WO2015137126A1 - Magnetic levitation-type pump device, method for estimating viscosity of fluid by magnetic levitation-type pump device, and method for estimating flow rate of fluid by magnetic levitation-type pump device - Google Patents

Magnetic levitation-type pump device, method for estimating viscosity of fluid by magnetic levitation-type pump device, and method for estimating flow rate of fluid by magnetic levitation-type pump device Download PDF

Info

Publication number
WO2015137126A1
WO2015137126A1 PCT/JP2015/055536 JP2015055536W WO2015137126A1 WO 2015137126 A1 WO2015137126 A1 WO 2015137126A1 JP 2015055536 W JP2015055536 W JP 2015055536W WO 2015137126 A1 WO2015137126 A1 WO 2015137126A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
viscosity
fluid
magnetic levitation
pump device
Prior art date
Application number
PCT/JP2015/055536
Other languages
French (fr)
Japanese (ja)
Inventor
亘 土方
進士 忠彦
将大 阿部
Original Assignee
国立大学法人東京工業大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京工業大学 filed Critical 国立大学法人東京工業大学
Publication of WO2015137126A1 publication Critical patent/WO2015137126A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/048Bearings magnetic; electromagnetic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D15/00Control, e.g. regulation, of pumps, pumping installations or systems
    • F04D15/0088Testing machines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/33Controlling, regulating or measuring
    • A61M2205/3331Pressure; Flow
    • A61M2205/3334Measuring or controlling the flow rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/104Extracorporeal pumps, i.e. the blood being pumped outside the patient's body
    • A61M60/117Extracorporeal pumps, i.e. the blood being pumped outside the patient's body for assisting the heart, e.g. transcutaneous or external ventricular assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/196Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body replacing the entire heart, e.g. total artificial hearts [TAH]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/221Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having both radial and axial components, e.g. mixed flow pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/226Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly radial components
    • A61M60/232Centrifugal pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/20Type thereof
    • A61M60/205Non-positive displacement blood pumps
    • A61M60/216Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller
    • A61M60/237Non-positive displacement blood pumps including a rotating member acting on the blood, e.g. impeller the blood flow through the rotating member having mainly axial components, e.g. axial flow pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/419Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being permanent magnetic, e.g. from a rotating magnetic coupling between driving and driven magnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/40Details relating to driving
    • A61M60/403Details relating to driving for non-positive displacement blood pumps
    • A61M60/422Details relating to driving for non-positive displacement blood pumps the force acting on the blood contacting member being electromagnetic, e.g. using canned motor pumps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/538Regulation using real-time blood pump operational parameter data, e.g. motor current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/50Details relating to control
    • A61M60/508Electronic control means, e.g. for feedback regulation
    • A61M60/538Regulation using real-time blood pump operational parameter data, e.g. motor current
    • A61M60/546Regulation using real-time blood pump operational parameter data, e.g. motor current of blood flow, e.g. by adapting rotor speed
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/82Magnetic bearings

Definitions

  • the present invention relates to a magnetic levitation pump device in which an impeller supported in a non-contact manner on a magnetic bearing portion is levitated and rotated by electromagnetic force, a fluid viscosity estimation method using a magnetic levitation pump device, and a fluid using a magnetic levitation pump device
  • the present invention relates to a flow rate estimation method.
  • Magnetic levitation type that moves various fluids such as gas and liquid by rotating an impeller that is supported in a non-contact manner by magnetic force in medical equipment such as blood pumps, semiconductors, and food manufacturing fields.
  • a pump device is used.
  • the viscosity affects the fluid transfer performance of the pump device. Therefore, in order to maintain the performance, it is necessary to estimate and grasp the viscosity. .
  • the torque increases as the viscosity increases, so that the viscosity is conventionally estimated from the motor torque for rotating the impeller.
  • the viscosity is estimated by indirectly measuring the torque from the current and power consumption of the motor.
  • Patent Document 1 discloses that the impeller is floated from the rotation axis center to the vicinity of the housing wall. A technique for estimating the viscosity from the amount of change in motor current at that time by shifting is disclosed.
  • the present invention has been made in view of the above problems, and a new and improved magnetic levitation pump device capable of estimating the viscosity of a fluid more easily and reliably without being restricted by the structure of the device, It is an object of the present invention to provide a fluid viscosity estimation method using a magnetic levitation pump device and a fluid flow rate estimation method using a magnetic levitation pump device.
  • One aspect of the present invention is a magnetically levitated pump device that transfers the fluid while magnetically levitating and rotating an impeller in a housing having a fluid inflow portion and an outflow portion, and is non-contact with the impeller by magnetic force
  • a rotary drive unit coupled to the impeller to rotate the impeller, a magnetic bearing unit supporting the impeller in a non-contact manner by the magnetic force, and a position facing the permanent magnet built in the rotor of the impeller of the magnetic bearing unit.
  • An applied current control unit that controls an applied current to the electromagnet provided, a current sensor that detects the magnitude of the applied current, a displacement sensor that detects displacement of the impeller, and the applied current control unit within a predetermined frequency range
  • a calculation unit that calculates at least one of a phase difference between the impeller displacement due to vibration and the alternating current or an amplitude ratio between the impeller displacement and the alternating current, and at least one of the phase difference or the amplitude ratio calculated by the calculation unit
  • a viscosity estimation unit that estimates the viscosity of the fluid.
  • the impeller is forcibly vibrated by applying an alternating current so as to be superimposed on the exciting current applied to the electromagnet of the magnetic bearing portion for a predetermined time. Based on the phase difference and amplitude ratio of the alternating current, the viscosity of the fluid can be estimated easily and accurately.
  • the applied current control unit is configured to apply a frequency at which the impeller can vibrate around a levitation target position when the alternating current is applied and superimposed on the excitation current, and the impeller Alternatively, an alternating current having an amplitude within a range where the housing does not contact may be applied.
  • the vibration of the impeller can be suppressed to a slight vibration, the viscosity of the fluid to be transferred can be reliably estimated while maintaining a stable operation state of the magnetic levitation pump device.
  • the frequency may be a value close to a value calculated by the following equation.
  • the impeller when an alternating current is applied, the impeller can be slightly vibrated in a range where the impeller and the housing do not contact each other, so that the viscosity of the fluid to be transferred is maintained while maintaining a stable operation state of the magnetic levitation pump device. Can be reliably estimated.
  • the viscosity estimation unit is based on prior experimental data relating to the relationship between the phase difference and the viscosity, or a relational expression between the phase difference and the viscosity obtained theoretically in advance.
  • the viscosity may be estimated.
  • the viscosity of the fluid can be accurately estimated based on the phase difference of the impeller displacement caused by the impeller vibration generated by applying the alternating current superimposed on the exciting current.
  • the impeller may have any shape of a centrifugal type, an axial flow type, or a diagonal flow type.
  • the flow rate of the fluid is estimated based on at least one of the torque, current value, power consumption, and rotation speed of the rotation drive unit and the viscosity estimated by the viscosity estimation unit. It is good also as providing the flow volume estimation part to perform.
  • a fluid viscosity estimation method using a magnetic levitation pump device that transfers a fluid while magnetically levitating and rotating an impeller in a housing having a fluid inflow portion and an outflow portion.
  • An alternating current application step of applying and superimposing an alternating current in a predetermined frequency range on an exciting current applied to an electromagnet provided at a position facing a permanent magnet built in the rotor of the impeller, and after applying the alternating current
  • An impeller displacement detecting step for detecting an impeller displacement due to the vibration of the impeller, a recording step for recording at least one of a phase or an amplitude of the impeller displacement due to the vibration, a phase difference or an amplitude ratio of the impeller displacement and the alternating current Based on at least one of the phase difference or the amplitude ratio, and a calculation step for calculating at least one of the phase difference and the amplitude ratio.
  • the impeller is intentionally slightly vibrated by applying an alternating current so as to be superimposed on the exciting current applied to the electromagnet of the magnetic bearing portion for a predetermined time, and the impeller displacement
  • the viscosity of the fluid can be estimated easily and accurately based on the phase difference and amplitude ratio of the alternating current.
  • Still another aspect of the present invention is a method for estimating a fluid flow rate by a magnetic levitation pump device that transfers a fluid while magnetically levitating and rotating an impeller in a housing having a fluid inflow portion and an outflow portion.
  • An impeller displacement detecting step for detecting an impeller displacement due to the vibration of the impeller, a recording step for recording at least one of a phase or an amplitude of the impeller displacement due to the vibration, a phase difference or an amplitude ratio between the impeller displacement and the alternating current
  • the fluid Based on the viscosity estimation step of estimating the viscosity, at least one of the torque, current value, power consumption, and rotation speed of the rotation drive unit that rotates the impeller, and the viscosity estimated in the viscosity estimation step, the fluid And a flow rate estimating step for estimating the flow rate of.
  • the accuracy in estimating the fluid flow rate is improved by utilizing the viscosity estimated by the magnetic levitation pump device.
  • the estimated flow rate obtained from the torque of the rotation drive unit and the rotation speed is compensated by the viscosity estimated in the viscosity estimation step. It is good also as estimating the said flow volume by.
  • the viscosity of the fluid can be estimated more easily and reliably with high accuracy without adding new hardware and without being restricted by the structure of the apparatus.
  • the flow rate of the fluid can be estimated more easily and reliably using the viscosity.
  • FIG. 1 is a block diagram showing a schematic configuration of a magnetic levitation pump apparatus according to an embodiment of the present invention.
  • FIG. 2 is a flowchart showing an outline of a fluid viscosity estimation method by the magnetic levitation pump device according to the embodiment of the present invention.
  • FIG. 3 is a flowchart showing an outline of another aspect of the fluid viscosity estimation method by the magnetic levitation pump device according to the embodiment of the present invention.
  • 4A to 4D are examples of waveform diagrams of alternating current applied when the viscosity of the fluid is estimated by the magnetic levitation pump device according to the embodiment of the present invention.
  • FIG. 5A to 5E are explanatory views showing a configuration example of an impeller provided in a magnetic levitation pump device according to an embodiment of the present invention.
  • FIG. 6 is a block diagram showing a schematic configuration of a magnetic levitation pump device according to another embodiment of the present invention.
  • FIG. 7 is a flowchart showing an outline of a method for estimating the viscosity and flow rate of a fluid by a magnetic levitation pump device according to another embodiment of the present invention.
  • FIG. 8 is a flowchart showing an outline of another aspect of the fluid viscosity and flow rate estimation method by the magnetic levitation pump device according to another embodiment of the present invention.
  • FIG. 9 is an explanatory diagram showing the phase and amplitude relationship between the waveform of the impeller displacement and the waveform of the applied current in an example of fluid viscosity estimation by the magnetic levitation pump device according to the embodiment of the present invention.
  • FIG. 10 is an explanatory diagram showing the relationship between the amplitude ratio and phase difference between the waveform of the impeller displacement and the waveform of the applied current and the frequency of the applied current in this example.
  • FIG. 11 is an explanatory diagram showing the relationship between the viscosity and the phase difference at a vibration frequency of 70 Hz in this example.
  • FIG. 12 is an explanatory diagram showing the relationship between the flow rate of the fluid and the phase difference at the vibration frequency of 70 Hz in this embodiment.
  • FIG. 10 is an explanatory diagram showing the relationship between the amplitude ratio and phase difference between the waveform of the impeller displacement and the waveform of the applied current and the frequency of the applied current in this example.
  • FIG. 11 is an explanatory diagram showing the relationship between the vis
  • FIG. 13 is an explanatory diagram showing the relationship between the estimated viscosity and the actually measured viscosity in this example.
  • FIG. 14 is an explanatory diagram showing the relationship between the actually measured flow rate and the estimated flow rate in an example of fluid flow rate estimation by the magnetic levitation pump device according to another embodiment of the present invention.
  • FIG. 1 is a block diagram showing a schematic configuration of a magnetic levitation pump apparatus according to an embodiment of the present invention.
  • the magnetic levitation pump apparatus 100 is configured to drive the motor 108 by coupling the drive shaft 113 of the motor 108 serving as a drive source (rotation drive unit) and the impeller 104 in a non-contact manner by magnetic coupling. It is a non-contact type magnetic levitation type continuous flow pump that transmits force.
  • the magnetic levitation pump apparatus 100 according to the present embodiment applies the excitation current to the electromagnet 116 of the magnetic bearing unit 101 so that the center of the magnetically levitated impeller 104 rotates when the impeller 104 rotates. Position control is performed so as to rotate at the flying target position that coincides with A1.
  • the impeller 104 is a centrifugal impeller that is magnetically levitated in the housing 102 and is coupled in a non-contact manner with the drive shaft 113 of the motor 108 by magnetic coupling and rotates while magnetically levitating in the housing 102.
  • the center of the bottom surface of the rotor 106 of the impeller 104 is a concave portion 106 b, and the concave portion 106 b is opposed to the convex portion 102 b 1 provided on the central side of the bottom surface 102 b of the housing 102. ing.
  • the fluid L inflow portion 102 c is provided on the top side of the housing 102 that houses the impeller 104, and the fluid L outflow portion 102 d is provided at any part of the side wall 102 a of the housing 102. For this reason, when the impeller 104 rotates in the housing 102 while magnetically levitating, the fluid L is transferred from the inflow portion 102c to the outflow portion 102d.
  • the magnetic bearing portion 101 supports the impeller 104 in a non-contact manner by a magnetic force.
  • an electromagnet 116 is provided at a position facing the permanent magnet 110 built in the outer peripheral surface 106 a side of the rotor 106 of the impeller 104.
  • an exciting current to the electromagnet 116, the center of the impeller 104 is adjusted so as to be arranged on the rotation center axis A1.
  • the position of the impeller 104 is controlled by applying an exciting current to the electromagnet 116.
  • the impeller 104 is passively maintained in the floating state by the restoring force acting in the vertical direction of the magnetic circuit constituting the magnetic coupling without being controlled in position.
  • a motor 108 serving as a drive source for the impeller 104 is provided in the casing 122 of the magnetic bearing portion 101, and a permanent magnet 114 is provided on the outer peripheral surface on the front end side of the drive shaft 113 of the motor 108. ing. And the permanent magnet 112 which acts on the said permanent magnet 114 and attractive force is provided in the internal peripheral surface 106b1 of the recessed part 106b of the rotor 106 of the impeller 104. As shown in FIG. When these permanent magnets 112 and 114 are coupled by magnetic coupling, the driving force of the motor 108 is transmitted to the impeller 104 in a non-contact manner.
  • the driving of the motor 108 is controlled by a motor control unit 164 provided in a control unit 150 that performs various controls of the magnetic levitation pump device 100.
  • the applied current to the electromagnet 116 of the magnetic bearing unit 101 is controlled by the applied current control unit 154.
  • the applied current control unit 154 feeds back a signal of the displacement sensor 120 that detects the displacement of the impeller 104 to the calculation unit 152 of the control unit 150 so that the impeller 104 floats on the rotation axis center A1.
  • An appropriate current value is calculated and controlled to be supplied to the electromagnet 116.
  • the applied current control unit 154 appropriately adjusts the magnitude of the excitation current so that the impeller 104 returns to the floating target position that can rotate about the rotation axis center A1. Control to do.
  • the displacement sensor 120 is a sensor that is provided, for example, between any of a plurality of electromagnets 116 arranged in an annular shape and detects the position of the impeller 104 by detecting the outer peripheral surface 106a of the rotor 106, and is an eddy current sensor. Etc.
  • the magnitude of the applied current is detected by a current sensor 118 provided between the electromagnet 116 and the applied current control unit 154.
  • the exciting current applied to the electromagnet 116 is adjusted by the applied current adjusting unit 162 such as an amplifier or an inverter under the control of the applied current control unit 154.
  • the present inventor has intentionally applied an alternating current to the electromagnet 116 provided in the magnetic bearing portion 101 of the magnetic levitation pump device 100 of the present embodiment. It has been found that the phase difference ⁇ between the impeller displacement generated when the impeller 104 is forcibly vibrated by application and the applied alternating current is correlated with the viscosity ⁇ of the working fluid. It was also found that there is a correlation between the amplitude ⁇ of the impeller displacement at that time and the amplitude ratio a / b of the amplitude b of the applied alternating current and the viscosity ⁇ .
  • the magnetic levitation pump device 100 of the present embodiment realized the estimation of the fluid viscosity ⁇ using the principle described above.
  • the CPU (arithmetic unit) 152 that controls the above-described control of the magnetic levitation pump device 100 of the present embodiment will be described.
  • the CPU 152 has a function of controlling the operation of each component included in the magnetic levitation pump device 100 in accordance with various programs stored in the storage unit 166 such as a ROM. In addition, the CPU 152 has a function of appropriately storing necessary data and the like in a RAM (not shown) that temporarily stores data when executing these various processes.
  • the CPU 152 includes an applied current control unit 154, an impeller displacement recording unit 156, a calculation unit 158, and a viscosity estimation unit 160, as shown in FIG.
  • the applied current control unit 154 has a function of controlling the applied current to the electromagnet 116 of the magnetic bearing unit 101 as described above.
  • the applied current control unit 154 estimates the viscosity ⁇ of the fluid L
  • the applied current control unit 154 superimposes an alternating current in a predetermined frequency range on an excitation current to the electromagnet 116 for a predetermined time (for example, several seconds). And has a function of controlling the applied current so as to be applied.
  • the applied current control unit 154 when the applied current control unit 154 applies an alternating current and superimposes the excitation current on the excitation current, the applied current control unit 154 has a frequency at which the impeller 104 can vibrate around the floating target position, and a range where the impeller 104 and the housing 102 do not contact each other. An alternating current having an amplitude within the range is applied.
  • the frequency f is preferably a value close to the value calculated by the following equation (1).
  • Kx described in the above formula (1) is “negative rigidity (N / m) expressed in the magnetic bearing portion 101”, and M is “additional mass due to the fluid L added to the mass of the impeller 104”. Value (kg) ".
  • the “additional mass” indicates a mass corresponding to an increase in the apparent weight when the impeller 104 is placed in the liquid, and is a value that varies depending on the liquid density. For example, when the liquid is blood, the additional mass is about ten times the mass of the impeller 104.
  • the vibration of the impeller 104 can be suppressed to a slight vibration in a range where the impeller 104 and the housing 102 do not contact each other. For this reason, it is possible to reliably estimate the viscosity ⁇ of the fluid L to be transferred while maintaining a stable operation state of the magnetic levitation pump device 100.
  • the impeller displacement recording unit 156 has a function of creating and recording a function curve while plotting the impeller displacement detected by the displacement sensor 120.
  • the recording data plotted by the impeller displacement recording unit 156 is used to calculate the phase difference ⁇ or the amplitude ratio a / b used for estimating the viscosity of the fluid L.
  • the calculation unit 158 has a function of calculating data necessary for control of each component of the magnetic levitation pump apparatus 100 based on detection data of the current sensor 118 and the displacement sensor 120 and the like.
  • the calculation unit 158 includes the phase difference ⁇ between the impeller displacement and the alternating current detected by the vibration of the impeller 104 detected by the displacement sensor 120, or the amplitude ratio a / b between the amplitude a of the impeller displacement and the amplitude b of the alternating current.
  • the calculating unit 158 has at least one of the phase difference ⁇ and the amplitude ratio a / b. It has a function to calculate.
  • the viscosity estimating unit 160 has a function of estimating the viscosity ⁇ of the fluid L based on at least one of the phase difference ⁇ and the amplitude ratio a / b calculated by the calculating unit 158.
  • the viscosity estimating unit 160 estimates the viscosity of the fluid L based on the phase difference ⁇ , for example, the phase difference stored in the storage unit 166 or the like is used to accurately estimate the viscosity.
  • the viscosity ⁇ is estimated based on prior experimental data relating to the relationship between ⁇ and the viscosity ⁇ of the fluid, or based on a relational expression between the phase difference ⁇ and the viscosity ⁇ that is theoretically obtained in advance.
  • the impeller 104 is forcibly microvibrated by applying an alternating current intentionally superimposed on the exciting current applied to the electromagnet 116 of the magnetic bearing portion 101 for a predetermined time.
  • the viscosity ⁇ of the fluid L can be easily and accurately estimated based on the phase difference ⁇ between the impeller displacement generated by the minute vibration and the alternating current and the amplitude ratio a / b.
  • the viscosity ⁇ of the fluid L can be estimated more easily and reliably without adding new hardware such as a torque meter as in the prior art and without being restricted by the structure of the apparatus.
  • FIG. 2 is a flowchart showing an outline of a fluid viscosity estimation method by a magnetic levitation pump apparatus according to an embodiment of the present invention
  • FIG. 3 is a magnetic levitation pump apparatus according to an embodiment of the present invention. It is a flowchart which shows the outline of the other aspect of the viscosity estimation method of the fluid by A. 2 shows a flow of a method for estimating the viscosity ⁇ based on the phase difference ⁇
  • FIG. 3 shows a flow of a method for estimating the viscosity ⁇ based on the amplitude ratio a / b.
  • an alternating current in a predetermined frequency range is applied to the excitation current applied to the electromagnet 116 provided in the magnetic bearing unit 101 for a predetermined time (for example, several seconds).
  • a predetermined time for example, several seconds.
  • AC current application step S11 superimposed on the excitation current.
  • the impeller 104 is forcibly vibrated by intentionally applying an alternating current for a predetermined time.
  • an alternating current having a frequency f at which the impeller can vibrate around the floating target position and an amplitude b within a range where the impeller 104 and the housing 102 do not contact each other is applied. That is, it is necessary to select an appropriate frequency f and amplitude b so that the vibration of the impeller 104 does not contact the impeller 104 and the housing 102 around the floating target position.
  • the impeller 104 does not respond and does not vibrate, so the viscosity estimation method according to this embodiment cannot be performed. For this reason, in the low frequency region (for example, 400 Hz or less) where the impeller 104 vibrates, the impeller 104 and the housing 102 are adjusted so as not to contact each other by appropriately adjusting the amplitude of the alternating current.
  • the frequency f of the alternating current to be applied is selected to be a frequency that is low enough to obtain the vibration amplitude a of the impeller 104,
  • the amplitude b of the alternating current needs to be adjusted within a range where the impeller 104 and the housing 102 do not contact each other.
  • the alternating current applied here may be an alternating current having a predetermined period in which the current value periodically fluctuates, and the waveform thereof is, for example, a sine wave shown in FIG. 4A or a rectangle shown in FIG. 4B.
  • a wave, a triangular wave shown in FIG. 4C, and a sawtooth wave shown in FIG. 4D are applicable.
  • the displacement of the impeller due to the vibration of the impeller 104 is detected by the displacement sensor 120 (impeller displacement detection step S12). Then, the phase of the impeller displacement caused by the vibration of the impeller 104 generated by the application of the alternating current is plotted and recorded (recording step S13). Thereafter, the phase difference ⁇ between the impeller displacement and the alternating current is calculated (calculation step S14), and the viscosity ⁇ of the fluid L is estimated based on the phase difference ⁇ (viscosity estimation step S15).
  • the viscosity ⁇ of the fluid L is estimated using the phase difference ⁇ or the amplitude ratio a / b. However, if at least one of them is used, the viscosity ⁇ can be estimated. Both may be used together to estimate the viscosity ⁇ of the fluid L with higher accuracy.
  • the excitation current to the electromagnet 116 is calculated so that the impeller 104 does not shake from the target position (center of rotation axis, etc.). .
  • the impeller 104 is forcibly vibrated by superimposing an alternating current having a constant frequency f on the excitation current for several seconds. Then, during the forced vibration of the impeller 104, the phase difference ⁇ or the amplitude ratio a / b between the alternating current I of the frequency f and the impeller displacement X is calculated.
  • the viscosity estimation method by the magnetic levitation pump apparatus 100 of the present embodiment can easily estimate the viscosity ⁇ of the fluid L without adding new hardware. Also, the viscosity estimation method by the magnetic levitation pump device 100 of the present embodiment is less dependent on the flow rate and does not need to cut off the flow rate, unlike the conventional method using the motor torque for viscosity estimation. Since there is no influence of loss, the fluid viscosity ⁇ can be accurately estimated. Furthermore, the viscosity estimation method using the magnetically levitated pump device 100 according to the present embodiment does not affect the measurement accuracy of the viscosity ⁇ even if the gap between the impeller 104 and the housing 102 is large in principle. Accurate viscosity estimation is possible without being restricted by the above.
  • FIG. 5E the magnetic levitation pump device 100 of this embodiment can be applied to a magnetic levitation type continuous flow pump regardless of whether it is a centrifugal type, an axial flow type, or a diagonal flow type.
  • the viscosity can be estimated in the same procedure as in the present embodiment even in the case of an axial flow type or mixed flow type impeller shape.
  • the viscosity estimation method by the magnetic levitation pump device 100 of the present embodiment described above can be applied to various fields.
  • a conventional circulation system such as an artificial artificial heart that is difficult to install a flow meter
  • the error greatly increases or decreases depending on the working fluid viscosity.
  • the estimated viscosity value obtained by the viscosity estimation method using the magnetic levitation pump device 100 of this embodiment can be used for error correction in flow rate estimation.
  • the state of the working fluid may be applied to online monitoring using the estimated viscosity value itself.
  • blood coagulation monitoring such as blood clot detection and prediction in blood pumps and artificial hearts, and quality control of ultrapure water in semiconductor and food manufacturing. That is, it can be applied as a magnetic levitation type continuous flow blood pump for extracorporeal circulation, a magnetic levitation type artificial heart for implantation in the body, and an ultra-clean magnetic levitation type pump for semiconductor manufacturing and food manufacturing.
  • FIG. 6 is a block diagram showing a schematic configuration of a magnetic levitation pump device according to another embodiment of the present invention.
  • a drive shaft 213 and an impeller 204 of a motor 208 serving as a drive source (rotation drive unit) are coupled in a non-contact manner by magnetic coupling. It is a non-contact type magnetic levitation type continuous flow pump that transmits the driving force of the motor.
  • the magnetic levitation pump device 200 of the present embodiment applies the excitation current to the electromagnet 216 of the magnetic bearing unit 201 to rotate the central axis of the magnetically levitated impeller 204 when the impeller 204 is driven to rotate.
  • Position control is performed so as to rotate at the flying target position that coincides with A2.
  • the impeller 204 is a centrifugal impeller that rotates while being magnetically levitated in the housing 202 while being magnetically levitated in the housing 202 and coupled in a non-contact manner with the drive shaft 213 of the motor 208 by magnetic coupling.
  • the center of the bottom surface of the rotor 206 of the impeller 204 is a concave portion 206 b, and is configured to face the convex portion 202 b 1 provided on the central side of the bottom surface 202 b of the housing 202. ing.
  • the fluid L inflow portion 202 c is provided on the top side of the housing 202 that houses the impeller 204, and the fluid L outflow portion 202 d is provided at any part of the side wall 202 a of the housing 202. For this reason, when the impeller 204 rotates in the housing 202 while magnetically levitating, the fluid L is transferred from the inflow portion 202c to the outflow portion 202d.
  • the magnetic bearing unit 201 supports the impeller 204 in a non-contact manner by a magnetic force.
  • the magnetic bearing portion 201 is provided with an electromagnet 216 at a position facing the permanent magnet 210 built in the outer peripheral surface 206 a side of the rotor 206 of the impeller 204.
  • an exciting current to the electromagnet 216, the center of the impeller 204 is adjusted so as to be arranged on the rotation center axis A2.
  • the position of the impeller 204 is controlled by applying an exciting current to the electromagnet 216 in the horizontal direction.
  • the impeller 204 is passively maintained in the floating state by the restoring force acting in the vertical direction of the magnetic circuit constituting the magnetic coupling without being controlled in position.
  • a motor 208 serving as a drive source for the impeller 204 is provided in the casing 222 of the magnetic bearing unit 201, and a permanent magnet 214 is provided on the outer peripheral surface on the front end side of the drive shaft 213 of the motor 208.
  • a permanent magnet 212 that acts an attractive force with the permanent magnet 214 is provided on the inner peripheral surface 206 b 1 of the recess 206 b of the rotor 206 of the impeller 204.
  • These permanent magnets 212 and 214 are coupled by a magnetic coupling, whereby the driving force of the motor 208 is transmitted to the impeller 204 in a non-contact manner.
  • Driving of the motor 208 is controlled by a motor control unit 264 provided in a control unit 250 that performs various controls of the magnetic levitation pump device 200.
  • the applied current to the electromagnet 216 of the magnetic bearing unit 201 is controlled by the applied current control unit 254.
  • the applied current control unit 254 feeds back a signal of the displacement sensor 220 that detects the displacement of the impeller 204 to the calculation unit 252 of the control unit 250 so that the impeller 204 floats to the rotation axis center A2.
  • An appropriate current value is calculated and controlled to be supplied to the electromagnet 216.
  • the applied current control unit 254 appropriately adjusts the magnitude of the excitation current so that the impeller 204 returns to the levitation target position that can rotate around the rotation axis A2. Control to do.
  • the displacement sensor 220 is a sensor that is provided, for example, between any of the plurality of electromagnets 216 arranged in an annular shape, and detects the position of the impeller 204 by detecting the outer peripheral surface 206a of the rotor 206, and is an eddy current sensor. Etc.
  • the magnitude of the applied current is detected by a current sensor 218 provided between the electromagnet 216 and the applied current control unit 254.
  • the exciting current applied to the electromagnet 216 is adjusted by the applied current adjusting unit 262 such as an amplifier or an inverter under the control of the applied current control unit 254.
  • the present inventor intentionally applied an alternating current to the electromagnet 216 provided in the magnetic bearing portion 201 of the magnetic levitation pump device 200 of the present embodiment. It has been found that the phase difference ⁇ between the impeller displacement generated when the impeller 204 is forcibly vibrated by application and the applied alternating current is correlated with the viscosity ⁇ of the working fluid. It was also found that there is a correlation between the amplitude ⁇ of the impeller displacement at that time and the amplitude ratio a / b of the amplitude b of the applied alternating current and the viscosity ⁇ . Furthermore, the present inventor has found that the flow rate can be estimated with higher accuracy by using the estimated viscosity value obtained by the viscosity estimation method by the magnetic levitation pump apparatus 200 of the present embodiment for error correction of the flow rate estimation.
  • the magnetic levitation pump device 200 of the present embodiment realized the estimation of the fluid viscosity ⁇ using the principle described above.
  • the CPU (arithmetic unit) 252 that controls the above-described control of the magnetic levitation pump device 200 of the present embodiment will be described.
  • the CPU 252 has a function of controlling the operation of each component provided in the magnetic levitation pump device 200 according to various programs stored in the storage unit 266 such as a ROM. Further, the CPU 252 has a function of appropriately storing necessary data and the like in a RAM (not shown) that temporarily stores data when executing these various processes.
  • the CPU 252 includes an applied current control unit 254, an impeller displacement recording unit 256, a calculation unit 258, a viscosity estimation unit 260, and a flow rate estimation unit 261, as shown in FIG.
  • the applied current control unit 254 has a function of controlling the applied current to the electromagnet 216 of the magnetic bearing unit 201 as described above.
  • the applied current control unit 254 estimates the viscosity ⁇ of the fluid L
  • the applied current control unit 254 superimposes an alternating current in a predetermined frequency range on an excitation current to the electromagnet 216 for a predetermined time (for example, several seconds). And has a function of controlling the applied current so as to be applied.
  • the applied current control unit 254 applies a frequency at which the impeller 204 can vibrate around the floating target position when applying an alternating current and superimposing it with the excitation current, and a range where the impeller 204 and the housing 202 do not contact each other.
  • An alternating current having an amplitude within the range is applied.
  • the frequency f is preferably a value close to the value calculated by the above-described equation (1), as in the first embodiment.
  • the vibration of the impeller 204 can be suppressed to a slight vibration in a range where the impeller 204 and the housing 202 do not contact each other. Therefore, it is possible to reliably estimate the viscosity ⁇ of the fluid L to be transferred while maintaining a stable operation state of the magnetic levitation pump device 200.
  • the impeller displacement recording unit 256 has a function of creating and recording a function curve while plotting the impeller displacement detected by the displacement sensor 220.
  • the recorded data plotted by the impeller displacement recording unit 256 is used to calculate the phase difference ⁇ or the amplitude ratio a / b used for estimating the viscosity of the fluid L.
  • the calculation unit 258 has a function of calculating data necessary for control of each component of the magnetic levitation pump device 200 based on detection data of the current sensor 218 and the displacement sensor 220 and the like.
  • the calculation unit 258 includes the phase difference ⁇ between the impeller displacement detected by the displacement sensor 220 due to the vibration of the impeller 204 and the alternating current, or the amplitude ratio a / b between the impeller displacement amplitude a and the alternating current amplitude b.
  • the calculation unit 258 controls at least one of the phase difference ⁇ and the amplitude ratio a / b when the applied current control unit 254 controls the applied current so that the alternating current is superimposed on the excitation current to the electromagnet 216. It has a function to calculate.
  • the viscosity estimation unit 260 has a function of estimating the viscosity ⁇ of the fluid L based on at least one of the phase difference ⁇ and the amplitude ratio a / b calculated by the calculation unit 258.
  • the viscosity estimating unit 260 estimates the viscosity of the fluid L based on the phase difference ⁇ , for example, the phase difference stored in the storage unit 266 or the like is used to accurately estimate the viscosity.
  • the viscosity ⁇ is estimated based on prior experimental data relating to the relationship between ⁇ and the viscosity ⁇ of the fluid, or based on a relational expression between the phase difference ⁇ and the viscosity ⁇ that is theoretically obtained in advance.
  • the flow rate estimation unit 261 has a function of estimating the flow rate of the fluid L based on at least one of the torque, current value, power consumption, and rotation speed of the motor 208 and the viscosity of the fluid L estimated by the viscosity estimation unit 260. Have.
  • the flow rate estimation unit 261 uses the torque of the motor 208 measured by a known torque meter 224 installed on the drive shaft 213 of the motor 208 and the estimated flow rate calculated based on the rotation speed of the motor 208. By compensating with the estimated viscosity of the fluid L estimated by the viscosity estimating unit 260, the accuracy of the estimated value of the flow rate of the fluid L is improved.
  • the flow rate of the fluid L is estimated based on the following formula (2).
  • a symbol Qe represents an estimated flow rate value of the fluid L
  • a symbol T represents a torque of the motor 208
  • a symbol N represents a rotational speed of the motor 208
  • symbols A, B, and C represents a coefficient.
  • Qe A (T / N) + B ⁇ + C (2)
  • the magnetic levitation type is corrected by correcting the estimated flow rate of the fluid L calculated based on the torque T and the rotation speed N of the motor 208 with the estimated viscosity value calculated by the viscosity estimating unit 260.
  • the flow rate of the fluid L fed by the pump device 200 is obtained with high accuracy.
  • the flow rate of the fluid L actually fed by the magnetic levitation pump device 200 is a value that can vary depending on the viscosity of the fluid L. For example, if the viscosity of the fluid L is low, it is easy to send the fluid L. Conversely, if the viscosity of the fluid L is high, it is difficult to send the fluid L. That is, the estimated flow rate value of the fluid L calculated based only on the torque T and the rotation speed N of the motor 208 varies depending on the magnitude of the viscosity value of the fluid L.
  • the estimated flow rate of the fluid L calculated based on the torque T and the rotation speed N of the motor 208 is corrected with the estimated viscosity value calculated by the viscosity estimation unit 260, and the viscosity of the fluid L is thereby corrected.
  • the flow rate of the fluid L can be accurately calculated. That is, the accuracy in estimating the flow rate of the fluid L by the compensation by the viscosity estimated by the viscosity estimating unit 260 is improved.
  • the flow rate of the fluid L is accurately adjusted by correcting the estimated flow rate of the fluid L calculated based on the torque T and the rotation speed N of the motor 208 with the viscosity estimated by the viscosity estimation unit 260.
  • the flow rate of the fluid L can also be obtained by correcting the estimated flow rate calculated based on the current value and power consumption of the motor 208 with the viscosity of the fluid L. That is, the flow rate estimation unit 261 estimates the flow rate of the fluid L based on at least one of the torque, current value, power consumption, and rotation speed of the motor 208 and the viscosity of the fluid L estimated by the viscosity estimation unit 260. .
  • the viscosity ⁇ of the fluid L may be estimated more accurately by using the torque, current value, and power consumption of the motor 208 together.
  • the impeller 204 is forcibly microvibrated by applying an excitation current intentionally superimposed on the excitation current applied to the electromagnet 216 of the magnetic bearing portion 201 for a predetermined time.
  • the viscosity ⁇ of the fluid L can be easily and accurately estimated based on the phase difference ⁇ between the impeller displacement generated by the minute vibration and the alternating current and the amplitude ratio a / b.
  • the viscosity ⁇ of the fluid L can be estimated more easily and reliably without being restricted by the structure of the apparatus.
  • the flow rate estimation accuracy is improved by reflecting the estimated viscosity value of the fluid L estimated by the viscosity estimating unit 260 in the flow rate estimation of the fluid L. For this reason, by applying the magnetic levitation pump device 200 of this embodiment to a medical device such as a blood pump or an artificial heart, the flow rate of the fluid L to be fed can be accurately adjusted without installing an extra flow meter or the like. Since it can be estimated well, the safety of the patient who uses the medical device can be secured.
  • FIG. 7 is a flow diagram showing an outline of a method for estimating the viscosity and flow rate of a fluid by a magnetic levitation pump device according to another embodiment of the present invention
  • FIG. 8 shows another embodiment of the present invention. It is a flowchart which shows the outline of the other aspect of the estimation method of the viscosity and flow volume of the fluid by the magnetic levitation type pump apparatus which concerns.
  • 7 shows a flow of a method for estimating the viscosity ⁇ based on the phase difference ⁇
  • FIG. 8 shows a flow of a method for estimating the viscosity ⁇ based on the amplitude ratio a / b.
  • an alternating current in a predetermined frequency range is applied to the excitation current applied to the electromagnet 216 provided in the magnetic bearing unit 201 for a predetermined time (for example, , Applied for several seconds and superposed on the excitation current (AC current application step S31).
  • a predetermined time for example, , Applied for several seconds and superposed on the excitation current (AC current application step S31).
  • the impeller 204 is forcibly vibrated by intentionally applying an alternating current for a predetermined time.
  • an alternating current having a frequency f at which the impeller can vibrate around the floating target position and an amplitude b within a range where the impeller 204 and the housing 202 do not contact each other is applied. That is, it is necessary to select an appropriate frequency f and amplitude b so that the impeller 204 does not come into contact with the housing 202 around the floating target position.
  • the impeller 204 does not respond and does not vibrate, so the viscosity estimation method according to this embodiment cannot be implemented. For this reason, in the low frequency range (for example, 400 Hz or less) where the impeller 204 vibrates, by adjusting the amplitude of the alternating current appropriately, the impeller 204 and the housing 202 are adjusted so as not to contact each other.
  • the low frequency range for example, 400 Hz or less
  • the frequency f of the alternating current to be applied is selected to be a frequency that is low enough to obtain the vibration amplitude a of the impeller 204,
  • the amplitude b of the alternating current needs to be adjusted within a range where the impeller 204 and the housing 202 do not contact each other.
  • the alternating current applied here may be an alternating current having a predetermined cycle such that the current value periodically fluctuates in the same manner as in the first embodiment described above.
  • the sine wave shown in FIG. 4A, the rectangular wave shown in FIG. 4B, the triangular wave shown in FIG. 4C, and the sawtooth wave shown in FIG. 4D are applicable.
  • the displacement of the impeller due to the vibration of the impeller 204 is detected by the displacement sensor 220 (impeller displacement detection step S32). Then, the phase of the impeller displacement caused by the vibration of the impeller 204 generated by the application of the alternating current is plotted and recorded (recording step S33). Thereafter, the phase difference ⁇ between the impeller displacement and the alternating current is calculated (calculation step S34), and the viscosity ⁇ of the fluid L is estimated based on the phase difference ⁇ (viscosity estimation step S35).
  • the viscosity ⁇ of the fluid L is estimated using the phase difference ⁇ or the amplitude ratio a / b. However, if at least one of them is used, the viscosity ⁇ can be estimated. Both may be used together to estimate the viscosity ⁇ of the fluid L with higher accuracy.
  • the torque and rotation speed of the motor 208 detected by the torque meter 224 and the fluid L estimated in the viscosity estimation step S45 is estimated.
  • the flow rate of the fluid L is estimated based on the viscosity ⁇ (flow rate estimation steps S37 and S47).
  • the flow rate of the fluid L is estimated by compensating the estimated flow rate obtained from the torque and the rotation speed of the motor 208 with the viscosity ⁇ of the fluid L estimated in the viscosity estimation steps S35 and S45. .
  • the excitation current to the electromagnet 216 is calculated so that the impeller 204 does not shake from the target position (center of rotation axis, etc.). .
  • the impeller 204 is forcibly vibrated by superimposing an alternating current having a constant frequency f on the excitation current for several seconds. Then, during the forced vibration of the impeller 204, the phase difference ⁇ or the amplitude ratio a / b between the alternating current I of the frequency f and the impeller displacement X is calculated.
  • the viscosity estimation method by the magnetic levitation pump apparatus 200 of the present embodiment can easily estimate the viscosity ⁇ of the fluid L without adding new hardware. Also, the viscosity estimation method by the magnetic levitation pump device 200 of the present embodiment is less dependent on the flow rate and does not need to block the flow rate, unlike the conventional method using the motor torque for viscosity estimation. Since there is no influence of loss, the fluid viscosity ⁇ can be accurately estimated. Furthermore, the viscosity estimation method using the magnetic levitation pump apparatus 200 according to the present embodiment does not affect the measurement accuracy of the viscosity ⁇ even if the gap between the impeller 204 and the housing 202 is large in principle. Accurate viscosity estimation is possible without being restricted by the above.
  • the accuracy in estimating the flow rate of the fluid L to be measured is improved by compensating with the viscosity estimated by the magnetic levitation pump device 200.
  • the viscosity estimation method and the flow rate estimation method by the magnetic levitation pump device 200 of this embodiment can be applied to various fields.
  • a conventional circulation system such as an artificial artificial heart that is difficult to install a flow meter
  • the error greatly increases or decreases depending on the working fluid viscosity.
  • the estimated viscosity value obtained by the viscosity estimation method by the magnetic levitation pump apparatus 200 of the present embodiment can be used for error correction of the flow rate estimation and applied to the flow rate estimation of the fluid L.
  • the state of the working fluid may be applied to online monitoring using the estimated viscosity value itself.
  • blood coagulation monitoring such as blood clot detection and prediction in blood pumps and artificial hearts, and quality control of ultrapure water in semiconductor and food manufacturing. That is, it can be applied as a magnetic levitation type continuous flow blood pump for extracorporeal circulation, a magnetic levitation type artificial heart for implantation in the body, and an ultra-clean magnetic levitation type pump for semiconductor manufacturing and food manufacturing.
  • the present invention is applied to a magnetic levitation pump device including a centrifugal impeller.
  • the present invention is also applicable to a magnetic levitation pump device including an axial flow type impeller 124 (see FIG. 5D) and a mixed flow type impeller 134 (see FIG. 5E). That is, the magnetic levitation pump device 200 of the present embodiment can be applied to a magnetic levitation type continuous flow pump regardless of whether it is a centrifugal type, an axial flow type, or a diagonal flow type, as in the first embodiment.
  • the present embodiment is a magnetic levitation pump apparatus 100 having the configuration shown in FIG. It was used. The configuration is omitted because it has been described above.
  • the impeller of the present embodiment is passively supported by a restoring force due to electromagnetic force in the axial direction (vertical direction), but in the radial direction (horizontal direction), the magnet of a permanent magnet built in the rotor of the impeller.
  • the suction force works and is attracted to the wall surface of the housing. Therefore, in this embodiment, the impeller is stably levitated by feeding back the impeller position information with a displacement sensor and adjusting the electromagnetic force in the radial direction with an electromagnet.
  • FIG. 9 is an explanatory diagram showing the relationship between the impeller displacement waveform and the phase and amplitude of the applied alternating current waveform in an example of fluid viscosity estimation by the magnetic levitation pump device according to one embodiment of the present invention.
  • the impeller levitation target position is changed to a sinusoidal shape by the applied current control unit in the CPU (calculation unit) in a state where the impeller is stably magnetically levitated around the rotation axis, as shown in the lower graph of FIG.
  • An electromagnet current which is an alternating current, is supplied from the control unit and superimposed on the exciting current to the electromagnet.
  • the impeller also vibrates in a sine wave like the applied alternating current, as shown in the graph on the upper end side of FIG.
  • the phase difference ⁇ between the alternating current (electromagnet current) I and the impeller displacement X applied at this time is obtained by the calculation unit.
  • an amplitude ratio a / b which is a ratio of the amplitude a of the impeller displacement and the amplitude b of the alternating current is also obtained by the calculation unit.
  • FIG. 10 is an explanatory diagram showing the relationship between the amplitude ratio and phase difference between the impeller displacement waveform and the applied current waveform and the frequency of the applied current in this example.
  • the relationship between the amplitude ratio a / b and the frequency of the impeller vibration generated by applying the applied AC current is shown in a graph on the upper side of FIG. 10, and the relationship between the phase difference ⁇ and the frequency of the vibration is shown on the lower side of FIG. Is shown in the graph.
  • both the amplitude ratio a / b and the phase difference ⁇ oscillate.
  • the frequency is low
  • the sensitivity to the viscosity ⁇ is low.
  • the sensitivity of the amplitude ratio a / b and the phase difference ⁇ with respect to the viscosity ⁇ is improved when the frequency of vibration becomes a large value of about 30 Hz or more.
  • FIG. 11 shows the relationship between the viscosity and the phase difference ⁇ at a vibration frequency of 70 Hz.
  • the impeller rotational speed was 2000 rpm
  • the flow rate was 5 L / min
  • A 0 ⁇ + B 0 (3)
  • the constants A 0 and B 0 differ for each impeller rotational speed, the constants A 0 and B 0 are identified at each rotational speed, or the rotational speed is set to a specific value (this time, 2000 rpm).
  • the present example is a magnetic levitation pump configured as shown in FIG. 6 in order to demonstrate the operation and effect of the viscosity estimation method by the magnetic levitation pump apparatus 200 (see FIG. 6) according to another embodiment of the present invention.
  • An apparatus 200 was used. Specifically, a flow meter is attached to the outflow portion 202d of the magnetic levitation pump device 200, the working fluid discharged from the outflow portion 202d is supplied to a reservoir provided in the thermostatic bath, and the magnetic levitation pump is supplied from the reservoir. The relationship between the measured flow rate and the estimated flow rate was examined by returning the working fluid to the inflow portion 202c of the apparatus 200.
  • the configuration of the magnetic levitation pump device 200 has been described above, and will not be described.
  • glycerin aqueous solutions having different viscosities described in Table 1 below are used as working fluids for which the flow rate is to be estimated, and are fed by a magnetic levitation pump device 200 according to another embodiment of the present invention.
  • the flow rate of the working fluid was measured 8 times, 2 times each for the case of no viscosity compensation and 2 for the estimated viscosity.
  • the flow rate is estimated based on the equation (2) by compensating the viscosity ⁇ of the above-described equation (2) with the estimated viscosity ⁇ e calculated by the following equation (4). did.
  • FIG. 14 is an explanatory diagram showing the relationship between the measured flow rate and the estimated flow rate in an example of fluid flow rate estimation by the magnetic levitation pump device 200 according to another embodiment of the present invention.
  • the horizontal axis indicates the actual flow rate Q actually measured by the flow meter
  • the vertical axis indicates the estimated flow rate Qe.
  • Magnetic levitation pump device 101, 201 Magnetic bearing part, 102, 202 Housing, 102a, 202a Side wall part, 102b, 202b Bottom part, 102b1, 202b1 Convex part, 102c, 202c Inflow part, 102d, 202d Outflow part, 104, 204 (centrifugal type) impeller, 106, 206 rotor, 106a, 206a outer peripheral surface, 106b, 206b concave portion, 106b1, 206b1 inner peripheral surface, 108, 208 motor (rotation drive unit), 110, 112, 114, 210, 212, 214 Permanent magnet, 113, 213 Drive shaft, 116, 216 Electromagnet, 118, 218 Current sensor, 120, 220 Displacement sensor, 122, 222 Casing, 124 Axial flow type impeller, 134 Diagonal flow type impeller, 150, 2 0 control unit, 152, 252 CPU (calculation unit), 154

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

The present invention makes it possible to more accurately estimate fluid viscosity without being constrained with respect to the structure of a device. A magnetic levitation-type pump device (100) for transferring a fluid (L) by magnetically levitating and rotating an impeller (104), wherein the magnetic levitation-type pump device (100) is provided with: a magnetic bearing unit (101) for supporting the impeller in a non-contact manner by magnetic force; an applied current control unit (154) for controlling a current applied to electromagnets (116) provided to the magnetic bearing unit; a displacement sensor (118) for detecting displacement of the impeller; a calculation unit (158) for calculating the phase difference between the impeller displacement and an alternating current, and/or the amplitude ratio between the impeller displacement and the alternating current, the impeller displacement being due to the vibration of the impeller and being detected by the displacement sensor, when the applied current control unit controls the applied current so as to cause the alternating current in a predetermined frequency range to overlap with an excitation current to the electromagnets; and a viscosity estimation unit (160) for estimating the viscosity of the fluid on the basis of the phase difference and/or amplitude ratio calculated at the calculation unit.

Description

磁気浮上式ポンプ装置、磁気浮上式ポンプ装置による流体の粘度推定方法、及び磁気浮上式ポンプ装置による流体の流量推定方法Magnetic levitation pump device, fluid viscosity estimation method using magnetic levitation pump device, and fluid flow rate estimation method using magnetic levitation pump device
 本発明は、磁気軸受部に非接触で支持されるインペラを電磁力で浮上させて回転させる磁気浮上式ポンプ装置、磁気浮上式ポンプ装置による流体の粘度推定方法、及び磁気浮上式ポンプ装置による流体の流量推定方法に関する。本出願は、日本国において2014年3月11日に出願された日本特許出願番号特願2014-047493を基礎として優先権を主張するものであり、当該出願を参照することにより、本出願に援用される。 The present invention relates to a magnetic levitation pump device in which an impeller supported in a non-contact manner on a magnetic bearing portion is levitated and rotated by electromagnetic force, a fluid viscosity estimation method using a magnetic levitation pump device, and a fluid using a magnetic levitation pump device The present invention relates to a flow rate estimation method. This application claims priority on the basis of Japanese Patent Application No. 2014-047493 filed on March 11, 2014 in Japan, and is incorporated herein by reference. Is done.
 血液ポンプ等の医療機器や、半導体、食品製造分野において、磁気軸受部に非接触で支持されるインペラを電磁力で浮上させながら回転させて、気体、液体等の各種流体を移送させる磁気浮上式ポンプ装置が使用されている。特に、移送させる流体が液体の場合には、その粘度により当該ポンプ装置の流体移送性能に影響を及ぼすので、その性能を維持するためにも、その粘度を推定して把握することが必要となる。 Magnetic levitation type that moves various fluids such as gas and liquid by rotating an impeller that is supported in a non-contact manner by magnetic force in medical equipment such as blood pumps, semiconductors, and food manufacturing fields. A pump device is used. In particular, when the fluid to be transferred is a liquid, the viscosity affects the fluid transfer performance of the pump device. Therefore, in order to maintain the performance, it is necessary to estimate and grasp the viscosity. .
 磁気浮上式ポンプ装置で移送させる流体の粘度を推定するために、粘度の増加に伴ってトルクも増加することから、従来、インペラ回転用のモータトルクから粘度を推定していた。しかしながら、モータトルクから粘度を推定するには、装置のサイズやコスト等の点から、当該ポンプ装置にトルク計を設置することが困難となっていた。このため、モータの電流や消費電力からトルクを間接的に測定して、その粘度推定が行われていた。 In order to estimate the viscosity of the fluid to be transferred by the magnetic levitation pump device, the torque increases as the viscosity increases, so that the viscosity is conventionally estimated from the motor torque for rotating the impeller. However, in order to estimate the viscosity from the motor torque, it has been difficult to install a torque meter in the pump device in view of the size and cost of the device. For this reason, the viscosity is estimated by indirectly measuring the torque from the current and power consumption of the motor.
 しかしながら、電流や消費電力によるトルクの間接的測定による粘度推定では、軸受損失等が誤差要因となり、高精度な粘度推定が困難であった。特別な粘度計を用いることなく、液体粘度を容易かつ確実に算出できる粘度算出機能を備えた遠心式液体ポンプ装置として、特許文献1には、インペラの浮上位置を回転軸中心からハウジング壁近傍までずらすことによって、その時のモータ電流変化量から粘度を推定する手法が開示されている。 However, in the viscosity estimation based on the indirect measurement of torque based on the current and power consumption, bearing loss and the like are an error factor, and it is difficult to estimate the viscosity with high accuracy. As a centrifugal liquid pump device having a viscosity calculation function that can easily and reliably calculate the liquid viscosity without using a special viscometer, Patent Document 1 discloses that the impeller is floated from the rotation axis center to the vicinity of the housing wall. A technique for estimating the viscosity from the amount of change in motor current at that time by shifting is disclosed.
特開平11-76394号公報Japanese Patent Laid-Open No. 11-76394
 磁気軸受部に非接触でインペラを回転支持する磁気浮上式ポンプが安定した運転を維持するためには、外乱等が発生した際に、インペラの破損や摩耗等を防ぐ必要があることから、インペラを収容するハウジングと当該インペラとの接触を避ける必要がある。このため、インペラとハウジングとの間にある程度の隙間が設けられていることが好ましい。しかしながら、特許文献1に開示されている遠心式液体ポンプ装置は、インペラとハウジングとの隙間を十分に狭くしないと、モータ電流変化によるトルク変化の計測が困難となる。すなわち、流体の粘度推定の精度を高めるためには、ポンプ装置の構造上の制約が大きい。 In order to maintain a stable operation of the magnetic levitation pump that supports the impeller in a non-contact manner with the magnetic bearing, it is necessary to prevent the impeller from being damaged or worn when disturbances occur. It is necessary to avoid contact between the housing for housing the impeller and the impeller. For this reason, it is preferable that a certain gap is provided between the impeller and the housing. However, in the centrifugal liquid pump device disclosed in Patent Document 1, it is difficult to measure the torque change due to the motor current change unless the gap between the impeller and the housing is sufficiently narrow. That is, in order to increase the accuracy of fluid viscosity estimation, there are significant structural restrictions on the pump device.
 本発明は、上記課題に鑑みてなされたものであり、装置の構造上の制約を受けることなく、より容易かつ確実に流体の粘度推定の可能な、新規かつ改良された磁気浮上式ポンプ装置、磁気浮上式ポンプ装置による流体の粘度推定方法、及び磁気浮上式ポンプ装置による流体の流量推定方法を提供することを目的とする。 The present invention has been made in view of the above problems, and a new and improved magnetic levitation pump device capable of estimating the viscosity of a fluid more easily and reliably without being restricted by the structure of the device, It is an object of the present invention to provide a fluid viscosity estimation method using a magnetic levitation pump device and a fluid flow rate estimation method using a magnetic levitation pump device.
 本発明の一態様は、流体の流入部と流出部を有するハウジング内でインペラを磁気浮上させて回転させながら前記流体を移送する磁気浮上式ポンプ装置であって、前記インペラと磁気力で非接触に結合して該インペラを回転させる回転駆動部と、前記インペラを前記磁気力により非接触に支持する磁気軸受部と、前記磁気軸受部の前記インペラのロータに内蔵する永久磁石と対向する位置に設けられる電磁石への印加電流を制御する印加電流制御部と、前記印加電流の大きさを検出する電流センサと、前記インペラの変位を検出する変位センサと、前記印加電流制御部が所定の周波数範囲の交流電流を所定の時間、前記電磁石への励磁電流と重畳させて印加するように前記印加電流を制御した際に、前記変位センサで検出した前記インペラの振動によるインペラ変位と前記交流電流の位相差又は前記インペラ変位と前記交流電流の振幅比の少なくとも何れかを算出する算出部と、前記算出部で算出した前記位相差又は前記振幅比の少なくとも何れかに基づいて、前記流体の粘度を推定する粘度推定部と、を備えることを特徴とする。 One aspect of the present invention is a magnetically levitated pump device that transfers the fluid while magnetically levitating and rotating an impeller in a housing having a fluid inflow portion and an outflow portion, and is non-contact with the impeller by magnetic force A rotary drive unit coupled to the impeller to rotate the impeller, a magnetic bearing unit supporting the impeller in a non-contact manner by the magnetic force, and a position facing the permanent magnet built in the rotor of the impeller of the magnetic bearing unit. An applied current control unit that controls an applied current to the electromagnet provided, a current sensor that detects the magnitude of the applied current, a displacement sensor that detects displacement of the impeller, and the applied current control unit within a predetermined frequency range The impeller detected by the displacement sensor when the applied current is controlled so as to be superimposed on the excitation current to the electromagnet for a predetermined time. A calculation unit that calculates at least one of a phase difference between the impeller displacement due to vibration and the alternating current or an amplitude ratio between the impeller displacement and the alternating current, and at least one of the phase difference or the amplitude ratio calculated by the calculation unit And a viscosity estimation unit that estimates the viscosity of the fluid.
 本発明の一態様によれば、磁気軸受部の電磁石に印加する励磁電流に所定の時間、交流電流を重畳させるように印加することによって、インペラを強制的に振動させられるので、そのインペラ変位と交流電流の位相差や振幅比に基づいて、容易に精度よく流体の粘度を推定できる。 According to one aspect of the present invention, the impeller is forcibly vibrated by applying an alternating current so as to be superimposed on the exciting current applied to the electromagnet of the magnetic bearing portion for a predetermined time. Based on the phase difference and amplitude ratio of the alternating current, the viscosity of the fluid can be estimated easily and accurately.
 このとき、本発明の一態様では、前記印加電流制御部は、前記交流電流を印加して前記励磁電流と重畳させる際に、前記インペラが浮上目標位置を中心に振動可能な周波数と、前記インペラと前記ハウジングが接触しない範囲内の振幅を有する交流電流を印加することとしてもよい。 At this time, according to an aspect of the present invention, the applied current control unit is configured to apply a frequency at which the impeller can vibrate around a levitation target position when the alternating current is applied and superimposed on the excitation current, and the impeller Alternatively, an alternating current having an amplitude within a range where the housing does not contact may be applied.
 このようにすれば、インペラの振動を微振動に抑えられるので、磁気浮上式ポンプ装置の安定した運転状態を維持しながら、移送する流体の粘度を確実に推定することができる。 In this way, since the vibration of the impeller can be suppressed to a slight vibration, the viscosity of the fluid to be transferred can be reliably estimated while maintaining a stable operation state of the magnetic levitation pump device.
 また、本発明の一態様では、前記周波数は、下記の式により算出された値の近傍値であることとしてもよい。 Further, in one aspect of the present invention, the frequency may be a value close to a value calculated by the following equation.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 このようにすれば、交流電流を印加した際に、インペラとハウジングが接触しない範囲でインペラを微振動させられるので、磁気浮上式ポンプ装置の安定した運転状態を維持しながら、移送する流体の粘度を確実に推定することができる。 In this way, when an alternating current is applied, the impeller can be slightly vibrated in a range where the impeller and the housing do not contact each other, so that the viscosity of the fluid to be transferred is maintained while maintaining a stable operation state of the magnetic levitation pump device. Can be reliably estimated.
 また、本発明の一態様では、前記粘度推定部は、前記位相差と前記粘度の関係に係る事前の実験データ、又は予め理論的に求めた前記位相差と前記粘度の関係式に基づいて、前記粘度を推定することとしてもよい。 Moreover, in one aspect of the present invention, the viscosity estimation unit is based on prior experimental data relating to the relationship between the phase difference and the viscosity, or a relational expression between the phase difference and the viscosity obtained theoretically in advance. The viscosity may be estimated.
 このようにすれば、交流電流を励磁電流に重畳させて印加することによって発生するインペラの振動によるインペラ変位の位相差に基づいて、精度よく流体の粘度を推定することができる。 In this way, the viscosity of the fluid can be accurately estimated based on the phase difference of the impeller displacement caused by the impeller vibration generated by applying the alternating current superimposed on the exciting current.
 また、本発明の一態様では、前記インペラは、遠心型、軸流型、又は斜流型の何れかの形状であることとしてもよい。 Moreover, in one aspect of the present invention, the impeller may have any shape of a centrifugal type, an axial flow type, or a diagonal flow type.
 このようにすれば、遠心型、軸流型、又は斜流型を問わず、磁気浮上式の連続流ポンプに適用できる。 In this way, it can be applied to a magnetic levitation type continuous flow pump regardless of centrifugal type, axial flow type or mixed flow type.
 また、本発明の一態様では、少なくとも前記回転駆動部のトルク、電流値、消費電力、及び回転数の何れかと、前記粘度推定部で推定された前記粘度に基づいて、前記流体の流量を推定する流量推定部を更に備えることとしてもよい。 In one aspect of the present invention, the flow rate of the fluid is estimated based on at least one of the torque, current value, power consumption, and rotation speed of the rotation drive unit and the viscosity estimated by the viscosity estimation unit. It is good also as providing the flow volume estimation part to perform.
 このようにすれば、推定された粘度による補償で流体の流量を推定する際における精度が向上する。 In this way, accuracy in estimating the flow rate of the fluid is improved by compensation with the estimated viscosity.
 また、本発明の他の態様は、流体の流入部と流出部を有するハウジング内でインペラを磁気浮上させて回転させながら前記流体を移送する磁気浮上式ポンプ装置による流体の粘度推定方法であって、前記インペラのロータに内蔵する永久磁石と対向する位置に設けられる電磁石に印加する励磁電流に所定の周波数範囲の交流電流を印加して重畳させる交流電流印加工程と、前記交流電流を印加後に前記インペラの振動によるインペラ変位を検出するインペラ変位検出工程と、前記振動による前記インペラ変位の位相又は振幅の少なくとも何れかを記録する記録工程と、前記インペラ変位と前記交流電流の位相差又は振幅比の少なくとも何れかを算出する算出工程と、前記位相差又は前記振幅比の少なくとも何れかに基づいて、前記流体の粘度を推定する粘度推定工程と、を含むことを特徴とする。 According to another aspect of the present invention, there is provided a fluid viscosity estimation method using a magnetic levitation pump device that transfers a fluid while magnetically levitating and rotating an impeller in a housing having a fluid inflow portion and an outflow portion. An alternating current application step of applying and superimposing an alternating current in a predetermined frequency range on an exciting current applied to an electromagnet provided at a position facing a permanent magnet built in the rotor of the impeller, and after applying the alternating current, An impeller displacement detecting step for detecting an impeller displacement due to the vibration of the impeller, a recording step for recording at least one of a phase or an amplitude of the impeller displacement due to the vibration, a phase difference or an amplitude ratio of the impeller displacement and the alternating current Based on at least one of the phase difference or the amplitude ratio, and a calculation step for calculating at least one of the phase difference and the amplitude ratio. Characterized in that it comprises a and a viscosity estimation step of estimating.
 本発明の他の態様によれば、磁気軸受部の電磁石に印加する励磁電流に所定の時間、交流電流を重畳させるように印加することによって、インペラを意図的に微振動させて、そのインペラ変位と交流電流の位相差や振幅比に基づいて、容易に精度よく流体の粘度を推定できる。 According to another aspect of the present invention, the impeller is intentionally slightly vibrated by applying an alternating current so as to be superimposed on the exciting current applied to the electromagnet of the magnetic bearing portion for a predetermined time, and the impeller displacement The viscosity of the fluid can be estimated easily and accurately based on the phase difference and amplitude ratio of the alternating current.
 また、本発明の更に他の態様は、流体の流入部と流出部を有するハウジング内でインペラを磁気浮上させて回転させながら前記流体を移送する磁気浮上式ポンプ装置による流体の流量推定方法であって、前記インペラのロータに内蔵する永久磁石と対向する位置に設けられる電磁石に印加する励磁電流に所定の周波数範囲の交流電流を印加して重畳させる交流電流印加工程と、前記交流電流を印加後に前記インペラの振動によるインペラ変位を検出するインペラ変位検出工程と、前記振動による前記インペラ変位の位相又は振幅の少なくとも何れかを記録する記録工程と、前記インペラ変位と前記交流電流の位相差又は振幅比の少なくとも何れかを算出する算出工程と、前記位相差又は前記振幅比の少なくとも何れかに基づいて、前記流体の粘度を推定する粘度推定工程と、少なくとも前記インペラを回転させる回転駆動部のトルク、電流値、消費電力、及び回転数の何れかと、前記粘度推定工程で推定された前記粘度に基づいて、前記流体の流量を推定する流量推定工程と、を含むことを特徴とする。 Still another aspect of the present invention is a method for estimating a fluid flow rate by a magnetic levitation pump device that transfers a fluid while magnetically levitating and rotating an impeller in a housing having a fluid inflow portion and an outflow portion. An alternating current applying step of applying an alternating current in a predetermined frequency range to superimpose an exciting current applied to an electromagnet provided at a position facing a permanent magnet built in the rotor of the impeller, and after applying the alternating current An impeller displacement detecting step for detecting an impeller displacement due to the vibration of the impeller, a recording step for recording at least one of a phase or an amplitude of the impeller displacement due to the vibration, a phase difference or an amplitude ratio between the impeller displacement and the alternating current And calculating the fluid based on at least one of the phase difference and the amplitude ratio. Based on the viscosity estimation step of estimating the viscosity, at least one of the torque, current value, power consumption, and rotation speed of the rotation drive unit that rotates the impeller, and the viscosity estimated in the viscosity estimation step, the fluid And a flow rate estimating step for estimating the flow rate of.
 本発明の更に他の態様によれば、磁気浮上式ポンプ装置で推定された粘度を活用することによって、流体の流量を推定する際における精度が向上する。 According to still another aspect of the present invention, the accuracy in estimating the fluid flow rate is improved by utilizing the viscosity estimated by the magnetic levitation pump device.
 このとき、本発明の更に他の一態様では、前記流量推定工程では、前記回転駆動部の前記トルクと前記回転数によって求められる推定流量を前記粘度推定工程で推定された前記粘度で補償することによって、前記流量を推定することとしてもよい。 At this time, in still another aspect of the present invention, in the flow rate estimation step, the estimated flow rate obtained from the torque of the rotation drive unit and the rotation speed is compensated by the viscosity estimated in the viscosity estimation step. It is good also as estimating the said flow volume by.
 このようにすれば、推定粘度で補償することによって、測定対象となる流体の流量を精度よく推定することができる。 In this way, it is possible to accurately estimate the flow rate of the fluid to be measured by compensating with the estimated viscosity.
 以上説明したように本発明によれば、新たなハードウェアを追加することなく、装置の構造上の制約を受けることなく、より容易かつ確実に精度よく流体の粘度を推定できる。また、当該粘度を利用して、より容易かつ確実に精度よく流体の流量を推定できる。 As described above, according to the present invention, the viscosity of the fluid can be estimated more easily and reliably with high accuracy without adding new hardware and without being restricted by the structure of the apparatus. In addition, the flow rate of the fluid can be estimated more easily and reliably using the viscosity.
図1は、本発明の一実施形態に係る磁気浮上式ポンプ装置の概略構成を示すブロック図である。FIG. 1 is a block diagram showing a schematic configuration of a magnetic levitation pump apparatus according to an embodiment of the present invention. 図2は、本発明の一実施形態に係る磁気浮上式ポンプ装置による流体の粘度推定方法の概略を示すフロー図である。FIG. 2 is a flowchart showing an outline of a fluid viscosity estimation method by the magnetic levitation pump device according to the embodiment of the present invention. 図3は、本発明の一実施形態に係る磁気浮上式ポンプ装置による流体の粘度推定方法の他の態様の概略を示すフロー図である。FIG. 3 is a flowchart showing an outline of another aspect of the fluid viscosity estimation method by the magnetic levitation pump device according to the embodiment of the present invention. 図4A乃至図4Dは、本発明の一実施形態に係る磁気浮上式ポンプ装置による流体の粘度推定の際に印加する交流電流の波形図の一例である。4A to 4D are examples of waveform diagrams of alternating current applied when the viscosity of the fluid is estimated by the magnetic levitation pump device according to the embodiment of the present invention. 図5A乃至図5Eは、本発明の一実施形態に係る磁気浮上式ポンプ装置に備わるインペラの構成例を示す説明図である。5A to 5E are explanatory views showing a configuration example of an impeller provided in a magnetic levitation pump device according to an embodiment of the present invention. 図6は、本発明の他の一実施形態に係る磁気浮上式ポンプ装置の概略構成を示すブロック図である。FIG. 6 is a block diagram showing a schematic configuration of a magnetic levitation pump device according to another embodiment of the present invention. 図7は、本発明の他の一実施形態に係る磁気浮上式ポンプ装置による流体の粘度及び流量の推定方法の概略を示すフロー図である。FIG. 7 is a flowchart showing an outline of a method for estimating the viscosity and flow rate of a fluid by a magnetic levitation pump device according to another embodiment of the present invention. 図8は、本発明の他の一実施形態に係る磁気浮上式ポンプ装置による流体の粘度及び流量の推定方法の他の態様の概略を示すフロー図である。FIG. 8 is a flowchart showing an outline of another aspect of the fluid viscosity and flow rate estimation method by the magnetic levitation pump device according to another embodiment of the present invention. 図9は、本発明の一実施形態に係る磁気浮上式ポンプ装置による流体の粘度推定の実施例におけるインペラ変位の波形と印加電流の波形との位相及び振幅の関係を示す説明図である。FIG. 9 is an explanatory diagram showing the phase and amplitude relationship between the waveform of the impeller displacement and the waveform of the applied current in an example of fluid viscosity estimation by the magnetic levitation pump device according to the embodiment of the present invention. 図10は、本実施例におけるインペラ変位の波形と印加電流の波形との振幅比及び位相差と印加電流の周波数との関係を示す説明図である。FIG. 10 is an explanatory diagram showing the relationship between the amplitude ratio and phase difference between the waveform of the impeller displacement and the waveform of the applied current and the frequency of the applied current in this example. 図11は、本実施例における振動周波数70Hzでの粘度と位相差の関係を示す説明図である。FIG. 11 is an explanatory diagram showing the relationship between the viscosity and the phase difference at a vibration frequency of 70 Hz in this example. 図12は、本実施例における振動周波数70Hzでの流体の流量と位相差との関係を示す説明図である。FIG. 12 is an explanatory diagram showing the relationship between the flow rate of the fluid and the phase difference at the vibration frequency of 70 Hz in this embodiment. 図13は、本実施例における推定粘度と実測粘度との関係を示す説明図である。FIG. 13 is an explanatory diagram showing the relationship between the estimated viscosity and the actually measured viscosity in this example. 図14は、本発明の他の一実施形態に係る磁気浮上式ポンプ装置による流体の流量推定の実施例における実測流量と推定流量との関係を示す説明図である。FIG. 14 is an explanatory diagram showing the relationship between the actually measured flow rate and the estimated flow rate in an example of fluid flow rate estimation by the magnetic levitation pump device according to another embodiment of the present invention.
 以下、本発明の好適な実施の形態について詳細に説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail. The present embodiment described below does not unduly limit the contents of the present invention described in the claims, and all the configurations described in the present embodiment are essential as means for solving the present invention. Not necessarily.
(第1の実施形態)
 まず、本発明の一実施形態に係る磁気浮上式ポンプ装置の構成について、図面を使用しながら説明する。図1は、本発明の一実施形態に係る磁気浮上式ポンプ装置の概略構成を示すブロック図である。
(First embodiment)
First, the configuration of a magnetic levitation pump device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a schematic configuration of a magnetic levitation pump apparatus according to an embodiment of the present invention.
 本発明の一実施形態に係る磁気浮上式ポンプ装置100は、駆動源(回転駆動部)となるモータ108の駆動軸113とインペラ104とを磁気カップリングによって非接触に結合してモータ108の駆動力を伝達する非接触型の磁気浮上式連続流ポンプである。また、本実施形態の磁気浮上式ポンプ装置100は、磁気軸受部101の電磁石116に励磁電流を印加することによって、磁気浮上したインペラ104の中心が当該インペラ104の回転駆動する際における回転中心軸A1と一致する浮上目標位置で回転するように、位置制御を行っている。 The magnetic levitation pump apparatus 100 according to an embodiment of the present invention is configured to drive the motor 108 by coupling the drive shaft 113 of the motor 108 serving as a drive source (rotation drive unit) and the impeller 104 in a non-contact manner by magnetic coupling. It is a non-contact type magnetic levitation type continuous flow pump that transmits force. In addition, the magnetic levitation pump apparatus 100 according to the present embodiment applies the excitation current to the electromagnet 116 of the magnetic bearing unit 101 so that the center of the magnetically levitated impeller 104 rotates when the impeller 104 rotates. Position control is performed so as to rotate at the flying target position that coincides with A1.
 本実施形態では、インペラ104は、ハウジング102内で磁気浮上しながらモータ108の駆動軸113と磁気カップリングにより非接触に結合して、ハウジング102内で磁気浮上しながら回転する遠心型インペラである。図1に示すように、インペラ104のロータ106の底面中心側は、凹部106bとなっており、当該凹部106bにハウジング102の底面102bの中心側に設けられた凸部102b1と対向する構成となっている。 In this embodiment, the impeller 104 is a centrifugal impeller that is magnetically levitated in the housing 102 and is coupled in a non-contact manner with the drive shaft 113 of the motor 108 by magnetic coupling and rotates while magnetically levitating in the housing 102. . As shown in FIG. 1, the center of the bottom surface of the rotor 106 of the impeller 104 is a concave portion 106 b, and the concave portion 106 b is opposed to the convex portion 102 b 1 provided on the central side of the bottom surface 102 b of the housing 102. ing.
 インペラ104を収容するハウジング102の頂部側には、流体Lの流入部102cが設けられ、ハウジング102の側壁102aの何れかの部位に流体Lの流出部102dが設けられている。このため、ハウジング102内でインペラ104が磁気浮上しながら回転することによって、流体Lを流入部102cから流出部102dに移送される。 The fluid L inflow portion 102 c is provided on the top side of the housing 102 that houses the impeller 104, and the fluid L outflow portion 102 d is provided at any part of the side wall 102 a of the housing 102. For this reason, when the impeller 104 rotates in the housing 102 while magnetically levitating, the fluid L is transferred from the inflow portion 102c to the outflow portion 102d.
 また、本実施形態では、磁気軸受部101が磁気力によってインペラ104を非接触で支持している。磁気軸受部101には、インペラ104のロータ106の外周面106a側に内蔵されている永久磁石110と対向する位置に電磁石116が設けられている。当該電磁石116に励磁電流を印加することによって、インペラ104の中心が回転中心軸A1に配置されるように調整される。 In this embodiment, the magnetic bearing portion 101 supports the impeller 104 in a non-contact manner by a magnetic force. In the magnetic bearing portion 101, an electromagnet 116 is provided at a position facing the permanent magnet 110 built in the outer peripheral surface 106 a side of the rotor 106 of the impeller 104. By applying an exciting current to the electromagnet 116, the center of the impeller 104 is adjusted so as to be arranged on the rotation center axis A1.
 すなわち、水平方向に関しては、インペラ104は、電磁石116への励磁電流の印加によって位置制御される。一方、鉛直方向に関しては、インペラ104は、位置制御されずに、磁気カップリングを構成する磁気回路の鉛直方向に作用する復元力によって、インペラ104の浮上状態が受動的に保たれている。 That is, with respect to the horizontal direction, the position of the impeller 104 is controlled by applying an exciting current to the electromagnet 116. On the other hand, with respect to the vertical direction, the impeller 104 is passively maintained in the floating state by the restoring force acting in the vertical direction of the magnetic circuit constituting the magnetic coupling without being controlled in position.
 さらに、本実施形態では、磁気軸受部101のケーシング122内には、インペラ104の駆動源となるモータ108が設けられ、当該モータ108の駆動軸113の先端側外周面に永久磁石114が設けられている。そして、当該永久磁石114と引力を作用する永久磁石112がインペラ104のロータ106の凹部106bの内周面106b1に設けられている。これらの永久磁石112、114が磁気カップリングによって結合されることによって、モータ108の駆動力がインペラ104に非接触で伝達される。モータ108の駆動は、磁気浮上式ポンプ装置100の各種制御を行う制御部150に設けられるモータ制御部164によって制御される。 Furthermore, in the present embodiment, a motor 108 serving as a drive source for the impeller 104 is provided in the casing 122 of the magnetic bearing portion 101, and a permanent magnet 114 is provided on the outer peripheral surface on the front end side of the drive shaft 113 of the motor 108. ing. And the permanent magnet 112 which acts on the said permanent magnet 114 and attractive force is provided in the internal peripheral surface 106b1 of the recessed part 106b of the rotor 106 of the impeller 104. As shown in FIG. When these permanent magnets 112 and 114 are coupled by magnetic coupling, the driving force of the motor 108 is transmitted to the impeller 104 in a non-contact manner. The driving of the motor 108 is controlled by a motor control unit 164 provided in a control unit 150 that performs various controls of the magnetic levitation pump device 100.
 また、本実施形態では、磁気軸受部101の電磁石116への印加電流は、印加電流制御部154によって制御される。具体的には、印加電流制御部154は、インペラ104が回転軸中心A1に浮上するように、インペラ104の変位を検出する変位センサ120の信号を制御部150の演算部152にフィードバックして、適切な電流値を演算して電磁石116に供給するように制御している。例えば、外乱等によりインペラ104の位置がずれた場合に、印加電流制御部154は、インペラ104が回転軸中心A1で回転可能な浮上目標位置に戻るように、適宜、励磁電流の大きさを調整するように制御する。 In the present embodiment, the applied current to the electromagnet 116 of the magnetic bearing unit 101 is controlled by the applied current control unit 154. Specifically, the applied current control unit 154 feeds back a signal of the displacement sensor 120 that detects the displacement of the impeller 104 to the calculation unit 152 of the control unit 150 so that the impeller 104 floats on the rotation axis center A1. An appropriate current value is calculated and controlled to be supplied to the electromagnet 116. For example, when the position of the impeller 104 is displaced due to disturbance or the like, the applied current control unit 154 appropriately adjusts the magnitude of the excitation current so that the impeller 104 returns to the floating target position that can rotate about the rotation axis center A1. Control to do.
 変位センサ120は、例えば、環状に配列された複数の電磁石116の間の何れかに設けられ、ロータ106の外周面106aを検出することによってインペラ104の位置を検出するセンサであり、渦電流センサ等で構成される。また、印加電流の大きさは、電磁石116と印加電流制御部154との間に設けられる電流センサ118によって検出される。なお、電磁石116に印加する励磁電流は、印加電流制御部154の制御の下、アンプやインバータ等の印加電流調整部162によって調整される。 The displacement sensor 120 is a sensor that is provided, for example, between any of a plurality of electromagnets 116 arranged in an annular shape and detects the position of the impeller 104 by detecting the outer peripheral surface 106a of the rotor 106, and is an eddy current sensor. Etc. The magnitude of the applied current is detected by a current sensor 118 provided between the electromagnet 116 and the applied current control unit 154. The exciting current applied to the electromagnet 116 is adjusted by the applied current adjusting unit 162 such as an amplifier or an inverter under the control of the applied current control unit 154.
 本発明者は、前述した本発明の目的を達成するために鋭意検討を重ねた結果、本実施形態の磁気浮上式ポンプ装置100の磁気軸受部101に設けられる電磁石116に意図的に交流電流を印加して、強制的にインペラ104を振動させた際に発生するインペラ変位と印加した交流電流との位相差θが作動流体の粘度μと相関性があることを見出した。また、その際のインペラ変位の振幅aと印加した交流電流の振幅bの振幅比a/bと当該粘度μとも相関性があることを見出した。 As a result of intensive studies to achieve the above-described object of the present invention, the present inventor has intentionally applied an alternating current to the electromagnet 116 provided in the magnetic bearing portion 101 of the magnetic levitation pump device 100 of the present embodiment. It has been found that the phase difference θ between the impeller displacement generated when the impeller 104 is forcibly vibrated by application and the applied alternating current is correlated with the viscosity μ of the working fluid. It was also found that there is a correlation between the amplitude μ of the impeller displacement at that time and the amplitude ratio a / b of the amplitude b of the applied alternating current and the viscosity μ.
 本実施形態の磁気浮上式ポンプ装置100は、前述した原理を利用して、流体粘度μを推定することを実現した。ここで、本実施形態の磁気浮上式ポンプ装置100の前述した制御を司るCPU(演算部)152の詳細について、説明する。 The magnetic levitation pump device 100 of the present embodiment realized the estimation of the fluid viscosity μ using the principle described above. Here, details of the CPU (arithmetic unit) 152 that controls the above-described control of the magnetic levitation pump device 100 of the present embodiment will be described.
 CPU152は、ROM等の記憶部166に記憶されている各種プログラムに従って、磁気浮上式ポンプ装置100に備わる各構成要素の動作を制御する機能を有する。また、CPU152は、これら各種処理を実行する際に、必要なデータ等を一時的に記憶するRAM(図示せず)に適宜記憶させる機能を有する。 The CPU 152 has a function of controlling the operation of each component included in the magnetic levitation pump device 100 in accordance with various programs stored in the storage unit 166 such as a ROM. In addition, the CPU 152 has a function of appropriately storing necessary data and the like in a RAM (not shown) that temporarily stores data when executing these various processes.
 本実施形態では、CPU152は、図1に示すように、印加電流制御部154、インペラ変位記録部156、算出部158、及び粘度推定部160を備える。 In the present embodiment, the CPU 152 includes an applied current control unit 154, an impeller displacement recording unit 156, a calculation unit 158, and a viscosity estimation unit 160, as shown in FIG.
 印加電流制御部154は、前述したように、磁気軸受部101の電磁石116への印加電流を制御する機能を有する。本実施形態では、印加電流制御部154は、流体Lの粘度μを推定する際に、所定の周波数範囲の交流電流を所定の時間(例えば、数秒間)、電磁石116への励磁電流と重畳させて印加するように印加電流を制御する機能を有する。 The applied current control unit 154 has a function of controlling the applied current to the electromagnet 116 of the magnetic bearing unit 101 as described above. In the present embodiment, when the applied current control unit 154 estimates the viscosity μ of the fluid L, the applied current control unit 154 superimposes an alternating current in a predetermined frequency range on an excitation current to the electromagnet 116 for a predetermined time (for example, several seconds). And has a function of controlling the applied current so as to be applied.
 具体的には、印加電流制御部154は、交流電流を印加して励磁電流と重畳させる際に、インペラ104が浮上目標位置を中心に振動可能な周波数と、インペラ104とハウジング102が接触しない範囲内の振幅を有する交流電流を印加する。その周波数fは、下記の式(1)により算出された値の近傍値とすることが好ましい。 Specifically, when the applied current control unit 154 applies an alternating current and superimposes the excitation current on the excitation current, the applied current control unit 154 has a frequency at which the impeller 104 can vibrate around the floating target position, and a range where the impeller 104 and the housing 102 do not contact each other. An alternating current having an amplitude within the range is applied. The frequency f is preferably a value close to the value calculated by the following equation (1).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 なお、前述の式(1)に記載のKxは、「磁気軸受部101に発現する負剛性(N/m)」であり、Mは、「インペラ104の質量に流体Lによる付加質量を足した値(kg)」である。なお、「付加質量」とは、ここでは、液体中にインペラ104を入れた際に見かけ上の重量が増加した分の質量を示し、その液体密度によって変動する値である。例えば、液体が血液の場合では、付加質量は、インペラ104の質量の10倍程度の大きさとなる。 Note that Kx described in the above formula (1) is “negative rigidity (N / m) expressed in the magnetic bearing portion 101”, and M is “additional mass due to the fluid L added to the mass of the impeller 104”. Value (kg) ". Here, the “additional mass” indicates a mass corresponding to an increase in the apparent weight when the impeller 104 is placed in the liquid, and is a value that varies depending on the liquid density. For example, when the liquid is blood, the additional mass is about ten times the mass of the impeller 104.
 このように、前述の周波数範囲の交流電流を印加することによって、インペラ104の振動をインペラ104とハウジング102が接触しない範囲の微振動に抑えられる。このため、磁気浮上式ポンプ装置100の安定した運転状態を維持しながら、移送する流体Lの粘度μを確実に推定することができる。 Thus, by applying the alternating current in the frequency range described above, the vibration of the impeller 104 can be suppressed to a slight vibration in a range where the impeller 104 and the housing 102 do not contact each other. For this reason, it is possible to reliably estimate the viscosity μ of the fluid L to be transferred while maintaining a stable operation state of the magnetic levitation pump device 100.
 インペラ変位記録部156は、変位センサ120が検出したインペラ変位をプロットしながら関数曲線を作成して記録する機能を有する。インペラ変位記録部156でプロットされた記録データは、流体Lの粘度推定のために使用される位相差θ又は振幅比a/bの算出に使用される。 The impeller displacement recording unit 156 has a function of creating and recording a function curve while plotting the impeller displacement detected by the displacement sensor 120. The recording data plotted by the impeller displacement recording unit 156 is used to calculate the phase difference θ or the amplitude ratio a / b used for estimating the viscosity of the fluid L.
 算出部158は、電流センサ118や変位センサ120の検出データ等に基づいて、磁気浮上式ポンプ装置100の各構成要素の制御に必要なデータを算出する機能を有する。本実施形態では、算出部158は、変位センサ120で検出したインペラ104の振動によるインペラ変位と交流電流の位相差θ、又はインペラ変位の振幅aと交流電流の振幅bとの振幅比a/bの少なくとも何れかを算出する機能を有する。すなわち、算出部158は、印加電流制御部154が交流電流を電磁石116への励磁電流と重畳させて印加するように印加電流を制御した際に、位相差θ又は振幅比a/bの少なくとも何れかを算出する機能を有する。 The calculation unit 158 has a function of calculating data necessary for control of each component of the magnetic levitation pump apparatus 100 based on detection data of the current sensor 118 and the displacement sensor 120 and the like. In the present embodiment, the calculation unit 158 includes the phase difference θ between the impeller displacement and the alternating current detected by the vibration of the impeller 104 detected by the displacement sensor 120, or the amplitude ratio a / b between the amplitude a of the impeller displacement and the amplitude b of the alternating current. Has a function of calculating at least one of the following. That is, when the applied current control unit 154 controls the applied current so that the applied current is superimposed on the excitation current to the electromagnet 116, the calculating unit 158 has at least one of the phase difference θ and the amplitude ratio a / b. It has a function to calculate.
 粘度推定部160は、算出部158で算出した位相差θ又は振幅比a/bの少なくとも何れかに基づいて、流体Lの粘度μを推定する機能を有する。本実施形態では、粘度推定部160は、位相差θに基づいて流体Lの粘度を推定する場合には、精度よく粘度を推定するために、例えば、記憶部166等に記憶されている位相差θと流体の粘度μの関係に係る事前の実験データ、又は予め理論的に求めた位相差θと粘度μの関係式に基づいて、粘度μを推定する。 The viscosity estimating unit 160 has a function of estimating the viscosity μ of the fluid L based on at least one of the phase difference θ and the amplitude ratio a / b calculated by the calculating unit 158. In the present embodiment, when the viscosity estimating unit 160 estimates the viscosity of the fluid L based on the phase difference θ, for example, the phase difference stored in the storage unit 166 or the like is used to accurately estimate the viscosity. The viscosity μ is estimated based on prior experimental data relating to the relationship between θ and the viscosity μ of the fluid, or based on a relational expression between the phase difference θ and the viscosity μ that is theoretically obtained in advance.
 このように、本実施形態では、磁気軸受部101の電磁石116に印加する励磁電流に意図的に所定の時間、交流電流を重畳させるように印加することによって、インペラ104を強制的に微振動させる。それによって、微振動によって発生したインペラ変位と交流電流との位相差θと振幅比a/bに基づいて、容易に精度よく流体Lの粘度μを推定できる。また、従来のようにトルク計等の新たなハードウェアを追加することなく、さらに、装置の構造上の制約を受けることなく、より容易かつ確実に精度よく流体Lの粘度μを推定できる。 As described above, in the present embodiment, the impeller 104 is forcibly microvibrated by applying an alternating current intentionally superimposed on the exciting current applied to the electromagnet 116 of the magnetic bearing portion 101 for a predetermined time. . Accordingly, the viscosity μ of the fluid L can be easily and accurately estimated based on the phase difference θ between the impeller displacement generated by the minute vibration and the alternating current and the amplitude ratio a / b. In addition, the viscosity μ of the fluid L can be estimated more easily and reliably without adding new hardware such as a torque meter as in the prior art and without being restricted by the structure of the apparatus.
 次に、本発明の一実施形態に係る磁気浮上式ポンプ装置による流体の粘度推定方法について、図面を使用しながら説明する。図2は、本発明の一実施形態に係る磁気浮上式ポンプ装置による流体の粘度推定方法の概略を示すフロー図であり、図3は、本発明の一の実施形態に係る磁気浮上式ポンプ装置による流体の粘度推定方法の他の態様の概略を示すフロー図である。なお、図2は、位相差θに基づいて粘度μを推定する方法のフローを示し、図3は、振幅比a/bに基づいて粘度μを推定する方法のフローを示す。 Next, a fluid viscosity estimation method using a magnetic levitation pump device according to an embodiment of the present invention will be described with reference to the drawings. FIG. 2 is a flowchart showing an outline of a fluid viscosity estimation method by a magnetic levitation pump apparatus according to an embodiment of the present invention, and FIG. 3 is a magnetic levitation pump apparatus according to an embodiment of the present invention. It is a flowchart which shows the outline of the other aspect of the viscosity estimation method of the fluid by A. 2 shows a flow of a method for estimating the viscosity μ based on the phase difference θ, and FIG. 3 shows a flow of a method for estimating the viscosity μ based on the amplitude ratio a / b.
 本実施形態の磁気浮上式ポンプ装置100による流体の粘度推定方法では、まず、磁気軸受部101に設けられる電磁石116に印加する励磁電流に所定の周波数範囲の交流電流を所定時間(例えば、数秒間)印加して、当該励磁電流と重畳させる(交流電流印加工程S11)。このように、本実施形態では、意図的に交流電流を所定時間だけ印加することによって、インペラ104を強制的に振動させる。 In the fluid viscosity estimation method by the magnetic levitation pump apparatus 100 of the present embodiment, first, an alternating current in a predetermined frequency range is applied to the excitation current applied to the electromagnet 116 provided in the magnetic bearing unit 101 for a predetermined time (for example, several seconds). ) And superimposed on the excitation current (AC current application step S11). Thus, in the present embodiment, the impeller 104 is forcibly vibrated by intentionally applying an alternating current for a predetermined time.
 その際に、前述したように、インペラが浮上目標位置を中心に振動可能な周波数fと、インペラ104とハウジング102が接触しない範囲内の振幅bを有する交流電流を印加する。すなわち、インペラ104の振動が浮上目標位置を中心として、インペラ104とハウジング102が接触することの無いように、適切な周波数fと振幅bを選択する必要がある。 At that time, as described above, an alternating current having a frequency f at which the impeller can vibrate around the floating target position and an amplitude b within a range where the impeller 104 and the housing 102 do not contact each other is applied. That is, it is necessary to select an appropriate frequency f and amplitude b so that the vibration of the impeller 104 does not contact the impeller 104 and the housing 102 around the floating target position.
 もし、印加する交流電流の周波数が高すぎると、交流電流の振幅を最大にしても、インペラ104が応答せずに、振動しなくなるので、本実施形態に係る粘度推定方法が実施できない。このため、インペラ104が振動する低周波数域(例えば、400Hz以下)において、交流電流の振幅を適切に調節することによって、インペラ104とハウジング102が接触しないように調節している。すなわち、本実施形態に係る粘度推定方法による流体Lの粘度推定をするために、印加する交流電流の周波数fは、適切なインペラ104の振動振幅aが得られる程度の低い周波数を選択して、かつ、その交流電流の振幅bは、インペラ104とハウジング102が接触しない範囲内に調節する必要がある。 If the frequency of the alternating current applied is too high, even if the amplitude of the alternating current is maximized, the impeller 104 does not respond and does not vibrate, so the viscosity estimation method according to this embodiment cannot be performed. For this reason, in the low frequency region (for example, 400 Hz or less) where the impeller 104 vibrates, the impeller 104 and the housing 102 are adjusted so as not to contact each other by appropriately adjusting the amplitude of the alternating current. That is, in order to estimate the viscosity of the fluid L by the viscosity estimation method according to the present embodiment, the frequency f of the alternating current to be applied is selected to be a frequency that is low enough to obtain the vibration amplitude a of the impeller 104, The amplitude b of the alternating current needs to be adjusted within a range where the impeller 104 and the housing 102 do not contact each other.
 なお、ここで印加する交流電流は、周期的に電流値が変動するような所定の周期を有する交流電流であればよく、その波形は、例えば、図4Aに示す正弦波、図4Bに示す矩形波、図4Cに示す三角波、図4Dに示す鋸歯状波が適用可能である。 Note that the alternating current applied here may be an alternating current having a predetermined period in which the current value periodically fluctuates, and the waveform thereof is, for example, a sine wave shown in FIG. 4A or a rectangle shown in FIG. 4B. A wave, a triangular wave shown in FIG. 4C, and a sawtooth wave shown in FIG. 4D are applicable.
 交流電流を印加後にインペラ104の振動によるインペラ変位を変位センサ120で検出する(インペラ変位検出工程S12)。そして、交流電流の印加により発生するインペラ104の振動によるインペラ変位の位相をプロットして記録する(記録工程S13)。その後、インペラ変位と交流電流の位相差θを算出して(算出工程S14)、当該位相差θに基づいて、流体Lの粘度μを推定する(粘度推定工程S15)。 After the alternating current is applied, the displacement of the impeller due to the vibration of the impeller 104 is detected by the displacement sensor 120 (impeller displacement detection step S12). Then, the phase of the impeller displacement caused by the vibration of the impeller 104 generated by the application of the alternating current is plotted and recorded (recording step S13). Thereafter, the phase difference θ between the impeller displacement and the alternating current is calculated (calculation step S14), and the viscosity μ of the fluid L is estimated based on the phase difference θ (viscosity estimation step S15).
 一方、振幅比a/bで粘度μを検出する場合には、図3に示すように、交流電流印加工程S21、インペラ変位検出工程S22を経た後に、交流電流の印加により発生するインペラ104の振動によるインペラ変位の振幅aをプロットして記録する(記録工程S23)。そして、インペラ変位と交流電流の振幅比a/bを算出して(算出工程S24)、当該振幅比a/bに基づいて、流体Lの粘度μを推定する(粘度推定工程S25)。 On the other hand, when detecting the viscosity μ with the amplitude ratio a / b, as shown in FIG. 3, the vibration of the impeller 104 generated by the application of the alternating current after the alternating current application step S21 and the impeller displacement detection step S22. The amplitude a of the impeller displacement due to is plotted and recorded (recording step S23). Then, the amplitude ratio a / b between the impeller displacement and the alternating current is calculated (calculation step S24), and the viscosity μ of the fluid L is estimated based on the amplitude ratio a / b (viscosity estimation step S25).
 なお、本実施形態では、位相差θ又は振幅比a/bを用いて、流体Lの粘度μを推定しているが、少なくとも何れか一方を用いていれば、当該粘度μを推定できるので、双方を共に用いて、より精度よく流体Lの粘度μを推定してもよい。 In this embodiment, the viscosity μ of the fluid L is estimated using the phase difference θ or the amplitude ratio a / b. However, if at least one of them is used, the viscosity μ can be estimated. Both may be used together to estimate the viscosity μ of the fluid L with higher accuracy.
 このように、本実施形態では、磁気浮上式ポンプ装置100の通常作動時においては、インペラ104が目標位置(回転軸中心等)からぶれないように、電磁石116への励磁電流を演算している。これに対して、流体Lの粘度μを推定する際には、敢えて一定周波数fの交流電流を数秒間程度、当該励磁電流に重畳することによって、インペラ104を強制的に振動させる。そして、インペラ104を強制振動中に、当該周波数fの交流電流Iとインペラ変位Xの位相差θ又は振幅比a/bを計算する。前述したように、位相差θと振幅比a/bは、流体の粘度μに依存して変化するため、事前に実験的に求めたθとμの関係、又は理論的に求めたθとμの関係式から、流体粘度μを推定する。 Thus, in the present embodiment, during the normal operation of the magnetic levitation pump device 100, the excitation current to the electromagnet 116 is calculated so that the impeller 104 does not shake from the target position (center of rotation axis, etc.). . On the other hand, when estimating the viscosity μ of the fluid L, the impeller 104 is forcibly vibrated by superimposing an alternating current having a constant frequency f on the excitation current for several seconds. Then, during the forced vibration of the impeller 104, the phase difference θ or the amplitude ratio a / b between the alternating current I of the frequency f and the impeller displacement X is calculated. As described above, since the phase difference θ and the amplitude ratio a / b change depending on the viscosity μ of the fluid, the relationship between θ and μ obtained experimentally in advance or the theoretically obtained θ and μ From the relational expression, the fluid viscosity μ is estimated.
 このため、本実施形態の磁気浮上式ポンプ装置100による粘度推定方法は、新たなハードウェアを追加することなく、流体Lの粘度μを容易に推定することができる。また、本実施形態の磁気浮上式ポンプ装置100による粘度推定方法は、従来のようなモータトルクを粘度推定に用いる方法と異なり、流量による依存性が低く、流量を遮断する必要がないので、軸受損失の影響がないことから、精度よく流体粘度μを推定できる。さらに、本実施形態の磁気浮上式ポンプ装置100による粘度推定方法は、原理的にインペラ104とハウジング102との間の隙間が広くても、粘度μの測定精度に影響しないことから、装置の構造上の制約を受けることなく、精度のよい粘度推定が可能となる。 For this reason, the viscosity estimation method by the magnetic levitation pump apparatus 100 of the present embodiment can easily estimate the viscosity μ of the fluid L without adding new hardware. Also, the viscosity estimation method by the magnetic levitation pump device 100 of the present embodiment is less dependent on the flow rate and does not need to cut off the flow rate, unlike the conventional method using the motor torque for viscosity estimation. Since there is no influence of loss, the fluid viscosity μ can be accurately estimated. Furthermore, the viscosity estimation method using the magnetically levitated pump device 100 according to the present embodiment does not affect the measurement accuracy of the viscosity μ even if the gap between the impeller 104 and the housing 102 is large in principle. Accurate viscosity estimation is possible without being restricted by the above.
 なお、前述した本発明の一実施形態では、図5Aの平面図及び図5Bの側面図に示すような遠心型のインペラ104を備える磁気浮上式ポンプ装置100に適用しているが、図5Cの平面図及び図5Dの側面図に示すような軸流型のインペラ124や、図5Eの側面図に示すような斜流型のインペラ134を備える磁気浮上式ポンプ装置にも適用可能である。すなわち、本実施形態の磁気浮上式ポンプ装置100は、遠心型、軸流型、又は斜流型を問わず、磁気浮上式の連続流ポンプに適用できる。換言すると、軸流式、斜流式のインペラ形状でも、本実施形態と同様の手順で粘度推定ができる。 In addition, in one Embodiment of this invention mentioned above, although applied to the magnetic levitation type pump apparatus 100 provided with the centrifugal impeller 104 as shown in the top view of FIG. 5A and the side view of FIG. 5B, FIG. The present invention is also applicable to a magnetic levitation pump apparatus including an axial flow type impeller 124 as shown in the plan view and the side view of FIG. 5D and a mixed flow type impeller 134 as shown in the side view of FIG. 5E. That is, the magnetic levitation pump device 100 of this embodiment can be applied to a magnetic levitation type continuous flow pump regardless of whether it is a centrifugal type, an axial flow type, or a diagonal flow type. In other words, the viscosity can be estimated in the same procedure as in the present embodiment even in the case of an axial flow type or mixed flow type impeller shape.
 また、前述した本実施形態の磁気浮上式ポンプ装置100による粘度推定方法は、各種分野に適用できる。例えば、従来から埋込人工心臓等のように流量計設置が困難な循環系において、モータトルク等から流量を推定する研究が盛んに行われているが、作動流体粘度によって誤差が大きく増減するため、本実施形態の磁気浮上式ポンプ装置100による粘度推定方法で求めた推定粘度値を流量推定の誤差補正に用いることができる。 Moreover, the viscosity estimation method by the magnetic levitation pump device 100 of the present embodiment described above can be applied to various fields. For example, in a conventional circulation system such as an artificial artificial heart that is difficult to install a flow meter, there has been extensive research on estimating the flow rate from motor torque, etc., but the error greatly increases or decreases depending on the working fluid viscosity. The estimated viscosity value obtained by the viscosity estimation method using the magnetic levitation pump device 100 of this embodiment can be used for error correction in flow rate estimation.
 さらに、推定した粘度値そのものを使用して、作動流体の状態をオンラインモニタリングに適用してもよい。例えば、血液ポンプや人工心臓における血栓検知,予知等の血液凝固モニタリングや、半導体や食品製造における超純水の品質管理等にも適用可能である。すなわち、体外循環用の磁気浮上式連続流血液ポンプや、体内埋込用磁気浮上式人工心臓、半導体製造用・食品製造用の超クリーンな磁気浮上式ポンプとしても適用できる。 Furthermore, the state of the working fluid may be applied to online monitoring using the estimated viscosity value itself. For example, it can be applied to blood coagulation monitoring such as blood clot detection and prediction in blood pumps and artificial hearts, and quality control of ultrapure water in semiconductor and food manufacturing. That is, it can be applied as a magnetic levitation type continuous flow blood pump for extracorporeal circulation, a magnetic levitation type artificial heart for implantation in the body, and an ultra-clean magnetic levitation type pump for semiconductor manufacturing and food manufacturing.
(第2の実施形態)
 次に、本発明の他の一実施形態に係る磁気浮上式ポンプ装置の構成について、図面を使用しながら説明する。図6は、本発明の他の一実施形態に係る磁気浮上式ポンプ装置の概略構成を示すブロック図である。
(Second Embodiment)
Next, the configuration of a magnetic levitation pump device according to another embodiment of the present invention will be described with reference to the drawings. FIG. 6 is a block diagram showing a schematic configuration of a magnetic levitation pump device according to another embodiment of the present invention.
 本発明の他の一実施形態に係る磁気浮上式ポンプ装置200は、駆動源(回転駆動部)となるモータ208の駆動軸213とインペラ204とを磁気カップリングによって非接触に結合してモータ208の駆動力を伝達する非接触型の磁気浮上式連続流ポンプである。また、本実施形態の磁気浮上式ポンプ装置200は、磁気軸受部201の電磁石216に励磁電流を印加することによって、磁気浮上したインペラ204の中心が当該インペラ204の回転駆動する際における回転中心軸A2と一致する浮上目標位置で回転するように、位置制御を行っている。 In a magnetic levitation pump device 200 according to another embodiment of the present invention, a drive shaft 213 and an impeller 204 of a motor 208 serving as a drive source (rotation drive unit) are coupled in a non-contact manner by magnetic coupling. It is a non-contact type magnetic levitation type continuous flow pump that transmits the driving force of the motor. In addition, the magnetic levitation pump device 200 of the present embodiment applies the excitation current to the electromagnet 216 of the magnetic bearing unit 201 to rotate the central axis of the magnetically levitated impeller 204 when the impeller 204 is driven to rotate. Position control is performed so as to rotate at the flying target position that coincides with A2.
 本実施形態では、インペラ204は、ハウジング202内で磁気浮上しながらモータ208の駆動軸213と磁気カップリングにより非接触に結合して、ハウジング202内で磁気浮上しながら回転する遠心型インペラである。図6に示すように、インペラ204のロータ206の底面中心側は、凹部206bとなっており、当該凹部206bにハウジング202の底面202bの中心側に設けられた凸部202b1と対向する構成となっている。 In the present embodiment, the impeller 204 is a centrifugal impeller that rotates while being magnetically levitated in the housing 202 while being magnetically levitated in the housing 202 and coupled in a non-contact manner with the drive shaft 213 of the motor 208 by magnetic coupling. . As shown in FIG. 6, the center of the bottom surface of the rotor 206 of the impeller 204 is a concave portion 206 b, and is configured to face the convex portion 202 b 1 provided on the central side of the bottom surface 202 b of the housing 202. ing.
 インペラ204を収容するハウジング202の頂部側には、流体Lの流入部202cが設けられ、ハウジング202の側壁202aの何れかの部位に流体Lの流出部202dが設けられている。このため、ハウジング202内でインペラ204が磁気浮上しながら回転することによって、流体Lを流入部202cから流出部202dに移送される。 The fluid L inflow portion 202 c is provided on the top side of the housing 202 that houses the impeller 204, and the fluid L outflow portion 202 d is provided at any part of the side wall 202 a of the housing 202. For this reason, when the impeller 204 rotates in the housing 202 while magnetically levitating, the fluid L is transferred from the inflow portion 202c to the outflow portion 202d.
 また、本実施形態では、磁気軸受部201が磁気力によってインペラ204を非接触で支持している。磁気軸受部201には、インペラ204のロータ206の外周面206a側に内蔵されている永久磁石210と対向する位置に電磁石216が設けられている。当該電磁石216に励磁電流を印加することによって、インペラ204の中心が回転中心軸A2に配置されるように調整される。 In this embodiment, the magnetic bearing unit 201 supports the impeller 204 in a non-contact manner by a magnetic force. The magnetic bearing portion 201 is provided with an electromagnet 216 at a position facing the permanent magnet 210 built in the outer peripheral surface 206 a side of the rotor 206 of the impeller 204. By applying an exciting current to the electromagnet 216, the center of the impeller 204 is adjusted so as to be arranged on the rotation center axis A2.
 すなわち、水平方向に関しては、インペラ204は、電磁石216への励磁電流の印加によって位置制御される。一方、鉛直方向に関しては、インペラ204は、位置制御されずに、磁気カップリングを構成する磁気回路の鉛直方向に作用する復元力によって、インペラ204の浮上状態が受動的に保たれている。 That is, the position of the impeller 204 is controlled by applying an exciting current to the electromagnet 216 in the horizontal direction. On the other hand, with respect to the vertical direction, the impeller 204 is passively maintained in the floating state by the restoring force acting in the vertical direction of the magnetic circuit constituting the magnetic coupling without being controlled in position.
 さらに、本実施形態では、磁気軸受部201のケーシング222内には、インペラ204の駆動源となるモータ208が設けられ、当該モータ208の駆動軸213の先端側外周面に永久磁石214が設けられている。そして、当該永久磁石214と引力を作用する永久磁石212がインペラ204のロータ206の凹部206bの内周面206b1に設けられている。これらの永久磁石212、214が磁気カップリングによって結合されることによって、モータ208の駆動力がインペラ204に非接触で伝達される。モータ208の駆動は、磁気浮上式ポンプ装置200の各種制御を行う制御部250に設けられるモータ制御部264によって制御される。 Furthermore, in the present embodiment, a motor 208 serving as a drive source for the impeller 204 is provided in the casing 222 of the magnetic bearing unit 201, and a permanent magnet 214 is provided on the outer peripheral surface on the front end side of the drive shaft 213 of the motor 208. ing. A permanent magnet 212 that acts an attractive force with the permanent magnet 214 is provided on the inner peripheral surface 206 b 1 of the recess 206 b of the rotor 206 of the impeller 204. These permanent magnets 212 and 214 are coupled by a magnetic coupling, whereby the driving force of the motor 208 is transmitted to the impeller 204 in a non-contact manner. Driving of the motor 208 is controlled by a motor control unit 264 provided in a control unit 250 that performs various controls of the magnetic levitation pump device 200.
 また、本実施形態では、磁気軸受部201の電磁石216への印加電流は、印加電流制御部254によって制御される。具体的には、印加電流制御部254は、インペラ204が回転軸中心A2に浮上するように、インペラ204の変位を検出する変位センサ220の信号を制御部250の演算部252にフィードバックして、適切な電流値を演算して電磁石216に供給するように制御している。例えば、外乱等によりインペラ204の位置がずれた場合に、印加電流制御部254は、インペラ204が回転軸中心A2で回転可能な浮上目標位置に戻るように、適宜、励磁電流の大きさを調整するように制御する。 In this embodiment, the applied current to the electromagnet 216 of the magnetic bearing unit 201 is controlled by the applied current control unit 254. Specifically, the applied current control unit 254 feeds back a signal of the displacement sensor 220 that detects the displacement of the impeller 204 to the calculation unit 252 of the control unit 250 so that the impeller 204 floats to the rotation axis center A2. An appropriate current value is calculated and controlled to be supplied to the electromagnet 216. For example, when the position of the impeller 204 is shifted due to a disturbance or the like, the applied current control unit 254 appropriately adjusts the magnitude of the excitation current so that the impeller 204 returns to the levitation target position that can rotate around the rotation axis A2. Control to do.
 変位センサ220は、例えば、環状に配列された複数の電磁石216の間の何れかに設けられ、ロータ206の外周面206aを検出することによってインペラ204の位置を検出するセンサであり、渦電流センサ等で構成される。また、印加電流の大きさは、電磁石216と印加電流制御部254との間に設けられる電流センサ218によって検出される。なお、電磁石216に印加する励磁電流は、印加電流制御部254の制御の下、アンプやインバータ等の印加電流調整部262によって調整される。 The displacement sensor 220 is a sensor that is provided, for example, between any of the plurality of electromagnets 216 arranged in an annular shape, and detects the position of the impeller 204 by detecting the outer peripheral surface 206a of the rotor 206, and is an eddy current sensor. Etc. The magnitude of the applied current is detected by a current sensor 218 provided between the electromagnet 216 and the applied current control unit 254. The exciting current applied to the electromagnet 216 is adjusted by the applied current adjusting unit 262 such as an amplifier or an inverter under the control of the applied current control unit 254.
 本発明者は、前述した本発明の目的を達成するために鋭意検討を重ねた結果、本実施形態の磁気浮上式ポンプ装置200の磁気軸受部201に設けられる電磁石216に意図的に交流電流を印加して、強制的にインペラ204を振動させた際に発生するインペラ変位と印加した交流電流との位相差θが作動流体の粘度μと相関性があることを見出した。また、その際のインペラ変位の振幅aと印加した交流電流の振幅bの振幅比a/bと当該粘度μとも相関性があることを見出した。さらに、本発明者は、本実施形態の磁気浮上式ポンプ装置200による粘度推定方法で求めた推定粘度値を流量推定の誤差補正に用いることによって、より精度の高い流量推定ができることを見出した。 As a result of intensive studies in order to achieve the above-described object of the present invention, the present inventor intentionally applied an alternating current to the electromagnet 216 provided in the magnetic bearing portion 201 of the magnetic levitation pump device 200 of the present embodiment. It has been found that the phase difference θ between the impeller displacement generated when the impeller 204 is forcibly vibrated by application and the applied alternating current is correlated with the viscosity μ of the working fluid. It was also found that there is a correlation between the amplitude μ of the impeller displacement at that time and the amplitude ratio a / b of the amplitude b of the applied alternating current and the viscosity μ. Furthermore, the present inventor has found that the flow rate can be estimated with higher accuracy by using the estimated viscosity value obtained by the viscosity estimation method by the magnetic levitation pump apparatus 200 of the present embodiment for error correction of the flow rate estimation.
 本実施形態の磁気浮上式ポンプ装置200は、前述した原理を利用して、流体粘度μを推定することを実現した。ここで、本実施形態の磁気浮上式ポンプ装置200の前述した制御を司るCPU(演算部)252の詳細について、説明する。 The magnetic levitation pump device 200 of the present embodiment realized the estimation of the fluid viscosity μ using the principle described above. Here, details of the CPU (arithmetic unit) 252 that controls the above-described control of the magnetic levitation pump device 200 of the present embodiment will be described.
 CPU252は、ROM等の記憶部266に記憶されている各種プログラムに従って、磁気浮上式ポンプ装置200に備わる各構成要素の動作を制御する機能を有する。また、CPU252は、これら各種処理を実行する際に、必要なデータ等を一時的に記憶するRAM(図示せず)に適宜記憶させる機能を有する。 The CPU 252 has a function of controlling the operation of each component provided in the magnetic levitation pump device 200 according to various programs stored in the storage unit 266 such as a ROM. Further, the CPU 252 has a function of appropriately storing necessary data and the like in a RAM (not shown) that temporarily stores data when executing these various processes.
 本実施形態では、CPU252は、図6に示すように、印加電流制御部254、インペラ変位記録部256、算出部258、粘度推定部260、及び流量推定部261を備える。 In this embodiment, the CPU 252 includes an applied current control unit 254, an impeller displacement recording unit 256, a calculation unit 258, a viscosity estimation unit 260, and a flow rate estimation unit 261, as shown in FIG.
 印加電流制御部254は、前述したように、磁気軸受部201の電磁石216への印加電流を制御する機能を有する。本実施形態では、印加電流制御部254は、流体Lの粘度μを推定する際に、所定の周波数範囲の交流電流を所定の時間(例えば、数秒間)、電磁石216への励磁電流と重畳させて印加するように印加電流を制御する機能を有する。 The applied current control unit 254 has a function of controlling the applied current to the electromagnet 216 of the magnetic bearing unit 201 as described above. In the present embodiment, when the applied current control unit 254 estimates the viscosity μ of the fluid L, the applied current control unit 254 superimposes an alternating current in a predetermined frequency range on an excitation current to the electromagnet 216 for a predetermined time (for example, several seconds). And has a function of controlling the applied current so as to be applied.
 具体的には、印加電流制御部254は、交流電流を印加して励磁電流と重畳させる際に、インペラ204が浮上目標位置を中心に振動可能な周波数と、インペラ204とハウジング202が接触しない範囲内の振幅を有する交流電流を印加する。その周波数fは、第1の実施形態と同様に、前述した式(1)により算出された値の近傍値とすることが好ましい。 Specifically, the applied current control unit 254 applies a frequency at which the impeller 204 can vibrate around the floating target position when applying an alternating current and superimposing it with the excitation current, and a range where the impeller 204 and the housing 202 do not contact each other. An alternating current having an amplitude within the range is applied. The frequency f is preferably a value close to the value calculated by the above-described equation (1), as in the first embodiment.
 このように、前述の周波数範囲の交流電流を印加することによって、インペラ204の振動をインペラ204とハウジング202が接触しない範囲の微振動に抑えられる。このため、磁気浮上式ポンプ装置200の安定した運転状態を維持しながら、移送する流体Lの粘度μを確実に推定することができる。 Thus, by applying the alternating current in the frequency range described above, the vibration of the impeller 204 can be suppressed to a slight vibration in a range where the impeller 204 and the housing 202 do not contact each other. Therefore, it is possible to reliably estimate the viscosity μ of the fluid L to be transferred while maintaining a stable operation state of the magnetic levitation pump device 200.
 インペラ変位記録部256は、変位センサ220が検出したインペラ変位をプロットしながら関数曲線を作成して記録する機能を有する。インペラ変位記録部256でプロットされた記録データは、流体Lの粘度推定のために使用される位相差θ又は振幅比a/bの算出に使用される。 The impeller displacement recording unit 256 has a function of creating and recording a function curve while plotting the impeller displacement detected by the displacement sensor 220. The recorded data plotted by the impeller displacement recording unit 256 is used to calculate the phase difference θ or the amplitude ratio a / b used for estimating the viscosity of the fluid L.
 算出部258は、電流センサ218や変位センサ220の検出データ等に基づいて、磁気浮上式ポンプ装置200の各構成要素の制御に必要なデータを算出する機能を有する。本実施形態では、算出部258は、変位センサ220で検出したインペラ204の振動によるインペラ変位と交流電流の位相差θ、又はインペラ変位の振幅aと交流電流の振幅bとの振幅比a/bの少なくとも何れかを算出する機能を有する。すなわち、算出部258は、印加電流制御部254が交流電流を電磁石216への励磁電流と重畳させて印加するように印加電流を制御した際に、位相差θ又は振幅比a/bの少なくとも何れかを算出する機能を有する。 The calculation unit 258 has a function of calculating data necessary for control of each component of the magnetic levitation pump device 200 based on detection data of the current sensor 218 and the displacement sensor 220 and the like. In the present embodiment, the calculation unit 258 includes the phase difference θ between the impeller displacement detected by the displacement sensor 220 due to the vibration of the impeller 204 and the alternating current, or the amplitude ratio a / b between the impeller displacement amplitude a and the alternating current amplitude b. Has a function of calculating at least one of the following. That is, the calculation unit 258 controls at least one of the phase difference θ and the amplitude ratio a / b when the applied current control unit 254 controls the applied current so that the alternating current is superimposed on the excitation current to the electromagnet 216. It has a function to calculate.
 粘度推定部260は、算出部258で算出した位相差θ又は振幅比a/bの少なくとも何れかに基づいて、流体Lの粘度μを推定する機能を有する。本実施形態では、粘度推定部260は、位相差θに基づいて流体Lの粘度を推定する場合には、精度よく粘度を推定するために、例えば、記憶部266等に記憶されている位相差θと流体の粘度μの関係に係る事前の実験データ、又は予め理論的に求めた位相差θと粘度μの関係式に基づいて、粘度μを推定する。 The viscosity estimation unit 260 has a function of estimating the viscosity μ of the fluid L based on at least one of the phase difference θ and the amplitude ratio a / b calculated by the calculation unit 258. In the present embodiment, when the viscosity estimating unit 260 estimates the viscosity of the fluid L based on the phase difference θ, for example, the phase difference stored in the storage unit 266 or the like is used to accurately estimate the viscosity. The viscosity μ is estimated based on prior experimental data relating to the relationship between θ and the viscosity μ of the fluid, or based on a relational expression between the phase difference θ and the viscosity μ that is theoretically obtained in advance.
 流量推定部261は、少なくともモータ208のトルク、電流値、消費電力、及び回転数の何れかと、粘度推定部260で推定された流体Lの粘度に基づいて、流体Lの流量を推定する機能を有する。本実施形態では、流量推定部261は、モータ208の駆動軸213に設置した公知のトルク計224で計測されたモータ208のトルクと、当該モータ208の回転数に基づいて算出された推定流量を粘度推定部260で推定された流体Lの推定粘度で補償することによって、流体Lの流量の推定値の精度を向上させている。 The flow rate estimation unit 261 has a function of estimating the flow rate of the fluid L based on at least one of the torque, current value, power consumption, and rotation speed of the motor 208 and the viscosity of the fluid L estimated by the viscosity estimation unit 260. Have. In the present embodiment, the flow rate estimation unit 261 uses the torque of the motor 208 measured by a known torque meter 224 installed on the drive shaft 213 of the motor 208 and the estimated flow rate calculated based on the rotation speed of the motor 208. By compensating with the estimated viscosity of the fluid L estimated by the viscosity estimating unit 260, the accuracy of the estimated value of the flow rate of the fluid L is improved.
 具体的には、下記の式(2)に基づいて、流体Lの流量を推定する。なお、下記の式(2)における符号Qeは、流体Lの推定流量値を表し、符号Tは、モータ208のトルクを表し、符号Nは、モータ208の回転数を表し、符号A、B及びCは、それぞれ係数を表す。
  Qe=A(T/N)+Bμ+C    (2)
Specifically, the flow rate of the fluid L is estimated based on the following formula (2). In the following equation (2), a symbol Qe represents an estimated flow rate value of the fluid L, a symbol T represents a torque of the motor 208, a symbol N represents a rotational speed of the motor 208, and symbols A, B, and C represents a coefficient.
Qe = A (T / N) + Bμ + C (2)
 このように本実施家体では、モータ208のトルクTと回転数Nに基づいて算出された流体Lの推定流量を粘度推定部260で算出された粘度推定値で補正することによって、磁気浮上式ポンプ装置200によって送液される流体Lの流量を精度よく求めるようにしている。磁気浮上式ポンプ装置200によって実際に送液される流体Lの流量は、当該流体Lの粘度によって、変動し得る値となる。例えば、流体Lの粘度が低ければ、流体Lを送液し易くなり、反対に流体Lの粘度が高ければ、流体Lを送液し難くなる。すなわち、モータ208のトルクTと回転数Nの値のみに基づいて算出された流体Lの推定流量の値は、当該流体Lの粘度の値の大きさに応じてバラツキが生じてしまう。 As described above, in this embodiment, the magnetic levitation type is corrected by correcting the estimated flow rate of the fluid L calculated based on the torque T and the rotation speed N of the motor 208 with the estimated viscosity value calculated by the viscosity estimating unit 260. The flow rate of the fluid L fed by the pump device 200 is obtained with high accuracy. The flow rate of the fluid L actually fed by the magnetic levitation pump device 200 is a value that can vary depending on the viscosity of the fluid L. For example, if the viscosity of the fluid L is low, it is easy to send the fluid L. Conversely, if the viscosity of the fluid L is high, it is difficult to send the fluid L. That is, the estimated flow rate value of the fluid L calculated based only on the torque T and the rotation speed N of the motor 208 varies depending on the magnitude of the viscosity value of the fluid L.
 このため、本実施形態では、モータ208のトルクTと回転数Nに基づいて算出された流体Lの推定流量を粘度推定部260で算出された粘度推定値で補正して、流体Lの粘度を踏まえた値として、当該流体Lの流量を精度よく算出できるようにしている。すなわち、粘度推定部260で推定された粘度による補償で流体Lの流量を推定する際における精度が向上するようになる。特に、モータ208の内部の銅損や鉄損の影響を排除することによって、流量推定の高精度化を実現するためには、モータ208のトルクTを用いて、流量推定をすることが好ましい。 For this reason, in the present embodiment, the estimated flow rate of the fluid L calculated based on the torque T and the rotation speed N of the motor 208 is corrected with the estimated viscosity value calculated by the viscosity estimation unit 260, and the viscosity of the fluid L is thereby corrected. As a value based on this, the flow rate of the fluid L can be accurately calculated. That is, the accuracy in estimating the flow rate of the fluid L by the compensation by the viscosity estimated by the viscosity estimating unit 260 is improved. In particular, it is preferable to estimate the flow rate using the torque T of the motor 208 in order to achieve high accuracy in the flow rate estimation by eliminating the influence of copper loss and iron loss inside the motor 208.
 なお、本実施形態では、モータ208のトルクTと回転数Nに基づいて算出された流体Lの推定流量を粘度推定部260で推定された粘度で補正することによって、流体Lの流量を精度よく算出しているが、モータ208の電流値や消費電力に基づいて算出された推定流量を流体Lの粘度で補正することによって、流体Lの流量を求めることも可能である。すなわち、流量推定部261は、少なくともモータ208のトルク、電流値、消費電力、及び回転数の何れかと、粘度推定部260で推定された流体Lの粘度に基づいて、流体Lの流量を推定する。その際に、モータ208のトルク、電流値、消費電力を共に用いて、より精度よく流体Lの粘度μを推定してもよい。 In the present embodiment, the flow rate of the fluid L is accurately adjusted by correcting the estimated flow rate of the fluid L calculated based on the torque T and the rotation speed N of the motor 208 with the viscosity estimated by the viscosity estimation unit 260. Although calculated, the flow rate of the fluid L can also be obtained by correcting the estimated flow rate calculated based on the current value and power consumption of the motor 208 with the viscosity of the fluid L. That is, the flow rate estimation unit 261 estimates the flow rate of the fluid L based on at least one of the torque, current value, power consumption, and rotation speed of the motor 208 and the viscosity of the fluid L estimated by the viscosity estimation unit 260. . At that time, the viscosity μ of the fluid L may be estimated more accurately by using the torque, current value, and power consumption of the motor 208 together.
 このように、本実施形態では、磁気軸受部201の電磁石216に印加する励磁電流に意図的に所定の時間、交流電流を重畳させるように印加することによって、インペラ204を強制的に微振動させる。それによって、微振動によって発生したインペラ変位と交流電流との位相差θと振幅比a/bに基づいて、容易に精度よく流体Lの粘度μを推定できる。また、装置の構造上の制約を受けることなく、より容易かつ確実に精度よく流体Lの粘度μを推定できる。 As described above, in this embodiment, the impeller 204 is forcibly microvibrated by applying an excitation current intentionally superimposed on the excitation current applied to the electromagnet 216 of the magnetic bearing portion 201 for a predetermined time. . Accordingly, the viscosity μ of the fluid L can be easily and accurately estimated based on the phase difference θ between the impeller displacement generated by the minute vibration and the alternating current and the amplitude ratio a / b. In addition, the viscosity μ of the fluid L can be estimated more easily and reliably without being restricted by the structure of the apparatus.
 また、本実施形態では、粘度推定部260で推定された流体Lの粘度推定値を流体Lの流量推定に反映させることによって、流量の推定精度を向上させている。このため、血液ポンプや人工心臓等の医療機器に本実施形態の磁気浮上式ポンプ装置200を適用することによって、余分な流量計等を設置しなくても、送液する流体Lの流量を精度よく推定できるので、当該医療機器を使用する患者の安全性を確保できるようになる。 Further, in this embodiment, the flow rate estimation accuracy is improved by reflecting the estimated viscosity value of the fluid L estimated by the viscosity estimating unit 260 in the flow rate estimation of the fluid L. For this reason, by applying the magnetic levitation pump device 200 of this embodiment to a medical device such as a blood pump or an artificial heart, the flow rate of the fluid L to be fed can be accurately adjusted without installing an extra flow meter or the like. Since it can be estimated well, the safety of the patient who uses the medical device can be secured.
 次に、本発明の他の一実施形態に係る磁気浮上式ポンプ装置による流体の粘度推定方法について、図面を使用しながら説明する。図7は、本発明の他の一実施形態に係る磁気浮上式ポンプ装置による流体の粘度及び流量の推定方法の概略を示すフロー図であり、図8は、本発明の他の一実施形態に係る磁気浮上式ポンプ装置による流体の粘度及び流量の推定方法の他の態様の概略を示すフロー図である。なお、図7は、位相差θに基づいて粘度μを推定する方法のフローを示し、図8は、振幅比a/bに基づいて粘度μを推定する方法のフローを示す。 Next, a fluid viscosity estimation method using a magnetic levitation pump device according to another embodiment of the present invention will be described with reference to the drawings. FIG. 7 is a flow diagram showing an outline of a method for estimating the viscosity and flow rate of a fluid by a magnetic levitation pump device according to another embodiment of the present invention, and FIG. 8 shows another embodiment of the present invention. It is a flowchart which shows the outline of the other aspect of the estimation method of the viscosity and flow volume of the fluid by the magnetic levitation type pump apparatus which concerns. 7 shows a flow of a method for estimating the viscosity μ based on the phase difference θ, and FIG. 8 shows a flow of a method for estimating the viscosity μ based on the amplitude ratio a / b.
 本実施形態の磁気浮上式ポンプ装置200による流体の粘度及び流量の推定方法では、まず、磁気軸受部201に設けられる電磁石216に印加する励磁電流に所定の周波数範囲の交流電流を所定時間(例えば、数秒間)印加して、当該励磁電流と重畳させる(交流電流印加工程S31)。このように、本実施形態では、意図的に交流電流を所定時間だけ印加することによって、インペラ204を強制的に振動させる。 In the fluid viscosity and flow rate estimation method by the magnetic levitation pump apparatus 200 of the present embodiment, first, an alternating current in a predetermined frequency range is applied to the excitation current applied to the electromagnet 216 provided in the magnetic bearing unit 201 for a predetermined time (for example, , Applied for several seconds and superposed on the excitation current (AC current application step S31). Thus, in the present embodiment, the impeller 204 is forcibly vibrated by intentionally applying an alternating current for a predetermined time.
 その際に、前述したように、インペラが浮上目標位置を中心に振動可能な周波数fと、インペラ204とハウジング202が接触しない範囲内の振幅bを有する交流電流を印加する。すなわち、インペラ204の振動が浮上目標位置を中心として、インペラ204とハウジング202が接触することの無いように、適切な周波数fと振幅bを選択する必要がある。 At that time, as described above, an alternating current having a frequency f at which the impeller can vibrate around the floating target position and an amplitude b within a range where the impeller 204 and the housing 202 do not contact each other is applied. That is, it is necessary to select an appropriate frequency f and amplitude b so that the impeller 204 does not come into contact with the housing 202 around the floating target position.
 もし、印加する交流電流の周波数が高すぎると、交流電流の振幅を最大にしても、インペラ204が応答せずに、振動しなくなるので、本実施形態に係る粘度推定方法が実施できない。このため、インペラ204が振動する低周波数域(例えば、400Hz以下)において、交流電流の振幅を適切に調節することによって、インペラ204とハウジング202が接触しないように調節している。すなわち、本実施形態に係る粘度推定方法による流体Lの粘度推定をするために、印加する交流電流の周波数fは、適切なインペラ204の振動振幅aが得られる程度の低い周波数を選択して、かつ、その交流電流の振幅bは、インペラ204とハウジング202が接触しない範囲内に調節する必要がある。 If the frequency of the alternating current applied is too high, even if the amplitude of the alternating current is maximized, the impeller 204 does not respond and does not vibrate, so the viscosity estimation method according to this embodiment cannot be implemented. For this reason, in the low frequency range (for example, 400 Hz or less) where the impeller 204 vibrates, by adjusting the amplitude of the alternating current appropriately, the impeller 204 and the housing 202 are adjusted so as not to contact each other. That is, in order to estimate the viscosity of the fluid L by the viscosity estimation method according to the present embodiment, the frequency f of the alternating current to be applied is selected to be a frequency that is low enough to obtain the vibration amplitude a of the impeller 204, In addition, the amplitude b of the alternating current needs to be adjusted within a range where the impeller 204 and the housing 202 do not contact each other.
 なお、ここで印加する交流電流は、前述した第1の実施形態と同様に、周期的に電流値が変動するような所定の周期を有する交流電流であればよく、その波形は、例えば、前述した図4Aに示す正弦波、図4Bに示す矩形波、図4Cに示す三角波、図4Dに示す鋸歯状波が適用可能である。 The alternating current applied here may be an alternating current having a predetermined cycle such that the current value periodically fluctuates in the same manner as in the first embodiment described above. The sine wave shown in FIG. 4A, the rectangular wave shown in FIG. 4B, the triangular wave shown in FIG. 4C, and the sawtooth wave shown in FIG. 4D are applicable.
 交流電流を印加後にインペラ204の振動によるインペラ変位を変位センサ220で検出する(インペラ変位検出工程S32)。そして、交流電流の印加により発生するインペラ204の振動によるインペラ変位の位相をプロットして記録する(記録工程S33)。その後、インペラ変位と交流電流の位相差θを算出して(算出工程S34)、当該位相差θに基づいて、流体Lの粘度μを推定する(粘度推定工程S35)。 After the alternating current is applied, the displacement of the impeller due to the vibration of the impeller 204 is detected by the displacement sensor 220 (impeller displacement detection step S32). Then, the phase of the impeller displacement caused by the vibration of the impeller 204 generated by the application of the alternating current is plotted and recorded (recording step S33). Thereafter, the phase difference θ between the impeller displacement and the alternating current is calculated (calculation step S34), and the viscosity μ of the fluid L is estimated based on the phase difference θ (viscosity estimation step S35).
 一方、振幅比a/bで粘度μを検出する場合には、図8に示すように、交流電流印加工程S41、インペラ変位検出工程S42を経た後に、交流電流の印加により発生するインペラ204の振動によるインペラ変位の振幅aをプロットして記録する(記録工程S43)。そして、インペラ変位と交流電流の振幅比a/bを算出して(算出工程S44)、当該振幅比a/bに基づいて、流体Lの粘度μを推定する(粘度推定工程S45)。 On the other hand, when the viscosity μ is detected by the amplitude ratio a / b, as shown in FIG. 8, the vibration of the impeller 204 generated by the application of the alternating current after the alternating current application step S41 and the impeller displacement detection step S42. The amplitude a of the impeller displacement due to is plotted and recorded (recording step S43). Then, the amplitude ratio a / b between the impeller displacement and the alternating current is calculated (calculation step S44), and the viscosity μ of the fluid L is estimated based on the amplitude ratio a / b (viscosity estimation step S45).
 なお、本実施形態では、位相差θ又は振幅比a/bを用いて、流体Lの粘度μを推定しているが、少なくとも何れか一方を用いていれば、当該粘度μを推定できるので、双方を共に用いて、より精度よく流体Lの粘度μを推定してもよい。 In this embodiment, the viscosity μ of the fluid L is estimated using the phase difference θ or the amplitude ratio a / b. However, if at least one of them is used, the viscosity μ can be estimated. Both may be used together to estimate the viscosity μ of the fluid L with higher accuracy.
 その後、モータ208のトルクと回転数を検出してから(モータデータ検出工程S36、S46)、トルク計224等で検出したモータ208のトルクと回転数と、粘度推定工程S45で推定された流体Lの粘度μに基づいて、当該流体Lの流量を推定する(流量推定工程S37、S47)。流量推定工程S37、S47では、モータ208のトルクと回転数によって求められる推定流量を粘度推定工程S35、S45で推定された流体Lの粘度μで補償することによって、当該流体Lの流量を推定する。 Then, after detecting the torque and rotation speed of the motor 208 (motor data detection steps S36 and S46), the torque and rotation speed of the motor 208 detected by the torque meter 224 and the fluid L estimated in the viscosity estimation step S45. The flow rate of the fluid L is estimated based on the viscosity μ (flow rate estimation steps S37 and S47). In the flow rate estimation steps S37 and S47, the flow rate of the fluid L is estimated by compensating the estimated flow rate obtained from the torque and the rotation speed of the motor 208 with the viscosity μ of the fluid L estimated in the viscosity estimation steps S35 and S45. .
 このように、本実施形態では、磁気浮上式ポンプ装置200の通常作動時においては、インペラ204が目標位置(回転軸中心等)からぶれないように、電磁石216への励磁電流を演算している。これに対して、流体Lの粘度μを推定する際には、敢えて一定周波数fの交流電流を数秒間程度、当該励磁電流に重畳することによって、インペラ204を強制的に振動させる。そして、インペラ204を強制振動中に、当該周波数fの交流電流Iとインペラ変位Xの位相差θ又は振幅比a/bを計算する。前述したように、位相差シータと振幅比a/bは、流体の粘度μに依存して変化するため、事前に実験的に求めたθとμの関係、又は理論的に求めたθとμの関係式から、流体粘度μを推定する。 Thus, in the present embodiment, during the normal operation of the magnetic levitation pump device 200, the excitation current to the electromagnet 216 is calculated so that the impeller 204 does not shake from the target position (center of rotation axis, etc.). . On the other hand, when estimating the viscosity μ of the fluid L, the impeller 204 is forcibly vibrated by superimposing an alternating current having a constant frequency f on the excitation current for several seconds. Then, during the forced vibration of the impeller 204, the phase difference θ or the amplitude ratio a / b between the alternating current I of the frequency f and the impeller displacement X is calculated. As described above, since the phase difference theta and the amplitude ratio a / b change depending on the viscosity μ of the fluid, the relationship between θ and μ obtained experimentally in advance or the theoretically obtained θ and μ From the relational expression, the fluid viscosity μ is estimated.
 このため、本実施形態の磁気浮上式ポンプ装置200による粘度推定方法は、新たなハードウェアを追加することなく、流体Lの粘度μを容易に推定することができる。また、本実施形態の磁気浮上式ポンプ装置200による粘度推定方法は、従来のようなモータトルクを粘度推定に用いる方法と異なり、流量による依存性が低く、流量を遮断する必要がないので、軸受損失の影響がないことから、精度よく流体粘度μを推定できる。さらに、本実施形態の磁気浮上式ポンプ装置200による粘度推定方法は、原理的にインペラ204とハウジング202との間の隙間が広くても、粘度μの測定精度に影響しないことから、装置の構造上の制約を受けることなく、精度のよい粘度推定が可能となる。 For this reason, the viscosity estimation method by the magnetic levitation pump apparatus 200 of the present embodiment can easily estimate the viscosity μ of the fluid L without adding new hardware. Also, the viscosity estimation method by the magnetic levitation pump device 200 of the present embodiment is less dependent on the flow rate and does not need to block the flow rate, unlike the conventional method using the motor torque for viscosity estimation. Since there is no influence of loss, the fluid viscosity μ can be accurately estimated. Furthermore, the viscosity estimation method using the magnetic levitation pump apparatus 200 according to the present embodiment does not affect the measurement accuracy of the viscosity μ even if the gap between the impeller 204 and the housing 202 is large in principle. Accurate viscosity estimation is possible without being restricted by the above.
 また、本実施形態では、磁気浮上式ポンプ装置200で推定された粘度で補償することによって、測定対象となる流体Lの流量を推定する際における精度が向上する。このため、本実施形態の磁気浮上式ポンプ装置200による粘度推定方法及び流量推定方法は、各種分野に適用できる。例えば、従来から埋込人工心臓等のように流量計設置が困難な循環系において、モータトルク等から流量を推定する研究が盛んに行われているが、作動流体粘度によって誤差が大きく増減するため、本実施形態の磁気浮上式ポンプ装置200による粘度推定方法で求めた推定粘度値を流量推定の誤差補正に用いて、流体Lの流量推定に適用することができる。 Also, in this embodiment, the accuracy in estimating the flow rate of the fluid L to be measured is improved by compensating with the viscosity estimated by the magnetic levitation pump device 200. For this reason, the viscosity estimation method and the flow rate estimation method by the magnetic levitation pump device 200 of this embodiment can be applied to various fields. For example, in a conventional circulation system such as an artificial artificial heart that is difficult to install a flow meter, there has been extensive research on estimating the flow rate from motor torque, etc., but the error greatly increases or decreases depending on the working fluid viscosity. The estimated viscosity value obtained by the viscosity estimation method by the magnetic levitation pump apparatus 200 of the present embodiment can be used for error correction of the flow rate estimation and applied to the flow rate estimation of the fluid L.
 さらに、推定した粘度値そのものを使用して、作動流体の状態をオンラインモニタリングに適用してもよい。例えば、血液ポンプや人工心臓における血栓検知,予知等の血液凝固モニタリングや、半導体や食品製造における超純水の品質管理等にも適用可能である。すなわち、体外循環用の磁気浮上式連続流血液ポンプや、体内埋込用磁気浮上式人工心臓、半導体製造用・食品製造用の超クリーンな磁気浮上式ポンプとしても適用できる。 Furthermore, the state of the working fluid may be applied to online monitoring using the estimated viscosity value itself. For example, it can be applied to blood coagulation monitoring such as blood clot detection and prediction in blood pumps and artificial hearts, and quality control of ultrapure water in semiconductor and food manufacturing. That is, it can be applied as a magnetic levitation type continuous flow blood pump for extracorporeal circulation, a magnetic levitation type artificial heart for implantation in the body, and an ultra-clean magnetic levitation type pump for semiconductor manufacturing and food manufacturing.
 なお、本発明の他の一実施形態(第2の実施形態)では、本発明の一実施形態(第1の実施形態)と同様に、遠心型のインペラを備える磁気浮上式ポンプ装置に適用しているが、軸流型のインペラ124(図5D参照)や、斜流型のインペラ134(図5E参照)を備える磁気浮上式ポンプ装置にも適用可能である。すなわち、本実施形態の磁気浮上式ポンプ装置200は、第1の実施形態と同様に、遠心型、軸流型、又は斜流型を問わず、磁気浮上式の連続流ポンプに適用できる。 Note that, in another embodiment (second embodiment) of the present invention, similarly to one embodiment (first embodiment) of the present invention, the present invention is applied to a magnetic levitation pump device including a centrifugal impeller. However, the present invention is also applicable to a magnetic levitation pump device including an axial flow type impeller 124 (see FIG. 5D) and a mixed flow type impeller 134 (see FIG. 5E). That is, the magnetic levitation pump device 200 of the present embodiment can be applied to a magnetic levitation type continuous flow pump regardless of whether it is a centrifugal type, an axial flow type, or a diagonal flow type, as in the first embodiment.
 次に、本発明の一実施形態に係る磁気浮上式ポンプ装置100による流体の粘度推定の実施例について、図面を使用しながら説明する。 Next, an example of fluid viscosity estimation by the magnetic levitation pump device 100 according to an embodiment of the present invention will be described with reference to the drawings.
 本実施例は、本発明の一実施形態に係る磁気浮上式ポンプ装置100(図1参照)による粘度推定方法の作用・効果を実証するために、図1に示す構成の磁気浮上式ポンプ装置100を使用した。その構成については、前述しているので省略する。 In order to demonstrate the operation and effect of the viscosity estimation method by the magnetic levitation pump apparatus 100 (see FIG. 1) according to one embodiment of the present invention, the present embodiment is a magnetic levitation pump apparatus 100 having the configuration shown in FIG. It was used. The configuration is omitted because it has been described above.
 本実施例のインペラは、軸方向(鉛直方向)には、電磁力による復元力で受動的に支持されるが、半径方向(水平方向)には、インペラのロータに内蔵された永久磁石の磁気吸引力が働いて、ハウジング壁面に吸着してしまう。そこで、本実施例では、変位センサでインペラ位置情報をフィードバックして、電磁石で径方向の電磁力を調整することによって、安定してインペラを磁気浮上させている。 The impeller of the present embodiment is passively supported by a restoring force due to electromagnetic force in the axial direction (vertical direction), but in the radial direction (horizontal direction), the magnet of a permanent magnet built in the rotor of the impeller. The suction force works and is attracted to the wall surface of the housing. Therefore, in this embodiment, the impeller is stably levitated by feeding back the impeller position information with a displacement sensor and adjusting the electromagnetic force in the radial direction with an electromagnet.
 図9は、本発明の一実施形態に係る磁気浮上式ポンプ装置による流体の粘度推定の実施例におけるインペラ変位の波形と印加した交流電流の波形の位相及び振幅の関係を示す説明図である。インペラを回転軸中心に安定に磁気浮上した状態でCPU(演算部)内の印加電流制御部でインペラの浮上目標位置を正弦波状に変化させると、図9の下段側のグラフに示すように、交流電流である電磁石電流が制御部から供給されて、電磁石への励磁電流に重畳される。 FIG. 9 is an explanatory diagram showing the relationship between the impeller displacement waveform and the phase and amplitude of the applied alternating current waveform in an example of fluid viscosity estimation by the magnetic levitation pump device according to one embodiment of the present invention. When the impeller levitation target position is changed to a sinusoidal shape by the applied current control unit in the CPU (calculation unit) in a state where the impeller is stably magnetically levitated around the rotation axis, as shown in the lower graph of FIG. An electromagnet current, which is an alternating current, is supplied from the control unit and superimposed on the exciting current to the electromagnet.
 このように、交流電流を印加して励磁電流と重畳させることによって、図9の上端側のグラフに示すように、印加した交流電流と同様にインペラも正弦波状に振動するようになる。本実施例では、このときに印加した交流電流(電磁石電流)Iとインペラ変位Xの位相差θを演算部で求める。また、その際に、インペラ変位の振幅aと交流電流の振幅bの比である振幅比a/bも演算部で求める。 In this way, by applying an alternating current and superimposing it with the exciting current, the impeller also vibrates in a sine wave like the applied alternating current, as shown in the graph on the upper end side of FIG. In this embodiment, the phase difference θ between the alternating current (electromagnet current) I and the impeller displacement X applied at this time is obtained by the calculation unit. At that time, an amplitude ratio a / b which is a ratio of the amplitude a of the impeller displacement and the amplitude b of the alternating current is also obtained by the calculation unit.
 図10は、本実施例におけるインペラ変位の波形と印加電流の波形との振幅比及び位相差と、印加電流の周波数との関係を示す説明図である。図10の上段側に振幅比a/bと印加交流電流の印加により発生するインペラの振動の周波数との関係をグラフに示し、図10の下段側に位相差θと当該振動の周波数との関係をグラフに示している。 FIG. 10 is an explanatory diagram showing the relationship between the amplitude ratio and phase difference between the impeller displacement waveform and the applied current waveform and the frequency of the applied current in this example. The relationship between the amplitude ratio a / b and the frequency of the impeller vibration generated by applying the applied AC current is shown in a graph on the upper side of FIG. 10, and the relationship between the phase difference θ and the frequency of the vibration is shown on the lower side of FIG. Is shown in the graph.
 図10に示すように、粘度の異なる5種類のグリセリン水溶液(0wt%=水、20wt%、40wt%、60wt%、70wt%)で計測したところ、振幅比a/b及び位相差θ共に、振動の周波数が低い値では、粘度μに対する感度が低い。一方、図10に示すように、振動の周波数が30Hzくらいのある程度以上の大きい値になると、粘度μに対する振幅比a/b及び位相差θの感度が良好になることが分かる。特に、振動の周波数が70Hzにおいて、粘度μに対する位相差θの感度が最大であることが確認された。そこで、本実施例では、粘度推定にf=70Hzの周波数を使用した. As shown in FIG. 10, when measured with five types of glycerin aqueous solutions having different viscosities (0 wt% = water, 20 wt%, 40 wt%, 60 wt%, 70 wt%), both the amplitude ratio a / b and the phase difference θ oscillate. When the frequency is low, the sensitivity to the viscosity μ is low. On the other hand, as shown in FIG. 10, it can be seen that the sensitivity of the amplitude ratio a / b and the phase difference θ with respect to the viscosity μ is improved when the frequency of vibration becomes a large value of about 30 Hz or more. In particular, it was confirmed that the sensitivity of the phase difference θ with respect to the viscosity μ was maximum when the vibration frequency was 70 Hz. Therefore, in this example, a frequency of f = 70 Hz was used for viscosity estimation.
 次に、振動周波数70Hzにおける粘度と位相差θの関係を図11に示す。なお、本実施例では、インペラ回転数は、2000rpm、流量は、5L/minとして、粘度の異なる3種類のグリセリン水溶液(0wt%=水、30wt%、50wt%)で計測した。粘度μと位相差θが線形関係であることから、下記の式(3)の定数A、Bを予備実験にて同定しておく。
 μ=Aθ+B   (3)
Next, FIG. 11 shows the relationship between the viscosity and the phase difference θ at a vibration frequency of 70 Hz. In this example, the impeller rotational speed was 2000 rpm, the flow rate was 5 L / min, and measurement was performed with three types of glycerin aqueous solutions (0 wt% = water, 30 wt%, 50 wt%) having different viscosities. Since the viscosity μ and the phase difference θ are in a linear relationship, constants A 0 and B 0 in the following formula (3) are identified in a preliminary experiment.
μ = A 0 θ + B 0 (3)
 なお、上記の定数A、Bは、インペラ回転数毎に異なるため、各回転数で定数A、Bを同定しておくか、粘度推定時に回転数を特定の値(今回は、2000rpm)に固定する必要がある。粘度の異なる3種類のグリセリン水溶液(0wt%=水、30wt%、50wt%)に対して、2000rpmにおいて流量を変化させた場合、図12に示すように、位相差θへの影響は、粘度変化に比べると十分小さく、無視できる程度であることが分かる。 Since the above constants A 0 and B 0 differ for each impeller rotational speed, the constants A 0 and B 0 are identified at each rotational speed, or the rotational speed is set to a specific value (this time, 2000 rpm). When the flow rate is changed at 2000 rpm for three types of glycerin aqueous solutions having different viscosities (0 wt% = water, 30 wt%, 50 wt%), as shown in FIG. It can be seen that it is sufficiently small and negligible compared to.
 そこで、粘度推定時には、70Hzでインペラを振動させた時のθをオンラインで計算し、前述の式(1)に代入して、その結果を図10に示す。図13に示すグラフの横軸は、粘度計で実際に計測した作動流体の粘度、縦軸は、本実施例により推定された作動流体の粘度を示す。多少のばらつきがみられるのは、流量を0~8L/minまで変化させたためであるが、本実施例では、0.75mPa・s~3.27mPa・sまでの測定レンジにおいて、±0.14mPa・sの推定精度を実現した。すなわち、本実施例の粘度推定方法で良好な流体の粘度推定が実現されることが実証された。 Therefore, at the time of viscosity estimation, θ when the impeller is vibrated at 70 Hz is calculated online, and is substituted into the above equation (1), and the result is shown in FIG. The horizontal axis of the graph shown in FIG. 13 indicates the viscosity of the working fluid actually measured with a viscometer, and the vertical axis indicates the viscosity of the working fluid estimated by the present embodiment. Some variation is observed because the flow rate was changed from 0 to 8 L / min. In this example, in the measurement range from 0.75 mPa · s to 3.27 mPa · s, ± 0.14 mPa・ Realized the estimation accuracy of s. That is, it was proved that the viscosity estimation method of the present example can achieve a good fluid viscosity estimation.
 次に、本発明の他の一実施形態(第2の実施形態)に係る磁気浮上式ポンプ装置200による流体の粘度推定の実施例について、図面を使用しながら説明する。 Next, an example of fluid viscosity estimation by the magnetic levitation pump device 200 according to another embodiment (second embodiment) of the present invention will be described with reference to the drawings.
 本実施例は、本発明の他の一実施形態に係る磁気浮上式ポンプ装置200(図6参照)による粘度推定方法の作用・効果を実証するために、図6に示す構成の磁気浮上式ポンプ装置200を使用した。具体的には、磁気浮上式ポンプ装置200の流出部202dに流量計を取り付け、流出部202dから流出された作動流体を恒温槽中に設けられたリザーバに供給し、当該リザーバから磁気浮上式ポンプ装置200の流入部202cに作動流体を戻すことによって、実測流量と推定流量との関係について調べた。なお、磁気浮上式ポンプ装置200の構成については、前述しているので省略する。 The present example is a magnetic levitation pump configured as shown in FIG. 6 in order to demonstrate the operation and effect of the viscosity estimation method by the magnetic levitation pump apparatus 200 (see FIG. 6) according to another embodiment of the present invention. An apparatus 200 was used. Specifically, a flow meter is attached to the outflow portion 202d of the magnetic levitation pump device 200, the working fluid discharged from the outflow portion 202d is supplied to a reservoir provided in the thermostatic bath, and the magnetic levitation pump is supplied from the reservoir. The relationship between the measured flow rate and the estimated flow rate was examined by returning the working fluid to the inflow portion 202c of the apparatus 200. The configuration of the magnetic levitation pump device 200 has been described above, and will not be described.
 本実施例では、流量推定の対象となる作動流体として、下記の表1に記載の異なる粘度のグリセリン水溶液を用いて、本発明の他の一実施形態に係る磁気浮上式ポンプ装置200によって送液される作動流体の流量について、粘度補償が無い場合と、推定粘度で補償する場合とそれぞれ2回ずつ計8回測定した。 In this example, glycerin aqueous solutions having different viscosities described in Table 1 below are used as working fluids for which the flow rate is to be estimated, and are fed by a magnetic levitation pump device 200 according to another embodiment of the present invention. The flow rate of the working fluid was measured 8 times, 2 times each for the case of no viscosity compensation and 2 for the estimated viscosity.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 粘度補償が無い場合では、前述した式(2)の粘度μを前述した作動流体の粘度の平均値μa=3.17mPa・sで補償することによって、当該式(2)に基づいて流量を推定した。一方、推定粘度で補償する場合では、前述した式(2)の粘度μを下記の式(4)で算出される推定粘度μeで補償することによって、当該式(2)に基づいて流量を推定した。なお、下記の式(4)における推定粘度μeは、電磁石電流とインペラ変位の位相差φと線形関係であることから、前述した式(3)と同様にして、下記の式(4)の定数k、kを予備実験にて同定してから求められるものとする。
 μe=kφ+k   (4)
In the case where there is no viscosity compensation, the flow rate is estimated based on the formula (2) by compensating the viscosity μ of the formula (2) described above with the average value μa = 3.17 mPa · s of the viscosity of the working fluid described above. did. On the other hand, in the case of compensating with the estimated viscosity, the flow rate is estimated based on the equation (2) by compensating the viscosity μ of the above-described equation (2) with the estimated viscosity μe calculated by the following equation (4). did. Since the estimated viscosity μe in the following equation (4) is linearly related to the electromagnet current and the phase difference φ between the impeller displacements, the constant of the following equation (4) is the same as the above equation (3). Assume that k 1 and k 0 are obtained after identification in a preliminary experiment.
μe = k 1 φ + k 0 (4)
 図14は、本発明の他の一実施形態に係る磁気浮上式ポンプ装置200による流体の流量推定の実施例における実測流量と推定流量との関係を示す説明図である。なお、図14では、横軸が流量計で実際に測定した実測流量Qを示し、縦軸が推定流量Qeを示す。 FIG. 14 is an explanatory diagram showing the relationship between the measured flow rate and the estimated flow rate in an example of fluid flow rate estimation by the magnetic levitation pump device 200 according to another embodiment of the present invention. In FIG. 14, the horizontal axis indicates the actual flow rate Q actually measured by the flow meter, and the vertical axis indicates the estimated flow rate Qe.
 図14に示すように、粘度補償が無い場合では、実測流量に対する推定流量Qeの値にバラツキが生じることが分かる。これに対して、推定粘度で補償する場合では、粘度補償が無い場合と比べて、実測流量に対する推定流量Qeの値のバラツキが小さくなることが分かる。このことから、磁気浮上式ポンプ装置200で送液した流体の流量を推定粘度で補償すると、粘度補償が無い場合と比べて、流量の推定値にバラツキが小さくなり、より実測値に近い値に収まることが分かる。すなわち、本発明の他の実施形態に係る磁気浮上式ポンプ装置200で作動流体の流量を推定する際に、当該磁気浮上式ポンプ装置200による粘度推定で求められた推定粘度μで補償することによって、実測値に近い流体の流量が推定可能になることが分かる。 As shown in FIG. 14, it can be seen that there is a variation in the value of the estimated flow rate Qe with respect to the actual flow rate when there is no viscosity compensation. On the other hand, in the case of compensating with the estimated viscosity, it can be seen that the variation in the value of the estimated flow rate Qe with respect to the actually measured flow rate becomes smaller than in the case where there is no viscosity compensation. Therefore, when the flow rate of the fluid sent by the magnetic levitation pump device 200 is compensated with the estimated viscosity, the estimated value of the flow rate is less varied than when there is no viscosity compensation, and closer to the actually measured value. You can see that it fits. That is, when estimating the flow rate of the working fluid in the magnetic levitation pump apparatus 200 according to another embodiment of the present invention, by compensating with the estimated viscosity μ obtained by the viscosity estimation by the magnetic levitation pump apparatus 200. It can be seen that the flow rate of the fluid close to the actually measured value can be estimated.
 なお、上記のように本発明の各実施形態及び各実施例について詳細に説明したが、本発明の新規事項及び効果から実体的に逸脱しない多くの変形が可能であることは、当業者には、容易に理解できるであろう。従って、このような変形例は、全て本発明の範囲に含まれるものとする。 Although the embodiments and examples of the present invention have been described in detail as described above, it will be understood by those skilled in the art that many modifications can be made without departing from the novel matters and effects of the present invention. It will be easy to understand. Therefore, all such modifications are included in the scope of the present invention.
 例えば、明細書又は図面において、少なくとも一度、より広義又は同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また、磁気浮上式ポンプ装置の構成、動作も本発明の各実施形態及び実施例で説明したものに限定されず、種々の変形実施が可能である。 For example, a term described together with a different term having a broader meaning or the same meaning at least once in the specification or the drawings can be replaced with the different term in any part of the specification or the drawings. Further, the configuration and operation of the magnetic levitation pump device are not limited to those described in the embodiments and examples of the present invention, and various modifications can be made.
100、200 磁気浮上式ポンプ装置、101、201 磁気軸受部、102、202 ハウジング、102a、202a 側壁部、102b、202b 底部、102b1、202b1 凸部、102c、202c 流入部、102d、202d 流出部、104、204 (遠心型)インペラ、106、206 ロータ、106a、206a 外周面、106b、206b 凹部、106b1、206b1 内周面、108、208 モータ(回転駆動部)、110、112、114、210、212、214 永久磁石、113、213 駆動軸、116、216 電磁石、118、218 電流センサ、120、220 変位センサ、122、222 ケーシング、124 軸流型インペラ、134 斜流型インペラ、150、250 制御部、152、252 CPU(演算部)、154、254 印加電流制御部、156、256 インペラ変位記録部、158、258 算出部、160、260 粘度推定部、162、262 印加電流調整部、164、264 モータ制御部、166、266 記憶部、224 トルク計、S11、S21、S31、S41 交流電流印加工程、S12、S22、S32、S42 インペラ変位検出工程、S13、S23、S33、S43 記録工程、S14、S24、S34、S44 算出工程、S15、S25、S35、S45 粘度推定工程、S36、S46 モータデータ検出工程、S37、S47 流量推定工程 100, 200 Magnetic levitation pump device, 101, 201 Magnetic bearing part, 102, 202 Housing, 102a, 202a Side wall part, 102b, 202b Bottom part, 102b1, 202b1 Convex part, 102c, 202c Inflow part, 102d, 202d Outflow part, 104, 204 (centrifugal type) impeller, 106, 206 rotor, 106a, 206a outer peripheral surface, 106b, 206b concave portion, 106b1, 206b1 inner peripheral surface, 108, 208 motor (rotation drive unit), 110, 112, 114, 210, 212, 214 Permanent magnet, 113, 213 Drive shaft, 116, 216 Electromagnet, 118, 218 Current sensor, 120, 220 Displacement sensor, 122, 222 Casing, 124 Axial flow type impeller, 134 Diagonal flow type impeller, 150, 2 0 control unit, 152, 252 CPU (calculation unit), 154, 254 applied current control unit, 156, 256 impeller displacement recording unit, 158, 258 calculation unit, 160, 260 viscosity estimation unit, 162, 262 applied current adjustment unit, 164, 264 Motor control unit, 166, 266 Storage unit, 224 Torque meter, S11, S21, S31, S41 AC current application process, S12, S22, S32, S42 Impeller displacement detection process, S13, S23, S33, S43 Recording process , S14, S24, S34, S44 Calculation step, S15, S25, S35, S45 Viscosity estimation step, S36, S46 Motor data detection step, S37, S47 Flow rate estimation step

Claims (9)

  1.  流体の流入部と流出部を有するハウジング内でインペラを磁気浮上させて回転させながら前記流体を移送する磁気浮上式ポンプ装置であって、
     前記インペラと磁気力で非接触に結合して該インペラを回転させる回転駆動部と、
     前記インペラを前記磁気力により非接触に支持する磁気軸受部と、
     前記磁気軸受部の前記インペラのロータに内蔵する永久磁石と対向する位置に設けられる電磁石への印加電流を制御する印加電流制御部と、
     前記印加電流の大きさを検出する電流センサと、
     前記インペラの変位を検出する変位センサと、
     前記印加電流制御部が所定の周波数範囲の交流電流を所定の時間、前記電磁石への励磁電流と重畳させて印加するように前記印加電流を制御した際に、前記変位センサで検出した前記インペラの振動によるインペラ変位と前記交流電流の位相差又は前記インペラ変位と前記交流電流の振幅比の少なくとも何れかを算出する算出部と、
     前記算出部で算出した前記位相差又は前記振幅比の少なくとも何れかに基づいて、前記流体の粘度を推定する粘度推定部と、を備えることを特徴とする磁気浮上式ポンプ装置。
    A magnetic levitation pump device that transfers the fluid while rotating the impeller by magnetic levitation in a housing having a fluid inflow portion and an outflow portion,
    A rotary drive unit that rotates in combination with the impeller in a non-contact manner by a magnetic force;
    A magnetic bearing portion that supports the impeller in a non-contact manner by the magnetic force;
    An applied current control unit for controlling an applied current to an electromagnet provided at a position facing a permanent magnet built in a rotor of the impeller of the magnetic bearing unit;
    A current sensor for detecting the magnitude of the applied current;
    A displacement sensor for detecting the displacement of the impeller;
    When the applied current control unit controls the applied current so that an alternating current in a predetermined frequency range is superimposed on an excitation current to the electromagnet for a predetermined time, the impeller detected by the displacement sensor A calculation unit that calculates at least one of a phase difference between the impeller displacement due to vibration and the alternating current or an amplitude ratio between the impeller displacement and the alternating current;
    A magnetic levitation pump device comprising: a viscosity estimation unit that estimates the viscosity of the fluid based on at least one of the phase difference or the amplitude ratio calculated by the calculation unit.
  2.  前記印加電流制御部は、前記交流電流を印加して前記励磁電流と重畳させる際に、前記インペラが浮上目標位置を中心に振動可能な周波数と、前記インペラと前記ハウジングが接触しない範囲内の振幅を有する交流電流を印加することを特徴とする請求項1に記載の磁気浮上式ポンプ装置。 The applied current control unit, when applying the alternating current and superimposing the excitation current, a frequency at which the impeller can vibrate around a floating target position, and an amplitude within a range where the impeller and the housing do not contact each other. The magnetic levitation pump device according to claim 1, wherein an alternating current having the above is applied.
  3.  前記周波数は、下記の式により算出された値の近傍値であることを特徴とする請求項2に記載の磁気浮上式ポンプ装置。
    Figure JPOXMLDOC01-appb-M000001
    The magnetic levitation pump device according to claim 2, wherein the frequency is a value close to a value calculated by the following equation.
    Figure JPOXMLDOC01-appb-M000001
  4.  前記粘度推定部は、前記位相差と前記粘度の関係に係る事前の実験データ、又は予め理論的に求めた前記位相差と前記粘度の関係式に基づいて、前記粘度を推定することを特徴とする請求項1乃至3の何れか1項に記載の磁気浮上式ポンプ装置。 The viscosity estimating unit estimates the viscosity based on prior experimental data related to the relationship between the phase difference and the viscosity, or based on a relational expression between the phase difference and the viscosity obtained theoretically in advance. The magnetic levitation pump device according to any one of claims 1 to 3.
  5.  前記インペラは、遠心型、軸流型、又は斜流型の何れかの形状であることを特徴とする請求項1乃至4の何れか1項に記載の磁気浮上式ポンプ装置。 The magnetic levitation pump device according to any one of claims 1 to 4, wherein the impeller has any one of a centrifugal type, an axial flow type, and a mixed flow type.
  6.  少なくとも前記回転駆動部のトルク、電流値、消費電力、及び回転数の何れかと、前記粘度推定部で推定された前記粘度に基づいて、前記流体の流量を推定する流量推定部を更に備えることを特徴とする請求項1乃至5の何れか1項に記載の磁気浮上式ポンプ装置。 A flow rate estimating unit that estimates the flow rate of the fluid based on at least one of the torque, current value, power consumption, and rotation speed of the rotation driving unit and the viscosity estimated by the viscosity estimating unit; The magnetic levitation pump device according to claim 1, wherein the levitation pump device is a magnetic levitation pump device according to claim 1.
  7.  流体の流入部と流出部を有するハウジング内でインペラを磁気浮上させて回転させながら前記流体を移送する磁気浮上式ポンプ装置による流体の粘度推定方法であって、
     前記インペラのロータに内蔵する永久磁石と対向する位置に設けられる電磁石に印加する励磁電流に所定の周波数範囲の交流電流を印加して重畳させる交流電流印加工程と、
     前記交流電流を印加後に前記インペラの振動によるインペラ変位を検出するインペラ変位検出工程と、
     前記振動による前記インペラ変位の位相又は振幅の少なくとも何れかを記録する記録工程と、
     前記インペラ変位と前記交流電流の位相差又は振幅比の少なくとも何れかを算出する算出工程と、
     前記位相差又は前記振幅比の少なくとも何れかに基づいて、前記流体の粘度を推定する粘度推定工程と、を含むことを特徴とする磁気浮上式ポンプ装置による流体の粘度推定方法。
    A fluid viscosity estimation method using a magnetic levitation pump device that transfers the fluid while magnetically levitating and rotating an impeller in a housing having a fluid inflow portion and an outflow portion,
    An alternating current application step of applying and superimposing an alternating current in a predetermined frequency range on an exciting current applied to an electromagnet provided at a position facing a permanent magnet built in the rotor of the impeller;
    An impeller displacement detection step of detecting an impeller displacement due to vibration of the impeller after applying the alternating current;
    A recording step of recording at least one of a phase or an amplitude of the impeller displacement due to the vibration;
    A calculation step of calculating at least one of a phase difference or an amplitude ratio between the impeller displacement and the alternating current;
    And a viscosity estimating step of estimating the viscosity of the fluid based on at least one of the phase difference and the amplitude ratio.
  8.  流体の流入部と流出部を有するハウジング内でインペラを磁気浮上させて回転させながら前記流体を移送する磁気浮上式ポンプ装置による流体の流量推定方法であって、
     前記インペラのロータに内蔵する永久磁石と対向する位置に設けられる電磁石に印加する励磁電流に所定の周波数範囲の交流電流を印加して重畳させる交流電流印加工程と、
     前記交流電流を印加後に前記インペラの振動によるインペラ変位を検出するインペラ変位検出工程と、
     前記振動による前記インペラ変位の位相又は振幅の少なくとも何れかを記録する記録工程と、
     前記インペラ変位と前記交流電流の位相差又は振幅比の少なくとも何れかを算出する算出工程と、
     前記位相差又は前記振幅比の少なくとも何れかに基づいて、前記流体の粘度を推定する粘度推定工程と、
     少なくとも前記インペラを回転させる回転駆動部のトルク、電流値、消費電力、及び回転数の何れかと、前記粘度推定工程で推定された前記粘度に基づいて、前記流体の流量を推定する流量推定工程と、
     を含むことを特徴とする磁気浮上式ポンプ装置による流体の流量推定方法。
    A fluid flow rate estimation method using a magnetic levitation pump device that moves the impeller while magnetically levitating and rotating in a housing having a fluid inflow portion and an outflow portion,
    An alternating current application step of applying and superimposing an alternating current in a predetermined frequency range on an exciting current applied to an electromagnet provided at a position facing a permanent magnet built in the rotor of the impeller;
    An impeller displacement detection step of detecting an impeller displacement due to vibration of the impeller after applying the alternating current;
    A recording step of recording at least one of a phase or an amplitude of the impeller displacement due to the vibration;
    A calculation step of calculating at least one of a phase difference or an amplitude ratio between the impeller displacement and the alternating current;
    A viscosity estimating step of estimating the viscosity of the fluid based on at least one of the phase difference and the amplitude ratio;
    A flow rate estimating step for estimating a flow rate of the fluid based on at least one of torque, current value, power consumption, and rotation speed of the rotation drive unit that rotates the impeller, and the viscosity estimated in the viscosity estimation step; ,
    A fluid flow rate estimating method using a magnetically levitated pump device.
  9.  前記流量推定工程では、前記回転駆動部の前記トルクと前記回転数によって求められる推定流量を前記粘度推定工程で推定された前記粘度で補償することによって、前記流量を推定することを特徴とする請求項8に記載の磁気浮上式ポンプ装置による流体の流量推定方法。 In the flow rate estimation step, the flow rate is estimated by compensating an estimated flow rate obtained from the torque of the rotation drive unit and the rotation speed with the viscosity estimated in the viscosity estimation step. Item 9. A method for estimating a fluid flow rate by the magnetic levitation pump device according to Item 8.
PCT/JP2015/055536 2014-03-11 2015-02-26 Magnetic levitation-type pump device, method for estimating viscosity of fluid by magnetic levitation-type pump device, and method for estimating flow rate of fluid by magnetic levitation-type pump device WO2015137126A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014047493 2014-03-11
JP2014-047493 2014-03-11

Publications (1)

Publication Number Publication Date
WO2015137126A1 true WO2015137126A1 (en) 2015-09-17

Family

ID=54071574

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055536 WO2015137126A1 (en) 2014-03-11 2015-02-26 Magnetic levitation-type pump device, method for estimating viscosity of fluid by magnetic levitation-type pump device, and method for estimating flow rate of fluid by magnetic levitation-type pump device

Country Status (1)

Country Link
WO (1) WO2015137126A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019508124A (en) * 2016-02-12 2019-03-28 スミス アンド ネフュー インコーポレイテッド System and method for detecting operating conditions of decompression therapy
CN110947040A (en) * 2019-12-18 2020-04-03 山东大学 Extracorporeal circulation blood pump and method
WO2021015034A1 (en) * 2019-07-19 2021-01-28 株式会社イワキ Pump
CN113323889A (en) * 2021-06-09 2021-08-31 苏州心擎医疗技术有限公司 Force measuring platform for performing hydraulics test on shaftless suspension pump
CN115544430A (en) * 2022-12-02 2022-12-30 深圳核心医疗科技有限公司 Fluid flow estimation method and device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209338A (en) * 1988-02-16 1989-08-23 Sumitomo Metal Ind Ltd Viscosity measuring apparatus
JPH08270595A (en) * 1995-04-03 1996-10-15 Ntn Corp Magnetic levitation pump
JPH10299664A (en) * 1997-04-21 1998-11-10 Yaskawa Electric Corp Operation controlling device for pump
JP2006307682A (en) * 2005-04-26 2006-11-09 Ebara Densan Ltd Pump device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01209338A (en) * 1988-02-16 1989-08-23 Sumitomo Metal Ind Ltd Viscosity measuring apparatus
JPH08270595A (en) * 1995-04-03 1996-10-15 Ntn Corp Magnetic levitation pump
JPH10299664A (en) * 1997-04-21 1998-11-10 Yaskawa Electric Corp Operation controlling device for pump
JP2006307682A (en) * 2005-04-26 2006-11-09 Ebara Densan Ltd Pump device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019508124A (en) * 2016-02-12 2019-03-28 スミス アンド ネフュー インコーポレイテッド System and method for detecting operating conditions of decompression therapy
US11357906B2 (en) 2016-02-12 2022-06-14 Smith & Nephew, Inc. Systems and methods for detecting operational conditions of reduced pressure therapy
WO2021015034A1 (en) * 2019-07-19 2021-01-28 株式会社イワキ Pump
CN114072586A (en) * 2019-07-19 2022-02-18 株式会社易威奇 Pump and method of operating the same
CN114072586B (en) * 2019-07-19 2023-11-03 株式会社易威奇 Pump with a pump body
CN110947040A (en) * 2019-12-18 2020-04-03 山东大学 Extracorporeal circulation blood pump and method
CN113323889A (en) * 2021-06-09 2021-08-31 苏州心擎医疗技术有限公司 Force measuring platform for performing hydraulics test on shaftless suspension pump
CN115544430A (en) * 2022-12-02 2022-12-30 深圳核心医疗科技有限公司 Fluid flow estimation method and device

Similar Documents

Publication Publication Date Title
WO2015137126A1 (en) Magnetic levitation-type pump device, method for estimating viscosity of fluid by magnetic levitation-type pump device, and method for estimating flow rate of fluid by magnetic levitation-type pump device
JP7332651B2 (en) Blood pump and method of operating blood pump
US11872384B2 (en) Method of operating a blood pump having a magnetically levitated impeller
US11724097B2 (en) System and method for controlling the position of a levitated rotor
US8226373B2 (en) Sensorless magnetic bearing type blood pump apparatus
US10722630B2 (en) Strain gauge for flow estimation
JP3553255B2 (en) Magnetic levitation pump with viscosity measurement function
US5725357A (en) Magnetically suspended type pump
JP3821780B2 (en) Method of controlling an auxiliary pump for a fluid supply system by pulsating pressure
JP5347171B2 (en) Centrifugal pump device
US20140066691A1 (en) Instability Detection Algorithm for an Implantable Blood Pump
JP3546092B2 (en) Magnetic levitation pump
US20180071443A1 (en) Pump, and method for operating a pump for fluids
JP4340182B2 (en) Blood pump device
JP6698278B2 (en) Centrifugal pump device
JP5509970B2 (en) Vacuum pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761905

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP