WO2015137034A1 - Negative electrode material for electricity storage devices - Google Patents

Negative electrode material for electricity storage devices Download PDF

Info

Publication number
WO2015137034A1
WO2015137034A1 PCT/JP2015/053670 JP2015053670W WO2015137034A1 WO 2015137034 A1 WO2015137034 A1 WO 2015137034A1 JP 2015053670 W JP2015053670 W JP 2015053670W WO 2015137034 A1 WO2015137034 A1 WO 2015137034A1
Authority
WO
WIPO (PCT)
Prior art keywords
negative electrode
phase
less
crystallite size
alloy
Prior art date
Application number
PCT/JP2015/053670
Other languages
French (fr)
Japanese (ja)
Inventor
友紀 廣野
哲嗣 久世
哲朗 仮屋
澤田 俊之
Original Assignee
山陽特殊製鋼株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 山陽特殊製鋼株式会社 filed Critical 山陽特殊製鋼株式会社
Priority to KR1020167023588A priority Critical patent/KR20160132384A/en
Priority to CN201580012017.1A priority patent/CN106104863B/en
Publication of WO2015137034A1 publication Critical patent/WO2015137034A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/386Silicon or alloys based on silicon
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/58085Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides
    • C04B35/58092Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicides based on refractory metal silicides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C28/00Alloys based on a metal not provided for in groups C22C5/00 - C22C27/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/40Fibres
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/401Alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/402Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/405Iron group metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/42Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
    • C04B2235/421Boron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a material suitable for a negative electrode of a power storage device such as a lithium ion secondary battery, an all solid lithium ion secondary battery, or a hybrid capacitor.
  • the electric vehicle and the hybrid vehicle also include a lithium ion secondary battery.
  • the negative electrode occludes lithium ions during charging. When the lithium ion secondary battery is used, lithium ions are released from the negative electrode.
  • the negative electrode has a current collector and an active material fixed to the surface of the current collector.
  • the active material in the negative electrode carbon-based materials such as natural graphite, artificial graphite and coke are used.
  • the theoretical capacity of the carbon-based material for lithium ions is only 372 mAh / g. Therefore, an active material having a large capacity is desired.
  • Si is attracting attention as an active material in the negative electrode. Si reacts with lithium ions. This reaction forms a compound. A typical compound is Li 22 Si 5 . By this reaction, a large amount of lithium ions is occluded in the negative electrode. Si can increase the storage capacity of the negative electrode.
  • the active material layer containing Si occludes lithium ions
  • the active material layer expands due to the generation of the aforementioned compound.
  • the expansion coefficient of the active material is about 400%.
  • the active material layer contracts.
  • the active material is detached from the current collector due to repeated expansion and contraction. This drop off reduces the storage capacity.
  • the lifetime of the conventional lithium ion secondary battery in which the negative electrode contains Si is not long.
  • the active material made of Si only the surface thereof reacts with lithium ions during charging. In this active material, the inside does not react with lithium ions. In other words, only the surface of the active material expands due to occlusion of lithium ions. Cracks are generated on this surface. At the time of the next charging, lithium ions enter through the crack and further generate a crack. By repeating the generation of the cracks, the active material is pulverized. Due to the pulverization, conduction between the active material and the active material adjacent thereto is inhibited. Micronization reduces the storage capacity. The lifetime of the conventional lithium ion secondary battery in which the negative electrode contains Si is not long.
  • Si is inferior in ionic conductivity compared to carbon-based materials and metal materials.
  • a carbon-based material may be used together with Si. Efficient lithium ion transfer is achieved by the carbon-based material. However, even in this negative electrode, further improvement in conductivity is desired.
  • An active material in which a Si phase is covered with an intermetallic compound is disclosed in Japanese Patent Application Laid-Open No. 2001-297757.
  • This intermetallic compound is typically produced by the reaction of Si with a transition metal.
  • This intermetallic compound can compensate for the disadvantages of Si.
  • a similar active material is also disclosed in JP-A-10-31804.
  • An electrode in which a conductive layer is laminated on the surface of an active material layer containing Si is disclosed in Japanese Patent Application Laid-Open No. 2004-228059.
  • the conductive layer includes Cu. This conductive layer can compensate for the disadvantages of Si.
  • a similar electrode is also disclosed in JP-A-2005-44672.
  • An object of the present invention is to provide a material capable of obtaining a negative electrode having a large capacity and excellent ion conductivity and durability.
  • the Si-based alloy is made of Si-based alloy.
  • Si phase whose main component is Si and whose crystallite size is 30 nm or less
  • a negative electrode material for an electricity storage device is provided that has a compound phase containing Si and Al, further containing Cr or Ti, and having a crystallite size of 40 nm or less.
  • the compound phase contains Si, Al, Cr and Ti.
  • the Si phase contains Al that is solid-solved in Si.
  • the Si-based alloy further has an Al single phase.
  • the total content of Cr and Ti (atomic composition percentage) in the alloy is 0.05 at. % Or more and 30 at. % Or less.
  • the Al content is 0.05 at. % Or more and 15 at. % Or less.
  • the ratio of the Si content (at.%) To the total content (at.%) Of Cr, Ti and Al in the alloy (Si / (Cr + Ti + Al)) is 1.00 or more and 7 .00 or less.
  • the total content of Ti and Al in the alloy is 1.00 at. % Or more 25.00 at. % Or less.
  • the ratio of Al content (at.%) To the total content (at.%) Of Cr, Ti and Al in the alloy (Al / (Cr + Ti + Al)) is 0.01 or more and 0. .50 or less.
  • the ratio (Al / (Cr + Ti + Al)) is 0.04 or more and 0.40 or less.
  • the alloy contains one or more elements selected from the group consisting of Cu, V, Mn, Fe, Ni, Nb, Zn and Zr.
  • the total content of these elements is 0.05 at. % Or more and 15 at. % Or less.
  • the alloy contains one or more elements selected from the group consisting of Mg, B, P, Ga and C.
  • the total content of these elements is 0.05 at. % Or more and 10 at. % Or less.
  • the alloy contains N.
  • the N content is 0.001 mass% or more and 1 mass% or less.
  • the present invention comprises a current collector and a number of particles fixed to the surface of the current collector,
  • the particles are made of a Si-based alloy,
  • This Si alloy is (1) Si phase whose main component is Si and whose crystallite size is 30 nm or less
  • a negative electrode for an electricity storage device is provided that has a compound phase containing Si and Al, further containing Cr or Ti, and having a crystallite size of 40 nm or less.
  • a positive electrode and a negative electrode are provided,
  • the negative electrode comprises a current collector and a number of particles fixed to the surface of the current collector;
  • the particles are made of a Si-based alloy,
  • This Si alloy is (1) Si phase whose main component is Si and whose crystallite size is 30 nm or less,
  • An electricity storage device including a compound phase containing Si and Al, further containing Cr or Ti, and having a crystallite size of 40 nm or less is provided.
  • the negative electrode containing the material according to the present invention has a large capacity and is excellent in ion conductivity and durability.
  • FIG. 1 is a conceptual diagram showing a lithium ion secondary battery as an electricity storage device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a part of the negative electrode of the battery of FIG.
  • FIG. 3 is an SEM image showing the Si—Si 2 Cr eutectic alloy contained in the negative electrode particles of FIG.
  • FIG. 4 is an XRD chart of a Si—Si 2 (Cr, Ti) -based eutectic alloy contained in the negative electrode particles of FIG.
  • FIG. 5 is an XRD chart of a Si—Si 2 (Cr, Ti) -based eutectic alloy contained in the negative electrode particles of FIG.
  • FIG. 6 is an XRD chart of a Si—Si 2 (Cr, Ti) -based eutectic alloy contained in the negative electrode particles of FIG.
  • FIG. 7 is a TEM image showing an alloy contained in the negative electrode particles of FIG.
  • the lithium ion secondary battery 2 conceptually shown in FIG. 1 includes a tank 4, an electrolytic solution 6, a separator 8, a positive electrode 10, and a negative electrode 12.
  • the electrolytic solution 6 is stored in the tank 4.
  • This electrolytic solution 6 contains lithium ions.
  • the separator 8 partitions the tank 4 into a positive electrode chamber 14 and a negative electrode chamber 16.
  • the separator 8 prevents contact between the positive electrode 10 and the negative electrode 12.
  • the separator 8 has a large number of holes (not shown). Lithium ions can pass through this hole.
  • the positive electrode 10 is immersed in the electrolytic solution 6 in the positive electrode chamber 14.
  • the negative electrode 12 is immersed in the electrolytic solution 6 in the negative electrode chamber 16.
  • FIG. 2 shows a part of the negative electrode 12.
  • the negative electrode 12 includes a current collector 18 and an active material layer 20.
  • the active material layer 20 includes a large number of particles 22.
  • the particles 22 are fixed to other particles 22 that are in contact with the particles 22.
  • the particles 22 that come into contact with the current collector 18 are fixed to the current collector 18.
  • the active material layer 20 is porous.
  • the material (negative electrode material) of the particles 22 is a Si-based alloy.
  • This alloy has a Si phase and a compound phase.
  • the main component of the Si phase is Si.
  • the crystallite size of the Si phase is 30 nm or less.
  • the compound phase contains Si and Al.
  • the compound phase further contains Cr or Ti.
  • the crystallite size of the compound phase is 40 nm or less.
  • the Si reacts with lithium ions. Since the Si phase contains Si as a main component, the negative electrode 12 including the Si phase can occlude a large amount of lithium ions.
  • the Si phase can increase the storage capacity of the negative electrode 12. From the viewpoint of storage capacity, the Si content in the Si phase is 50 at. % Or more, 60 at. % Or more, more preferably 70 at. % Or more is particularly preferable.
  • the Si phase may contain elements other than Si.
  • a typical element is Al.
  • Si is inherently inferior in electrical conductivity.
  • Al is excellent in electrical conductivity.
  • a large storage capacity is achieved and excellent electrical conductivity is achieved.
  • Al is dissolved in Si in the Si phase.
  • This solid solution increases the electrical conductivity of the Si phase.
  • Al is soft. Al relieves stress caused by expansion during charging and contraction during discharging.
  • This negative electrode 12 is excellent in durability.
  • the alloy contains a large amount of Al, a part of Al is dissolved in Si, and the remaining Al forms a single phase.
  • the single phase of Al is contained in the compound phase and dispersed in this compound phase. This single Al phase also increases the electrical conductivity of the alloy.
  • the compound phase can contain Cr together with Si.
  • This compound phase contains a Si—Cr compound.
  • a specific example of the compound is Si 2 Cr.
  • Si 2 Cr can cause a eutectic reaction with the Si phase.
  • the particles 22 can be formed from a Si—Si 2 Cr eutectic alloy.
  • FIG. 3 is an SEM image showing the Si—Si 2 Cr eutectic alloy.
  • the Si phase is shown in black, and the Si 2 Cr phase is shown in white.
  • the Si phase is extremely fine, and the Si 2 Cr phase is also extremely fine. This compound phase relieves stress caused by expansion during charge and contraction during discharge.
  • the compound phase may contain Ti instead of Cr.
  • the Si—Ti compound relieves stress.
  • the compound phase contains both Cr and Ti.
  • this compound phase a part of Cr in the Si—Si 2 Cr eutectic alloy is substituted with Ti.
  • the compound phase includes a Si—Cr—Ti compound.
  • FIG. 4 to 6 are charts showing the results of X-ray diffraction of a Si—Si 2 (Cr, Ti) -based eutectic alloy.
  • FIG. 4 is a chart of a eutectic alloy containing no Ti.
  • FIG. 5 is a chart of a eutectic alloy having a ratio (Cr / Ti) of 50/50.
  • FIG. 6 is a chart of a eutectic alloy having a ratio (Cr / Ti) of 25/75. 4 to 6, it is estimated that the added Ti increases the lattice constant without changing the crystal structure.
  • the crystallite size of the Si phase is 30 nm or less.
  • the Si phase having a crystallite size of 30 nm or less pulverization due to reaction with lithium ions is suppressed.
  • the discharge capacity is easily maintained.
  • the crystallite size is preferably 25 nm or less, particularly preferably 10 nm or less.
  • the control of the crystallite size of the Si phase can be performed by controlling the cooling rate at the time of solidification after dissolving the raw material powder in place of or in addition to the control of the above components.
  • Specific examples include a water atomizing method, a single roll quenching method, a twin roll quenching method, a gas atomizing method, a disk atomizing method, and a centrifugal atomizing method.
  • mechanical milling or the like may be performed.
  • the milling method include a ball mill method, a bead mill method, a planetary ball mill method, an attritor method, and a vibration ball mill method.
  • the crystallite size of the compound phase is 40 nm or less.
  • a compound phase having a crystallite size of 40 nm or less has a high yield stress. Since this compound phase is excellent in ductility and toughness, cracks are unlikely to occur.
  • This compound phase is excellent in electrical conductivity.
  • This compound phase contacts the Si phase with a large specific surface area.
  • the compound phase that comes into contact with the Si phase with a large specific surface area relieves stress caused by expansion during charge and contraction during discharge.
  • the compound phase that contacts the Si phase with a large specific surface area is excellent in electrical conductivity with the Si phase. This compound phase prevents electrical isolation of the Si phase.
  • the crystallite size of the compound phase is preferably 20 nm or less, and particularly preferably 10 nm or less.
  • the crystallite size of the compound phase can be controlled by controlling the cooling rate during solidification after dissolving the raw material powder.
  • Specific examples include a water atomizing method, a single roll quenching method, a twin roll quenching method, a gas atomizing method, a disk atomizing method, and a centrifugal atomizing method.
  • mechanical milling or the like may be performed.
  • the milling method include a ball mill method, a bead mill method, a planetary ball mill method, an attritor method, and a vibration ball mill method.
  • the crystallite size can be measured directly with a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the crystallite size can be confirmed by powder X-ray diffraction.
  • X-ray diffraction CuK ⁇ rays having a wavelength of 1.54059 ⁇ are used as an X-ray source. The measurement is performed in the range of 2 ⁇ between 20 degrees and 80 degrees.
  • a broader diffraction peak is observed as the crystallite size is smaller. From the full width at half maximum of the peak obtained by powder X-ray diffraction analysis, the following Scherrer equation can be used to determine the crystallite size.
  • D (K ⁇ ⁇ ) / ( ⁇ ⁇ cos ⁇ )
  • D represents the crystallite size (angstrom)
  • K represents Scherrer's constant
  • represents the wavelength of the X-ray tube
  • represents the broadening of the diffraction line depending on the crystallite size.
  • represents the diffraction angle.
  • FIG. 7 shows that the total amount of Cr and Ti is 23 at. It is a cross-sectional organization chart by the transmission electron micrograph of the alloy which is%. According to energy dispersive X-ray analysis, Analysis location 1: Si-12.28 at. % Cr-11.84 at. % Ti Analysis location 2: Si-10.37 at. % Cr-10.04 at. % Ti Analysis location 3: Si-11.69 at. % Cr-11.35 at. % Ti Met. As is apparent from this structure chart, the crystallite size is about 20 nm. As is clear from this structure chart, a microstructure in which the Si phase and the compound phase are mixed is obtained in the alloy.
  • the total content of Cr and Ti in the alloy is 0.05 at. % Or more and 30 at. % Or less is preferable. Total content is 0.05 at. If the alloy is at least%, a Si phase with a small crystallite size can be obtained. From this viewpoint, the total content is 12 at. % Or more is particularly preferable. Total content is 30 at. For alloys that are less than or equal to%, a compound phase with a small crystallite size can be obtained. From this viewpoint, the total content is 25 at. % Or less is particularly preferable.
  • Al contributes to the electrical conductivity of the alloy. From the viewpoint of electric conductivity, 0.2 at. % Or more and 0.5 at. % Or less of Al is preferably dissolved.
  • Al content in the alloy is 0.05 at. % Or more and 15 at. % Or less is preferable.
  • This content is 0.05 at. % Or more of the alloy is excellent in electrical conductivity. From this viewpoint, the content is 0.2 at. % Or more is particularly preferable.
  • This content is 15 at. In an alloy that is less than or equal to%, the reaction between Si and lithium ions is difficult to be inhibited. From this viewpoint, the content is 10 at. % Or less is particularly preferable.
  • the ratio (Si / (Cr + Ti + Al)) of the Si content (at.%) To the total content (at.%) Of Cr, Ti and Al in the alloy is preferably 1.00 or more and 7.00 or less.
  • An alloy having a ratio (Si / (Cr + Ti + Al)) of 1.00 or more has a large discharge capacity.
  • the ratio (Si / (Cr + Ti + Al)) is particularly preferably equal to or greater than 2.00.
  • stress caused by expansion during charge and contraction during discharge is alleviated.
  • the ratio (Si / (Cr + Ti + Al)) is particularly preferably 6.00 or less.
  • the total content of Ti and Al in the alloy is 1.00 at. % Or more 25.00 at. % Or less is preferable.
  • Total content is 1.00 at. % Or more of the alloy is excellent in electrical conductivity. From this viewpoint, the total content is 3.00 at. % Or more is particularly preferable.
  • Total content is 25.00 at. % Or less of the alloy can contribute to the high capacity of the battery 2 and excellent cycle characteristics. From this viewpoint, the total content is 20.00 at. % Or less is particularly preferable.
  • the Si phase is excellent in electrical conductivity. Furthermore, this alloy is also excellent in electrical conductivity between the Si phase and the compound phase. From these viewpoints, the ratio (Al / (Cr + Ti + Al)) is particularly preferably 0.04 or more. In an alloy having a ratio (Al / (Cr + Ti + Al)) of 0.50 or less, the Si phase is not easily covered with Al.
  • the ratio (Al / (Cr + Ti + Al)) is particularly preferably 0.40 or less.
  • the alloy includes one or more elements selected from the group consisting of Cu, V, Mn, Fe, Ni, Nb, Zn, and Zr. Since these elements can form a eutectic alloy with Si, a fine Si phase can be generated. These elements can form a compound that is flexible and excellent in electrical conductivity. This compound surrounds the Si phase. This compound relieves stress caused by expansion during charging and contraction during discharging. This compound prevents electrical isolation of the Si phase. From these viewpoints, the total content of these elements is 0.05 at. % Or more, 0.1 at. % Or more is particularly preferable. From the viewpoint that the discharge capacity of the alloy is large, the total content of these elements is 15 at. % Or less, preferably 9 at. % Or less is particularly preferable.
  • the alloy contains one or more elements selected from the group consisting of Mg, B, P, Ga and C.
  • These elements can form a compound that is flexible and excellent in electrical conductivity.
  • This compound surrounds the Si phase. This compound relieves stress caused by expansion during charging and contraction during discharging. This compound prevents electrical isolation of the Si phase.
  • the total content of these elements is 0.05 at. % Or more, 0.1 at. % Or more is particularly preferable. From the viewpoint that the discharge capacity of the alloy is large, the total content of these elements is 10 at. % Or less, preferably 7 at. % Or less is particularly preferable.
  • the Si phase may have a P-type semiconductor structure. This Si phase is excellent in electrical conductivity.
  • the Si phase may have an N-type semiconductor structure. This Si phase is excellent in electrical conductivity.
  • the alloy may contain Co, Pd, Bi, In, Sb, Sn, or Mo. These elements can also contribute to the improvement of the discharge capacity retention rate.
  • the total content of these elements is 0.05 at. % Or more and 10 at. % Or less is preferable.
  • the alloy contains N.
  • An alloy containing N is brittle. With this alloy, small particle sizes can be easily achieved.
  • the N content (mass percentage) is preferably equal to or greater than 0.001 mass%, and particularly preferably equal to or greater than 0.01 mass%. From the viewpoint of preventing the separation of the particles 22 at the negative electrode and the viewpoint of preventing the electrical isolation of the particles 22, the N content is preferably 1 mass% or less, and particularly preferably 0.1 mass% or less.
  • Particles can be produced by a single roll cooling method, a gas atomizing method, a disk atomizing method or the like. In order to obtain particles 22 having a small size, it is necessary to quench the molten raw material.
  • the cooling rate is preferably 100 ° C./s or more.
  • raw materials are put into a quartz tube having pores at the bottom.
  • This raw material is heated and melted by a high frequency induction furnace in an argon gas atmosphere.
  • the raw material flowing out from the pores is dropped on the surface of the copper roll and cooled to obtain a ribbon.
  • This ribbon is put into the pot together with the ball.
  • the ball material include zirconia, SUS304, and SUJ2.
  • the pot material include zirconia, SUS304, and SUJ2.
  • the pot is filled with argon gas and the pot is sealed.
  • the ribbon is pulverized by milling to obtain particles 22. Examples of milling include a ball mill, a bead mill, a planetary ball mill, an attritor, and a vibrating ball mill.
  • raw materials are put into a quartz crucible having pores at the bottom. This raw material is heated and melted by a high frequency induction furnace in an argon gas atmosphere. In an argon gas atmosphere, argon gas is injected onto the raw material flowing out from the pores. The raw material is quenched and solidified to obtain particles 22.
  • raw materials are put into a quartz crucible having pores at the bottom.
  • This raw material is heated and melted by a high frequency induction furnace in an argon gas atmosphere.
  • an argon gas atmosphere the raw material flowing out from the pores is dropped onto a disk that rotates at high speed. The rotation speed is 40000 rpm to 60000 rpm.
  • the raw material is rapidly cooled by the disk and solidified to obtain a powder.
  • This powder is put into a pot together with a ball.
  • the ball material include zirconia, SUS304, and SUJ2.
  • Examples of the pot material include zirconia, SUS304, and SUJ2.
  • the pot is filled with argon gas and the pot is sealed.
  • the ribbon is pulverized by milling to obtain particles 22. Examples of milling include a ball mill, a bead mill, a planetary ball mill, an attritor, and a vibrating ball mill.
  • the effect of the negative electrode material according to the present invention was confirmed using a bipolar coin cell.
  • raw materials having the compositions shown in Tables 1 to 5 were prepared. Particles were produced from each raw material by the above-described single roll cooling method, gas atomization method or disk atomization method. A large number of particles, a conductive material (acetylene black), a binder (polyimide, polyvinylidene fluoride, etc.) and a dispersion (N-methylpyrrolidone) were mixed to obtain a slurry. This slurry was apply
  • a mixed solvent of ethylene carbonate and dimethyl carbonate was prepared as an electrolytic solution.
  • the mass ratio of both was 3: 7.
  • lithium hexafluorophosphate (LiPF 6 ) was prepared as a supporting electrolyte.
  • the amount of the supporting electrolyte is 1 mol with respect to the electrolytic solution. This supporting electrolyte was dissolved in the electrolytic solution.
  • a separator and a positive electrode having a shape suitable for a coin-type cell were prepared.
  • This positive electrode is made of lithium.
  • the separator was immersed in the electrolytic solution under reduced pressure and allowed to stand for 5 hours to fully infiltrate the separator with the electrolytic solution.
  • a negative electrode, a separator and a positive electrode were incorporated in the tank.
  • the tank was filled with an electrolytic solution to obtain a coin-type cell.
  • electrolytic solution it is necessary to handle electrolyte solution in the inert atmosphere by which dew point control was carried out. Therefore, the cell was assembled in a glove box with an inert atmosphere.
  • No. Nos. 1 to 66 are compositions of negative electrode materials according to examples of the present invention.
  • 67 to 74 are compositions of the negative electrode material according to the comparative example.
  • the negative electrode materials of Examples 1 to 11 include a Si phase and an Al—Si—Cr compound phase.
  • the crystallite size of the Si phase is 30 nm or less, and the crystallite size of the compound phase is 40 nm or less.
  • the negative electrode material of Example 4 includes a Si phase and a compound phase as described above.
  • this negative electrode material since the crystallite size of the Si phase is 3 nm, this crystallite size is included in the range of “30 nm or less”.
  • this negative electrode material since the crystallite size of the compound phase is 4 nm, this crystallite size is included in the range of “40 nm or less”.
  • the initial discharge capacity is as large as 1423 mAh / g, and the discharge capacity retention rate after 50 cycles is as large as 82%.
  • the negative electrode materials of Examples 12 to 22 include a Si phase and an Al—Si—Ti compound phase.
  • the crystallite size of the Si phase is 30 nm or less, and the crystallite size of the compound phase is 40 nm or less.
  • the negative electrode material of Example 14 includes a Si phase and a compound phase as described above.
  • this negative electrode material since the crystallite size of the Si phase is 7 nm, this crystallite size is included in the range of “30 nm or less”.
  • this negative electrode material since the crystallite size of the compound phase is 9 nm, this crystallite size is included in the range of “40 nm or less”.
  • the initial discharge capacity is as large as 1578 mAh / g, and the discharge capacity maintenance ratio after 50 cycles is as large as 88%.
  • the negative electrode materials of Examples 23 to 36 include a Si phase and an Al—Si—Cr—Ti compound phase.
  • the crystallite size of the Si phase is 30 nm or less, and the crystallite size of the compound phase is 40 nm or less.
  • the negative electrode material of Example 25 includes a Si phase and a compound phase as described above.
  • this negative electrode material since the crystallite size of the Si phase is 1 nm, this crystallite size is included in the range of “30 nm or less”.
  • this negative electrode material since the crystallite size of the compound phase is 3 nm, this crystallite size is included in the range of “40 nm or less”.
  • the initial discharge capacity is as large as 1291 mAh / g, and the discharge capacity retention rate after 50 cycles is as large as 94%.
  • the negative electrode materials of Examples 37 to 49 include a Si phase and a compound phase.
  • Each compound phase contains Al, Si, Cr and Ti.
  • This compound phase further contains other additive elements (Cu, V, Mn, Fe, Ni, Nb, Pd, Zn, Zr, Mg, B, P, Ga, C, or N).
  • the crystallite size of the Si phase is 30 nm or less, and the crystallite size of the compound phase is 40 nm or less.
  • the negative electrode material of Example 49 includes a Si phase and a compound phase as described above.
  • this negative electrode material since the crystallite size of the Si phase is 2 nm, this crystallite size is included in the range of “30 nm or less”.
  • this negative electrode material since the crystallite size of the compound phase is 4 nm, this crystallite size is included in the range of “40 nm or less”.
  • the initial discharge capacity is as large as 1590 mAh / g, and the discharge capacity retention rate after 50 cycles is as large as 86%.
  • the negative electrode materials of Examples 50 to 66 include a Si phase and a compound phase.
  • Each compound phase contains Al, Si, Cr and Ti.
  • This compound phase further includes other additive elements (Cu, V, Mn, Fe, Ni, Nb, Pd, Zn, Zr, Mg, B, P, Ga, C, N, Co, Pd, Bi, In, Sb. , Sn or Mo).
  • the crystallite size of the Si phase is 30 nm or less, and the crystallite size of the compound phase is 40 nm or less.
  • the negative electrode material of Example 63 includes the Si phase and the compound phase as described above.
  • this negative electrode material since the crystallite size of the Si phase is 3 nm, this crystallite size is included in the range of “30 nm or less”.
  • this negative electrode material since the crystallite size of the compound phase is 6 nm, this crystallite size is included in the range of “40 nm or less”.
  • the initial discharge capacity is as large as 1654 mAh / g, and the discharge capacity retention rate after 50 cycles is as large as 82%.
  • the negative electrode material of Comparative Example 67 has a Si phase crystallite size of 30 nm or less and a compound phase crystallite size of 40 nm or less, but does not contain Al.
  • the negative electrode material of Comparative Example 68 does not contain Al, and the Si crystallite size exceeds 30 nm.
  • the negative electrode material of Comparative Example 69 does not contain Al, and the crystallite size of the compound phase exceeds 40 nm.
  • the negative electrode material of Comparative Example 70 does not contain Al, the Si phase crystallite size exceeds 30 nm, and the compound phase crystallite size exceeds 40 nm.
  • the negative electrode material of Comparative Example 71 has a Si phase crystallite size of 30 nm or less and a compound phase crystallite size of 40 nm or less, but does not contain Cr and Ti.
  • the negative electrode material of Comparative Example 72 does not contain Cr and Ti, and the crystallite size of the Si phase exceeds 30 nm.
  • the negative electrode material of Comparative Example 73 has a Si phase crystallite size of 30 nm or less, but does not contain Cr and Ti, and the compound phase crystallite size exceeds 40 nm.
  • the negative electrode material of Comparative Example 74 does not contain Cr and Ti, the crystallite size of the Si phase exceeds 30 nm, and the crystallite size of the compound phase exceeds 40 nm.
  • the negative electrode described above can be applied not only to a lithium ion secondary battery but also to an electricity storage device such as an all-solid lithium ion secondary battery or a hybrid capacitor.

Abstract

The present invention provides a material which is able to provide a negative electrode having high capacity, excellent electrical conductivity and excellent durability. A negative electrode (12) is provided with a collector (18) and a plurality of particles (22) that are affixed to the surface of the collector (18). The particles (22) are formed of an Si-based alloy. This alloy has (1) an Si phase that is mainly composed of Si and has a crystallite size of 30 nm or less, and (2) a compound phase that contains Si and Al, and additionally contains Cr or Ti, while having a crystallite size of 40 nm or less. It is preferable that the compound phase contains Si, Cr, Ti and Al. It is preferable that the Si phase contains Al that is solid-solved in Si.

Description

蓄電デバイスの負極材料Negative electrode materials for electricity storage devices 関連出願の相互参照Cross-reference of related applications
 この出願は、2014年3月13日に出願された日本国特許出願2014-050541号に基づく優先権を主張するものであり、これらの全体の開示内容が参照により本明細書に組み込まれる。 This application claims priority based on Japanese Patent Application No. 2014-050541 filed on March 13, 2014, the entire disclosure of which is incorporated herein by reference.
 本発明は、リチウムイオン二次電池、全固体リチウムイオン二次電池、ハイブリットキャパシタ等の蓄電デバイスの負極に適した材料に関する。 The present invention relates to a material suitable for a negative electrode of a power storage device such as a lithium ion secondary battery, an all solid lithium ion secondary battery, or a hybrid capacitor.
 近年、携帯電話機、携帯音楽プレーヤー、携帯端末等が急速に普及している。これらの携帯機器は、リチウムイオン二次電池を備えている。さらに、電気自動車及びハイブリッド自動車も、リチウムイオン二次電池を備えている。リチウムイオン二次電池では、充電時に負極がリチウムイオンを吸蔵する。リチウムイオン二次電池の使用時には、負極からリチウムイオンが放出される。負極は、集電体と、この集電体の表面に固着した活物質とを有している。 In recent years, cellular phones, portable music players, portable terminals, and the like are rapidly spreading. These portable devices include a lithium ion secondary battery. Furthermore, the electric vehicle and the hybrid vehicle also include a lithium ion secondary battery. In a lithium ion secondary battery, the negative electrode occludes lithium ions during charging. When the lithium ion secondary battery is used, lithium ions are released from the negative electrode. The negative electrode has a current collector and an active material fixed to the surface of the current collector.
 負極における活物質として、天然黒鉛、人造黒鉛、コークス等の炭素系材料が用いられている。しかし、炭素系材料の、リチウムイオンに対する理論上の容量は、372mAh/gにすぎない。したがって、容量の大きな活物質が望まれている。 As the active material in the negative electrode, carbon-based materials such as natural graphite, artificial graphite and coke are used. However, the theoretical capacity of the carbon-based material for lithium ions is only 372 mAh / g. Therefore, an active material having a large capacity is desired.
 負極における活物質として、Siが注目されている。Siは、リチウムイオンと反応する。この反応により、化合物が形成される。典型的な化合物は、Li22Siである。この反応により、大量のリチウムイオンが負極に吸蔵される。Siは、負極の蓄電容量を高めうる。 Si is attracting attention as an active material in the negative electrode. Si reacts with lithium ions. This reaction forms a compound. A typical compound is Li 22 Si 5 . By this reaction, a large amount of lithium ions is occluded in the negative electrode. Si can increase the storage capacity of the negative electrode.
 Siを含む活物質層がリチウムイオンを吸蔵すると、前述の化合物の生成により、この活物質層が膨張する。活物質の膨張率は、約400%である。活物質層からリチウムイオンが放出されると、この活物質層が収縮する。膨張と収縮との繰り返しにより、活物質が集電体から脱落する。この脱落は、蓄電容量を低下させる。負極がSiを含む従来のリチウムイオン二次電池の寿命は、長くない。 When the active material layer containing Si occludes lithium ions, the active material layer expands due to the generation of the aforementioned compound. The expansion coefficient of the active material is about 400%. When lithium ions are released from the active material layer, the active material layer contracts. The active material is detached from the current collector due to repeated expansion and contraction. This drop off reduces the storage capacity. The lifetime of the conventional lithium ion secondary battery in which the negative electrode contains Si is not long.
 Siからなる活物質では、充電時にその表面のみがリチウムイオンと反応する。この活物質では、内部はリチウムイオンと反応しない。換言すれば、リチウムイオンの吸蔵により、活物質の表面のみが膨張する。この表面では、クラックが発生する。次の充電時には、クラックを通じて内部にまでリチウムイオンが進入し、さらにクラックを発生させる。このクラックの発生が繰り返されることにより、活物質が微粉化する。微粉化により、活物質とこれに隣接する活物質との導電が阻害される。微粉化は、蓄電容量を低下させる。負極がSiを含む従来のリチウムイオン二次電池の寿命は、長くない。 In the active material made of Si, only the surface thereof reacts with lithium ions during charging. In this active material, the inside does not react with lithium ions. In other words, only the surface of the active material expands due to occlusion of lithium ions. Cracks are generated on this surface. At the time of the next charging, lithium ions enter through the crack and further generate a crack. By repeating the generation of the cracks, the active material is pulverized. Due to the pulverization, conduction between the active material and the active material adjacent thereto is inhibited. Micronization reduces the storage capacity. The lifetime of the conventional lithium ion secondary battery in which the negative electrode contains Si is not long.
 Siは、炭素系材料及び金属材料に比べ、イオン伝導性に劣る。Siが用いられた負極において、Siと共に炭素系材料が用いられることがある。炭素系材料により、効率的なリチウムイオンの移動が達成される。しかし、この負極においても、導電性のさらなる改善が望まれている。 Si is inferior in ionic conductivity compared to carbon-based materials and metal materials. In a negative electrode using Si, a carbon-based material may be used together with Si. Efficient lithium ion transfer is achieved by the carbon-based material. However, even in this negative electrode, further improvement in conductivity is desired.
 Siの相が金属間化合物でカバーされた活物質が、特開2001-297757号公報に開示されている。この金属間化合物は、典型的には、Siと遷移金属との反応によって生成される。この金属間化合物は、Siの欠点を補いうる。同様の活物質が、特開平10-312804号公報にも開示されている。 An active material in which a Si phase is covered with an intermetallic compound is disclosed in Japanese Patent Application Laid-Open No. 2001-297757. This intermetallic compound is typically produced by the reaction of Si with a transition metal. This intermetallic compound can compensate for the disadvantages of Si. A similar active material is also disclosed in JP-A-10-31804.
 Siを含む活物質層の表面に導電層が積層された電極が、特開2004-228059号公報に開示されている。典型的には、導電層は、Cuを含む。この導電層は、Siの欠点を補いうる。同様の電極が、特開2005-44672号公報にも開示されている。 An electrode in which a conductive layer is laminated on the surface of an active material layer containing Si is disclosed in Japanese Patent Application Laid-Open No. 2004-228059. Typically, the conductive layer includes Cu. This conductive layer can compensate for the disadvantages of Si. A similar electrode is also disclosed in JP-A-2005-44672.
特開2001-297757号公報JP 2001-297757 A 特開平10-312804号公報JP 10-31804 A 特開2004-228059号公報JP 2004-228059 A 特開2005-44672号公報JP 2005-44672 A
 Siの相が金属間化合物でカバーされた活物質を含む従来の電極では、活物質の脱落及び微粉化は、十分には抑制されない。 In a conventional electrode including an active material in which the Si phase is covered with an intermetallic compound, dropping and pulverization of the active material are not sufficiently suppressed.
 活物質層と導電層とが積層された従来の電極では、導電層の形成にメッキ等の手段が用いられる。この導電層の形成には、手間がかかる。さらに、導電層の厚みの制御には、困難が伴う。 In a conventional electrode in which an active material layer and a conductive layer are laminated, means such as plating is used to form the conductive layer. It takes time to form the conductive layer. Furthermore, it is difficult to control the thickness of the conductive layer.
 同様の問題は、リチウムイオン二次電池以外の蓄電デバイスにおいても生じている。 The same problem occurs in power storage devices other than lithium ion secondary batteries.
 本発明の目的は、容量が大きく、イオン伝導性及び耐久性に優れた負極が得られうる材料の提供にある。 An object of the present invention is to provide a material capable of obtaining a negative electrode having a large capacity and excellent ion conductivity and durability.
 本発明の一態様によれば、Si系合金からなり、このSi系合金が、
 (1)Siが主成分であり、その結晶子サイズが30nm以下であるSi相、
並びに
 (2)Si及びAlを含み、さらにCr又はTiを含んでおり、その結晶子サイズが40nm以下である化合物相
を有する、蓄電デバイスの負極材料が提供される。
According to one aspect of the present invention, the Si-based alloy is made of Si-based alloy.
(1) Si phase whose main component is Si and whose crystallite size is 30 nm or less,
And (2) A negative electrode material for an electricity storage device is provided that has a compound phase containing Si and Al, further containing Cr or Ti, and having a crystallite size of 40 nm or less.
 好ましい態様によれば、化合物相はSi、Al、Cr及びTiを含む。 According to a preferred embodiment, the compound phase contains Si, Al, Cr and Ti.
 好ましい態様によれば、Si相は、Siに固溶するAlを含む。好ましくは、Si系合金は、Al単相をさらに有する。 According to a preferred embodiment, the Si phase contains Al that is solid-solved in Si. Preferably, the Si-based alloy further has an Al single phase.
 好ましい態様によれば、合金における、CrとTiとの合計含有率(原子組成百分率)は、0.05at.%以上30at.%以下である。好ましくは、Alの含有率は、0.05at.%以上15at.%以下である。 According to a preferred embodiment, the total content of Cr and Ti (atomic composition percentage) in the alloy is 0.05 at. % Or more and 30 at. % Or less. Preferably, the Al content is 0.05 at. % Or more and 15 at. % Or less.
 好ましい態様によれば、合金における、Cr、Ti及びAlの合計含有率(at.%)に対する、Siの含有率(at.%)の比(Si/(Cr+Ti+Al))は、1.00以上7.00以下である。 According to a preferred embodiment, the ratio of the Si content (at.%) To the total content (at.%) Of Cr, Ti and Al in the alloy (Si / (Cr + Ti + Al)) is 1.00 or more and 7 .00 or less.
 好ましい態様によれば、合金における、TiとAlとの合計含有率は、1.00at.%以上25.00at.%以下である。 According to a preferred embodiment, the total content of Ti and Al in the alloy is 1.00 at. % Or more 25.00 at. % Or less.
 好ましい態様によれば、合金における、Cr、Ti及びAlの合計含有率(at.%)に対する、Alの含有率(at.%)の比(Al/(Cr+Ti+Al))は、0.01以上0.50以下である。好ましくは、比(Al/(Cr+Ti+Al))は、0.04以上0.40以下である。 According to a preferred embodiment, the ratio of Al content (at.%) To the total content (at.%) Of Cr, Ti and Al in the alloy (Al / (Cr + Ti + Al)) is 0.01 or more and 0. .50 or less. Preferably, the ratio (Al / (Cr + Ti + Al)) is 0.04 or more and 0.40 or less.
 好ましい態様によれば、合金は、Cu、V、Mn、Fe、Ni、Nb、Zn及びZrからなる群から選択される1種又は2種以上の元素を含む。これらの元素の合計含有率は、0.05at.%以上15at.%以下である。 According to a preferred embodiment, the alloy contains one or more elements selected from the group consisting of Cu, V, Mn, Fe, Ni, Nb, Zn and Zr. The total content of these elements is 0.05 at. % Or more and 15 at. % Or less.
 好ましい態様によれば、合金は、Mg、B、P、Ga及びCからなる群から選択される1種又は2種以上の元素を含む。これらの元素の合計含有率は、0.05at.%以上10at.%以下である。 According to a preferred embodiment, the alloy contains one or more elements selected from the group consisting of Mg, B, P, Ga and C. The total content of these elements is 0.05 at. % Or more and 10 at. % Or less.
 好ましい態様によれば、合金は、Nを含む。このNの含有率は、0.001mass%以上1mass%以下である。 According to a preferred embodiment, the alloy contains N. The N content is 0.001 mass% or more and 1 mass% or less.
 本発明の他の態様によれば、集電体と、この集電体の表面に固着した多数の粒子とを備えており、
 前記粒子が、Si系合金からなり、
 このSi系合金が、
 (1)Siが主成分であり、その結晶子サイズが30nm以下であるSi相、
並びに
 (2)Si及びAlを含み、さらにCr又はTiを含んでおり、その結晶子サイズが40nm以下である化合物相
を有する、蓄電デバイスの負極が提供される。
According to another aspect of the present invention, it comprises a current collector and a number of particles fixed to the surface of the current collector,
The particles are made of a Si-based alloy,
This Si alloy is
(1) Si phase whose main component is Si and whose crystallite size is 30 nm or less,
And (2) A negative electrode for an electricity storage device is provided that has a compound phase containing Si and Al, further containing Cr or Ti, and having a crystallite size of 40 nm or less.
 本発明のさらに他の態様によれば、正極と負極とを備えており、
 前記負極が、集電体と、この集電体の表面に固着した多数の粒子とを備えており、
 前記粒子が、Si系合金からなり、
 このSi系合金が、
 (1)Siが主成分であり、その結晶子サイズが30nm以下であるSi相、
並びに
 (2)Si及びAlを含み、さらにCr又はTiを含んでおり、その結晶子サイズが40nm以下である化合物相
を有する、蓄電デバイスが提供される。
According to still another aspect of the present invention, a positive electrode and a negative electrode are provided,
The negative electrode comprises a current collector and a number of particles fixed to the surface of the current collector;
The particles are made of a Si-based alloy,
This Si alloy is
(1) Si phase whose main component is Si and whose crystallite size is 30 nm or less,
And (2) An electricity storage device including a compound phase containing Si and Al, further containing Cr or Ti, and having a crystallite size of 40 nm or less is provided.
 本発明に係る材料を含む負極は、容量が大きく、イオン伝導性及び耐久性に優れる。 The negative electrode containing the material according to the present invention has a large capacity and is excellent in ion conductivity and durability.
図1は、本発明の一実施形態に係る、蓄電デバイスとしてのリチウムイオン二次電池を示す概念図である。FIG. 1 is a conceptual diagram showing a lithium ion secondary battery as an electricity storage device according to an embodiment of the present invention. 図2は、図1の電池の負極の一部を示す断面図である。FIG. 2 is a cross-sectional view showing a part of the negative electrode of the battery of FIG. 図3は、図2の負極の粒子に含まれるSi-SiCr共晶合金を示すSEM画像である。FIG. 3 is an SEM image showing the Si—Si 2 Cr eutectic alloy contained in the negative electrode particles of FIG. 図4は、図2の負極の粒子に含まれるSi-Si(Cr,Ti)系の共晶合金のXRDチャートである。FIG. 4 is an XRD chart of a Si—Si 2 (Cr, Ti) -based eutectic alloy contained in the negative electrode particles of FIG. 図5は、図2の負極の粒子に含まれるSi-Si(Cr,Ti)系の共晶合金のXRDチャートである。FIG. 5 is an XRD chart of a Si—Si 2 (Cr, Ti) -based eutectic alloy contained in the negative electrode particles of FIG. 図6は、図2の負極の粒子に含まれるSi-Si(Cr,Ti)系の共晶合金のXRDチャートである。FIG. 6 is an XRD chart of a Si—Si 2 (Cr, Ti) -based eutectic alloy contained in the negative electrode particles of FIG. 図7は、図2の負極の粒子に含まれる合金を示すTEM画像である。FIG. 7 is a TEM image showing an alloy contained in the negative electrode particles of FIG.
 以下、適宜図面を参照しつつ、好ましい実施形態に基づいて本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail based on preferred embodiments with appropriate reference to the drawings.
 図1に概念的に示されたリチウムイオン二次電池2は、槽4、電解液6、セパレータ8、正極10及び負極12を備えている。電解液6は、槽4に蓄えられている。この電解液6は、リチウムイオンを含んでいる。セパレータ8は、槽4を、正極室14及び負極室16に区画している。セパレータ8により、正極10と負極12との当接が防止される。このセパレータ8は、多数の孔(図示されず)を備えている。リチウムイオンは、この孔を通過しうる。正極10は、正極室14において、電解液6に浸漬されている。負極12は、負極室16において、電解液6に浸漬されている。 The lithium ion secondary battery 2 conceptually shown in FIG. 1 includes a tank 4, an electrolytic solution 6, a separator 8, a positive electrode 10, and a negative electrode 12. The electrolytic solution 6 is stored in the tank 4. This electrolytic solution 6 contains lithium ions. The separator 8 partitions the tank 4 into a positive electrode chamber 14 and a negative electrode chamber 16. The separator 8 prevents contact between the positive electrode 10 and the negative electrode 12. The separator 8 has a large number of holes (not shown). Lithium ions can pass through this hole. The positive electrode 10 is immersed in the electrolytic solution 6 in the positive electrode chamber 14. The negative electrode 12 is immersed in the electrolytic solution 6 in the negative electrode chamber 16.
 図2には、負極12の一部が示されている。この負極12は、集電体18と、活物質層20とを備えている。活物質層20は、多数の粒子22を含んでいる。粒子22は、この粒子22に当接する他の粒子22と固着している。集電体18に当接する粒子22は、この集電体18に固着している。活物質層20は、多孔質である。 FIG. 2 shows a part of the negative electrode 12. The negative electrode 12 includes a current collector 18 and an active material layer 20. The active material layer 20 includes a large number of particles 22. The particles 22 are fixed to other particles 22 that are in contact with the particles 22. The particles 22 that come into contact with the current collector 18 are fixed to the current collector 18. The active material layer 20 is porous.
 粒子22の材質(負極材料)は、Si系合金である。この合金は、Si相と化合物相とを有している。Si相の主成分は、Siである。Si相の結晶子サイズは、30nm以下である。化合物相は、Si及びAlを含んでいる。化合物相はさらに、Cr又はTiを含んでいる。化合物相の結晶子サイズは、40nm以下である。 The material (negative electrode material) of the particles 22 is a Si-based alloy. This alloy has a Si phase and a compound phase. The main component of the Si phase is Si. The crystallite size of the Si phase is 30 nm or less. The compound phase contains Si and Al. The compound phase further contains Cr or Ti. The crystallite size of the compound phase is 40 nm or less.
 前述の通り、Siはリチウムイオンと反応する。Si相はSiを主成分としているので、このSi相を含む負極12は、大量のリチウムイオンを吸蔵しうる。Si相は、負極12の蓄電容量を高めうる。蓄電容量の観点から、Si相におけるSiの含有率は50at.%以上が好ましく、60at.%以上がより好ましく、70at.%以上が特に好ましい。 As described above, Si reacts with lithium ions. Since the Si phase contains Si as a main component, the negative electrode 12 including the Si phase can occlude a large amount of lithium ions. The Si phase can increase the storage capacity of the negative electrode 12. From the viewpoint of storage capacity, the Si content in the Si phase is 50 at. % Or more, 60 at. % Or more, more preferably 70 at. % Or more is particularly preferable.
 Si相がSi以外の元素を含んでもよい。典型的な元素は、Alである。Siは、本来的には電気伝導性に劣る。一方Alは、電気伝導性に優れる。Si相がAlを含む合金では、大きな蓄電容量が達成され、かつ優れた電気伝導性が達成される。 The Si phase may contain elements other than Si. A typical element is Al. Si is inherently inferior in electrical conductivity. On the other hand, Al is excellent in electrical conductivity. In an alloy in which the Si phase contains Al, a large storage capacity is achieved and excellent electrical conductivity is achieved.
 好ましくは、Si相において、AlがSiに固溶する。この固溶により、Si相の電気伝導性が高められる。Alは軟質である。充電時の膨張及び放電時の収縮によって生じる応力を、Alは緩和する。この負極12は、耐久性に優れる。 Preferably, Al is dissolved in Si in the Si phase. This solid solution increases the electrical conductivity of the Si phase. Al is soft. Al relieves stress caused by expansion during charging and contraction during discharging. This negative electrode 12 is excellent in durability.
 合金が多量のAlを含有する場合、一部のAlはSiに固溶し、残余のAlは単相を形成する。Alの単相は、化合物相に含まれ、この化合物相に分散する。このAlの単相によっても、合金の電気伝導性が高められる。 When the alloy contains a large amount of Al, a part of Al is dissolved in Si, and the remaining Al forms a single phase. The single phase of Al is contained in the compound phase and dispersed in this compound phase. This single Al phase also increases the electrical conductivity of the alloy.
 化合物相は、Siと共に、Crを含みうる。この化合物相は、Si-Cr化合物を含む。化合物の具体例は、SiCrである。SiCrは、Si相と共晶反応を起こしうる。換言すれば、粒子22は、Si-SiCr共晶合金から形成されうる。 The compound phase can contain Cr together with Si. This compound phase contains a Si—Cr compound. A specific example of the compound is Si 2 Cr. Si 2 Cr can cause a eutectic reaction with the Si phase. In other words, the particles 22 can be formed from a Si—Si 2 Cr eutectic alloy.
 図3は、Si-SiCr共晶合金を示すSEM画像である。図3において、黒く示されているのがSi相であり、白く示されているのがSiCr相である。図3から明かな通り、Si相は極めて微細であり、SiCr相も極めて微細である。この化合物相は、充電時の膨張及び放電時の収縮によって生じる応力を緩和する。 FIG. 3 is an SEM image showing the Si—Si 2 Cr eutectic alloy. In FIG. 3, the Si phase is shown in black, and the Si 2 Cr phase is shown in white. As is clear from FIG. 3, the Si phase is extremely fine, and the Si 2 Cr phase is also extremely fine. This compound phase relieves stress caused by expansion during charge and contraction during discharge.
 化合物相が、Crに代えてTiを含有してもよい。この化合物相では、Si-Ti化合物が、応力を緩和する。 The compound phase may contain Ti instead of Cr. In this compound phase, the Si—Ti compound relieves stress.
 化合物相が、Cr及びTiの両方を含むことが好ましい。この化合物相では、Si-SiCr共晶合金のCrの一部が、Tiで置換される。換言すれば、化合物相が、Si-Cr-Ti化合物を含む。 It is preferred that the compound phase contains both Cr and Ti. In this compound phase, a part of Cr in the Si—Si 2 Cr eutectic alloy is substituted with Ti. In other words, the compound phase includes a Si—Cr—Ti compound.
 図4から6は、Si-Si(Cr,Ti)系の共晶合金のX線回折の結果が示されたチャートである。図4は、Tiを含まない共晶合金のチャートである。図5は、比(Cr/Ti)が50/50である共晶合金のチャートである。図6は、比(Cr/Ti)が25/75である共晶合金のチャートである。図4~図6の対比より、添加されたTiが、結晶構造を変化させることなく格子定数を増加させると、推測される。 4 to 6 are charts showing the results of X-ray diffraction of a Si—Si 2 (Cr, Ti) -based eutectic alloy. FIG. 4 is a chart of a eutectic alloy containing no Ti. FIG. 5 is a chart of a eutectic alloy having a ratio (Cr / Ti) of 50/50. FIG. 6 is a chart of a eutectic alloy having a ratio (Cr / Ti) of 25/75. 4 to 6, it is estimated that the added Ti increases the lattice constant without changing the crystal structure.
 格子定数の大きな化合物相を有する粒子22では、珪化物中を、リチウムイオンが円滑に通過すると推測される。Siと珪化物との共晶合金が用いられたリチウムイオン二次電池において、珪化物の構造にまで踏み込んだ研究は、本発明者の知るかぎり、これまでにはなされていない。 In the particles 22 having a compound phase having a large lattice constant, it is estimated that lithium ions pass smoothly through the silicide. In the lithium ion secondary battery using a eutectic alloy of Si and silicide, as far as the present inventor knows, no studies have been made so far.
 SiCr、Si(Cr,Ti)等の化合物は、粒子22の電気伝導性を向上させると推測される。 Compounds such as Si 2 Cr and Si 2 (Cr, Ti) are presumed to improve the electrical conductivity of the particles 22.
 Si相の結晶子サイズは、30nm以下である。結晶子サイズが30nm以下であるSi相では、リチウムイオンとの反応に起因する微粉化が抑制される。このSi相を有する電池では、放電容量が維持されやすい。この観点から、結晶子サイズは25nm以下が好ましく、10nm以下が特に好ましい。 The crystallite size of the Si phase is 30 nm or less. In the Si phase having a crystallite size of 30 nm or less, pulverization due to reaction with lithium ions is suppressed. In the battery having this Si phase, the discharge capacity is easily maintained. From this viewpoint, the crystallite size is preferably 25 nm or less, particularly preferably 10 nm or less.
 Si相の結晶子サイズの制御については、前述の成分の制御に代えて、又はこの成分の制御と共に、原料粉末を溶解した後の凝固時の冷却速度の制御によってもなされうる。具体的な方法として、水アトマイズ法、単ロール急冷法、双ロール急冷法、ガスアトマイズ法、ディスクアトマイズ法及び遠心アトマイズ法が例示される。これらの方法において冷却効果が不十分な場合、メカニカルミリング等が施されてもよい。ミリング方法として、ボールミル法、ビーズミル法、遊星ボールミル法、アトライタ法及び振動ボールミル法が例示される。 The control of the crystallite size of the Si phase can be performed by controlling the cooling rate at the time of solidification after dissolving the raw material powder in place of or in addition to the control of the above components. Specific examples include a water atomizing method, a single roll quenching method, a twin roll quenching method, a gas atomizing method, a disk atomizing method, and a centrifugal atomizing method. When the cooling effect is insufficient in these methods, mechanical milling or the like may be performed. Examples of the milling method include a ball mill method, a bead mill method, a planetary ball mill method, an attritor method, and a vibration ball mill method.
 化合物相の結晶子サイズは、40nm以下である。結晶子サイズが40nm以下である化合物相は、降伏応力が高い。この化合物相は延性及び靱性に優れるので、亀裂が生じにくい。この化合物相は、電気伝導性に優れる。この化合物相は、大きな比表面積にてSi相と接触する。大きな比表面積にてSi相と接触する化合物相は、充電時の膨張及び放電時の収縮によって生じる応力を緩和する。大きな比表面積にてSi相と接触する化合物相は、Si相との間での電気伝導性に優れる。この化合物相は、Si相の電気的孤立を防ぐ。これらの観点から、化合物相の結晶子サイズは20nm以下が好ましく、10nm以下が特に好ましい。 The crystallite size of the compound phase is 40 nm or less. A compound phase having a crystallite size of 40 nm or less has a high yield stress. Since this compound phase is excellent in ductility and toughness, cracks are unlikely to occur. This compound phase is excellent in electrical conductivity. This compound phase contacts the Si phase with a large specific surface area. The compound phase that comes into contact with the Si phase with a large specific surface area relieves stress caused by expansion during charge and contraction during discharge. The compound phase that contacts the Si phase with a large specific surface area is excellent in electrical conductivity with the Si phase. This compound phase prevents electrical isolation of the Si phase. From these viewpoints, the crystallite size of the compound phase is preferably 20 nm or less, and particularly preferably 10 nm or less.
 化合物相の結晶子サイズの制御は、原料粉末を溶解した後の凝固時の冷却速度の制御によってなされうる。具体的な方法として、水アトマイズ法、単ロール急冷法、双ロール急冷法、ガスアトマイズ法、ディスクアトマイズ法及び遠心アトマイズ法が例示される。これらの方法において冷却効果が不十分な場合、メカニカルミリング等が施されてもよい。ミリング方法として、ボールミル法、ビーズミル法、遊星ボールミル法、アトライタ法及び振動ボールミル法が例示される。 The crystallite size of the compound phase can be controlled by controlling the cooling rate during solidification after dissolving the raw material powder. Specific examples include a water atomizing method, a single roll quenching method, a twin roll quenching method, a gas atomizing method, a disk atomizing method, and a centrifugal atomizing method. When the cooling effect is insufficient in these methods, mechanical milling or the like may be performed. Examples of the milling method include a ball mill method, a bead mill method, a planetary ball mill method, an attritor method, and a vibration ball mill method.
 結晶子サイズは、透過型電子顕微鏡(TEM)により直接に測定されうる。また、粉末X線回折により、結晶子サイズが確認されうる。X線回折では、X線源として波長が1.54059オングストロームのCuKα線が用いられる。測定は、2θが20度以上80度以下の範囲でなされる。得られる回折スペクトルにおいは、結晶子サイズが小さいほど、ブロードな回折ピークが観測される。粉末X線回折分析で得られるピークの半値幅から、下記のScherrerの式が用いられて、結晶子サイズが求められ得る。
  D=(K×λ)/(β×cosθ)
この数式において、Dは結晶子の大きさ(オングストローム)を表し、KはScherrerの定数を表し、λはX線管球の波長を表し、βは結晶子の大きさによる回折線の拡がりを表し、θは回折角を表す。
The crystallite size can be measured directly with a transmission electron microscope (TEM). In addition, the crystallite size can be confirmed by powder X-ray diffraction. In X-ray diffraction, CuKα rays having a wavelength of 1.54059 Å are used as an X-ray source. The measurement is performed in the range of 2θ between 20 degrees and 80 degrees. In the obtained diffraction spectrum, a broader diffraction peak is observed as the crystallite size is smaller. From the full width at half maximum of the peak obtained by powder X-ray diffraction analysis, the following Scherrer equation can be used to determine the crystallite size.
D = (K × λ) / (β × cos θ)
In this equation, D represents the crystallite size (angstrom), K represents Scherrer's constant, λ represents the wavelength of the X-ray tube, and β represents the broadening of the diffraction line depending on the crystallite size. , Θ represents the diffraction angle.
 図7は、CrとTiの合計量が23at.%である合金の、透過型電子顕微鏡写真による断面組織図である。エネルギー分散型X線分析によれば、
  分析箇所1:Si-12.28at.%Cr-11.84at.%Ti
  分析箇所2:Si-10.37at.%Cr-10.04at.%Ti
  分析箇所3:Si-11.69at.%Cr-11.35at.%Ti
であった。この組織図から明らかなように、結晶子サイズは20nm程度である。この組織図から明らかなように、合金において、Si相と化合物相とが混ざり合った微細構造が、得られている。
FIG. 7 shows that the total amount of Cr and Ti is 23 at. It is a cross-sectional organization chart by the transmission electron micrograph of the alloy which is%. According to energy dispersive X-ray analysis,
Analysis location 1: Si-12.28 at. % Cr-11.84 at. % Ti
Analysis location 2: Si-10.37 at. % Cr-10.04 at. % Ti
Analysis location 3: Si-11.69 at. % Cr-11.35 at. % Ti
Met. As is apparent from this structure chart, the crystallite size is about 20 nm. As is clear from this structure chart, a microstructure in which the Si phase and the compound phase are mixed is obtained in the alloy.
 合金におけるCrとTiとの合計含有率は、0.05at.%以上30at.%以下が好ましい。合計含有率が0.05at.%以上である合金では、結晶子サイズが小さなSi相が得られうる。この観点から、合計含有率は12at.%以上が特に好ましい。合計含有率が30at.%以下である合金では、結晶子サイズが小さな化合物相が得られうる。この観点から、合計含有率は25at.%以下が特に好ましい。 The total content of Cr and Ti in the alloy is 0.05 at. % Or more and 30 at. % Or less is preferable. Total content is 0.05 at. If the alloy is at least%, a Si phase with a small crystallite size can be obtained. From this viewpoint, the total content is 12 at. % Or more is particularly preferable. Total content is 30 at. For alloys that are less than or equal to%, a compound phase with a small crystallite size can be obtained. From this viewpoint, the total content is 25 at. % Or less is particularly preferable.
 前述の通り、Alは、合金の電気伝導性に寄与する。電気伝導性の観点から、共晶温度において、Siに対して0.2at.%以上0.5at.%以下のAlが固溶することが好ましい。 As described above, Al contributes to the electrical conductivity of the alloy. From the viewpoint of electric conductivity, 0.2 at. % Or more and 0.5 at. % Or less of Al is preferably dissolved.
 合金におけるAlの含有率は、0.05at.%以上15at.%以下が好ましい。この含有率が0.05at.%以上である合金は、電気伝導性に優れる。この観点から、この含有率は0.2at.%以上が特に好ましい。この含有率が15at.%以下である合金では、Siとリチウムイオンとの反応が阻害されにくい。この観点から、この含有率は10at.%以下が特に好ましい。 Al content in the alloy is 0.05 at. % Or more and 15 at. % Or less is preferable. This content is 0.05 at. % Or more of the alloy is excellent in electrical conductivity. From this viewpoint, the content is 0.2 at. % Or more is particularly preferable. This content is 15 at. In an alloy that is less than or equal to%, the reaction between Si and lithium ions is difficult to be inhibited. From this viewpoint, the content is 10 at. % Or less is particularly preferable.
 合金における、Cr、Ti及びAlの合計含有率(at.%)に対する、Siの含有率(at.%)の比(Si/(Cr+Ti+Al))は、1.00以上7.00以下が好ましい。比(Si/(Cr+Ti+Al))が1.00以上である合金は、放電容量が大きい。この観点から、比(Si/(Cr+Ti+Al))は2.00以上が特に好ましい。比(Si/(Cr+Ti+Al))が7.00以下である合金は、充電時の膨張及び放電時の収縮によって生じる応力が緩和される。さらに、比(Si/(Cr+Ti+Al))が7.00以下である合金では、充電反応及び放電反応が円滑になされうる。これらの観点から、比(Si/(Cr+Ti+Al))は6.00以下が特に好ましい。 The ratio (Si / (Cr + Ti + Al)) of the Si content (at.%) To the total content (at.%) Of Cr, Ti and Al in the alloy is preferably 1.00 or more and 7.00 or less. An alloy having a ratio (Si / (Cr + Ti + Al)) of 1.00 or more has a large discharge capacity. In this respect, the ratio (Si / (Cr + Ti + Al)) is particularly preferably equal to or greater than 2.00. In an alloy having a ratio (Si / (Cr + Ti + Al)) of 7.00 or less, stress caused by expansion during charge and contraction during discharge is alleviated. Furthermore, in an alloy having a ratio (Si / (Cr + Ti + Al)) of 7.00 or less, a charging reaction and a discharging reaction can be performed smoothly. From these viewpoints, the ratio (Si / (Cr + Ti + Al)) is particularly preferably 6.00 or less.
 合金における、TiとAlとの合計含有率は、1.00at.%以上25.00at.%以下が好ましい。合計含有率が1.00at.%以上である合金は、電気伝導性に優れる。この観点から、合計含有率は3.00at.%以上が特に好ましい。合計含有率が25.00at.%以下である合金は、電池2の高容量と、優れたサイクル特性とに寄与しうる。この観点から、合計含有率は20.00at.%以下が特に好ましい。 The total content of Ti and Al in the alloy is 1.00 at. % Or more 25.00 at. % Or less is preferable. Total content is 1.00 at. % Or more of the alloy is excellent in electrical conductivity. From this viewpoint, the total content is 3.00 at. % Or more is particularly preferable. Total content is 25.00 at. % Or less of the alloy can contribute to the high capacity of the battery 2 and excellent cycle characteristics. From this viewpoint, the total content is 20.00 at. % Or less is particularly preferable.
 合金における、Cr、Ti及びAlの合計含有率(at.%)に対する、Alの含有率(at.%)の比(Al/(Cr+Ti+Al))は、0.01以上0.50以下が好ましい。比(Al/(Cr+Ti+Al))が0.01以上である合金では、Si相が電気伝導性に優れる。さらに、この合金は、Si相と化合物相との間の電気伝導性にも優れる。これらの観点から、比(Al/(Cr+Ti+Al))は0.04以上が特に好ましい。比(Al/(Cr+Ti+Al))が0.50以下である合金では、Si相がAlで被われにくい。この合金では、AlがSiとリチウムイオンとの反応を阻害しない。この合金の放電容量は大きい。この合金の放電容量維持率は、大きい。これらの観点から、比(Al/(Cr+Ti+Al))は0.40以下が特に好ましい。 The ratio (Al / (Cr + Ti + Al)) of the Al content (at.%) To the total content (at.%) Of Cr, Ti and Al in the alloy is preferably 0.01 or more and 0.50 or less. In an alloy having a ratio (Al / (Cr + Ti + Al)) of 0.01 or more, the Si phase is excellent in electrical conductivity. Furthermore, this alloy is also excellent in electrical conductivity between the Si phase and the compound phase. From these viewpoints, the ratio (Al / (Cr + Ti + Al)) is particularly preferably 0.04 or more. In an alloy having a ratio (Al / (Cr + Ti + Al)) of 0.50 or less, the Si phase is not easily covered with Al. In this alloy, Al does not inhibit the reaction between Si and lithium ions. The discharge capacity of this alloy is large. The discharge capacity retention rate of this alloy is large. From these viewpoints, the ratio (Al / (Cr + Ti + Al)) is particularly preferably 0.40 or less.
 好ましくは、合金は、Cu、V、Mn、Fe、Ni、Nb、Zn及びZrからなる群から選択される1種又は2種以上の元素を含む。これらの元素は、Siと共晶合金を形成しうるので、微細なSi相が生成されうる。これらの元素は、柔軟で電気伝導性に優れた化合物を形成しうる。この化合物は、Si相を取り囲む。この化合物は、充電時の膨張及び放電時の収縮によって生じる応力を緩和する。この化合物は、Si相の電気的孤立を防ぐ。これらの観点から、これらの元素の合計含有率は0.05at.%以上が好ましく、0.1at.%以上が特に好ましい。合金の放電容量が大きいとの観点から、これらの元素の合計含有率は15at.%以下が好ましく、9at.%以下が特に好ましい。 Preferably, the alloy includes one or more elements selected from the group consisting of Cu, V, Mn, Fe, Ni, Nb, Zn, and Zr. Since these elements can form a eutectic alloy with Si, a fine Si phase can be generated. These elements can form a compound that is flexible and excellent in electrical conductivity. This compound surrounds the Si phase. This compound relieves stress caused by expansion during charging and contraction during discharging. This compound prevents electrical isolation of the Si phase. From these viewpoints, the total content of these elements is 0.05 at. % Or more, 0.1 at. % Or more is particularly preferable. From the viewpoint that the discharge capacity of the alloy is large, the total content of these elements is 15 at. % Or less, preferably 9 at. % Or less is particularly preferable.
 好ましくは、合金は、Mg、B、P、Ga及びCからなる群から選択される1種又は2種以上の元素を含む。これらの元素は、柔軟で電気伝導性に優れた化合物を形成しうる。この化合物は、Si相を取り囲む。この化合物は、充電時の膨張及び放電時の収縮によって生じる応力を緩和する。この化合物は、Si相の電気的孤立を防ぐ。これらの観点から、これらの元素の合計含有率は0.05at.%以上が好ましく、0.1at.%以上が特に好ましい。合金の放電容量が大きいとの観点から、これらの元素の合計含有率は10at.%以下が好ましく、7at.%以下が特に好ましい。 Preferably, the alloy contains one or more elements selected from the group consisting of Mg, B, P, Ga and C. These elements can form a compound that is flexible and excellent in electrical conductivity. This compound surrounds the Si phase. This compound relieves stress caused by expansion during charging and contraction during discharging. This compound prevents electrical isolation of the Si phase. From these viewpoints, the total content of these elements is 0.05 at. % Or more, 0.1 at. % Or more is particularly preferable. From the viewpoint that the discharge capacity of the alloy is large, the total content of these elements is 10 at. % Or less, preferably 7 at. % Or less is particularly preferable.
 Bを含む合金では、Si相がP型半導体構造を有しうる。このSi相は、電気伝導性に優れる。 In an alloy containing B, the Si phase may have a P-type semiconductor structure. This Si phase is excellent in electrical conductivity.
 Pを含む合金では、Si相がN型半導体構造を有しうる。このSi相は、電気伝導性に優れる。 In an alloy containing P, the Si phase may have an N-type semiconductor structure. This Si phase is excellent in electrical conductivity.
 合金が、Co、Pd、Bi、In、Sb、Sn又はMoを含んでもよい。これらの元素も、放電容量維持率の向上に寄与しうる。これらの元素の合計含有率は、0.05at.%以上10at.%以下が好ましい。 The alloy may contain Co, Pd, Bi, In, Sb, Sn, or Mo. These elements can also contribute to the improvement of the discharge capacity retention rate. The total content of these elements is 0.05 at. % Or more and 10 at. % Or less is preferable.
 好ましくは、合金は、Nを含む。Nを含む合金は、脆い。この合金では、小さな粒子径が容易に達成されうる。この観点から、Nの含有率(質量百分率)は0.001mass%以上が好ましく、0.01mass%以上が特に好ましい。負電極における粒子22の離脱の防止の観点、及び粒子22の電気的孤立の防止の観点から、Nの含有率は1mass%以下が好ましく、0.1mass%以下が特に好ましい。 Preferably, the alloy contains N. An alloy containing N is brittle. With this alloy, small particle sizes can be easily achieved. In this respect, the N content (mass percentage) is preferably equal to or greater than 0.001 mass%, and particularly preferably equal to or greater than 0.01 mass%. From the viewpoint of preventing the separation of the particles 22 at the negative electrode and the viewpoint of preventing the electrical isolation of the particles 22, the N content is preferably 1 mass% or less, and particularly preferably 0.1 mass% or less.
 粒子(粉末)は、単ロール冷却法、ガスアトマイズ法、ディスクアトマイズ法等によって製作されうる。サイズの小さな粒子22が得られるには、溶融した原料の急冷が必要である。冷却速度は、100℃/s以上が好ましい。 Particles (powder) can be produced by a single roll cooling method, a gas atomizing method, a disk atomizing method or the like. In order to obtain particles 22 having a small size, it is necessary to quench the molten raw material. The cooling rate is preferably 100 ° C./s or more.
 単ロール冷却法では、底部に細孔を有する石英管の中に、原料が投入される。この原料が、アルゴンガス雰囲気中で、高周波誘導炉によって加熱され、溶融する。細孔から流出する原料が、銅ロールの表面に落とされて冷却され、リボンが得られる。このリボンが、ボールと共にポットに投入される。ボールの材質として、ジルコニア、SUS304及びSUJ2が例示される。ポットの材質として、ジルコニア、SUS304及びSUJ2が例示される。ポットの中にアルゴンガスが充満され、このポットが密閉される。このリボンがミリングにより粉砕され、粒子22が得られる。ミリングとして、ボールミル、ビーズミル、遊星ボールミル、アトライタ及び振動ボールミルが例示される。 In the single roll cooling method, raw materials are put into a quartz tube having pores at the bottom. This raw material is heated and melted by a high frequency induction furnace in an argon gas atmosphere. The raw material flowing out from the pores is dropped on the surface of the copper roll and cooled to obtain a ribbon. This ribbon is put into the pot together with the ball. Examples of the ball material include zirconia, SUS304, and SUJ2. Examples of the pot material include zirconia, SUS304, and SUJ2. The pot is filled with argon gas and the pot is sealed. The ribbon is pulverized by milling to obtain particles 22. Examples of milling include a ball mill, a bead mill, a planetary ball mill, an attritor, and a vibrating ball mill.
 ガスアトマイズ法では、底部に細孔を有する石英坩堝の中に、原料が投入される。この原料が、アルゴンガス雰囲気中で、高周波誘導炉によって加熱され、溶融する。アルゴンガス雰囲気において、細孔から流出する原料に、アルゴンガスが噴射される。原料は急冷されて凝固し、粒子22が得られる。 In the gas atomization method, raw materials are put into a quartz crucible having pores at the bottom. This raw material is heated and melted by a high frequency induction furnace in an argon gas atmosphere. In an argon gas atmosphere, argon gas is injected onto the raw material flowing out from the pores. The raw material is quenched and solidified to obtain particles 22.
 ディスクアトマイズ法では、底部に細孔を有する石英坩堝の中に、原料が投入される。この原料が、アルゴンガス雰囲気中で、高周波誘導炉によって加熱され、溶融する。アルゴンガス雰囲気において、細孔から流出する原料が、高速で回転するディスクの上に落とされる。回転速度は、40000rpmから60000rpmである。ディスクによって原料は急冷され、凝固して、粉末が得られる。この粉末が、ボールと共にポットに投入される。ボールの材質として、ジルコニア、SUS304及びSUJ2が例示される。ポットの材質として、ジルコニア、SUS304及びSUJ2が例示される。ポットの中にアルゴンガスが充満され、このポットが密閉される。このリボンがミリングにより粉砕され、粒子22が得られる。ミリングとして、ボールミル、ビーズミル、遊星ボールミル、アトライタ及び振動ボールミルが例示される。 In the disc atomization method, raw materials are put into a quartz crucible having pores at the bottom. This raw material is heated and melted by a high frequency induction furnace in an argon gas atmosphere. In an argon gas atmosphere, the raw material flowing out from the pores is dropped onto a disk that rotates at high speed. The rotation speed is 40000 rpm to 60000 rpm. The raw material is rapidly cooled by the disk and solidified to obtain a powder. This powder is put into a pot together with a ball. Examples of the ball material include zirconia, SUS304, and SUJ2. Examples of the pot material include zirconia, SUS304, and SUJ2. The pot is filled with argon gas and the pot is sealed. The ribbon is pulverized by milling to obtain particles 22. Examples of milling include a ball mill, a bead mill, a planetary ball mill, an attritor, and a vibrating ball mill.
 以下、実施例によって本発明の効果を明らかにするが、この実施例の記載に基づいて本発明が限定的に解釈されるべきではない。 Hereinafter, the effects of the present invention will be clarified by examples. However, the present invention should not be interpreted in a limited manner based on the description of the examples.
 本発明に係る負極材料の効果を、二極式コイン型セルを用いて確認した。まず、表1~表5に示された組成の原料を準備した。各原料から、前述の単ロール冷却法、ガスアトマイズ法又はディスクアトマイズ法により、粒子を製作した。多数の粒子、導電材(アセチレンブラック)、結着材(ポリイミド、ポリフッ化ビニリデン等)及び分散液(N-メチルピロリドン)を混合し、スラリーを得た。このスラリーを、集電体である銅箔の上に塗布した。このスラリーを、真空乾燥機で減圧乾燥した。乾燥温度は、ポリイミドが結着材である場合は200℃以上であり、ポリフッ化ビニリデンが結着材である場合は160℃以上であった。この乾燥によって溶媒を蒸発させ、活物質層を得た。この活物質層及び銅箔を、ロールにて押圧した。この活物質層及び銅箔をコイン型セルに適した形状に打ち抜き、負極を得た。 The effect of the negative electrode material according to the present invention was confirmed using a bipolar coin cell. First, raw materials having the compositions shown in Tables 1 to 5 were prepared. Particles were produced from each raw material by the above-described single roll cooling method, gas atomization method or disk atomization method. A large number of particles, a conductive material (acetylene black), a binder (polyimide, polyvinylidene fluoride, etc.) and a dispersion (N-methylpyrrolidone) were mixed to obtain a slurry. This slurry was apply | coated on the copper foil which is a collector. This slurry was dried under reduced pressure using a vacuum dryer. The drying temperature was 200 ° C. or higher when polyimide was the binder, and 160 ° C. or higher when polyvinylidene fluoride was the binder. The solvent was evaporated by this drying to obtain an active material layer. The active material layer and the copper foil were pressed with a roll. This active material layer and copper foil were punched into a shape suitable for a coin-type cell to obtain a negative electrode.
 電解液として、エチレンカーボネートとジメチルカーボネートの混合溶媒を準備した。両者の質量比は、3:7であった。さらに、支持電解質として、六フッ化リン酸リチウム(LiPF)を準備した。この支持電解質の量は、電解液に対して1モルである。この支持電解質を、電解液に溶解させた。 A mixed solvent of ethylene carbonate and dimethyl carbonate was prepared as an electrolytic solution. The mass ratio of both was 3: 7. Furthermore, lithium hexafluorophosphate (LiPF 6 ) was prepared as a supporting electrolyte. The amount of the supporting electrolyte is 1 mol with respect to the electrolytic solution. This supporting electrolyte was dissolved in the electrolytic solution.
 コイン型セルに適した形状のセパレータ及び正極を、準備した。この正極は、リチウムからなる。減圧下で電解液にセパレータを浸漬し、5時間放置して、セパレータに電解液を充分に浸透させた。 A separator and a positive electrode having a shape suitable for a coin-type cell were prepared. This positive electrode is made of lithium. The separator was immersed in the electrolytic solution under reduced pressure and allowed to stand for 5 hours to fully infiltrate the separator with the electrolytic solution.
 槽に、負極、セパレータ及び正極を組み込んだ。槽に電解液を充填し、コイン型セルを得た。なお、電解液は、露点管理された不活性雰囲気中で取り扱われる必要がある。従って、セルの組み立ては、不活性雰囲気のグローブボックスの中で行った。 A negative electrode, a separator and a positive electrode were incorporated in the tank. The tank was filled with an electrolytic solution to obtain a coin-type cell. In addition, it is necessary to handle electrolyte solution in the inert atmosphere by which dew point control was carried out. Therefore, the cell was assembled in a glove box with an inert atmosphere.
 下記の表1~表5において、No.1~66は本発明の実施例に係る負極材料の組成であり、No.67~74は比較例に係る負極材料の組成である。 In Tables 1 to 5 below, No. Nos. 1 to 66 are compositions of negative electrode materials according to examples of the present invention. 67 to 74 are compositions of the negative electrode material according to the comparative example.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 上記コイン型セルにて、温度が25℃であり、電流密度が0.50mA/cmである条件で、正極と負極との電位差が0Vとなるまで充電を行った。その後、電位差が1.5Vとなるまで放電を行った。この充電及び放電を、50サイクル繰り返した。初期の放電容量X及び50サイクルの充電及び放電を繰り返した後の放電容量Yを測定した。さらに、放電容量Xに対する放電容量Yの比率(維持率)を算出した。この結果が、下記の表6~表8に示されている。 In the coin-type cell, charging was performed until the potential difference between the positive electrode and the negative electrode became 0 V under the conditions that the temperature was 25 ° C. and the current density was 0.50 mA / cm 2 . Thereafter, discharging was performed until the potential difference became 1.5V. This charge and discharge was repeated 50 cycles. The initial discharge capacity X and the discharge capacity Y after 50 cycles of charging and discharging were measured. Furthermore, the ratio (maintenance rate) of the discharge capacity Y to the discharge capacity X was calculated. The results are shown in Tables 6 to 8 below.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 実施例1~11の負極材料は、Si相及びAl-Si-Cr化合物相を含む。Si相の結晶子サイズは30nm以下であり、化合物相の結晶子サイズは40nm以下である。 The negative electrode materials of Examples 1 to 11 include a Si phase and an Al—Si—Cr compound phase. The crystallite size of the Si phase is 30 nm or less, and the crystallite size of the compound phase is 40 nm or less.
 例えば、実施例4の負極材料は、前述の通り、Si相と化合物相とを含む。この負極材料では、Si相の結晶子サイズが3nmなので、この結晶子サイズは「30nm以下」の範囲に含まれる。この負極材料では、化合物相の結晶子サイズが4nmなので、この結晶子サイズは「40nm以下」の範囲に含まれる。この負極材料が用いられたセルでは、初期放電容量が1423mAh/gと大きく、50サイクル後の放電容量維持率が82%と大きい。 For example, the negative electrode material of Example 4 includes a Si phase and a compound phase as described above. In this negative electrode material, since the crystallite size of the Si phase is 3 nm, this crystallite size is included in the range of “30 nm or less”. In this negative electrode material, since the crystallite size of the compound phase is 4 nm, this crystallite size is included in the range of “40 nm or less”. In the cell using this negative electrode material, the initial discharge capacity is as large as 1423 mAh / g, and the discharge capacity retention rate after 50 cycles is as large as 82%.
 実施例12~22の負極材料は、Si相及びAl-Si-Ti化合物相を含む。Si相の結晶子サイズは30nm以下であり、化合物相の結晶子サイズは40nm以下である。 The negative electrode materials of Examples 12 to 22 include a Si phase and an Al—Si—Ti compound phase. The crystallite size of the Si phase is 30 nm or less, and the crystallite size of the compound phase is 40 nm or less.
 例えば、実施例14の負極材料は、前述の通り、Si相と化合物相とを含む。この負極材料では、Si相の結晶子サイズが7nmなので、この結晶子サイズは「30nm以下」の範囲に含まれる。この負極材料では、化合物相の結晶子サイズが9nmなので、この結晶子サイズは「40nm以下」の範囲に含まれる。この負極材料が用いられたセルでは、初期放電容量が1578mAh/gと大きく、50サイクル後の放電容量維持率が88%と大きい。 For example, the negative electrode material of Example 14 includes a Si phase and a compound phase as described above. In this negative electrode material, since the crystallite size of the Si phase is 7 nm, this crystallite size is included in the range of “30 nm or less”. In this negative electrode material, since the crystallite size of the compound phase is 9 nm, this crystallite size is included in the range of “40 nm or less”. In the cell using this negative electrode material, the initial discharge capacity is as large as 1578 mAh / g, and the discharge capacity maintenance ratio after 50 cycles is as large as 88%.
 実施例23~36の負極材料は、Si相及びAl-Si-Cr-Ti化合物相を含む。Si相の結晶子サイズは30nm以下であり、化合物相の結晶子サイズは40nm以下である。 The negative electrode materials of Examples 23 to 36 include a Si phase and an Al—Si—Cr—Ti compound phase. The crystallite size of the Si phase is 30 nm or less, and the crystallite size of the compound phase is 40 nm or less.
 例えば、実施例25の負極材料は、前述の通り、Si相と化合物相とを含む。この負極材料では、Si相の結晶子サイズが1nmなので、この結晶子サイズは「30nm以下」の範囲に含まれる。この負極材料では、化合物相の結晶子サイズが3nmなので、この結晶子サイズは「40nm以下」の範囲に含まれる。この負極材料が用いられたセルでは、初期放電容量が1291mAh/gと大きく、50サイクル後の放電容量維持率が94%と大きい。 For example, the negative electrode material of Example 25 includes a Si phase and a compound phase as described above. In this negative electrode material, since the crystallite size of the Si phase is 1 nm, this crystallite size is included in the range of “30 nm or less”. In this negative electrode material, since the crystallite size of the compound phase is 3 nm, this crystallite size is included in the range of “40 nm or less”. In the cell using this negative electrode material, the initial discharge capacity is as large as 1291 mAh / g, and the discharge capacity retention rate after 50 cycles is as large as 94%.
 実施例37~49の負極材料は、Si相及び化合物相を含む。それぞれの化合物相は、Al、Si、Cr及びTiを含む。この化合物相はさらに、他の添加元素(Cu、V、Mn、Fe、Ni、Nb、Pd、Zn、Zr、Mg、B、P、Ga、C又はN)を含む。Si相の結晶子サイズは30nm以下であり、化合物相の結晶子サイズは40nm以下である。 The negative electrode materials of Examples 37 to 49 include a Si phase and a compound phase. Each compound phase contains Al, Si, Cr and Ti. This compound phase further contains other additive elements (Cu, V, Mn, Fe, Ni, Nb, Pd, Zn, Zr, Mg, B, P, Ga, C, or N). The crystallite size of the Si phase is 30 nm or less, and the crystallite size of the compound phase is 40 nm or less.
 例えば、実施例49の負極材料は、前述の通り、Si相と化合物相とを含む。この負極材料では、Si相の結晶子サイズが2nmなので、この結晶子サイズは「30nm以下」の範囲に含まれる。この負極材料では、化合物相の結晶子サイズが4nmなので、この結晶子サイズは「40nm以下」の範囲に含まれる。この負極材料が用いられたセルでは、初期放電容量が1590mAh/gと大きく、50サイクル後の放電容量維持率が86%と大きい。 For example, the negative electrode material of Example 49 includes a Si phase and a compound phase as described above. In this negative electrode material, since the crystallite size of the Si phase is 2 nm, this crystallite size is included in the range of “30 nm or less”. In this negative electrode material, since the crystallite size of the compound phase is 4 nm, this crystallite size is included in the range of “40 nm or less”. In the cell using this negative electrode material, the initial discharge capacity is as large as 1590 mAh / g, and the discharge capacity retention rate after 50 cycles is as large as 86%.
 実施例50~66の負極材料は、Si相及び化合物相を含む。それぞれの化合物相は、Al、Si、Cr及びTiを含む。この化合物相はさらに、他の添加元素(Cu、V、Mn、Fe、Ni、Nb、Pd、Zn、Zr、Mg、B、P、Ga、C、N、Co、Pd、Bi、In、Sb、Sn又はMo)を含む。Si相の結晶子サイズは30nm以下であり、化合物相の結晶子サイズは40nm以下である。 The negative electrode materials of Examples 50 to 66 include a Si phase and a compound phase. Each compound phase contains Al, Si, Cr and Ti. This compound phase further includes other additive elements (Cu, V, Mn, Fe, Ni, Nb, Pd, Zn, Zr, Mg, B, P, Ga, C, N, Co, Pd, Bi, In, Sb. , Sn or Mo). The crystallite size of the Si phase is 30 nm or less, and the crystallite size of the compound phase is 40 nm or less.
 例えば、実施例63の負極材料は、前述の通り、Si相と化合物相とを含む。この負極材料では、Si相の結晶子サイズが3nmなので、この結晶子サイズは「30nm以下」の範囲に含まれる。この負極材料では、化合物相の結晶子サイズが6nmなので、この結晶子サイズは「40nm以下」の範囲に含まれる。この負極材料が用いられたセルでは、初期放電容量が1654mAh/gと大きく、50サイクル後の放電容量維持率が82%と大きい。 For example, the negative electrode material of Example 63 includes the Si phase and the compound phase as described above. In this negative electrode material, since the crystallite size of the Si phase is 3 nm, this crystallite size is included in the range of “30 nm or less”. In this negative electrode material, since the crystallite size of the compound phase is 6 nm, this crystallite size is included in the range of “40 nm or less”. In the cell using this negative electrode material, the initial discharge capacity is as large as 1654 mAh / g, and the discharge capacity retention rate after 50 cycles is as large as 82%.
 比較例67の負極材料は、Si相の結晶子サイズは30nm以下であり、化合物相の結晶子サイズは40nm以下であるが、Alを含まない。比較例68の負極材料は、Alを含まず、かつSi相の結晶子サイズが30nmを越えている。比較例69の負極材料は、Alを含まず、かつ化合物相の結晶子サイズが40nmを越えている。比較例70の負極材料は、Alを含まず、Si相の結晶子サイズが30nmを越えており、かつ化合物相の結晶子サイズが40nmを越えている。 The negative electrode material of Comparative Example 67 has a Si phase crystallite size of 30 nm or less and a compound phase crystallite size of 40 nm or less, but does not contain Al. The negative electrode material of Comparative Example 68 does not contain Al, and the Si crystallite size exceeds 30 nm. The negative electrode material of Comparative Example 69 does not contain Al, and the crystallite size of the compound phase exceeds 40 nm. The negative electrode material of Comparative Example 70 does not contain Al, the Si phase crystallite size exceeds 30 nm, and the compound phase crystallite size exceeds 40 nm.
 比較例71の負極材料は、Si相の結晶子サイズは30nm以下であり、化合物相の結晶子サイズは40nm以下であるが、Cr及びTiを含まない。比較例72の負極材料は、Cr及びTiを含まず、かつSi相の結晶子サイズが30nmを越えている。比較例73の負極材料は、Si相の結晶子サイズは30nm以下であるが、Cr及びTiを含まず、かつ化合物相の結晶子サイズが40nmを越えている。比較例74の負極材料は、Cr及びTiを含まず、Si相の結晶子サイズが30nmを越えており、化合物相の結晶子サイズが40nmを越えている。 The negative electrode material of Comparative Example 71 has a Si phase crystallite size of 30 nm or less and a compound phase crystallite size of 40 nm or less, but does not contain Cr and Ti. The negative electrode material of Comparative Example 72 does not contain Cr and Ti, and the crystallite size of the Si phase exceeds 30 nm. The negative electrode material of Comparative Example 73 has a Si phase crystallite size of 30 nm or less, but does not contain Cr and Ti, and the compound phase crystallite size exceeds 40 nm. The negative electrode material of Comparative Example 74 does not contain Cr and Ti, the crystallite size of the Si phase exceeds 30 nm, and the crystallite size of the compound phase exceeds 40 nm.
 表6~表8に示された評価結果から、本発明の優位性は明らかである。 From the evaluation results shown in Tables 6 to 8, the superiority of the present invention is clear.
 以上説明された負極は、リチウムイオン二次電池のみならず、全固体リチウムイオン二次電池、ハイブリットキャパシタ等の蓄電デバイスにも適用されうる。 The negative electrode described above can be applied not only to a lithium ion secondary battery but also to an electricity storage device such as an all-solid lithium ion secondary battery or a hybrid capacitor.
 2・・・リチウムイオン二次電池
 6・・・電解液
 8・・・セパレータ
 10・・・正極
 12・・・負極
 18・・・集電体
 20・・・活物質層
 22・・・粒子
2 ... Lithium ion secondary battery 6 ... Electrolyte solution 8 ... Separator 10 ... Positive electrode 12 ... Negative electrode 18 ... Current collector 20 ... Active material layer 22 ... Particle

Claims (13)

  1.  Si系合金からなり、このSi系合金が、
     (1)Siが主成分であり、その結晶子サイズが30nm以下であるSi相、
    並びに
     (2)Si及びAlを含み、さらにCr又はTiを含んでおり、その結晶子サイズが40nm以下である化合物相
    を有する、蓄電デバイスの負極材料。
    Made of Si-based alloy, this Si-based alloy
    (1) Si phase whose main component is Si and whose crystallite size is 30 nm or less,
    And (2) A negative electrode material for an electricity storage device comprising a compound phase containing Si and Al, further containing Cr or Ti, and having a crystallite size of 40 nm or less.
  2.  前記化合物相が、Si、Cr、Ti及びAlを含んでいる、請求項1に記載の負極材料。 The negative electrode material according to claim 1, wherein the compound phase contains Si, Cr, Ti, and Al.
  3.  前記Si相が、Siに固溶するAlを含んでおり、
     前記Si系合金がAl単相をさらに有する、請求項1又は2に記載の負極材料。
    The Si phase contains Al that is dissolved in Si;
    The negative electrode material according to claim 1, wherein the Si-based alloy further has an Al single phase.
  4.  前記Si系合金における、CrとTiとの合計含有率が0.05at.%以上30at.%以下であり、Alの含有率が0.05at.%以上15at.%以下である、請求項1又は2に記載の負極材料。 The total content of Cr and Ti in the Si-based alloy is 0.05 at. % Or more and 30 at. %, And the Al content is 0.05 at. % Or more and 15 at. The negative electrode material according to claim 1 or 2, which is not more than%.
  5.  前記Si系合金における、Cr、Ti及びAlの合計含有率(at.%)に対する、Siの含有率(at.%)の比(Si/(Cr+Ti+Al))が、1.00以上7.00以下である、請求項1又は2に記載の負極材料。 The ratio (Si / (Cr + Ti + Al)) of Si content (at.%) To the total content (at.%) Of Cr, Ti and Al in the Si-based alloy is 1.00 or more and 7.00 or less. The negative electrode material according to claim 1 or 2, wherein
  6.  前記Si系合金における、TiとAlとの合計含有率が、1.00at.%以上25.00at.%以下である、請求項1又は2に記載の負極材料。 The total content of Ti and Al in the Si-based alloy is 1.00 at. % Or more 25.00 at. The negative electrode material according to claim 1 or 2, which is not more than%.
  7.  前記Si系合金における、Cr、Ti及びAlの合計含有率(at.%)に対する、Alの含有率(at.%)の比(Al/(Cr+Ti+Al))が、0.01以上0.50以下である、請求項1又は2に記載の負極材料。 The ratio of Al content (at.%) To the total content (at.%) Of Cr, Ti and Al in the Si-based alloy (Al / (Cr + Ti + Al)) is 0.01 or more and 0.50 or less. The negative electrode material according to claim 1 or 2, wherein
  8.  前記比(Al/(Cr+Ti+Al))が0.04以上0.40以下である、請求項7に記載の負極材料。 The negative electrode material according to claim 7, wherein the ratio (Al / (Cr + Ti + Al)) is 0.04 or more and 0.40 or less.
  9.  前記Si系合金が、Cu、V、Mn、Fe、Ni、Nb、Zn及びZrからなる群から選択される1種又は2種以上の元素を含んでおり、これらの元素の合計含有率が0.05at.%以上15at.%以下である、請求項1又は2に記載の負極材料。 The Si-based alloy contains one or more elements selected from the group consisting of Cu, V, Mn, Fe, Ni, Nb, Zn, and Zr, and the total content of these elements is 0. .05at. % Or more and 15 at. The negative electrode material according to claim 1 or 2, which is not more than%.
  10.  前記Si系合金が、Mg、B、P、Ga及びCからなる群から選択される1種又は2種以上の元素を含んでおり、これらの元素の合計含有率が0.05at.%以上10at.%以下である、請求項1又は2に記載の負極材料。 The Si-based alloy contains one or more elements selected from the group consisting of Mg, B, P, Ga and C, and the total content of these elements is 0.05 at. % Or more and 10 at. The negative electrode material according to claim 1 or 2, which is not more than%.
  11.  前記Si系合金がNを含んでおり、このNの含有率が0.001mass%以上1mass%以下である、請求項1又は2に記載の負極材料。 The negative electrode material according to claim 1 or 2, wherein the Si-based alloy contains N, and the content of N is 0.001 mass% or more and 1 mass% or less.
  12.  集電体と、この集電体の表面に固着した多数の粒子とを備えており、
     前記粒子が、Si系合金からなり、
     このSi系合金が、
     (1)Siが主成分であり、その結晶子サイズが30nm以下であるSi相、
    並びに
     (2)Si及びAlを含み、さらにCr又はTiを含んでおり、その結晶子サイズが40nm以下である化合物相
    を有する、蓄電デバイスの負極。
    A current collector and a large number of particles fixed to the surface of the current collector;
    The particles are made of a Si-based alloy,
    This Si alloy is
    (1) Si phase whose main component is Si and whose crystallite size is 30 nm or less,
    And (2) A negative electrode of an electricity storage device comprising a compound phase containing Si and Al, further containing Cr or Ti, and having a crystallite size of 40 nm or less.
  13.  正極と負極とを備えており、
     前記負極が、集電体と、この集電体の表面に固着した多数の粒子とを備えており、
     前記粒子が、Si系合金からなり、
     このSi系合金が、
     (1)Siが主成分であり、その結晶子サイズが30nm以下であるSi相、
    並びに
     (2)Si及びAlを含み、さらにCr又はTiを含んでおり、その結晶子サイズが40nm以下である化合物相
    を有する、蓄電デバイス。
    A positive electrode and a negative electrode,
    The negative electrode comprises a current collector and a number of particles fixed to the surface of the current collector;
    The particles are made of a Si-based alloy,
    This Si alloy is
    (1) Si phase whose main component is Si and whose crystallite size is 30 nm or less,
    And (2) An electricity storage device having a compound phase containing Si and Al, further containing Cr or Ti, and having a crystallite size of 40 nm or less.
PCT/JP2015/053670 2014-03-13 2015-02-10 Negative electrode material for electricity storage devices WO2015137034A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167023588A KR20160132384A (en) 2014-03-13 2015-02-10 Negative electrode material for electricity storage devices
CN201580012017.1A CN106104863B (en) 2014-03-13 2015-02-10 The negative electrode material of electrical storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-050541 2014-03-13
JP2014050541A JP6374678B2 (en) 2014-03-13 2014-03-13 Negative electrode materials for electricity storage devices

Publications (1)

Publication Number Publication Date
WO2015137034A1 true WO2015137034A1 (en) 2015-09-17

Family

ID=54071486

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/053670 WO2015137034A1 (en) 2014-03-13 2015-02-10 Negative electrode material for electricity storage devices

Country Status (5)

Country Link
JP (1) JP6374678B2 (en)
KR (1) KR20160132384A (en)
CN (1) CN106104863B (en)
TW (1) TWI650895B (en)
WO (1) WO2015137034A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105506471A (en) * 2015-12-09 2016-04-20 苏州市吴中区胥口丰收机械配件厂 High-strength spring and processing technology thereof
CN106939389A (en) * 2017-05-17 2017-07-11 安徽巨泰机械制造有限公司 A kind of agricultural machinery alloy-steel casting and its preparation technology
CN107326216A (en) * 2017-07-24 2017-11-07 衢州华意拉链有限公司 Corrosion-resistant kirsite and its preparation technology for making slide fastener
JP2017228403A (en) * 2016-06-21 2017-12-28 山陽特殊製鋼株式会社 Negative electrode material for power storage device
WO2018193864A1 (en) * 2017-04-17 2018-10-25 山陽特殊製鋼株式会社 Negative electrode material for power storage device
CN115004410A (en) * 2020-01-31 2022-09-02 松下知识产权经营株式会社 Negative electrode active material for secondary battery and secondary battery
WO2023053887A1 (en) * 2021-09-28 2023-04-06 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary battery, and secondary battery

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105839022B (en) * 2016-03-31 2021-04-09 宝钢德盛不锈钢有限公司 High-hardness non-magnetic nickel-free stainless steel and manufacturing method thereof
JP6705302B2 (en) * 2016-06-16 2020-06-03 日産自動車株式会社 Negative electrode active material for electric device and electric device using the same
JP6859930B2 (en) * 2017-09-14 2021-04-14 株式会社豊田自動織機 Al-containing silicon material
WO2019053983A1 (en) * 2017-09-14 2019-03-21 株式会社豊田自動織機 Negative electrode active material containing al-containing silicon material
WO2019053985A1 (en) * 2017-09-14 2019-03-21 株式会社豊田自動織機 Negative electrode active material containing al-containing silicon material
WO2019053984A1 (en) * 2017-09-14 2019-03-21 株式会社豊田自動織機 Negative electrode active substance comprising al-containing silicon material
CN109457168B (en) * 2018-12-24 2021-07-06 宁波正直科技有限公司 Gas pipe alloy of household gas stove, preparation method thereof and gas pipe
CN110195187B (en) * 2019-05-17 2020-06-05 北京科技大学 High-elasticity-modulus automobile steel material and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012150910A (en) * 2011-01-17 2012-08-09 Sanyo Special Steel Co Ltd Si ALLOY POWDER FOR LITHIUM ION SECONDARY BATTERY NEGATIVE ELECTRODE AND MANUFACTURING METHOD FOR THE SAME
JP2012178344A (en) * 2011-02-02 2012-09-13 Hitachi Chem Co Ltd Compound material and method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2014160554A (en) * 2013-02-19 2014-09-04 Sanyo Special Steel Co Ltd Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL FOR POWER STORAGE DEVICE, AND ELECTRODE USING THE SAME
JP2014186992A (en) * 2013-02-19 2014-10-02 Sanyo Special Steel Co Ltd Silicon-based alloy negative electrode material for electric power storage device, and electrode arranged by use thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3277845B2 (en) 1997-05-12 2002-04-22 住友金属工業株式会社 Method for producing negative electrode material for lithium ion secondary battery
JP2001297757A (en) 2000-04-14 2001-10-26 Sumitomo Metal Ind Ltd Negative electrode material for nonaqueous electrolyte secondary cell and its manufacturing method
JP3643108B2 (en) 2003-07-23 2005-04-27 三井金属鉱業株式会社 Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3750117B2 (en) 2002-11-29 2006-03-01 三井金属鉱業株式会社 Negative electrode for nonaqueous electrolyte secondary battery, method for producing the same, and nonaqueous electrolyte secondary battery
CN101527358A (en) * 2009-04-08 2009-09-09 西安交通大学 Application of silicon-aluminum base ternary alloy as cathode material of lithium ion battery
JP5621753B2 (en) * 2011-11-15 2014-11-12 信越化学工業株式会社 Anode material for lithium ion battery
CN102593440A (en) * 2011-12-01 2012-07-18 湖北中能锂电科技有限公司 Cathode materials for lithium ion battery and producing method thereof
CN102569757B (en) * 2011-12-23 2014-01-29 西安交通大学 Process for preparing materials of negative electrodes of copper-silicon-aluminum nano-porous lithium-ion batteries
JP6322362B2 (en) * 2012-02-01 2018-05-09 山陽特殊製鋼株式会社 Si alloy negative electrode material

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012150910A (en) * 2011-01-17 2012-08-09 Sanyo Special Steel Co Ltd Si ALLOY POWDER FOR LITHIUM ION SECONDARY BATTERY NEGATIVE ELECTRODE AND MANUFACTURING METHOD FOR THE SAME
JP2012178344A (en) * 2011-02-02 2012-09-13 Hitachi Chem Co Ltd Compound material and method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2014160554A (en) * 2013-02-19 2014-09-04 Sanyo Special Steel Co Ltd Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL FOR POWER STORAGE DEVICE, AND ELECTRODE USING THE SAME
JP2014186992A (en) * 2013-02-19 2014-10-02 Sanyo Special Steel Co Ltd Silicon-based alloy negative electrode material for electric power storage device, and electrode arranged by use thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105506471A (en) * 2015-12-09 2016-04-20 苏州市吴中区胥口丰收机械配件厂 High-strength spring and processing technology thereof
JP2017228403A (en) * 2016-06-21 2017-12-28 山陽特殊製鋼株式会社 Negative electrode material for power storage device
WO2017221693A1 (en) * 2016-06-21 2017-12-28 山陽特殊製鋼株式会社 Negative electrode material for electricity storage devices
CN108701821A (en) * 2016-06-21 2018-10-23 山阳特殊制钢株式会社 Electrical storage device negative material
WO2018193864A1 (en) * 2017-04-17 2018-10-25 山陽特殊製鋼株式会社 Negative electrode material for power storage device
CN106939389A (en) * 2017-05-17 2017-07-11 安徽巨泰机械制造有限公司 A kind of agricultural machinery alloy-steel casting and its preparation technology
CN106939389B (en) * 2017-05-17 2018-08-10 安徽巨泰机械制造有限公司 A kind of agricultural machinery alloy-steel casting and its preparation process
CN107326216A (en) * 2017-07-24 2017-11-07 衢州华意拉链有限公司 Corrosion-resistant kirsite and its preparation technology for making slide fastener
CN115004410A (en) * 2020-01-31 2022-09-02 松下知识产权经营株式会社 Negative electrode active material for secondary battery and secondary battery
WO2023053887A1 (en) * 2021-09-28 2023-04-06 パナソニックIpマネジメント株式会社 Negative electrode active material for secondary battery, and secondary battery

Also Published As

Publication number Publication date
CN106104863A (en) 2016-11-09
TWI650895B (en) 2019-02-11
KR20160132384A (en) 2016-11-18
JP6374678B2 (en) 2018-08-15
JP2015176674A (en) 2015-10-05
CN106104863B (en) 2018-12-07
TW201537812A (en) 2015-10-01

Similar Documents

Publication Publication Date Title
JP6374678B2 (en) Negative electrode materials for electricity storage devices
JP6322362B2 (en) Si alloy negative electrode material
JP6371504B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP4739462B1 (en) Si-based alloy negative electrode material with excellent conductivity
JP6211961B2 (en) Negative electrode materials for electricity storage devices
JP6735060B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP6076772B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
WO2017221693A1 (en) Negative electrode material for electricity storage devices
JP6371635B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP6630632B2 (en) Anode materials for power storage devices
WO2018193864A1 (en) Negative electrode material for power storage device
JP7132781B2 (en) Anode materials for storage devices
JP2015090847A (en) Powder for negative electrode of power storage device
JP2014038832A (en) Material for negative electrode of electric power storage device
WO2018180212A1 (en) Negative electrode material for storage device
JP6045879B2 (en) Sn alloy powder used as a raw material of the negative electrode active material of a lithium ion secondary battery, and its manufacturing method.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15762243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167023588

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15762243

Country of ref document: EP

Kind code of ref document: A1