噛み合いスラスト力[Fma]及びその反対側に向けた受圧スラスト力[-Fpa]が作用する。 On the other hand, when the drive gear 115 of the gear pump 100 is rotated in the direction indicated by the arrow E, that is, in the opposite direction as shown in FIG. Meshing force [−F ma ] and pressure-receiving thrust force [−F pa ] acting on the opposite side act, and the meshing thrust force [F ma ] toward the piston 109 side and the opposite side are applied to the driven gear 120. The pressure receiving thrust force [−F pa ] directed toward
 このように、はすば歯車を用いた液圧装置の場合、歯車の回転方向によって、各歯車に作用するスラスト力は正反対になるのである。 Thus, in the case of a hydraulic device using a helical gear, the thrust force acting on each gear is the opposite depending on the rotation direction of the gear.
 ところが、上記従来の歯車ポンプでは、各歯車に作用するスラスト力に対する抗力を、一方向にしか作用させることができない構造であるので、これを、歯車の回転方向を正逆に適宜選択的に切り換えながら使用する場合には、歯車の一方の回転方向については、スラスト力に対して適正な抗力を作用させることができるものの、歯車の他方の回転方向については、スラスト力に対して抗力を作用させることができず、歯車に作用する前記スラスト力に起因した上記諸問題を解決することができないという問題があった。 However, the conventional gear pump has a structure in which the drag force against the thrust force acting on each gear can be applied only in one direction. In the case of use, however, an appropriate drag can be applied to the thrust force in one rotation direction of the gear, but a drag is applied to the thrust force in the other rotation direction of the gear. There is a problem that the above-mentioned problems due to the thrust force acting on the gear cannot be solved.
 本発明は以上の実情に鑑みなされたもので、はすば歯車を用いた液圧装置を、その歯車を正方向に回転させた態様、及び逆方向に回転させた態様で使用しても、各歯車に作用するスラスト力を適切に緩和することができる液圧装置の提供を、その目的とする。 The present invention has been made in view of the above circumstances, and even when a hydraulic device using a helical gear is used in a mode in which the gear is rotated in the forward direction and a mode in which the gear is rotated in the reverse direction, An object of the present invention is to provide a hydraulic device capable of appropriately mitigating the thrust force acting on each gear.
 上記課題を解決するための本発明は、
 両端面からそれぞれ外方に延出するように設けられた第1及び第2回転軸をそれぞれ有し、且つ歯部が相互に噛み合う第1及び第2の一対のはすば歯車と、
 両端部が開口し、且つ内部に前記第1及び第2歯車が噛み合った状態で収納される液圧室を有し、該液圧室は円弧状の内周面を有する本体と、
 前記本体の液圧室内において、前記第1及び第2歯車の両側にそれぞれ配設され、前記第1及び第2歯車の各第1及び第2回転軸をそれぞれ回転自在に支持する軸受部材と、
 前記本体の両端面にそれぞれ液密状に固設されて前記液圧室を封止する、前側のフロントカバー及び後側のエンドカバーとを備え、
 前記液圧室は、前記第1及び第2歯車の噛み合い部を境に一方が低圧側に、他方が高圧側に設定され、
 前記第1歯車には、前記噛み合いによって受ける噛み合いスラスト力と、前記高圧側の作動液体によって受ける受圧スラスト力とが同じ方向に作用し、
 前記第1歯車の第1回転軸は、前記フロントカバーを貫通して外方に延出するように設けられ、更に、前記第2歯車の第1回転軸が前記フロントカバー側に設けられた液圧装置において、
 前記第1歯車の前記第1及び第2回転軸の少なくとも一方に対して、前記第1歯車が正回転方向に回転した際に該第1歯車に作用する、前記噛み合いスラスト力及び受圧スラスト力の合力に抗する抗力を作用させるとともに、該第1歯車が逆回転方向に回転した際に該第1歯車に作用する、前記噛み合いスラスト力及び受圧スラスト力の合力に抗する抗力を作用させる第1抗力付与機構を設けた液圧装置に係る。
The present invention for solving the above problems is as follows.
A first and a second pair of helical gears having first and second rotating shafts provided so as to extend outward from both end faces, respectively, and the tooth portions mesh with each other;
A hydraulic chamber accommodated in a state where both end portions are open and the first and second gears are engaged with each other; the hydraulic chamber has a main body having an arcuate inner peripheral surface;
A bearing member disposed on each side of the first and second gears in the hydraulic chamber of the main body and rotatably supporting the first and second rotating shafts of the first and second gears;
A front-side front cover and a rear-side end cover, which are fixed in a liquid-tight manner on both end faces of the main body and seal the hydraulic chamber,
The hydraulic chamber is set to one side on the low pressure side and the other side to the high pressure side with the meshing portion of the first and second gears as a boundary,
A meshing thrust force received by the meshing and a pressure receiving thrust force received by the high-pressure side working fluid act in the same direction on the first gear,
The first rotating shaft of the first gear is provided so as to extend outwardly through the front cover, and the first rotating shaft of the second gear is provided on the front cover side. Pressure device,
The meshing thrust force and the pressure-receiving thrust force acting on the first gear when the first gear rotates in the forward rotation direction with respect to at least one of the first and second rotating shafts of the first gear. A first force that acts against the resultant force of the meshing thrust force and the pressure-receiving thrust force that acts on the first gear when the first gear rotates in the reverse rotation direction. The present invention relates to a hydraulic device provided with a drag application mechanism.
 はすば歯車を用いた液圧装置では、歯の噛み合いによって噛み合いスラスト力が生じるとともに、作動液体の圧力を歯面が受けることによって受圧スラスト力が生じる。 In a hydraulic device using a helical gear, a meshing thrust force is generated by meshing of teeth, and a pressure-receiving thrust force is generated by the tooth surface receiving the pressure of the working liquid.
 これらのスラスト力の内、受圧スラスト力は、前記一対の歯車の歯面に同様に作用することから、当該一対の歯車に対して同じ方向に作用する。一方、噛み合いスラスト力は、歯部の噛み合いによって生じ、相互に反力として作用するものであるから、一対の歯車に対して正反対の方向に作用する。したがって、一方の歯車については、噛み合いスラスト力と受圧スラスト力とが同じ方向になり、当該一方の歯車には、噛み合いスラスト力と受圧スラスト力の合力としてのスラスト力が作用する。そして、他方の歯車については、噛み合いスラスト力と受圧スラスト力とが正反対の方向となり、当該他方の歯車には、噛み合いスラスト力と受圧スラスト力との差分のスラスト力が作用する。 Among these thrust forces, the pressure-receiving thrust force acts on the tooth surfaces of the pair of gears in the same manner, and thus acts on the pair of gears in the same direction. On the other hand, the meshing thrust force is generated by the meshing of the tooth portions and acts as a reaction force with each other, and thus acts in the opposite direction to the pair of gears. Therefore, for one gear, the meshing thrust force and the pressure-receiving thrust force are in the same direction, and a thrust force as a resultant force of the meshing thrust force and the pressure-receiving thrust force acts on the one gear. For the other gear, the meshing thrust force and the pressure-receiving thrust force are in opposite directions, and a thrust force that is the difference between the meshing thrust force and the pressure-receiving thrust force acts on the other gear.
 斯くして、この液圧装置によれば、前記第1歯車に対して、前記噛み合いスラスト力及び受圧スラスト力が同じ方向に作用し、第2歯車に対して、噛み合いスラスト力と受圧スラスト力とが正反対の方向に作用する。尚、第1歯車の第1回転軸は入力軸又は出力軸として機能する。 Thus, according to this hydraulic device, the meshing thrust force and the pressure-receiving thrust force are applied to the first gear in the same direction, and the meshing force and the pressure-receiving thrust force are applied to the second gear. Acts in the opposite direction. The first rotation shaft of the first gear functions as an input shaft or an output shaft.
 そして、本発明に係る液圧装置では、第1抗力付与機構により、前記第1歯車の第1及び第2回転軸の少なくとも一方に対して、前記第1歯車が一方向(正回転方向)に回転した際に当該第1歯車に作用する、前記噛み合いスラスト力及び受圧スラスト力の合力に抗する抗力を作用させ、当該第1歯車が逆回転方向に回転した際に当該第1歯車に作用する、前記噛み合いスラスト力及び受圧スラスト力の合力に抗する抗力を作用させる。 In the hydraulic device according to the present invention, the first gear is unidirectionally (forward rotation direction) with respect to at least one of the first and second rotation shafts of the first gear by the first drag application mechanism. A drag force acting on the first gear when it rotates and resisting the resultant force of the meshing thrust force and the pressure-receiving thrust force is applied, and when the first gear rotates in the reverse rotation direction, it acts on the first gear. Then, a resistance against the resultant force of the meshing thrust force and the pressure-receiving thrust force is applied.
 これにより、第1歯車及び第2歯車が、正逆のいずれの方向に回転したとしても、それぞれの場合に生じるスラスト力に抗する抗力を、第1歯車に対して作用させることができ、前記スラスト力に起因して生じる諸問題、例えば、一対の歯車の両端面に摺接する軸受部材等に焼き付きが生じたり、或いはこれらが破損するといった問題が生じるのを防止することができる。 Thereby, even if the first gear and the second gear rotate in either the forward or reverse direction, a drag force against the thrust force generated in each case can be applied to the first gear. It is possible to prevent various problems caused by the thrust force, for example, problems such as seizure of the bearing members that are in sliding contact with both end faces of the pair of gears, or damage of these members.
 前記第1抗力付与機構の一具体的な態様としては、
 前記エンドカバーに、前記第1歯車の第2回転軸の延出方向に形成された第1シリンダ穴と、
 前記第1シリンダ穴に嵌挿され、前端側が前記第1歯車の第2回転軸に係合された第1ピストンとを備え、
 前記第1ピストンは、その前側の部位に形成された、後方向に向けた圧力を受ける前部受圧面、及び後側の部位に形成された、前方向に向けた圧力を受ける後部受圧面を有し、
 前記第1シリンダ穴内には、前記第1ピストンが嵌挿された状態で、前記前部受圧面が位置する第1シリンダ室、及び前記後部受圧面が位置する第2シリンダ室が形成されてなり、
 更に、前記合力の作用する方向が前方向であるときに高圧となる液圧室と、前記第1シリンダ室とに連通し、前記第1ピストンの前記前部受圧面に高圧の作動液体を作用させる第1流路と、
 前記合力の作用する方向が後方向であるときに高圧となる液圧室と、前記第2シリンダ室とに連通し、前記第1ピストンの前記後部受圧面に高圧の作動液体を作用させる第2流路とを備えた態様を挙げることができる。
As one specific aspect of the first drag application mechanism,
A first cylinder hole formed in the end cover in the extending direction of the second rotating shaft of the first gear;
A first piston fitted into the first cylinder hole and having a front end engaged with a second rotating shaft of the first gear;
The first piston has a front pressure-receiving surface that is formed in a front portion thereof and receives a pressure directed in the rear direction, and a rear pressure-receiving surface that is formed in a rear portion and receives a pressure directed in the front direction. Have
A first cylinder chamber in which the front pressure receiving surface is located and a second cylinder chamber in which the rear pressure receiving surface is located are formed in the first cylinder hole in a state where the first piston is fitted. ,
Further, a high-pressure working fluid is applied to the front pressure-receiving surface of the first piston so as to communicate with the hydraulic chamber and the first cylinder chamber, which become high when the resultant force acts in the forward direction. A first flow path to be
A second hydraulic pressure chamber that communicates with the hydraulic chamber that is high when the resultant force acts in the rearward direction and the second cylinder chamber, and causes a high-pressure working fluid to act on the rear pressure-receiving surface of the first piston. The aspect provided with the flow path can be mentioned.
 この構成の第1抗力付与機構によれば、前記合力の作用する方向が前方向である場合には、第1流路を通して、液圧室から第1シリンダ室に高圧の作動液体が供給され、第1ピストンの前部受圧面に高圧の作動液体が作用して、第1ピストンが後方向に付勢され、この第1ピストンに係合された前記第1歯車の第2回転軸にこの付勢力が作用する。これにより、第1歯車には、前記合力に抗する後方向に向けた付勢力(抗力)が作用する。 According to the first drag application mechanism having this configuration, when the direction in which the resultant force acts is the front direction, high-pressure working liquid is supplied from the hydraulic chamber to the first cylinder chamber through the first flow path. A high-pressure working liquid acts on the front pressure-receiving surface of the first piston, and the first piston is urged backward, and this attachment is applied to the second rotation shaft of the first gear engaged with the first piston. Power is acting. Thereby, the urging | biasing force (resistance force) toward the back which resists the said resultant force acts on a 1st gearwheel.
 一方、前記合力の作用する方向が後方向である場合には、第2流路を通して、液圧室から第2シリンダ室に高圧の作動液体が供給され、第1ピストンの後部受圧面に高圧の作動液体が作用して、当該第1ピストンが前方向に付勢され、この第1ピストンに係合された前記第1歯車の第2回転軸にこの付勢力が作用する。これにより、第1歯車には、前記合力に抗する前方向に向けた付勢力(抗力)が作用する。 On the other hand, when the direction in which the resultant force acts is the backward direction, the high pressure working liquid is supplied from the hydraulic pressure chamber to the second cylinder chamber through the second flow path, and the high pressure is applied to the rear pressure receiving surface of the first piston. The working liquid acts to urge the first piston forward, and this urging force acts on the second rotating shaft of the first gear engaged with the first piston. Thereby, the urging | biasing force (drag) toward the front direction which resists the said resultant force acts on a 1st gearwheel.
 尚、この態様の場合に、前記第1ピストンは、前部受圧面と後部受圧面との間で分離され、相互に当接、離反可能に構成されていても良い。このように構成されていても、高圧の作動液体が第2シリンダ室に供給されると、後部受圧面側が前方向に付勢されて、前部受圧面側に当接し、前部受圧面側を介して、前記第1歯車の第2回転軸を前方向に付勢することができる。 In this aspect, the first piston may be configured to be separated between the front pressure receiving surface and the rear pressure receiving surface so as to contact and separate from each other. Even if configured in this way, when the high-pressure working liquid is supplied to the second cylinder chamber, the rear pressure-receiving surface side is urged forward and comes into contact with the front pressure-receiving surface side, and the front pressure-receiving surface side Thus, the second rotation shaft of the first gear can be biased forward.
 また、前記第1抗力付与機構の別の態様としては、
 前記第1歯車の第1回転軸が貫通する前記フロントカバーの貫通穴部に、該貫通穴より大径であり、且つ前記第1歯車側に開口するように形成された第2シリンダ穴と、
 前記エンドカバーに、前記第1歯車の第2回転軸の端面に対して対向するように形成された第3シリンダ穴と、
 前記第3シリンダ穴に嵌挿された第2ピストンと、
 前記第1歯車の第1回転軸の外径よりも大径のリング状を有し、前記第1回転軸に係合され、前記第2シリンダ穴に嵌挿された大径部材とを備え、
 前記第2シリンダ穴内には、前記大径部材の前側に、閉塞された空間である第3シリンダ室が形成されるとともに、前記第3シリンダ穴内には、前記第2ピストンの後側に、閉塞された空間である第4シリンダ室が形成されてなり、
 更に、前記合力の作用する方向が前方向であるときに高圧となる液圧室と、前記第3シリンダ室とに連通し、前記大径部材の前端面に高圧の作動液体を作用させる第3流路と、
 前記合力の作用する方向が後方向であるときに高圧となる液圧室と、前記第4シリンダ室とに連通し、前記第2ピストンの後端面に高圧の作動液体を作用させる第4流路とを備えた態様を挙げることができる。
As another aspect of the first drag application mechanism,
A second cylinder hole formed in the through hole portion of the front cover through which the first rotation shaft of the first gear passes, and having a diameter larger than the through hole and opened to the first gear side;
A third cylinder hole formed in the end cover so as to face the end surface of the second rotation shaft of the first gear;
A second piston inserted into the third cylinder hole;
A large-diameter member having a ring shape larger in diameter than the outer diameter of the first rotation shaft of the first gear, engaged with the first rotation shaft, and fitted into the second cylinder hole;
A third cylinder chamber, which is a closed space, is formed on the front side of the large-diameter member in the second cylinder hole, and is closed on the rear side of the second piston in the third cylinder hole. A fourth cylinder chamber is formed,
Further, a third hydraulic fluid chamber communicates with the hydraulic chamber which becomes high when the direction in which the resultant force acts is the forward direction, and the third cylinder chamber, and causes a high-pressure working liquid to act on the front end surface of the large-diameter member. A flow path;
A fourth flow path that communicates with the hydraulic chamber that is high when the resultant force acts in the rearward direction and the fourth cylinder chamber, and causes the high-pressure working liquid to act on the rear end surface of the second piston. The aspect provided with these can be mentioned.
 この構成の第1抗力付与機構によれば、前記合力の作用する方向が前方向である場合には、第3流路を通して、液圧室から第3シリンダ室に高圧の作動液体が供給され、大径部材の前端面に高圧の作動液体が作用して、第1歯車の第1回転軸が後方向に付勢される。これにより、第1歯車には、前記合力に抗する後方に向けた付勢力(抗力)が作用する。 According to the first drag application mechanism having this configuration, when the direction in which the resultant force acts is the front direction, high-pressure working liquid is supplied from the hydraulic chamber to the third cylinder chamber through the third flow path, A high-pressure working liquid acts on the front end surface of the large-diameter member, and the first rotating shaft of the first gear is urged backward. Thereby, the urging | biasing force (drag) toward the back which resists the said resultant force acts on a 1st gearwheel.
 一方、前記合力の作用する方向が後方向である場合には、第4流路を通して、液圧室から第4シリンダ室に高圧の作動液体が供給され、第2ピストンの後端面に高圧の作動液体が作用して、当該第2ピストンが前方向に付勢されて、前記第1歯車の第2回転軸の端面に当接し、当該第2回転軸を前方向に付勢する。これにより、第1歯車には、前記合力に抗する前方向に向けた付勢力(抗力)が作用する。 On the other hand, when the direction in which the resultant force acts is the backward direction, the high pressure working liquid is supplied from the hydraulic pressure chamber to the fourth cylinder chamber through the fourth flow path, and the high pressure operation is applied to the rear end surface of the second piston. The liquid acts and the second piston is urged forward, abuts against the end surface of the second rotation shaft of the first gear, and urges the second rotation shaft forward. Thereby, the urging | biasing force (drag) toward the front direction which resists the said resultant force acts on a 1st gearwheel.
 また、前記第1抗力付与機構の更に別の態様としては、
 前記第1歯車の第1回転軸が貫通する前記フロントカバーの貫通穴部に、該貫通穴より大径であり、且つ前記第1歯車側に開口するように形成された第4シリンダ穴と、
 前記第1歯車の第1回転軸の外径よりも大径のリング状を有し、前記第1回転軸に係合され、前記第4シリンダ穴に嵌挿された大径部材とを備え、
 前記第4シリンダ穴内には、前記大径部材の前側に、閉塞された空間である第5シリンダ室、及び前記大径部材の後側に、閉塞された空間である第6シリンダ室が形成されてなり、
 更に、前記合力の作用する方向が前方向であるときに高圧となる液圧室と、前記第5シリンダ室とに連通し、前記大径部材の前端面に高圧の作動液体を作用させる第5流路と、
 前記合力の作用する方向が後方向であるときに高圧となる液圧室と、前記第6シリンダ室とに連通し、前記大径部材の後端面に高圧の作動液体を作用させる第6流路とを備えた態様を挙げることができる。
As still another aspect of the first drag application mechanism,
A fourth cylinder hole formed in the through hole portion of the front cover through which the first rotation shaft of the first gear passes, and having a diameter larger than the through hole and opened to the first gear side;
A large-diameter member having a ring shape larger than the outer diameter of the first rotating shaft of the first gear, engaged with the first rotating shaft, and fitted into the fourth cylinder hole;
In the fourth cylinder hole, a fifth cylinder chamber, which is a closed space, is formed on the front side of the large diameter member, and a sixth cylinder chamber, which is a closed space, is formed on the rear side of the large diameter member. And
Further, a fifth fluid pressure chamber communicates with the hydraulic chamber which becomes high when the direction in which the resultant force acts is the front direction, and the fifth cylinder chamber, and causes a high-pressure working fluid to act on the front end surface of the large-diameter member. A flow path;
A sixth flow path that communicates with the hydraulic chamber that has a high pressure when the direction in which the resultant force acts is the backward direction and the sixth cylinder chamber, and causes the high-pressure working liquid to act on the rear end surface of the large-diameter member. The aspect provided with these can be mentioned.
 この構成の第1抗力付与機構によれば、前記合力の作用する方向が前方向である場合には、第5流路を通して、液圧室から第5シリンダ室に高圧の作動液体が供給され、大径部材の前端面に高圧の作動液体が作用して、第1歯車の第1回転軸が後方向に付勢される。これにより、第1歯車には、前記合力に抗する後方に向けた付勢力(抗力)が作用する。 According to the first drag application mechanism of this configuration, when the direction in which the resultant force acts is the front direction, high-pressure working liquid is supplied from the hydraulic chamber to the fifth cylinder chamber through the fifth flow path. A high-pressure working liquid acts on the front end surface of the large-diameter member, and the first rotating shaft of the first gear is urged backward. Thereby, the urging | biasing force (drag) toward the back which resists the said resultant force acts on a 1st gearwheel.
 一方、前記合力の作用する方向が後方向である場合には、第6流路を通して、液圧室から第6シリンダ室に高圧の作動液体が供給され、大径部材の後端面に高圧の作動液体が作用して、第1歯車の第1回転軸が前方向に付勢される。これにより、第1歯車には、前記合力に抗する前方向に向けた付勢力(抗力)が作用する。 On the other hand, when the direction in which the resultant force acts is the backward direction, the high pressure working liquid is supplied from the fluid pressure chamber to the sixth cylinder chamber through the sixth flow path, and the high pressure operation is performed on the rear end surface of the large-diameter member. The liquid acts to urge the first rotation shaft of the first gear in the forward direction. Thereby, the urging | biasing force (drag) toward the front direction which resists the said resultant force acts on a 1st gearwheel.
 また、前記第1抗力付与機構の更に別の態様としては、
 前記第1歯車の第2回転軸の延出方向に沿って、前記エンドカバーに形成され、前記第2回転軸が挿入される第5シリンダ穴と、
 前記第1歯車の第2回転軸の外径よりも大径のリング状を有し、前記第2回転軸に係合され、前記第5シリンダ穴に嵌挿された大径部材とを備え、
 前記第5シリンダ穴内には、前記大径部材の前側に、閉塞された空間である第7シリンダ室、及び前記大径部材の後側に、閉塞された空間である第8シリンダ室が形成されてなり、
 更に、前記合力の作用する方向が前方向であるときに高圧となる液圧室と、前記第7シリンダ室とに連通し、前記大径部材の前端面に高圧の作動液体を作用させる第7流路と、
 前記合力の作用する方向が後方向であるときに高圧となる液圧室と、前記第8シリンダ室とに連通し、前記大径部材の後端面に高圧の作動液体を作用させる第8流路とを備えた態様を挙げることができる。
As still another aspect of the first drag application mechanism,
A fifth cylinder hole formed in the end cover along the extending direction of the second rotating shaft of the first gear and into which the second rotating shaft is inserted;
A large-diameter member having a ring shape larger than the outer diameter of the second rotating shaft of the first gear, engaged with the second rotating shaft, and fitted into the fifth cylinder hole;
In the fifth cylinder hole, a seventh cylinder chamber that is a closed space is formed on the front side of the large-diameter member, and an eighth cylinder chamber that is a closed space is formed on the rear side of the large-diameter member. And
Further, a seventh hydraulic fluid chamber communicates with the hydraulic chamber which becomes high when the direction in which the resultant force acts is the forward direction and the seventh cylinder chamber, and causes a high-pressure working liquid to act on the front end surface of the large-diameter member. A flow path;
An eighth flow path that communicates with the hydraulic chamber that becomes high when the direction in which the resultant force acts is the backward direction and the eighth cylinder chamber, and that causes the high-pressure working liquid to act on the rear end surface of the large-diameter member. The aspect provided with these can be mentioned.
 この構成の第1抗力付与機構によれば、前記合力の作用する方向が前方向である場合には、第7流路を通して、液圧室から第7シリンダ室に高圧の作動液体が供給され、大径部材の前端面に高圧の作動液体が作用して、第1歯車の第2回転軸が後方向に付勢される。これにより、第1歯車には、前記合力に抗する後方に向けた付勢力(抗力)が作用する。 According to the first drag application mechanism of this configuration, when the direction in which the resultant force acts is the front direction, high-pressure working liquid is supplied from the hydraulic chamber to the seventh cylinder chamber through the seventh flow path, A high-pressure working liquid acts on the front end surface of the large-diameter member, and the second rotating shaft of the first gear is urged backward. Thereby, the urging | biasing force (drag) toward the back which resists the said resultant force acts on a 1st gearwheel.
 一方、前記合力の作用する方向が後方向である場合には、第8流路を通して、液圧室から第8シリンダ室に高圧の作動液体が供給され、大径部材の後端面に高圧の作動液体が作用して、第1歯車の第2回転軸が前方向に付勢される。これにより、第1歯車には、前記合力に抗する前方向に向けた付勢力(抗力)が作用する。 On the other hand, when the direction in which the resultant force acts is the backward direction, the high pressure working liquid is supplied from the hydraulic pressure chamber to the eighth cylinder chamber through the eighth flow path, and the high pressure operation is performed on the rear end surface of the large-diameter member. The liquid acts to bias the second rotation shaft of the first gear forward. Thereby, the urging | biasing force (drag) toward the front direction which resists the said resultant force acts on a 1st gearwheel.
 また、本発明における前記第1歯車の第1回転軸は、その延出方向に向けて順に大径部及び小径部を有する段付き状の軸形状を有したものでも良く、この場合において、前記第1抗力付与機構の更に別の態様として、
 前記第1歯車の第1回転軸が貫通する前記フロントカバーの貫通部に、前記第1回転軸の小径部が貫通する貫通穴より大径であり、且つ前記第1歯車側に開口するように形成されるとともに、前記第1回転軸の大径部が嵌挿される第6シリンダ穴と、
 前記エンドカバーに、前記第1歯車の第2回転軸の端面に対して対向するように形成された第7シリンダ穴と、
 前記第7シリンダ穴に嵌挿された第3ピストンとを備え、
 前記第6シリンダ穴内には、前記第1回転軸の大径部の前側に、閉塞された空間である第9シリンダ室が形成されるとともに、前記第7シリンダ穴内には、前記第3ピストンの後側に、閉塞された空間である第10シリンダ室が形成されてなり、
 更に、前記合力の作用する方向が前方向であるときに高圧となる液圧室と、前記第9シリンダ室とに連通し、前記第1回転軸の大径部の前端面に高圧の作動液体を作用させる第9流路と、
 前記合力の作用する方向が後方向であるときに高圧となる液圧室と、前記第10シリンダ室とに連通し、前記第3ピストンの後端面に高圧の作動液体を作用させる第10流路とを備えた態様を採ることができる。
Further, the first rotating shaft of the first gear according to the present invention may have a stepped shaft shape having a large diameter portion and a small diameter portion in order toward the extending direction. As still another aspect of the first drag application mechanism,
The through-hole portion of the front cover through which the first rotation shaft of the first gear penetrates is larger in diameter than the through-hole through which the small-diameter portion of the first rotation shaft passes, and opens to the first gear side. A sixth cylinder hole that is formed and into which the large-diameter portion of the first rotating shaft is inserted;
A seventh cylinder hole formed in the end cover so as to face the end surface of the second rotation shaft of the first gear;
A third piston fitted into the seventh cylinder hole,
In the sixth cylinder hole, a ninth cylinder chamber, which is a closed space, is formed on the front side of the large-diameter portion of the first rotation shaft, and in the seventh cylinder hole, the third piston is provided. A tenth cylinder chamber, which is a closed space, is formed on the rear side,
Further, a high-pressure working liquid is connected to the front end face of the large-diameter portion of the first rotating shaft, and communicates with the hydraulic chamber that becomes high when the resultant force acts in the forward direction and the ninth cylinder chamber. A ninth flow path for causing
A tenth flow path that communicates with the hydraulic chamber that is high when the direction in which the resultant force acts is the backward direction and the tenth cylinder chamber, and causes the high pressure working liquid to act on the rear end surface of the third piston. The aspect provided with can be taken.
 この構成の第1抗力付与機構によれば、前記合力の作用する方向が前方向である場合には、第9流路を通して、液圧室から第9シリンダ室に高圧の作動液体が供給され、前記第1回転軸の大径部の前端面に高圧の作動液体が作用して、第1歯車の第1回転軸が後方向に付勢される。これにより、第1歯車には、前記合力に抗する後方向に向けた付勢力(抗力)が作用する。 According to the first drag application mechanism of this configuration, when the direction in which the resultant force acts is the front direction, high-pressure working liquid is supplied from the hydraulic chamber to the ninth cylinder chamber through the ninth flow path, A high-pressure working liquid acts on the front end surface of the large-diameter portion of the first rotating shaft, and the first rotating shaft of the first gear is urged backward. Thereby, the urging | biasing force (resistance force) toward the back which resists the said resultant force acts on a 1st gearwheel.
 一方、前記合力の作用する方向が後方向である場合には、第10流路を通して、液圧室から第10シリンダ室に高圧の作動液体が供給され、第3ピストンの後端面に高圧の作動液体が作用して、当該第3ピストンが前方向に付勢されて、前記第1歯車の第2回転軸の端面に当接し、当該第2回転軸を前方向に付勢する。これにより、第1歯車には、前記合力に抗する前方向に向けた付勢力(抗力)が作用する。 On the other hand, when the direction in which the resultant force acts is the backward direction, the high pressure working liquid is supplied from the hydraulic pressure chamber to the tenth cylinder chamber through the tenth flow path, and the high pressure operation is applied to the rear end surface of the third piston. The liquid acts and the third piston is urged forward, abuts against the end surface of the second rotation shaft of the first gear, and urges the second rotation shaft forward. Thereby, the urging | biasing force (drag) toward the front direction which resists the said resultant force acts on a 1st gearwheel.
 また、本発明に係る液圧装置では、前記第2歯車の第1及び第2回転軸の少なくとも一方に対して、該第1及び第2回転軸が、その軸中心に、前記正回転方向に回転した際に前記第2歯車に作用する、前記噛合スラスト力及び受圧スラスト力の合力に抗する抗力を作用させるとともに、該第1及び第2回転軸が、逆回転方向に回転した際に前記第2歯車に作用する、前記噛合スラスト力及び受圧スラスト力の合力に抗する抗力を作用させる第2抗力付与機構を設けても良い。 In the hydraulic device according to the present invention, the first and second rotating shafts are centered on the shaft in the positive rotation direction with respect to at least one of the first and second rotating shafts of the second gear. When the first and second rotating shafts rotate in the reverse rotation direction, the counteracting force acting on the second gear when it rotates and acting against the resultant force of the meshing thrust force and the pressure-receiving thrust force is applied. You may provide the 2nd force provision mechanism which acts on the 2nd gearwheel and acts the resisting force with respect to the resultant force of the meshing thrust force and the pressure receiving thrust force.
 上述したように、第2歯車には、噛み合いスラスト力と受圧スラスト力とが正反対の方向に作用する。即ち、第2歯車には、噛み合いスラスト力と受圧スラスト力との差分、言い換えれば、噛み合いスラスト力と受圧スラスト力との合力に係るスラスト力が作用する。 As described above, the meshing thrust force and the pressure-receiving thrust force act on the second gear in opposite directions. That is, the difference between the meshing thrust force and the pressure receiving thrust force, in other words, the thrust force related to the resultant force of the meshing thrust force and the pressure receiving thrust force acts on the second gear.
 上記構成に係る液圧装置によれば、第2抗力付与機構により、第2歯車の第1及び第2回転軸の少なくとも一方に対して、該第1及び第2回転軸が、その軸中心に、前記正回転方向に回転した際に前記第2歯車に作用する、前記噛合スラスト力及び受圧スラスト力の合力に抗する抗力を作用させ、該第1及び第2回転軸が、逆回転方向に回転した際に前記第2歯車に作用する、前記噛合スラスト力及び受圧スラスト力の合力に抗する抗力を作用させる。 According to the hydraulic device according to the above configuration, the first and second rotating shafts are centered on at least one of the first and second rotating shafts of the second gear by the second drag applying mechanism. A drag acting against the resultant force of the meshing thrust force and the pressure-receiving thrust force acting on the second gear when rotating in the forward rotation direction, and the first and second rotation shafts in the reverse rotation direction. A drag force acting on the second gear when it rotates and acting against the resultant force of the meshing thrust force and the pressure-receiving thrust force is applied.
 これにより、第1歯車及び第2歯車が、正逆のいずれの方向に回転したとしても、それぞれの場合に生じるスラスト力に抗する抗力を、第2歯車に対して作用させることができ、上述したスラスト力に起因する諸問題が生じるのを防止することができる。 As a result, even if the first gear and the second gear rotate in either the forward or reverse direction, a drag force against the thrust force generated in each case can be applied to the second gear. It is possible to prevent various problems caused by the thrust force generated.
 前記第2抗力付与機構の一具体的な態様としては、
 前記フロントカバーに、前記第2歯車の第1回転軸の延出方向に形成された第8シリンダ穴と、
 前記第8シリンダ穴に嵌挿され、後端側が前記第2歯車の第1回転軸に係合された第4ピストンとを備え、
 前記第4ピストンは、その前側の部位に形成された、後方向に向けた圧力を受ける前部受圧面、及び後側の部位に形成された、前方向に向けた圧力を受ける後部受圧面を有し、
 前記第8シリンダ穴内には、前記第4ピストンが嵌挿された状態で、前記後部受圧面が位置する第11シリンダ室、及び前記前部受圧面が位置する第12シリンダ室が形成されてなり、
 更に、前記合力の作用する方向が後方向であるときに高圧となる液圧室と、前記第11シリンダ室とに連通し、前記第4ピストンの前記後部受圧面に高圧の作動液体を作用させる第11流路と、
 前記合力の作用する方向が前方向であるときに高圧となる液圧室と、前記第12シリンダ室とに連通し、前記第4ピストンの前記前部受圧面に高圧の作動液体を作用させる第12流路とを備えた態様を挙げることができる。
As one specific aspect of the second drag application mechanism,
An eighth cylinder hole formed in the front cover in the extending direction of the first rotating shaft of the second gear;
A fourth piston fitted into the eighth cylinder hole and having a rear end engaged with a first rotating shaft of the second gear;
The fourth piston has a front pressure-receiving surface that is formed at a front portion thereof and receives a pressure directed in the rearward direction, and a rear pressure-receiving surface that is formed at a rear portion and receives a pressure directed toward the front. Have
An eleventh cylinder chamber in which the rear pressure receiving surface is located and a twelfth cylinder chamber in which the front pressure receiving surface is located are formed in the eighth cylinder hole in a state where the fourth piston is inserted. ,
Further, a high-pressure working fluid is applied to the rear pressure-receiving surface of the fourth piston so as to communicate with the hydraulic chamber which becomes high when the direction in which the resultant force acts is the backward direction and the eleventh cylinder chamber. An eleventh flow path;
A fluid pressure chamber that is high when the direction in which the resultant force acts is a front direction and a fluid pressure chamber that communicates with the twelfth cylinder chamber and a high-pressure working fluid that acts on the front pressure-receiving surface of the fourth piston. The aspect provided with 12 flow paths can be mentioned.
 この構成の第2抗力付与機構によれば、前記合力の作用する方向が後方向である場合には、第11流路を通して、液圧室から第11シリンダ室に高圧の作動液体が供給され、第4ピストンの後部受圧面に高圧の作動液体が作用して、第4ピストンが前方向に付勢され、この第4ピストンに係合された前記第2歯車の第1回転軸にこの付勢力が作用する。これにより、第2歯車には、前記合力に抗する前方向に向けた付勢力(抗力)が作用する。 According to the second drag application mechanism having this configuration, when the direction in which the resultant force acts is the backward direction, the high-pressure working liquid is supplied from the hydraulic chamber to the eleventh cylinder chamber through the eleventh flow path. A high-pressure working liquid acts on the rear pressure receiving surface of the fourth piston, and the fourth piston is urged forward, and this urging force is applied to the first rotating shaft of the second gear engaged with the fourth piston. Works. Thereby, the urging | biasing force (drag) toward the front which resists the said resultant force acts on a 2nd gearwheel.
 一方、前記合力の作用する方向が前方向である場合には、第12流路を通して、液圧室から第12シリンダ室に高圧の作動液体が供給され、第4ピストンの前部受圧面に高圧の作動液体が作用して、当該第4ピストンが後方向に付勢され、この第4ピストンに係合された前記第2歯車の第1回転軸にこの付勢力が作用する。これにより、第2歯車には、前記合力に抗する後方向に向けた付勢力(抗力)が作用する。 On the other hand, when the direction in which the resultant force acts is the front direction, a high pressure working liquid is supplied from the hydraulic pressure chamber to the twelfth cylinder chamber through the twelfth flow path, and a high pressure is applied to the front pressure receiving surface of the fourth piston. The fourth piston is urged backward, and this urging force acts on the first rotating shaft of the second gear engaged with the fourth piston. Thereby, the urging | biasing force (resistance force) toward the back which resists the said resultant force acts on a 2nd gearwheel.
 尚、この態様の場合に、前記第4ピストンは、前部受圧面と後部受圧面との間で分離され、相互に当接、離反可能に構成されていても良い。このように構成されていても、高圧の作動液体が第12シリンダ室に供給されると、前部受圧面側が後方向に付勢されて、後部受圧面側に当接し、後部受圧面側を介して、前記第2歯車の第1回転軸を後方向に向けて付勢することができる。 In the case of this aspect, the fourth piston may be configured to be separated between the front pressure receiving surface and the rear pressure receiving surface so as to contact and separate from each other. Even if configured in this way, when the high-pressure working liquid is supplied to the twelfth cylinder chamber, the front pressure-receiving surface side is urged rearward, abuts on the rear pressure-receiving surface side, and the rear pressure-receiving surface side is Thus, the first rotation shaft of the second gear can be urged rearward.
 また、前記第2抗力付与機構の別の態様としては、
 前記エンドカバーに、前記第2歯車の第2回転軸の延出方向に形成された第9シリンダ穴と、
 前記第9シリンダ穴に嵌挿され、前端側が前記第2歯車の第2回転軸に係合された第5ピストンとを備え、
 前記第5ピストンは、その前側の部位に形成された、後方向に向けた圧力を受ける前部受圧面、及び後側の部位に形成された、前方向に向けた圧力を受ける後部受圧面を有し、
 前記第9シリンダ穴内には、前記第5ピストンが嵌挿された状態で、前記前部受圧面が位置する第13シリンダ室、及び前記後部受圧面が位置する第14シリンダ室が形成されてなり、
 更に、前記合力の作用する方向が前方向であるときに高圧となる液圧室と、前記第13シリンダ室とに連通し、前記第5ピストンの前記前部受圧面に高圧の作動液体を作用させる第13流路と、
 前記合力の作用する方向が後方向であるときに高圧となる液圧室と、前記第14シリンダ室とに連通し、前記第5ピストンの前記後部受圧面に高圧の作動液体を作用させる第14流路とを備えた態様を挙げることができる。
Moreover, as another aspect of the second drag application mechanism,
A ninth cylinder hole formed in the end cover in the extending direction of the second rotating shaft of the second gear;
A fifth piston fitted into the ninth cylinder hole and having a front end engaged with a second rotating shaft of the second gear;
The fifth piston has a front pressure-receiving surface that is formed at a front portion thereof and receives a pressure directed in the rearward direction, and a rear pressure-receiving surface that is formed at a rear portion and receives a pressure directed toward the front. Have
In the ninth cylinder hole, a thirteenth cylinder chamber in which the front pressure-receiving surface is located and a fourteenth cylinder chamber in which the rear pressure-receiving surface is located are formed in a state where the fifth piston is fitted. ,
Further, a high-pressure working liquid is applied to the front pressure-receiving surface of the fifth piston so as to communicate with the hydraulic chamber that becomes high when the resultant force acts in the forward direction and the thirteenth cylinder chamber. A thirteenth flow path,
A fourteenth fluid pressure chamber communicates with the fourteenth cylinder chamber, which is high when the direction in which the resultant force acts is the rearward direction, and the fourteenth cylinder chamber, and causes the high pressure working liquid to act on the rear pressure receiving surface of the fifth piston. The aspect provided with the flow path can be mentioned.
 この構成の第2抗力付与機構によれば、前記合力の作用する方向が前方向である場合には、第13流路を通して、液圧室から第13シリンダ室に高圧の作動液体が供給され、第5ピストンの前部受圧面に高圧の作動液体が作用して、第5ピストンが後方向に付勢され、この第5ピストンに係合された前記第2歯車の第2回転軸にこの付勢力が作用する。これにより、第2歯車には、前記合力に抗する後方向に向けた付勢力(抗力)が作用する。 According to the second drag application mechanism of this configuration, when the direction in which the resultant force acts is the front direction, high-pressure working liquid is supplied from the hydraulic chamber to the thirteenth cylinder chamber through the thirteenth flow path. A high-pressure working liquid acts on the front pressure-receiving surface of the fifth piston, and the fifth piston is urged backward, and this attachment is applied to the second rotating shaft of the second gear engaged with the fifth piston. Power is acting. Thereby, the urging | biasing force (resistance force) toward the back which resists the said resultant force acts on a 2nd gearwheel.
 一方、前記合力の作用する方向が後方向である場合には、第14流路を通して、液圧室から第14シリンダ室に高圧の作動液体が供給されて、第5ピストンの後部受圧面に高圧の作動液体が作用し、当該第5ピストンが前方向に付勢され、この第5ピストンに係合された前記第2歯車の第2回転軸にこの付勢力が作用する。これにより、第2歯車には、前記合力に抗する前方向に向けた付勢力(抗力)が作用する。 On the other hand, when the direction in which the resultant force acts is the backward direction, the high pressure working liquid is supplied from the hydraulic pressure chamber to the fourteenth cylinder chamber through the fourteenth flow path, and the high pressure is applied to the rear pressure receiving surface of the fifth piston. , The fifth piston is urged forward, and this urging force acts on the second rotating shaft of the second gear engaged with the fifth piston. Thereby, the urging | biasing force (drag) toward the front which resists the said resultant force acts on a 2nd gearwheel.
 尚、この態様の場合に、前記第5ピストンは、前部受圧面と後部受圧面との間で分離され、相互に当接、離反可能に構成されていても良い。このように構成されていても、高圧の作動液体が第12シリンダ室に供給されると、後部受圧面側が前方向に付勢されて、前部受圧面側に当接し、前部受圧面側を介して、前記第2歯車の第2回転軸を前方向に付勢することができる。 In the case of this aspect, the fifth piston may be configured to be separated between the front pressure receiving surface and the rear pressure receiving surface so as to contact and separate from each other. Even if configured in this way, when the high-pressure working liquid is supplied to the twelfth cylinder chamber, the rear pressure-receiving surface side is urged in the forward direction and comes into contact with the front pressure-receiving surface side, and the front pressure-receiving surface side The second rotation shaft of the second gear can be urged forward via the.
 また、前記第2抗力付与機構の更に別の態様としては、
 前記フロントカバーに、前記第2歯車の第1回転軸の端面に対して対向するように形成された第10シリンダ穴と、
 前記第10シリンダ穴に嵌挿された第6ピストンと、
 前記エンドカバーに、前記第2歯車の第2回転軸の端面に対して対向するように形成された第11シリンダ穴と、
 前記第11シリンダ穴に嵌挿された第7ピストンとを備え、
 前記第10シリンダ穴内には、前記第6ピストンの前側に、閉塞された空間である第15シリンダ室が形成されるとともに、前記第11シリンダ穴内には、前記第7ピストンの後側に、閉塞された空間である第16シリンダ室が形成されてなり、
 更に、前記合力の作用する方向が前方向であるときに高圧となる液圧室と、前記第15シリンダ室とに連通し、前記第6ピストンの前端面に高圧の作動液体を作用させる第15流路と、
 前記合力の作用する方向が後方向であるときに高圧となる液圧室と、前記第16シリンダ室とに連通し、前記第7ピストンの後端面に高圧の作動液体を作用させる第16流路とを備えた態様を挙げることができる。
As another aspect of the second drag application mechanism,
A tenth cylinder hole formed in the front cover so as to face the end surface of the first rotation shaft of the second gear;
A sixth piston fitted into the tenth cylinder hole;
An eleventh cylinder hole formed in the end cover so as to face the end surface of the second rotation shaft of the second gear;
A seventh piston fitted into the eleventh cylinder hole,
In the tenth cylinder hole, a fifteenth cylinder chamber, which is a closed space, is formed on the front side of the sixth piston, and in the eleventh cylinder hole, on the rear side of the seventh piston. A sixteenth cylinder chamber is formed,
Further, a fifteenth fifteenth fluid is communicated with the hydraulic chamber which becomes high when the direction in which the resultant force acts is the front direction, and the fifteenth cylinder chamber, and a high-pressure working liquid acts on the front end surface of the sixth piston. A flow path;
A sixteenth flow path that communicates with the hydraulic chamber that is high when the resultant force acts in the rearward direction and the sixteenth cylinder chamber, and causes the high pressure working liquid to act on the rear end surface of the seventh piston. The aspect provided with these can be mentioned.
 この構成の第2抗力付与機構によれば、前記合力の作用する方向が前方向である場合には、第15流路を通して、液圧室から第15シリンダ室に高圧の作動液体が供給され、第6ピストンの前端面に高圧の作動液体が作用して、当該第6ピストンが後方向に付勢されて、前記第2歯車の第1回転軸の端面に当接し、これを後方向に付勢する。これにより、第2歯車には、前記合力に抗する後方向に向けた付勢力(抗力)が作用する。 According to the second drag application mechanism of this configuration, when the direction in which the resultant force acts is the front direction, high-pressure working liquid is supplied from the hydraulic chamber to the 15th cylinder chamber through the 15th flow path, A high-pressure working liquid acts on the front end surface of the sixth piston, and the sixth piston is urged rearward to come into contact with the end surface of the first rotating shaft of the second gear, and this is applied rearward. Rush. Thereby, the urging | biasing force (resistance force) toward the back which resists the said resultant force acts on a 2nd gearwheel.
 一方、前記合力の作用する方向が後方向である場合には、第16流路を通して、液圧室から第16シリンダ室に高圧の作動液体が供給され、第7ピストンの後端面に高圧の作動液体が作用して、当該第7ピストンが前方向に付勢されて、前記第2歯車の第2回転軸の端面に当接し、これを前方向に付勢する。これにより、第2歯車には、前記合力に抗する前方向に向けた付勢力(抗力)が作用する。 On the other hand, when the direction in which the resultant force acts is the backward direction, the high pressure working liquid is supplied from the hydraulic pressure chamber to the sixteenth cylinder chamber through the sixteenth flow path, and the high pressure operation is applied to the rear end surface of the seventh piston. The liquid acts and the seventh piston is urged forward, and abuts against the end surface of the second rotating shaft of the second gear, and urges it forward. Thereby, the urging | biasing force (drag) toward the front which resists the said resultant force acts on a 2nd gearwheel.
 以上のように、本発明に係る液圧装置によれば、前記第1抗力付与機構により、第1歯車及び第2歯車が、正逆のいずれの方向に回転したとしても、それぞれの場合に生じるスラスト力に抗する抗力を、第1歯車に対して作用させることができ、当該スラスト力に起因した問題が生じるのを防止することができる。 As described above, according to the hydraulic device according to the present invention, the first drag application mechanism causes the first gear and the second gear to rotate in either the forward or reverse direction. A drag force against the thrust force can be applied to the first gear, and problems caused by the thrust force can be prevented from occurring.
 また、第2抗力付与機構により、第1歯車及び第2歯車が、正逆のいずれの方向に回転したとしても、それぞれの場合に生じるスラスト力に抗する抗力を、第2歯車に対して作用させることができ、第2歯車に作用するスラスト力に起因した問題が生じるのを防止することができる。 Further, even if the first gear and the second gear are rotated in either the forward or reverse direction by the second drag applying mechanism, the drag that resists the thrust force generated in each case acts on the second gear. Therefore, it is possible to prevent problems caused by the thrust force acting on the second gear.
本発明の第1の実施形態に係る液圧装置を示した平断面図である。1 is a cross-sectional plan view showing a hydraulic apparatus according to a first embodiment of the present invention. 図1の矢視A-A断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. (a)は図1におけるB部を拡大した拡大図であり、(b)は、その矢視C-C方向の断面図である。(A) is the enlarged view which expanded the B section in FIG. 1, (b) is sectional drawing of the CC direction of the arrow. 第1の実施形態に係る第1抗力付与機構の動作を説明するための説明図である。It is explanatory drawing for demonstrating operation | movement of the 1st drag provision mechanism which concerns on 1st Embodiment. 本発明の第2の実施形態に係る液圧装置を示した平断面図である。It is the plane sectional view showing the hydraulic device concerning a 2nd embodiment of the present invention. 本発明の第3の実施形態に係るピストンを示した説明図である。It is explanatory drawing which showed the piston which concerns on the 3rd Embodiment of this invention. 本発明の第4の実施形態に係る第1抗力付与機構を示した部分断面図である。It is the fragmentary sectional view which showed the 1st drag provision mechanism which concerns on the 4th Embodiment of this invention. 本発明の第5の実施形態に係る液圧装置を示した平断面図である。It is the plane sectional view showing the hydraulic equipment concerning a 5th embodiment of the present invention. 本発明の第6の実施形態に係る液圧装置を示した平断面図である。It is the plane sectional view showing the hydraulic device concerning a 6th embodiment of the present invention. 本発明の第7の実施形態に係る液圧装置を示した平断面図である。It is the plane sectional view showing the hydraulic equipment concerning a 7th embodiment of the present invention. 本発明の第8の実施形態に係る液圧装置を示した平断面図である。It is the plane sectional view showing the hydraulic equipment concerning an 8th embodiment of the present invention. 従来の液圧装置を示した平断面図である。It is the plane sectional view showing the conventional hydraulic device. 従来の液圧装置を示した平断面図である。It is the plane sectional view showing the conventional hydraulic device.
 以下、本発明の具体的な実施の形態について、図面を参照しながら説明する。尚、本例の液圧装置は油圧ポンプであり、作動液体として作動油を用いるものとする。 Hereinafter, specific embodiments of the present invention will be described with reference to the drawings. Note that the hydraulic device of this example is a hydraulic pump, and hydraulic oil is used as the hydraulic fluid.
[第1の実施形態]
1.油圧ポンプの構成
 まず、第1の実施形態に係る油圧ポンプの構成について、図1~図3に基づいて説明する。図1及び図2に示すように、この油圧ポンプ1は、内部に液圧室4が形成されたハウジング2と、この液圧室4内に配設された一対のはすば歯車(以下、単に「歯車」という)10,15、一対の軸受20,25、一対の側板30,35、第1抗力付与機構40及び第2抗力付与機構60とを備える。
[First Embodiment]
1. Configuration of Hydraulic Pump First, the configuration of the hydraulic pump according to the first embodiment will be described with reference to FIGS. As shown in FIGS. 1 and 2, the hydraulic pump 1 includes a housing 2 in which a hydraulic chamber 4 is formed, and a pair of helical gears (hereinafter referred to as a helical gear) disposed in the hydraulic chamber 4. 10 and 15), a pair of bearings 20 and 25, a pair of side plates 30 and 35, a first drag application mechanism 40, and a second drag application mechanism 60.
 前記ハウジング2は、一方の端面から他方の端面に向けて、断面形状が略8の字状をした空間を有する前記液圧室4が形成された本体3と、この本体3の前端面に液密状に固定されたフロントカバー5と、同様に本体3の後端面に液密状に固定されたエンドカバー7とから構成され、前記フロントカバー5及びエンドカバー7によって前記液圧室4が閉塞されている。尚、フロントカバー5の後端面にはシールプレート6が埋め込まれ、同様に、エンドカバー7の前端面にはシールプレート8が埋め込まれている。 The housing 2 includes a main body 3 in which the hydraulic pressure chamber 4 having a space having a cross-sectional shape of approximately 8 is formed from one end face toward the other end face, and a liquid is formed on the front end face of the main body 3. The front cover 5 is tightly fixed and the end cover 7 is also liquid-tightly fixed to the rear end surface of the main body 3. The hydraulic chamber 4 is closed by the front cover 5 and the end cover 7. Has been. A seal plate 6 is embedded in the rear end surface of the front cover 5, and similarly, a seal plate 8 is embedded in the front end surface of the end cover 7.
 前記一対の歯車10,15は、一方が駆動歯車(第1歯車)10、他方が従動歯車(第2歯車)15であり、駆動歯車10の歯部は右ねじれとなり、従動歯車15の歯部は左ねじれとなっている。歯車10はその両端面から軸方向に沿ってそれぞれ第1回転軸11及び第2回転軸12が延設され、同様に、歯車15はその両端面から軸方向に沿ってそれぞれ第1回転軸16及び第2回転軸17が延設されている。これら一対の歯車10,15は、相互に噛み合った状態で前記液圧室4内に挿入されて、その歯先外面が前記液圧室4の内周面3aに摺接するようになっており、液圧室4は、この一対の歯車10,15の噛み合い部を境に、高圧側と低圧側とに二分される。また、歯車10の第1回転軸11は、前記シールプレート6に形成された貫通穴6a及びフロントカバー5に形成された貫通穴5a,5bを通じて外方に延出している。尚、第1回転軸11は、前記貫通穴5a,6aに嵌挿され、その外周面と貫通穴5bの内周面との間がオイルシール13によってシールされている。 One of the pair of gears 10 and 15 is a drive gear (first gear) 10, and the other is a driven gear (second gear) 15. The tooth portion of the drive gear 10 is right-handed, and the tooth portion of the driven gear 15. Is left-handed. The gear 10 has a first rotary shaft 11 and a second rotary shaft 12 extending from the both end surfaces along the axial direction, respectively. Similarly, the gear 15 has the first rotary shaft 16 from the both end surfaces along the axial direction. And the 2nd rotating shaft 17 is extended. The pair of gears 10 and 15 are inserted into the hydraulic pressure chamber 4 in a state of being engaged with each other, and the outer surface of the tooth tip is in sliding contact with the inner peripheral surface 3a of the hydraulic pressure chamber 4, The hydraulic chamber 4 is divided into a high pressure side and a low pressure side with the meshing portion of the pair of gears 10 and 15 as a boundary. The first rotating shaft 11 of the gear 10 extends outward through a through hole 6 a formed in the seal plate 6 and through holes 5 a and 5 b formed in the front cover 5. The first rotary shaft 11 is fitted into the through holes 5a and 6a, and the oil seal 13 seals between the outer peripheral surface and the inner peripheral surface of the through hole 5b.
 前記本体3には、その一方の側面に前記液圧室4に通じる第1ポート3bが形成されるとともに、これと相対する他方の側面に、同じく前記液圧室4に通じる第2ポート3cが形成されている。そして、これら第1ポート3b及び第2ポート3cは、それぞれの軸線が前記一対の歯車10,15間の中心に位置するように設けられている。 The main body 3 is formed with a first port 3b that communicates with the hydraulic chamber 4 on one side surface, and a second port 3c that communicates with the hydraulic chamber 4 on the other side surface opposite to the first port 3b. Is formed. The first port 3b and the second port 3c are provided such that their respective axes are positioned at the center between the pair of gears 10 and 15.
 前記一対の側板30,35は、それぞれ2つの貫通穴31,32及び貫通穴36,37が形成された、断面形状が略8の字状をした板状の部材であり、貫通穴31に前記歯車10の第1回転軸11が嵌挿され、貫通穴36に第2回転軸12が嵌挿され、貫通穴32に前記歯車15の第1回転軸16が嵌挿され、貫通穴37に第2回転軸17が嵌挿された状態で、当該歯車10,15の両側にそれぞれ配設され、その一方端面が各歯車10,15の歯部を含む端面全面にそれぞれ当接した状態となっている。 The pair of side plates 30 and 35 are plate-like members having two through- holes 31 and 32 and through- holes 36 and 37, respectively, each having a cross-sectional shape of approximately 8 characters. The first rotary shaft 11 of the gear 10 is fitted, the second rotary shaft 12 is fitted in the through hole 36, the first rotary shaft 16 of the gear 15 is fitted in the through hole 32, and the first rotary shaft 12 is inserted in the through hole 37. In a state where the two rotating shafts 17 are fitted and inserted, the gears 10 and 15 are disposed on both sides, respectively, and one end surface thereof is in contact with the entire end surface including the tooth portion of each gear 10 and 15. Yes.
 前記軸受20,25は、それぞれ2つの支持穴21,22及び支持穴26,27を有する、断面形状が略8の字状をした部材からなるメタル軸受で、支持穴21に前記歯車10の第1回転軸11が嵌挿され、支持穴26に第2回転軸12が嵌挿され、支持穴22に前記歯車15の第1回転軸16が嵌挿され、支持穴27に第2回転軸17が嵌挿された状態で、前記一対の側板30,32の外側にそれぞれ配設され、当該第1回転軸11,16及び第2回転軸12,17を回転自在に支持する。 The bearings 20 and 25 are metal bearings each having two support holes 21 and 22 and support holes 26 and 27 and made of a member having a cross-sectional shape of approximately eight. The first rotation shaft 11 is inserted, the second rotation shaft 12 is inserted into the support hole 26, the first rotation shaft 16 of the gear 15 is inserted into the support hole 22, and the second rotation shaft 17 is inserted into the support hole 27. Are inserted on the outer sides of the pair of side plates 30 and 32, respectively, and rotatably support the first rotary shafts 11 and 16 and the second rotary shafts 12 and 17, respectively.
 また、順次配設されるシールプレート6、軸受20、側板30、歯車10及び歯車15、側板35、軸受25並びにシールプレート8は、それぞれ相互に当接した状態にあり、これら歯車10,15、側板30,35及び軸受20,25にそれぞれ予圧が付与された状態となっている。 Further, the seal plate 6, the bearing 20, the side plate 30, the gear 10 and the gear 15, the side plate 35, the bearing 25, and the seal plate 8 that are sequentially arranged are in contact with each other, and the gears 10, 15, A preload is applied to the side plates 30 and 35 and the bearings 20 and 25, respectively.
 図1~図3に示すように、前記第1抗力付与機構40は、エンドカバー7に、前記歯車10の第2回転軸12の延出方向に順次形成された、該第2回転軸12の直径よりも大径のシリンダ穴41と、内径がシリンダ穴41の内径よりも小径の止まり穴であるシリンダ穴43と、シリンダ穴41に嵌挿される大径部46、及びシリンダ穴43に嵌挿される小径部47を有するピストン45とを備える。 As shown in FIGS. 1 to 3, the first drag applying mechanism 40 is formed on the end cover 7 in the extension direction of the second rotating shaft 12 of the gear 10 in order. A cylinder hole 41 having a diameter larger than the diameter, a cylinder hole 43 having an inner diameter smaller than the inner diameter of the cylinder hole 41, a large-diameter portion 46 fitted into the cylinder hole 41, and the cylinder hole 43. And a piston 45 having a small diameter portion 47.
 前記歯車10の第2回転軸12は、その端部が、前記シールプレート8の貫通穴8aに嵌挿された状態で前記シリンダ穴41内に位置しており、同端部に形成されたアリ溝13に、前記ピストン45の前方側端部に形成された鍔部48が挿入されることによって、当該ピストン45と前記第2回転軸12とが相互に係合している。 The second rotary shaft 12 of the gear 10 has an end portion positioned in the cylinder hole 41 in a state of being fitted into the through hole 8a of the seal plate 8, and an ant formed at the same end portion. By inserting a flange 48 formed at the front end of the piston 45 into the groove 13, the piston 45 and the second rotating shaft 12 are engaged with each other.
 斯くして、前記シリンダ穴43の底部と前記小径部47の後端面との間にシリンダ室44が形成され、前記大径部46の前端面とシールプレート8の後端面との間に、シリンダ室42が形成される。 Thus, a cylinder chamber 44 is formed between the bottom of the cylinder hole 43 and the rear end surface of the small diameter portion 47, and a cylinder is formed between the front end surface of the large diameter portion 46 and the rear end surface of the seal plate 8. A chamber 42 is formed.
 また、図2に示すように、前記シリンダ室42は、エンドカバー7に穿設された流路50及び本体3に穿設された流路51によって第1ポート3bに連通され、一方、前記シリンダ室44は、エンドカバー7に穿設された流路52及び本体3に穿設された流路53によって第2ポート3cに連通されている。 Further, as shown in FIG. 2, the cylinder chamber 42 is communicated with the first port 3b by a flow path 50 formed in the end cover 7 and a flow path 51 formed in the main body 3. The chamber 44 is communicated with the second port 3 c by a flow path 52 formed in the end cover 7 and a flow path 53 formed in the main body 3.
 また、前記エンドカバー7には、前記大径部46の後端面とシリンダ穴41の底面との間の空間に連通するドレイン穴49が穿設されている。 Further, a drain hole 49 communicating with a space between the rear end surface of the large diameter portion 46 and the bottom surface of the cylinder hole 41 is formed in the end cover 7.
 図1に示すように、前記第2抗力付与機構60は、フロントカバー5に、前記歯車15の第1回転軸16の延出方向に順次形成された、該第1回転軸16の直径よりも大径のシリンダ穴61と、内径がシリンダ穴61の内径よりも小径の止まり穴であるシリンダ穴63と、シリンダ穴61に嵌挿される大径部66、及びシリンダ穴63に嵌挿される小径部67を有するピストン65とを備える。 As shown in FIG. 1, the second drag applying mechanism 60 is formed on the front cover 5 in the extension direction of the first rotating shaft 16 of the gear 15, and the diameter of the first rotating shaft 16 is sequentially formed. A large-diameter cylinder hole 61, a cylinder hole 63 whose inner diameter is a blind hole smaller than the inner diameter of the cylinder hole 61, a large-diameter portion 66 inserted into the cylinder hole 61, and a small-diameter portion inserted into the cylinder hole 63 And a piston 65 having 67.
 前記歯車15の第1回転軸16は、その端部が、前記シールプレート6の貫通穴6bに嵌挿された状態で前記シリンダ穴61内に位置しており、同端部に形成されたアリ溝18に、前記ピストン65の後方側端部に形成された鍔部68が挿入されることによって、当該ピストン65と前記第1回転軸16とが相互に係合している。 The first rotary shaft 16 of the gear 15 has an end portion located in the cylinder hole 61 in a state of being fitted into the through hole 6b of the seal plate 6, and an ant formed at the same end portion. By inserting a flange 68 formed at the rear end of the piston 65 into the groove 18, the piston 65 and the first rotating shaft 16 are engaged with each other.
 斯くして、前記シリンダ穴63の底部と前記小径部67の前端面との間にシリンダ室64が形成され、前記大径部66の後端面とシールプレート6の前端面との間に、シリンダ室62が形成される。 Thus, a cylinder chamber 64 is formed between the bottom of the cylinder hole 63 and the front end surface of the small diameter portion 67, and a cylinder is formed between the rear end surface of the large diameter portion 66 and the front end surface of the seal plate 6. A chamber 62 is formed.
 また、図2に示すように、前記シリンダ室62は、フロントカバー5に穿設された流路70及び本体3に穿設された流路71によって第2ポート3cに連通され、一方、前記シリンダ室64は、フロントカバー5に穿設された流路72及び本体3に穿設された流路73によって第1ポート3bに連通されている。 As shown in FIG. 2, the cylinder chamber 62 is communicated with the second port 3c by a flow path 70 formed in the front cover 5 and a flow path 71 formed in the main body 3. On the other hand, The chamber 64 is communicated with the first port 3 b by a flow path 72 formed in the front cover 5 and a flow path 73 formed in the main body 3.
 また、前記フロントカバー5には、前記大径部66の前端面とシリンダ穴61の底面との間の空間に連通するドレイン穴69が穿設されている。 Further, a drain hole 69 communicating with the space between the front end surface of the large diameter portion 66 and the bottom surface of the cylinder hole 61 is formed in the front cover 5.
2.油圧ポンプの使用態様
 次に、以上の構成を備えた油圧ポンプ1の使用態様について説明する。
本例の油圧ポンプ1の歯車10を、図1及び図2において実線の矢印で示すD方向に回転させると、第1ポート3bが吸込みポートとなり、第2ポート3cが吐出ポートとなる。一方、破線の矢印で示すE方向に歯車10を回転させると、第2ポート3cが吸込みポートとなり、第1ポート3bが吐出ポートとなる。以下、本例の油圧ポンプ1を油圧式サーボ機構に適用する場合を例に、歯車10を矢示D方向に回転させる使用態様、及び矢示E方向に回転させる使用態様について、それぞれ説明する。尚、前記第1ポート3b及び第2ポート3cはそれぞれ前記油圧サーボ機構に接続され、当該油圧ポンプ1内には、作動油が満たされているものとする。
2. Usage Mode of Hydraulic Pump Next, usage modes of the hydraulic pump 1 having the above configuration will be described.
When the gear 10 of the hydraulic pump 1 of this example is rotated in the direction D indicated by the solid arrow in FIGS. 1 and 2, the first port 3b becomes a suction port and the second port 3c becomes a discharge port. On the other hand, when the gear 10 is rotated in the direction E indicated by the dashed arrow, the second port 3c becomes a suction port and the first port 3b becomes a discharge port. Hereinafter, a usage mode in which the gear 10 is rotated in the arrow D direction and a usage mode in which the gear 10 is rotated in the arrow E direction will be described, taking the case where the hydraulic pump 1 of the present example is applied to a hydraulic servo mechanism as an example. The first port 3b and the second port 3c are each connected to the hydraulic servo mechanism, and the hydraulic pump 1 is filled with hydraulic oil.
a.歯車10を矢示D方向に回転させる態様
 前記歯車10の第1回転軸11に適宜駆動モータを接続して、この駆動モータにより歯車10を矢示D方向に回転させると、当該歯車10に噛み合った歯車15が歯車10とは逆方向に回転し、前記液圧室4の内周面3aと各歯車10,15の歯部によって挟まれた空間の作動油が、各歯車10,15の回転によって第2ポート3c側に移送され、前記一対の歯車10,15の噛み合い部を境として、第2ポート3c側が高圧に、第1ポート3b側が低圧になり、この第1ポート3b内に油圧サーボ機構内の作動油が吸い込まれ、一方、高圧になった作動油が第2ポート3cから前記油圧サーボ機構に向けて吐出される。
a. A mode in which the gear 10 is rotated in the arrow D direction When a drive motor is appropriately connected to the first rotating shaft 11 of the gear 10 and the gear 10 is rotated in the arrow D direction by the drive motor, the gear 10 is engaged. The gear 15 rotates in the direction opposite to that of the gear 10, and the hydraulic oil in the space sandwiched between the inner peripheral surface 3 a of the hydraulic chamber 4 and the teeth of the gears 10 and 15 rotates the gears 10 and 15. Is transferred to the second port 3c side, and the second port 3c side becomes a high pressure and the first port 3b side becomes a low pressure with the meshing portion of the pair of gears 10 and 15 as a boundary, and a hydraulic servo is placed in the first port 3b. The hydraulic oil in the mechanism is sucked, and the hydraulic oil that has become high pressure is discharged from the second port 3c toward the hydraulic servo mechanism.
 上述したように、本例の歯車10の歯部は右ねじれ、歯車15の歯部は左ねじれとなっている。したがって、歯車10を矢示D方向に回転させると、当該歯車10には、その歯部に高圧の作動油が作用することによって生じる後方向に向けた、実線で示す受圧スラスト力[Fpa]と、歯車10,15の噛み合いによって生じる同じく後方向に向けた、実線で示す噛み合いスラスト力[Fma]が作用し、これら受圧スラスト力[Fpa]と噛み合いスラスト力[Fma]との合力が作用する。 As described above, the tooth portion of the gear 10 of this example is right-handed, and the tooth portion of the gear 15 is left-handed. Therefore, when the gear 10 is rotated in the direction indicated by the arrow D, a pressure-receiving thrust force [F pa ] indicated by a solid line directed toward the rear direction generated by the high-pressure hydraulic oil acting on the tooth portion of the gear 10 is indicated in FIG. Then, a meshing thrust force [F ma ] indicated by a solid line acting in the rearward direction caused by the meshing of the gears 10 and 15 acts, and the resultant force of the pressure receiving thrust force [F pa ] and the meshing thrust force [F ma ] Act.
 一方、歯車15には、その歯部に高圧の作動油が作用することによって生じる後方向に向けた、実線で示す受圧スラスト力[Fpa]と、歯車10,15の噛み合いによって生じる前方向に向けた、実線で示す噛み合いスラスト力[-Fma]が作用し、これら受圧スラスト力[Fpa]と噛み合いスラスト力[-Fma]との合力が作用する。尚、本例では、受圧スラスト力と噛み合いスラスト力との関係は、Fpa>Fmaであるとする。したがって、歯車15には、受圧スラスト力[Fpa]と噛み合いスラスト力[-Fma]との合力が、後方向に向けて作用する。 On the other hand, the gear 15 has a pressure-receiving thrust force [F pa ] indicated by a solid line and a forward direction generated by the meshing of the gears 10 and 15, which are generated when high-pressure hydraulic oil acts on the tooth portion. The meshing thrust force [−F ma ] indicated by the solid line is applied, and the resultant force of the pressure receiving thrust force [F pa ] and the meshing thrust force [−F ma ] is applied. In this example, it is assumed that the relationship between the pressure-receiving thrust force and the meshing thrust force is F pa > F ma . Therefore, the resultant force of the pressure receiving thrust force [F pa ] and the meshing thrust force [−F ma ] acts on the gear 15 in the backward direction.
 そして、本例の油圧ポンプ1では、第2ポート3c内の作動油が高圧になると、これが前記第1抗力付与機構40の流路53及び52を通じ、前記シリンダ室44内に流入して、前記ピストン45の小径部47の後端面に作用し、図4(a)に示すように、当該ピストン45が前方向に向けて付勢され、その鍔部48の前端面が第2回転軸12のアリ溝13の前端面13aに当接して、当該第2回転軸12を押圧するように前方向に付勢する。これにより、当該ピストン45と係合する第2回転軸12を介して、前記受圧スラスト力[Fpa]と噛み合いスラスト力[Fma]との合力に抗する、前方向に向けた付勢力(抗力)が、歯車10に作用する。斯くして、歯車10には、第1抗力付与機構40によって、前記受圧スラスト力[Fpa]と噛み合いスラスト力[Fma]との合力に抗する、前方向に向けた抗力が作用する。 In the hydraulic pump 1 of this example, when the hydraulic oil in the second port 3c becomes high pressure, this flows into the cylinder chamber 44 through the flow paths 53 and 52 of the first drag application mechanism 40, and The piston 45 acts on the rear end surface of the small diameter portion 47 of the piston 45, and as shown in FIG. 4A, the piston 45 is urged toward the front direction, and the front end surface of the flange portion 48 is the second rotation shaft 12. Abutting on the front end surface 13a of the dovetail groove 13 is urged forward so as to press the second rotating shaft 12. As a result, an urging force directed in the forward direction against the resultant force of the pressure receiving thrust force [F pa ] and the meshing thrust force [F ma ] via the second rotating shaft 12 engaged with the piston 45 ( Drag) acts on the gear 10. Thus, the gear 10 is subjected to a forward drag force against the resultant force of the pressure-receiving thrust force [F pa ] and the meshing thrust force [F ma ] by the first drag applying mechanism 40.
 この第1抗力付与機構40による抗力は、小径部47の後端面(受圧面)の面積に、作動油の圧力を乗じたものとなるが、前記受圧スラスト力[Fpa]と噛み合いスラスト力[Fma]との合力に抗するものであれば足り、当該合力と等しい抗力としても、或いは当該合力より小さい抗力としても、或いは、当該合力より大きな抗力としても、いずれでも良いが、当該合力と等しい抗力とするのが好ましい。 The drag by the first drag application mechanism 40 is obtained by multiplying the area of the rear end surface (pressure receiving surface) of the small diameter portion 47 by the pressure of the hydraulic oil, and meshes with the pressure receiving thrust force [F pa ] and the thrust force [ F ma ] is sufficient as long as it resists the resultant force, and may be a force equal to the resultant force, a smaller force than the resultant force, or a larger force than the resultant force. It is preferable to have an equal drag.
 また、第2ポート3c内の高圧の作動油は、前記第2抗力付与機構60の流路71及び70を通じ、前記シリンダ室62内に流入して、前記ピストン65の大径部66の後端面に作用し、前記第1抗力付与機構40の場合と同様にして、当該ピストン65を前方向に向けて付勢する。これにより、当該ピストン65と係合する第1回転軸16を介して、前記受圧スラスト力[Fpa]と噛み合いスラスト力[-Fma]との合力に抗する、前方向に向けた付勢力(抗力)が、歯車15に作用する。斯くして、歯車15には、第2抗力付与機構60によって、前記受圧スラスト力[Fpa]と噛み合いスラスト力[-Fma]との合力に抗する、前方向に向けた抗力が作用する。 Further, the high-pressure hydraulic oil in the second port 3 c flows into the cylinder chamber 62 through the flow paths 71 and 70 of the second drag application mechanism 60, and the rear end surface of the large-diameter portion 66 of the piston 65. In the same manner as in the case of the first drag application mechanism 40, the piston 65 is urged forward. Thus, the forward biasing force against the resultant force of the pressure-receiving thrust force [F pa ] and the meshing thrust force [−F ma ] via the first rotating shaft 16 engaged with the piston 65. (Drag) acts on the gear 15. Thus, a drag force acting in the forward direction against the resultant force of the pressure-receiving thrust force [F pa ] and the meshing thrust force [−F ma ] acts on the gear 15 by the second drag applying mechanism 60. .
 この第2抗力付与機構60の抗力は、前記大径部66の後端面の有効な受圧面積、即ち、大径部66の断面積から第1回転軸16の断面積を減じた面積に、作動油の圧力を乗じたものとなるが、この抗力は、上記と同様に、前記受圧スラスト力[Fpa]と噛み合いスラスト力[-Fma]との合力に抗するものであれば足り、当該合力と等しい抗力としても、或いは当該合力より小さい抗力としても、或いは、当該合力より大きな抗力としても、いずれでも良いが、当該合力と等しい抗力とするのが好ましい。 The drag of the second drag applying mechanism 60 is activated to an effective pressure receiving area of the rear end surface of the large diameter portion 66, that is, an area obtained by subtracting the cross sectional area of the first rotating shaft 16 from the cross sectional area of the large diameter portion 66. As with the above, this drag force is sufficient if it resists the resultant force of the pressure-receiving thrust force [F pa ] and the meshing thrust force [−F ma ]. Either a drag force equal to the resultant force, a drag force smaller than the resultant force, or a drag force greater than the resultant force may be used, but a drag force equal to the resultant force is preferable.
 尚、前記シリンダ室44内に高圧の作動油が供給されると、前記小径部47とシリンダ穴43の隙間から、前記大径部46の後端面とシリンダ穴41の底面との間の空間に作動油が漏出することが懸念されるが、この漏出した作動油は、前記ドレイン穴49から外部に排出される。同様に、前記シリンダ室62内に高圧の作動油が供給されると、前記大径部66とシリンダ穴61の隙間から、前記大径部66の前端面とシリンダ穴61の底面との間の空間に作動油が漏出することが懸念されるが、この漏出した作動油は、前記ドレイン穴69から外部に排出される。 When high-pressure hydraulic oil is supplied into the cylinder chamber 44, a space between the rear end surface of the large diameter portion 46 and the bottom surface of the cylinder hole 41 from the gap between the small diameter portion 47 and the cylinder hole 43. Although there is a concern that the hydraulic oil leaks, the leaked hydraulic oil is discharged to the outside from the drain hole 49. Similarly, when high-pressure hydraulic oil is supplied into the cylinder chamber 62, the gap between the large diameter portion 66 and the cylinder hole 61 is between the front end surface of the large diameter portion 66 and the bottom surface of the cylinder hole 61. Although there is a concern that the hydraulic oil leaks into the space, the leaked hydraulic oil is discharged from the drain hole 69 to the outside.
b.歯車10を矢示E方向に回転させる態様
 前記駆動モータにより歯車10を矢示E方向に回転させると、当該歯車10に噛み合った歯車15が歯車10とは逆方向に回転し、前記液圧室4の内周面3aと各歯車10,15の歯部によって挟まれた空間の作動油が、各歯車10,15の回転によって第1ポート3b側に移送され、前記一対の歯車10,15の噛み合い部を境として、第1ポート3b側が高圧に、第2ポート3c側が低圧になり、この第2ポート3c内に油圧サーボ機構内の作動油が吸い込まれ、一方、高圧になった作動油が第1ポート3bから前記油圧サーボ機構に向けて吐出される。
b. A mode of rotating the gear 10 in the direction of arrow E When the gear 10 is rotated in the direction of arrow E by the drive motor, the gear 15 meshed with the gear 10 rotates in the opposite direction to the gear 10 and the hydraulic chamber The hydraulic oil in the space sandwiched between the inner peripheral surface 3a of 4 and the tooth portions of the gears 10 and 15 is transferred to the first port 3b side by the rotation of the gears 10 and 15, and the pair of gears 10 and 15 The first port 3b side is at a high pressure and the second port 3c side is at a low pressure at the meshing portion, and the hydraulic oil in the hydraulic servomechanism is sucked into the second port 3c. Discharge from the first port 3b toward the hydraulic servo mechanism.
 また、歯車10を矢示E方向に回転させると、当該歯車10には、その歯部に高圧の作動油が作用することによって生じる前方向に向けた、破線で示す受圧スラスト力[-Fpa]と、歯車10,15の噛み合いによって生じる同じく前方向に向けた、破線で示す噛み合いスラスト力[-Fma]が作用し、これら受圧スラスト力[-Fpa]と噛み合いスラスト力[-Fma]との合力が作用する。 Further, when the gear 10 is rotated in the direction indicated by the arrow E, the pressure receiving thrust force [−F pa ], And a meshing thrust force [-F ma ] indicated by a broken line, which is also generated in the forward direction due to the meshing of the gears 10 and 15, acts on the pressure receiving thrust force [-F pa ] and the meshing thrust force [-F ma]. ] And the resultant force acts.
 一方、歯車15には、その歯部に高圧の作動油が作用することによって生じる前方向に向けた、破線で示す受圧スラスト力[-Fpa]と、歯車10,15の噛み合いによって生じる後方向に向けた、破線で示す噛み合いスラスト力[Fma]が作用し、これら受圧スラスト力[-Fpa]と噛み合いスラスト力[Fma]との合力が作用する。尚、本例では、受圧スラスト力と噛み合いスラスト力との関係は、Fpa>Fmaであり、したがって、歯車15には、受圧スラスト力[-Fpa]と噛み合いスラスト力[Fma]との合力が、前方向に向けて作用する。 On the other hand, the gear 15 has a pressure receiving thrust force [−F pa ] indicated by a broken line and a rearward direction generated by meshing of the gears 10 and 15, which is generated in the forward direction due to the action of high-pressure hydraulic oil on the tooth portion. The meshing thrust force [F ma ] indicated by the broken line is applied to the pressure, and the resultant force of the pressure receiving thrust force [−F pa ] and the meshing thrust force [F ma ] is applied. In this example, the relationship between the pressure-receiving thrust force and the meshing thrust force is F pa > F ma , and therefore the gear 15 has a pressure-receiving thrust force [−F pa ] and a meshing thrust force [F ma ]. The resultant force acts in the forward direction.
 そして、本例の油圧ポンプ1では、第1ポート3b内の作動油が高圧になると、これが前記第1抗力付与機構40の流路51及び50を通じ、前記シリンダ室42内に流入して、前記ピストン45の大径部46の前端面に作用し、図4(b)に示すように、当該ピストン45が後方向に向けて付勢され、その鍔部48の後端面が第2回転軸12のアリ溝13の後端面13bに当接して、当該第2回転軸12を引き込むように後方向に付勢する。これにより、当該ピストン45と係合する第2回転軸12を介して、その前記受圧スラスト力[-Fpa]と噛み合いスラスト力[-Fma]との合力に抗する、後方向に向けた付勢力(抗力)が、歯車10に作用する。斯くして、歯車10には、前記第1抗力付与機構40によって、前記受圧スラスト力[-Fpa]と噛み合いスラスト力[-Fma]との合力に抗する、後方向に向けた抗力が作用する。 In the hydraulic pump 1 of this example, when the hydraulic oil in the first port 3b becomes high pressure, this flows into the cylinder chamber 42 through the flow paths 51 and 50 of the first drag application mechanism 40, and The piston 45 acts on the front end surface of the large-diameter portion 46 of the piston 45, and as shown in FIG. 4B, the piston 45 is urged rearward, and the rear end surface of the flange portion 48 is the second rotating shaft 12. The dovetail groove 13 is brought into contact with the rear end surface 13b of the dovetail groove 13 and biased backward so as to retract the second rotary shaft 12. Accordingly, the second thrust shaft 12 engaged with the piston 45 is directed rearward against the resultant force of the pressure-receiving thrust force [−F pa ] and the meshing thrust force [−F ma ]. An urging force (resistance force) acts on the gear 10. Thus, the gear 10 has a drag force in the backward direction against the resultant force of the pressure-receiving thrust force [−F pa ] and the meshing thrust force [−F ma ] by the first drag applying mechanism 40. Works.
 この第1抗力付与機構40の抗力は、前記大径部46の前端面の有効な受圧面積、即ち、大径部46の断面積から第2回転軸12の断面積を減じた面積に、作動油の圧力を乗じたものとなるが、この抗力は、上記と同様に、前記受圧スラスト力[-Fpa]と噛み合いスラスト力[-Fma]との合力に抗するものであれば足り、当該合力と等しい抗力としても、或いは当該合力より小さい抗力としても、或いは、当該合力より大きな抗力としても、いずれでも良いが、当該合力と等しい抗力とするのが好ましい。 The drag of the first drag application mechanism 40 is activated to an effective pressure receiving area of the front end surface of the large diameter portion 46, that is, an area obtained by subtracting the cross sectional area of the second rotating shaft 12 from the cross sectional area of the large diameter portion 46. The drag force is multiplied by the oil pressure, and the drag force is sufficient as long as it resists the resultant force of the received thrust force [−F pa ] and the thrust force [−F ma ]. Either a drag force equal to the resultant force, a drag force smaller than the resultant force, or a drag force greater than the resultant force may be used, but a drag force equal to the resultant force is preferable.
 また、第1ポート3b内の高圧の作動油は、前記第2抗力付与機構60の流路73及び71を通じ、前記シリンダ室64内に流入して、前記ピストン65の小径部67の前端面に作用し、前記第1抗力付与機構40の場合と同様にして、当該ピストン65を後方向に向けて付勢する。これにより、当該ピストン65と係合する第1回転軸16を介して、前記受圧スラスト力[-Fpa]と噛み合いスラスト力[Fma]との合力に抗する、後方向に向けた付勢力(抗力)が、歯車15に作用する。斯くして、歯車15には、前記第2抗力付与機構60によって、前記受圧スラスト力[-Fpa]と噛み合いスラスト力[Fma]との合力に抗する、後方向に向けた抗力が作用する。 Further, the high pressure hydraulic oil in the first port 3 b flows into the cylinder chamber 64 through the flow paths 73 and 71 of the second drag application mechanism 60, and reaches the front end surface of the small diameter portion 67 of the piston 65. Acts and urges the piston 65 in the rearward direction as in the case of the first drag application mechanism 40. As a result, a biasing force in the backward direction against the resultant force of the pressure receiving thrust force [−F pa ] and the meshing thrust force [F ma ] via the first rotating shaft 16 engaged with the piston 65. (Drag) acts on the gear 15. Thus, a drag force acting in the backward direction against the resultant force of the pressure-receiving thrust force [−F pa ] and the meshing thrust force [F ma ] is applied to the gear 15 by the second drag applying mechanism 60. To do.
 この第2抗力付与機構60による抗力は、小径部67の前端面(受圧面)の面積に、作動油の圧力を乗じたものとなるが、上記と同様に、前記受圧スラスト力[-Fpa]と噛み合いスラスト力[Fma]との合力に抗するものであれば足り、当該合力と等しい抗力としても、或いは当該合力より小さい抗力としても、或いは、当該合力より大きな抗力としても、いずれでも良いが、当該合力と等しい抗力とするのが好ましい。 The drag force by the second drag application mechanism 60 is obtained by multiplying the area of the front end face (pressure receiving surface) of the small diameter portion 67 by the pressure of the hydraulic oil. Similarly to the above, the pressure receiving thrust force [−F pa ] And meshing thrust force [F ma ], it is sufficient if it resists the resultant force, either as a force equal to the resultant force, as a drag smaller than the resultant force, or as a drag greater than the resultant force. Although it is good, it is preferable to set the drag equal to the resultant force.
 尚、前記シリンダ室42内に高圧の作動油が供給されると、前記大径部46とシリンダ穴41の隙間から、前記大径部46の後端面とシリンダ穴41の底面との間の空間に作動油が漏出することが懸念されるが、この漏出した作動油は、前記ドレイン穴49から外部に排出される。同様に、前記シリンダ室64内に高圧の作動油が供給されると、前記小径部67とシリンダ穴63の隙間から、前記大径部66の前端面とシリンダ穴61の底面との間の空間に作動油が漏出することが懸念されるが、この漏出した作動油は、前記ドレイン穴69から外部に排出される。 When high-pressure hydraulic oil is supplied into the cylinder chamber 42, a space between the rear end surface of the large diameter portion 46 and the bottom surface of the cylinder hole 41 from the gap between the large diameter portion 46 and the cylinder hole 41. However, the leaked hydraulic oil is discharged from the drain hole 49 to the outside. Similarly, when high-pressure hydraulic oil is supplied into the cylinder chamber 64, the space between the front end surface of the large diameter portion 66 and the bottom surface of the cylinder hole 61 from the gap between the small diameter portion 67 and the cylinder hole 63. However, the leaked hydraulic oil is discharged from the drain hole 69 to the outside.
3.本例の油圧ポンプ1における効果
 このように、本例の油圧ポンプ1では、歯車10が矢示D方向及び矢示E方向のいずれの方向に回転したとしても、それぞれの場合に、歯車10に作用するスラスト力に抗する抗力を、第1抗力付与機構40によって当該歯車10に作用させることができ、また、歯車15に作用するスラスト力に抗する抗力を、第2抗力付与機構60によって当該歯車15に作用させることができるので、当該スラスト力に起因して生じる諸問題、例えば、本例では、一対の歯車10,15の両端面に摺接する側板30,35に焼き付きが生じたり、或いはこれらが破損するといった問題が生じるのを防止することができる。
3. As described above, in the hydraulic pump 1 of this example, even if the gear 10 rotates in either the arrow D direction or the arrow E direction, in each case, the gear 10 A drag force resisting the acting thrust force can be applied to the gear 10 by the first drag applying mechanism 40, and a drag force resisting the thrust force acting on the gear 15 is applied by the second drag applying mechanism 60. Since it can act on the gear 15, various problems caused by the thrust force, for example, in this example, the side plates 30, 35 that are in sliding contact with both end faces of the pair of gears 10, 15 are seized, or It is possible to prevent the problem that they are damaged.
 以上、本発明の第1の実施形態について説明したが、この第1の実施形態は、更に、以下の態様を採り得る。 Although the first embodiment of the present invention has been described above, the first embodiment can further take the following aspects.
 即ち、上例では、歯車15に作用する受圧スラスト力Fpaと噛み合いスラスト力Fmaとの関係を、Fpa>Fmaとしたが、Fpa<Fmaである場合には、前記第2ポート3cに連通される前記流路70及び流路71を前記シリンダ室64に連通させ、前記第1ポート3bに連通される流路72及び流路73を前記シリンダ室62に連通させるようにすると良い。 That is, in the above example, the relationship between the pressure-receiving thrust force F pa acting on the gear 15 and the meshing thrust force F ma is F pa > F ma , but when F pa <F ma , the second When the flow path 70 and the flow path 71 communicated with the port 3c are communicated with the cylinder chamber 64, and the flow path 72 and the flow path 73 communicated with the first port 3b are communicated with the cylinder chamber 62. good.
 このように構成された第2抗力付与機構60によっても、歯車10が矢示D方向に回転する際には、歯車15に作用する前方向に向けたスラスト力に抗する、後方向に向けた抗力を、当該歯車15に作用させることができ、また、歯車10が矢示E方向に回転する際には、歯車15に作用する後方向に向けたスラスト力に抗する、前方向に向けた抗力を、当該歯車15に作用させることができる。 Also with the second drag applying mechanism 60 configured in this manner, when the gear 10 rotates in the direction indicated by the arrow D, the gear 10 is directed in the backward direction against the thrust force in the forward direction acting on the gear 15. A drag force can be applied to the gear 15, and when the gear 10 rotates in the direction of arrow E, it is directed in the forward direction against the thrust force in the backward direction acting on the gear 15. A drag force can be applied to the gear 15.
 以下、本発明の他の実施の形態について説明する。 Hereinafter, other embodiments of the present invention will be described.
[第2の実施形態]
 図5は、本発明の第2の実施形態に係る油圧ポンプを示した平断面図である。同図5に示すように、この油圧ポンプ1Aは、前記第2抗力付与機構60に代えて、第2抗力付与機構60’をエンドカバー7側に設けたものであり、他の構成については、第1の実施形態に係る油圧ポンプ1と同様である。したがって、上記油圧ポンプ1と同様の構成については、同一の符号を付して、その詳しい説明を省略する。
[Second Embodiment]
FIG. 5 is a plan sectional view showing a hydraulic pump according to the second embodiment of the present invention. As shown in FIG. 5, this hydraulic pump 1A is provided with a second drag application mechanism 60 ′ on the end cover 7 side instead of the second drag application mechanism 60. This is the same as the hydraulic pump 1 according to the first embodiment. Accordingly, the same components as those of the hydraulic pump 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
 前記第2抗力付与機構60’は、エンドカバー7に、前記歯車15の第2回転軸17の延出方向に順次形成された、該第2回転軸17の直径よりも大径のシリンダ穴61’と、内径がシリンダ穴61’の内径よりも小径の止まり穴であるシリンダ穴63’と、シリンダ穴61’に嵌挿される大径部66’、及びシリンダ穴63’に嵌挿される小径部67’を有するピストン65’とを備える。 The second drag applying mechanism 60 ′ is formed in the end cover 7 sequentially in the extending direction of the second rotating shaft 17 of the gear 15 and has a cylinder hole 61 having a diameter larger than the diameter of the second rotating shaft 17. ', A cylinder hole 63' that is a blind hole whose inner diameter is smaller than the inner diameter of the cylinder hole 61 ', a large-diameter portion 66' that is inserted into the cylinder hole 61 ', and a small-diameter portion that is inserted into the cylinder hole 63'. And a piston 65 ′ having 67 ′.
 前記歯車15の第2回転軸17は、その端部が、前記シールプレート8の貫通穴8bに嵌挿された状態で前記シリンダ穴61’内に位置しており、同端部に形成されたアリ溝19に、前記ピストン65’の前方側端部に形成された鍔部68’が挿入されることによって、当該ピストン65’と前記第2回転軸17とが相互に係合している。 The second rotary shaft 17 of the gear 15 has an end portion located in the cylinder hole 61 ′ in a state of being fitted into the through hole 8 b of the seal plate 8, and is formed at the same end portion. By inserting a flange 68 ′ formed at the front end of the piston 65 ′ into the dovetail groove 19, the piston 65 ′ and the second rotating shaft 17 are engaged with each other.
 斯くして、前記シリンダ穴63’の底部と前記小径部67’の後端面との間にシリンダ室64’が形成され、前記大径部66’の前端面とシールプレート8の後端面との間に、シリンダ室62’が形成される。 Thus, a cylinder chamber 64 ′ is formed between the bottom of the cylinder hole 63 ′ and the rear end surface of the small diameter portion 67 ′, and the front end surface of the large diameter portion 66 ′ and the rear end surface of the seal plate 8 are formed. In the middle, a cylinder chamber 62 'is formed.
 また、特に図示はしないが、受圧スラスト力Fpaと噛み合いスラスト力Fmaとの関係が、Fpa>Fmaである場合には、前記シリンダ室64’が、エンドカバー7に穿設された流路及び本体3に穿設された流路によって第2ポート3cに連通されるとともに、前記シリンダ室62’が、エンドカバー7に穿設された流路及び本体3に穿設された流路によって第1ポート3bに連通され、一方、Fpa<Fmaである場合には、前記シリンダ室64’が、エンドカバー7に穿設された流路及び本体3に穿設された流路によって第1ポート3bに連通されるとともに、前記シリンダ室62’が、エンドカバー7に穿設された流路及び本体3に穿設された流路によって第2ポート3cに連通される。 Although not particularly shown, when the relationship between the pressure-receiving thrust force F pa and the meshing thrust force F ma is F pa > F ma , the cylinder chamber 64 ′ is formed in the end cover 7. The cylinder chamber 62 ′ is communicated with the second port 3 c by a flow path and a flow path formed in the main body 3, and the flow path formed in the end cover 7 and the flow path formed in the main body 3. In the case where F pa <F ma , on the other hand, the cylinder chamber 64 ′ is formed by the flow path drilled in the end cover 7 and the flow path drilled in the main body 3. While communicating with the first port 3 b, the cylinder chamber 62 ′ is communicated with the second port 3 c through a flow path drilled in the end cover 7 and a flow path drilled in the main body 3.
 斯くして、この油圧ポンプ1Aによれば、受圧スラスト力と噛み合いスラスト力との関係が、Fpa>Fmaである場合には、歯車10が矢示D方向に回転すると、歯車15には後方向に向けたスラスト力が生じるが、この場合、第2抗力付与機構60’のシリンダ室64’に第2ポート3cから高圧の作動油が供給され、歯車15には、ピストン65’による前方向に向けた抗力が作用する。一方、歯車10が矢示E方向に回転する場合には、歯車15には前方向に向けたスラスト力が生じるが、この場合、第2抗力付与機構60’のシリンダ室62’に第1ポート3bから高圧の作動油が供給され、歯車15には、ピストン65’による後方向に向けた抗力が作用する。 Thus, according to the hydraulic pump 1A, when the relationship between the pressure-receiving thrust force and the meshing thrust force is F pa > F ma , when the gear 10 rotates in the direction indicated by the arrow D, the gear 15 A thrust force is generated in the rearward direction. In this case, high-pressure hydraulic oil is supplied from the second port 3c to the cylinder chamber 64 ′ of the second drag applying mechanism 60 ′, and the gear 15 is moved forward by the piston 65 ′. Drag in the direction acts. On the other hand, when the gear 10 rotates in the direction indicated by the arrow E, a thrust force directed forward is generated in the gear 15. In this case, the first port is provided in the cylinder chamber 62 ′ of the second drag applying mechanism 60 ′. High pressure hydraulic oil is supplied from 3b, and a drag force directed backward by the piston 65 'acts on the gear 15.
 また、Fpa<Fmaである場合には、歯車10が矢示D方向に回転すると、歯車15には前方向に向けたスラスト力が生じるが、この場合、第2抗力付与機構60’のシリンダ室62’に第2ポート3cから高圧の作動油が供給され、歯車15には、ピストン65’による後方向に向けた抗力が作用する。一方、歯車10が矢示E方向に回転する場合には、歯車15には後方向に向けたスラスト力が生じるが、この場合、第2抗力付与機構60’のシリンダ室64’に第1ポート3bから高圧の作動油が供給され、歯車15には、ピストン65’による前方向に向けた抗力が作用する。 In the case of F pa <F ma , when the gear 10 rotates in the direction indicated by the arrow D, a thrust force is generated in the gear 15 in the forward direction. In this case, the second drag application mechanism 60 ′ High-pressure hydraulic oil is supplied to the cylinder chamber 62 ′ from the second port 3c, and a drag force directed backward by the piston 65 ′ acts on the gear 15. On the other hand, when the gear 10 rotates in the direction indicated by the arrow E, a thrust force is generated in the rear direction in the gear 15. In this case, the first port is provided in the cylinder chamber 64 ′ of the second drag applying mechanism 60 ′. High pressure hydraulic oil is supplied from 3b, and a drag force directed forward by the piston 65 'acts on the gear 15.
 このように、この第2の実施形態に係る油圧ポンプ1Aにおいても、歯車10が矢示D方向及び矢示E方向のいずれの方向に回転したとしても、それぞれの場合に、歯車15に作用するスラスト力に抗する抗力を、第2抗力付与機構60’によって当該歯車15に作用させることができる。 Thus, even in the hydraulic pump 1A according to the second embodiment, even if the gear 10 rotates in either the arrow D direction or the arrow E direction, it acts on the gear 15 in each case. A drag force against the thrust force can be applied to the gear 15 by the second drag applying mechanism 60 ′.
 尚、この例においても、第1の実施形態と同様に、前記大径部66’の後端面とシリンダ穴61’の底面との間の空間に連通するドレイン穴を設けるのが好ましい。この場合、前記大径部66’の後端面とシリンダ穴61’の底面との間の空間と、第1抗力付与機構40の前記大径部46の後端面とシリンダ穴41の底面との間の空間との、両方の空間に連通する共通のドレイン穴49’を設けるのがより好ましい。 In this example as well, it is preferable to provide a drain hole communicating with the space between the rear end surface of the large-diameter portion 66 'and the bottom surface of the cylinder hole 61', as in the first embodiment. In this case, a space between the rear end surface of the large diameter portion 66 ′ and the bottom surface of the cylinder hole 61 ′ and a space between the rear end surface of the large diameter portion 46 of the first drag application mechanism 40 and the bottom surface of the cylinder hole 41. It is more preferable to provide a common drain hole 49 ′ that communicates with both spaces.
[第3の実施形態]
 次に、本発明の第3の実施形態について説明する。この態様は、上記第1及び第2の実施形態に係るピストン45,65,65’を、それぞれ大径部46,66,66’と、小径部47,67,67’との間で分離させた態様である。
[Third Embodiment]
Next, a third embodiment of the present invention will be described. In this aspect, the pistons 45, 65, 65 ′ according to the first and second embodiments are separated between the large diameter portions 46, 66, 66 ′ and the small diameter portions 47, 67, 67 ′, respectively. It is an aspect.
 このようにしても、高圧の作動油がシリンダ室44,64,64’に供給されると、小径部47,67,67’は、それぞれ前方向に押圧され、大径部46,66,66’を介して、それぞれ歯車10の第2回転軸12,歯車15の第1回転軸16,歯車15の第2回転軸17に抗力を付与することができる。 Even in this case, when the high-pressure hydraulic oil is supplied to the cylinder chambers 44, 64, and 64 ′, the small diameter portions 47, 67, and 67 ′ are pressed forward, and the large diameter portions 46, 66, and 66 are respectively pressed. A drag force can be applied to the second rotation shaft 12 of the gear 10, the first rotation shaft 16 of the gear 15, and the second rotation shaft 17 of the gear 15 via '.
 また、この場合に、前記大径部46,66,66’は、上記第1及び第2の実施形態における態様に代えて、図6に示した態様をとることできる。図6には、代表として、第1の実施形態に係る第1抗力付与機構40に係る変形例を図示する。 In this case, the large- diameter portions 46, 66, 66 'can take the form shown in FIG. 6 instead of the form in the first and second embodiments. FIG. 6 shows, as a representative, a modification example related to the first drag application mechanism 40 according to the first embodiment.
 図6(a)に示した大径部74は、リング状をした部材からなり、第2回転軸12の端部に形成した小径部12aに嵌合されている。尚、大径部74の後方の小径部12aには、止め輪75が嵌められており、大径部74の後方向への移動がこの止め輪75によって制止されている。 The large-diameter portion 74 shown in FIG. 6A is made of a ring-shaped member and is fitted to a small-diameter portion 12a formed at the end of the second rotating shaft 12. A retaining ring 75 is fitted in the small diameter portion 12 a behind the large diameter portion 74, and the rearward movement of the large diameter portion 74 is stopped by the retaining ring 75.
 また、図6(b)に示した大径部76も、リング状をした部材からなり、第2回転軸12の端部に形成した小径部12aに嵌合され、止めねじ77によって、第2回転軸12に固定されている。 Further, the large diameter portion 76 shown in FIG. 6B is also made of a ring-shaped member, is fitted into the small diameter portion 12 a formed at the end of the second rotating shaft 12, and is The rotary shaft 12 is fixed.
 また、図6(c)に示した大径部78は、円筒状をした部材からなり、その前端面に止まり穴の嵌合穴78aを有し、この嵌合穴78aに、第2回転軸12の端部に形成した小径部12aが嵌合した状態で、ボルト79によって、当該第2回転軸12に固定されている。 The large-diameter portion 78 shown in FIG. 6C is made of a cylindrical member, and has a blind hole fitting hole 78a on the front end surface thereof. The fitting hole 78a has a second rotating shaft. 12 is fixed to the second rotary shaft 12 by a bolt 79 in a state in which the small diameter portion 12a formed at the end of 12 is fitted.
[第4の実施形態]
 次に、本発明の第4の実施形態について説明する。第4の実施形態は、上記第1の実施形態及び第2の実施形態に係る第1抗力付与機構40、及び第2抗力付与機構60,60’の変形例に係るものである。尚、ここでは、代表として前記第1抗力付与機構40に対応する変形例について説明するが、第2抗力付与機構60,60’についても、同様に構成された変形例を採用することができる。図7は、図1におけるB部に相当するB’部を拡大して示した拡大断面図であり、本例の第1抗力付与機構40’を示した拡大断面図であるが、前記第1抗力付与機構40と同じ構成部分については、同じ符号を付している。
[Fourth Embodiment]
Next, a fourth embodiment of the present invention will be described. The fourth embodiment relates to a modification of the first drag application mechanism 40 and the second drag application mechanisms 60, 60 ′ according to the first and second embodiments. In addition, although the modified example corresponding to the said 1st resistance provision mechanism 40 is demonstrated as a representative here, the modification similarly comprised can also be employ | adopted about 2nd resistance provision mechanism 60, 60 '. FIG. 7 is an enlarged cross-sectional view showing a B ′ portion corresponding to the B portion in FIG. 1, and is an enlarged cross-sectional view showing a first drag applying mechanism 40 ′ of this example. The same components as those of the drag application mechanism 40 are denoted by the same reference numerals.
 同図7に示すように、前記第1抗力付与機構40’は、エンドカバー7に、前記歯車10の第2回転軸12の延出方向に順次形成された大径のシリンダ穴41’と、内径がシリンダ穴41’の内径よりも小径の止まり穴であるシリンダ穴43と、シリンダ穴41’に嵌挿される大径部46’、及びシリンダ穴43に嵌挿される小径部47’を有するピストン45’とを備え、シリンダ穴41’の内径は第2回転軸12の外径よりも小径となっている。 As shown in FIG. 7, the first drag application mechanism 40 ′ includes a large-diameter cylinder hole 41 ′ formed in the end cover 7 sequentially in the extending direction of the second rotation shaft 12 of the gear 10, A piston having a cylinder hole 43 that is a blind hole whose inner diameter is smaller than the inner diameter of the cylinder hole 41 ′, a large diameter portion 46 ′ that is inserted into the cylinder hole 41 ′, and a small diameter portion 47 ′ that is inserted into the cylinder hole 43. 45 ′, and the inner diameter of the cylinder hole 41 ′ is smaller than the outer diameter of the second rotating shaft 12.
 符号9は、カップ状をしたシール部材であり、そのカップ底面側がシリンダ穴41’の前側の開口部を封止するようにエンドカバー7に埋め込まれている。また、第2回転軸12の後端部は、シール部材9の穴部9bに嵌挿され、ピストン45’は、その大径部46’より前側に形成された、この大径部46’より小径の軸部46a’が、シール部材9の底部に形成された貫通穴9cに嵌挿された状態で、その前端の鍔部48’が、前記第2回転軸12の後端部に形成されたアリ溝13に係合している。尚、符号49’はドレイン穴である。 Reference numeral 9 denotes a cup-shaped seal member, which is embedded in the end cover 7 so that the cup bottom surface side seals the opening on the front side of the cylinder hole 41 '. Further, the rear end portion of the second rotary shaft 12 is fitted into the hole 9b of the seal member 9, and the piston 45 'is formed from the large diameter portion 46' formed in front of the large diameter portion 46 '. In a state where the small-diameter shaft portion 46 a ′ is fitted in a through hole 9 c formed in the bottom portion of the seal member 9, the front end flange portion 48 ′ is formed at the rear end portion of the second rotary shaft 12. The dovetail groove 13 is engaged. Reference numeral 49 'denotes a drain hole.
 シリンダ室42’は、第1抗力付与機構40と同様に、エンドカバー7に穿設された前記流路50及び本体3に穿設された前記流路51によって前記第1ポート3bに連通され、一方、シリンダ室44は、エンドカバー7に穿設された前記流路52及び本体3に穿設された前記流路53によって前記第2ポート3cに連通されている。 The cylinder chamber 42 ′ is communicated with the first port 3 b by the flow path 50 formed in the end cover 7 and the flow path 51 formed in the main body 3, similarly to the first drag application mechanism 40. On the other hand, the cylinder chamber 44 is communicated with the second port 3 c by the flow path 52 formed in the end cover 7 and the flow path 53 formed in the main body 3.
 そして、シリンダ室42’に高圧の作動油が供給されると、前記第1抗力付与機構40と同様に、ピストン45’の大径部46’の前端面に、この高圧の作動油が作用して、ピストン45’が後方向に付勢され、これに係合される第2回転軸12を介して、第1歯車10に後方向に向けた付勢力が作用する。一方、シリンダ室44に高圧の作動油が供給されると、ピストン45’の小径部47の後端面に、この高圧の作動油が作用して、ピストン45’が前方向に付勢され、これに係合される第2回転軸12を介して、第1歯車10に前方向に向けた付勢力が作用する。 When the high-pressure hydraulic oil is supplied to the cylinder chamber 42 ′, the high-pressure hydraulic oil acts on the front end surface of the large-diameter portion 46 ′ of the piston 45 ′ similarly to the first drag application mechanism 40. Thus, the piston 45 ′ is urged rearward, and the urging force directed rearward acts on the first gear 10 via the second rotating shaft 12 engaged therewith. On the other hand, when high-pressure hydraulic oil is supplied to the cylinder chamber 44, the high-pressure hydraulic oil acts on the rear end surface of the small diameter portion 47 of the piston 45 ', and the piston 45' is urged forward, A forward biasing force is applied to the first gear 10 via the second rotating shaft 12 engaged with the first gear 10.
 斯くして、詳しく説明するまでもなく、この第1抗力付与機構40’の構成によっても、前記第1抗力付与機構40における作用と同様にして、歯車10が矢示D方向及び矢示E方向のいずれの方向に回転したとしても、それぞれの場合に、歯車10に作用するスラスト力に抗する抗力を、当該歯車10に作用させることができる。 Thus, it is needless to explain in detail, and the configuration of the first drag application mechanism 40 ′ also causes the gear 10 to move in the direction indicated by the arrow D and the direction indicated by the arrow E in the same manner as in the first drag application mechanism 40. In any case, a drag force against the thrust force acting on the gear 10 can be applied to the gear 10 in any case.
[第5の実施形態]
 次に、本発明の第5の実施形態について説明する。図8は、本発明の第5の実施形態に係る油圧ポンプ示した平断面図である。
[Fifth Embodiment]
Next, a fifth embodiment of the present invention will be described. FIG. 8 is a plan sectional view showing a hydraulic pump according to a fifth embodiment of the present invention.
 図8に示すように油圧ポンプ1Bは、第1の実施形態に係る油圧ポンプ1の第1抗力付与機構40に代えて、これとは構成が異なる第1抗力付与機構80を設けるとともに、第2抗力付与機構60に代えて、これとは構成が異なる第2抗力付与機構90を設け、更に、シールプレート6及び8を省いたものであり、他の構成については、第1の実施形態に係る油圧ポンプ1と同様である。したがって、上記油圧ポンプ1と同様の構成については、同一の符号を付して、その詳しい説明を省略する。 As shown in FIG. 8, the hydraulic pump 1 </ b> B is provided with a first drag application mechanism 80 having a configuration different from the first drag application mechanism 40 of the hydraulic pump 1 according to the first embodiment, Instead of the drag imparting mechanism 60, a second drag imparting mechanism 90 having a different configuration is provided, and the seal plates 6 and 8 are omitted. The other configurations are related to the first embodiment. Similar to the hydraulic pump 1. Accordingly, the same components as those of the hydraulic pump 1 are denoted by the same reference numerals, and detailed description thereof is omitted.
 前記第1抗力付与機構80は、前記フロントカバー5の後端面に開口するように、前記貫通穴5aと同軸に設けた、この貫通穴5aよりも大径のシリンダ穴81と、前記歯車10の第1回転軸11に外嵌された大径部材83と、前記エンドカバー7に、前記歯車10の第2回転軸12の端面に対して対向するように形成されたシリンダ穴84と、このシリンダ穴84に嵌挿されたピストン85とを備える。 The first drag applying mechanism 80 is provided coaxially with the through hole 5a so as to open at the rear end surface of the front cover 5, and a cylinder hole 81 having a diameter larger than the through hole 5a, and the gear 10 A large-diameter member 83 fitted on the first rotating shaft 11, a cylinder hole 84 formed in the end cover 7 so as to face the end surface of the second rotating shaft 12 of the gear 10, and the cylinder And a piston 85 fitted in the hole 84.
 前記大径部材83は、前記第1回転軸11の外径よりも大径のリング形状を有し、その両端に設けられる止め輪83aによって、第1回転軸11の軸方向に沿った移動が規制されている。そして、この大径部材83は、前記シリンダ穴81に嵌挿され、当該シリンダ穴81の底面と大径部材83の前端面との間にシリンダ室82が形成される。また、前記シリンダ穴84の底面とピストン85の後端面との間にシリンダ室86が形成される。 The large-diameter member 83 has a ring shape having a larger diameter than the outer diameter of the first rotary shaft 11, and movement along the axial direction of the first rotary shaft 11 is performed by retaining rings 83 a provided at both ends thereof. It is regulated. The large-diameter member 83 is inserted into the cylinder hole 81, and a cylinder chamber 82 is formed between the bottom surface of the cylinder hole 81 and the front end surface of the large-diameter member 83. A cylinder chamber 86 is formed between the bottom surface of the cylinder hole 84 and the rear end surface of the piston 85.
 また、図示はしていないが、前記シリンダ室86が、エンドカバー7に穿設された流路及び本体3に穿設された流路によって第2ポート3cに連通されるとともに、前記シリンダ室82が、フロントカバー5に穿設された流路及び本体3に穿設された流路によって第1ポート3bに連通される。 Although not shown, the cylinder chamber 86 is communicated with the second port 3c through a flow path drilled in the end cover 7 and a flow path drilled in the main body 3, and the cylinder chamber 82. Is communicated with the first port 3b by a flow path drilled in the front cover 5 and a flow path drilled in the main body 3.
 前記第2抗力付与機構90は、フロントカバー5に、歯車15の第1回転軸16の端面に対して対向するように形成されたシリンダ穴91と、このシリンダ穴91に嵌挿されたピストン93と、エンドカバー7に、歯車15の第2回転軸17の端面に対して対向するように形成されたシリンダ穴94と、このシリンダ穴94に嵌挿されたピストン96とを備え、シリンダ穴91の底面とピストン93の前端面との間にシリンダ室92が形成されるとともに、シリンダ穴94の底面とピストン96の後端面との間にシリンダ室95が形成されている。 The second drag applying mechanism 90 includes a cylinder hole 91 formed in the front cover 5 so as to face the end surface of the first rotation shaft 16 of the gear 15, and a piston 93 fitted into the cylinder hole 91. And a cylinder hole 94 formed in the end cover 7 so as to face the end surface of the second rotary shaft 17 of the gear 15, and a piston 96 fitted into the cylinder hole 94. A cylinder chamber 92 is formed between the bottom surface of the piston 93 and the front end surface of the piston 93, and a cylinder chamber 95 is formed between the bottom surface of the cylinder hole 94 and the rear end surface of the piston 96.
 また、図示はしないが、受圧スラスト力Fpaと噛み合いスラスト力Fmaとの関係が、Fpa>Fmaである場合には、前記シリンダ室95が、エンドカバー7に穿設された流路及び本体3に穿設された流路によって第2ポート3cに連通されるとともに、前記シリンダ室92が、フロントカバー5に穿設された流路及び本体3に穿設された流路によって第1ポート3bに連通され、一方、Fpa<Fmaである場合には、前記シリンダ室92が、フロントカバー5に穿設された流路及び本体3に穿設された流路によって第2ポート3cに連通されるとともに、前記シリンダ室95が、エンドカバー7に穿設された流路及び本体3に穿設された流路によって第1ポート3bに連通される。 Although not shown, when the relationship between the pressure-receiving thrust force F pa and the meshing thrust force F ma is F pa > F ma , the cylinder chamber 95 is a flow path formed in the end cover 7. In addition, the cylinder chamber 92 communicates with the second port 3 c by a flow path drilled in the main body 3, and the cylinder chamber 92 is formed by the flow path drilled in the front cover 5 and the flow path drilled in the main body 3. In the case where F pa <F ma , the cylinder chamber 92 is connected to the port 3b by the flow path drilled in the front cover 5 and the flow path drilled in the main body 3. The cylinder chamber 95 is communicated with the first port 3 b through a flow path drilled in the end cover 7 and a flow path drilled in the main body 3.
 斯くして、この油圧ポンプ1Bによれば、受圧スラスト力Fpaと噛み合いスラスト力Fmaとの関係が、Fpa>Fmaである場合には、歯車10が矢示D方向に回転すると、歯車10及び歯車15には後方向に向けたスラスト力が生じるが、この場合、第1抗力付与機構80のシリンダ室86に第2ポート3cから高圧の作動油が供給されて、歯車10には、ピストン85による前方向に向けた抗力が作用し、また、第2抗力付与機構90のシリンダ室95に第2ポート3cから高圧の作動油が供給されて、歯車15には、ピストン96による前方向に向けた抗力が作用する。一方、歯車10が矢示E方向に回転する場合には、歯車10及び歯車15には前方向に向けたスラスト力が生じるが、この場合、第1抗力付与機構80のシリンダ室82に第1ポート3bから高圧の作動油が供給されて、歯車10には、大径部材83による後方向に向けた抗力が作用し、また、第2抗力付与機構90のシリンダ室92に第1ポート3bから高圧の作動油が供給されて、歯車15には、ピストン93による後方向に向けた抗力が作用する。 Thus, according to the hydraulic pump 1B, when the relationship between the pressure-receiving thrust force Fpa and the meshing thrust force Fma is Fpa > Fma , when the gear 10 rotates in the arrow D direction, In the gear 10 and the gear 15, a thrust force is generated in the rearward direction. In this case, high pressure hydraulic oil is supplied from the second port 3 c to the cylinder chamber 86 of the first drag application mechanism 80, and the gear 10 is supplied to the gear 10. Further, a forward drag force acting on the piston 85 acts, and high pressure hydraulic fluid is supplied from the second port 3c to the cylinder chamber 95 of the second drag applying mechanism 90, and the gear 15 is moved forward by the piston 96. Drag in the direction acts. On the other hand, when the gear 10 rotates in the direction indicated by the arrow E, a thrust force directed forward is generated in the gear 10 and the gear 15. In this case, the first force is applied to the cylinder chamber 82 of the first drag application mechanism 80. High pressure hydraulic oil is supplied from the port 3b, and a drag force acting in the backward direction by the large-diameter member 83 acts on the gear 10, and the cylinder port 92 of the second drag application mechanism 90 is applied to the cylinder chamber 92 from the first port 3b. High pressure hydraulic oil is supplied, and a drag force directed backward by the piston 93 acts on the gear 15.
 また、Fpa<Fmaである場合には、歯車10が矢示D方向に回転すると、歯車10には後方向に向けたスラスト力が生じ、歯車15には前方向に向けたスラスト力が生じるが、この場合、第1抗力付与機構80のシリンダ室86に第2ポート3cから高圧の作動油が供給されて、歯車10には、ピストン85による前方向に向けた抗力が作用し、また、第2抗力付与機構90のシリンダ室92に第2ポート3cから高圧の作動油が供給されて、歯車15には、ピストン93による後方向に向けた抗力が作用する。一方、歯車10が矢示E方向に回転する場合には、歯車10には前方向に向けたスラスト力が生じ、歯車15には後方向に向けたスラスト力が生じるが、この場合、第1抗力付与機構80のシリンダ室82に第1ポート3bから高圧の作動油が供給されて、歯車10には、大径部材83による後方向に向けた抗力が作用し、また、第2抗力付与機構90のシリンダ室95に第1ポート3bから高圧の作動油が供給されて、歯車15には、ピストン96による前方向に向けた抗力が作用する。 In the case of F pa <F ma , when the gear 10 rotates in the direction indicated by the arrow D, a thrust force directed backward is generated in the gear 10, and a thrust force directed forward is generated in the gear 15. In this case, high-pressure hydraulic fluid is supplied from the second port 3c to the cylinder chamber 86 of the first drag application mechanism 80, and a drag force directed forward by the piston 85 acts on the gear 10, and The high pressure hydraulic oil is supplied from the second port 3 c to the cylinder chamber 92 of the second drag application mechanism 90, and a drag force directed backward by the piston 93 acts on the gear 15. On the other hand, when the gear 10 rotates in the direction indicated by the arrow E, a thrust force directed in the forward direction is generated in the gear 10 and a thrust force directed in the rear direction is generated in the gear 15. High pressure hydraulic oil is supplied from the first port 3b to the cylinder chamber 82 of the drag applying mechanism 80, and a drag force acting in the rear direction by the large-diameter member 83 acts on the gear 10, and the second drag applying mechanism. High pressure hydraulic oil is supplied from the first port 3 b to the 90 cylinder chambers 95, and a drag force directed forward by the piston 96 acts on the gear 15.
 このように、この第5の実施形態に係る油圧ポンプ1Bにおいても、歯車10が矢示D方向及び矢示E方向のいずれの方向に回転したとしても、それぞれの場合に、歯車10に作用するスラスト力に抗する抗力を、第1抗力付与機構80によって当該歯車10に作用させることができるとともに、歯車15に作用するスラスト力に抗する抗力を、第2抗力付与機構90によって当該歯車15に作用させることができる。 Thus, even in the hydraulic pump 1B according to the fifth embodiment, even if the gear 10 rotates in any direction of the arrow D direction and the arrow E direction, it acts on the gear 10 in each case. A drag force against the thrust force can be applied to the gear 10 by the first drag application mechanism 80, and a drag force against the thrust force applied to the gear 15 is applied to the gear 15 by the second drag application mechanism 90. Can act.
[第6の実施形態]
 次に、本発明の第6の実施形態について説明する。図9は、本発明の第6の実施形態に係る油圧ポンプ示した平断面図である。図9に示すように、この例の油圧ポンプ1Cは、第5の実施形態に係る油圧ポンプ1Bの変形例に係るものである。したがって、上記油圧ポンプ1Bと同様の構成については、同一の符号を付して、その詳しい説明を省略する。
[Sixth Embodiment]
Next, a sixth embodiment of the present invention will be described. FIG. 9 is a plan sectional view showing a hydraulic pump according to a sixth embodiment of the present invention. As shown in FIG. 9, the hydraulic pump 1 </ b> C of this example relates to a modification of the hydraulic pump 1 </ b> B according to the fifth embodiment. Accordingly, the same components as those of the hydraulic pump 1B are denoted by the same reference numerals, and detailed description thereof is omitted.
 まず、本例の前記第1歯車10の第1回転軸11は、その延出方向に向けて順に大径部11a及び小径部11bを有する段付き状の軸形状を備える。そして、第1回転軸11の大径部11aが、前記フロントカバー5に形成されたシリンダ穴81’に嵌挿され、小径部11bが貫通穴5aに嵌挿されている。 First, the first rotating shaft 11 of the first gear 10 of the present example has a stepped shaft shape having a large diameter portion 11a and a small diameter portion 11b in order in the extending direction. The large-diameter portion 11a of the first rotating shaft 11 is inserted into a cylinder hole 81 'formed in the front cover 5, and the small-diameter portion 11b is inserted into the through hole 5a.
 また、前記シリンダ穴81’の底面と第1回転軸11の大径部11aの前端面との間にシリンダ室82’が形成され、このシリンダ室82’が、フロントカバー5に穿設された流路及び本体3に穿設された流路によって第1ポート3bに連通され、前記シリンダ室86が、エンドカバー7に穿設された流路及び本体3に穿設された流路によって第2ポート3cに連通されている。尚、符号80’は第1抗力付与機構を表している。 A cylinder chamber 82 ′ is formed between the bottom surface of the cylinder hole 81 ′ and the front end surface of the large diameter portion 11 a of the first rotating shaft 11, and the cylinder chamber 82 ′ is formed in the front cover 5. The cylinder chamber 86 communicates with the first port 3 b by a flow path and a flow path drilled in the main body 3, and the cylinder chamber 86 is secondly formed by the flow path drilled in the end cover 7 and the flow path drilled in the main body 3. It communicates with the port 3c. Reference numeral 80 'represents a first drag application mechanism.
 そして、シリンダ室82’に高圧の作動油が供給されると、この作動油が前記大径部11aの前端面に作用して、第1歯車10が後方向に向けて付勢され、シリンダ室86に高圧の作動油が供給されると、この作動油がピストン85の後端面に作用して、第1歯車10が前方向に向けて付勢される。 When high-pressure hydraulic oil is supplied to the cylinder chamber 82 ′, the hydraulic oil acts on the front end surface of the large-diameter portion 11a, and the first gear 10 is urged rearward, and the cylinder chamber When high-pressure hydraulic fluid is supplied to 86, this hydraulic fluid acts on the rear end surface of the piston 85, and the first gear 10 is urged forward.
 斯くして、詳しく説明するまでもなく、この油圧ポンプ1Cにおいても、歯車10が矢示D方向及び矢示E方向のいずれの方向に回転したとしても、それぞれの場合に、歯車10に作用するスラスト力に抗する抗力を、第1抗力付与機構80’によって当該歯車10に作用させることができるとともに、歯車15に作用するスラスト力に抗する抗力を、第2抗力付与機構90によって当該歯車15に作用させることができる。 Thus, it is needless to explain in detail. Also in this hydraulic pump 1C, even if the gear 10 rotates in either the arrow D direction or the arrow E direction, it acts on the gear 10 in each case. A drag force against the thrust force can be applied to the gear 10 by the first drag application mechanism 80 ′, and a drag force against the thrust force applied to the gear 15 can be applied to the gear 15 by the second drag application mechanism 90. Can act on.
[第7の実施形態]
 次に、本発明の第7の実施形態について説明する。図10は、本発明の第7の実施形態に係る油圧ポンプ示した平断面図である。図10に示すように、この例の油圧ポンプ1Dは、第5の実施形態に係る油圧ポンプ1Bの変形例に係るものである。したがって、上記油圧ポンプ1Bと同様の構成については、同一の符号を付して、その詳しい説明を省略する。
[Seventh Embodiment]
Next, a seventh embodiment of the present invention will be described. FIG. 10 is a plan sectional view showing a hydraulic pump according to a seventh embodiment of the present invention. As shown in FIG. 10, the hydraulic pump 1 </ b> D of this example relates to a modification of the hydraulic pump 1 </ b> B according to the fifth embodiment. Accordingly, the same components as those of the hydraulic pump 1B are denoted by the same reference numerals, and detailed description thereof is omitted.
 この油圧ポンプ1Dは、上述の油圧ポンプ1Bのシリンダ穴84、ピストン85、シリンダ室86及びこのシリンダ室86と第2ポート3cとを連通する流路に係る構成を省略する一方、シリンダ穴81の底面と大径部材83の前端面との間にシリンダ室82aを形成し、軸受20の前端面と大径部材83の後端面との間にシリンダ室82bを形成するとともに、シリンダ室82aを、フロントカバー5に穿設された流路及び本体3に穿設された流路によって第1ポート3bに連通させ、シリンダ室82bを、同じくフロントカバー5に穿設された流路及び本体3に穿設された流路によって第2ポート3cに連通させたものである。尚、符号80”は第1抗力付与機構を表している。 The hydraulic pump 1D omits the configuration related to the cylinder hole 84, the piston 85, the cylinder chamber 86, and the flow path connecting the cylinder chamber 86 and the second port 3c of the hydraulic pump 1B described above. A cylinder chamber 82a is formed between the bottom surface and the front end surface of the large-diameter member 83. A cylinder chamber 82b is formed between the front end surface of the bearing 20 and the rear end surface of the large-diameter member 83. The first port 3b is communicated with the flow path formed in the front cover 5 and the flow path formed in the main body 3, and the cylinder chamber 82b is formed in the flow path and the main body 3 similarly formed in the front cover 5. The second channel 3c communicates with the established flow path. Reference numeral 80 ″ denotes a first drag application mechanism.
 この油圧ポンプ1Dでは、シリンダ室82aに高圧の作動油が供給されると、この作動油が前記大径部83の前端面に作用して、第1歯車10が後方向に向けて付勢され、シリンダ室82bに高圧の作動油が供給されると、この作動油が大径部83の後端面に作用して、第1歯車10が前方向に向けて付勢される。 In the hydraulic pump 1D, when high-pressure hydraulic oil is supplied to the cylinder chamber 82a, the hydraulic oil acts on the front end surface of the large-diameter portion 83, and the first gear 10 is urged rearward. When high-pressure hydraulic oil is supplied to the cylinder chamber 82b, the hydraulic oil acts on the rear end surface of the large-diameter portion 83, and the first gear 10 is urged forward.
 斯くして、詳しく説明するまでもなく、この油圧ポンプ1Dにおいても、歯車10が矢示D方向及び矢示E方向のいずれの方向に回転したとしても、それぞれの場合に、歯車10に作用するスラスト力に抗する抗力を、第1抗力付与機構80”によって当該歯車10に作用させることができるとともに、歯車15に作用するスラスト力に抗する抗力を、第2抗力付与機構90によって当該歯車15に作用させることができる。 Thus, it is not necessary to describe in detail. Even in this hydraulic pump 1D, even if the gear 10 rotates in either the arrow D direction or the arrow E direction, it acts on the gear 10 in each case. A drag force resisting the thrust force can be applied to the gear 10 by the first drag applying mechanism 80 ″, and a drag force resisting the thrust force acting on the gear 15 can be applied to the gear 15 by the second drag applying mechanism 90. Can act on.
[第8の実施形態]
 次に、本発明の第8の実施形態について説明する。図11は、本発明の第8の実施形態に係る油圧ポンプ示した平断面図である。図11に示すように、この例の油圧ポンプ1Eは、第7の実施形態に係る油圧ポンプ1Dの変形例に係るものである。したがって、上記油圧ポンプ1Dと同様の構成については、同一の符号を付して、その詳しい説明を省略する。
[Eighth Embodiment]
Next, an eighth embodiment of the present invention will be described. FIG. 11 is a plan sectional view showing a hydraulic pump according to an eighth embodiment of the present invention. As shown in FIG. 11, the hydraulic pump 1 </ b> E of this example relates to a modification of the hydraulic pump 1 </ b> D according to the seventh embodiment. Accordingly, the same components as those of the hydraulic pump 1D are denoted by the same reference numerals, and detailed description thereof is omitted.
 この油圧ポンプ1Eは、上述の油圧ポンプ1Dの第1抗力付与機構80”に係る構成、即ち、シリンダ穴81、シリンダ室82a,82b、大径部材83及び止め輪83a、並びに、シリンダ室82aを第1ポート3bに連通させる流路、及びシリンダ室82bを第2ポート3cに連通させる流路を省略する一方、エンドカバー7側に第1抗力付与機構80Aを設けたものである。 The hydraulic pump 1E includes a configuration related to the first drag application mechanism 80 ″ of the hydraulic pump 1D, that is, a cylinder hole 81, cylinder chambers 82a and 82b, a large-diameter member 83 and a retaining ring 83a, and a cylinder chamber 82a. While omitting the flow path communicating with the first port 3b and the flow path communicating the cylinder chamber 82b with the second port 3c, a first drag application mechanism 80A is provided on the end cover 7 side.
 前記第1抗力付与機構80Aは、前記第1歯車10の第2回転軸12’の延出方向に沿って、前記エンドカバー7に順次形成されたシリンダ穴81’及び支持穴7aと、第2回転軸12’に外嵌されたリング状の大径部材83’とを備える。前記第2回転軸12’はシリンダ穴81’内に挿入され、その後端部が支持穴7a内に嵌挿されている。また、大径部材83’は、その両端に設けられる止め輪83a’によって、軸方向に沿った移動が規制された状態で、前記シリンダ穴81’内に嵌挿され、その前側にシリンダ室82a’が形成され、その後側にシリンダ室82b’が形成されている。また、シリンダ室82a’は、エンドカバー7に穿設された流路及び本体3に穿設された流路によって第1ポート3bに連通し、シリンダ室82b’は、同じく、エンドカバー7に穿設された流路及び本体3に穿設された流路によって第2ポート3cに連通している。 The first drag application mechanism 80A includes a cylinder hole 81 ′ and a support hole 7a that are sequentially formed in the end cover 7 along the extending direction of the second rotating shaft 12 ′ of the first gear 10. And a ring-shaped large-diameter member 83 ′ fitted on the rotary shaft 12 ′. The second rotating shaft 12 'is inserted into the cylinder hole 81', and its rear end is inserted into the support hole 7a. The large-diameter member 83 ′ is inserted into the cylinder hole 81 ′ in a state in which movement along the axial direction is restricted by retaining rings 83a ′ provided at both ends thereof, and a cylinder chamber 82a on the front side thereof. 'Is formed, and a cylinder chamber 82b' is formed on the rear side. The cylinder chamber 82 a ′ communicates with the first port 3 b through a flow path drilled in the end cover 7 and a flow path drilled in the main body 3, and the cylinder chamber 82 b ′ is similarly drilled in the end cover 7. The second port 3 c communicates with the provided channel and the channel formed in the main body 3.
 この油圧ポンプ1Eでは、シリンダ室82a’に高圧の作動油が供給されると、この作動油が前記大径部83の前端面に作用して、第1歯車10が後方向に向けて付勢され、シリンダ室82b’に高圧の作動油が供給されると、この作動油が大径部83の後端面に作用して、第1歯車10が前方向に向けて付勢される。 In the hydraulic pump 1E, when high-pressure hydraulic oil is supplied to the cylinder chamber 82a ′, the hydraulic oil acts on the front end surface of the large-diameter portion 83, and the first gear 10 is urged backward. Then, when high-pressure hydraulic oil is supplied to the cylinder chamber 82b ′, the hydraulic oil acts on the rear end surface of the large-diameter portion 83, and the first gear 10 is urged forward.
 斯くして、詳しく説明するまでもなく、この油圧ポンプ1Eにおいても、歯車10が矢示D方向及び矢示E方向のいずれの方向に回転したとしても、それぞれの場合に、歯車10に作用するスラスト力に抗する抗力を、第1抗力付与機構80Aによって当該歯車10に作用させることができるとともに、歯車15に作用するスラスト力に抗する抗力を、第2抗力付与機構90によって当該歯車15に作用させることができる。 Thus, it is needless to explain in detail. Even in this hydraulic pump 1E, even if the gear 10 rotates in either the arrow D direction or the arrow E direction, it acts on the gear 10 in each case. A drag force resisting the thrust force can be applied to the gear 10 by the first drag applying mechanism 80A, and a drag force resisting the thrust force acting on the gear 15 is applied to the gear 15 by the second drag applying mechanism 90. Can act.
 以上、本発明の具体的な実施形態について説明したが、本発明の採り得る態様は何らこれに限定されるものではない。 The specific embodiments of the present invention have been described above, but the aspects that the present invention can take are not limited to these.
 例えば、上例では、本発明にかかる液圧装置の一例として、油圧ポンプを例示したが、これに限られるものではなく、油圧モータなど、他の液圧装置であっても良い。 For example, in the above example, the hydraulic pump is illustrated as an example of the hydraulic device according to the present invention, but the hydraulic pump is not limited thereto, and other hydraulic devices such as a hydraulic motor may be used.
 また、上例では、第2歯車15に作用する受圧スラスト力Fpaと噛み合いスラスト力Fmaとの関係が、Fpa>Fma又はFpa<Fmaである場合について説明したが、第1歯車10及び第2歯車の歯形によっては、Fpa=Fmaとなる場合がある。この場合、上記第2抗力付与機構60,60’及び90は、これを設ける必要がない。 In the above example, the case where the relationship between the pressure-receiving thrust force F pa acting on the second gear 15 and the meshing thrust force F ma is F pa > F ma or F pa <F ma has been described. Depending on the tooth profile of the gear 10 and the second gear, F pa = F ma may be obtained. In this case, the second drag application mechanisms 60, 60 'and 90 do not need to be provided.
 1  油圧ポンプ(液圧装置)
 2  ハウジング
 3  本体
 3b 第1ポート
 3c 第2ポート
 4  液圧室
 5  フロントカバー
 7  エンドカバー
 10 はすば歯車(歯車、第1歯車)
 11 第1回転軸
 12 第2回転軸
 15 はすば歯車(歯車、第2歯車)
 16 第1回転軸
 17 第2回転軸
 20,25 軸受
 40 第1抗力付与機構
 41 シリンダ穴
 42 シリンダ室
 43 シリンダ穴
 44 シリンダ室
 45 ピストン
 46 大径部
 47 小径部
 60 第2抗力付与機構
 61 シリンダ穴
 62 シリンダ室
 63 シリンダ穴
 64 シリンダ室
 65 ピストン
 66 大径部
 67 小径部
1 Hydraulic pump (hydraulic device)
2 housing 3 body 3b first port 3c second port 4 hydraulic chamber 5 front cover 7 end cover 10 helical gear (gear, first gear)
11 First rotating shaft 12 Second rotating shaft 15 Helical gear (gear, second gear)
16 First Rotating Shaft 17 Second Rotating Shaft 20, 25 Bearing 40 First Drag Applying Mechanism 41 Cylinder Hole 42 Cylinder Chamber 43 Cylinder Hole 44 Cylinder Chamber 45 Piston 46 Large Diameter Portion 47 Small Diameter Portion 60 Second Drag Applying Mechanism 61 Cylinder Hole 62 Cylinder chamber 63 Cylinder hole 64 Cylinder chamber 65 Piston 66 Large diameter portion 67 Small diameter portion

Claims (13)

  1.  両端面からそれぞれ外方に延出するように設けられた第1及び第2回転軸をそれぞれ有し、且つ歯部が相互に噛み合う第1及び第2の一対のはすば歯車と、
     両端部が開口し、且つ内部に前記第1及び第2歯車が噛み合った状態で収納される液圧室を有し、該液圧室は円弧状の内周面を有する本体と、
     前記本体の液圧室内において、前記第1及び第2歯車の両側にそれぞれ配設され、前記第1及び第2歯車の各第1及び第2回転軸をそれぞれ回転自在に支持する軸受部材と、
     前記本体の両端面にそれぞれ液密状に固設されて前記液圧室を封止する、前側のフロントカバー及び後側のエンドカバーとを備え、
     前記液圧室は、前記第1及び第2歯車の噛み合い部を境に一方が低圧側に、他方が高圧側に設定され、
     前記第1歯車には、前記噛み合いによって受ける噛み合いスラスト力と、前記高圧側の作動液体によって受ける受圧スラスト力とが同じ方向に作用し、
     前記第1歯車の第1回転軸は、前記フロントカバーを貫通して外方に延出するように設けられ、更に、前記第2歯車の第1回転軸が前記フロントカバー側に設けられた液圧装置において、
     前記第1歯車の前記第1及び第2回転軸の少なくとも一方に対して、前記第1歯車が正回転方向に回転した際に該第1歯車に作用する、前記噛み合いスラスト力及び受圧スラスト力の合力に抗する抗力を作用させるとともに、該第1歯車が逆回転方向に回転した際に該第1歯車に作用する、前記噛み合いスラスト力及び受圧スラスト力の合力に抗する抗力を作用させる第1抗力付与機構を設けたことを特徴とする液圧装置。
    A first and a second pair of helical gears having first and second rotating shafts provided so as to extend outward from both end faces, respectively, and the tooth portions mesh with each other;
    A hydraulic chamber accommodated in a state where both end portions are open and the first and second gears are engaged with each other; the hydraulic chamber has a main body having an arcuate inner peripheral surface;
    A bearing member disposed on each side of the first and second gears in the hydraulic chamber of the main body and rotatably supporting the first and second rotating shafts of the first and second gears;
    A front-side front cover and a rear-side end cover, which are fixed in a liquid-tight manner on both end faces of the main body and seal the hydraulic chamber,
    The hydraulic chamber is set to one side on the low pressure side and the other side to the high pressure side with the meshing portion of the first and second gears as a boundary,
    A meshing thrust force received by the meshing and a pressure receiving thrust force received by the high-pressure side working fluid act in the same direction on the first gear,
    The first rotating shaft of the first gear is provided so as to extend outwardly through the front cover, and the first rotating shaft of the second gear is provided on the front cover side. Pressure device,
    The meshing thrust force and the pressure-receiving thrust force acting on the first gear when the first gear rotates in the forward rotation direction with respect to at least one of the first and second rotating shafts of the first gear. A first force that acts against the resultant force of the meshing thrust force and the pressure-receiving thrust force that acts on the first gear when the first gear rotates in the reverse rotation direction. A hydraulic device characterized by providing a drag application mechanism.
  2.  前記第1抗力付与機構は、
     前記エンドカバーに、前記第1歯車の第2回転軸の延出方向に形成された第1シリンダ穴と、
     前記第1シリンダ穴に嵌挿され、前端側が前記第1歯車の第2回転軸に係合された第1ピストンとを備え、
     前記第1ピストンは、その前側の部位に形成された、後方向に向けた圧力を受ける前部受圧面、及び後側の部位に形成された、前方向に向けた圧力を受ける後部受圧面を有し、
     前記第1シリンダ穴内には、前記第1ピストンが嵌挿された状態で、前記前部受圧面が位置する第1シリンダ室、及び前記後部受圧面が位置する第2シリンダ室が形成されてなり、
     更に、前記合力の作用する方向が前方向であるときに高圧となる液圧室と、前記第1シリンダ室とに連通し、前記第1ピストンの前記前部受圧面に高圧の作動液体を作用させる第1流路と、
     前記合力の作用する方向が後方向であるときに高圧となる液圧室と、前記第2シリンダ室とに連通し、前記第1ピストンの前記後部受圧面に高圧の作動液体を作用させる第2流路とを備えていることを特徴とする請求項1記載の液圧装置。
    The first drag application mechanism is:
    A first cylinder hole formed in the end cover in the extending direction of the second rotating shaft of the first gear;
    A first piston fitted into the first cylinder hole and having a front end engaged with a second rotating shaft of the first gear;
    The first piston has a front pressure-receiving surface that is formed in a front portion thereof and receives a pressure directed in the rear direction, and a rear pressure-receiving surface that is formed in a rear portion and receives a pressure directed in the front direction. Have
    A first cylinder chamber in which the front pressure receiving surface is located and a second cylinder chamber in which the rear pressure receiving surface is located are formed in the first cylinder hole in a state where the first piston is fitted. ,
    Further, a high-pressure working fluid is applied to the front pressure-receiving surface of the first piston so as to communicate with the hydraulic chamber and the first cylinder chamber, which become high when the resultant force acts in the forward direction. A first flow path to be
    A second hydraulic pressure chamber that communicates with the hydraulic chamber that is high when the resultant force acts in the rearward direction and the second cylinder chamber, and causes a high-pressure working fluid to act on the rear pressure-receiving surface of the first piston. The hydraulic apparatus according to claim 1, further comprising a flow path.
  3.  前記第1ピストンは、前記前部受圧面と後部受圧面との間で分離され、相互に当接、離反可能に構成されていることを特徴とする請求項2記載の液圧装置。 The hydraulic device according to claim 2, wherein the first piston is separated between the front pressure receiving surface and the rear pressure receiving surface, and is configured to be able to contact and separate from each other.
  4.  前記第1抗力付与機構は、
     前記第1歯車の第1回転軸が貫通する前記フロントカバーの貫通穴部に、該貫通穴より大径であり、且つ前記第1歯車側に開口するように形成された第2シリンダ穴と、
     前記エンドカバーに、前記第1歯車の第2回転軸の端面に対して対向するように形成された第3シリンダ穴と、
     前記第3シリンダ穴に嵌挿された第2ピストンと、
     前記第1歯車の第1回転軸の外径よりも大径のリング状を有し、前記第1回転軸に係合され、前記第2シリンダ穴に嵌挿された大径部材とを備え、
     前記第2シリンダ穴内には、前記大径部材の前側に、閉塞された空間である第3シリンダ室が形成されるとともに、前記第3シリンダ穴内には、前記第2ピストンの後側に、閉塞された空間である第4シリンダ室が形成されてなり、
     更に、前記合力の作用する方向が前方向であるときに高圧となる液圧室と、前記第3シリンダ室とに連通し、前記大径部材の前端面に高圧の作動液体を作用させる第3流路と、
     前記合力の作用する方向が後方向であるときに高圧となる液圧室と、前記第4シリンダ室とに連通し、前記第2ピストンの後端面に高圧の作動液体を作用させる第4流路とを備えていることを特徴とする請求項1記載の液圧装置。
    The first drag application mechanism is:
    A second cylinder hole formed in the through hole portion of the front cover through which the first rotation shaft of the first gear passes, and having a diameter larger than the through hole and opened to the first gear side;
    A third cylinder hole formed in the end cover so as to face the end surface of the second rotation shaft of the first gear;
    A second piston inserted into the third cylinder hole;
    A large-diameter member having a ring shape larger in diameter than the outer diameter of the first rotation shaft of the first gear, engaged with the first rotation shaft, and fitted into the second cylinder hole;
    A third cylinder chamber, which is a closed space, is formed on the front side of the large-diameter member in the second cylinder hole, and is closed on the rear side of the second piston in the third cylinder hole. A fourth cylinder chamber is formed,
    Further, a third hydraulic fluid chamber communicates with the hydraulic chamber which becomes high when the direction in which the resultant force acts is the forward direction, and the third cylinder chamber, and causes a high-pressure working liquid to act on the front end surface of the large-diameter member. A flow path;
    A fourth flow path that communicates with the hydraulic chamber that is high when the resultant force acts in the rearward direction and the fourth cylinder chamber, and causes the high-pressure working liquid to act on the rear end surface of the second piston. The hydraulic apparatus according to claim 1, comprising:
  5.  前記第1抗力付与機構は、
     前記第1歯車の第1回転軸が貫通する前記フロントカバーの貫通穴部に、該貫通穴より大径であり、且つ前記第1歯車側に開口するように形成された第4シリンダ穴と、
     前記第1歯車の第1回転軸の外径よりも大径のリング状を有し、前記第1回転軸に係合され、前記第4シリンダ穴に嵌挿された大径部材とを備え、
     前記第4シリンダ穴内には、前記大径部材の前側に、閉塞された空間である第5シリンダ室、及び前記大径部材の後側に、閉塞された空間である第6シリンダ室が形成されてなり、
     更に、前記合力の作用する方向が前方向であるときに高圧となる液圧室と、前記第5シリンダ室とに連通し、前記大径部材の前端面に高圧の作動液体を作用させる第5流路と、
     前記合力の作用する方向が後方向であるときに高圧となる液圧室と、前記第6シリンダ室とに連通し、前記大径部材の後端面に高圧の作動液体を作用させる第6流路とを備えていることを特徴とする請求項1記載の液圧装置。
    The first drag application mechanism is:
    A fourth cylinder hole formed in the through hole portion of the front cover through which the first rotation shaft of the first gear passes, and having a diameter larger than the through hole and opened to the first gear side;
    A large-diameter member having a ring shape larger than the outer diameter of the first rotating shaft of the first gear, engaged with the first rotating shaft, and fitted into the fourth cylinder hole;
    In the fourth cylinder hole, a fifth cylinder chamber, which is a closed space, is formed on the front side of the large diameter member, and a sixth cylinder chamber, which is a closed space, is formed on the rear side of the large diameter member. And
    Further, a fifth fluid pressure chamber communicates with the hydraulic chamber which becomes high when the direction in which the resultant force acts is the front direction, and the fifth cylinder chamber, and causes a high-pressure working fluid to act on the front end surface of the large-diameter member. A flow path;
    A sixth flow path that communicates with the hydraulic chamber that has a high pressure when the direction in which the resultant force acts is the backward direction and the sixth cylinder chamber, and causes the high-pressure working liquid to act on the rear end surface of the large-diameter member. The hydraulic apparatus according to claim 1, comprising:
  6.  前記第1抗力付与機構は、
     前記第1歯車の第2回転軸の延出方向に沿って、前記エンドカバーに形成され、前記第2回転軸が挿入される第5シリンダ穴と、
     前記第1歯車の第2回転軸の外径よりも大径のリング状を有し、前記第2回転軸に係合され、前記第5シリンダ穴に嵌挿された大径部材とを備え、
     前記第5シリンダ穴内には、前記大径部材の前側に、閉塞された空間である第7シリンダ室、及び前記大径部材の後側に、閉塞された空間である第8シリンダ室が形成されてなり、
     更に、前記合力の作用する方向が前方向であるときに高圧となる液圧室と、前記第7シリンダ室とに連通し、前記大径部材の前端面に高圧の作動液体を作用させる第7流路と、
     前記合力の作用する方向が後方向であるときに高圧となる液圧室と、前記第8シリンダ室とに連通し、前記大径部材の後端面に高圧の作動液体を作用させる第8流路とを備えていることを特徴とする請求項1記載の液圧装置。
    The first drag application mechanism is:
    A fifth cylinder hole formed in the end cover along the extending direction of the second rotating shaft of the first gear and into which the second rotating shaft is inserted;
    A large-diameter member having a ring shape larger than the outer diameter of the second rotating shaft of the first gear, engaged with the second rotating shaft, and fitted into the fifth cylinder hole;
    In the fifth cylinder hole, a seventh cylinder chamber that is a closed space is formed on the front side of the large-diameter member, and an eighth cylinder chamber that is a closed space is formed on the rear side of the large-diameter member. And
    Further, a seventh hydraulic fluid chamber communicates with the hydraulic chamber which becomes high when the direction in which the resultant force acts is the forward direction and the seventh cylinder chamber, and causes a high-pressure working liquid to act on the front end surface of the large-diameter member. A flow path;
    An eighth flow path that communicates with the hydraulic chamber that becomes high when the direction in which the resultant force acts is the backward direction and the eighth cylinder chamber, and that causes the high-pressure working liquid to act on the rear end surface of the large-diameter member. The hydraulic apparatus according to claim 1, comprising:
  7.  前記第1歯車の第1回転軸は、その延出方向に向けて順に大径部及び小径部を有する段付き状の軸形状を有し、
     前記第1抗力付与機構は、
     前記第1歯車の第1回転軸が貫通する前記フロントカバーの貫通部に、前記第1回転軸の小径部が貫通する貫通穴より大径であり、且つ前記第1歯車側に開口するように形成されるとともに、前記第1回転軸の大径部が嵌挿される第6シリンダ穴と、
     前記エンドカバーに、前記第1歯車の第2回転軸の端面に対して対向するように形成された第7シリンダ穴と、
     前記第7シリンダ穴に嵌挿された第3ピストンとを備え、
     前記第6シリンダ穴内には、前記第1回転軸の大径部の前側に、閉塞された空間である第9シリンダ室が形成されるとともに、前記第7シリンダ穴内には、前記第3ピストンの後側に、閉塞された空間である第10シリンダ室が形成されてなり、
     更に、前記合力の作用する方向が前方向であるときに高圧となる液圧室と、前記第9シリンダ室とに連通し、前記第1回転軸の大径部の前端面に高圧の作動液体を作用させる第9流路と、
     前記合力の作用する方向が後方向であるときに高圧となる液圧室と、前記第10シリンダ室とに連通し、前記第3ピストンの後端面に高圧の作動液体を作用させる第10流路とを備えていることを特徴とする請求項1記載の液圧装置。
    The first rotation shaft of the first gear has a stepped shaft shape having a large diameter portion and a small diameter portion in order toward the extending direction,
    The first drag application mechanism is:
    The through-hole portion of the front cover through which the first rotation shaft of the first gear penetrates is larger in diameter than the through-hole through which the small-diameter portion of the first rotation shaft passes, and opens to the first gear side. A sixth cylinder hole that is formed and into which the large-diameter portion of the first rotating shaft is inserted;
    A seventh cylinder hole formed in the end cover so as to face the end surface of the second rotation shaft of the first gear;
    A third piston fitted into the seventh cylinder hole,
    In the sixth cylinder hole, a ninth cylinder chamber, which is a closed space, is formed on the front side of the large-diameter portion of the first rotation shaft, and in the seventh cylinder hole, the third piston is provided. A tenth cylinder chamber, which is a closed space, is formed on the rear side,
    Further, a high-pressure working liquid is connected to the front end face of the large-diameter portion of the first rotating shaft, and communicates with the hydraulic chamber that becomes high when the resultant force acts in the forward direction and the ninth cylinder chamber. A ninth flow path for causing
    A tenth flow path that communicates with the hydraulic chamber that is high when the direction in which the resultant force acts is the backward direction and the tenth cylinder chamber, and causes the high pressure working liquid to act on the rear end surface of the third piston. The hydraulic apparatus according to claim 1, comprising:
  8.  前記第2歯車の第1及び第2回転軸の少なくとも一方に対して、該第1及び第2回転軸が、その軸中心に、前記正回転方向に回転した際に前記第2歯車に作用する、前記噛合スラスト力及び受圧スラスト力の合力に抗する抗力を作用させるとともに、該第1及び第2回転軸が、逆回転方向に回転した際に前記第2歯車に作用する、噛合スラスト力及び受圧スラスト力の合力に抗する抗力を作用させる第2抗力付与機構を設けたことを特徴とする請求項1乃至7記載のいずれかの液圧装置。 With respect to at least one of the first and second rotating shafts of the second gear, the first and second rotating shafts act on the second gear when rotated in the positive rotation direction about the axis. A meshing thrust force acting on the second gear when the first and second rotating shafts rotate in the reverse rotation direction, while acting against the resultant force of the meshing thrust force and the pressure-receiving thrust force. The hydraulic device according to any one of claims 1 to 7, further comprising a second drag application mechanism that applies a drag force against a resultant force of the pressure-receiving thrust force.
  9.  前記第2抗力付与機構は、
     前記フロントカバーに、前記第2歯車の第1回転軸の延出方向に形成された第8シリンダ穴と、
     前記第8シリンダ穴に嵌挿され、後端側が前記第2歯車の第1回転軸に係合された第4ピストンとを備え、
     前記第4ピストンは、その前側の部位に形成された、後方向に向けた圧力を受ける前部受圧面、及び後側の部位に形成された、前方向に向けた圧力を受ける後部受圧面を有し、
     前記第8シリンダ穴内には、前記第4ピストンが嵌挿された状態で、前記後部受圧面が位置する第11シリンダ室、及び前記前部受圧面が位置する第12シリンダ室が形成されてなり、
     更に、前記合力の作用する方向が後方向であるときに高圧となる液圧室と、前記第11シリンダ室とに連通し、前記第4ピストンの前記後部受圧面に高圧の作動液体を作用させる第11流路と、
     前記合力の作用する方向が前方向であるときに高圧となる液圧室と、前記第12シリンダ室とに連通し、前記第4ピストンの前記前部受圧面に高圧の作動液体を作用させる第12流路とを備えていることを特徴とする請求項8記載の液圧装置。
    The second drag application mechanism is:
    An eighth cylinder hole formed in the front cover in the extending direction of the first rotating shaft of the second gear;
    A fourth piston fitted into the eighth cylinder hole and having a rear end engaged with a first rotating shaft of the second gear;
    The fourth piston has a front pressure-receiving surface that is formed at a front portion thereof and receives a pressure directed in the rearward direction, and a rear pressure-receiving surface that is formed at a rear portion and receives a pressure directed toward the front. Have
    An eleventh cylinder chamber in which the rear pressure receiving surface is located and a twelfth cylinder chamber in which the front pressure receiving surface is located are formed in the eighth cylinder hole in a state where the fourth piston is inserted. ,
    Further, a high-pressure working fluid is applied to the rear pressure-receiving surface of the fourth piston so as to communicate with the hydraulic chamber which becomes high when the direction in which the resultant force acts is the backward direction and the eleventh cylinder chamber. An eleventh flow path;
    A fluid pressure chamber that is high when the direction in which the resultant force acts is a front direction and a fluid pressure chamber that communicates with the twelfth cylinder chamber and a high-pressure working fluid that acts on the front pressure-receiving surface of the fourth piston. The hydraulic apparatus according to claim 8, comprising 12 flow paths.
  10.  前記第4ピストンは、前記前部受圧面と後部受圧面との間で分離され、相互に当接、離反可能に構成されていることを特徴とする請求項9記載の液圧装置。 10. The hydraulic device according to claim 9, wherein the fourth piston is separated between the front pressure receiving surface and the rear pressure receiving surface and is configured to be able to contact and separate from each other.
  11.  前記第2抗力付与機構は、
     前記エンドカバーに、前記第2歯車の第2回転軸の延出方向に形成された第9シリンダ穴と、
     前記第9シリンダ穴に嵌挿され、前端側が前記第2歯車の第2回転軸に係合された第5ピストンとを備え、
     前記第5ピストンは、その前側の部位に形成された、後方向に向けた圧力を受ける前部受圧面、及び後側の部位に形成された、前方向に向けた圧力を受ける後部受圧面を有し、
     前記第9シリンダ穴内には、前記第5ピストンが嵌挿された状態で、前記前部受圧面が位置する第13シリンダ室、及び前記後部受圧面が位置する第14シリンダ室が形成されてなり、
     更に、前記合力の作用する方向が前方向であるときに高圧となる液圧室と、前記第13シリンダ室とに連通し、前記第5ピストンの前記前部受圧面に高圧の作動液体を作用させる第13流路と、
     前記合力の作用する方向が後方向であるときに高圧となる液圧室と、前記第14シリンダ室とに連通し、前記第5ピストンの前記後部受圧面に高圧の作動液体を作用させる第14流路とを備えていることを特徴とする請求項8記載の液圧装置。
    The second drag application mechanism is:
    A ninth cylinder hole formed in the end cover in the extending direction of the second rotating shaft of the second gear;
    A fifth piston fitted into the ninth cylinder hole and having a front end engaged with a second rotating shaft of the second gear;
    The fifth piston has a front pressure-receiving surface that is formed at a front portion thereof and receives a pressure directed in the rearward direction, and a rear pressure-receiving surface that is formed at a rear portion and receives a pressure directed toward the front. Have
    In the ninth cylinder hole, a thirteenth cylinder chamber in which the front pressure-receiving surface is located and a fourteenth cylinder chamber in which the rear pressure-receiving surface is located are formed in a state where the fifth piston is fitted. ,
    Further, a high-pressure working liquid is applied to the front pressure-receiving surface of the fifth piston so as to communicate with the hydraulic chamber that becomes high when the resultant force acts in the forward direction and the thirteenth cylinder chamber. A thirteenth flow path,
    A fourteenth fluid pressure chamber communicates with the fourteenth cylinder chamber, which is high when the direction in which the resultant force acts is the rearward direction, and the fourteenth cylinder chamber, and causes the high pressure working liquid to act on the rear pressure receiving surface of the fifth piston. The hydraulic apparatus according to claim 8, further comprising a flow path.
  12.  前記第5ピストンは、前記前部受圧面と後部受圧面との間で分離され、相互に当接、離反可能に構成されていることを特徴とする請求項11記載の液圧装置。 The hydraulic device according to claim 11, wherein the fifth piston is separated between the front pressure receiving surface and the rear pressure receiving surface, and is configured to be able to contact and separate from each other.
  13.  前記第2抗力付与機構は、
     前記フロントカバーに、前記第2歯車の第1回転軸の端面に対して対向するように形成された第10シリンダ穴と、
     前記第10シリンダ穴に嵌挿された第6ピストンと、
     前記エンドカバーに、前記第2歯車の第2回転軸の端面に対して対向するように形成された第11シリンダ穴と、
     前記第11シリンダ穴に嵌挿された第7ピストンとを備え、
     前記第10シリンダ穴内には、前記第6ピストンの前側に、閉塞された空間である第15シリンダ室が形成されるとともに、前記第11シリンダ穴内には、前記第7ピストンの後側に、閉塞された空間である第16シリンダ室が形成されてなり、
     更に、前記合力の作用する方向が前方向であるときに高圧となる液圧室と、前記第15シリンダ室とに連通し、前記第6ピストンの前端面に高圧の作動液体を作用させる第15流路と、
     前記合力の作用する方向が後方向であるときに高圧となる液圧室と、前記第16シリンダ室とに連通し、前記第7ピストンの後端面に高圧の作動液体を作用させる第16流路とを備えていることを特徴とする請求項8記載の液圧装置。
    The second drag application mechanism is:
    A tenth cylinder hole formed in the front cover so as to face the end surface of the first rotation shaft of the second gear;
    A sixth piston fitted into the tenth cylinder hole;
    An eleventh cylinder hole formed in the end cover so as to face the end surface of the second rotation shaft of the second gear;
    A seventh piston fitted into the eleventh cylinder hole,
    In the tenth cylinder hole, a fifteenth cylinder chamber, which is a closed space, is formed on the front side of the sixth piston, and in the eleventh cylinder hole, on the rear side of the seventh piston. A sixteenth cylinder chamber is formed,
    Further, a fifteenth fifteenth fluid is communicated with the hydraulic chamber which becomes high when the direction in which the resultant force acts is the front direction, and the fifteenth cylinder chamber, and a high-pressure working liquid acts on the front end surface of the sixth piston. A flow path;
    A sixteenth flow path that communicates with the hydraulic chamber that is high when the resultant force acts in the rearward direction and the sixteenth cylinder chamber, and causes the high pressure working liquid to act on the rear end surface of the seventh piston. The hydraulic apparatus according to claim 8, comprising:
PCT/JP2014/057756 2014-03-20 2014-03-20 Hydraulic device WO2015140986A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/057756 WO2015140986A1 (en) 2014-03-20 2014-03-20 Hydraulic device
JP2014543377A JP5654717B1 (en) 2014-03-20 2014-03-20 Hydraulic device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/057756 WO2015140986A1 (en) 2014-03-20 2014-03-20 Hydraulic device

Publications (1)

Publication Number Publication Date
WO2015140986A1 true WO2015140986A1 (en) 2015-09-24

Family

ID=52339909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/057756 WO2015140986A1 (en) 2014-03-20 2014-03-20 Hydraulic device

Country Status (2)

Country Link
JP (1) JP5654717B1 (en)
WO (1) WO2015140986A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021018937A1 (en) * 2019-07-31 2021-02-04 BigRep GmbH Positive displacement pump shaft bearing assembly

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851290A (en) * 1981-09-22 1983-03-25 Hitachi Ltd Thrust force balancing apparatus for screw compressor
JPS5874889A (en) * 1981-10-29 1983-05-06 Hitachi Ltd Screw compressor
JP2002168185A (en) * 2000-12-04 2002-06-14 Mayekawa Mfg Co Ltd High pressure screw compressor
US20040081570A1 (en) * 2002-10-25 2004-04-29 Morselli Mario Antonio Positive-displacement rotary pump
JP2008530436A (en) * 2005-02-22 2008-08-07 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ Improved water jet screw compressor element
JP2013241915A (en) * 2012-05-22 2013-12-05 Kobe Steel Ltd Screw compressor unit
WO2013186839A1 (en) * 2012-06-11 2013-12-19 株式会社 島津製作所 Gear pump or motor

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5851290A (en) * 1981-09-22 1983-03-25 Hitachi Ltd Thrust force balancing apparatus for screw compressor
JPS5874889A (en) * 1981-10-29 1983-05-06 Hitachi Ltd Screw compressor
JP2002168185A (en) * 2000-12-04 2002-06-14 Mayekawa Mfg Co Ltd High pressure screw compressor
US20040081570A1 (en) * 2002-10-25 2004-04-29 Morselli Mario Antonio Positive-displacement rotary pump
JP2008530436A (en) * 2005-02-22 2008-08-07 アトラス コプコ エアーパワー,ナームローゼ フェンノートシャップ Improved water jet screw compressor element
JP2013241915A (en) * 2012-05-22 2013-12-05 Kobe Steel Ltd Screw compressor unit
WO2013186839A1 (en) * 2012-06-11 2013-12-19 株式会社 島津製作所 Gear pump or motor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021018937A1 (en) * 2019-07-31 2021-02-04 BigRep GmbH Positive displacement pump shaft bearing assembly
LU101339B1 (en) * 2019-07-31 2021-02-04 BigRep GmbH Positive displacement pump shaft bearing assembly

Also Published As

Publication number Publication date
JP5654717B1 (en) 2015-01-14
JPWO2015140986A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
JP5465366B1 (en) Hydraulic device
JP5502909B2 (en) Hydraulic gear machine
US10267309B2 (en) Gear pump and gear motor
JP5654717B1 (en) Hydraulic device
JP3189138U (en) Hydraulic device
JP6119748B2 (en) Gear pump or motor
JP2015175254A (en) Geared pump or geared motor
JP6625867B2 (en) Hydraulic equipment
JPWO2014199489A1 (en) Gear pump or motor
WO2020183546A1 (en) Helical gear pump or motor
JP2008240621A (en) Gear pump running method and its device
TWI586892B (en) Gear pump or motor
RU162576U1 (en) GEAR PUMP
WO2014136186A1 (en) Gear pump or motor
RU162071U1 (en) GEAR PUMP
JP5885900B1 (en) Hydraulic device
JP5444643B2 (en) Rotating shaft coupling and electric power steering device
JP5761283B2 (en) Gear pump or gear motor
JPH09222157A (en) Differential limiting mechanism and power transmission device provided with differential limiting mechanism
JP2008095606A (en) Gear pump
WO2020165963A1 (en) Gear pump or motor
JPH11182402A (en) Liquid-operated motor with reduction gear
JPH05149236A (en) Oil hydraulic motor device
JP2504356Y2 (en) Radial piston pump
JP2005344538A (en) Gear pump

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014543377

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886204

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14886204

Country of ref document: EP

Kind code of ref document: A1