WO2016158185A1 - Centrifugal pump device - Google Patents

Centrifugal pump device Download PDF

Info

Publication number
WO2016158185A1
WO2016158185A1 PCT/JP2016/056566 JP2016056566W WO2016158185A1 WO 2016158185 A1 WO2016158185 A1 WO 2016158185A1 JP 2016056566 W JP2016056566 W JP 2016056566W WO 2016158185 A1 WO2016158185 A1 WO 2016158185A1
Authority
WO
WIPO (PCT)
Prior art keywords
impeller
dynamic pressure
centrifugal pump
pump device
rotation
Prior art date
Application number
PCT/JP2016/056566
Other languages
French (fr)
Japanese (ja)
Inventor
山田 裕之
顕 杉浦
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2016158185A1 publication Critical patent/WO2016158185A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D13/00Pumping installations or systems
    • F04D13/02Units comprising pumps and their driving means
    • F04D13/06Units comprising pumps and their driving means the pump being electrically driven
    • F04D13/0666Units comprising pumps and their driving means the pump being electrically driven the motor being of the plane gap type
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/10Location thereof with respect to the patient's body
    • A61M60/122Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body
    • A61M60/126Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel
    • A61M60/148Implantable pumps or pumping devices, i.e. the blood being pumped inside the patient's body implantable via, into, inside, in line, branching on, or around a blood vessel in line with a blood vessel using resection or like techniques, e.g. permanent endovascular heart assist devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M60/00Blood pumps; Devices for mechanical circulatory actuation; Balloon pumps for circulatory assistance
    • A61M60/80Constructional details other than related to driving
    • A61M60/802Constructional details other than related to driving of non-positive displacement blood pumps
    • A61M60/818Bearings
    • A61M60/824Hydrodynamic or fluid film bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/041Axial thrust balancing
    • F04D29/0413Axial thrust balancing hydrostatic; hydrodynamic thrust bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/04Shafts or bearings, or assemblies thereof
    • F04D29/046Bearings
    • F04D29/047Bearings hydrostatic; hydrodynamic
    • F04D29/0473Bearings hydrostatic; hydrodynamic for radial pumps
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/06Rotor flux based control involving the use of rotor position or rotor speed sensors

Definitions

  • the present invention relates to a centrifugal pump device, and more particularly to a centrifugal pump device provided with an impeller that sends a liquid by a centrifugal force during rotation.
  • a canned motor having a structure in which a motor drive chamber and a rotor chamber are separated by a partition wall is often used.
  • Such a motor is used, for example, in a pump for transporting chemical liquid or pure water in a semiconductor production line used in an environment where dust is not desired, or a pump for transporting biological fluid.
  • Patent Document 1 JP 2010-261394 A (Patent Document 1) describes an axial gap type centrifugal pump characterized by non-contact floating of an impeller by a fluid dynamic pressure bearing and a canned motor structure.
  • an axial gap type centrifugal pump characterized by non-contact floating of the impeller by the hydrodynamic bearing it is arranged on the opposite side across the impeller so as to cancel the axial suction force acting between the impeller and the motor.
  • a ring-shaped permanent magnet or the like balances the attractive force in the axial direction.
  • the attractive force by these permanent magnets or the like is a component of negative rigidity (unstable element) that tends to approach the impeller more in one direction when the impeller approaches one direction.
  • Patent Document 1 As described above, as a method for controlling the axial attractive force changed due to the eccentricity of the impeller, in Japanese Patent Application Laid-Open No. 2010-261394 (Patent Document 1), the motor-side attractive force is balanced with the attractive force change of the ring-shaped magnet portion. In addition, the motor current phase was adjusted. As a result, even if the impeller is eccentric in the radial direction due to disturbances or operating conditions, stable rotation can be maintained without changing the floating position of the impeller in the axial direction.
  • changing the motor current phase may cause various problems. For example, if the current phase changes from the situation where the motor is operated at the maximum efficiency point, the motor efficiency may be reduced. Further, for example, when the current phase is changed from the situation where the operation is performed at the maximum torque point, the generated torque is reduced, and there is a possibility that the pump output is reduced or the motor is stepped out.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide a centrifugal pump device capable of achieving both prevention of contamination and prevention of reduction in efficiency and performance. .
  • the present invention is a centrifugal pump device that includes a housing including first and second chambers partitioned by a partition wall, and a shaft that intersects the partition wall in the first chamber so as to be rotatable about a rotation axis.
  • An impeller that sends liquid by centrifugal force during rotation, a drive unit that is provided in the second chamber and rotationally drives the impeller via the partition, and an impeller along the first wall surface facing the partition of the first chamber
  • a first magnetic body disposed along the same circle, a second magnetic body embedded in the first wall surface and attracting the first magnetic body, and an impeller along the partition wall A plurality of third magnetic bodies provided on the other surface and arranged along the same circle.
  • the drive unit includes a plurality of coils provided to face the plurality of third magnetic bodies and generate a rotating magnetic field.
  • a first dynamic pressure groove is formed on one surface of the impeller or the first wall surface facing the one surface.
  • a second dynamic pressure groove is formed on the other surface of the impeller or a partition wall facing the other surface.
  • At least one of the first magnetic body and the second magnetic body is formed in an annular shape around the rotation center line of the impeller.
  • the drive unit maintains the position of the impeller at the center of the movable range of the impeller in the direction along the rotation axis in the first chamber by the attractive force acting between the third magnetic body and the drive unit adjusted by vector control. To do.
  • the drive unit increases the magnetic flux current in the vector control when the position of the impeller changes in the direction away from the partition from the center of the movable range.
  • the first attractive force acting between the first magnetic body and the second magnetic body, and the third The second attractive force acting between the magnetic body and the drive unit is balanced when the impeller is positioned at the center of the movable range of the impeller in the first chamber.
  • the centrifugal pump device further includes a phase estimator for estimating the rotation angle of the impeller for use in vector control.
  • the centrifugal pump device preliminarily measures and stores the fluid force acting on the impeller using at least one or more of the rotation speed, flow rate, discharge pressure, and physical property value of the fluid as parameters.
  • the apparatus further includes a storage unit and a drive control unit that controls the second suction force according to a value stored in the storage unit.
  • the centrifugal pump device further includes a rotation detector for detecting the rotation angle of the impeller for use in vector control.
  • the rotation detector is a magnetic sensor, and the flying position of the impeller is detected by the magnetic sensor.
  • a third dynamic pressure groove is formed on the outer peripheral side surface of the impeller.
  • a third dynamic pressure groove is formed on the wall surface of the first chamber facing the outer peripheral side surface of the impeller.
  • the centrifugal pump device is used for circulating food.
  • the centrifugal pump device is used for circulating pharmaceutical products.
  • the electromagnetic force generated in the motor is separated (vector control) into a torque current component (Iq component) and a field current component (Id component), and the Id component is positively changed, so that the impeller It is possible to control the axial suction force acting on the impeller, and to improve the stability of the impeller during the floating rotation.
  • FIG. 3 It is an electric circuit diagram of the motor drive system of the centrifugal pump device according to the present embodiment. It is a wave form diagram for demonstrating the output signal output to an inverter from a PWM driver. It is the control block diagram which showed the motor control part 324 and its periphery structure in a motor drive system. 4 is a control block diagram showing a motor control unit 324 and its peripheral configuration in a motor drive system when a sensorless angle detection process is used for motor drive, which is a modification of FIG. 3.
  • FIG. It is a block diagram of the voltage equation of a motor. It is a vector diagram of motor control. It is a front view which shows the external appearance of the pump part 1 of the centrifugal pump apparatus of embodiment of this invention.
  • FIG. 9 is a side view of the pump part 1 shown in FIG.
  • FIG. 9 is a sectional view taken along line IX-IX in FIG. 8.
  • FIG. 10 is a sectional view taken along line XX in FIG. 9. It is sectional drawing which shows the state which removed the impeller from FIG.
  • FIG. 10 is a cross-sectional view showing a state where the impeller is removed from the cross-sectional view taken along the line XII-XII in FIG. 9.
  • FIG. 10 is a sectional view taken along line XIII-XIII in FIG. 9.
  • the magnitude of the resultant force of the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 is zero at a position P1 other than the central position of the movable range in the pump chamber 7 of the impeller 10. It is a figure which shows the force which acts on the impeller 10 when it adjusts so that it may become.
  • the magnitude of the resultant force of the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 is zero at the center position P0 of the movable range in the pump chamber 7 of the impeller 10. It is a figure which shows the force which acts on the impeller 10 when adjusting to.
  • FIG. 28 is a sectional view taken along line XXVIII-XXVIII in FIG. 27. It is a figure which shows the modification which further provided the radial dynamic pressure groove in the pump chamber peripheral surface. 4 is a view showing a modification in which a radial dynamic pressure groove is further provided on the outer peripheral surface of the impeller 10.
  • FIG. 3 is a diagram showing a detailed arrangement of magnets embedded in a shroud of the impeller 10. It is a 1st modification of arrangement
  • FIG. 37 It is a 2nd modification of arrangement
  • FIG. 37 is a third modification of the arrangement of the permanent magnets shown in FIG. 36.
  • FIG. FIG. 37 is a fourth modification of the arrangement of the permanent magnets shown in FIG. 36.
  • FIG. FIG. 37 is a fifth modification of the arrangement of the permanent magnets shown in FIG. 36.
  • FIG. 1 is an electric circuit diagram of a motor drive system of a centrifugal pump device according to the present embodiment.
  • motor drive system 300 includes a battery unit 310, an inverter device 320, and a motor unit 331.
  • the motor unit 331 is a three-phase synchronous motor, such as an SPM type (surface magnet type) synchronous motor, and includes a rotor 332 including a permanent magnet and a stator including a three-phase stator coil.
  • the rotation angle of the rotor 332 is detected by an angle detector 334.
  • the inverter device 320 includes a smoothing unit 328 that smoothes a DC voltage supplied from the battery unit 310, a three-phase inverter 330, and a calculation unit 322.
  • the calculation unit 322 includes a motor control unit 324 and a PWM driver 326.
  • the three-phase inverter 330 is composed of six drive elements that are semiconductor switching elements, and outputs a drive current of each phase of the three phases (U, V, W phase) of the motor in a pulse waveform.
  • FIG. 2 is a waveform diagram for explaining an output signal output from the PWM driver to the inverter.
  • the PWM driver 326 performs pulse width modulation on the input current command so as to obtain a current output for driving the three-phase inverter 330 in a sine wave, and gives on / off commands to the six drive elements. .
  • the PWM driver 326 and the motor control unit 324 constitute a calculation unit 322 that is a weak electric circuit portion of the inverter device 320.
  • the arithmetic unit 322 includes a computer, a program executed on the computer, and an electronic circuit.
  • FIG. 3 is a control block diagram showing the motor control unit 324 and its peripheral configuration in the motor drive system.
  • motor control unit 324 includes current command calculation unit 340, torque current control unit 341, magnetic flux current control unit 343, ⁇ coordinate conversion unit 350, and two-phase / three-phase coordinate conversion unit 352. And a three-phase / two-phase coordinate conversion unit 354 and a rotation coordinate conversion unit 356 on the detection side.
  • the current command calculation unit 340 includes a torque current command unit 362 and a magnetic flux current setting unit 364.
  • the torque current command unit 362 outputs a torque current command value Iqref in accordance with the torque command given from the host controller.
  • the torque command is calculated from the external rotational speed or torque command.
  • the magnetic flux current setting unit 364 outputs a command value Idref in which the magnetic flux current is determined.
  • the magnetic flux current command value Idref is appropriately set according to the motor characteristics and the like, and is normally set to “0”.
  • the torque current is hereinafter referred to as “q-axis current”.
  • the magnetic flux current is hereinafter referred to as “d-axis current”.
  • the magnetic flux current is also called exciting current or field current.
  • the torque voltage is referred to as “q-axis voltage”
  • the magnetic flux voltage is referred to as “d-axis voltage”.
  • the q axis is an axis indicating a component in the motor rotation direction
  • the d axis is an axis perpendicular to the q axis.
  • the torque current control unit 341 includes a subtraction unit 342 that subtracts the q-axis current detection value Iq from the q-axis current command value Iqref, and an arithmetic processing unit 346 that performs a predetermined arithmetic process on the output of the subtraction unit 342.
  • the arithmetic processing unit 346 performs proportional integration processing in the example shown in FIG.
  • the torque current control unit 341 controls the q axis current detection value Iq to follow the q axis current command value Iqref given from the torque current command unit 362 of the current command calculation unit 340.
  • the q-axis current detection value Iq is obtained from the detection values Iu and Iv of the current detectors 336 and 337 that detect the drive current of the motor via the three-phase / two-phase coordinate conversion unit 354 and the rotation coordinate conversion unit 356.
  • Torque current control unit 341 outputs q-axis voltage command value Vq.
  • the magnetic flux current control unit 343 includes a subtraction unit 344 that subtracts the d-axis current detection value Id from the d-axis current command value Idref, and an arithmetic processing unit 348 that performs a predetermined arithmetic process on the output of the subtraction unit 344. .
  • the arithmetic processing unit 348 performs proportional integration processing in the example shown in FIG.
  • the magnetic flux current control unit 343 performs control so that the d-axis current detection value Id follows the d-axis current command value Idref given from the magnetic flux current setting unit 364 of the current command calculation unit 340.
  • the d-axis current detection value Id is obtained from the detection values Iu and Iv of the current detectors 336 and 337 that detect the drive current of the motor via the three-phase / two-phase coordinate conversion unit 354 and the rotation coordinate conversion unit 356.
  • the magnetic flux current control unit 343 outputs the d-axis voltage command value Vd.
  • the three-phase / two-phase coordinate conversion unit 354 includes two or three currents flowing through the U phase, V phase, and W phase of the motor, for example, a U phase current Iu and a V phase current Iv.
  • a U phase current Iu and a V phase current Iv are detected values I ⁇ and I ⁇ of actual currents (actual current on the ⁇ axis and actual current on the ⁇ axis) of the stationary quadrature two-phase coordinate component.
  • the rotational coordinate conversion unit 356 Based on the motor rotor angle ⁇ mea detected by the angle detector 334, the rotational coordinate conversion unit 356 converts the detected values I ⁇ and I ⁇ of the static quadrature two-phase coordinate component into the detected values Iq and Id on the q and d axes. Convert to
  • the ⁇ coordinate conversion unit 350 uses the q-axis voltage command value Vq and the d-axis voltage command value Vd based on the motor rotor angle ⁇ detected by the motor angle detector, that is, the motor rotor phase, to command the actual voltage of the fixed two-phase coordinate component. Convert to values V ⁇ and V ⁇ .
  • the two-phase / three-phase coordinate conversion unit 352 uses the actual voltage command values V ⁇ and V ⁇ output from the ⁇ coordinate conversion unit 350 as the three-phase AC voltage command values Vu for controlling the U phase, V phase, and W phase of the motor. , Vv, Vw.
  • the PWM driver 326 and the three-phase inverter 330 convert the voltage command values Vu, Vv, and Vw output from the two-phase / three-phase coordinate conversion unit 352 as described above to convert the motor drive currents Iu, Iv, and Iw into power. Output.
  • FIG. 4 is a modified example of FIG. 3 and is a control block diagram showing a motor control unit 324 and its peripheral configuration in the motor drive system when sensorless angle detection processing is used for motor drive.
  • FIG. 4 shows a state in which control is performed using the motor rotor angle ⁇ est output from the phase estimator 358.
  • the phase estimator 358 estimates the angle (phase ⁇ ) of the motor rotor.
  • R is the resistance value of the armature winding
  • Ld is the d-axis inductance
  • Lq is the q-axis inductance
  • KE is the induced voltage constant.
  • R, Ld, Lq, and KE are known values
  • I ⁇ and I ⁇ are detected values
  • V ⁇ and V ⁇ are calculated values during vector control, and are known during position estimation. Therefore, the angle (phase) of the motor rotor can be estimated.
  • FIG. 5 is a block diagram of the motor voltage equation.
  • FIG. 6 is a vector diagram of motor control.
  • the d-axis and the q-axis indicate the magnetic pole directions of the permanent magnet.
  • the electron interlinkage magnetic flux ⁇ a is on the d axis.
  • Ldid and Lqiq are the interlinkage magnetic flux components of each axis, and the total interlinkage magnetic flux of the motor is ⁇ 0 from FIG.
  • the input current ia is a combined current of id and iq.
  • represents the phase angle of the input current ia with respect to the q axis.
  • represents a current phase difference based on the induced voltage ⁇ a at no load.
  • the terminal voltage Va is a voltage obtained by adding a voltage drop Raia to the electric coil winding resistance Ra to V0.
  • V0 is a voltage obtained by adding the electric reaction voltages ⁇ Ldid and ⁇ Lqiq of each axis to the induced voltage ⁇ a.
  • the phase difference between the voltages V0 and ⁇ 0 is 90 degrees.
  • the interlinkage magnetic flux ⁇ a is the field magnetic flux of the permanent magnet, and the magnetic flux of the armature reaction that affects the magnitude of the field magnetic flux is Ldid. Since the d-axis component affects the suction force, controlling id to zero suppresses a change in the suction force.
  • is zero, the current phase of each phase coincides with the induced voltage ⁇ a at no load. In this case, the current vector ia moves on the q axis according to the load state.
  • the suction force can be changed by changing the d-axis component.
  • the d-axis component is dared to control the suction force in the axial direction.
  • FIG. 7 is a front view showing an appearance of the pump unit 1 of the centrifugal pump device according to the embodiment of the present invention.
  • FIG. 8 is a side view of the pump unit 1 shown in FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 10 is a cross-sectional view taken along line XX of FIG.
  • the pump unit 1 of the centrifugal pump device includes a housing 2 formed of a nonmagnetic material.
  • the housing 2 includes a columnar main body 3, a cylindrical inflow port 4 erected at the center of one end surface of the main body 3, and a cylindrical outflow port 5 provided on the outer peripheral surface of the main body 3. Including.
  • the outflow port 5 extends in the tangential direction of the outer peripheral surface of the main body 3.
  • a pump chamber 7 and a motor chamber 8 partitioned by a partition wall 6 are provided in the housing 2, as shown in FIG. 9, a pump chamber 7 and a motor chamber 8 partitioned by a partition wall 6 are provided.
  • a disc-like impeller 10 having a through hole 10 a at the center is rotatably provided in the pump chamber 7.
  • the impeller 10 includes two shrouds 11 and 12 each having a donut plate shape and a plurality of (for example, six) vanes 13 formed between the two shrouds 11 and 12.
  • the shroud 11 is disposed on the inflow port 4 side, and the shroud 12 is disposed on the partition wall 6 side.
  • the shrouds 11 and 12 and the vane 13 are made of a nonmagnetic material.
  • a plurality of (in this case, six) liquid passages 14 partitioned by a plurality of vanes 13 are formed.
  • the liquid passage 14 communicates with the central through hole 10 a of the impeller 10, and starts from the through hole 10 a of the impeller 10 and extends so that the width gradually increases to the outer peripheral edge.
  • the vane 13 is formed between two adjacent liquid passages 14.
  • the plurality of vanes 13 are provided at equiangular intervals and formed in the same shape. Accordingly, the plurality of liquid passages 14 are provided at equiangular intervals and are formed in the same shape.
  • ⁇ Description of dynamic pressure groove> 11 is a cross-sectional view showing a state where the impeller is removed from FIG. 12 is a cross-sectional view showing a state where the impeller is removed from the cross-sectional view taken along the line XII-XII in FIG.
  • a plurality of dynamic pressure grooves 21 are formed on the surface of the partition wall 6 facing the shroud 12 of the impeller 10, and a plurality of dynamic pressures are formed on the inner wall of the pump chamber 7 facing the shroud 11.
  • a groove 22 is formed.
  • the plurality of dynamic pressure grooves 21 are formed in a size corresponding to the shroud 12 of the impeller 10, as shown in FIG.
  • Each dynamic pressure groove 21 has one end on the periphery (circumference) of a circular portion slightly spaced from the center of the partition wall 6 and has a width up to the vicinity of the outer edge of the partition wall 6 in a spiral shape (in other words, curved). It extends to gradually spread.
  • the plurality of dynamic pressure grooves 21 have substantially the same shape and are arranged at substantially the same interval.
  • the dynamic pressure groove 21 is a recess, and the depth of the dynamic pressure groove 21 is preferably about 0.005 to 0.4 mm.
  • the number of the dynamic pressure grooves 21 is preferably about 6 to 36.
  • ten dynamic pressure grooves 21 are arranged at an equal angle with respect to the central axis of the impeller 10. Since the dynamic pressure groove 21 has a so-called inward spiral groove shape, when the impeller 10 rotates in the clockwise direction, the liquid pressure increases from the outer diameter portion to the inner diameter portion of the dynamic pressure groove 21. For this reason, a repulsive force is generated between the impeller 10 and the partition wall 6, and this becomes a dynamic pressure.
  • the impeller 10 is separated from the partition wall 6 and rotates in a non-contact state. For this reason, a liquid flow path is ensured between the impeller 10 and the partition wall 6. Further, in a normal state, a portion between the impeller 10 and the partition wall 6 is stirred by the dynamic pressure groove 21 and a liquid flow (leakage flow rate) due to a pressure difference between the inner and outer diameter portions of the impeller generated by the pump operation. Generation of typical liquid retention can be prevented.
  • corner portion of the dynamic pressure groove 21 is preferably rounded so as to have an R of at least 0.05 mm.
  • the plurality of dynamic pressure grooves 22 are formed in a size corresponding to the shroud 11 of the impeller 10 as with the plurality of dynamic pressure grooves 21.
  • Each dynamic pressure groove 22 has one end on the periphery (circumference) of a circular portion slightly spaced from the center of the inner wall of the pump chamber 7, and spirally (in other words, curved) on the inner wall of the pump chamber 7. It extends so that the width gradually increases to the vicinity of the outer edge.
  • the plurality of dynamic pressure grooves 22 have substantially the same shape and are arranged at substantially the same interval.
  • the dynamic pressure groove 22 is a recess, and the depth of the dynamic pressure groove 22 is preferably about 0.005 to 0.4 mm.
  • the number of the dynamic pressure grooves 22 is preferably about 6 to 36. In FIG. 12, ten dynamic pressure grooves 22 are arranged at an equal angle with respect to the central axis of the impeller 10.
  • the corners of the dynamic pressure grooves 22 are preferably rounded so as to have an R of at least 0.05 mm.
  • the impeller 10 is separated from the inner wall of the pump chamber 7 and rotates in a non-contact state. Moreover, when the pump part 1 receives an external impact or when the dynamic pressure by the dynamic pressure groove 21 becomes excessive, it is possible to prevent the impeller 10 from closely contacting the inner wall of the pump chamber 7.
  • the dynamic pressure generated by the dynamic pressure groove 21 and the dynamic pressure generated by the dynamic pressure groove 22 may be different.
  • the impeller 10 rotates with the gap between the shroud 12 of the impeller 10 and the partition wall 6 and the gap between the shroud 11 of the impeller 10 and the inner wall of the pump chamber 7 being substantially the same.
  • the dynamic pressure by the dynamic pressure groove on the narrowing side is made larger than the dynamic pressure by the other dynamic pressure groove, To make the dynamic pressure grooves 21 and 22 different in shape.
  • each of the dynamic pressure grooves 21 and 22 has an inward spiral groove shape, but the dynamic pressure grooves 21 and 22 having other shapes may be used.
  • a plurality of (for example, eight) permanent magnets 17 are embedded in the shroud 12.
  • the plurality of permanent magnets 17 are arranged with gaps along the same circle at equal angular intervals so that adjacent magnetic poles are different from each other.
  • the permanent magnet 17 with the N pole facing the motor chamber 8 side and the permanent magnet 17 with the S pole facing the motor chamber 8 side are alternately provided along the same circle with gaps provided at equal angular intervals. Has been placed.
  • FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG.
  • a plurality of (for example, nine) coils 20 are provided in the motor chamber 8.
  • the plurality of coils 20 are arranged along the same circle at equal angular intervals so as to face the plurality of permanent magnets 17 of the impeller 10 with a partition wall interposed therebetween.
  • coil wiring is wound around a core portion (magnetic body 18) where a magnetic body or the like is disposed.
  • the magnetic body in the coil of FIG. 13 may be a laminated steel plate, a dust core or other magnetic body.
  • the core portion may be an air core.
  • a magnetic body 19 serving as a back yoke is disposed on the opposite side of the partition walls 6 of the plurality of coils 20 to strengthen the magnetic flux of the coils 20.
  • the back yoke may not be provided.
  • the voltage is applied to the nine coils 20 by, for example, a 120-degree energization method. That is, nine coils 20 are grouped by three. U-phase, V-phase, and W-phase three-phase voltages VU, VV, and VW are applied to the first to third coils 20 of each group. A positive voltage is applied to the first coil 20 during a period of 0 to 120 degrees, 0 V is applied during a period of 120 to 180 degrees, a negative voltage is applied during a period of 180 to 300 degrees, and 300 to 360 degrees. 0V is applied during this period.
  • the end face of the first coil 20 (the end face on the impeller 10 side) becomes the N pole during the period of 0 to 120 degrees and becomes the S pole during the period of 180 to 300 degrees.
  • the phase of the voltage VV is 120 degrees behind the voltage VU
  • the phase of the voltage VW is 120 degrees behind the voltage VV. Therefore, by applying the voltages VU, VV, and VW to the first to third coils 20 respectively, a rotating magnetic field can be formed, and the attractive force between the plurality of coils 20 and the plurality of permanent magnets 17 of the impeller 10.
  • the impeller 10 can be rotated by the repulsive force.
  • the magnitude of the resultant force of the attractive force F ⁇ b> 1 between the permanent magnets 15 and 16 and the attractive force F ⁇ b> 2 between the permanent magnet 17 and the magnetic body 18 is other than the central position of the movable range in the pump chamber 7 of the impeller 10. It is a figure which shows the force which acts on the impeller 10 when it adjusts so that it may become zero in the position P1. However, the rotation speed of the impeller 10 is kept at the rated value.
  • the acting force on the impeller 10 includes an attractive force F1 between the permanent magnets 15 and 16, an attractive force F2 between the permanent magnet 17 and the magnetic body 18, a dynamic pressure F3 in the dynamic pressure groove 21, and a dynamic force in the dynamic pressure groove 22.
  • the pressure F4 and the resultant force “net force F5 acting on the impeller” are shown.
  • the attraction force F1 between the permanent magnets 15 and 16 is set smaller than the attraction force F2 between the permanent magnet 17 and the magnetic body 18, and the floating position of the impeller 10 at which the resultant force becomes zero is higher than the middle of the impeller movable range. It is on the 6th side.
  • the shapes of the dynamic pressure grooves 21 and 22 are the same.
  • the floating position of the impeller 10 is largely deviated from the center position of the movable range of the impeller 10 at the position where the net force F5 acting on the impeller 10 becomes zero.
  • the distance between the rotating impeller 10 and the partition wall 6 is narrowed, and the impeller 10 contacts the partition wall 6 even if a small disturbance force acts on the impeller 10.
  • the magnitude of the resultant force of the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 is the movable range in the pump chamber 7 of the impeller 10. It is a figure which shows the force which acts on the impeller 10 when it adjusts so that it may become zero in the center position P0. Also in this case, the rotational speed of the impeller 10 is kept at the rated value.
  • the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 are set to be substantially the same. Further, the shapes of the dynamic pressure grooves 21 and 22 are the same. In the case shown in FIG. 15, the support rigidity with respect to the floating position of the impeller 10 is higher than in the case of FIG. 14. Since the net force F5 acting on the impeller 10 is zero at the center of the movable range, the impeller 10 floats at the center position when no disturbance force acts on the impeller 10.
  • the floating position of the impeller 10 is generated in the dynamic pressure grooves 21 and 22 when the impeller 10 rotates, and the attractive force F1 between the permanent magnets 15 and 16, the attractive force F2 between the permanent magnet 17 and the magnetic body 18, and the impeller 10. It is determined by the balance with dynamic pressures F3 and F4.
  • F1 and F2 substantially the same and making the shape of the dynamic pressure grooves 21 and 22 the same
  • the impeller 10 can be floated at the substantially central portion of the pump chamber 7 when the impeller 10 rotates.
  • the two surfaces facing the inner wall of the housing 2 can have the same shape and the same size. Therefore, it is possible to provide the dynamic pressure grooves 21 and 22 having substantially the same dynamic pressure performance on both sides of the impeller 10.
  • the impeller 10 floats at the center position of the pump chamber 7, the impeller 10 is held at a position farthest from the inner wall of the housing 2. As a result, even if a disturbance force is applied to the impeller 10 when the impeller 10 is lifted and the floating position of the impeller 10 is changed, the possibility that the impeller 10 and the inner wall of the housing 2 are in contact with each other is reduced.
  • FIG. 16 is a diagram showing the impeller rotational speed and the radial displacement of the impeller rotation center line. More specifically, FIG. 16 shows a centrifugal pump device in which the center line (hereinafter referred to as center line L2) of the permanent magnet 16 is aligned with the center line (hereinafter referred to as center line L1) of the side wall of the pump chamber 7. The relationship between the discharge flow rate of the pump device and the moving direction and moving amount of the rotation center line (hereinafter referred to as rotation center line L3) of the impeller 10 is shown.
  • center line L2 center line
  • center line L1 center line of the side wall of the pump chamber 7.
  • the center line L1 of the side wall of the pump chamber 7 and the center line L2 of the permanent magnets 16a and 16b are arranged at the origin, and the direction of the upstream end of the opening 7a shown in FIG. . It can be seen from FIG. 16 that the rotation center line L3 of the impeller 10 moves so as to be sucked to the upstream end of the opening 7a as the discharge flow rate increases.
  • the inner wall of the pump chamber 7 is arranged such that the rotation center line L3 of the impeller 10 and the center line L1 of the side wall of the pump chamber 7 coincide.
  • the center line L2 of the permanent magnets 16a and 16b is disposed on the opposite side of the opening 7a when viewed from the center line L1, and the impeller 10 is attracted (in other words, energized) to the opposite side of the opening 7a.
  • the distance R between the center line L1 of the side wall of the pump chamber 7 and the center line L2 of the permanent magnet 16a is set according to the operating conditions. That is, the displacement amount may be read from FIG.
  • the interval R between the center lines L1 and L2 may be set as the displacement amount.
  • the distance between the center lines L1 and L2 (the amount of eccentricity) varies depending on the size of the pump and the like, but is preferably 0.1 to 1.0 mm.
  • FIG. 17 is a view showing the arrangement of the magnetic sensor S for detecting the rotational speed in the cross-sectional view shown in FIG.
  • FIG. 18 is a time chart showing output signals of the magnetic sensor shown in FIG.
  • three magnetic sensors S are provided between three adjacent four magnetic bodies 18 out of nine magnetic bodies 18.
  • the three magnetic sensors S are arranged to face the passage paths of the plurality of permanent magnets 17 of the impeller 10.
  • the level of the output signal of the magnetic sensor S changes in a sine wave shape as shown in FIG. To do. Therefore, the positional relationship between the plurality of permanent magnets 17 and the plurality of magnetic bodies 18 can be detected by detecting the time change of the output signal of the magnetic sensor S, and the timing of flowing current through the plurality of coils 20; The rotation speed of the impeller 10 can be obtained.
  • the gap between the impeller 10 and the partition wall 6 when the gap between the impeller 10 and the partition wall 6 is wide, the magnetic field in the vicinity of the magnetic sensor S becomes weak and the amplitude A1 of the output signal of the magnetic sensor S becomes small.
  • the gap between the impeller 10 and the partition wall 6 is narrow, the magnetic field in the vicinity of the magnetic sensor S becomes strong and the amplitude A2 of the output signal of the magnetic sensor S increases.
  • the position of the impeller 10 within the movable range of the impeller 10 in the axial direction can be detected.
  • FIG. 19 is a diagram showing a modification example of the arrangement of the magnetic sensors.
  • nine coils 20 are divided into three groups of three, and three magnetic sensors S are respectively disposed between three of the three groups. Therefore, since the mechanical angle between the three magnetic sensors S is 120 degrees, the floating posture of the rotating impeller 10 can be easily calculated. The timing of flowing current through the nine coils 20 is calculated based on the output signal of any one of the three magnetic sensors S.
  • FIG. 20 is a diagram for explaining control for feeding back the output of the magnetic sensor to the coil current.
  • FIG. 3 is simplified and shown in FIG. 20 along with a sectional view of the pump.
  • the controller 42 includes a rotation speed calculator 50 and a position determiner 51.
  • the rotational speed calculator 50 obtains the rotational speed of the impeller 10 based on the output signals of the three magnetic sensors S, and outputs a signal ⁇ R indicating the rotational speed.
  • the position determiner 51 is based on the signal ⁇ P indicating the position of the impeller 10 generated by the position calculator 49 and the signal ⁇ R indicating the rotation speed of the impeller 10 generated by the rotation speed calculator 50. Is within the normal range, and a signal ⁇ D indicating the determination result is output.
  • the reason why the rotational speed of the impeller 10 is referred to at the time of determination is that the hydrodynamic bearing effect of the dynamic pressure grooves 21 and 22 changes depending on the rotational speed of the impeller 10, the position of the impeller 10 changes, and the impeller 10 is generated depending on the rotational speed This is because the fluid force to be changed changes.
  • the rotation speed calculator 50 may be removed.
  • the viscosity information of the liquid may be referred to instead of the rotational speed of the impeller 10 or in addition to the rotational speed of the impeller 10. This is because the dynamic pressure bearing effect of the dynamic pressure grooves 21 and 22 changes depending on the viscosity of the liquid, and the position of the impeller 10 changes.
  • the impeller 10 when the impeller 10 is not rotating, the dynamic pressure bearing effect of the dynamic pressure grooves 21 and 22 does not occur. Therefore, the attractive force F1 between the permanent magnets 15 and 16 and the permanent magnet 17 and The impeller 10 and the inner wall of the housing 2 are in contact with each other by the attractive force F2 between the magnetic bodies 18. Therefore, the impeller 10 does not rotate at the normal axial position at the start of rotation and at the time of low speed rotation. Therefore, when the signal ⁇ R indicating the rotation speed is not used for position determination, the output signal ⁇ D of the position determination device 51 is forcibly set to a normal position for a certain time from the start of rotation until the rated rotation speed is reached. You may make it the signal which shows that there exists.
  • FIG. 21 is a waveform diagram for explaining the process of estimating the angle from the magnetic sensor output.
  • the rotation angle estimator 372 shown in FIG. 3 has a multiplication processing unit, uses at least one output signal of the magnetic sensor, and uses, for example, the zero cross position of the magnetic sensor output signal as a reference.
  • the rotation synchronization pulse is generated and multiplied to generate a multiplied pulse to estimate the angle of the motor rotor.
  • FIG. 22 is a schematic block diagram for explaining processing when sensorless control is performed by the motor drive unit.
  • FIG. 4 is simplified and shown in FIG. 22 along with a sectional view of the pump.
  • at least one piece of information of rotation speed N, flow rate J, discharge pressure P, and fluid information (physical property value) Y is input to impeller attitude determination unit 70 of controller 42A.
  • the storage unit 71 stores impeller behavior measured in advance under each condition. Based on the information stored in the storage unit 71, the Id component of the motor drive current is controlled so that the impeller is levitated and rotated to a substantially central position.
  • the impeller 10 moves to the outlet (opening 7a) side due to the pressure balance around the impeller due to the asymmetry of the shape having one outlet (opening 7a) in the circumferential direction.
  • the suction force in the axial direction varies depending on the eccentricity of the impeller 10
  • the impeller is displaced in the axial direction.
  • one side is a motor and one side is a ring-shaped permanent magnet, adjustment is made so that the attractive force is balanced at zero eccentricity, but the attractive force balance may be lost during eccentricity.
  • FIG. 23 is a diagram showing the relationship between the flow rate and the flying position during the rotation of the impeller. If such a relationship is examined in advance, the deviation d1 of the flying position can be obtained if the flow rate J1 is known.
  • FIG. 24 is a diagram illustrating the relationship between the discharge pressure and the flying position during the rotation of the impeller. If such a relationship is examined in advance, the deviation d2 of the flying position can be obtained if the discharge pressure P2 is known. From experience, the influence on the flow rate is larger than the influence on the discharge pressure.
  • FIG. 25 is a diagram showing the relationship between the rotational speed and the flying position. When the rotation is stopped, no dynamic pressure is generated, and the impeller is in contact with one of the partition walls.
  • the impeller when the impeller starts rotating, the impeller floats to the center position due to the balance between the upper and lower dynamic pressure and the magnetic attractive force. Also in this case, the impeller is displaced in the axial direction when the flow rate or the discharge pressure increases due to the increase in the rotational speed. If such a relationship is examined in advance, the deviation d3 of the flying position can be obtained if the rotational speed N3 is known.
  • FIG. 26 is a diagram showing the relationship between the current Id and the attractive force.
  • the Id component when the Id component is zero at low flow rate, the upper and lower force balance is achieved and the impeller floats to the center position. Even in the state where the Id component is zero, the motor drive unit generates a magnetic attractive force.
  • the suction force of the motor driving unit can be changed by increasing or decreasing the Id component.
  • the Id component may be increased or decreased in accordance with the relationship of FIG. 26 so that the amount of deviation of the impeller flying position is estimated from the relationship of FIGS. 23 to 25 and the suction force is changed to correspond to this.
  • FIG. 27 is a diagram illustrating a modification of the configuration illustrated in FIG.
  • FIG. 28 is a sectional view taken along line XXVIII-XXVIII in FIG.
  • a tooth 18 ⁇ / b> A is disposed at the tip of the core 18.
  • FIG. 27 shows a configuration in which a magnetic body having a larger area is arranged on the side of the stator of FIG. 9 that faces the rotor. As a result, a large area of the rotor facing the permanent magnet can be ensured, so that motor output and motor efficiency can be improved.
  • FIG. 29 is a view showing a modification in which a radial dynamic pressure groove is further provided on the peripheral surface of the pump chamber. Thereby, the disturbance resistance can be further ensured, and the impeller can be stably rotated.
  • FIG. 30 is a view showing a modification in which a radial dynamic pressure groove is further provided on the outer peripheral surface of the impeller 10. As shown in FIG. 30, the formation of the dynamic pressure grooves 61 and 62 on the outer peripheral surface of the impeller 10 is more workable than the process of forming the dynamic pressure grooves 161 and 162 on the inner peripheral surface of the pump chamber 7 as shown in FIG. Good. The example shown in FIG. 30 can ensure more disturbance resistance as in the example shown in FIG. 29, and the impeller can be stably rotated.
  • FIG. 31 shows a further modification (the ring magnet is omitted).
  • FIG. 31 is a view showing a modification in which the ring magnet is eliminated from the example shown in FIG.
  • the performance of the dynamic pressure groove provided on the inner wall of the pump chamber is designed to be different between the drive unit side and the other, so that the magnetic attraction force by the drive unit and the floating force by the dynamic pressure unit are approximately the impeller movable range. Set to balance in the center.
  • FIG. 32 is a view showing a first example of a dynamic pressure groove formed on the outer peripheral surface of the shroud.
  • FIG. 33 is a diagram illustrating a second example of the dynamic pressure grooves formed on the outer peripheral surface of the shroud.
  • the dynamic pressure grooves 61 and 62 are formed on the outer peripheral surfaces of the shrouds 11 and 12, respectively.
  • the tips of the dynamic pressure grooves 61 and 62 are directed in the direction opposite to the rotation direction of the impeller 10.
  • the impeller 10 rotates in the direction of the arrow, the liquid pressure increases toward the tip portions of the dynamic pressure grooves 61 and 62. For this reason, a repulsive force is generated between the impeller 10 and the inner peripheral surface of the pump chamber 7, and this becomes a dynamic pressure.
  • the dynamic pressure grooves 64 and 65 are formed not on the inner peripheral surface side of the pump chamber 7 but on the outer peripheral surfaces of the shrouds 11 and 12, respectively.
  • the depth of each of the dynamic pressure grooves 64 and 65 is gradually shallower in the direction opposite to the rotation direction of the impeller 10. Also in this modified example, when the impeller 10 rotates in the direction of the arrow, the pressure of the liquid increases toward the tips of the dynamic pressure grooves 64 and 65. For this reason, a repulsive force is generated between the impeller 10 and the inner peripheral surface of the pump chamber 7, and this becomes a dynamic pressure.
  • FIG. 34 is a view showing a first example of a specific configuration of a radial dynamic pressure groove formed on the peripheral surface of the pump chamber.
  • V-shaped dynamic pressure grooves 161 are formed at a predetermined pitch in the rotation direction of the impeller 10 in a region facing the outer peripheral surface of the shroud 11 in the inner peripheral surface of the pump chamber 7.
  • the tip (acute angle portion) of the V-shaped dynamic pressure groove 161 is directed in the rotational direction of the impeller 10.
  • V-shaped dynamic pressure grooves 162 are formed at a predetermined pitch in the rotation direction of the impeller 10 in a region facing the outer peripheral surface of the shroud 12 in the inner peripheral surface of the pump chamber 7.
  • the tip (acute angle portion) of the V-shaped dynamic pressure groove 162 is directed in the rotation direction of the impeller 10.
  • a groove 63 having a predetermined depth is formed in a ring shape in a region of the inner peripheral surface of the pump chamber 7 facing the gap between the shrouds 11 and 12.
  • FIG. 35 is a view showing a second example of the specific configuration of the radial dynamic pressure groove formed on the peripheral surface of the pump chamber.
  • the dynamic pressure grooves 161 and 162 are replaced with dynamic pressure grooves 164 and 165, respectively.
  • Each of the dynamic pressure grooves 164 and 165 is formed in a belt shape and extends in the rotation direction of the impeller 10. The depths of the dynamic pressure grooves 164 and 165 gradually become shallower in the rotation direction of the impeller 10.
  • the pressure of the liquid increases toward the tips of the dynamic pressure grooves 164 and 165. For this reason, a repulsive force is generated between the impeller 10 and the inner peripheral surface of the pump chamber 7, and this becomes a dynamic pressure.
  • the centrifugal pump device intersects the partition wall 6 in the pump chamber 7 and the housing 2 including the pump chamber 7 and the motor chamber 8 partitioned by the partition wall 6.
  • An impeller 10 that is rotatably provided with a shaft as a rotation shaft and that sends liquid by centrifugal force during rotation, a drive unit 9 that is provided in the motor chamber 8 and that rotates the impeller 10 via the partition wall 6, and a pump chamber 7 is provided on one surface of the impeller 10 along the first wall surface facing the partition wall 6, and the permanent magnet 15 disposed along the same circle, and the permanent magnet embedded in the first wall surface and attracting the permanent magnet 15.
  • the drive unit 9 is provided to face the plurality of permanent magnets 17 and includes a plurality of coils 20 for generating a rotating magnetic field.
  • a dynamic pressure groove 22 is formed on one surface of the impeller 10 or a first wall surface facing the one surface.
  • a dynamic pressure groove 21 is formed on the other surface of the impeller 10 or the partition wall 6 facing the other surface. At least one of the permanent magnet 15 and the permanent magnet 16 is formed in an annular shape around the rotation center line of the impeller 10.
  • the drive unit 9 adjusts the position of the impeller 10 in the direction along the rotation axis in the pump chamber 7 by the attractive force (F2 in FIG. 15) acting between the permanent magnet 17 and the drive unit 9 adjusted by vector control. Maintain in the middle of 10 movable ranges. Thereby, even when the flow velocity, the number of revolutions, the pressure, and the like change, the position of the impeller 10 in the axial direction can be adjusted while suppressing the change in the rotational torque of the motor.
  • the drive unit 9 increases the magnetic flux current Id in the vector control. .
  • the suction force of the drive unit 9 increases, so that the position of the impeller 10 in the axial direction returns to the center.
  • the drive unit 9 when the drive unit 9 is driving with high efficiency during the steady rotation of the impeller 10, the first acting between the permanent magnet 15 and the permanent magnet 16.
  • the attraction force F1 and the second attraction force F2 acting between the permanent magnet 17 and the drive unit 9 are when the impeller 10 is positioned at the center (point P0) of the movable range of the impeller 10 in the pump chamber 7.
  • the centrifugal pump device further includes a phase estimator 358 for estimating the rotation angle of the impeller 10 for use in vector control.
  • the centrifugal pump device uses the fluid force acting on the impeller 10 as the fluid information Y such as the rotational speed N, the flow rate J, the discharge pressure P, and the physical property value of the fluid.
  • a storage unit 71 that stores a result measured in advance using at least one of them as a parameter, and a drive control unit that controls the second suction force according to a value stored in the storage unit 71 (Id component command generation) Part 74).
  • the centrifugal pump device further includes a rotation detector for detecting the rotation angle of the impeller 10 for use in vector control.
  • the rotation detector is a magnetic sensor S, and the flying position of the impeller 10 is detected by the magnetic sensor.
  • dynamic pressure grooves 61 and 62 or dynamic pressure grooves 64 and 65 are formed on the outer side surface of the impeller 10.
  • the dynamic pressure grooves 161, 162 or the dynamic pressure grooves 164 are provided on the wall surface of the pump chamber 7 that faces the side surface on the outer peripheral side of the impeller 10. , 165 are formed.
  • FIG. 36 is a diagram illustrating a first example of a specific configuration of the permanent magnet arrangement.
  • a plurality (for example, eight) of permanent magnets 17 are embedded in shroud 12.
  • the plurality of permanent magnets 17 are arranged with gaps along the same circle at equal angular intervals so that adjacent magnetic poles are different from each other.
  • the permanent magnet 17 with the N pole facing the motor chamber 8 side and the permanent magnet 17 with the S pole facing the motor chamber 8 side are alternately provided along the same circle with gaps provided at equal angular intervals. Has been placed.
  • the impeller 10 is provided with a plurality of permanent magnets 17 and a plurality of permanent magnets 67.
  • the number of permanent magnets 67 is the same as the number of permanent magnets 17.
  • the permanent magnet 67 is magnetized in the circumferential direction (the rotation direction of the impeller 10).
  • the plurality of permanent magnets 17 and the plurality of permanent magnets 67 are alternately arranged one by one at equal angular intervals along the same circle in a Halbach array structure. In other words, the permanent magnet 17 with the N pole facing the partition wall 6 side and the permanent magnet 17 with the S pole facing the partition wall 6 side are alternately arranged along the same circle with gaps provided at equal angular intervals. Yes.
  • each permanent magnet 67 is arranged toward the permanent magnet 17 with the N pole facing the partition 6 side, and the S pole of each permanent magnet 67 is arranged toward the permanent magnet 17 with the S pole facing the partition 6 side. Is done.
  • the shapes of the plurality of permanent magnets 17 are the same, and the shapes of the plurality of permanent magnets 67 are the same.
  • the shape of the permanent magnet 17 and the shape of the permanent magnet 67 may be the same or different.
  • the attractive force between the permanent magnet 17 and the coil 20 can be suppressed, and the magnetic flux that causes the torque can be strengthened, so that the permanent magnet can be most miniaturized. That is, the impeller 10 can be most lightweight and energy efficiency can be increased even when the motor gap is wide.
  • the rotor (the shroud 12 of the impeller 10) includes a permanent magnet 17A magnetized in the rotation axis direction, a permanent magnet 67A magnetized in the circumferential direction, and a magnetic body 70A. It is out.
  • the permanent magnet 17A is arranged so that the magnetic poles of adjacent magnets have different orientations, and the permanent magnet 67A is arranged so that the same magnetic pole as the permanent magnet 17A approaches the end face of the permanent magnet 17A on the partition wall 6 side.
  • the number of permanent magnets 17A and the number of permanent magnets 67A is the same.
  • the magnetizing direction length of the permanent magnet 67A is shorter than the width of the permanent magnet 17A, and if the center of the magnetizing direction length of the permanent magnet 67A is made coincident with the boundary between adjacent magnets of the permanent magnet 17A, a gap is formed in the circumferential direction.
  • the magnetic body 70A is disposed in the gap. In this case, the magnetic flux is focused on the magnetic body 70A, and a stronger field magnetic flux can be obtained and the torque can be increased compared to the case where there is no magnetic body or the configuration of the normal Halbach arrangement (FIG. 37). Furthermore, in the arrangement of FIG. 38, it is possible to suppress a decrease in the permeance coefficient of the permanent magnets 17A and 67A.
  • a magnetic body 72 is disposed on the end surface of the permanent magnet 17A opposite to the partition wall 6. Magnetic flux can be further strengthened by the effect of the magnetic body 72.
  • FIG. 40 shows another magnet arrangement.
  • the rotor is composed of a permanent magnet 17B magnetized in the rotation axis direction, a permanent magnet 67B magnetized in the circumferential direction, and a magnetic body 70B.
  • the permanent magnet 17B is arranged with a gap in the direction of the magnetic poles of adjacent magnets, and the permanent magnet 67B is arranged in the gap on the partition 6 side.
  • this configuration allows the permeance coefficient to be larger than that in FIG. 38 because the flatness of the permanent magnet 17B is reduced.
  • the number of permanent magnets 17B and the number of permanent magnets 67B is the same.
  • the permanent magnet 67B is magnetized in the circumferential direction (rotation direction of the rotor).
  • the plurality of permanent magnets 17B and the plurality of permanent magnets 67B are alternately arranged in a Halbach array structure along the same circle at equal angular intervals one by one.
  • the permanent magnet 17B with the N pole facing the partition wall 6 and the permanent magnet 17B with the S pole facing the partition wall 6 are alternately arranged along the same circle with gaps provided at equal angular intervals.
  • the N pole of each permanent magnet 67B is disposed toward the permanent magnet 17B with the N pole directed toward the partition wall 6, and the S pole of each permanent magnet 67B is disposed toward the permanent magnet 17B with the S pole directed toward the partition wall 6. Is done.
  • the shapes of the plurality of permanent magnets 17B are the same, and the shapes of the plurality of permanent magnets 67B are the same.
  • the axial length of the permanent magnet 17B is shorter than the width of the permanent magnet 67B.
  • the magnetic body 72 is disposed on the end surface of the permanent magnet 17B opposite to the partition wall 6 in the configuration of FIG. Magnetic flux can be further strengthened by the effect of the magnetic body 72.
  • the plurality of permanent magnets 17 embedded in the shroud 12 may be arranged without providing gaps along the same circle at equal angular intervals so that adjacent magnetic poles are different from each other.
  • the configuration of the pump unit of the present embodiment is a configuration in which a ring-shaped magnet (second magnetic body) is embedded in a partition opposite to the drive unit 9, and a permanent magnet (first magnetic body) embedded in an impeller. ) Is substantially balanced with the attractive force between the drive unit 9 and the permanent magnet (third magnetic body) in the impeller, and further the restoring force in the radial direction by the first and second magnetic bodies.
  • the impeller can be levitated with a flat structure and a compact configuration.
  • centrifugal pump device of the above embodiment may be used for circulating food.
  • the centrifugal pump apparatus of the said embodiment may be used in order to circulate a pharmaceutical.

Abstract

A drive unit (9) for driving an impeller (10) maintains the impeller (10) at a position in the center of the movement range of the impeller (10) within a pump chamber (7) in a direction along the rotation axis by means of an attractive force, which has been adjusted through vector control, which acts between a permanent magnet (17) and the drive unit (9). Consequently, even in the event of changes in flow velocity, rotation speed, pressure, or the like, the position of the impeller (10) in the axial direction can be adjusted while changes in rotation torque of a motor are suppressed. Consequently, a centrifugal pump device with improved impeller stability during floating rotation can be provided.

Description

遠心式ポンプ装置Centrifugal pump device
 この発明は遠心式ポンプ装置に関し、特に、回転時の遠心力によって液体を送るインペラを備えた遠心式ポンプ装置に関する。 The present invention relates to a centrifugal pump device, and more particularly to a centrifugal pump device provided with an impeller that sends a liquid by a centrifugal force during rotation.
 近年、隔壁によってモータ駆動室とロータ室とに分離した構造のキャンドモータが多く用いられている。このようなモータは、たとえば、粉塵をきらう環境下で使用される半導体製造ラインの化学液や純水の輸送用ポンプや、生体液を輸送するポンプに使用されている。 Recently, a canned motor having a structure in which a motor drive chamber and a rotor chamber are separated by a partition wall is often used. Such a motor is used, for example, in a pump for transporting chemical liquid or pure water in a semiconductor production line used in an environment where dust is not desired, or a pump for transporting biological fluid.
 特開2010-261394号公報(特許文献1)には、流体動圧軸受によるインペラの非接触浮上と、キャンドモータ構造を特徴とするアキシアルギャップ型の遠心式ポンプが記載されている。流体動圧軸受によるインペラの非接触浮上を特徴とするアキシアルギャップ型の遠心式ポンプでは、インペラとモータとの間に働くアキシアル方向吸引力を相殺するように、インペラを挟んで反対側に配置されたリング状永久磁石等によりアキシアル方向の吸引力のバランスをとっている。 JP 2010-261394 A (Patent Document 1) describes an axial gap type centrifugal pump characterized by non-contact floating of an impeller by a fluid dynamic pressure bearing and a canned motor structure. In an axial gap type centrifugal pump characterized by non-contact floating of the impeller by the hydrodynamic bearing, it is arranged on the opposite side across the impeller so as to cancel the axial suction force acting between the impeller and the motor. A ring-shaped permanent magnet or the like balances the attractive force in the axial direction.
 しかし、これらの永久磁石等による吸引力は、インペラが一方向へ近づくと、よりその方向へ近づこうとする負剛性(不安定要素)の成分である。 However, the attractive force by these permanent magnets or the like is a component of negative rigidity (unstable element) that tends to approach the impeller more in one direction when the impeller approaches one direction.
 また、例えば流量が多い場合では、インペラは流体出口の位置の影響で周方向に圧力差が生じ、ラジアル方向へ偏心する。その結果、リング状磁石側の吸引力低下分とモータ側の吸引力低下分とに差が発生するため、アキシアル方向吸引力のバランスが変化し、インペラのアキシアル方向の浮上位置が中央からずれてしまう問題があった。 Also, for example, when the flow rate is large, the impeller is eccentric in the radial direction due to a pressure difference in the circumferential direction due to the influence of the position of the fluid outlet. As a result, there is a difference between the amount of decrease in the attractive force on the ring magnet side and the amount of decrease in the attractive force on the motor side, so the balance of the axial direction attractive force changes and the impeller's floating position in the axial direction deviates from the center. There was a problem.
 さらに、遠心ポンプでは流体入口がインペラ中心付近の一方側に設置されることが多い。この場合も流体力でインペラの浮上位置が定常浮上位置からずれてしまう問題があった。 Furthermore, in a centrifugal pump, the fluid inlet is often installed on one side near the impeller center. In this case as well, there has been a problem that the floating position of the impeller deviates from the steady floating position due to the fluid force.
 このように、インペラの偏心により変化したアキシアル吸引力を制御する方法として、特開2010-261394号公報(特許文献1)では、モータ側吸引力がリング状磁石部の吸引力変化と釣合うように、モータ電流位相を調整することで対応していた。これにより、外乱や動作条件によりインペラがラジアル方向へ偏心しても、インペラのアキシアル方向の浮上位置を変化させずに安定回転を維持することが可能であった。 As described above, as a method for controlling the axial attractive force changed due to the eccentricity of the impeller, in Japanese Patent Application Laid-Open No. 2010-261394 (Patent Document 1), the motor-side attractive force is balanced with the attractive force change of the ring-shaped magnet portion. In addition, the motor current phase was adjusted. As a result, even if the impeller is eccentric in the radial direction due to disturbances or operating conditions, stable rotation can be maintained without changing the floating position of the impeller in the axial direction.
特開2010-261394号公報JP 2010-261394 A
 上述のように、特開2010-261394号公報に記載されたような遠心式ポンプでは、外乱や動作条件によりインペラがラジアル方向へ偏心しても、インペラのアキシアル方向の浮上位置を変化させずに安定回転を維持するために、モータ側吸引力がリング状永久磁石部の吸引力変化と釣合うようにモータ電流位相を調整する等の対策が行なわれている。 As described above, in the centrifugal pump as described in Japanese Patent Application Laid-Open No. 2010-261394, even if the impeller is eccentric in the radial direction due to disturbance or operating conditions, the impeller is stable without changing the floating position in the axial direction. In order to maintain the rotation, measures are taken such as adjusting the motor current phase so that the motor-side attractive force balances the change in the attractive force of the ring-shaped permanent magnet portion.
 しかしモータ電流位相を変化させるということは、種々の問題が生じるおそれがある。例えばモータを最大効率点で動作させていた状況から電流位相が変化してしまうと、モータ効率の低下を招く可能性がある。また例えば、最大トルク点で動作させていた状況から電流位相を変化させると、発生トルクが低下しポンプ出力の低下やモータの脱調の可能性があった。 However, changing the motor current phase may cause various problems. For example, if the current phase changes from the situation where the motor is operated at the maximum efficiency point, the motor efficiency may be reduced. Further, for example, when the current phase is changed from the situation where the operation is performed at the maximum torque point, the generated torque is reduced, and there is a possibility that the pump output is reduced or the motor is stepped out.
 クリーン状態が必須であるポンプ用途では、インペラとポンプ室の内壁との接触等による汚染物質の発生、およびその混入は確実に防ぐ必要がある。その一方で、モータの効率低下やポンプ出力低下はできる限り避けることが望ましい。 In pump applications where clean conditions are essential, it is necessary to reliably prevent the generation of contaminants and their contamination due to contact between the impeller and the inner wall of the pump chamber. On the other hand, it is desirable to avoid motor efficiency reduction and pump output reduction as much as possible.
 この発明は、上記の課題を解決するためになされたものであって、その目的は、汚染防止と効率や性能の低下の防止とを両立することができる遠心式ポンプ装置を提供することである。 The present invention has been made to solve the above-described problems, and an object thereof is to provide a centrifugal pump device capable of achieving both prevention of contamination and prevention of reduction in efficiency and performance. .
 この発明は、要約すると、遠心式ポンプ装置であって、隔壁で仕切られた第1および第2の室を含むハウジングと、第1の室内において隔壁に交差する軸を回転軸として回転可能に設けられ、回転時の遠心力によって液体を送るインペラと、第2の室内に設けられ、隔壁を介してインペラを回転駆動させる駆動部と、第1の室の隔壁と対向する第1壁面に沿うインペラの一方面に設けられ、同一の円に沿って配置された第1の磁性体と、第1壁面に埋設され、第1の磁性体を吸引する第2の磁性体と、隔壁に沿うインペラの他方面に設けられ、同一の円に沿って配置された複数の第3の磁性体とを備える。駆動部は、複数の第3の磁性体に対向して設けられ、回転磁界を生成するための複数のコイルを含む。インペラの一方面またはそれに対向する第1壁面には、第1の動圧溝が形成される。インペラの他方面またはそれに対向する隔壁には、第2の動圧溝が形成される。第1の磁性体および第2の磁性体のうち少なくとも1つの磁性体はインペラの回転中心線周りに円環状に形成される。駆動部は、ベクトル制御により調整された、第3の磁性体および駆動部間に作用する吸引力によって、インペラの位置を第1の室内における回転軸に沿う方向のインペラの可動範囲の中央に維持する。 In summary, the present invention is a centrifugal pump device that includes a housing including first and second chambers partitioned by a partition wall, and a shaft that intersects the partition wall in the first chamber so as to be rotatable about a rotation axis. An impeller that sends liquid by centrifugal force during rotation, a drive unit that is provided in the second chamber and rotationally drives the impeller via the partition, and an impeller along the first wall surface facing the partition of the first chamber A first magnetic body disposed along the same circle, a second magnetic body embedded in the first wall surface and attracting the first magnetic body, and an impeller along the partition wall A plurality of third magnetic bodies provided on the other surface and arranged along the same circle. The drive unit includes a plurality of coils provided to face the plurality of third magnetic bodies and generate a rotating magnetic field. A first dynamic pressure groove is formed on one surface of the impeller or the first wall surface facing the one surface. A second dynamic pressure groove is formed on the other surface of the impeller or a partition wall facing the other surface. At least one of the first magnetic body and the second magnetic body is formed in an annular shape around the rotation center line of the impeller. The drive unit maintains the position of the impeller at the center of the movable range of the impeller in the direction along the rotation axis in the first chamber by the attractive force acting between the third magnetic body and the drive unit adjusted by vector control. To do.
 好ましくは、駆動部は、インペラの位置が可動範囲の中央から隔壁から遠ざかる方向に変化した場合には、ベクトル制御における磁束電流を増加させる。 Preferably, the drive unit increases the magnetic flux current in the vector control when the position of the impeller changes in the direction away from the partition from the center of the movable range.
 好ましくは、インペラの定常回転中において、駆動部が高効率駆動をしている場合には、第1の磁性体と第2の磁性体との間に作用する第1の吸引力と、第3の磁性体と駆動部との間に作用する第2の吸引力とは、第1の室内におけるインペラの可動範囲の中央にインペラが位置するときに釣り合う。 Preferably, when the drive unit performs high-efficiency driving during steady rotation of the impeller, the first attractive force acting between the first magnetic body and the second magnetic body, and the third The second attractive force acting between the magnetic body and the drive unit is balanced when the impeller is positioned at the center of the movable range of the impeller in the first chamber.
 好ましくは、遠心式ポンプ装置は、ベクトル制御に使用するためにインペラの回転角度を推定するための位相推定器をさらに備える。 Preferably, the centrifugal pump device further includes a phase estimator for estimating the rotation angle of the impeller for use in vector control.
 好ましくは、遠心式ポンプ装置は、インペラに作用する流体力を、インペラの回転速度、流量、吐出圧力、および流体の物性値のうちの少なくとも1つ以上をパラメータとして使用して予め測定し記憶する記憶部と、記憶部が記憶する値に応じて第2の吸引力を制御する駆動制御部とをさらに備える。 Preferably, the centrifugal pump device preliminarily measures and stores the fluid force acting on the impeller using at least one or more of the rotation speed, flow rate, discharge pressure, and physical property value of the fluid as parameters. The apparatus further includes a storage unit and a drive control unit that controls the second suction force according to a value stored in the storage unit.
 好ましくは、遠心式ポンプ装置は、ベクトル制御に使用するためにインペラの回転角度を検出するための回転検出器をさらに備える。 Preferably, the centrifugal pump device further includes a rotation detector for detecting the rotation angle of the impeller for use in vector control.
 より好ましくは、回転検出器は、磁気センサであり、磁気センサによってインペラの浮上位置を検出する。 More preferably, the rotation detector is a magnetic sensor, and the flying position of the impeller is detected by the magnetic sensor.
 好ましくは、インペラの外周側の側面には、第3の動圧溝が形成される。
 好ましくは、第1の室の壁面であって、インペラの外周側の側面と対向する壁面には、第3の動圧溝が形成される。
Preferably, a third dynamic pressure groove is formed on the outer peripheral side surface of the impeller.
Preferably, a third dynamic pressure groove is formed on the wall surface of the first chamber facing the outer peripheral side surface of the impeller.
 好ましくは、遠心式ポンプ装置は、食品を循環させるために使用される。
 好ましくは、遠心式ポンプ装置は、医薬品を循環させるために使用される。
Preferably, the centrifugal pump device is used for circulating food.
Preferably, the centrifugal pump device is used for circulating pharmaceutical products.
 従来の構成では、駆動モータ側の吸引力や、それを相殺するためのリング磁石側の吸引力のアキシアル方向の負剛性成分が、インペラ挙動の不安定の原因となっていたが、本発明ではモータ電流をベクトル制御することにより、モータの回転トルクを維持したまま界磁電流成分(Id成分)のみを積極的に変化させ、インペラの浮上位置変化を制御する。 In the conventional configuration, the attractive force on the drive motor side and the negative stiffness component in the axial direction of the attractive force on the ring magnet side to cancel it cause instability of the impeller behavior. By vector control of the motor current, only the field current component (Id component) is actively changed while maintaining the rotational torque of the motor, and the change in the flying position of the impeller is controlled.
 特に、本発明では、モータで発生する電磁力をトルク電流成分(Iq成分)と界磁電流成分(Id成分)とに分離(ベクトル制御)し、Id成分を積極的に変化させることで、インペラに働くアキシアル方向吸引力を制御することを可能とし、インペラの浮上回転時の安定性を高めることができる。 In particular, according to the present invention, the electromagnetic force generated in the motor is separated (vector control) into a torque current component (Iq component) and a field current component (Id component), and the Id component is positively changed, so that the impeller It is possible to control the axial suction force acting on the impeller, and to improve the stability of the impeller during the floating rotation.
本実施の形態に係る遠心式ポンプ装置のモータ駆動システムの電気回路図である。It is an electric circuit diagram of the motor drive system of the centrifugal pump device according to the present embodiment. PWMドライバからインバータに出力される出力信号を説明するための波形図である。It is a wave form diagram for demonstrating the output signal output to an inverter from a PWM driver. モータ駆動システムにおけるモータコントロール部324とその周辺構成を示した制御ブロック図である。It is the control block diagram which showed the motor control part 324 and its periphery structure in a motor drive system. 図3の変形例であって、モータ駆動にセンサレス角度検出処理を使用した場合のモータ駆動システムにおけるモータコントロール部324とその周辺構成を示した制御ブロック図である。4 is a control block diagram showing a motor control unit 324 and its peripheral configuration in a motor drive system when a sensorless angle detection process is used for motor drive, which is a modification of FIG. 3. FIG. モータの電圧方程式のブロック図である。It is a block diagram of the voltage equation of a motor. モータ制御のベクトル図である。It is a vector diagram of motor control. 本発明の実施の形態の遠心式ポンプ装置のポンプ部1の外観を示す正面図である。It is a front view which shows the external appearance of the pump part 1 of the centrifugal pump apparatus of embodiment of this invention. 図7に示したポンプ部1の側面図である。It is a side view of the pump part 1 shown in FIG. 図8のIX-IX線断面図である。FIG. 9 is a sectional view taken along line IX-IX in FIG. 8. 図9のX-X線断面図である。FIG. 10 is a sectional view taken along line XX in FIG. 9. 図10からインペラを取り外した状態を示す断面図である。It is sectional drawing which shows the state which removed the impeller from FIG. 図9のXII-XII線断面図からインペラを取り外した状態を示す断面図である。FIG. 10 is a cross-sectional view showing a state where the impeller is removed from the cross-sectional view taken along the line XII-XII in FIG. 9. 図9のXIII-XIII線断面図である。FIG. 10 is a sectional view taken along line XIII-XIII in FIG. 9. 永久磁石15,16間の吸引力F1と永久磁石17および磁性体18間の吸引力F2との合力の大きさが、インペラ10のポンプ室7内の可動範囲の中央位置以外の位置P1でゼロとなるように調整した場合にインペラ10に作用する力を示す図である。The magnitude of the resultant force of the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 is zero at a position P1 other than the central position of the movable range in the pump chamber 7 of the impeller 10. It is a figure which shows the force which acts on the impeller 10 when it adjusts so that it may become. 永久磁石15,16間の吸引力F1と永久磁石17および磁性体18間の吸引力F2との合力の大きさが、インペラ10のポンプ室7内の可動範囲の中央位置P0でゼロとなるように調整した場合にインペラ10に作用する力を示す図である。The magnitude of the resultant force of the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 is zero at the center position P0 of the movable range in the pump chamber 7 of the impeller 10. It is a figure which shows the force which acts on the impeller 10 when adjusting to. インペラ回転数とインペラの回転中心線の径方向変位を示す図である。It is a figure which shows the radial direction displacement of the impeller rotation speed and the rotation centerline of an impeller. 図13に示した断面図中に回転速度を検出するための磁気センサSの配置を示した図である。It is the figure which showed arrangement | positioning of the magnetic sensor S for detecting a rotational speed in sectional drawing shown in FIG. 図17で示した磁気センサの出力信号を示すタイムチャートである。It is a time chart which shows the output signal of the magnetic sensor shown in FIG. 磁気センサの配置の変更例を示した図である。It is the figure which showed the example of a change of arrangement | positioning of a magnetic sensor. 磁気センサの出力をコイルの電流にフィードバックする制御を説明するための図である。It is a figure for demonstrating the control which feeds back the output of a magnetic sensor to the electric current of a coil. 磁気センサ出力から角度の推測を行なう処理を説明するための波形図である。It is a wave form diagram for demonstrating the process which estimates an angle from a magnetic sensor output. センサレス制御をモータ駆動部で行なう場合の処理を説明するための概略ブロック図である。It is a schematic block diagram for demonstrating the process in the case of performing sensorless control by a motor drive part. インペラの回転中において流量と浮上位置との関係を示した図である。It is the figure which showed the relationship between a flow volume and a floating position during rotation of an impeller. インペラの回転中において吐出圧力と浮上位置との関係を示した図である。It is the figure which showed the relationship between discharge pressure and a floating position during rotation of an impeller. 回転数と浮上位置との関係を示した図である。It is the figure which showed the relationship between rotation speed and a floating position. 電流Idと吸引力との関係を示す図である。It is a figure which shows the relationship between the electric current Id and attractive force. 図9に示した構成の変更例を示す図である。It is a figure which shows the example of a change of the structure shown in FIG. 図27のXXVIII-XXVIIIにおける断面図である。FIG. 28 is a sectional view taken along line XXVIII-XXVIII in FIG. 27. ポンプ室内周面にさらにラジアル動圧溝を設けた変形例を示す図である。It is a figure which shows the modification which further provided the radial dynamic pressure groove in the pump chamber peripheral surface. インペラ10の外周面にさらにラジアル動圧溝を設けた変形例を示す図である。4 is a view showing a modification in which a radial dynamic pressure groove is further provided on the outer peripheral surface of the impeller 10. FIG. 図30に示した例からリング磁石を無くした変形例を示した図である。It is the figure which showed the modification which eliminated the ring magnet from the example shown in FIG. シュラウドの外周面に形成された動圧溝の第1例を示す図である。It is a figure which shows the 1st example of the dynamic pressure groove formed in the outer peripheral surface of a shroud. シュラウドの外周面に形成された動圧溝の第2例を示す図である。It is a figure which shows the 2nd example of the dynamic pressure groove formed in the outer peripheral surface of a shroud. ポンプ室内周面に形成されたラジアル動圧溝の具体的構成の第1例を示した図である。It is the figure which showed the 1st example of the specific structure of the radial dynamic pressure groove formed in the pump chamber internal peripheral surface. ポンプ室内周面に形成されたラジアル動圧溝の具体的構成の第2例を示した図である。It is the figure which showed the 2nd example of the concrete structure of the radial dynamic pressure groove formed in the pump chamber internal peripheral surface. インペラ10のシュラウドに埋設された磁石の詳細な配置を示す図である。FIG. 3 is a diagram showing a detailed arrangement of magnets embedded in a shroud of the impeller 10. 図36に示した永久磁石の配置の第1変形例である。It is a 1st modification of arrangement | positioning of the permanent magnet shown in FIG. 図36に示した永久磁石の配置の第2変形例である。It is a 2nd modification of arrangement | positioning of the permanent magnet shown in FIG. 図36に示した永久磁石の配置の第3変形例である。FIG. 37 is a third modification of the arrangement of the permanent magnets shown in FIG. 36. FIG. 図36に示した永久磁石の配置の第4変形例である。FIG. 37 is a fourth modification of the arrangement of the permanent magnets shown in FIG. 36. FIG. 図36に示した永久磁石の配置の第5変形例である。FIG. 37 is a fifth modification of the arrangement of the permanent magnets shown in FIG. 36. FIG.
 以下、本発明の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.
 [モータ制御回路の概要]
 図1は、本実施の形態に係る遠心式ポンプ装置のモータ駆動システムの電気回路図である。図1を参照して、モータ駆動システム300は、バッテリ部310と、インバータ装置320と、モータ部331とを含む。
[Outline of motor control circuit]
FIG. 1 is an electric circuit diagram of a motor drive system of a centrifugal pump device according to the present embodiment. Referring to FIG. 1, motor drive system 300 includes a battery unit 310, an inverter device 320, and a motor unit 331.
 モータ部331は、3相の同期モータ、例えばSPM型(表面磁石型)同期モータ等であり、永久磁石を含むロータ332と、3相のステータコイルを含むステータとからなる。ロータ332の回転角は、角度検出器334によって検出される。 The motor unit 331 is a three-phase synchronous motor, such as an SPM type (surface magnet type) synchronous motor, and includes a rotor 332 including a permanent magnet and a stator including a three-phase stator coil. The rotation angle of the rotor 332 is detected by an angle detector 334.
 インバータ装置320は、バッテリ部310から与えられる直流電圧を平滑する平滑部328と、3相インバータ330と、演算部322とを含む。演算部322は、モータコントロール部324と、PWMドライバ326とを含む。 The inverter device 320 includes a smoothing unit 328 that smoothes a DC voltage supplied from the battery unit 310, a three-phase inverter 330, and a calculation unit 322. The calculation unit 322 includes a motor control unit 324 and a PWM driver 326.
 3相インバータ330は、半導体スイッチング素子である6つの駆動素子で構成され、モータの3相(U,V,W相)の各相の駆動電流をパルス波形で出力する。 The three-phase inverter 330 is composed of six drive elements that are semiconductor switching elements, and outputs a drive current of each phase of the three phases (U, V, W phase) of the motor in a pulse waveform.
 図2は、PWMドライバからインバータに出力される出力信号を説明するための波形図である。例えば図2に示すように、PWMドライバ326は、3相インバータ330を正弦波駆動する電流出力が得られるように、入力された電流指令をパルス幅変調し、6つの駆動素子にオンオフ指令を与える。 FIG. 2 is a waveform diagram for explaining an output signal output from the PWM driver to the inverter. For example, as shown in FIG. 2, the PWM driver 326 performs pulse width modulation on the input current command so as to obtain a current output for driving the three-phase inverter 330 in a sine wave, and gives on / off commands to the six drive elements. .
 図1に示す、PWMドライバ326とモータコントロール部324とで、インバータ装置320の弱電回路部分である演算部322が構成される。演算部322は、コンピュータとこれに実行されるプログラム、および電子回路により構成される。 1, the PWM driver 326 and the motor control unit 324 constitute a calculation unit 322 that is a weak electric circuit portion of the inverter device 320. The arithmetic unit 322 includes a computer, a program executed on the computer, and an electronic circuit.
 図3は、モータ駆動システムにおけるモータコントロール部324とその周辺構成を示した制御ブロック図である。図3を参照して、モータコントロール部324は、電流指令演算部340と、トルク電流制御部341と、磁束電流制御部343と、αβ座標変換部350と、2相/3相座標変換部352と、検出側の3相/2相座標変換部354と、回転座標変換部356とを含む。 FIG. 3 is a control block diagram showing the motor control unit 324 and its peripheral configuration in the motor drive system. Referring to FIG. 3, motor control unit 324 includes current command calculation unit 340, torque current control unit 341, magnetic flux current control unit 343, αβ coordinate conversion unit 350, and two-phase / three-phase coordinate conversion unit 352. And a three-phase / two-phase coordinate conversion unit 354 and a rotation coordinate conversion unit 356 on the detection side.
 電流指令演算部340は、トルク電流指令部362と、磁束電流設定部364とを含む。トルク電流指令部362は、上位制御手段から与えられたトルク指令に従い、トルク電流の指令値Iqrefを出力する。トルク指令は、外部からの回転数もしくはトルク指令等により演算される。磁束電流設定部364は、磁束電流の定められた指令値Idrefを出力する。磁束電流の指令値Idrefは、モータの特性等に応じて適宜設定され、通常は「0」とされる。 The current command calculation unit 340 includes a torque current command unit 362 and a magnetic flux current setting unit 364. The torque current command unit 362 outputs a torque current command value Iqref in accordance with the torque command given from the host controller. The torque command is calculated from the external rotational speed or torque command. The magnetic flux current setting unit 364 outputs a command value Idref in which the magnetic flux current is determined. The magnetic flux current command value Idref is appropriately set according to the motor characteristics and the like, and is normally set to “0”.
 トルク電流を、以下「q軸電流」と称す。また、磁束電流を、以下「d軸電流」と称す。磁束電流は、励磁電流または界磁電流とも呼ばれる。電圧についても、トルク電圧を「q軸電圧」と称し、磁束電圧を「d軸電圧」と称す。なお、q軸とはモータ回転方向の成分を示す軸であり、d軸はq軸に直交する方向の軸である。 The torque current is hereinafter referred to as “q-axis current”. The magnetic flux current is hereinafter referred to as “d-axis current”. The magnetic flux current is also called exciting current or field current. Regarding the voltage, the torque voltage is referred to as “q-axis voltage”, and the magnetic flux voltage is referred to as “d-axis voltage”. The q axis is an axis indicating a component in the motor rotation direction, and the d axis is an axis perpendicular to the q axis.
 トルク電流制御部341は、q軸電流指令値Iqrefからq軸電流検出値Iqを減算する減算部342と、減算部342の出力に対して定められた演算処理を行う演算処理部346を含む。演算処理部346は、図3に示す例では比例積分処理を行う。 The torque current control unit 341 includes a subtraction unit 342 that subtracts the q-axis current detection value Iq from the q-axis current command value Iqref, and an arithmetic processing unit 346 that performs a predetermined arithmetic process on the output of the subtraction unit 342. The arithmetic processing unit 346 performs proportional integration processing in the example shown in FIG.
 トルク電流制御部341は、電流指令演算部340のトルク電流指令部362から与えられるq軸電流指令値Iqrefに対して、q軸電流検出値Iqが追随するように制御する。q軸電流検出値Iqは、モータの駆動電流を検出する電流検出器336,337の検出値Iu,Ivから、3相/2相座標変換部354および回転座標変換部356を介して得られる。トルク電流制御部341は、q軸電圧指令値Vqを出力する。 The torque current control unit 341 controls the q axis current detection value Iq to follow the q axis current command value Iqref given from the torque current command unit 362 of the current command calculation unit 340. The q-axis current detection value Iq is obtained from the detection values Iu and Iv of the current detectors 336 and 337 that detect the drive current of the motor via the three-phase / two-phase coordinate conversion unit 354 and the rotation coordinate conversion unit 356. Torque current control unit 341 outputs q-axis voltage command value Vq.
 磁束電流制御部343は、d軸電流指令値Idrefからd軸電流検出値Idを減算する減算部344と、減算部344の出力に対して定められた演算処理を行う演算処理部348とを含む。演算処理部348は、図3に示す例では比例積分処理を行う。 The magnetic flux current control unit 343 includes a subtraction unit 344 that subtracts the d-axis current detection value Id from the d-axis current command value Idref, and an arithmetic processing unit 348 that performs a predetermined arithmetic process on the output of the subtraction unit 344. . The arithmetic processing unit 348 performs proportional integration processing in the example shown in FIG.
 磁束電流制御部343は、電流指令演算部340の磁束電流設定部364から与えられるd軸電流指令値Idrefに対して、d軸電流検出値Idが追随するように制御する。d軸電流検出値Idは、モータの駆動電流を検出する電流検出器336,337の検出値Iu,Ivから、3相/2相座標変換部354および回転座標変換部356を介して得られる。磁束電流制御部343は、d軸電圧指令値Vdを出力する。 The magnetic flux current control unit 343 performs control so that the d-axis current detection value Id follows the d-axis current command value Idref given from the magnetic flux current setting unit 364 of the current command calculation unit 340. The d-axis current detection value Id is obtained from the detection values Iu and Iv of the current detectors 336 and 337 that detect the drive current of the motor via the three-phase / two-phase coordinate conversion unit 354 and the rotation coordinate conversion unit 356. The magnetic flux current control unit 343 outputs the d-axis voltage command value Vd.
 3相/2相座標変換部354は、モータのU相,V相,W相を流れる電流のうち、2つ、または3つの相の電流、例えばU相の電流Iuと、V相の電流Ivの検出値を、静止直交2相座標成分の実電流(α軸上の実電流、およびβ軸上の実電流)の検出値Iα,Iβに変換する。 The three-phase / two-phase coordinate conversion unit 354 includes two or three currents flowing through the U phase, V phase, and W phase of the motor, for example, a U phase current Iu and a V phase current Iv. Are detected values Iα and Iβ of actual currents (actual current on the α axis and actual current on the β axis) of the stationary quadrature two-phase coordinate component.
 回転座標変換部356は、角度検出器334で検出されたモータロータ角度θmeaに基づき、前記静止直交2相座標成分の実電流の検出値Iα,Iβを、q,d軸上の検出値Iq,Idに変換する。 Based on the motor rotor angle θmea detected by the angle detector 334, the rotational coordinate conversion unit 356 converts the detected values Iα and Iβ of the static quadrature two-phase coordinate component into the detected values Iq and Id on the q and d axes. Convert to
 αβ座標変換部350は、q軸電圧指令値Vqおよびd軸電圧指令値Vdを、モータ角度検出器で検出されたモータロータ角度θ、つまりモータロータ位相に基づき、固定2相座標成分の実電圧の指令値Vα,Vβに変換する。 The αβ coordinate conversion unit 350 uses the q-axis voltage command value Vq and the d-axis voltage command value Vd based on the motor rotor angle θ detected by the motor angle detector, that is, the motor rotor phase, to command the actual voltage of the fixed two-phase coordinate component. Convert to values Vα and Vβ.
 2相/3相座標変換部352は、αβ座標変換部350の出力する実電圧の指令値Vα,Vβを、モータのU相,V相,W相を制御する3相交流の電圧指令値Vu,Vv,Vwに変換する。 The two-phase / three-phase coordinate conversion unit 352 uses the actual voltage command values Vα and Vβ output from the αβ coordinate conversion unit 350 as the three-phase AC voltage command values Vu for controlling the U phase, V phase, and W phase of the motor. , Vv, Vw.
 PWMドライバ326および3相インバータ330は、上記のようにして2相/3相座標変換部352から出力される電圧指令値Vu,Vv,Vwを電力変換してモータ駆動電流Iu,Iv,Iwを出力する。 The PWM driver 326 and the three-phase inverter 330 convert the voltage command values Vu, Vv, and Vw output from the two-phase / three-phase coordinate conversion unit 352 as described above to convert the motor drive currents Iu, Iv, and Iw into power. Output.
 図4は、図3の変形例であって、モータ駆動にセンサレス角度検出処理を使用した場合のモータ駆動システムにおけるモータコントロール部324とその周辺構成を示した制御ブロック図である。 FIG. 4 is a modified example of FIG. 3 and is a control block diagram showing a motor control unit 324 and its peripheral configuration in the motor drive system when sensorless angle detection processing is used for motor drive.
 図4には、位相推定器358が出力するモータロータ角度θestを用いて制御を行う様子が示されている。 FIG. 4 shows a state in which control is performed using the motor rotor angle θest output from the phase estimator 358.
 以下に、位相推定器358が角度を推定する式の説明を行なう。
 下記の(数1)に示すモータ等価回路方程式は、d-q座標系では、(数2)に示す式で表される。(数2)に示す式を更にα-β座標系に変換すると(数3)に示す式が得られる。
In the following, a formula for estimating the angle by the phase estimator 358 will be described.
The motor equivalent circuit equation shown in the following (Equation 1) is expressed by the equation shown in (Equation 2) in the dq coordinate system. When the expression shown in (Expression 2) is further converted into the α-β coordinate system, the expression shown in (Expression 3) is obtained.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで、(数3)に示す式をIqを用いて表すと以下の(数4)に示す式が得られる。この式に基づいて位相推定器358は、モータロータの角度(位相θ)の推定を行う。 Here, when the expression shown in (Expression 3) is expressed using Iq, the following expression (Expression 4) is obtained. Based on this equation, the phase estimator 358 estimates the angle (phase θ) of the motor rotor.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 上記の式において、Rは電気子巻線抵抗値、Ldはd軸インダクタンス、Lqはq軸インダクタンス、KEは誘起電圧定数を示す。R、Ld、Lq、KEは既知の値であり、Iα、Iβは検出値であり、Vα、Vβはベクトル制御時の演算値であり位置推定時は既知である。したがって、モータロータの角度(位相)の推定が可能である。 In the above equation, R is the resistance value of the armature winding, Ld is the d-axis inductance, Lq is the q-axis inductance, and KE is the induced voltage constant. R, Ld, Lq, and KE are known values, Iα and Iβ are detected values, Vα and Vβ are calculated values during vector control, and are known during position estimation. Therefore, the angle (phase) of the motor rotor can be estimated.
 ここで(数1)の式について、ブロック図とベクトル図とを示す。図5は、モータの電圧方程式のブロック図である。図6は、モータ制御のベクトル図である。 Here, a block diagram and a vector diagram are shown for the equation (Equation 1). FIG. 5 is a block diagram of the motor voltage equation. FIG. 6 is a vector diagram of motor control.
 図6において、d軸およびq軸は永久磁石の磁極方向を示している。電気子鎖交磁束φaは、d軸上にある。また、LdidとLqiqは各軸の鎖交磁束成分で、モータの総鎖交磁束は図6からφ0になることが分かる。ここで、入力電流iaはidとiqの合成電流である。また、入力電流iaのq軸との位相角をβで表す。βは無負荷時の誘起電圧ωφaを基準にした電流位相差を示す。 In FIG. 6, the d-axis and the q-axis indicate the magnetic pole directions of the permanent magnet. The electron interlinkage magnetic flux φa is on the d axis. Ldid and Lqiq are the interlinkage magnetic flux components of each axis, and the total interlinkage magnetic flux of the motor is φ0 from FIG. Here, the input current ia is a combined current of id and iq. Also, β represents the phase angle of the input current ia with respect to the q axis. β represents a current phase difference based on the induced voltage ωφa at no load.
 端子電圧Vaは、V0に電気子巻線抵抗Raとの電圧降下Raiaを加えた電圧になる。V0は各軸の電気反作用電圧ωLdid、ωLqiqを誘起電圧ωφaに加えた電圧である。電圧V0とφ0との位相差は、90度である。 The terminal voltage Va is a voltage obtained by adding a voltage drop Raia to the electric coil winding resistance Ra to V0. V0 is a voltage obtained by adding the electric reaction voltages ωLdid and ωLqiq of each axis to the induced voltage ωφa. The phase difference between the voltages V0 and φ0 is 90 degrees.
 図6のベクトル図から、電気子鎖交磁束φaが永久磁石の界磁磁束であり、界磁磁束の大きさに影響を与える電機子反作用の磁束はLdidであることがわかる。d軸成分が吸引力に影響を与えるので、idをゼロに制御することは、吸引力の変化を抑制することになる。βがゼロでは、各相の電流位相を無負荷時の誘起電圧ωφaと一致させることになる。この場合、電流ベクトルiaは負荷状態に応じてq軸上を移動することになる。 From the vector diagram of FIG. 6, it can be seen that the interlinkage magnetic flux φa is the field magnetic flux of the permanent magnet, and the magnetic flux of the armature reaction that affects the magnitude of the field magnetic flux is Ldid. Since the d-axis component affects the suction force, controlling id to zero suppresses a change in the suction force. When β is zero, the current phase of each phase coincides with the induced voltage ωφa at no load. In this case, the current vector ia moves on the q axis according to the load state.
 d軸成分を変化させることによって吸引力を変化させることができることが分かる。ここではあえてd軸成分を制御し、アキシアル方向の吸引力をコントロールする。 It can be seen that the suction force can be changed by changing the d-axis component. Here, the d-axis component is dared to control the suction force in the axial direction.
 この吸引力の制御の詳細を説明する前に、以下にポンプ部の基本構成について説明しておく。 Before explaining the details of the suction force control, the basic configuration of the pump unit will be described below.
 [ポンプ部の基本構成の説明]
 図1~図6によって、本実施の形態の遠心式ポンプ装置のモータ制御について説明した。次に、本実施の形態の遠心式ポンプ装置のポンプ部の基本構成について説明する。
[Description of basic configuration of pump unit]
The motor control of the centrifugal pump device according to the present embodiment has been described with reference to FIGS. Next, the basic configuration of the pump unit of the centrifugal pump device of the present embodiment will be described.
 図7は、本発明の実施の形態の遠心式ポンプ装置のポンプ部1の外観を示す正面図である。図8は、図7に示したポンプ部1の側面図である。図9は、図8のIX-IX線断面図である。図10は、図9のX-X線断面図である。 FIG. 7 is a front view showing an appearance of the pump unit 1 of the centrifugal pump device according to the embodiment of the present invention. FIG. 8 is a side view of the pump unit 1 shown in FIG. 9 is a cross-sectional view taken along line IX-IX in FIG. 10 is a cross-sectional view taken along line XX of FIG.
 図7~図10を参照して、この遠心式ポンプ装置のポンプ部1は、非磁性材料で形成されたハウジング2を備える。ハウジング2は、円柱状の本体部3と、本体部3の一方の端面の中央に立設された円筒状の流入ポート4と、本体部3の外周面に設けられた円筒状の流出ポート5とを含む。流出ポート5は、本体部3の外周面の接線方向に延在している。 7 to 10, the pump unit 1 of the centrifugal pump device includes a housing 2 formed of a nonmagnetic material. The housing 2 includes a columnar main body 3, a cylindrical inflow port 4 erected at the center of one end surface of the main body 3, and a cylindrical outflow port 5 provided on the outer peripheral surface of the main body 3. Including. The outflow port 5 extends in the tangential direction of the outer peripheral surface of the main body 3.
 ハウジング2内には、図9に示すように、隔壁6によって仕切られたポンプ室7およびモータ室8が設けられている。ポンプ室7内には、図9および図10に示すように、中央に貫通孔10aを有する円板状のインペラ10が回転可能に設けられている。インペラ10は、ドーナツ板状の2枚のシュラウド11,12と、2枚のシュラウド11,12間に形成された複数(たとえば6つ)のベーン13とを含む。シュラウド11は流入ポート4側に配置され、シュラウド12は隔壁6側に配置される。シュラウド11,12およびベーン13は、非磁性材料で形成されている。 In the housing 2, as shown in FIG. 9, a pump chamber 7 and a motor chamber 8 partitioned by a partition wall 6 are provided. As shown in FIGS. 9 and 10, a disc-like impeller 10 having a through hole 10 a at the center is rotatably provided in the pump chamber 7. The impeller 10 includes two shrouds 11 and 12 each having a donut plate shape and a plurality of (for example, six) vanes 13 formed between the two shrouds 11 and 12. The shroud 11 is disposed on the inflow port 4 side, and the shroud 12 is disposed on the partition wall 6 side. The shrouds 11 and 12 and the vane 13 are made of a nonmagnetic material.
 2枚のシュラウド11,12の間には、複数のベーン13で仕切られた複数(この場合は6つ)の液体通路14が形成されている。液体通路14は、図10に示すように、インペラ10の中央の貫通孔10aと連通しており、インペラ10の貫通孔10aを始端とし、外周縁まで徐々に幅が広がるように延びている。換言すれば、隣接する2つの液体通路14間にベーン13が形成されている。なお、本実施の形態では、複数のベーン13は等角度間隔で設けられ、かつ同じ形状に形成されている。したがって、複数の液体通路14は等角度間隔で設けられ、かつ同じ形状に形成されている。 Between the two shrouds 11 and 12, a plurality of (in this case, six) liquid passages 14 partitioned by a plurality of vanes 13 are formed. As shown in FIG. 10, the liquid passage 14 communicates with the central through hole 10 a of the impeller 10, and starts from the through hole 10 a of the impeller 10 and extends so that the width gradually increases to the outer peripheral edge. In other words, the vane 13 is formed between two adjacent liquid passages 14. In the present embodiment, the plurality of vanes 13 are provided at equiangular intervals and formed in the same shape. Accordingly, the plurality of liquid passages 14 are provided at equiangular intervals and are formed in the same shape.
 インペラ10が回転駆動されると、流入ポート4から流入した液体は、遠心力によって貫通孔10aから液体通路14を介してインペラ10の外周部に送られ、流出ポート5から流出する。 When the impeller 10 is driven to rotate, the liquid flowing in from the inflow port 4 is sent from the through hole 10a to the outer periphery of the impeller 10 through the liquid passage 14 by centrifugal force and flows out from the outflow port 5.
 <動圧溝の説明>
 図11は、図10からインペラを取り外した状態を示す断面図である。図12は、図9のXII-XII線断面図からインペラを取り外した状態を示す断面図である。
<Description of dynamic pressure groove>
11 is a cross-sectional view showing a state where the impeller is removed from FIG. 12 is a cross-sectional view showing a state where the impeller is removed from the cross-sectional view taken along the line XII-XII in FIG.
 図11、図12に示すように、インペラ10のシュラウド12に対向する隔壁6の表面には複数の動圧溝21が形成され、シュラウド11に対向するポンプ室7の内壁には複数の動圧溝22が形成されている。インペラ10の回転数が所定の回転数を超えると、動圧溝21,22の各々とインペラ10との間に動圧軸受効果が発生する。これにより、動圧溝21,22の各々からインペラ10に対して抗力が発生し、インペラ10はポンプ室7内で非接触状態で回転する。すなわち、動圧溝21と動圧溝22によりインペラ10のアキシアル方向の位置が支持される。 As shown in FIGS. 11 and 12, a plurality of dynamic pressure grooves 21 are formed on the surface of the partition wall 6 facing the shroud 12 of the impeller 10, and a plurality of dynamic pressures are formed on the inner wall of the pump chamber 7 facing the shroud 11. A groove 22 is formed. When the rotational speed of the impeller 10 exceeds a predetermined rotational speed, a dynamic pressure bearing effect is generated between each of the dynamic pressure grooves 21 and 22 and the impeller 10. Thereby, a drag force is generated from each of the dynamic pressure grooves 21 and 22 against the impeller 10, and the impeller 10 rotates in a non-contact state in the pump chamber 7. That is, the position of the impeller 10 in the axial direction is supported by the dynamic pressure groove 21 and the dynamic pressure groove 22.
 詳しく説明すると、複数の動圧溝21は、図11に示すように、インペラ10のシュラウド12に対応する大きさに形成されている。各動圧溝21は、隔壁6の中心から若干離間した円形部分の周縁(円周)上に一端を有し、渦状に(換言すれば、湾曲して)隔壁6の外縁付近まで、幅が徐々に広がるように延びている。また、複数の動圧溝21は略同じ形状であり、かつ略同じ間隔に配置されている。動圧溝21は凹部であり、動圧溝21の深さは0.005~0.4mm程度であることが好ましい。動圧溝21の数は、6~36個程度であることが好ましい。 More specifically, the plurality of dynamic pressure grooves 21 are formed in a size corresponding to the shroud 12 of the impeller 10, as shown in FIG. Each dynamic pressure groove 21 has one end on the periphery (circumference) of a circular portion slightly spaced from the center of the partition wall 6 and has a width up to the vicinity of the outer edge of the partition wall 6 in a spiral shape (in other words, curved). It extends to gradually spread. The plurality of dynamic pressure grooves 21 have substantially the same shape and are arranged at substantially the same interval. The dynamic pressure groove 21 is a recess, and the depth of the dynamic pressure groove 21 is preferably about 0.005 to 0.4 mm. The number of the dynamic pressure grooves 21 is preferably about 6 to 36.
 図11では、10個の動圧溝21がインペラ10の中心軸に対して等角度で配置されている。動圧溝21は、いわゆる内向スパイラル溝形状となっているので、インペラ10が時計方向に回転すると、動圧溝21の外径部から内径部に向けて液体の圧力が高くなる。このため、インペラ10と隔壁6の間に反発力が発生し、これが動圧力となる。 In FIG. 11, ten dynamic pressure grooves 21 are arranged at an equal angle with respect to the central axis of the impeller 10. Since the dynamic pressure groove 21 has a so-called inward spiral groove shape, when the impeller 10 rotates in the clockwise direction, the liquid pressure increases from the outer diameter portion to the inner diameter portion of the dynamic pressure groove 21. For this reason, a repulsive force is generated between the impeller 10 and the partition wall 6, and this becomes a dynamic pressure.
 このように、インペラ10と複数の動圧溝21の間に形成される動圧軸受効果により、インペラ10は隔壁6から離れ、非接触状態で回転する。このため、インペラ10と隔壁6の間に液体流路が確保される。さらに、通常状態において、動圧溝21によるインペラ10と隔壁6の間の撹拌作用とポンプ動作で生じたインペラの内外径部の圧力差による液体の流れ(漏れ流量)とによって、両者間における部分的な液体滞留の発生を防止することができる。 Thus, due to the hydrodynamic bearing effect formed between the impeller 10 and the plurality of hydrodynamic grooves 21, the impeller 10 is separated from the partition wall 6 and rotates in a non-contact state. For this reason, a liquid flow path is ensured between the impeller 10 and the partition wall 6. Further, in a normal state, a portion between the impeller 10 and the partition wall 6 is stirred by the dynamic pressure groove 21 and a liquid flow (leakage flow rate) due to a pressure difference between the inner and outer diameter portions of the impeller generated by the pump operation. Generation of typical liquid retention can be prevented.
 また、動圧溝21の角の部分は、少なくとも0.05mm以上のRを持つように丸められていることが好ましい。 Also, the corner portion of the dynamic pressure groove 21 is preferably rounded so as to have an R of at least 0.05 mm.
 また、複数の動圧溝22は、図12に示すように、複数の動圧溝21と同様、インペラ10のシュラウド11に対応する大きさに形成されている。各動圧溝22は、ポンプ室7の内壁の中心から若干離間した円形部分の周縁(円周)上に一端を有し、渦状に(換言すれば、湾曲して)ポンプ室7の内壁の外縁付近まで、幅が徐々に広がるように延びている。また、複数の動圧溝22は、略同じ形状であり、かつ略同じ間隔で配置されている。動圧溝22は凹部であり、動圧溝22の深さは0.005~0.4mm程度があることが好ましい。動圧溝22の数は、6~36個程度であることが好ましい。図12では、10個の動圧溝22がインペラ10の中心軸に対して等角度に配置されている。 Further, as shown in FIG. 12, the plurality of dynamic pressure grooves 22 are formed in a size corresponding to the shroud 11 of the impeller 10 as with the plurality of dynamic pressure grooves 21. Each dynamic pressure groove 22 has one end on the periphery (circumference) of a circular portion slightly spaced from the center of the inner wall of the pump chamber 7, and spirally (in other words, curved) on the inner wall of the pump chamber 7. It extends so that the width gradually increases to the vicinity of the outer edge. The plurality of dynamic pressure grooves 22 have substantially the same shape and are arranged at substantially the same interval. The dynamic pressure groove 22 is a recess, and the depth of the dynamic pressure groove 22 is preferably about 0.005 to 0.4 mm. The number of the dynamic pressure grooves 22 is preferably about 6 to 36. In FIG. 12, ten dynamic pressure grooves 22 are arranged at an equal angle with respect to the central axis of the impeller 10.
 なお、動圧溝22の角となる部分は、少なくとも0.05mm以上のRを持つように丸められていることが好ましい。 Note that the corners of the dynamic pressure grooves 22 are preferably rounded so as to have an R of at least 0.05 mm.
 このように、インペラ10と複数の動圧溝22の間に形成される動圧軸受効果により、インペラ10はポンプ室7の内壁から離れ、非接触状態で回転する。また、ポンプ部1が外的衝撃を受けたときや、動圧溝21による動圧力が過剰となったときに、インペラ10のポンプ室7の内壁への密着を防止することができる。動圧溝21によって発生する動圧力と動圧溝22によって発生する動圧力は異なるものとなっていてもよい。 Thus, due to the hydrodynamic bearing effect formed between the impeller 10 and the plurality of hydrodynamic grooves 22, the impeller 10 is separated from the inner wall of the pump chamber 7 and rotates in a non-contact state. Moreover, when the pump part 1 receives an external impact or when the dynamic pressure by the dynamic pressure groove 21 becomes excessive, it is possible to prevent the impeller 10 from closely contacting the inner wall of the pump chamber 7. The dynamic pressure generated by the dynamic pressure groove 21 and the dynamic pressure generated by the dynamic pressure groove 22 may be different.
 ただし、インペラ10のシュラウド12と隔壁6との隙間と、インペラ10のシュラウド11とポンプ室7の内壁との隙間とが略同じ状態でインペラ10が回転することが好ましい。インペラ10に作用する流体力などの外乱が大きく、一方の隙間が狭くなる場合には、その狭くなる側の動圧溝による動圧力を他方の動圧溝による動圧力よりも大きくし、両隙間を略同じにするため、動圧溝21と22の形状を異ならせることが好ましい。 However, it is preferable that the impeller 10 rotates with the gap between the shroud 12 of the impeller 10 and the partition wall 6 and the gap between the shroud 11 of the impeller 10 and the inner wall of the pump chamber 7 being substantially the same. When disturbance such as fluid force acting on the impeller 10 is large and one gap is narrowed, the dynamic pressure by the dynamic pressure groove on the narrowing side is made larger than the dynamic pressure by the other dynamic pressure groove, To make the dynamic pressure grooves 21 and 22 different in shape.
 なお、図11および図12では、動圧溝21,22の各々を内向スパイラル溝形状としたが、他の形状の動圧溝21,22を使用することも可能である。 11 and 12, each of the dynamic pressure grooves 21 and 22 has an inward spiral groove shape, but the dynamic pressure grooves 21 and 22 having other shapes may be used.
 <永久磁石およびコイルの配置の説明>
 再び図9および図10を参照して、シュラウド12には複数(たとえば8個)の永久磁石17が埋設されている。複数の永久磁石17は、隣接する磁極が互いに異なるようにして、等角度間隔で同一の円に沿って隙間を設けて配置される。換言すれば、モータ室8側にN極を向けた永久磁石17と、モータ室8側にS極を向けた永久磁石17とが等角度間隔で隙間を設けて同一の円に沿って交互に配置されている。
<Description of arrangement of permanent magnet and coil>
Referring to FIGS. 9 and 10 again, a plurality of (for example, eight) permanent magnets 17 are embedded in the shroud 12. The plurality of permanent magnets 17 are arranged with gaps along the same circle at equal angular intervals so that adjacent magnetic poles are different from each other. In other words, the permanent magnet 17 with the N pole facing the motor chamber 8 side and the permanent magnet 17 with the S pole facing the motor chamber 8 side are alternately provided along the same circle with gaps provided at equal angular intervals. Has been placed.
 図13は、図9のXIII-XIII線断面図である。図9および図13を参照して、モータ室8内には、複数(たとえば9個)のコイル20が設けられている。複数のコイル20は、インペラ10の複数の永久磁石17に隔壁を挟み対向して、等角度間隔で同一の円に沿って配置される。コイル20は、磁性体などが配置されているコア部(磁性体18)の周りにコイル配線が巻回されている。 FIG. 13 is a cross-sectional view taken along line XIII-XIII in FIG. With reference to FIGS. 9 and 13, a plurality of (for example, nine) coils 20 are provided in the motor chamber 8. The plurality of coils 20 are arranged along the same circle at equal angular intervals so as to face the plurality of permanent magnets 17 of the impeller 10 with a partition wall interposed therebetween. In the coil 20, coil wiring is wound around a core portion (magnetic body 18) where a magnetic body or the like is disposed.
 ただし、図13のコイル内部の磁性体は、積層鋼板であってもよいし、圧粉磁心やその他の磁性体であってもよい。 However, the magnetic body in the coil of FIG. 13 may be a laminated steel plate, a dust core or other magnetic body.
 また、図示はしていないが、コア部が空芯であってもよい。
 複数のコイル20の隔壁6の反対側にはバックヨークとなる磁性体19を配置し、コイル20の磁束を強めている。なお、バックヨークは無くてもよい。
Although not shown, the core portion may be an air core.
A magnetic body 19 serving as a back yoke is disposed on the opposite side of the partition walls 6 of the plurality of coils 20 to strengthen the magnetic flux of the coils 20. The back yoke may not be provided.
 9個のコイル20には、たとえば120度通電方式で電圧が印加される。すなわち、9個のコイル20は、3個ずつグループ化される。各グループの第1~第3のコイル20には、U相,V相,W相の三相電圧VU,VV,VWが印加される。第1のコイル20には、0~120度の期間に正電圧が印加され、120~180度の期間に0Vが印加され、180~300度の期間に負電圧が印加され、300~360度の期間に0Vが印加される。したがって、第1のコイル20の端面(インペラ10側の端面)は、0~120度の期間にN極になり、180~300度の期間にS極になる。電圧VVの位相は電圧VUよりも120度遅れており、電圧VWの位相は電圧VVよりも120度遅れている。したがって、第1~第3のコイル20にそれぞれ電圧VU,VV,VWを印加することにより、回転磁界を形成することができ、複数のコイル20とインペラ10の複数の永久磁石17との吸引力および反発力により、インペラ10を回転させることができる。 The voltage is applied to the nine coils 20 by, for example, a 120-degree energization method. That is, nine coils 20 are grouped by three. U-phase, V-phase, and W-phase three-phase voltages VU, VV, and VW are applied to the first to third coils 20 of each group. A positive voltage is applied to the first coil 20 during a period of 0 to 120 degrees, 0 V is applied during a period of 120 to 180 degrees, a negative voltage is applied during a period of 180 to 300 degrees, and 300 to 360 degrees. 0V is applied during this period. Therefore, the end face of the first coil 20 (the end face on the impeller 10 side) becomes the N pole during the period of 0 to 120 degrees and becomes the S pole during the period of 180 to 300 degrees. The phase of the voltage VV is 120 degrees behind the voltage VU, and the phase of the voltage VW is 120 degrees behind the voltage VV. Therefore, by applying the voltages VU, VV, and VW to the first to third coils 20 respectively, a rotating magnetic field can be formed, and the attractive force between the plurality of coils 20 and the plurality of permanent magnets 17 of the impeller 10. The impeller 10 can be rotated by the repulsive force.
 図14は、永久磁石15,16間の吸引力F1と永久磁石17および磁性体18間の吸引力F2との合力の大きさが、インペラ10のポンプ室7内の可動範囲の中央位置以外の位置P1でゼロとなるように調整した場合にインペラ10に作用する力を示す図である。ただし、インペラ10の回転数は定格値に保たれている。 In FIG. 14, the magnitude of the resultant force of the attractive force F <b> 1 between the permanent magnets 15 and 16 and the attractive force F <b> 2 between the permanent magnet 17 and the magnetic body 18 is other than the central position of the movable range in the pump chamber 7 of the impeller 10. It is a figure which shows the force which acts on the impeller 10 when it adjusts so that it may become zero in the position P1. However, the rotation speed of the impeller 10 is kept at the rated value.
 図14の横軸はインペラ10の位置(図中の左側が隔壁6側)を示し、縦軸はインペラ10に対する作用力を示している。インペラ10への作用力が隔壁6側に働くとき、その作用力をマイナスとしている。インペラ10に対する作用力としては、永久磁石15,16間の吸引力F1と、永久磁石17および磁性体18間の吸引力F2と、動圧溝21の動圧力F3と、動圧溝22の動圧力F4と、それらの合力である「インペラに作用する正味の力F5」を示した。 14 represents the position of the impeller 10 (the left side in the figure is the partition wall 6 side), and the vertical axis represents the acting force on the impeller 10. When the acting force on the impeller 10 acts on the partition wall 6 side, the acting force is negative. The acting force on the impeller 10 includes an attractive force F1 between the permanent magnets 15 and 16, an attractive force F2 between the permanent magnet 17 and the magnetic body 18, a dynamic pressure F3 in the dynamic pressure groove 21, and a dynamic force in the dynamic pressure groove 22. The pressure F4 and the resultant force “net force F5 acting on the impeller” are shown.
 永久磁石15,16間の吸引力F1が永久磁石17および磁性体18間の吸引力F2よりも小さく設定され、それらの合力がゼロとなるインペラ10の浮上位置はインペラ可動範囲の中間よりも隔壁6側にあるものとする。動圧溝21,22の形状は同じである。 The attraction force F1 between the permanent magnets 15 and 16 is set smaller than the attraction force F2 between the permanent magnet 17 and the magnetic body 18, and the floating position of the impeller 10 at which the resultant force becomes zero is higher than the middle of the impeller movable range. It is on the 6th side. The shapes of the dynamic pressure grooves 21 and 22 are the same.
 図14から分かるように、インペラ10に作用する正味の力F5がゼロとなる位置で、インペラ10の浮上位置はインペラ10の可動範囲の中央位置から大きくずれている。その結果、回転中のインペラ10と隔壁6の間の距離は狭まり、インペラ10に対して小さな外乱力が作用してもインペラ10は隔壁6に接触してしまう。 As can be seen from FIG. 14, the floating position of the impeller 10 is largely deviated from the center position of the movable range of the impeller 10 at the position where the net force F5 acting on the impeller 10 becomes zero. As a result, the distance between the rotating impeller 10 and the partition wall 6 is narrowed, and the impeller 10 contacts the partition wall 6 even if a small disturbance force acts on the impeller 10.
 これに対して図15は、永久磁石15,16間の吸引力F1と永久磁石17および磁性体18間の吸引力F2との合力の大きさが、インペラ10のポンプ室7内の可動範囲の中央位置P0でゼロとなるように調整した場合にインペラ10に作用する力を示す図である。この場合も、インペラ10の回転数は定格値に保たれている。 On the other hand, in FIG. 15, the magnitude of the resultant force of the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 is the movable range in the pump chamber 7 of the impeller 10. It is a figure which shows the force which acts on the impeller 10 when it adjusts so that it may become zero in the center position P0. Also in this case, the rotational speed of the impeller 10 is kept at the rated value.
 すなわち、永久磁石15,16間の吸引力F1と永久磁石17および磁性体18間の吸引力F2とは略同じに設定されている。また、動圧溝21,22の形状は同じにされている。図15に示した場合は、図14の場合と比較して、インペラ10の浮上位置に対する支持剛性が高くなる。また、インペラ10に作用する正味の力F5は可動範囲の中央でゼロとなっているので、インペラ10に対し外乱力が作用しない場合にはインペラ10は中央位置で浮上する。 That is, the attractive force F1 between the permanent magnets 15 and 16 and the attractive force F2 between the permanent magnet 17 and the magnetic body 18 are set to be substantially the same. Further, the shapes of the dynamic pressure grooves 21 and 22 are the same. In the case shown in FIG. 15, the support rigidity with respect to the floating position of the impeller 10 is higher than in the case of FIG. 14. Since the net force F5 acting on the impeller 10 is zero at the center of the movable range, the impeller 10 floats at the center position when no disturbance force acts on the impeller 10.
 このように、インペラ10の浮上位置は、永久磁石15,16間の吸引力F1と、永久磁石17および磁性体18間の吸引力F2と、インペラ10の回転時に動圧溝21,22で発生する動圧力F3,F4との釣り合いで決まる。F1とF2を略同じにし、動圧溝21,22の形状を同じにすることにより、インペラ10の回転時にインペラ10をポンプ室7の略中央部で浮上させることが可能となる。図9および図10に示すように、インペラ10は2つのディスク間に羽根を形成した形状を有するので、ハウジング2の内壁に対向する2つの面を同一形状および同一寸法にすることができる。したがって、略同一の動圧性能を有する動圧溝21,22をインペラ10の両側に設けることは可能である。 Thus, the floating position of the impeller 10 is generated in the dynamic pressure grooves 21 and 22 when the impeller 10 rotates, and the attractive force F1 between the permanent magnets 15 and 16, the attractive force F2 between the permanent magnet 17 and the magnetic body 18, and the impeller 10. It is determined by the balance with dynamic pressures F3 and F4. By making F1 and F2 substantially the same and making the shape of the dynamic pressure grooves 21 and 22 the same, the impeller 10 can be floated at the substantially central portion of the pump chamber 7 when the impeller 10 rotates. As shown in FIGS. 9 and 10, since the impeller 10 has a shape in which blades are formed between two disks, the two surfaces facing the inner wall of the housing 2 can have the same shape and the same size. Therefore, it is possible to provide the dynamic pressure grooves 21 and 22 having substantially the same dynamic pressure performance on both sides of the impeller 10.
 この場合、インペラ10はポンプ室7の中央位置で浮上するので、インペラ10はハウジング2の内壁から最も離れた位置に保持される。その結果、インペラ10の浮上時にインペラ10に外乱力が印加されて、インペラ10の浮上位置が変化しても、インペラ10とハウジング2の内壁とが接触する可能性が小さくなる。 In this case, since the impeller 10 floats at the center position of the pump chamber 7, the impeller 10 is held at a position farthest from the inner wall of the housing 2. As a result, even if a disturbance force is applied to the impeller 10 when the impeller 10 is lifted and the floating position of the impeller 10 is changed, the possibility that the impeller 10 and the inner wall of the housing 2 are in contact with each other is reduced.
 図16は、インペラ回転数とインペラの回転中心線の径方向変位を示す図である。より詳細には、図16には、ポンプ室7の側壁の中心線(以下、中心線L1という)永久磁石16の中心線(以下、中心線L2という)を一致させた遠心式ポンプ装置において、ポンプ装置の吐出流量と、インペラ10の回転中心線(以下、回転中心線L3という)の移動方向および移動量との関係が示されている。図16では、ポンプ室7の側壁の中心線L1と永久磁石16a,16bの中心線L2を原点に配置し、図10に示した開口部7aの上流側の端部の方向をY方向としている。この図16から、インペラ10の回転中心線L3は、吐出流量の増加に伴い、開口部7aの上流側の端部に吸い寄せられるように移動することが分かる。 FIG. 16 is a diagram showing the impeller rotational speed and the radial displacement of the impeller rotation center line. More specifically, FIG. 16 shows a centrifugal pump device in which the center line (hereinafter referred to as center line L2) of the permanent magnet 16 is aligned with the center line (hereinafter referred to as center line L1) of the side wall of the pump chamber 7. The relationship between the discharge flow rate of the pump device and the moving direction and moving amount of the rotation center line (hereinafter referred to as rotation center line L3) of the impeller 10 is shown. In FIG. 16, the center line L1 of the side wall of the pump chamber 7 and the center line L2 of the permanent magnets 16a and 16b are arranged at the origin, and the direction of the upstream end of the opening 7a shown in FIG. . It can be seen from FIG. 16 that the rotation center line L3 of the impeller 10 moves so as to be sucked to the upstream end of the opening 7a as the discharge flow rate increases.
 そこで、本実施の形態では、インペラ10を定格回転数で回転させた場合に、インペラ10の回転中心線L3とポンプ室7の側壁の中心線L1とが一致するように、ポンプ室7の内壁の中心線L1から見て開口部7aの反対側に永久磁石16a,16bの中心線L2を配置し、インペラ10を開口部7aと反対側に吸引(換言すれば、付勢)している。ポンプ室7の側壁の中心線L1と永久磁石16aの中心線L2との間隔Rは、運転条件に応じて設定する。すなわち、インペラ10を定格回転数で回転させたときの吐出流量に基づいて変位量を図16から読み取り、その変位量に中心線L1,L2の間隔Rを設定すればよい。中心線L1,L2の間隔(偏心量)は、ポンプの大きさなどにより相違するが、0.1~1.0mmが好適である。これにより、インペラ10を定格回転数で回転させた場合に、インペラ10の回転中心線L3とポンプ室7の側壁の中心線L1とが一致する。 Therefore, in the present embodiment, when the impeller 10 is rotated at the rated rotational speed, the inner wall of the pump chamber 7 is arranged such that the rotation center line L3 of the impeller 10 and the center line L1 of the side wall of the pump chamber 7 coincide. The center line L2 of the permanent magnets 16a and 16b is disposed on the opposite side of the opening 7a when viewed from the center line L1, and the impeller 10 is attracted (in other words, energized) to the opposite side of the opening 7a. The distance R between the center line L1 of the side wall of the pump chamber 7 and the center line L2 of the permanent magnet 16a is set according to the operating conditions. That is, the displacement amount may be read from FIG. 16 based on the discharge flow rate when the impeller 10 is rotated at the rated rotation speed, and the interval R between the center lines L1 and L2 may be set as the displacement amount. The distance between the center lines L1 and L2 (the amount of eccentricity) varies depending on the size of the pump and the like, but is preferably 0.1 to 1.0 mm. Thereby, when the impeller 10 is rotated at the rated rotation speed, the rotation center line L3 of the impeller 10 and the center line L1 of the side wall of the pump chamber 7 coincide.
 [ポンプ部のインペラ位置の制御]
 次に、上記のような構造を有し、ポンプ室の内壁に動圧溝が形成されたポンプのインペラのアキシアル方向の位置を調整するためにベクトル制御を適用することを説明する。
[Control of pump unit impeller position]
Next, the application of vector control to adjust the axial position of the pump impeller having the above-described structure and having a dynamic pressure groove formed in the inner wall of the pump chamber will be described.
 図17は、図13に示した断面図中に回転速度を検出するための磁気センサSの配置を示した図である。図18は、図17で示した磁気センサの出力信号を示すタイムチャートである。 FIG. 17 is a view showing the arrangement of the magnetic sensor S for detecting the rotational speed in the cross-sectional view shown in FIG. FIG. 18 is a time chart showing output signals of the magnetic sensor shown in FIG.
 図17を参照して、3つの磁気センサSが9個の磁性体18のうちの隣接する4個の磁性体18の3つの間に設けられている。3つの磁気センサSは、インペラ10の複数の永久磁石17の通過経路に対向して配置されている。インペラ10が回転して複数の永久磁石17のS極とN極が交互に磁気センサSの近傍を通過すると、磁気センサSの出力信号のレベルは、図18に示すように、正弦波状に変化する。したがって、磁気センサSの出力信号の時間変化を検出することにより、複数の永久磁石17と複数の磁性体18との位置関係を検出することができ、複数のコイル20に電流を流すタイミングと、インペラ10の回転数を求めることができる。 Referring to FIG. 17, three magnetic sensors S are provided between three adjacent four magnetic bodies 18 out of nine magnetic bodies 18. The three magnetic sensors S are arranged to face the passage paths of the plurality of permanent magnets 17 of the impeller 10. When the impeller 10 rotates and the S poles and N poles of the plurality of permanent magnets 17 alternately pass near the magnetic sensor S, the level of the output signal of the magnetic sensor S changes in a sine wave shape as shown in FIG. To do. Therefore, the positional relationship between the plurality of permanent magnets 17 and the plurality of magnetic bodies 18 can be detected by detecting the time change of the output signal of the magnetic sensor S, and the timing of flowing current through the plurality of coils 20; The rotation speed of the impeller 10 can be obtained.
 また、インペラ10と隔壁6の間のギャップが広い場合は、磁気センサSの近傍の磁界が弱くなって磁気センサSの出力信号の振幅A1は小さくなる。インペラ10と隔壁6の間のギャップが狭い場合は、磁気センサSの近傍の磁界が強くなって磁気センサSの出力信号の振幅A2は大きくなる。 Further, when the gap between the impeller 10 and the partition wall 6 is wide, the magnetic field in the vicinity of the magnetic sensor S becomes weak and the amplitude A1 of the output signal of the magnetic sensor S becomes small. When the gap between the impeller 10 and the partition wall 6 is narrow, the magnetic field in the vicinity of the magnetic sensor S becomes strong and the amplitude A2 of the output signal of the magnetic sensor S increases.
 したがって、磁気センサSの出力信号の振幅を検出することにより、インペラ10のアキシアル方向の可動範囲内におけるインペラ10の位置を検出することができる。 Therefore, by detecting the amplitude of the output signal of the magnetic sensor S, the position of the impeller 10 within the movable range of the impeller 10 in the axial direction can be detected.
 図19は、磁気センサの配置の変更例を示した図である。この変更例では、9個のコイル20が3個ずつ3グループに分割され、3つの磁気センサSは3つのグループの3つの間にそれぞれ配置される。したがって、3つの磁気センサSの間の機械角は、それぞれ120度となるので、回転中のインペラ10の浮上姿勢を容易に演算することができる。9個のコイル20に電流を流すタイミングは、3つの磁気センサSのうちのいずれか1つの磁気センサSの出力信号に基づいて演算される。 FIG. 19 is a diagram showing a modification example of the arrangement of the magnetic sensors. In this modified example, nine coils 20 are divided into three groups of three, and three magnetic sensors S are respectively disposed between three of the three groups. Therefore, since the mechanical angle between the three magnetic sensors S is 120 degrees, the floating posture of the rotating impeller 10 can be easily calculated. The timing of flowing current through the nine coils 20 is calculated based on the output signal of any one of the three magnetic sensors S.
 図19のように磁気センサを配置することによって、インペラの回転(傾斜)と並進(並行移動)を分離し、より正確に浮上位置を検出することができる。 19 By arranging the magnetic sensor as shown in FIG. 19, it is possible to separate the rotation (tilt) and translation (parallel movement) of the impeller and detect the flying position more accurately.
 図20は、磁気センサの出力をコイルの電流にフィードバックする制御を説明するための図である。理解の簡単のため、図3を簡略化して図20においてポンプの断面図に併記している。コントローラ42は、回転数演算器50および位置判定器51を含む。回転数演算器50は、3つの磁気センサSの出力信号に基づいてインペラ10の回転数を求め、その回転数を示す信号φRを出力する。位置判定器51は、位置演算器49で生成されたインペラ10の位置を示す信号φPと、回転数演算器50で生成されたインペラ10の回転数を示す信号φRとに基づき、インペラ10の位置が正常範囲内か否かを判定し、判定結果を示す信号φDを出力する。判定時にインペラ10の回転数を参照するのは、インペラ10の回転数によって動圧溝21,22の動圧軸受効果が変化し、インペラ10の位置が変化し、かつ、回転数によってインペラに発生する流体力が変化するからである。なお、回転数が固定されている場合は、回転数演算器50を除去してもよい。 FIG. 20 is a diagram for explaining control for feeding back the output of the magnetic sensor to the coil current. For ease of understanding, FIG. 3 is simplified and shown in FIG. 20 along with a sectional view of the pump. The controller 42 includes a rotation speed calculator 50 and a position determiner 51. The rotational speed calculator 50 obtains the rotational speed of the impeller 10 based on the output signals of the three magnetic sensors S, and outputs a signal φR indicating the rotational speed. The position determiner 51 is based on the signal φP indicating the position of the impeller 10 generated by the position calculator 49 and the signal φR indicating the rotation speed of the impeller 10 generated by the rotation speed calculator 50. Is within the normal range, and a signal φD indicating the determination result is output. The reason why the rotational speed of the impeller 10 is referred to at the time of determination is that the hydrodynamic bearing effect of the dynamic pressure grooves 21 and 22 changes depending on the rotational speed of the impeller 10, the position of the impeller 10 changes, and the impeller 10 is generated depending on the rotational speed This is because the fluid force to be changed changes. In addition, when the rotation speed is fixed, the rotation speed calculator 50 may be removed.
 また、インペラ10の位置が正常範囲内か否かを判定する際に、インペラ10の回転数の代わりに、あるいはインペラ10の回転数に加え、液体の粘度情報を参照してもよい。これは、液体の粘度によって動圧溝21,22の動圧軸受効果が変化し、インペラ10の位置が変化するからである。 Further, when determining whether or not the position of the impeller 10 is within the normal range, the viscosity information of the liquid may be referred to instead of the rotational speed of the impeller 10 or in addition to the rotational speed of the impeller 10. This is because the dynamic pressure bearing effect of the dynamic pressure grooves 21 and 22 changes depending on the viscosity of the liquid, and the position of the impeller 10 changes.
 また、この遠心式ポンプ装置では、インペラ10が回転していない場合は動圧溝21,22の動圧軸受効果は発生しないので、永久磁石15,16間の吸引力F1と、永久磁石17および磁性体18間の吸引力F2とによってインペラ10とハウジング2の内壁とは接触している。したがって、回転開始時および低速回転時では、インペラ10は正常なアキシアル位置で回転していない。したがって、回転数を示す信号φRを位置判定に使用しない場合は、回転開始から定格回転数に達するまでのある一定時間、位置判定器51の出力信号φDを強制的にインペラ10の位置が正常であることを示す信号にしてもよい。 Further, in this centrifugal pump device, when the impeller 10 is not rotating, the dynamic pressure bearing effect of the dynamic pressure grooves 21 and 22 does not occur. Therefore, the attractive force F1 between the permanent magnets 15 and 16 and the permanent magnet 17 and The impeller 10 and the inner wall of the housing 2 are in contact with each other by the attractive force F2 between the magnetic bodies 18. Therefore, the impeller 10 does not rotate at the normal axial position at the start of rotation and at the time of low speed rotation. Therefore, when the signal φR indicating the rotation speed is not used for position determination, the output signal φD of the position determination device 51 is forcibly set to a normal position for a certain time from the start of rotation until the rated rotation speed is reached. You may make it the signal which shows that there exists.
 図21は、磁気センサ出力から角度の推測を行なう処理を説明するための波形図である。図3に示す回転角度推定器372は、具体的には逓倍処理部を有し、磁気センサの少なくとも1つ以上の出力信号を使用し、例えば磁気センサ出力信号のゼロクロス位置を基準にして図21の回転同期パルスを生成し、それを逓倍して逓倍パルスを生成してモータロータの角度の推測を行なう。 FIG. 21 is a waveform diagram for explaining the process of estimating the angle from the magnetic sensor output. Specifically, the rotation angle estimator 372 shown in FIG. 3 has a multiplication processing unit, uses at least one output signal of the magnetic sensor, and uses, for example, the zero cross position of the magnetic sensor output signal as a reference. The rotation synchronization pulse is generated and multiplied to generate a multiplied pulse to estimate the angle of the motor rotor.
 図22は、センサレス制御をモータ駆動部で行なう場合の処理を説明するための概略ブロック図である。理解の簡単のため、図4を簡略化して図22においてポンプの断面図に併記している。図22を参照して、コントローラ42Aのインペラ姿勢判別部70に回転数N、流量J、吐出圧力P、および流体情報(物性値)Yの少なくとも1つ以上の情報を入力する。記憶部71には、予め各条件で測定されたインペラ挙動が記憶されている。記憶部71に記憶された情報に基づいて、インペラを略中央位置に浮上させ回転させるようにモータ駆動電流のId成分を制御する。 FIG. 22 is a schematic block diagram for explaining processing when sensorless control is performed by the motor drive unit. For ease of understanding, FIG. 4 is simplified and shown in FIG. 22 along with a sectional view of the pump. Referring to FIG. 22, at least one piece of information of rotation speed N, flow rate J, discharge pressure P, and fluid information (physical property value) Y is input to impeller attitude determination unit 70 of controller 42A. The storage unit 71 stores impeller behavior measured in advance under each condition. Based on the information stored in the storage unit 71, the Id component of the motor drive current is controlled so that the impeller is levitated and rotated to a substantially central position.
 ポンプ動作を開始するとインペラには流体力が働く。図7~図9に示す構成では、インレット(入口)が軸方向に対し、片側1箇所であることによる形状の非対称性で、流量、回転数が増加するとインペラはインレット側に移動する。 When the pump operation is started, fluid force is applied to the impeller. In the configurations shown in FIGS. 7 to 9, the asymmetry of the shape due to the inlet (inlet) being one place on one side with respect to the axial direction, the impeller moves toward the inlet as the flow rate and the number of rotations increase.
 図10のようにアウトレット(開口部7a)が周方向に1箇所である形状の非対称性によるインペラ周囲の圧力バランスによって、インペラ10はアウトレット(開口部7a)側に移動する。この際、軸方向の吸引力がインペラ10の偏心によって異なる場合は、インペラは軸方向に変位する。図9に示す構成では、片側がモータ、一方がリング状永久磁石であるので、偏心ゼロでは吸引力が釣り合うように調整しているが、偏心時は吸引力バランスが崩れる場合がある。 As shown in FIG. 10, the impeller 10 moves to the outlet (opening 7a) side due to the pressure balance around the impeller due to the asymmetry of the shape having one outlet (opening 7a) in the circumferential direction. At this time, when the suction force in the axial direction varies depending on the eccentricity of the impeller 10, the impeller is displaced in the axial direction. In the configuration shown in FIG. 9, since one side is a motor and one side is a ring-shaped permanent magnet, adjustment is made so that the attractive force is balanced at zero eccentricity, but the attractive force balance may be lost during eccentricity.
 図23は、インペラの回転中において流量と浮上位置との関係を示した図である。予め、このような関係を調べておけば、流量J1がわかれば浮上位置のずれ量d1を得ることができる。図24は、インペラの回転中において吐出圧力と浮上位置との関係を示した図である。予め、このような関係を調べておけば、吐出圧力P2がわかれば浮上位置のずれ量d2を得ることができる。なお経験上、流量に対する影響が吐出圧力に対する影響より大きい。図25は、回転数と浮上位置との関係を示した図である。回転停止時には、動圧力が発生せず、インペラは隔壁のどちらか一方に接触しているが、インペラが回転を開始すると上下の動圧力と磁気吸引力のバランスによってインペラは中央位置に浮上する。この場合も回転数増加により、流量もしくは吐出圧力が大きくなるとインペラは軸方向に変位する。予め、このような関係を調べておけば、回転数N3がわかれば浮上位置のずれ量d3を得ることができる。 FIG. 23 is a diagram showing the relationship between the flow rate and the flying position during the rotation of the impeller. If such a relationship is examined in advance, the deviation d1 of the flying position can be obtained if the flow rate J1 is known. FIG. 24 is a diagram illustrating the relationship between the discharge pressure and the flying position during the rotation of the impeller. If such a relationship is examined in advance, the deviation d2 of the flying position can be obtained if the discharge pressure P2 is known. From experience, the influence on the flow rate is larger than the influence on the discharge pressure. FIG. 25 is a diagram showing the relationship between the rotational speed and the flying position. When the rotation is stopped, no dynamic pressure is generated, and the impeller is in contact with one of the partition walls. However, when the impeller starts rotating, the impeller floats to the center position due to the balance between the upper and lower dynamic pressure and the magnetic attractive force. Also in this case, the impeller is displaced in the axial direction when the flow rate or the discharge pressure increases due to the increase in the rotational speed. If such a relationship is examined in advance, the deviation d3 of the flying position can be obtained if the rotational speed N3 is known.
 図26は電流Idと吸引力との関係を示す図である。本実施の形態のポンプ装置では、低流量時はId成分がゼロの時、上下の力バランスがとれインペラは中央位置に浮上する。Id成分がゼロの状態でも、モータ駆動部は磁気吸引力を発生している。流量増加に伴い、インペラ浮上位置がずれた場合、Id成分を増減させることで、モータ駆動部の吸引力を変化させることができる。図23~図25の関係から、インペラ浮上位置のずれ量を推定し、これに対応するように吸引力を変化させるように、図26の関係に従ってId成分を増減させればよい。 FIG. 26 is a diagram showing the relationship between the current Id and the attractive force. In the pump device of the present embodiment, when the Id component is zero at low flow rate, the upper and lower force balance is achieved and the impeller floats to the center position. Even in the state where the Id component is zero, the motor drive unit generates a magnetic attractive force. When the impeller flying position shifts with increasing flow rate, the suction force of the motor driving unit can be changed by increasing or decreasing the Id component. The Id component may be increased or decreased in accordance with the relationship of FIG. 26 so that the amount of deviation of the impeller flying position is estimated from the relationship of FIGS. 23 to 25 and the suction force is changed to correspond to this.
 [種々の変形例]
 図27は、図9に示した構成の変更例を示す図である。図28は、図27のXXVIII-XXVIIIにおける断面図である。この変形例では、コア18の先端にティース18Aが配置される。図27には、図9の固定子において回転子と対向する側へ、更に面積を広げた磁性体を配置した構成がしめされている。これにより回転子の永久磁石との対向面積を広く確保できるため、モータ出力、モータ効率の向上が図れる。
[Various modifications]
FIG. 27 is a diagram illustrating a modification of the configuration illustrated in FIG. FIG. 28 is a sectional view taken along line XXVIII-XXVIII in FIG. In this modification, a tooth 18 </ b> A is disposed at the tip of the core 18. FIG. 27 shows a configuration in which a magnetic body having a larger area is arranged on the side of the stator of FIG. 9 that faces the rotor. As a result, a large area of the rotor facing the permanent magnet can be ensured, so that motor output and motor efficiency can be improved.
 図29、図30にさらなる変形例を示す(ラジアル動圧溝を追加)。図29は、ポンプ室内周面にさらにラジアル動圧溝を設けた変形例を示す図である。これにより、耐外乱性をより確保することができ、インペラの安定回転が可能となる。図30は、インペラ10の外周面にさらにラジアル動圧溝を設けた変形例を示す図である。図30に示すようにインペラ10の外周面に動圧溝61,62を形成することは図29のようにポンプ室7の内周面に動圧溝161,162を形成する加工より加工性がよい。図30に示した例は、図29に示した例と同様に耐外乱性をより確保することができ、インペラの安定回転が可能となる。 Fig. 29 and Fig. 30 show further modifications (addition of radial dynamic pressure grooves). FIG. 29 is a view showing a modification in which a radial dynamic pressure groove is further provided on the peripheral surface of the pump chamber. Thereby, the disturbance resistance can be further ensured, and the impeller can be stably rotated. FIG. 30 is a view showing a modification in which a radial dynamic pressure groove is further provided on the outer peripheral surface of the impeller 10. As shown in FIG. 30, the formation of the dynamic pressure grooves 61 and 62 on the outer peripheral surface of the impeller 10 is more workable than the process of forming the dynamic pressure grooves 161 and 162 on the inner peripheral surface of the pump chamber 7 as shown in FIG. Good. The example shown in FIG. 30 can ensure more disturbance resistance as in the example shown in FIG. 29, and the impeller can be stably rotated.
 図31にさらなる変更例を示す(リング磁石を省略)。図31は、図30に示した例からリング磁石を無くした変形例を示した図である。ラジアル動圧力により十分な径方向の支持力が得られる場合は、リング磁石をなくすことで部品点数を削減することができ、小型化や軽量化、低コスト化が図れる。この場合ではポンプ室の内壁に設けられた動圧溝の性能を駆動部側と他方で異なるように設計することで、駆動部による磁気吸引力と動圧部による浮上力がインペラ可動範囲の略中央で釣り合うように設定する。 Fig. 31 shows a further modification (the ring magnet is omitted). FIG. 31 is a view showing a modification in which the ring magnet is eliminated from the example shown in FIG. When a sufficient radial supporting force can be obtained by the radial dynamic pressure, the number of parts can be reduced by eliminating the ring magnet, and the size, weight, and cost can be reduced. In this case, the performance of the dynamic pressure groove provided on the inner wall of the pump chamber is designed to be different between the drive unit side and the other, so that the magnetic attraction force by the drive unit and the floating force by the dynamic pressure unit are approximately the impeller movable range. Set to balance in the center.
 <インペラのシュラウド外周面に設けたラジアル動圧溝の構成例>
 図32は、シュラウドの外周面に形成された動圧溝の第1例を示す図である。図33は、シュラウドの外周面に形成された動圧溝の第2例を示す図である。
<Example of configuration of radial dynamic pressure groove provided on outer surface of shroud of impeller>
FIG. 32 is a view showing a first example of a dynamic pressure groove formed on the outer peripheral surface of the shroud. FIG. 33 is a diagram illustrating a second example of the dynamic pressure grooves formed on the outer peripheral surface of the shroud.
 図32を参照して、動圧溝61,62は、それぞれシュラウド11,12の外周面に形成される。動圧溝61,62の先端は、インペラ10の回転方向と逆の方向に向けられている。インペラ10が矢印の方向に回転すると、動圧溝61,62の先端部に向けて液体の圧力が高くなる。このため、インペラ10とポンプ室7の内周面との間に反発力が発生し、これが動圧力となる。 32, the dynamic pressure grooves 61 and 62 are formed on the outer peripheral surfaces of the shrouds 11 and 12, respectively. The tips of the dynamic pressure grooves 61 and 62 are directed in the direction opposite to the rotation direction of the impeller 10. When the impeller 10 rotates in the direction of the arrow, the liquid pressure increases toward the tip portions of the dynamic pressure grooves 61 and 62. For this reason, a repulsive force is generated between the impeller 10 and the inner peripheral surface of the pump chamber 7, and this becomes a dynamic pressure.
 図33に示した第2例でも、動圧溝64,65がポンプ室7の内周面側ではなく、それぞれシュラウド11,12の外周面に形成される。動圧溝64,65の各々の深さは、インペラ10の回転方向と逆の方向に向かって徐々に浅くなっている。この変形例でも、インペラ10が矢印の方向に回転すると、動圧溝64,65の先端部に向けて液体の圧力が高くなる。このため、インペラ10とポンプ室7の内周面との間に反発力が発生し、これが動圧力となる。 33, the dynamic pressure grooves 64 and 65 are formed not on the inner peripheral surface side of the pump chamber 7 but on the outer peripheral surfaces of the shrouds 11 and 12, respectively. The depth of each of the dynamic pressure grooves 64 and 65 is gradually shallower in the direction opposite to the rotation direction of the impeller 10. Also in this modified example, when the impeller 10 rotates in the direction of the arrow, the pressure of the liquid increases toward the tips of the dynamic pressure grooves 64 and 65. For this reason, a repulsive force is generated between the impeller 10 and the inner peripheral surface of the pump chamber 7, and this becomes a dynamic pressure.
 <ポンプ室内周面に設けたラジアル動圧溝の構成例>
 図34は、ポンプ室内周面に形成されたラジアル動圧溝の具体的構成の第1例を示した図である。図34において、ポンプ室7の内周面のうちのシュラウド11の外周面に対向する領域には、V字型の動圧溝161がインペラ10の回転方向に所定のピッチで形成されている。V字型の動圧溝161の先端(鋭角部)はインペラ10の回転方向に向けられている。同様に、ポンプ室7の内周面のうちのシュラウド12の外周面に対向する領域には、V字型の動圧溝162がインペラ10の回転方向に所定のピッチで形成されている。V字型の動圧溝162の先端(鋭角部)はインペラ10の回転方向に向けられている。ポンプ室7の内周面のうちのシュラウド11,12の隙間に対向する領域には、所定深さの溝63がリング状に形成されている。インペラ10が矢印の方向に回転すると、動圧溝161,162の先端部に向けて液体の圧力が高くなる。このため、インペラ10とポンプ室7の内周面との間に反発力が発生し、これが動圧力となる。
<Configuration example of radial dynamic pressure groove provided on pump chamber inner circumferential surface>
FIG. 34 is a view showing a first example of a specific configuration of a radial dynamic pressure groove formed on the peripheral surface of the pump chamber. In FIG. 34, V-shaped dynamic pressure grooves 161 are formed at a predetermined pitch in the rotation direction of the impeller 10 in a region facing the outer peripheral surface of the shroud 11 in the inner peripheral surface of the pump chamber 7. The tip (acute angle portion) of the V-shaped dynamic pressure groove 161 is directed in the rotational direction of the impeller 10. Similarly, V-shaped dynamic pressure grooves 162 are formed at a predetermined pitch in the rotation direction of the impeller 10 in a region facing the outer peripheral surface of the shroud 12 in the inner peripheral surface of the pump chamber 7. The tip (acute angle portion) of the V-shaped dynamic pressure groove 162 is directed in the rotation direction of the impeller 10. A groove 63 having a predetermined depth is formed in a ring shape in a region of the inner peripheral surface of the pump chamber 7 facing the gap between the shrouds 11 and 12. When the impeller 10 rotates in the direction of the arrow, the liquid pressure increases toward the tips of the dynamic pressure grooves 161 and 162. For this reason, a repulsive force is generated between the impeller 10 and the inner peripheral surface of the pump chamber 7, and this becomes a dynamic pressure.
 図35は、ポンプ室内周面に形成されたラジアル動圧溝の具体的構成の第2例を示した図である。図35において、この変形例では、動圧溝161,162がそれぞれ動圧溝164,165で置換されている。動圧溝164,165の各々は、帯状に形成され、インペラ10の回転方向に延在している。動圧溝164,165の各々の深さは、インペラ10の回転方向に向かって徐々に浅くなっている。この変形例でも、インペラ10が矢印の方向に回転すると、動圧溝164,165の先端部に向けて液体の圧力が高くなる。このため、インペラ10とポンプ室7の内周面との間に反発力が発生し、これが動圧力となる。 FIG. 35 is a view showing a second example of the specific configuration of the radial dynamic pressure groove formed on the peripheral surface of the pump chamber. In FIG. 35, in this modification, the dynamic pressure grooves 161 and 162 are replaced with dynamic pressure grooves 164 and 165, respectively. Each of the dynamic pressure grooves 164 and 165 is formed in a belt shape and extends in the rotation direction of the impeller 10. The depths of the dynamic pressure grooves 164 and 165 gradually become shallower in the rotation direction of the impeller 10. Also in this modification, when the impeller 10 rotates in the direction of the arrow, the pressure of the liquid increases toward the tips of the dynamic pressure grooves 164 and 165. For this reason, a repulsive force is generated between the impeller 10 and the inner peripheral surface of the pump chamber 7, and this becomes a dynamic pressure.
 最後に、本実施の形態について再び図面を参照しながら総括する。主に図9を参照して、本実施の形態に係る遠心式ポンプ装置は、隔壁6で仕切られたポンプ室7およびモータ室8を含むハウジング2と、ポンプ室7内において隔壁6に交差する軸を回転軸として回転可能に設けられ、回転時の遠心力によって液体を送るインペラ10と、モータ室8内に設けられ、隔壁6を介してインペラ10を回転駆動させる駆動部9と、ポンプ室7の隔壁6と対向する第1壁面に沿うインペラ10の一方面に設けられ、同一の円に沿って配置された永久磁石15と、第1壁面に埋設され、永久磁石15を吸引する永久磁石16と、隔壁6に沿うインペラ10の他方面に設けられ、同一の円に沿って配置された複数の永久磁石17とを備える。駆動部9は、複数の永久磁石17に対向して設けられ、回転磁界を生成するための複数のコイル20を含む。インペラ10の一方面またはそれに対向する第1壁面には、動圧溝22が形成される。インペラ10の他方面またはそれに対向する隔壁6には、動圧溝21が形成される。永久磁石15および永久磁石16のうち少なくとも一方はインペラ10の回転中心線周りに円環状に形成される。 Finally, this embodiment will be summarized with reference to the drawings again. Referring mainly to FIG. 9, the centrifugal pump device according to the present embodiment intersects the partition wall 6 in the pump chamber 7 and the housing 2 including the pump chamber 7 and the motor chamber 8 partitioned by the partition wall 6. An impeller 10 that is rotatably provided with a shaft as a rotation shaft and that sends liquid by centrifugal force during rotation, a drive unit 9 that is provided in the motor chamber 8 and that rotates the impeller 10 via the partition wall 6, and a pump chamber 7 is provided on one surface of the impeller 10 along the first wall surface facing the partition wall 6, and the permanent magnet 15 disposed along the same circle, and the permanent magnet embedded in the first wall surface and attracting the permanent magnet 15. 16 and a plurality of permanent magnets 17 provided on the other surface of the impeller 10 along the partition wall 6 and arranged along the same circle. The drive unit 9 is provided to face the plurality of permanent magnets 17 and includes a plurality of coils 20 for generating a rotating magnetic field. A dynamic pressure groove 22 is formed on one surface of the impeller 10 or a first wall surface facing the one surface. A dynamic pressure groove 21 is formed on the other surface of the impeller 10 or the partition wall 6 facing the other surface. At least one of the permanent magnet 15 and the permanent magnet 16 is formed in an annular shape around the rotation center line of the impeller 10.
 駆動部9は、ベクトル制御により調整された、永久磁石17および駆動部9間に作用する吸引力(図15のF2)によって、インペラ10の位置をポンプ室7内における回転軸に沿う方向のインペラ10の可動範囲の中央に維持する。これにより、流速、回転数、圧力などが変化した場合でも、モータの回転トルクの変化を抑えつつ、インペラ10のアキシアル方向の位置を調整することができる。 The drive unit 9 adjusts the position of the impeller 10 in the direction along the rotation axis in the pump chamber 7 by the attractive force (F2 in FIG. 15) acting between the permanent magnet 17 and the drive unit 9 adjusted by vector control. Maintain in the middle of 10 movable ranges. Thereby, even when the flow velocity, the number of revolutions, the pressure, and the like change, the position of the impeller 10 in the axial direction can be adjusted while suppressing the change in the rotational torque of the motor.
 好ましくは、図23~図26で説明したように、駆動部9は、インペラ10の位置が可動範囲の中央から隔壁6から遠ざかる方向に変化した場合には、ベクトル制御における磁束電流Idを増加させる。これにより、駆動部9の吸引力が増加するのでインペラ10のアキシアル方向の位置が中央に戻る。 Preferably, as described with reference to FIGS. 23 to 26, when the position of the impeller 10 changes in the direction away from the partition wall 6 from the center of the movable range, the drive unit 9 increases the magnetic flux current Id in the vector control. . As a result, the suction force of the drive unit 9 increases, so that the position of the impeller 10 in the axial direction returns to the center.
 好ましくは、図15に示したように、インペラ10の定常回転中において、駆動部9が高効率駆動をしている場合には、永久磁石15と永久磁石16との間に作用する第1の吸引力F1と、永久磁石17と駆動部9との間に作用する第2の吸引力F2とは、ポンプ室7内におけるインペラ10の可動範囲の中央(点P0)にインペラ10が位置するときに釣り合う。 Preferably, as shown in FIG. 15, when the drive unit 9 is driving with high efficiency during the steady rotation of the impeller 10, the first acting between the permanent magnet 15 and the permanent magnet 16. The attraction force F1 and the second attraction force F2 acting between the permanent magnet 17 and the drive unit 9 are when the impeller 10 is positioned at the center (point P0) of the movable range of the impeller 10 in the pump chamber 7. To balance.
 好ましくは、図4に示すように、遠心式ポンプ装置は、ベクトル制御に使用するためにインペラ10の回転角度を推定するための位相推定器358をさらに備える。 Preferably, as shown in FIG. 4, the centrifugal pump device further includes a phase estimator 358 for estimating the rotation angle of the impeller 10 for use in vector control.
 好ましくは、図22に示すように、遠心式ポンプ装置は、インペラ10に作用する流体力を、インペラ10の回転数N、流量J、吐出圧力P、および流体の物性値などの流体情報Yのうちの少なくとも1つ以上をパラメータとして使用して予め測定した結果を記憶する記憶部71と、記憶部71が記憶する値に応じて第2の吸引力を制御する駆動制御部(Id成分指令生成部74)とをさらに備える。 Preferably, as shown in FIG. 22, the centrifugal pump device uses the fluid force acting on the impeller 10 as the fluid information Y such as the rotational speed N, the flow rate J, the discharge pressure P, and the physical property value of the fluid. A storage unit 71 that stores a result measured in advance using at least one of them as a parameter, and a drive control unit that controls the second suction force according to a value stored in the storage unit 71 (Id component command generation) Part 74).
 好ましくは、遠心式ポンプ装置は、ベクトル制御に使用するためにインペラ10の回転角度を検出するための回転検出器をさらに備える。図17~図19に示したように、より好ましくは、回転検出器は、磁気センサSであり、磁気センサによってインペラ10の浮上位置を検出する。 Preferably, the centrifugal pump device further includes a rotation detector for detecting the rotation angle of the impeller 10 for use in vector control. As shown in FIGS. 17 to 19, more preferably, the rotation detector is a magnetic sensor S, and the flying position of the impeller 10 is detected by the magnetic sensor.
 好ましくは、図30~図33に示したように、インペラ10の外周側の側面には、動圧溝61,62または動圧溝64,65が形成される。 Preferably, as shown in FIGS. 30 to 33, dynamic pressure grooves 61 and 62 or dynamic pressure grooves 64 and 65 are formed on the outer side surface of the impeller 10.
 好ましくは、図29、図34、図35に示すように、ポンプ室7の壁面であって、インペラ10の外周側の側面と対向する壁面には、動圧溝161,162または動圧溝164,165が形成される。 Preferably, as shown in FIGS. 29, 34, and 35, the dynamic pressure grooves 161, 162 or the dynamic pressure grooves 164 are provided on the wall surface of the pump chamber 7 that faces the side surface on the outer peripheral side of the impeller 10. , 165 are formed.
 <永久磁石の配置の構成例>
 図36は、永久磁石の配置の具体的構成の第1例を示した図である。図36を参照して、シュラウド12には複数(たとえば8個)の永久磁石17が埋設されている。複数の永久磁石17は、隣接する磁極が互いに異なるようにして、等角度間隔で同一の円に沿って隙間を設けて配置される。換言すれば、モータ室8側にN極を向けた永久磁石17と、モータ室8側にS極を向けた永久磁石17とが等角度間隔で隙間を設けて同一の円に沿って交互に配置されている。
<Configuration example of permanent magnet arrangement>
FIG. 36 is a diagram illustrating a first example of a specific configuration of the permanent magnet arrangement. Referring to FIG. 36, a plurality (for example, eight) of permanent magnets 17 are embedded in shroud 12. The plurality of permanent magnets 17 are arranged with gaps along the same circle at equal angular intervals so that adjacent magnetic poles are different from each other. In other words, the permanent magnet 17 with the N pole facing the motor chamber 8 side and the permanent magnet 17 with the S pole facing the motor chamber 8 side are alternately provided along the same circle with gaps provided at equal angular intervals. Has been placed.
 図37(a)(b)の変形例では、インペラ10に複数の永久磁石17と複数の永久磁石67とが設けられている。永久磁石67の数は、永久磁石17の数と同じである。永久磁石67は、円周方向(インペラ10の回転方向)に着磁されている。複数の永久磁石17と複数の永久磁石67とは、1つずつ交互に等角度間隔で同一の円に沿ってハルバッハ配列構造で配置されている。換言すると、隔壁6側にN極を向けた永久磁石17と、隔壁6側にS極を向けた永久磁石17とが等角度間隔で隙間を設けて同一の円に沿って交互に配置されている。各永久磁石67のN極は隔壁6側にN極を向けた永久磁石17に向けて配置され、各永久磁石67のS極は隔壁6側にS極を向けた永久磁石17に向けて配置される。複数の永久磁石17同士の形状は同じであり、複数の永久磁石67同士の形状は同じである。永久磁石17の形状と永久磁石67の形状は、同じでもよいし、異なっていてもよい。この変形例では、永久磁石17とコイル20との吸引力を抑制するとともに、トルクの起因となる磁束を強めることができるので、最も永久磁石を小型化することができる。つまり、インペラ10を最も軽量化することができ、かつモータギャップが広い場合でもエネルギ効率を高めることができる。 37 (a) and 37 (b), the impeller 10 is provided with a plurality of permanent magnets 17 and a plurality of permanent magnets 67. The number of permanent magnets 67 is the same as the number of permanent magnets 17. The permanent magnet 67 is magnetized in the circumferential direction (the rotation direction of the impeller 10). The plurality of permanent magnets 17 and the plurality of permanent magnets 67 are alternately arranged one by one at equal angular intervals along the same circle in a Halbach array structure. In other words, the permanent magnet 17 with the N pole facing the partition wall 6 side and the permanent magnet 17 with the S pole facing the partition wall 6 side are alternately arranged along the same circle with gaps provided at equal angular intervals. Yes. The N pole of each permanent magnet 67 is arranged toward the permanent magnet 17 with the N pole facing the partition 6 side, and the S pole of each permanent magnet 67 is arranged toward the permanent magnet 17 with the S pole facing the partition 6 side. Is done. The shapes of the plurality of permanent magnets 17 are the same, and the shapes of the plurality of permanent magnets 67 are the same. The shape of the permanent magnet 17 and the shape of the permanent magnet 67 may be the same or different. In this modified example, the attractive force between the permanent magnet 17 and the coil 20 can be suppressed, and the magnetic flux that causes the torque can be strengthened, so that the permanent magnet can be most miniaturized. That is, the impeller 10 can be most lightweight and energy efficiency can be increased even when the motor gap is wide.
 図38に示した他の変形例では、回転子(インペラ10のシュラウド12)は回転軸方向に着磁された永久磁石17Aと、周方向に着磁された永久磁石67Aと磁性体70Aを含んでいる。永久磁石17Aは隣り合う磁石の磁極の向きが異なるように配置され、さらに永久磁石17Aの隔壁6側端面に永久磁石67Aが永久磁石17Aと同じ磁極同士が近づくように配置される。 In another modification shown in FIG. 38, the rotor (the shroud 12 of the impeller 10) includes a permanent magnet 17A magnetized in the rotation axis direction, a permanent magnet 67A magnetized in the circumferential direction, and a magnetic body 70A. It is out. The permanent magnet 17A is arranged so that the magnetic poles of adjacent magnets have different orientations, and the permanent magnet 67A is arranged so that the same magnetic pole as the permanent magnet 17A approaches the end face of the permanent magnet 17A on the partition wall 6 side.
 永久磁石17Aと永久磁石67Aは同じ数である。永久磁石67Aの着磁方向長さは、永久磁石17Aの幅より短く、永久磁石67Aの着磁方向長さの中央を永久磁石17Aの隣り合う磁石同士の境界と一致させると周方向に隙間ができ、その隙間に磁性体70Aを配置する。この場合、磁性体70Aに磁束が集束し、磁性体が無い場合や通常のハルバッハ配列の構成(図37)の構成と比べ、より強い界磁磁束が得られ高トルク化を図ることができる。さらに図38の配置では、永久磁石17A,67Aのパーミアンス係数の低下を抑制することができる。 The number of permanent magnets 17A and the number of permanent magnets 67A is the same. The magnetizing direction length of the permanent magnet 67A is shorter than the width of the permanent magnet 17A, and if the center of the magnetizing direction length of the permanent magnet 67A is made coincident with the boundary between adjacent magnets of the permanent magnet 17A, a gap is formed in the circumferential direction. The magnetic body 70A is disposed in the gap. In this case, the magnetic flux is focused on the magnetic body 70A, and a stronger field magnetic flux can be obtained and the torque can be increased compared to the case where there is no magnetic body or the configuration of the normal Halbach arrangement (FIG. 37). Furthermore, in the arrangement of FIG. 38, it is possible to suppress a decrease in the permeance coefficient of the permanent magnets 17A and 67A.
 図39は、図38の構成において、永久磁石17Aの隔壁6と反対側の端面に磁性体72を配置している。磁性体72の効果でさらに磁束を強めることができる。 In FIG. 39, in the configuration of FIG. 38, a magnetic body 72 is disposed on the end surface of the permanent magnet 17A opposite to the partition wall 6. Magnetic flux can be further strengthened by the effect of the magnetic body 72.
 図40は別の磁石配置を示す。固定子と回転子の間に隔壁6を備えたキャンドモータにおいて、回転子は回転軸方向に着磁された永久磁石17Bと、周方向に着磁された永久磁石67Bと磁性体70Bから成り、永久磁石17Bは隣り合う磁石の磁極の向きが異なり、隙間を設けて配置され、永久磁石67Bがその隙間に隔壁6側配置される。限られたスペースで磁石を配置する場合、この構成は永久磁石17Bの扁平率が小さくなるためパーミアンス係数を図38より大きくすることができる。永久磁石17Bと永久磁石67Bは同じ数である。永久磁石67Bは、円周方向(ロータの回転方向)に着磁されている。複数の永久磁石17Bと複数の永久磁石67Bとは、1つずつ交互に等角度間隔で同一の円に沿ってハルバッハ配列構造で配置されている。換言すると、隔壁6側にN極を向けた永久磁石17Bと、隔壁6側にS極を向けた永久磁石17Bとが等角度間隔で隙間を設けて同一の円に沿って交互に配置されている。各永久磁石67BのN極は隔壁6側にN極を向けた永久磁石17Bに向けて配置され、各永久磁石67BのS極は隔壁6側にS極を向けた永久磁石17Bに向けて配置される。複数の永久磁石17B同士の形状は同じであり、複数の永久磁石67B同士の形状は同じである。永久磁石17Bの軸方向長さは永久磁石67Bの幅より短く、配置したとき、隔壁6側に段差ができるようにし、その段差部に磁性体70Bを配置する。この場合も磁性体70Bに磁束が集束し、磁性体が無い場合や通常のハルバッハ配列の構成(図36)と比べ、より強い界磁磁束が得られ高トルク化を図ることができる。さらに永久磁石17B,67Bのパーミアンス係数の低下を抑制することができる。 FIG. 40 shows another magnet arrangement. In the canned motor having the partition wall 6 between the stator and the rotor, the rotor is composed of a permanent magnet 17B magnetized in the rotation axis direction, a permanent magnet 67B magnetized in the circumferential direction, and a magnetic body 70B. The permanent magnet 17B is arranged with a gap in the direction of the magnetic poles of adjacent magnets, and the permanent magnet 67B is arranged in the gap on the partition 6 side. In the case where magnets are arranged in a limited space, this configuration allows the permeance coefficient to be larger than that in FIG. 38 because the flatness of the permanent magnet 17B is reduced. The number of permanent magnets 17B and the number of permanent magnets 67B is the same. The permanent magnet 67B is magnetized in the circumferential direction (rotation direction of the rotor). The plurality of permanent magnets 17B and the plurality of permanent magnets 67B are alternately arranged in a Halbach array structure along the same circle at equal angular intervals one by one. In other words, the permanent magnet 17B with the N pole facing the partition wall 6 and the permanent magnet 17B with the S pole facing the partition wall 6 are alternately arranged along the same circle with gaps provided at equal angular intervals. Yes. The N pole of each permanent magnet 67B is disposed toward the permanent magnet 17B with the N pole directed toward the partition wall 6, and the S pole of each permanent magnet 67B is disposed toward the permanent magnet 17B with the S pole directed toward the partition wall 6. Is done. The shapes of the plurality of permanent magnets 17B are the same, and the shapes of the plurality of permanent magnets 67B are the same. The axial length of the permanent magnet 17B is shorter than the width of the permanent magnet 67B. When the permanent magnet 17B is disposed, a step is formed on the partition wall 6 side, and the magnetic body 70B is disposed at the step portion. Also in this case, the magnetic flux is focused on the magnetic body 70B, and a stronger field magnetic flux can be obtained and the torque can be increased as compared with the case where there is no magnetic body or a normal Halbach arrangement (FIG. 36). Further, it is possible to suppress a decrease in permeance coefficient of the permanent magnets 17B and 67B.
 図41に示した構成は、図40の構成において、永久磁石17Bの隔壁6と反対側の端面に磁性体72を配置している。磁性体72の効果でさらに磁束を強めることができる。 41, the magnetic body 72 is disposed on the end surface of the permanent magnet 17B opposite to the partition wall 6 in the configuration of FIG. Magnetic flux can be further strengthened by the effect of the magnetic body 72.
 また、シュラウド12に埋設されている複数の永久磁石17は、隣接する磁極が互いに異なるようにして、等角度間隔で同一の円に沿って隙間を設けず配置されてもよい。 Further, the plurality of permanent magnets 17 embedded in the shroud 12 may be arranged without providing gaps along the same circle at equal angular intervals so that adjacent magnetic poles are different from each other.
 以上説明したように、本実施の形態では、流体動圧軸受によるインペラの非接触浮上を特徴とするアキシアルギャップ型の遠心式ポンプにおいて、モータ駆動方法としてベクトル制御を用いることで、トルク電流成分(Iq成分)と界磁電流成分(Id成分)とに分離した。 As described above, in this embodiment, in the axial gap type centrifugal pump characterized by the non-contact levitation of the impeller by the fluid dynamic pressure bearing, the torque current component ( Iq component) and field current component (Id component).
 そして、モータの回転トルクを維持したまま界磁電流成分(Id成分)のみを積極的に変化させ、インペラに働くアキシアル方向吸引力を制御する。これにより、インペラの浮上位置を制御することができ、常に可動範囲の中央付近で安定浮上させることができる。 And, only the field current component (Id component) is actively changed while maintaining the rotational torque of the motor, and the axial attractive force acting on the impeller is controlled. Thereby, the floating position of the impeller can be controlled, and the stable floating can always be performed near the center of the movable range.
 また、本実施の形態のポンプ部の構成は、駆動部9と反対側の隔壁にリング状磁石(第2の磁性体)を埋め込んだ構成で、インペラに埋め込んだ永久磁石(第1の磁性体)との吸引力が、駆動部9とインペラ内の永久磁石(第3の磁性体)との吸引力と略釣り合うように設定され、さらに第1と第2の磁性体によるラジアル方向の復元力でインペラを浮上させることができ、偏平構造でコンパクトな構成となっている。 The configuration of the pump unit of the present embodiment is a configuration in which a ring-shaped magnet (second magnetic body) is embedded in a partition opposite to the drive unit 9, and a permanent magnet (first magnetic body) embedded in an impeller. ) Is substantially balanced with the attractive force between the drive unit 9 and the permanent magnet (third magnetic body) in the impeller, and further the restoring force in the radial direction by the first and second magnetic bodies. The impeller can be levitated with a flat structure and a compact configuration.
 なお、上記実施の形態の遠心式ポンプ装置は、食品を循環させるために使用されてもよい。また、上記実施の形態の遠心式ポンプ装置は、医薬品を循環させるために使用されてもよい。 Note that the centrifugal pump device of the above embodiment may be used for circulating food. Moreover, the centrifugal pump apparatus of the said embodiment may be used in order to circulate a pharmaceutical.
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。 The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.
 1 ポンプ部、2 ハウジング、3 本体部、4 流入ポート、5 流出ポート、6 隔壁、7 ポンプ室、7a 開口部、8 モータ室、10 インペラ、10a 貫通孔、11,12 シュラウド、13 ベーン、14 液体通路、15,16,16a,16b,17 永久磁石、18,19 磁性体、18A ティース、20 コイル、21,22,61,62,64,65,161,162,164,165 動圧溝、42,42A コントローラ、49 位置演算器、50 回転数演算器、51 位置判定器、71 記憶部、63 溝、70 インペラ姿勢判別部、74 Id成分指令生成部、300 モータ駆動システム、310 バッテリ部、320 インバータ装置、322 演算部、324 モータコントロール部、326 ドライバ、328 平滑部、330 インバータ、331 モータ部、332 ロータ、334 角度検出器、336,337 電流検出器、340 電流指令演算部、341 トルク電流制御部、342,344 減算部、343 磁束電流制御部、346,348 演算処理部、350,352,354,356 座標変換部、358 位相推定器、362 トルク電流指令部、364 磁束電流設定部、372 回転角度推定器、S 磁気センサ。 1 pump part, 2 housing, 3 body part, 4 inflow port, 5 outflow port, 6 partition, 7 pump room, 7a opening, 8 motor room, 10 impeller, 10a through-hole, 11,12 shroud, 13 vane, 14 Liquid passage, 15, 16, 16a, 16b, 17 permanent magnet, 18, 19 magnetic body, 18A teeth, 20 coils, 21, 22, 61, 62, 64, 65, 161, 162, 164, 165, dynamic pressure grooves, 42, 42A controller, 49 position calculator, 50 rotation number calculator, 51 position determiner, 71 storage unit, 63 groove, 70 impeller attitude determination unit, 74 Id component command generation unit, 300 motor drive system, 310 battery unit, 320 inverter device, 322 arithmetic unit, 324 motor control unit, 3 6 driver, 328 smoothing unit, 330 inverter, 331 motor unit, 332 rotor, 334 angle detector, 336, 337 current detector, 340 current command calculation unit, 341 torque current control unit, 342, 344 subtraction unit, 343 magnetic flux current Control unit, 346, 348 arithmetic processing unit, 350, 352, 354, 356 coordinate conversion unit, 358 phase estimator, 362 torque current command unit, 364 magnetic flux current setting unit, 372 rotation angle estimator, S magnetic sensor.

Claims (11)

  1.  隔壁で仕切られた第1および第2の室を含むハウジングと、
     前記第1の室内において前記隔壁に交差する軸を回転軸として回転可能に設けられ、回転時の遠心力によって液体を送るインペラと、
     前記第2の室内に設けられ、前記隔壁を介して前記インペラを回転駆動させる駆動部と、
     前記第1の室の前記隔壁と対向する第1壁面に沿う前記インペラの一方面に設けられ、同一の円に沿って配置された第1の磁性体と、
     前記第1壁面に埋設され、前記第1の磁性体を吸引する第2の磁性体と、
     前記隔壁に沿う前記インペラの他方面に設けられ、同一の円に沿って配置された複数の第3の磁性体とを備え、
     前記駆動部は、前記複数の第3の磁性体に対向して設けられ、回転磁界を生成するための複数のコイルを含み、
     前記インペラの前記一方面またはそれに対向する前記第1壁面に第1の動圧溝が形成され、前記インペラの前記他方面またはそれに対向する前記隔壁に第2の動圧溝が形成され、
     前記第1の磁性体および前記第2の磁性体のうち少なくとも1つの磁性体は前記インペラの回転中心線周りに円環状に形成され、
     前記駆動部は、ベクトル制御により調整された、前記第3の磁性体および前記駆動部間に作用する吸引力によって、前記インペラの位置を前記第1の室内における前記回転軸に沿う方向の前記インペラの可動範囲の中央に維持する、遠心式ポンプ装置。
    A housing including first and second chambers partitioned by a partition;
    An impeller that is rotatably provided with an axis that intersects the partition in the first chamber as a rotation axis, and that sends liquid by centrifugal force during rotation;
    A drive unit provided in the second chamber and configured to rotationally drive the impeller via the partition;
    A first magnetic body provided on one surface of the impeller along a first wall surface facing the partition wall of the first chamber and disposed along the same circle;
    A second magnetic body embedded in the first wall surface and attracting the first magnetic body;
    A plurality of third magnetic bodies provided on the other surface of the impeller along the partition wall and disposed along the same circle;
    The drive unit includes a plurality of coils provided to face the plurality of third magnetic bodies and generate a rotating magnetic field,
    A first dynamic pressure groove is formed on the one surface of the impeller or the first wall surface facing the one surface, and a second dynamic pressure groove is formed on the other surface of the impeller or the partition wall facing the first surface;
    At least one of the first magnetic body and the second magnetic body is formed in an annular shape around a rotation center line of the impeller,
    The drive unit adjusts the position of the impeller in the direction along the rotation axis in the first chamber by an attractive force acting between the third magnetic body and the drive unit adjusted by vector control. A centrifugal pump device that maintains the center of the movable range.
  2.  前記駆動部は、前記インペラの位置が前記可動範囲の中央から前記隔壁から遠ざかる方向に変化した場合には、前記ベクトル制御における磁束電流を増加させる、請求項1に記載の遠心式ポンプ装置。 The centrifugal pump device according to claim 1, wherein the drive unit increases the magnetic flux current in the vector control when the position of the impeller changes in a direction away from the partition from the center of the movable range.
  3.  前記インペラの定常回転中において、前記駆動部が高効率駆動をしている場合には、前記第1の磁性体と前記第2の磁性体との間に作用する第1の吸引力と、前記第3の磁性体と前記駆動部との間に作用する第2の吸引力とは、前記第1の室内における前記インペラの可動範囲の中央に前記インペラが位置するときに釣り合う、請求項1に記載の遠心式ポンプ装置。 During the steady rotation of the impeller, when the drive unit is driving with high efficiency, the first attractive force acting between the first magnetic body and the second magnetic body, The second attraction force acting between the third magnetic body and the drive unit is balanced when the impeller is positioned at the center of the movable range of the impeller in the first chamber. The centrifugal pump device described.
  4.  前記ベクトル制御に使用するために前記インペラの回転角度を推定するための位相推定器をさらに備える、請求項1~3のいずれか1項に記載の遠心式ポンプ装置。 The centrifugal pump device according to any one of claims 1 to 3, further comprising a phase estimator for estimating a rotation angle of the impeller for use in the vector control.
  5.  前記インペラに作用する流体力を、前記インペラの回転速度、流量、吐出圧力、および流体の物性値のうちの少なくとも1つ以上をパラメータとして使用して予め測定し記憶する記憶部と、
     前記記憶部が記憶する値に応じて前記第2の吸引力を制御する駆動制御部とをさらに備える、請求項3に記載の遠心式ポンプ装置。
    A storage unit that measures and stores the fluid force acting on the impeller in advance using at least one of the rotational speed, flow rate, discharge pressure, and physical property value of the fluid as parameters;
    The centrifugal pump device according to claim 3, further comprising a drive control unit that controls the second suction force according to a value stored in the storage unit.
  6.  前記ベクトル制御に使用するために前記インペラの回転角度を検出するための回転検出器をさらに備える、請求項1~3のいずれか1項に記載の遠心式ポンプ装置。 The centrifugal pump device according to any one of claims 1 to 3, further comprising a rotation detector for detecting a rotation angle of the impeller for use in the vector control.
  7.  前記回転検出器は、磁気センサであり、前記磁気センサによって前記インペラの浮上位置を検出する、請求項6に記載の遠心式ポンプ装置。 The centrifugal pump device according to claim 6, wherein the rotation detector is a magnetic sensor, and the flying position of the impeller is detected by the magnetic sensor.
  8.  前記インペラの外周側の側面に第3の動圧溝が形成された、請求項1~7のいずれか1項に記載の遠心式ポンプ装置。 The centrifugal pump device according to any one of claims 1 to 7, wherein a third dynamic pressure groove is formed on an outer peripheral side surface of the impeller.
  9.  前記第1の室の壁面であって、前記インペラの外周側の側面と対向する壁面に第3の動圧溝が形成された、請求項1~7のいずれか1項に記載の遠心式ポンプ装置。 The centrifugal pump according to any one of claims 1 to 7, wherein a third dynamic pressure groove is formed on a wall surface of the first chamber facing a side surface on the outer peripheral side of the impeller. apparatus.
  10.  前記遠心式ポンプ装置は、食品を循環させるために使用される、請求項1~9のいずれか1項に記載の遠心式ポンプ装置。 The centrifugal pump device according to any one of claims 1 to 9, wherein the centrifugal pump device is used for circulating food.
  11.  前記遠心式ポンプ装置は、医薬品を循環させるために使用される、請求項1~9のいずれか1項に記載の遠心式ポンプ装置。 The centrifugal pump device according to any one of claims 1 to 9, wherein the centrifugal pump device is used for circulating a pharmaceutical product.
PCT/JP2016/056566 2015-03-30 2016-03-03 Centrifugal pump device WO2016158185A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015069391A JP2016188617A (en) 2015-03-30 2015-03-30 Centrifugal pump device
JP2015-069391 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016158185A1 true WO2016158185A1 (en) 2016-10-06

Family

ID=57005689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/056566 WO2016158185A1 (en) 2015-03-30 2016-03-03 Centrifugal pump device

Country Status (2)

Country Link
JP (1) JP2016188617A (en)
WO (1) WO2016158185A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114323391A (en) * 2021-12-31 2022-04-12 海伍德泰勒泵业(昆山)有限公司 Axial force testing method of circulating pump

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101107A1 (en) * 2009-03-06 2010-09-10 Ntn株式会社 Centrifugal pump device
JP2012062790A (en) * 2010-09-14 2012-03-29 Ntn Corp Centrifugal pump unit
US20140241904A1 (en) * 2013-02-27 2014-08-28 Thoratec Corporation Startup sequence for centrifugal pump with levitated impeller

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010101107A1 (en) * 2009-03-06 2010-09-10 Ntn株式会社 Centrifugal pump device
JP2012062790A (en) * 2010-09-14 2012-03-29 Ntn Corp Centrifugal pump unit
US20140241904A1 (en) * 2013-02-27 2014-08-28 Thoratec Corporation Startup sequence for centrifugal pump with levitated impeller

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114323391A (en) * 2021-12-31 2022-04-12 海伍德泰勒泵业(昆山)有限公司 Axial force testing method of circulating pump
CN114323391B (en) * 2021-12-31 2024-03-08 海伍德泰勒泵业(昆山)有限公司 Axial force testing method of circulating pump

Also Published As

Publication number Publication date
JP2016188617A (en) 2016-11-04

Similar Documents

Publication Publication Date Title
JP5656835B2 (en) Rotation drive device and centrifugal pump device using the same
JP5347171B2 (en) Centrifugal pump device
JP5577506B2 (en) Centrifugal pump device
US9410549B2 (en) Centrifugal pump apparatus
JP5443197B2 (en) Centrifugal pump device
WO2010067682A1 (en) Centrifugal pump device
US20140030122A1 (en) Rotation drive device and centrifugal pump apparatus employing same
WO2012008297A1 (en) Centrifugal pump device
JP6083929B2 (en) Centrifugal pump device
JP5577503B2 (en) Centrifugal pump device
JP5378012B2 (en) Centrifugal pump device
WO2016158173A1 (en) Centrifugal pump device
WO2016158185A1 (en) Centrifugal pump device
JP6698278B2 (en) Centrifugal pump device
JP5978924B2 (en) Motor drive device and vacuum pump
JP5378060B2 (en) Centrifugal pump device
JP5693812B2 (en) Centrifugal pump device
CN113785128A (en) Magnetic suspension type pump
JP6452518B2 (en) Centrifugal pump device
JP2016188591A (en) Centrifugal pump device
JP2016188593A (en) Centrifugal pump device
WO2016158172A1 (en) Centrifugal pump device
JP2010131303A (en) Centrifugal pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772069

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772069

Country of ref document: EP

Kind code of ref document: A1