WO2015139340A1 - 一种主动式气浮支承装置 - Google Patents

一种主动式气浮支承装置 Download PDF

Info

Publication number
WO2015139340A1
WO2015139340A1 PCT/CN2014/074642 CN2014074642W WO2015139340A1 WO 2015139340 A1 WO2015139340 A1 WO 2015139340A1 CN 2014074642 W CN2014074642 W CN 2014074642W WO 2015139340 A1 WO2015139340 A1 WO 2015139340A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
support body
active
air flotation
floating
Prior art date
Application number
PCT/CN2014/074642
Other languages
English (en)
French (fr)
Inventor
姜伟
陈学东
罗欣
曾理湛
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Priority to DE112014006270.7T priority Critical patent/DE112014006270T5/de
Priority to US15/126,537 priority patent/US9920790B2/en
Publication of WO2015139340A1 publication Critical patent/WO2015139340A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0607Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being retained in a gap, e.g. squeeze film bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0603Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion
    • F16C32/0614Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings supported by a gas cushion, e.g. an air cushion the gas being supplied under pressure, e.g. aerostatic bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/02Sliding-contact bearings
    • F16C29/025Hydrostatic or aerostatic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C32/00Bearings not otherwise provided for
    • F16C32/06Bearings not otherwise provided for with moving member supported by a fluid cushion formed, at least to a large extent, otherwise than by movement of the shaft, e.g. hydrostatic air-cushion bearings
    • F16C32/0662Details of hydrostatic bearings independent of fluid supply or direction of load
    • F16C32/067Details of hydrostatic bearings independent of fluid supply or direction of load of bearings adjustable for aligning, positioning, wear or play
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2233/00Monitoring condition, e.g. temperature, load, vibration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2322/00Apparatus used in shaping articles
    • F16C2322/39General build up of machine tools, e.g. spindles, slides, actuators

Definitions

  • the invention belongs to the technical field of air bearing support devices, and more particularly to an active air bearing support device capable of improving bearing capacity and rigidity while achieving adjustment precision of micrometer or even submicron order.
  • the air bearing support device is mainly used in ultra-precision machining equipment to support the precision moving parts. Compared with the traditional mechanical contact rail support, there is no direct contact between the moving parts of the air bearing and the supporting member, which avoids contact friction during the movement, and the motion precision can be greatly improved, so in ultra-precision machining and electronic manufacturing. In the fields of precision measurement and zero-gravity simulation, air-floating support devices have been widely used.
  • the basic form of the air bearing support device is that compressed air flows through a small hole or slit throttling device and flows into the gap between the moving member and the supporting member to form a high pressure gas film, which provides a certain supporting force to the moving member.
  • the gap between the moving member and the supporting member i.e., the film thickness
  • the film pressure is increased
  • the bearing capacity of the air bearing is increased
  • the air bearing is provided with a certain rigidity. That is to say, the bearing capacity and stiffness of the air bearing support constitute one of the key factors for its performance in various applications.
  • the present invention provides an active air bearing support device in which the shape of the air film of the air bearing is directly changed by using an active adjusting device, and at the same time, adaptive to the pressure fluctuation of the air source is performed. Adjustment, testing shows that the dynamic stiffness characteristics of the air bearing can be significantly improved, and the purpose of stabilizing the air bearing is achieved; in addition, the active air bearing device according to the present invention has the characteristics of compact structure, convenient handling and high precision. It is especially suitable for applications such as ultra-precision machining or high-speed spindles that require high dynamic stiffness.
  • an active air bearing support device which comprises an air bearing support body, a gas film active adjusting unit, a supporting body detecting unit and a driving control unit. among them:
  • the air bearing support body is a bearing structure with a gas passage inside, and a throttle device is installed in an air outlet of the gas passage facing the air floating rail;
  • the active film adjusting unit is in the form of a piezoelectric actuator, which is fixedly mounted on the air outlet side of the air bearing support body, and is formed into a continuous flat surface with the side surface to jointly serve as a working surface of the air bearing support.
  • a piezoelectric actuator which is fixedly mounted on the air outlet side of the air bearing support body, and is formed into a continuous flat surface with the side surface to jointly serve as a working surface of the air bearing support.
  • the support body detecting unit includes a position sensor, and one of a speed sensor and an acceleration sensor, which are fixedly disposed on the air floating support body or the moving component for respectively detecting the air bearing support body with respect to the air film support in real time.
  • the driving control unit drives the gas film active adjusting unit connected thereto to generate deformation according to the value measured by the supporting body detecting unit; in this way, the overall shape of the air floating supporting working surface is also the air floating air film.
  • the shape changes, and at the same time, the pressure distribution of the air-floating gas film is changed, thereby realizing the active regulation process of the dynamic stiffness of the air bearing.
  • the position sensor is a laser displacement sensor or an eddy current sensor.
  • the measurement accuracy of the sensor is most preferably set to 0.2 micron or more, and the speed sensor or the acceleration sensor is a piezoelectric vibration speed sensor, a magnetoelectric vibration speed sensor or a piezoelectric vibration acceleration sensor, and the frequency measurement range is It is preferably 50 Hz or more.
  • the gas film active adjusting unit is preferably composed of a plurality of piezoelectric actuators and is designed as a coaxially distributed annular body;
  • the gas film active adjustment unit is also preferably composed of a plurality of piezoelectric actuators, and is designed as an array-arranged rectangular body.
  • the plurality of piezoelectric actuators accomplish a fixed bond between each other and the air bearing support body by the bonding material.
  • an active air bearing support apparatus comprising: an air floating support body, a gas film active adjustment unit, a support body detecting unit, and a drive control unit, wherein:
  • the air bearing support body is an integral I-shaped bearing structure, which is composed of two upper and lower disc-shaped structures and an intermediate portion coupled therebetween, and a gas passage is opened inside the gas passage, and the gas passage faces the gas
  • An air outlet of the floating rail is disposed on a lower surface of the bearing structure to thereby form a working surface of the air bearing, and a throttle is installed in the air outlet;
  • the active film adjusting unit is in the form of a piezoelectric actuator fixedly mounted between two layers of disc-shaped structures of the air bearing body; when compressed gas flows between the working surface and the air floating rail via the restrictor a gap, forming an air-floating gas film and suspending the air-floating support body and the moving component fixed thereto to the upper portion of the air-floating guide;
  • the support body detecting unit includes a position sensor, and one of a speed sensor and an acceleration sensor, which are fixedly disposed on the air floating support body or the moving component for respectively detecting the air bearing support body with respect to the air film support in real time.
  • the driving control unit drives the gas film active adjusting unit connected thereto to generate deformation according to the value measured by the supporting body detecting unit; in this way, the air floating supporting working surface
  • the overall shape that is, the shape of the air-floating gas film changes, and at the same time changes the pressure distribution of the air-floating gas film, thereby realizing the active regulation process of the dynamic stiffness of the air-floating bearing.
  • the thickness of the disk-like structure at the lower end of the air bearing support body is preferably set to 2 mm to 6 mm.
  • the piezoelectric actuator is designed as a ring structure and assembled in accordance with the intermediate portion of the bearing structure.
  • the above technical solution conceived by the present invention is compared with the prior art, because the active adjustment device is used to directly change the shape of the air film of the air bearing and the arrangement of the related components is designed, compared with the prior art.
  • the test shows that the amplitude of the dynamic stiffness and the frequency of the loan can be greatly improved; in addition, adaptive adjustment is performed for the pressure fluctuation of the gas source, and the test shows that the air-floating support can be significantly improved.
  • the dynamic stiffness characteristic achieves the purpose of stabilizing the air bearing support; in addition, the active air bearing support device according to the present invention can effectively suppress the micro-occupation of the air bearing, and has the characteristics of compact structure, convenient operation and high precision. Therefore, it is especially suitable for applications such as ultra-precision machining or high-speed spindles that require high dynamic stiffness.
  • FIG. 1 is a schematic view showing the main structure of an active air bearing support device constructed in accordance with a preferred embodiment of the present invention
  • FIG. 2 is a schematic view showing the main structure of an active air bearing support device constructed according to a preferred embodiment 2 of the present invention
  • FIG. 1 is a schematic view showing the main structure of an active air bearing device constructed in accordance with a preferred embodiment of the present invention.
  • the active air bearing support device mainly comprises an air floating support body 1, a gas film active adjusting unit 2, a supporting body detecting unit 3 and a driving control unit 4, wherein the gas is directly changed by using an active adjusting device.
  • the air bearing support body 1 is, for example, a bearing structure 11 having a gas passage therein, and a throttle 12 is installed in an air outlet of the gas passage facing the air floating rail 6;
  • the gas film active adjusting unit 2 preferably presents at least one a piezoelectric actuator in the form of a fixed mounting on the air outlet side of the air bearing support body 1 and formed into a continuous flat surface with the side surface as a working surface for the air bearing support;
  • the actuator is fixedly bonded to the air bearing support body 1 by the bonding material 22, and is precision processed together to form a continuous flat air floating working surface; when the compressed gas flows into the working surface and the air floating rail 6 via the throttle 12
  • an air-floating gas film is formed and the air-floating support body 1 and a moving member 5 fixed thereto, such as a sports table, are suspended in the upper portion of the air-floating guide 6.
  • the support body detecting unit 3 includes a position sensor, and one of a speed sensor and an acceleration sensor, which are fixedly disposed on the air floating support body 1 or the moving member for respectively detecting the air floating support body 1 with respect to the air film in real time.
  • the support direction is also the position change value in the Z-axis direction and the change value of the speed or the change value of the acceleration shown in the figure; or, in other words, the amount of change in the thickness of the gas-floating support film.
  • the above-mentioned sensor can be selected as a precision position sensor whose measurement accuracy can reach 0.2 micron or more, and a precision speed sensor or precision whose working specification is set to a frequency measurement range of 50 Hz or more. Acceleration Sensor.
  • the driving control unit 4 is respectively connected to the detecting device 3 and the gas film active adjusting unit 2, for example, by wires, filtering, amplifying and correspondingly processing the signals measured by the detecting device 3 to generate corresponding driving signals to drive the gas film connected thereto.
  • the active adjustment unit 2 is deformed, for example, for the piezoelectric actuator 21, that is, a control voltage signal is generated to perform the action of stretching or contracting; in this way, the overall shape of the air bearing support working surface is also the air floating gas
  • the shape of the membrane changes, and the pressure distribution of the air-floating membrane is changed at the same time, thereby realizing the active regulation process of the dynamic stiffness of the air-floating bearing.
  • the purpose of the active regulation based on the position loop is to increase the stiffness of the air bearing support direction, thereby improving the anti-disturbance capability of the air bearing support; the active regulation based on the speed loop is to increase the damping of the air bearing direction, thereby suppressing or rapidly attenuating the gas. Micro-vibration of the floating support.
  • the components in the active film adjusting device 2 are set to be more effective than a single group. .
  • the shape and number of specific component parts are related to the shape and size of the air bearing.
  • the gas film active adjusting unit is preferably composed of a plurality of piezoelectric actuators, and is designed as a coaxially distributed annular body;
  • the gas film active adjusting unit is also preferably composed of a plurality of piezoelectric actuators, and is designed as an array distributed rectangular body.
  • Fig. 2 is a schematic view showing the main structure of an active air bearing device constructed in accordance with a preferred embodiment 2 of the present invention. As shown in Fig. 2, the main difference between the active air bearing support device and Fig. 1 is that the specific structure and arrangement of the air bearing support body 1 and the air film active adjusting unit 2 are different.
  • the air bearing support body 1 is an integrally I-shaped bearing structure 13 which is composed of two upper and lower disc-shaped structures and an intermediate portion coupled therebetween, and A gas passage is formed inside, and the gas passage facing the air outlet of the air floating rail is disposed on the lower surface of the bearing structure to thereby form a working surface of the air bearing, and a throttle is installed in the air outlet.
  • the gas film active adjustment unit 2 takes the form of a piezoelectric actuator 23 that is fixedly mounted above Between the two layers of the disc-shaped structure of the air bearing support body; when the compressed gas flows into the gap between the working surface and the air floating rail via the restrictor, the air floating air film is formed and the air floating supporting body is fixed and fixed thereto The moving parts are suspended in the upper part of the air floating rail.
  • the piezoelectric actuator 23 of the active diaphragm adjusting unit 2 actively deforms and compresses the bearing structure to deform, thereby dynamically adjusting the air bearing shape of the air bearing to achieve the active regulation of the air bearing support stiffness.
  • the piezoelectric actuator 23 in the active diaphragm adjusting device 2 and the structural shape of the bearing structure 13 in the air bearing support body 1 need to be reasonably matched.
  • the thickness of the lower end disc-shaped structure of the bearing structure 13 should not be too large or too small, and if the thickness is too large, the piezoelectric actuator 23 is required to provide a large force to effectively regulate the shape of the gas film, and the thickness of the bearing structure is inherently small.
  • the vibration frequency is low and the air bearing stability is limited. Therefore, in the present invention, it is preferable to set the thickness of the lower end disc-shaped structure to 2 mm to 6 mm, and the test shows that a better control effect can be obtained.
  • the piezoelectric actuator can be designed as an annular structure and assembled in accordance with the intermediate structure of the bearing structure 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Vibration Prevention Devices (AREA)

Abstract

一种主动式气浮支承装置,包括气浮支承本体(1)、气膜主动调节单元(2)、支承本体检测单元(3)和驱动控制单元(4),其中支承本体检测单元(3)测量气浮支承的状态,驱动控制单元(4)根据检测信号生成控制信号,驱动控制气膜主动调节单元(2)产生主动作用,动态调节气浮支承表面的气膜形态,由此动态调整气浮支承装置的气膜间隙压强分布,从而提高气浮支承的动刚度特性,并达到稳定气浮支承的目的;还具备结构紧凑、便于操控和高精度的特点。

Description

一种主动式气浮支承装置
【技术领域】
本发明属于气浮支承装置技术领域, 更具体地, 涉及一种主动式气浮 支承装置, 其能够提高承载力和刚度, 同时实现微米甚至亚微米级的调节 精度。
【背景技术】
气浮支承装置主要应用于超精密加工装备当中, 起到支撑精密运动部 件的作用。 相对于传统的机械接触式导轨支承而言, 气浮支承的运动部件 与支承件之间无直接接触, 避免了运动过程中的接触摩擦, 运动精度可以 大大提高, 因此在超精密加工、 电子制造、 精密测量、 零重力模拟等领域, 气浮支撑装置均获得了广泛的应用。
气浮支承装置的基本形式是压缩空气经过一小孔或狭缝节流装置后流 入运动部件与支承部件之间的缝隙, 形成高压气膜, 对运动部件提供一定 的支承力。 当运动部件与支承部件之间的缝隙 (即气膜厚度) 减小时, 气 膜压力增大, 气浮支承的承载力增大, 并使得气浮支承具有一定的刚度。 也就是说, 气浮支承装置的承载力和刚度构成了其在各类应用中发挥性能 的关键因素之一。
现有技术中已经提出了各种提高气浮支承的承载力和刚度的方法, 例 如对气浮支承的节流孔和压力腔的结构形状、 尺寸等方面进行改进, 但这 类被动式气浮支承装置在单位面积内的承载力和刚度提高有限, 因此制约 了其相对重负载在精密加工或高速主轴中的应用; 此外, 现有技术中也出 了采用执行元件来调整节流孔的开口截面积或节流孔长度的主动式气浮支 承, 但此类方案仅对气浮支承的阻尼特性调节效果较好, 对支撑力和刚度 的调节作用仍然有限。 【发明内容】
针对现有技术的以上缺陷或改进需求, 本发明提供了一种主动式气浮 支承装置, 其中通过采用主动调节装置来直接改变气浮支承的气膜形状, 同时针对气源压强波动执行自适应调节, 测试表明能够显著提高气浮支承 的动刚度特性, 并达到稳定气浮支承的目的; 此外, 按照本发明的主动式 气浮支承装置还具备结构紧凑、 便于操控和高精度的特点, 因而尤其适用 于对支承动刚度要求高的超精密加工或高速主轴等场合。
为实现上述目的, 按照本发明的一个方面, 提供了一种主动式气浮支 承装置, 其特征在于, 该装置包括气浮支承本体、 气膜主动调节单元、 支 承本体检测单元和驱动控制单元, 其中:
所述气浮支承本体为内部开设有气体通道的轴承结构, 并在气体通道 面向气浮导轨的出气口中安装有节流器;
所述气膜主动调节单元呈现压电执行器的形式, 其固定安装在气浮支 承本体的出气口一侧, 并与该侧面加工形成为连续平整的表面以其共同作 为气浮支承的工作面; 当压缩气体经由节流器流入该工作面与气浮导轨之 间的间隙时, 形成气浮气膜并使得气浮支承本体及与之固定的运动部件悬 浮于气浮导轨上部;
所述支承本体检测单元包括位置传感器、 以及速度传感器和加速度传 感器中的一种, 它们固定设置在气浮支承本体或者所述运动部件上, 分别 用于实时检测气浮支承本体相对于气膜支承方向的位置变化值以及速度变 化值或加速度变化值;
所述驱动控制单元则根据支承本体检测单元所测得的数值, 相应驱动 与之相连的气膜主动调节单元产生变形; 以此方式, 使得气浮支承工作面 的整体形状也即气浮气膜形状发生变化, 同时改变气浮气膜的压强分布, 从而实现对气浮支承动刚度的主动调控过程。
作为进一歩优选地, 所述位置传感器为激光位移传感器或电涡流传感 器, 且传感器的测量精度最优选设定为 0. 2 微米以上, 所述速度传感器或 加速度传感器为压电式振动速度传感器、 磁电式振动速度传感器或者压电 式振动加速度传感器, 频率测量范围优选为 50Hz以上。
作为进一歩优选地, 当气浮支承本体为圆柱形轴承结构时, 所述气膜 主动调节单元优选由多个压电执行器共同组成, 并设计为同轴分布的环状 体; 而当气浮支承本体为矩形轴承结构时, 所述气膜主动调节单元同样优 选由多个压电执行器共同组成, 并设计为阵列分布的矩形体。
作为进一歩优选地, 所述多个压电执行器通过粘结材料完成彼此之间 以及与气浮支承本体之间的固定粘结。
按照本发明的另一方面, 提供了一种主动式气浮支承装置, 其特征在 于, 该装置包括气浮支承本体、 气膜主动调节单元、 支承本体检测单元和 驱动控制单元, 其中:
所述气浮支承本体为整体呈工字型的轴承结构, 其由上下两层盘状结 构和联接于两者之间的中间部分共同组成, 它的内部开设有气体通道, 该 气体通道面向气浮导轨的出气口设置在轴承结构的下表面由此形成气浮支 承的工作面, 并在该出气口中安装有节流器;
所述气膜主动调节单元呈现压电执行器的形式, 其固定安装在气浮支 承本体的两层盘状结构之间; 当压缩气体经由节流器流入所述工作面与气 浮导轨之间的间隙时, 形成气浮气膜并使得气浮支承本体及与之固定的运 动部件悬浮于气浮导轨上部;
所述支承本体检测单元包括位置传感器、 以及速度传感器和加速度传 感器中的一种, 它们固定设置在气浮支承本体或者所述运动部件上, 分别 用于实时检测气浮支承本体相对于气膜支承方向的位置变化值以及速度变 化值或加速度变化值;
所述驱动控制单元则根据支承本体检测单元所测得的数值, 相应驱动 与之相连的气膜主动调节单元产生变形; 以此方式, 使得气浮支承工作面 的整体形状也即气浮气膜形状发生变化, 同时改变气浮气膜的压强分布, 从而实现对气浮支承动刚度的主动调控过程。
作为进一歩优选地, 所述气浮支承本体处于下端的盘状结构的厚度优 选设定为 2mm〜6mm。
作为进一歩优选地, 对于整体呈工字型的轴承结构而言, 所述压电执 行器设计为环状结构, 并与轴承结构的中间部分相匹配地进行组装。
总体而言, 通过本发明所构思的以上技术方案与现有技术相比, 由于 采用主动调节装置来直接改变气浮支承的气膜形状并对相关部件的设置方 式进行设计, 与现有技术相比可以更显著地提高气浮支撑的动刚度, 测试 表明, 动刚度的幅度和频率贷款均能获得大幅提高; 此外, 同时针对气源 压强波动执行自适应调节, 测试表明能够显著提高气浮支承的动刚度特性, 并达到稳定气浮支承的目的; 此外, 按照本发明的主动式气浮支承装置还 可以有效抑制气浮支承的微占东, 同时具备结构紧凑、 便于操控和高精度 的特点, 因而尤其适用于对支承动刚度要求高的超精密加工或高速主轴等 场合。
【附图说明】
图 1 是按照本发明优选实施方式一所构建的主动式气浮支承装置的主 体结构示意图;
图 2 是按照本发明优选实施方式二所构建的主动式气浮支承装置的主 体结构示意图;
在所有附图中, 相同的附图标记用来表示相同的元件或结构, 其中: 1-气浮支承本体 2-气膜主动调节单元 3-支承本体检测单元 4-驱 动控制单元 5-运动部件 6-气浮导轨 11-轴承结构 12-节流器 21- 压电执行器 22-粘结材料 13-轴承结构 23-压电执行器
【具体实施方式】
为了使本发明的目的、 技术方案及优点更加清楚明白, 以下结合附图 及实施例, 对本发明进行进一歩详细说明。 应当理解, 此处所描述的具体 实施例仅仅用以解释本发明, 并不用于限定本发明。 此外, 下面所描述的 本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可 以相互组合。
图 1 是按照本发明优选实施方式一所构建的主动式气浮支承装置的主 体结构示意图。 如图 1 中所示, 该主动式气浮支承装置主要包括气浮支承 本体 1、 气膜主动调节单元 2、 支承本体检测单元 3和驱动控制单元 4, 其 中通过采用主动调节装置来直接改变气浮支承的气膜形状, 同时针对气源 压强波动执行自适应调节, 从而使得显著提高气浮支承的动刚度特性, 并 达到稳定气浮支承的目的。
具体而言,气浮支承本体 1譬如为内部开设有气体通道的轴承结构 11, 并在气体通道面向气浮导轨 6的出气口中安装有节流器 12; 气膜主动调节 单元 2优选呈现至少一个压电执行器的形式,其固定安装在气浮支承本体 1 的出气口一侧, 并与该侧面加工形成为连续平整的表面以其共同作为气浮 支承的工作面; 其中优选可将压电执行器通过粘结材料 22固定粘结到气浮 支承本体 1 上, 并一起经过精密加工后形成连续平整的气浮工作表面; 当 压缩气体经由节流器 12流入该工作面与气浮导轨 6之间的间隙时, 则会形 成气浮气膜并使得气浮支承本体 1及与之固定的运动部件 5譬如运动台悬 浮于气浮导轨 6上部。
支承本体检测单元 3包括位置传感器、 以及速度传感器和加速度传感 器中的一种, 它们固定设置在气浮支承本体 1 或者所述运动部件上, 分别 用于实时检测气浮支承本体 1相对于气膜支承方向也即图中所示 Z轴方向 的位置变化值以及速度变化值或加速度变化值; 或而言之, 用于检测气浮 支承气膜厚度的变化量。 按照本发明的优选实施例, 上述传感器可以选用 工作规格设定为测量精度能达到 0. 2微米以上的精密位置传感器, 以及工 作规格设定为频率测量范围在 50赫兹以上的精密速度传感器或精密加速度 传感器。
驱动控制单元 4分别与检测装置 3和气膜主动调节单元 2譬如用导线 相连, 将检测装置 3所测得的信号进行滤波、 放大及相应处理, 生成相应 的驱动信号来驱动与之相连的气膜主动调节单元 2产生变形, 例如, 对压 电执行器 21而言,即产生控制电压信号使其执行伸或缩的动作; 以此方式, 使得气浮支承工作面的整体形状也即气浮气膜形状发生变化, 同时改变气 浮气膜的压强分布, 从而实现对气浮支承动刚度的主动调控过程。 其中, 基于位置环的主动调控目的是增加气浮支承方向的刚度, 从而提高气浮支 承的抗扰动能力; 基于速度环的主动调控目的是增加气浮支承方向的阻尼, 从而抑制或快速衰减气浮支承的微振动。
对于图 1 中所示的主动式气浮支承装置, 由于下表面即为气浮支承气 膜的工作面, 故气膜主动调节装置 2 中的组成部件设置为多组比单个的情 形效果更好。 具体组成部件的形状和数量与气浮支承的形状和尺寸有关。 按照本发明的优选实施例, 当气浮支承本体 1 为圆柱形轴承结构时, 所述 气膜主动调节单元优选由多个压电执行器共同组成, 并设计为同轴分布的 环状体; 而当气浮支承本体 1 为矩形轴承结构时, 所述气膜主动调节单元 同样优选由多个压电执行器共同组成, 并设计为阵列分布的矩形体。
图 2 是按照本发明优选实施方式二所构建的主动式气浮支承装置的主 体结构示意图。 如图 2中所示, 该主动式气浮支承装置与图 1中相比, 其 主要区别在于气浮支承本体 1和气膜主动调节单元 2的具体结构和设置方 式有所区别。
具体而言, 在实施方式二中, 气浮支承本体 1 为整体大致呈工字型的 轴承结构 13, 其由上下两层盘状结构和联接于两者之间的中间部分共同组 成, 它的内部开设有气体通道, 该气体通道面向气浮导轨的出气口设置在 轴承结构的下表面由此形成气浮支承的工作面, 并在该出气口中安装有节 流器。 气膜主动调节单元 2呈现压电执行器 23的形式, 其固定安装在上述 气浮支承本体的两层盘状结构之间; 当压缩气体经由节流器流入所述工作 面与气浮导轨之间的间隙时, 形成气浮气膜并使得气浮支承本体及与之固 定的运动部件悬浮于气浮导轨上部。
当工作时, 气膜主动调节单元 2的压电执行器 23主动伸缩运动挤压轴 承结构产生变形, 从而动态调节气浮支承气膜形态, 达到主动调控气浮支 承动刚度的作用。 为了达到较好的主动调控作用, 气膜主动调节装置 2 中 的压电执行器 23和气浮支承本体 1中轴承结构 13的结构形状需要做合理 地匹配设计。 轴承结构 13的下端盘状结构的厚度不宜过大或过小, 厚度过 大, 则需要压电执行器 23能够提供很大的作用力方可有效调控气膜形态, 厚度过小则轴承结构固有振动频率偏低、 气浮支承动刚度受限。 因此, 本 发明中优选将下端盘状结构的厚度设定为 2mm〜6mm, 测试表明可以取得 更佳的调控效果。
此外, 按照本发明的一个优选实施例, 可以将所述压电执行器设计为 环状结构, 并与所述轴承结构 13的中间结构相匹配地进行组装。
本领域的技术人员容易理解, 以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发明的精神和原则之内所作的任何修改、 等 同替换和改进等, 均应包含在本发明的保护范围之内。

Claims

利 要 求
1、 一种主动式气浮支承装置, 其特征在于, 该装置包括气浮支承本体 (1) 、 气膜主动调节单元 (2) 、 支承本体检测单元 (3) 和驱动控制单元 (4) , 其中:
所述气浮支承本体 (1) 为内部开设有气体通道的轴承结构 (11) , 并 在气体通道面向气浮导轨 (6) 的出气口中安装有节流器 (12) ;
所述气膜主动调节单元 (2) 呈现压电执行器的形式, 其固定安装在气 浮支承本体(1) 的出气口一侧, 并与该侧面加工形成为连续平整的表面以 其共同作为气浮支承的工作面; 当压缩气体经由节流器 (12) 流入该工作 面与气浮导轨 (6) 之间的间隙时, 形成气浮气膜并使得气浮支承本体 (1) 及与之固定的运动部件悬浮于气浮导轨 (6) 上部;
所述支承本体检测单元 (3)包括位置传感器、 以及速度传感器和加速 度传感器中的一种, 它们固定设置在气浮支承本体(1) 或者所述运动部件 上, 分别用于实时检测气浮支承本体(1) 相对于气膜支承方向的位置变化 值以及速度变化值或加速度变化值;
所述驱动控制单元 (4) 则根据支承本体检测单元 (3) 所测得的数值, 相应驱动与之相连的气膜主动调节单元 (2) 产生变形; 以此方式, 使得气 浮支承工作面的整体形状也即气浮气膜形状发生变化, 同时改变气浮气膜 的压强分布, 从而实现对气浮支承动刚度的主动调控过程。
2、 如权利要求 1所述的主动式气浮支承装置, 其特征在于, 所述位置 传感器为激光位移传感器或电涡流传感器, 且传感器的测量精度优选设定 为 0.2 微米以上; 所述速度传感器或加速度传感器为压电式振动速度传感 器、 磁电式振动速度传感器或者压电式振动加速度传感器, 频率测量范围 优选为 50Hz以上。
3、 如权利要求 1或 2所述的主动式气浮支承装置, 其特征在于, 当气 浮支承本体 (1 ) 为圆柱形轴承结构时, 所述气膜主动调节单元 (2 ) 优选 由多个压电执行器共同组成, 并设计为同轴分布的环状体; 而当气浮支承 本体 (1 ) 为矩形轴承结构时, 所述气膜主动调节单元 (2 ) 同样优选由多 个压电执行器共同组成, 并设计为阵列分布的矩形体。
4、如权利要求 1-3任意一项所述的主动式气浮支承装置,其特征在于, 所述多个压电执行器通过粘结材料 (22 ) 完成彼此之间以及与气浮支承本 体 (1 ) 之间的固定粘结。
5、一种主动式气浮支承装置, 其特征在于, 该装置包括气浮支承本体、 气膜主动调节单元、 支承本体检测单元和驱动控制单元, 其中:
所述气浮支承本体为整体呈工字型的轴承结构, 其由上下两层盘状结 构和联接于两者之间的中间部分共同组成, 它的内部开设有气体通道, 该 气体通道面向气浮导轨的出气口设置在轴承结构的下表面由此形成气浮支 承的工作面, 并在该出气口中安装有节流器;
所述气膜主动调节单元呈现压电执行器的形式, 其固定安装在气浮支 承本体的两层盘状结构之间; 当压缩气体经由节流器流入所述工作面与气 浮导轨之间的间隙时, 形成气浮气膜并使得气浮支承本体及与之固定的运 动部件悬浮于气浮导轨上部;
所述支承本体检测单元包括位置传感器、 以及速度传感器和加速度传 感器中的一种, 它们固定设置在气浮支承本体或者所述运动部件上, 分别 用于实时检测气浮支承本体相对于气膜支承方向的位置变化值以及速度变 化值或加速度变化值;
所述驱动控制单元则根据支承本体检测单元所测得的数值, 相应驱动 与之相连的气膜主动调节单元产生变形; 以此方式, 使得气浮支承工作面 的整体形状也即气浮气膜形状发生变化, 同时改变气浮气膜的压强分布, 从而实现对气浮支承动刚度的主动调控过程。
6、 如权利要求 5所述的主动式气浮支承装置, 其特征在于, 所述气浮 支承本体处于下端的盘状结构的厚度优选设定为 2mm〜6mm。
7、 如权利要求 5或 6所述的主动式气浮支承装置, 其特征在于, 对于 整体呈工字型的轴承结构而言, 所述压电执行器设计为环状结构, 并与轴 承结构的中间部分相匹配地进行组装。
PCT/CN2014/074642 2014-03-18 2014-04-02 一种主动式气浮支承装置 WO2015139340A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
DE112014006270.7T DE112014006270T5 (de) 2014-03-18 2014-04-02 Aktive Luftlagereinrichtung
US15/126,537 US9920790B2 (en) 2014-03-18 2014-04-02 Active airbearing device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410100961.X 2014-03-18
CN201410100961.XA CN103836070B (zh) 2014-03-18 2014-03-18 一种主动式气浮支承装置

Publications (1)

Publication Number Publication Date
WO2015139340A1 true WO2015139340A1 (zh) 2015-09-24

Family

ID=50799877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/074642 WO2015139340A1 (zh) 2014-03-18 2014-04-02 一种主动式气浮支承装置

Country Status (4)

Country Link
US (1) US9920790B2 (zh)
CN (1) CN103836070B (zh)
DE (1) DE112014006270T5 (zh)
WO (1) WO2015139340A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108223581A (zh) * 2018-03-12 2018-06-29 浙江工业大学 气体静压主轴节流孔孔径调节装置
CN108302120A (zh) * 2018-03-12 2018-07-20 浙江工业大学 气体静压主轴节流孔通气分布状态控制装置
CN109488689A (zh) * 2018-11-26 2019-03-19 杭州电子科技大学 气浮主轴承载补偿装置及方法
CN112556964A (zh) * 2020-10-22 2021-03-26 浙江工业大学 一种气体静压轴承气膜流场观测装置
CN115962938A (zh) * 2023-01-05 2023-04-14 西安航天精密机电研究所 陀螺仪的h型动压轴承陀螺电机气膜刚度非接触测试方法
CN117232412A (zh) * 2023-11-13 2023-12-15 季华实验室 气膜厚度的在线监测方法、动态特性分析方法及相关设备

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105179480B (zh) * 2015-09-09 2017-10-03 华中科技大学 一种主动调控节流孔入口气压的气浮支承装置
US10215223B2 (en) * 2016-09-29 2019-02-26 Metal Industries Research&Development Centre Non-contact bearing
DE102017201230A1 (de) * 2017-01-26 2018-07-26 Robert Bosch Gmbh Linearbewegungsvorrichtung mit Lebensdauerüberwachung
CN107269701B (zh) * 2017-07-12 2023-06-16 哈尔滨工业大学 一种带气槽的平面气浮轴承
CN108873741A (zh) * 2018-05-06 2018-11-23 北京工业大学 一种针对空气静压导轨止推轴承振动的主动控制系统
CN108620948B (zh) * 2018-05-17 2020-11-03 北京工业大学 一种针对空气静压主轴的检测补偿控制系统
CN110578750A (zh) * 2018-06-08 2019-12-17 武汉科技大学 一种主动式气浮轴承
CN108612756B (zh) * 2018-07-13 2019-08-23 燕山大学 一种可调式压电陶瓷封油边液体静压轴承
CN110925308A (zh) * 2018-09-19 2020-03-27 武汉科技大学 一种气膜形状可变的主动气浮轴承
CN110925309A (zh) * 2018-09-19 2020-03-27 武汉科技大学 一种气膜形状主动控制的气浮轴承
CN110026572B (zh) * 2019-03-27 2024-03-26 浙江工业大学 一种气体静压主轴气膜无级变阻尼装置
CN110094413A (zh) * 2019-04-25 2019-08-06 西安交通大学 一种基于压电陶瓷的间隙可控径向滑动轴承
CN110605407B (zh) * 2019-08-01 2024-04-05 杭州电子科技大学 基于微扰动的气浮主轴轴向动刚度自适应装置及方法
CN110513395A (zh) * 2019-08-27 2019-11-29 武汉科技大学 狭缝节流式主动气浮支承装置
CN111120513B (zh) * 2020-01-18 2022-01-28 湖南大学 一种静压气体推力轴承
CN111156249A (zh) * 2020-02-26 2020-05-15 中国工程物理研究院机械制造工艺研究所 一种刚度可调的气浮导轨
CN111442030B (zh) * 2020-04-21 2024-04-26 大连民族大学 一种气浮支撑系统
CN111677758A (zh) * 2020-06-29 2020-09-18 杭州中奥工业设计有限公司 一种静压轴承
CN111677757A (zh) * 2020-06-29 2020-09-18 杭州中奥工业设计有限公司 一种可变油腔静压轴承
CN112096739B (zh) * 2020-08-05 2021-12-21 佛山市华道超精科技有限公司 一种气浮导轨式可切换刚柔耦合运动平台
CN112780678A (zh) * 2021-01-05 2021-05-11 昆明理工大学 一种超滑空气静压止推轴承支撑系统
CN113071927B (zh) * 2021-03-04 2022-09-02 湖南大学 一种主动运输气浮平台
CN113124054B (zh) * 2021-04-27 2022-07-29 北京工业大学 基于外环共面吸载的气浮止推轴承
CN113417940B (zh) * 2021-07-23 2022-04-01 中国工程物理研究院机械制造工艺研究所 一种真空预载气浮支承结构及其应用
CN113833756B (zh) * 2021-09-22 2022-05-13 哈尔滨工业大学 一种基于气磁联合调平的微动台支撑装置
CN114135583B (zh) * 2021-11-24 2024-03-15 郑州大学 一种高刚度大承载超声波挤压悬浮轴承
CN115388091B (zh) * 2022-08-24 2024-05-24 电子科技大学 一种稳定性好的气体静压轴承系统装置
CN115435013B (zh) * 2022-08-31 2023-08-04 江苏毅合捷汽车科技股份有限公司 一种氢燃料电池空压机用空气轴承
CN116443282B (zh) * 2023-04-10 2023-12-26 中国科学院力学研究所 一种基于空气轴承的地面投送实验装置及方法
CN116292631B (zh) * 2023-05-12 2023-08-08 星玛科领(山东)流体科技有限公司 一种带自加压的空气悬浮轴承
CN116667595B (zh) * 2023-08-01 2023-11-21 浙江晶鸿精密机械制造有限公司 一种电主轴及自动调节系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3313139A (en) * 1963-11-21 1967-04-11 France Etat Precision centrifuge
US4809354A (en) * 1986-12-10 1989-02-28 Nippon Seiko Kabushiki Kaisha Hydrostatic bearing utilizing a ferromagnetic fluid
US5238308A (en) * 1992-05-04 1993-08-24 Rockwell International Corporation Adjustable gap hydrostatic element
CN101319692A (zh) * 2007-06-05 2008-12-10 株式会社新川 静压导向装置
US20100322540A1 (en) * 2008-01-14 2010-12-23 Frank Peter Wardle Aerostatic bearing

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4222140C2 (de) * 1992-07-06 1994-06-16 Heinzl Joachim Aerostatisches Miniaturlager
JP3143582B2 (ja) * 1996-04-04 2001-03-07 キヤノン株式会社 静圧軸受装置およびこれを用いた位置決めステージ
JPH10141374A (ja) * 1996-11-06 1998-05-26 Canon Inc 能動静圧軸受装置および位置決めステージ
JP2002349569A (ja) * 2001-05-25 2002-12-04 Canon Inc 静圧軸受装置及びそれを用いたステージ装置
JP4182539B2 (ja) * 2002-09-30 2008-11-19 日本精工株式会社 位置決め装置
JP2007263327A (ja) * 2006-03-29 2007-10-11 Hitachi Via Mechanics Ltd エアーベアリング機構
JP2009063032A (ja) * 2007-09-05 2009-03-26 Yokogawa Electric Corp スライダ
CN101225853B (zh) * 2008-02-01 2010-06-02 西安交通大学 一种具有稳定性自适应调节功能的动压气体弹性箔片轴承
CN102588435A (zh) * 2011-12-27 2012-07-18 重庆大学 一种主动控制滑动轴承

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3313139A (en) * 1963-11-21 1967-04-11 France Etat Precision centrifuge
US4809354A (en) * 1986-12-10 1989-02-28 Nippon Seiko Kabushiki Kaisha Hydrostatic bearing utilizing a ferromagnetic fluid
US5238308A (en) * 1992-05-04 1993-08-24 Rockwell International Corporation Adjustable gap hydrostatic element
CN101319692A (zh) * 2007-06-05 2008-12-10 株式会社新川 静压导向装置
US20100322540A1 (en) * 2008-01-14 2010-12-23 Frank Peter Wardle Aerostatic bearing

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108223581A (zh) * 2018-03-12 2018-06-29 浙江工业大学 气体静压主轴节流孔孔径调节装置
CN108302120A (zh) * 2018-03-12 2018-07-20 浙江工业大学 气体静压主轴节流孔通气分布状态控制装置
CN108223581B (zh) * 2018-03-12 2023-09-05 浙江工业大学 气体静压主轴节流孔孔径调节装置
CN108302120B (zh) * 2018-03-12 2023-09-29 浙江工业大学 气体静压主轴节流孔通气分布状态控制装置
CN109488689A (zh) * 2018-11-26 2019-03-19 杭州电子科技大学 气浮主轴承载补偿装置及方法
CN109488689B (zh) * 2018-11-26 2024-02-02 杭州电子科技大学 气浮主轴承载补偿装置及方法
CN112556964A (zh) * 2020-10-22 2021-03-26 浙江工业大学 一种气体静压轴承气膜流场观测装置
CN112556964B (zh) * 2020-10-22 2022-12-09 浙江工业大学 一种气体静压轴承气膜流场观测装置
CN115962938A (zh) * 2023-01-05 2023-04-14 西安航天精密机电研究所 陀螺仪的h型动压轴承陀螺电机气膜刚度非接触测试方法
CN115962938B (zh) * 2023-01-05 2023-06-27 西安航天精密机电研究所 陀螺仪的h型动压轴承陀螺电机气膜刚度非接触测试方法
CN117232412A (zh) * 2023-11-13 2023-12-15 季华实验室 气膜厚度的在线监测方法、动态特性分析方法及相关设备
CN117232412B (zh) * 2023-11-13 2024-02-13 季华实验室 气膜厚度的在线监测方法、动态特性分析方法及相关设备

Also Published As

Publication number Publication date
US9920790B2 (en) 2018-03-20
US20170082144A1 (en) 2017-03-23
DE112014006270T5 (de) 2016-10-20
CN103836070A (zh) 2014-06-04
CN103836070B (zh) 2016-07-13

Similar Documents

Publication Publication Date Title
WO2015139340A1 (zh) 一种主动式气浮支承装置
CN105179480B (zh) 一种主动调控节流孔入口气压的气浮支承装置
US9429208B2 (en) Vibration isolator with zero stiffness whose angle degree of freedom is decoupled with spherical air bearing
JP6253778B2 (ja) ハルバッハ配列及び該ハルバッハ配列を採用する磁気浮遊式ダンパー
JP5064316B2 (ja) 除振装置
KR100664578B1 (ko) 엠알 댐퍼를 이용한 제진장치 및 제진방법
US9429209B2 (en) Magnetically suspended and plane-drove vibration isolator
JP2014059303A (ja) 地震計などのデバイスに用いられる、マイクロ機械加工により製作され、プルーフマスが一体的に形成された、改良したサスペンション・プレート
US20110309702A1 (en) Electro-actuated magnetic bearings
US7600429B2 (en) Vibration spectrum sensor array having differing sensors
JP4157393B2 (ja) 除振装置
CN206036114U (zh) 一种适用于大振幅和宽频带的主被动一体化减隔振装置
KR101064732B1 (ko) 다축제어형 하이브리드 능동마운트
JP4421130B2 (ja) 除振方法およびその装置
Hoque et al. A 3-DOF modular vibration isolation system using zero-power magnetic suspension with adjustable negative stiffness
JP2001050334A (ja) アクティブ型除振装置
Hoque et al. Design of a mode-based controller for 3-DOF vibration isolation system
CN110925308A (zh) 一种气膜形状可变的主动气浮轴承
TWI843145B (zh) 磁浮重力補償裝置和微動台
CN113833765B (zh) 一种刚度可调的气浮导轨
JP2003328940A (ja) ターボ分子ポンプを用いた真空排気装置
JPH01131354A (ja) 精密除振装置
Kato et al. Electrostatic suspension using variable capacitors
CN110578750A (zh) 一种主动式气浮轴承
JP2023089751A (ja) サーボ型振動検出器、及び、サーボ型振動検出器の組立方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14886009

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 112014006270

Country of ref document: DE

WWE Wipo information: entry into national phase

Ref document number: 15126537

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14886009

Country of ref document: EP

Kind code of ref document: A1