WO2015136992A1 - Method for recycling cooling water effluent and recycling apparatus - Google Patents

Method for recycling cooling water effluent and recycling apparatus Download PDF

Info

Publication number
WO2015136992A1
WO2015136992A1 PCT/JP2015/051685 JP2015051685W WO2015136992A1 WO 2015136992 A1 WO2015136992 A1 WO 2015136992A1 JP 2015051685 W JP2015051685 W JP 2015051685W WO 2015136992 A1 WO2015136992 A1 WO 2015136992A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
membrane
dispersant
cooling
reverse osmosis
Prior art date
Application number
PCT/JP2015/051685
Other languages
French (fr)
Japanese (ja)
Inventor
邦洋 早川
隆彦 内田
Original Assignee
栗田工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栗田工業株式会社 filed Critical 栗田工業株式会社
Priority to CN201580009395.4A priority Critical patent/CN106029580B/en
Priority to SG11201607245XA priority patent/SG11201607245XA/en
Publication of WO2015136992A1 publication Critical patent/WO2015136992A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/58Multistep processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/04Feed pretreatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/444Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by ultrafiltration or microfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • C02F2103/023Water in cooling circuits
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/22Eliminating or preventing deposits, scale removal, scale prevention
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances

Definitions

  • the present invention relates to a method and an apparatus for recovering cooling effluent in a cooling facility used in industrial processes such as building air conditioning, chemical industry, paper industry, steel industry, and electric power industry.
  • Scale failure occurs on heat transfer surfaces and piping that come into contact with water such as cooling water and boiler water.
  • water such as cooling water and boiler water.
  • salts dissolved in water are concentrated and the heat transfer surface is corroded.
  • scales as a sparingly soluble salt. If the scale adheres to the wall surface of the apparatus, a serious obstacle occurs in the operation of the boiler and heat exchanger, such as a decrease in thermal efficiency and blockage of piping.
  • System 5 is a simple system using only the RO membrane device, but the turbidity contained in the blow water clogs the RO membrane, so that stable treatment is difficult.
  • the RO membrane treatment can be stabilized by agglomeration treatment before the RO membrane or removing turbidity in the blown water with the pretreatment membrane.
  • the blow water contains a dispersant added in the circulating cooling water system, and this dispersant inhibits the aggregation treatment. For this reason, in the agglomeration treatment of the systems 1 to 3, the amount of the flocculant added for the treatment is very large.
  • a dispersing agent is required to disperse the scale components and stabilize the treatment with a high water recovery rate.
  • the dispersing agent in the blown water is removed by the aggregation treatment, It is necessary to add a dispersant to the RO membrane water supply in order to stabilize the scale dispersion and treatment in the membrane.
  • the dispersant in the blown water is removed by the pretreatment membrane. It is necessary to add a dispersant to the RO membrane water supply.
  • the present invention relates to a cooling drainage recovery method that reduces the water treatment cost and improves and stabilizes the water recovery rate when recovering the cooling drainage water such as blow water of the circulating cooling water system by performing RO membrane treatment. It is another object of the present invention to provide a recovery device.
  • the present inventors obtained the following knowledge as a result of intensive studies to solve the above problems.
  • cooling discharge water such as blow water of the circulating cooling water system
  • the pretreatment membrane of the RO membrane is a permeating dispersant added in the circulating cooling water system
  • the circulating cooling water system The dispersant added in the cooling discharge water can be effectively used as a dispersant for the RO membrane by permeating the pretreatment membrane, so that the addition of the dispersant in the water recovery system is not required or dispersed.
  • the additive amount can be reduced. Thereby, while reducing water treatment cost, the improvement and stabilization of a water recovery rate can be aimed at.
  • the present invention has been achieved on the basis of such findings, and the gist thereof is as follows.
  • Discharge water from the circulating cooling water system to which a dispersant for dispersing scale components is added is treated with a water recovery system including a pretreatment membrane and a reverse osmosis membrane, and the treated water is returned to the circulating cooling water system.
  • the dispersant is methacrylic acid and / or acrylic acid, 3-allyloxy-2-hydroxy-1-propanesulfonic acid and / or 2-acrylamido-2-methylpropanesulfonic acid.
  • a method for recovering cooling effluent which is a copolymer obtained by copolymerization of
  • the concentration of the dispersant in the reverse osmosis membrane feed water is measured, and the dispersion is added to the reverse osmosis membrane feed water so that the dispersant concentration becomes a predetermined concentration.
  • a method for recovering cooling effluent comprising adding an agent.
  • the conductivity of one or more of the discharged water, the reverse osmosis membrane water supply and the reverse osmosis membrane concentrated water is measured, and the measured value of the conductivity is obtained. Accordingly, the method for recovering the cooling effluent is characterized by adjusting the water recovery rate of the reverse osmosis membrane.
  • the dispersant concentration of the discharged water and / or reverse osmosis membrane water supply is measured, and the water of the reverse osmosis membrane is measured according to the measured value of the dispersant concentration.
  • [12] A method for recovering cooling discharged water according to any one of [1] to [11], wherein a polymer compound having a phenolic hydroxyl group is added to the discharged water.
  • a pretreatment membrane device through which drained water from the circulating cooling water system is passed, a reverse osmosis membrane device through which the permeated water of the pretreatment membrane device is passed, and a permeated water of the reverse osmosis membrane device
  • the circulating cooling water system has a dispersing agent adding means for adding a dispersing agent for dispersing the scale component to the aqueous system, and the dispersing agent is An apparatus for recovering cooling effluent, which passes through a pretreatment membrane.
  • the dispersant is methacrylic acid and / or acrylic acid, 3-allyloxy-2-hydroxy-1-propanesulfonic acid and / or 2-acrylamido-2-methylpropanesulfonic acid.
  • An apparatus for recovering cooling effluent which is a copolymer obtained by copolymerization of
  • a cooling drainage recovery apparatus characterized by having pH adjusting means for adjusting the pH of the reverse osmosis membrane feed water to 4.0 to 7.5 .
  • the dispersant concentration measuring means for measuring the dispersant concentration of the water supplied to the reverse osmosis membrane, and the dispersant concentration measured by the dispersant concentration measuring means
  • a cooling agent recovery means for adding the dispersing agent to the reverse osmosis membrane water supply so that the concentration of water becomes a predetermined concentration.
  • conductivity measuring means for measuring one or more of the discharged water, reverse osmosis membrane water supply, and reverse osmosis membrane concentrated water, and the conductivity measurement
  • a water recovery rate adjusting means for adjusting the water recovery rate of the reverse osmosis membrane according to the measured value of the means.
  • the dispersant concentration measuring means for measuring the dispersant concentration of the discharged water and / or the reverse osmosis membrane water supply, and the measured value of the dispersant concentration measuring means
  • a water recovery rate adjusting means for adjusting the water recovery rate of the reverse osmosis membrane.
  • the reverse osmosis membrane device is a permeated water circulating means for circulating the reverse osmosis membrane permeated water upstream of the reverse osmosis membrane device, or pure water or deionized water.
  • the cooling discharge water is treated with the pretreatment membrane before the RO membrane, so that the turbidity in the cooling drainage water can be removed and the subsequent RO membrane treatment can be stabilized.
  • the dispersing agent added in the circulating cooling water system and contained in the cooling discharge water permeates through the pretreatment membrane, so that the dispersing agent is effectively used as a dispersing agent for the RO membrane. can do.
  • membrane can be aimed at stabilization of RO membrane process and the improvement of a water recovery rate.
  • cooling drain water recovery method and recovery device of the present invention it is possible to prevent the scale failure of the RO membrane device with a simpler system and perform stable water recovery over a long period of time. .
  • cooling discharge water used for water recovery treatment typically includes blow water from a cooling tower, but is not limited to blow water, and the present invention includes all discharges discharged from a circulating cooling water system. Can be applied to water. For example, part or all of the circulating cooling water may be extracted from the circulating piping of the circulating cooling water system and treated according to the present invention, and then returned to the circulating cooling water system. In addition, it is possible to collect water from the discharged water branched and discharged from the side filter and light filter pipes.
  • cooling discharge water is treated as water to be treated and sequentially treated by the pretreatment membrane device and the RO device, and the treated water is returned to the circulating cooling water system.
  • the cooling discharge water can be treated as it is in the pretreatment membrane device, but since the cooling discharge water may contain coarse turbidity and foreign matter, a strainer is provided in the front stage of the pretreatment membrane device. It is preferable to perform turbidity treatment in the pretreatment membrane device after removing these in advance with a strainer. Operation is possible even if the strainer is omitted, but in this case, the pretreatment film may be damaged by coarse turbidity or foreign matter in the cooling discharge water.
  • an automatic strainer that performs a cleaning process automatically is particularly preferably used.
  • the shape of the strainer is not particularly limited, and any shape such as a Y shape or a bucket shape can be used.
  • the pore size of the strainer is preferably 100 to 500 ⁇ m.
  • the pore size of the strainer is smaller than 100 ⁇ m, the strainer is severely blocked.
  • the pore diameter of the strainer exceeds 500 ⁇ m, there is a high possibility that coarse turbidity or foreign matter that has passed through the strainer will damage the pretreatment film.
  • a filter such as a spool filter or a pleated filter may be used instead of the strainer.
  • a strainer is preferable in terms of replacement frequency and cleaning efficiency.
  • Pretreatment membrane device The cooled discharged water or the cooled discharged water after the turbidity treatment by the strainer is then processed by the pretreatment membrane device.
  • the pretreatment membrane device is for removing turbidity and colloidal components in the cooling discharge water that cause membrane contamination of the RO membrane device. It is a microfiltration membrane (MF membrane) and ultrafiltration membrane (UF membrane). Can be used.
  • the membrane type of the pretreatment membrane device is not particularly limited, and a hollow fiber type or spiral type membrane filtration device can be employed. There is no restriction
  • the molecular weight cutoff of the UF membrane which is a pretreatment membrane, is preferably 30,000 or more. If the molecular weight cut off of the UF membrane is smaller than 30,000, the dispersant in the cooling discharge water cannot be permeated, and it may be necessary to add the dispersant again before the RO membrane device. Although there is no restriction
  • the pore size of the MF membrane as the pretreatment membrane is preferably about 0.1 to 0.01 ⁇ m for the same reason as the molecular weight cut off of the UF membrane.
  • the transmittance of the below-described dispersant calculated by the following formula is preferably 80% or more, particularly 85% or more.
  • the upper limit of the transmittance of the dispersant in the pretreatment film is usually 100%.
  • the pH of the feed water of the pretreatment membrane is 5 or more.
  • the pH of the feed water of the pretreatment membrane is lower than 5, even if a polymer having a sulfonic acid group and a carboxyl group, which will be described later, is used as a dispersant, the transmittance of the pretreatment membrane is lowered, and the effect of the present invention is obtained. It may not be possible.
  • the pH of the feed water for the pretreatment membrane may be 5 or more, and the upper limit is not particularly limited.
  • cooling discharge water such as cooling tower blow water has a pH of 8 to 10, usually about 8 to 9, and it is preferably treated as it is with a pretreatment membrane device.
  • the dispersant added to the circulating cooling water system permeates the pretreatment membrane.
  • a polymer having a sulfonic acid group and a carboxyl group is preferably used. Dispersant dissociates and the function as a dispersant becomes higher as the pH is higher, but in the RO membrane device at the rear stage of the pretreatment membrane device, it is concentrated in the RO membrane device when the pH is high. Since calcium and the like are easily deposited as scales, the treatment is performed under low pH conditions as described later. In the RO membrane apparatus under such a low pH condition, if the dispersant has only a carboxyl group and does not have a sulfonic acid group, it becomes insoluble and cannot function as a dispersant. For this reason, it is preferable to use a polymer having a sulfonic acid group and a carboxyl group as the dispersant.
  • a polymer having a sulfonic acid group and a carboxyl group suitable as a dispersant a copolymer of a monomer having a sulfonic acid group and a monomer having a carboxyl group, or, further, these monomers And terpolymers with other monomers copolymerizable therewith.
  • Examples of the monomer having a sulfonic acid group include conjugated diene sulfonic acids such as 2-methyl-1,3-butadiene-1-sulfonic acid, and sulfonic acid groups such as 3- (meth) allyloxy-2-hydroxypropanesulfonic acid.
  • Unsaturated (meth) allyl ether monomer 2- (meth) acrylamide-2-methylpropanesulfonic acid, 2-hydroxy-3-acrylamidepropanesulfonic acid, styrenesulfonic acid, methallylsulfonic acid, vinylsulfone Acid, allyl sulfonic acid, isoamylene sulfonic acid, or salts thereof, preferably 3-allyloxy-2-hydroxy-1-propanesulfonic acid (HAPS), 2-acrylamido-2-methylpropanesulfonic acid (AMPS) ).
  • HAPS 3-allyloxy-2-hydroxy-1-propanesulfonic acid
  • AMPS 2-acrylamido-2-methylpropanesulfonic acid
  • the monomer having a sulfonic acid group one type may be used alone, or two or more types may be mixed and used.
  • the monomer having a carboxyl group acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, vinyl acetic acid, atropic acid, maleic acid, fumaric acid, itaconic acid, hydroxyethylacrylic acid or a salt thereof, preferably examples include acrylic acid and methacrylic acid.
  • the monomer which has a carboxyl group may be used individually by 1 type, and 2 or more types may be mixed and used for it.
  • Examples of monomers copolymerizable with these monomers include amides such as N-tert-butylacrylamide (N-tBAA) and N-vinylformamide.
  • Copolymerized copolymer, amides such as AA, AMPS, N-tert-butylacrylamide (N-tBAA), AA: AMPS: amides 40 to 90: 5 to 30: 5 to 30 (molar ratio) )
  • Copolymerized at a ratio of AA and 3-allyloxy-2-hydroxypropanesulfonic acid (HAPS) at a ratio of AA: HAPS 70 to 90:10 to 30 (molar ratio).
  • the present invention is not limited to these.
  • the polymer having a sulfonic acid group and a carboxyl group preferably has a weight average molecular weight of 1,000 to 30,000. If the weight average molecular weight of the polymer is less than 1,000, the dispersion effect is insufficient. When the weight average molecular weight of the polymer exceeds 30,000, it is difficult to permeate the pretreatment membrane, and the polymer itself is adsorbed on the pretreatment membrane or the RO membrane, which may cause membrane clogging.
  • the amount of the dispersant added in the circulating cooling water system is 3 to 30 mg / concentration as the concentration of the active ingredient (that is, the above polymer) from the viewpoints of the dispersion effect and economy in the cooling tower, and further the dispersion effect in the RO membrane water supply.
  • L particularly 5 to 20 mg / L is preferred. There are no particular restrictions on the method of adding the dispersant and the location of addition.
  • the dispersant in addition to the above-described polymer having a sulfonic acid group and a carboxyl group, other polymer or a phosphoric acid compound such as phosphonic acid may be used as long as a sufficient dispersion effect can be obtained. it can.
  • a scale component that can be generated from the quality of the raw water of the circulating cooling water system is identified, and a type of dispersant that can prevent the generation of the dispersant may be added so as to obtain a concentration at which an effect can be obtained.
  • the type of RO membrane of the RO membrane device is not particularly limited, and is appropriately determined depending on the quality of the cooling discharge water to be treated (the quality of raw water supplied to the circulating cooling water system or the concentration rate in the circulating cooling water system).
  • the RO membrane has a desalination rate of 80% or more, particularly 85% or more. When the desalting rate of the RO membrane is lower than this, desalting efficiency is poor, and treated water (permeated water) with good water quality cannot be obtained.
  • the material of the RO membrane any material such as a polyamide composite membrane or a cellulose acetate membrane can be used. There is no restriction
  • the RO membrane water supply (water that is passed through the RO membrane device as treated water) has a suitable pH as follows.
  • a pH adjusting means for adjusting the pH by adding an acid between the pretreatment membrane device and the RO membrane device.
  • the pH adjusting means include means for adding an acid directly to the RO membrane water supply introduction line and the line mixer provided in the line or to a pH adjusting tank provided separately by a chemical injection pump or the like.
  • the acid used here is not particularly limited, and inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid can be suitably used.
  • the pH of the circulating cooling water has increased to about 8-9 due to the concentration circulation operation.
  • Such a high pH is suitable for the permeation of the dispersant in the pretreatment membrane device.
  • the RO membrane device since the cooling discharge water is further concentrated, there is a concern about generation of scale. In terms of scale suppression, it is preferable that the RO membrane device is operated at a reduced pH.
  • the pH range of the RO membrane water supply is preferably 4.0 to 7.5. When the pH of the RO membrane water supply exceeds 7.5, scales such as calcium carbonate, calcium phosphate, calcium sulfate, and barium sulfate may be deposited depending on the water quality.
  • the silica concentration in the cooling discharge water exceeds 30 mg / L, it is preferable to lower the pH of the RO membrane water supply to 4.0 to 5.5 in order to suppress the precipitation.
  • the lower the pH of the RO membrane feed water the better in terms of preventing scale precipitation.
  • the amount of acid required becomes large, which is economically undesirable.
  • the RO membrane may be blocked.
  • the pH of the cooling discharge water is preferably 5.5 to 7.0, particularly preferably 5.5 to 6.5.
  • humic acid and fulvic acid are dissociated and the RO membrane is blocked, and Ca in the cooling water is effectively dispersed by the dispersant to form a complex with fulvic acid. It becomes difficult.
  • the dispersant added to the circulating cooling water system is one that permeates the pretreatment membrane, so that the dispersant contained in the cooling discharge water and brought into the water recovery system is treated with the treated water (
  • the scale dispersion treatment in the RO membrane device is performed with the dispersant that has been permeated into the permeated water and permeated through the pretreatment membrane. Therefore, the RO membrane water supply needs to contain a dispersant at a concentration effective for the scale dispersion treatment.
  • the concentration of the dispersant in the RO membrane water supply required for the scale dispersion treatment of the RO membrane device differs depending on the quality of the cooling discharge water, the treatment conditions (water recovery rate) of the pretreatment membrane and the RO membrane, and cannot be generally specified.
  • the dispersant concentration of the RO membrane water supply is preferably 3 mg / L or more, particularly about 5 to 30 mg / L.
  • the dispersant is added on the inlet side of the RO membrane device (between the pretreatment membrane device and the RO membrane device). Additional addition is preferred.
  • the dispersant added here those suitable as the dispersant used in the circulating cooling water system described above can be used, but it is not necessarily the same as the dispersant added in the circulating cooling water system, and is different. A dispersant may be used.
  • the dispersant concentration of the RO membrane water supply may be measured, and the amount of dispersant added may be controlled so that the dispersant concentration becomes a predetermined concentration.
  • a method for measuring the dispersant concentration a method using a turbidimetric method (for example, a method described in JP-A-2006-64498) can be employed.
  • the dispersant can be additionally added to the RO membrane water supply by, for example, a dispersant addition unit that is linked to the dispersant concentration measurement unit of the RO membrane water supply.
  • the dispersant dispersed in the cooling discharge water after being added to the circulating cooling water system is used as the RO membrane device.
  • the residence time of the cooling water in the cooling tower of the circulating cooling water system affects the activity of the dispersing agent, the residence time of the cooling tower of the circulating cooling water system so that the dispersant exhibits sufficient activity in the RO membrane device. It may be preferable to adjust the value.
  • the water recovery rate in the RO membrane device is preferably determined in consideration of the scale precipitation tendency in the RO membrane device. Since the conductivity of the cooling effluent treated in the present invention and the concentration of Ca, Mg, etc. in the cooling effluent as a scale factor may vary, the conductivity, Ca concentration, Mg concentration, etc. The RO membrane water recovery rate may be adjusted accordingly. The water recovery rate may be set by determining the presence or absence of scale from pH, dispersant concentration, water quality, and the like.
  • a conductivity meter that measures the conductivity of one or more of the cooling discharge water, RO membrane water supply, and RO membrane concentrated water is provided, and the scale deposition tendency in the RO membrane device is evaluated based on the measured values. And controlling the water recovery rate of the RO membrane device.
  • the measured value of the conductivity meter is high, it is determined that the tendency of scale deposition is high, and the valve opening on the permeate water extraction side of the RO membrane is made small so that the water recovery rate becomes low.
  • the measured value of the conductivity meter is low, it is determined that the tendency of scale deposition is low, and the opening degree of the valve on the permeate extraction side of the RO membrane device is increased so that the water recovery rate is high.
  • the dispersion concentration of the cooling discharge water and / or the RO membrane feed water is measured, and when the measured value of the dispersion concentration is high, it is judged that the tendency of scale precipitation is low, and the RO membrane device is set so that the water recovery rate becomes high. If the measured value of the dispersant concentration is low, it is judged that the tendency of scale precipitation is high, and the RO membrane device has a low water recovery rate. Reduce the valve opening on the permeate extraction side.
  • the cooling exhaust water that is not concentrated inside the device RO membrane permeated water, pure water, or deionized Flushing with water is preferred. This is because when the RO membrane device is stopped while the concentrated water remains in the RO membrane device, silica scale and other scales may be generated depending on the stop time, and the RO membrane device cannot be stably operated when the operation is resumed. Because there is.
  • the RO membrane permeate is circulated to the inlet side of the RO membrane device, the RO membrane concentrated water is discharged out of the system, and the inside of the RO membrane device is moved to the primary side of the RO membrane (for example, the water supply side) and the secondary side (concentrated water side) may be replaced with RO membrane permeate.
  • hypochlorites such as sodium hypochlorite (NaClO), chlorine agents such as chlorine gas, chloramine, chlorinated isocyanurate, monochlorosulfamic acid, etc.
  • the slime control treatment may be performed using these slime control agents added in the circulating cooling water system.
  • a slime control treatment may be performed by adding an additional slime control agent before the RO membrane device.
  • a slime control agent may be added separately after reducing and removing the chlorine agent in the cooling discharge water.
  • One type of these slime control agents may be added, or two or more types may be added simultaneously or alternately. Further, it may be added continuously or intermittently.
  • the RO membrane When cooling discharge water contains heavy metal ions such as copper and iron derived from heat exchangers, the RO membrane is promoted in the presence of redox agents such as thorium hypochlorite and hydrazine and heavy metal ions. May be deteriorated. In that case, by adding a substance having a chelating action of heavy metal (for example, EDTA), contact between the membrane and heavy metal can be prevented, and accelerated deterioration can be prevented.
  • heavy metal for example, EDTA
  • phenolic polymer a polymer compound having a phenolic hydroxyl group (hereinafter referred to as “phenolic polymer”) as a coagulation aid in the cooling discharge water that is the treated water. ) May be added.
  • phenolic polymers examples include vinylphenol homopolymers, modified vinylphenol homopolymers, copolymers of vinylphenol and modified vinylphenol, vinylphenol and / or copolymers of modified vinylphenol and hydrophobic vinyl monomers.
  • polyvinylphenol polymers such as polymers; phenol resins such as polycondensates of phenol and formaldehyde, polycondensates of cresol and formaldehyde, and polycondensates of xylenol and formaldehyde.
  • a resol type secondary reaction is performed on a novolac type phenol resin described in JP2010-131469A, JP2013-255922A, JP2013-255923A, and the like. It is preferable to use the obtained reaction product.
  • the melting point of the phenolic polymer obtained by subjecting the novolac type phenol resin to the resol type secondary reaction is preferably 130 to 220 ° C., particularly 150 to 200 ° C.
  • the phenolic polymer has a weight average molecular weight of preferably 5,000 to 50,000, and more preferably 10,000 to 30,000.
  • the amount of the phenolic polymer added varies depending on the quality of the cooling effluent, and is not particularly limited, but is preferably about 0.01 to 10 mg / L as the active ingredient concentration.
  • the amount of treated water (permeated water) obtained decreases (that is, the water recovery rate decreases) In such a case, these membrane devices are washed to remove clogs and recover the amount of treated water.
  • the chemicals used for the cleaning treatment can be appropriately selected according to the occluding substance and membrane material. For example, hydrochloric acid, sulfuric acid, nitric acid, sodium hypochlorite, sodium hydroxide, citric acid, oxalic acid, etc. are selected. be able to.
  • the cooling discharge water used for water recovery treatment in the following examples and reference examples is a cooling tower blow water (hereinafter, simply referred to as a circulating cooling water system) operating at a concentration factor of 3.5 times using Chiba industrial water as raw water. "Blow water”).
  • a circulating cooling water system the dispersants described in the respective examples and comparative examples are added so that the dispersant concentration in the system becomes a predetermined retention concentration, and sodium hypochlorite (NaClO) is added in the system.
  • the slime control treatment is performed by adding the residual chlorine concentration of 0.5 mg / L.
  • the pH of the blow water is 8.5 to 8.9 (about 8.8).
  • MF membrane was used as a pretreatment membrane, and water was collected by treating blow water in the order of strainer, MF membrane device, and RO membrane device.
  • the mesh pore diameter of the strainer is 400 ⁇ m.
  • MF membrane “Pureia GS (hydrophilic PVDF, pore size 0.02 ⁇ m, external pressure type)” manufactured by Kuraray Co., Ltd. was used.
  • RO membrane “KROA-2032-SN (polyamide ultra-low pressure RO membrane)” manufactured by Kurita Kogyo Co., Ltd. was used.
  • the cleaning frequency of the MF membrane device was 1 time / 30 minutes.
  • the blow water was sequentially passed through the strainer and the MF membrane device without adjusting the pH, and then sulfuric acid was added at the inlet side of the RO membrane device to adjust to pH 5.0.
  • sulfuric acid was added at the inlet side of the RO membrane device to adjust to pH 5.0.
  • sodium bisulfite is added at the inlet side of the RO membrane device to reduce the residual chlorine concentration to 0.05 mg / L or less, and “Kuriverter (registered trademark) IK-110” (bonded chlorine) manufactured by Kurita Kogyo Co., Ltd.
  • the system slime control agent was added at 10 mg / L, and the slime control treatment of the RO membrane device was performed.
  • the water recovery rates of the MF membrane device and RO membrane device started from 90% and 80%, respectively, and the total water recovery rate was 72%. Since the blow water has a high organic substance concentration, the water recovery rate of the MF membrane device and the RO membrane device gradually decreases with time. When the water recovery rate of the MF membrane device or the RO membrane device fell below 50%, the device was once stopped and washed, and water flow was resumed under the condition that the total water recovery rate was 72%. Under this condition, the water flow and recovery process were continued for one month.
  • the dispersant concentration of the pretreatment membrane (MF membrane) feed water is 10.5 mg / L
  • the dispersant concentration of the RO membrane feed water is 10.3 mg / L.
  • the recovery rate was 70%.
  • Example 2 Blow water was collected in the same manner as in Example 1 except that AA / HAPS was used instead of AA / AMPS as the dispersant. Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
  • Example 3 Blow water was recovered in the same manner as in Example 1 except that AA / AMPS / N-tBAA was used in place of AA / AMPS as the dispersant.
  • Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
  • Example 4 Blow water was collected in the same manner as in Example 1 except that the pH of the MF membrane feed water was adjusted to 5.5. Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
  • Example 5 Blow water was collected in the same manner as in Example 1 except that the retention concentration of the dispersant in the circulating cooling water system was 3 mg / L and that 7 mg / L of dispersant was added to the RO membrane water supply. Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
  • Example 6 An alkaline solution of a phenolic polymer (active ingredient concentration 16% by weight, pH 12) having a weight average molecular weight of 12000 and a melting point of 170 ° C. produced according to the method of Example I-1 of JP2013-255923A is used as blow water.
  • the blow water was recovered in the same manner as in Example 1 except that 1 mg / L was added as the active ingredient concentration.
  • Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
  • Example 1 Blow water was collected in the same manner as in Example 1 except that the pH of the MF membrane feed water was adjusted to 4.5. Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
  • Example 2 Blow water was collected in the same manner as in Example 1 except that a UF membrane (“PW2540C30” manufactured by GE) having a molecular weight cut-off of 10,000 was used as the pretreatment membrane.
  • Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
  • Example 5 Blow water was collected in the same manner as in Example 1 except that the concentration of the dispersant retained in the circulating cooling water system was 1 mg / L. Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
  • Table 1 shows the following. According to the present invention, by performing the treatment so that an effective amount of the dispersant remains in the RO membrane water supply, a stable treatment can be continued with a high water recovery rate.

Abstract

In recycling a cooling water effluent through RO membrane treatment, the present invention reduces the cost of water treatment, enhances the recovery ratio of water, and stabilizes the treatment of water, said cooling water effluent including blow water in a circulating cooling water system. The present invention is a water recycling method which comprises subjecting a cooling water effluent discharged from a circulating cooling water system to treatment in a water reclamation system including both a pretreatment membrane and an RO membrane and returning the treated water to the circulating cooling water system, wherein a dispersant that can permeate the pretreatment membrane is added in the circulating cooling water system as a dispersant for dispersing scale components. In other words, this method comprises using a dispersant-permeable membrane as the pretreatment membrane precedent to the RO membrane and thereby enabling a dispersant added in the circulating cooling water system to be effectively utilized also in the water reclamation system. Thus, the present invention can reduce the cost of water treatment, enhance the recovery ratio of water, and stabilize the treatment of water.

Description

冷却排出水の回収方法及び回収装置Cooling discharge water recovery method and recovery device
 本発明は、ビル空調や、化学工業、製紙工業、製鉄工業、電力工業等の工業プロセスにおいて使用される冷却設備における冷却排出水の回収方法及び回収装置に関する。 The present invention relates to a method and an apparatus for recovering cooling effluent in a cooling facility used in industrial processes such as building air conditioning, chemical industry, paper industry, steel industry, and electric power industry.
 冷却水系、ボイラ水系などの水と接触する伝熱面や配管内では、スケール障害が発生する。特に、省資源、省エネルギーの立場から、冷却水の系外への排出(ブロー)量を少なくして高濃縮運転を行う場合、水中に溶解している塩類が濃縮されて、伝熱面が腐食しやすくなるとともに、難溶性の塩となってスケール化する。装置の壁面などにスケールが付着すると、熱効率の低下、配管の閉塞など、ボイラや熱交換器の運転に重大な障害が生ずる。 ∙ Scale failure occurs on heat transfer surfaces and piping that come into contact with water such as cooling water and boiler water. In particular, from the standpoint of resource saving and energy saving, when high concentration operation is performed by reducing the amount of cooling water discharged (blow) out of the system, salts dissolved in water are concentrated and the heat transfer surface is corroded. And scales as a sparingly soluble salt. If the scale adheres to the wall surface of the apparatus, a serious obstacle occurs in the operation of the boiler and heat exchanger, such as a decrease in thermal efficiency and blockage of piping.
 近年、節水や省エネルギーを目的に、可能な限り水を有効利用するという動きが顕著になってきている。高濃縮運転の場合には、スケールの析出を抑制するには限界がある。 In recent years, the movement to use water as effectively as possible has been prominent for the purpose of saving water and saving energy. In the case of high concentration operation, there is a limit to suppress the precipitation of scale.
 冷却水ブロー水を回収システムで回収し、その処理水を冷却塔に戻す取り組みが行われている。その回収システムとしては、逆浸透膜(RO膜)で塩類(イオン)を除去し、処理水を冷却塔に戻すものが一般的である。例えば、以下のようなシステムが検討されている(特許文献1~3)。 取 り 組 み Efforts are being made to collect cooling water blow water with a recovery system and return the treated water to the cooling tower. As the recovery system, a system that removes salts (ions) with a reverse osmosis membrane (RO membrane) and returns treated water to a cooling tower is generally used. For example, the following systems have been studied (Patent Documents 1 to 3).
 システム1:凝集→砂濾過→保安フィルター→RO膜
 システム2:凝集→砂濾過→前処理膜→RO膜
 システム3:凝集→加圧浮上→砂濾過→保安フィルター→RO膜
 システム4:脱炭酸塔→前処理膜→RO膜
 システム5:RO膜
System 1: Agglomeration-> Sand filtration-> Safety filter-> RO membrane System 2: Agglomeration-> Sand filtration-> Pretreatment membrane-> RO membrane System 3: Agglomeration-> Pressurization flotation-> Sand filtration-> Safety filter-> RO membrane System 4: Decarbonation tower → Pretreatment membrane → RO membrane System 5: RO membrane
 システム5はRO膜装置のみの簡易なシステムであるが、ブロー水中に含まれる濁質がRO膜を閉塞させるため、安定処理が困難である。 System 5 is a simple system using only the RO membrane device, but the turbidity contained in the blow water clogs the RO membrane, so that stable treatment is difficult.
 システム1~4のように、RO膜の前段で凝集処理や前処理膜でブロー水中の濁質を除去することで、RO膜処理を安定化させることができる。しかし、ブロー水中には、循環冷却水系で添加された分散剤が含まれており、この分散剤が凝集処理を阻害する。このため、システム1~3の凝集処理では、処理に必要な凝集剤の添加量が非常に多くなる。 As in the systems 1 to 4, the RO membrane treatment can be stabilized by agglomeration treatment before the RO membrane or removing turbidity in the blown water with the pretreatment membrane. However, the blow water contains a dispersant added in the circulating cooling water system, and this dispersant inhibits the aggregation treatment. For this reason, in the agglomeration treatment of the systems 1 to 3, the amount of the flocculant added for the treatment is very large.
 RO膜装置では、スケール成分を分散させて、高い水回収率で処理を安定化させるために、分散剤が必要となるが、凝集処理により、ブロー水中の分散剤を除去してしまうため、RO膜でのスケール分散、処理の安定化のために、RO膜給水に分散剤を添加することが必要となる。 In the RO membrane device, a dispersing agent is required to disperse the scale components and stabilize the treatment with a high water recovery rate. However, since the dispersing agent in the blown water is removed by the aggregation treatment, It is necessary to add a dispersant to the RO membrane water supply in order to stabilize the scale dispersion and treatment in the membrane.
 凝集処理を行わず、前処理膜でブロー水中の濁質を除去するシステム4においても、前処理膜でブロー水中の分散剤が除去されてしまうため、RO膜装置の処理安定化のためには、RO膜給水に分散剤を添加することが必要となる。 Even in the system 4 in which the turbidity in the blown water is removed by the pretreatment membrane without performing the agglomeration treatment, the dispersant in the blown water is removed by the pretreatment membrane. It is necessary to add a dispersant to the RO membrane water supply.
特開2003-1256号公報JP 2003-1256 A 特開2002-18437号公報JP 2002-18437 A 特開2009-297600号公報JP 2009-297600 A
 従来の水回収システムでは、RO膜装置の安定運転のためにRO膜給水への分散剤の添加が必要となり、そのためのコストと作業が処理コストを押し上げていた。 In the conventional water recovery system, it is necessary to add a dispersant to the RO membrane water supply for the stable operation of the RO membrane device, and the cost and work for that increase the processing cost.
 本発明は、循環冷却水系のブロー水等の冷却排出水をRO膜処理して水回収するに当たり、水処理コストを低減すると共に、水回収率の向上と安定化を図る冷却排出水の回収方法及び回収装置を提供することを課題とする。 The present invention relates to a cooling drainage recovery method that reduces the water treatment cost and improves and stabilizes the water recovery rate when recovering the cooling drainage water such as blow water of the circulating cooling water system by performing RO membrane treatment. It is another object of the present invention to provide a recovery device.
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、次の知見を得た。循環冷却水系のブロー水等の冷却排出水をRO膜処理して水回収するに当たり、RO膜の前処理膜として、循環冷却水系で添加されている分散剤を透過するものを用い、循環冷却水系で添加され、冷却排出水中に含まれる分散剤を、前処理膜を透過させてRO膜の分散剤として有効利用することにより、水回収システムでの分散剤の添加を不要とするか、或いは分散剤添加量を低減することができる。これにより、水処理コストを低減すると共に、水回収率の向上と安定化を図ることができる。 The present inventors obtained the following knowledge as a result of intensive studies to solve the above problems. When cooling discharge water such as blow water of the circulating cooling water system is treated with the RO membrane to recover the water, the pretreatment membrane of the RO membrane is a permeating dispersant added in the circulating cooling water system, and the circulating cooling water system The dispersant added in the cooling discharge water can be effectively used as a dispersant for the RO membrane by permeating the pretreatment membrane, so that the addition of the dispersant in the water recovery system is not required or dispersed. The additive amount can be reduced. Thereby, while reducing water treatment cost, the improvement and stabilization of a water recovery rate can be aimed at.
 本発明はこのような知見に基づいて達成されたものであり、以下を要旨とする。 The present invention has been achieved on the basis of such findings, and the gist thereof is as follows.
[1] スケール成分を分散させる分散剤が添加されている循環冷却水系からの排出水を、前処理膜と逆浸透膜とを含む水回収システムで処理し、処理水を該循環冷却水系に戻す冷却排出水の回収方法において、該循環冷却水系において、前記分散剤が該前処理膜を透過することを特徴とする冷却排出水の回収方法。 [1] Discharge water from the circulating cooling water system to which a dispersant for dispersing scale components is added is treated with a water recovery system including a pretreatment membrane and a reverse osmosis membrane, and the treated water is returned to the circulating cooling water system. A method for recovering cooling discharge water, wherein the dispersant permeates the pretreatment membrane in the circulating cooling water system.
[2] [1]において、前記前処理膜の、下記式で算出される前記分散剤の透過率が80%以上であることを特徴とする冷却排出水の回収方法。
  透過率=(前処理膜透過水の分散剤濃度/前処理膜給水の分散剤濃度)×100
[2] The method for recovering cooling effluent according to [1], wherein the pretreatment film has a permeability of the dispersant calculated by the following formula of 80% or more.
Permeability = (dispersant concentration of pretreated membrane permeated water / dispersant concentration of pretreated membrane feed water) × 100
[3] [1]又は[2]において、前記前処理膜は、精密濾過膜又は限外濾過膜であることを特徴とする冷却排出水の回収方法。 [3] The method for recovering cooling drainage water according to [1] or [2], wherein the pretreatment membrane is a microfiltration membrane or an ultrafiltration membrane.
[4] [1]ないし[3]のいずれかにおいて、前記前処理膜の給水のpHを5以上とすることを特徴とする冷却排出水の回収方法。 [4] The method of recovering cooling drainage water according to any one of [1] to [3], wherein the pH of the water supplied to the pretreatment film is 5 or more.
[5] [1]ないし[4]のいずれかにおいて、前記前処理膜の分画分子量が30,000以上であることを特徴とする冷却排出水の回収方法。 [5] The method for recovering cooling effluent according to any one of [1] to [4], wherein the pretreatment film has a molecular weight cut-off of 30,000 or more.
[6] [1]ないし[5]のいずれかにおいて、前記分散剤がスルホン酸基とカルボキシル基を有する重合物であることを特徴とする冷却排出水の回収方法。 [6] The method for recovering cooling effluent according to any one of [1] to [5], wherein the dispersant is a polymer having a sulfonic acid group and a carboxyl group.
[7] [6]において、前記分散剤が、メタアクリル酸及び/又はアクリル酸と、3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸及び/又は2-アクリルアミド-2-メチルプロパンスルホン酸とを共重合してなる共重合物であることを特徴とする冷却排出水の回収方法。 [7] In [6], the dispersant is methacrylic acid and / or acrylic acid, 3-allyloxy-2-hydroxy-1-propanesulfonic acid and / or 2-acrylamido-2-methylpropanesulfonic acid. A method for recovering cooling effluent, which is a copolymer obtained by copolymerization of
[8] [1]ないし[7]のいずれかにおいて、前記逆浸透膜の給水のpHを4.0~7.5に調整することを特徴とする冷却排出水の回収方法。 [8] The method for recovering cooling effluent according to any one of [1] to [7], wherein the pH of the reverse osmosis membrane feed water is adjusted to 4.0 to 7.5.
[9] [1]ないし[8]のいずれかにおいて、前記逆浸透膜の給水の前記分散剤濃度を測定し、該分散剤濃度が所定の濃度になるように該逆浸透膜給水に該分散剤を添加することを特徴とする冷却排出水の回収方法。 [9] In any one of [1] to [8], the concentration of the dispersant in the reverse osmosis membrane feed water is measured, and the dispersion is added to the reverse osmosis membrane feed water so that the dispersant concentration becomes a predetermined concentration. A method for recovering cooling effluent, comprising adding an agent.
[10] [1]ないし[9]のいずれかにおいて、前記排出水、逆浸透膜給水及び逆浸透膜濃縮水のうちの1以上の水の導電率を測定し、該導電率の測定値に応じて、該逆浸透膜の水回収率を調整することを特徴とする冷却排出水の回収方法。 [10] In any one of [1] to [9], the conductivity of one or more of the discharged water, the reverse osmosis membrane water supply and the reverse osmosis membrane concentrated water is measured, and the measured value of the conductivity is obtained. Accordingly, the method for recovering the cooling effluent is characterized by adjusting the water recovery rate of the reverse osmosis membrane.
[11] [1]ないし[10]のいずれかにおいて、前記排出水及び/又は逆浸透膜給水の前記分散剤濃度を測定し、該分散剤濃度の測定値に応じて該逆浸透膜の水回収率を調整することを特徴とする冷却排出水の回収方法。 [11] In any one of [1] to [10], the dispersant concentration of the discharged water and / or reverse osmosis membrane water supply is measured, and the water of the reverse osmosis membrane is measured according to the measured value of the dispersant concentration. A method for recovering cooling effluent, wherein the recovery rate is adjusted.
[12] [1]ないし[11]のいずれかにおいて、フェノール系水酸基を有する高分子化合物を前記排出水に添加することを特徴とする冷却排出水の回収方法。 [12] A method for recovering cooling discharged water according to any one of [1] to [11], wherein a polymer compound having a phenolic hydroxyl group is added to the discharged water.
[13] [1]ないし[12]のいずれかにおいて、前記水回収システムの停止時に、前記逆浸透膜透過水を循環するか、或いは純水又は脱イオン水を通水し、該逆浸透膜濃縮水を系外へ排出する運転を行った後、該水回収システムを停止することを特徴とする冷却排出水の回収方法。 [13] In any one of [1] to [12], when the water recovery system is stopped, the reverse osmosis membrane permeated water is circulated, or pure water or deionized water is passed through the reverse osmosis membrane. A cooling drainage recovery method characterized by stopping the water recovery system after performing an operation of discharging concentrated water out of the system.
[14] 循環冷却水系からの排出水が通水される前処理膜装置と、該前処理膜装置の透過水が通水される逆浸透膜装置と、該逆浸透膜装置の透過水を該循環冷却水系に戻す返送手段とを有する冷却排出水の回収装置において、前記循環冷却水系は、スケール成分を分散させる分散剤を該水系に添加する分散剤添加手段を有し、該分散剤が前記前処理膜を透過するものであることを特徴とする冷却排出水の回収装置。 [14] A pretreatment membrane device through which drained water from the circulating cooling water system is passed, a reverse osmosis membrane device through which the permeated water of the pretreatment membrane device is passed, and a permeated water of the reverse osmosis membrane device In the cooling drain water recovery apparatus having a return means for returning to the circulating cooling water system, the circulating cooling water system has a dispersing agent adding means for adding a dispersing agent for dispersing the scale component to the aqueous system, and the dispersing agent is An apparatus for recovering cooling effluent, which passes through a pretreatment membrane.
[15] [14]において、前記前処理膜の、下記式で算出される前記分散剤の透過率が80%以上であることを特徴とする冷却排出水の回収装置。
  透過率=(前処理膜透過水の分散剤濃度/前処理膜給水の分散剤濃度)×100
[15] The cooling wastewater recovery device according to [14], wherein the pretreatment film has a permeability of the dispersant calculated by the following formula of 80% or more.
Permeability = (dispersant concentration of pretreated membrane permeated water / dispersant concentration of pretreated membrane feed water) × 100
[16] [14]又は[15]において、前記前処理膜は、精密濾過膜又は限外濾過膜であることを特徴とする冷却排出水の回収装置。 [16] The cooling drainage recovery apparatus according to [14] or [15], wherein the pretreatment membrane is a microfiltration membrane or an ultrafiltration membrane.
[17] [14]ないし[16]のいずれかにおいて、前記前処理膜の給水のpHを5以上とすることを特徴とする冷却排出水の回収装置。 [17] The cooling wastewater recovery device according to any one of [14] to [16], wherein the pH of the water supplied to the pretreatment film is 5 or more.
[18] [14]ないし[17]のいずれかにおいて、前記前処理膜の分画分子量が30,000以上であることを特徴とする冷却排出水の回収装置。 [18] The cooling wastewater recovery device according to any one of [14] to [17], wherein the pretreatment film has a molecular weight cut-off of 30,000 or more.
[19] [14]ないし[18]のいずれかにおいて、前記分散剤がスルホン酸基とカルボキシル基を有する重合物であることを特徴とする冷却排出水の回収装置。 [19] The cooling wastewater recovery device according to any one of [14] to [18], wherein the dispersant is a polymer having a sulfonic acid group and a carboxyl group.
[20] [19]において、前記分散剤が、メタアクリル酸及び/又はアクリル酸と、3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸及び/又は2-アクリルアミド-2-メチルプロパンスルホン酸とを共重合してなる共重合物であることを特徴とする冷却排出水の回収装置。 [20] In [19], the dispersant is methacrylic acid and / or acrylic acid, 3-allyloxy-2-hydroxy-1-propanesulfonic acid and / or 2-acrylamido-2-methylpropanesulfonic acid. An apparatus for recovering cooling effluent, which is a copolymer obtained by copolymerization of
[21] [14]ないし[20]のいずれかにおいて、前記逆浸透膜の給水のpHを4.0~7.5に調整するpH調整手段を有することを特徴とする冷却排出水の回収装置。 [21] In any one of [14] to [20], there is provided a cooling drainage recovery apparatus, characterized by having pH adjusting means for adjusting the pH of the reverse osmosis membrane feed water to 4.0 to 7.5 .
[22] [14]ないし[21]のいずれかにおいて、前記逆浸透膜の給水の前記分散剤濃度を測定する分散剤濃度測定手段と、該分散剤濃度測定手段で測定される該分散剤濃度が所定の濃度になるように該逆浸透膜給水に該分散剤を添加する分散剤調整手段とを有することを特徴とする冷却排出水の回収装置。 [22] In any one of [14] to [21], the dispersant concentration measuring means for measuring the dispersant concentration of the water supplied to the reverse osmosis membrane, and the dispersant concentration measured by the dispersant concentration measuring means And a cooling agent recovery means for adding the dispersing agent to the reverse osmosis membrane water supply so that the concentration of water becomes a predetermined concentration.
[23] [14]ないし[22]のいずれかにおいて、前記排出水、逆浸透膜給水及び逆浸透膜濃縮水のうちの1以上の導電率を測定する導電率測定手段と、該導電率測定手段の測定値に応じて該逆浸透膜の水回収率を調整する水回収率調整手段とを有することを特徴とする冷却排出水の回収装置。 [23] In any one of [14] to [22], conductivity measuring means for measuring one or more of the discharged water, reverse osmosis membrane water supply, and reverse osmosis membrane concentrated water, and the conductivity measurement And a water recovery rate adjusting means for adjusting the water recovery rate of the reverse osmosis membrane according to the measured value of the means.
[24] [14]ないし[23]のいずれかにおいて、前記排出水及び/又は逆浸透膜給水の前記分散剤濃度を測定する分散剤濃度測定手段と、該分散剤濃度測定手段の測定値に応じて該逆浸透膜の水回収率を調整する水回収率調整手段とを有することを特徴とする冷却排出水の回収装置。 [24] In any one of [14] to [23], the dispersant concentration measuring means for measuring the dispersant concentration of the discharged water and / or the reverse osmosis membrane water supply, and the measured value of the dispersant concentration measuring means And a water recovery rate adjusting means for adjusting the water recovery rate of the reverse osmosis membrane.
[25] [14]ないし[24]のいずれかにおいて、前記排出水に、フェノール系水酸基を添加する凝集助剤添加手段を有することを特徴とする冷却排出水の回収装置。 [25] The apparatus for recovering cooling effluent according to any one of [14] to [24], further comprising a coagulant aid adding means for adding a phenolic hydroxyl group to the effluent.
[26] [14]ないし[25]のいずれかにおいて、前記逆浸透膜装置は、該逆浸透膜透過水を該逆浸透膜装置の前段に循環する透過水循環手段、或いは純水又は脱イオン水を該逆浸透膜装置に通水する手段と、該逆浸透膜濃縮水を系外へ排水する濃縮水排出手段とを有し、該冷却排出水の回収装置の停止時に、該逆浸透膜透過水を前段に循環するか、或いは純水又は脱イオン水を通水すると共に、該逆浸透膜濃縮水を系外へ排出する運転を行った後、該冷却排出水の回収装置を停止させる制御手段を有することを特徴とする冷却排出水の回収装置。 [26] In any one of [14] to [25], the reverse osmosis membrane device is a permeated water circulating means for circulating the reverse osmosis membrane permeated water upstream of the reverse osmosis membrane device, or pure water or deionized water. Means for passing water through the reverse osmosis membrane device, and concentrated water discharge means for draining the reverse osmosis membrane concentrated water out of the system. Control to circulate water in the previous stage, or to pass pure water or deionized water, and to stop the cooling drainage recovery device after performing an operation to discharge the reverse osmosis membrane concentrated water out of the system Means for Collecting Cooled Drainage Water
 本発明によれば、RO膜の前段の前処理膜で冷却排出水を処理することにより、冷却排出水中の濁質を除去し、後段のRO膜処理を安定化させることができる。 According to the present invention, the cooling discharge water is treated with the pretreatment membrane before the RO membrane, so that the turbidity in the cooling drainage water can be removed and the subsequent RO membrane treatment can be stabilized.
 しかも、本発明では、循環冷却水系で添加され、冷却排出水に含まれている分散剤が、この前処理膜を透過するようにすることにより、この分散剤をRO膜の分散剤として有効利用することができる。このため、従来システムのように、RO膜の前段で除去された分散剤の再添加が不要となり、経済的にも処理操作的にも効率化することができ、処理コストを大幅に低減することができる。そして、前処理膜を透過した分散剤を利用して、RO膜処理の安定化、水回収率の向上を図ることができる。 Moreover, in the present invention, the dispersing agent added in the circulating cooling water system and contained in the cooling discharge water permeates through the pretreatment membrane, so that the dispersing agent is effectively used as a dispersing agent for the RO membrane. can do. For this reason, unlike the conventional system, it is not necessary to re-add the dispersant removed in the previous stage of the RO membrane, and the efficiency can be improved economically and in terms of processing operation, and the processing cost is greatly reduced. Can do. And the dispersion | distribution agent which permeate | transmitted the pre-processing film | membrane can be aimed at stabilization of RO membrane process and the improvement of a water recovery rate.
 このようなことから、本発明の冷却排出水の回収方法及び回収装置によれば、より簡素なシステムでRO膜装置のスケール障害を防止して長期にわたり安定な水回収を行うことが可能となる。 For this reason, according to the cooling drain water recovery method and recovery device of the present invention, it is possible to prevent the scale failure of the RO membrane device with a simpler system and perform stable water recovery over a long period of time. .
 以下に本発明の実施の形態を詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail.
<冷却排出水>
 本発明において、水回収処理に供する冷却排出水としては、代表的には、冷却塔のブロー水が挙げられるが、ブロー水に限らず、本発明は、循環冷却水系から排出されるすべての排出水に適用することができる。例えば、循環冷却水系の循環配管から循環冷却水の一部又は全部を引き抜いて本発明に従って処理した後、当該循環冷却水系に戻すようにしても良い。また、サイドフィルター、ライトフィルターの配管から分岐して排出した排出水を処理対象として水回収することもできる。
<Cooling discharge water>
In the present invention, cooling discharge water used for water recovery treatment typically includes blow water from a cooling tower, but is not limited to blow water, and the present invention includes all discharges discharged from a circulating cooling water system. Can be applied to water. For example, part or all of the circulating cooling water may be extracted from the circulating piping of the circulating cooling water system and treated according to the present invention, and then returned to the circulating cooling water system. In addition, it is possible to collect water from the discharged water branched and discharged from the side filter and light filter pipes.
 本発明では、このような冷却排出水を処理対象水として、前処理膜装置及びRO装置で順次処理し、処理水を循環冷却水系に返送する。 In the present invention, such cooling discharge water is treated as water to be treated and sequentially treated by the pretreatment membrane device and the RO device, and the treated water is returned to the circulating cooling water system.
<ストレーナー>
 上記の冷却排出水は、そのまま前処理膜装置で処理することもできるが、冷却排出水には、粗大な濁質や異物が含有されている場合があるため、前処理膜装置の前段にストレーナーを設け、これらをストレーナーで予め除去した後、前処理膜装置において除濁処理を行うことが好ましい。ストレーナーを省略しても運転可能であるが、この場合には、冷却排出水中の粗大な濁質や異物により、前処理膜が破損する可能性がある。
<Strainer>
The cooling discharge water can be treated as it is in the pretreatment membrane device, but since the cooling discharge water may contain coarse turbidity and foreign matter, a strainer is provided in the front stage of the pretreatment membrane device. It is preferable to perform turbidity treatment in the pretreatment membrane device after removing these in advance with a strainer. Operation is possible even if the strainer is omitted, but in this case, the pretreatment film may be damaged by coarse turbidity or foreign matter in the cooling discharge water.
 ストレーナーとしては、特に自動で洗浄処理を行うオートストレーナーが好適に使用される。 As the strainer, an automatic strainer that performs a cleaning process automatically is particularly preferably used.
 ストレーナーの形状には特に制限はなく、Y型、バケット型などいずれの形状のものをも使用することができる。 The shape of the strainer is not particularly limited, and any shape such as a Y shape or a bucket shape can be used.
 ストレーナーの孔径は好ましくは100~500μmである。ストレーナーの孔径が100μmより小さいとストレーナーの閉塞が激しくなる。ストレーナの孔径が500μmを超えるとストレーナーを透過した粗大な濁質や異物が前処理膜を破損させる可能性が高くなる。 The pore size of the strainer is preferably 100 to 500 μm. When the pore size of the strainer is smaller than 100 μm, the strainer is severely blocked. When the pore diameter of the strainer exceeds 500 μm, there is a high possibility that coarse turbidity or foreign matter that has passed through the strainer will damage the pretreatment film.
 ストレーナーの代わりに糸巻きフィルター、プリーツフィルターなどのフィルターを使用してもよい。交換頻度、洗浄効率の点からはストレーナーが好適である。 代 わ り A filter such as a spool filter or a pleated filter may be used instead of the strainer. A strainer is preferable in terms of replacement frequency and cleaning efficiency.
<前処理膜装置>
 冷却排出水、又はストレーナーで除濁処理した後の冷却排出水は、次いで前処理膜装置で処理される。
<Pretreatment membrane device>
The cooled discharged water or the cooled discharged water after the turbidity treatment by the strainer is then processed by the pretreatment membrane device.
 前処理膜装置は、RO膜装置の膜汚染の原因となる冷却排出水中の濁質やコロイダル成分を除去するためのものであり、精密濾過膜(MF膜)や限外濾過膜(UF膜)を用いることができる。前処理膜装置の膜型式には特に制限はなく、中空糸型、スパイラル型等の膜濾過装置を採用することができる。前処理膜装置の濾過方式にも制限はなく、内圧濾過、外圧濾過、クロスフロー濾過、全量濾過のいずれの方式も適用可能である。 The pretreatment membrane device is for removing turbidity and colloidal components in the cooling discharge water that cause membrane contamination of the RO membrane device. It is a microfiltration membrane (MF membrane) and ultrafiltration membrane (UF membrane). Can be used. The membrane type of the pretreatment membrane device is not particularly limited, and a hollow fiber type or spiral type membrane filtration device can be employed. There is no restriction | limiting also in the filtration system of a pretreatment membrane apparatus, Any system of internal pressure filtration, external pressure filtration, crossflow filtration, and total amount filtration is applicable.
 前処理膜であるUF膜の分画分子量は好ましくは30,000以上である。UF膜の分画分子量が30,000より小さいと、冷却排出水中の分散剤を透過させることができず、RO膜装置の前段で分散剤を改めて添加する必要を生じるおそれがある。UF膜の分画分子量の上限に特に制限はないが、1,000,000以下であると、冷却排出水中のRO膜の閉塞原因となりうる高分子多糖類などを除去できる。前処理膜であるMF膜の孔径は、UF膜の分画分子量と同様の理由から、好ましくは0.1~0.01μm程度である。 The molecular weight cutoff of the UF membrane, which is a pretreatment membrane, is preferably 30,000 or more. If the molecular weight cut off of the UF membrane is smaller than 30,000, the dispersant in the cooling discharge water cannot be permeated, and it may be necessary to add the dispersant again before the RO membrane device. Although there is no restriction | limiting in particular in the upper limit of the molecular weight cut off of a UF membrane, If it is 1,000,000 or less, the polymeric polysaccharide etc. which may cause the obstruction | occlusion of RO membrane in cooling discharge water can be removed. The pore size of the MF membrane as the pretreatment membrane is preferably about 0.1 to 0.01 μm for the same reason as the molecular weight cut off of the UF membrane.
 前処理膜において、下記式で算出される後述の分散剤の透過率は80%以上、特に85%以上であることが好ましい。前処理膜の分散剤の透過率が上記下限より低いと本発明の効果を有効に得ることができない。前処理膜の分散剤の透過率の上限は通常100%である。
  透過率=(前処理膜透過水の分散剤濃度/前処理膜給水の分散剤濃度)×100
In the pretreatment film, the transmittance of the below-described dispersant calculated by the following formula is preferably 80% or more, particularly 85% or more. When the transmittance of the dispersant in the pretreatment film is lower than the above lower limit, the effect of the present invention cannot be obtained effectively. The upper limit of the transmittance of the dispersant in the pretreatment film is usually 100%.
Permeability = (dispersant concentration of pretreated membrane permeated water / dispersant concentration of pretreated membrane feed water) × 100
 上記の分散剤透過率を得るために、分散剤として、後述の好適な分散剤を用いると共に前処理膜装置においては、前処理膜の給水のpHを5以上とすることが好ましい。前処理膜の給水のpHが5よりも低いと、分散剤として後述のスルホン酸基とカルボキシル基を有する重合物を用いても、前処理膜の透過率が低くなり、本発明の効果を得ることができない場合がある。前処理膜の給水のpHは、5以上であればよく、その上限には特に制限はない。通常、冷却塔ブロー水等の冷却排出水は、pH8~10、通常は8~9程度であるため、これをそのまま前処理膜装置で処理することが好ましい。 In order to obtain the above-described dispersant permeability, it is preferable to use a suitable dispersant described later as the dispersant, and in the pretreatment membrane device, the pH of the feed water of the pretreatment membrane is 5 or more. When the pH of the feed water of the pretreatment membrane is lower than 5, even if a polymer having a sulfonic acid group and a carboxyl group, which will be described later, is used as a dispersant, the transmittance of the pretreatment membrane is lowered, and the effect of the present invention is obtained. It may not be possible. The pH of the feed water for the pretreatment membrane may be 5 or more, and the upper limit is not particularly limited. Usually, cooling discharge water such as cooling tower blow water has a pH of 8 to 10, usually about 8 to 9, and it is preferably treated as it is with a pretreatment membrane device.
<分散剤>
 本発明において、循環冷却水系に添加される分散剤は、上記の前処理膜を透過するものである。
<Dispersant>
In the present invention, the dispersant added to the circulating cooling water system permeates the pretreatment membrane.
 この分散剤としては、スルホン酸基とカルボキシル基を有する重合物を用いることが好ましい。
 分散剤は高pH条件下であるほど解離して分散剤としての機能が高くなるが、前処理膜装置の後段のRO膜装置では、高pH条件であると、RO膜装置内で濃縮されたカルシウム等がスケールとして析出し易くなるため、後述のように低pH条件で処理が行われる。このような低pH条件でのRO膜装置では、分散剤がカルボキシル基のみを有し、スルホン酸基を有さないものであると、不溶化して分散剤として機能し得なくなる。このため、分散剤としては、スルホン酸基とカルボキシル基とを有する重合物を用いることが好ましい。
As this dispersant, a polymer having a sulfonic acid group and a carboxyl group is preferably used.
Dispersant dissociates and the function as a dispersant becomes higher as the pH is higher, but in the RO membrane device at the rear stage of the pretreatment membrane device, it is concentrated in the RO membrane device when the pH is high. Since calcium and the like are easily deposited as scales, the treatment is performed under low pH conditions as described later. In the RO membrane apparatus under such a low pH condition, if the dispersant has only a carboxyl group and does not have a sulfonic acid group, it becomes insoluble and cannot function as a dispersant. For this reason, it is preferable to use a polymer having a sulfonic acid group and a carboxyl group as the dispersant.
 分散剤として好適なスルホン酸基とカルボキシル基を有する重合物としては、スルホン酸基を有する単量体と、カルボキシル基を有する単量体との共重合物、或いは、更に、これらの単量体と共重合可能な他の単量体との三元共重合体が挙げられる。 As a polymer having a sulfonic acid group and a carboxyl group suitable as a dispersant, a copolymer of a monomer having a sulfonic acid group and a monomer having a carboxyl group, or, further, these monomers And terpolymers with other monomers copolymerizable therewith.
 スルホン酸基を有する単量体としては、2-メチル-1,3-ブタジエン-1-スルホン酸などの共役ジエンスルホン酸、3-(メタ)アリルオキシ-2-ヒドロキシプロパンスルホン酸等のスルホン酸基を有する不飽和(メタ)アリルエーテル系単量体、2-(メタ)アクリルアミド-2-メチルプロパンスルホン酸、2-ヒドロキシ-3-アクリルアミドプロパンスルホン酸、スチレンスルホン酸、メタリルスルホン酸、ビニルスルホン酸、アリルスルホン酸、イソアミレンスルホン酸、又はこれらの塩など、好ましくは、3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸(HAPS)、2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)が挙げられる。スルホン酸基を有する単量体は1種を単独で用いてもよく、2種以上を混合して用いてもよい。 Examples of the monomer having a sulfonic acid group include conjugated diene sulfonic acids such as 2-methyl-1,3-butadiene-1-sulfonic acid, and sulfonic acid groups such as 3- (meth) allyloxy-2-hydroxypropanesulfonic acid. Unsaturated (meth) allyl ether monomer, 2- (meth) acrylamide-2-methylpropanesulfonic acid, 2-hydroxy-3-acrylamidepropanesulfonic acid, styrenesulfonic acid, methallylsulfonic acid, vinylsulfone Acid, allyl sulfonic acid, isoamylene sulfonic acid, or salts thereof, preferably 3-allyloxy-2-hydroxy-1-propanesulfonic acid (HAPS), 2-acrylamido-2-methylpropanesulfonic acid (AMPS) ). As the monomer having a sulfonic acid group, one type may be used alone, or two or more types may be mixed and used.
 カルボキシル基を有する単量体としては、アクリル酸、メタクリル酸、クロトン酸、イソクロトン酸、ビニル酢酸、アトロパ酸、マレイン酸、フマル酸、イタコン酸、ヒドロキシエチルアクリル酸又はこれらの塩など、好ましくは、アクリル酸、メタクリル酸が挙げられる。カルボキシル基を有する単量体は1種を単独で用いてもよく、2種以上を混合して用いてもよい。 As the monomer having a carboxyl group, acrylic acid, methacrylic acid, crotonic acid, isocrotonic acid, vinyl acetic acid, atropic acid, maleic acid, fumaric acid, itaconic acid, hydroxyethylacrylic acid or a salt thereof, preferably Examples include acrylic acid and methacrylic acid. The monomer which has a carboxyl group may be used individually by 1 type, and 2 or more types may be mixed and used for it.
 これらの単量体と共重合可能な単量体としては、N-tert-ブチルアクリルアミド(N-tBAA)、N-ビニルホルムアミドなどアミド類が挙げられる。 Examples of monomers copolymerizable with these monomers include amides such as N-tert-butylacrylamide (N-tBAA) and N-vinylformamide.
 本発明に好適な分散剤としては、特に、アクリル酸(AA)と2-アクリルアミド-2-メチルプロパンスルホン酸(AMPS)をAA:AMPS=70~90:10~30(モル比)の割合で共重合させた共重合物、AAとAMPSとN-tert-ブチルアクリルアミド(N-tBAA)等のアミド類を、AA:AMPS:アミド類=40~90:5~30:5~30(モル比)の割合で共重合させた共重合物、AAと3-アリロキシ-2-ヒドロキシプロパンスルホン酸(HAPS)を、AA:HAPS=70~90:10~30(モル比)の割合で共重合させた共重合物などが挙げられるが、何らこれらに限定されるものではない。 As the dispersant suitable for the present invention, acrylic acid (AA) and 2-acrylamido-2-methylpropanesulfonic acid (AMPS) are particularly used in a ratio of AA: AMPS = 70 to 90:10 to 30 (molar ratio). Copolymerized copolymer, amides such as AA, AMPS, N-tert-butylacrylamide (N-tBAA), AA: AMPS: amides = 40 to 90: 5 to 30: 5 to 30 (molar ratio) ) Copolymerized at a ratio of AA and 3-allyloxy-2-hydroxypropanesulfonic acid (HAPS) at a ratio of AA: HAPS = 70 to 90:10 to 30 (molar ratio). However, the present invention is not limited to these.
 スルホン酸基とカルボキシル基を有する重合物の重量平均分子量は、1,000~30,000であることが好ましい。重合物の重量平均分子量が1,000未満であると分散効果が不十分である。重合物の重量平均分子量が30,000を超えると、前処理膜を透過し難くなり、また、重合物自体が前処理膜やRO膜に吸着し、膜閉塞の要因となるおそれがある。 The polymer having a sulfonic acid group and a carboxyl group preferably has a weight average molecular weight of 1,000 to 30,000. If the weight average molecular weight of the polymer is less than 1,000, the dispersion effect is insufficient. When the weight average molecular weight of the polymer exceeds 30,000, it is difficult to permeate the pretreatment membrane, and the polymer itself is adsorbed on the pretreatment membrane or the RO membrane, which may cause membrane clogging.
 分散剤の循環冷却水系における添加量は、冷却塔における分散効果と経済性、さらには、RO膜給水における分散効果の面から、有効成分(即ち、上記の重合物)の濃度として3~30mg/L、特に5~20mg/Lとすることが好ましい。分散剤の添加方法や添加箇所には特に制限はない。 The amount of the dispersant added in the circulating cooling water system is 3 to 30 mg / concentration as the concentration of the active ingredient (that is, the above polymer) from the viewpoints of the dispersion effect and economy in the cooling tower, and further the dispersion effect in the RO membrane water supply. L, particularly 5 to 20 mg / L is preferred. There are no particular restrictions on the method of adding the dispersant and the location of addition.
 分散剤としては、上記のスルホン酸基とカルボキシル基を有する重合物の他、十分な分散効果が得られるものであれば、他の重合物やホスホン酸などのリン酸化合物などを使用することもできる。分散剤は、循環冷却水系の原水水質から発生しうるスケール成分を見極め、その発生を防止し得る種類の分散剤を、効果が得られる濃度となるように添加すればよい。 As the dispersant, in addition to the above-described polymer having a sulfonic acid group and a carboxyl group, other polymer or a phosphoric acid compound such as phosphonic acid may be used as long as a sufficient dispersion effect can be obtained. it can. As for the dispersant, a scale component that can be generated from the quality of the raw water of the circulating cooling water system is identified, and a type of dispersant that can prevent the generation of the dispersant may be added so as to obtain a concentration at which an effect can be obtained.
<RO膜装置>
 冷却排出水を前述の前処理膜装置で処理した後の処理水(前処理膜透過水)は、次いでRO膜装置で脱塩処理される。
<RO membrane device>
The treated water (pretreated membrane permeated water) after the cooling discharged water has been treated with the aforementioned pretreatment membrane device is then desalted with the RO membrane device.
 RO膜装置のRO膜の種類としては、特に制限はなく、処理する冷却排出水の水質(循環冷却水系に供給される原水水質や循環冷却水系での濃縮倍率)によって適宜決定される。RO膜の脱塩率は80%以上、特に85%以上のものが好ましい。RO膜の脱塩率がこれよりも低いと、脱塩効率が悪く、良好な水質の処理水(透過水)を得ることができない。RO膜の材質としてはポリアミド複合膜、酢酸セルロース膜などいずれの材質の膜も使用可能である。RO膜の形状についても特に制限はなく、中空糸型、スパイラル型など、いずれのものも使用可能である。 The type of RO membrane of the RO membrane device is not particularly limited, and is appropriately determined depending on the quality of the cooling discharge water to be treated (the quality of raw water supplied to the circulating cooling water system or the concentration rate in the circulating cooling water system). The RO membrane has a desalination rate of 80% or more, particularly 85% or more. When the desalting rate of the RO membrane is lower than this, desalting efficiency is poor, and treated water (permeated water) with good water quality cannot be obtained. As the material of the RO membrane, any material such as a polyamide composite membrane or a cellulose acetate membrane can be used. There is no restriction | limiting in particular also about the shape of RO membrane, Any things, such as a hollow fiber type and a spiral type, can be used.
 RO膜給水(RO膜装置に被処理水として通水される水)には、以下の通り好適pHが存在する。RO膜給水のpH調整のために、前処理膜装置とRO膜装置との間に酸を添加してpHを調整するpH調整手段を設けることが好ましい。pH調整手段としては、RO膜の給水導入ラインやライン中に設けたラインミキサに直接或いは、別途設けたpH調整槽に、酸を薬注ポンプ等により添加する手段などを挙げることができる。ここで使用される酸は特に限定されるものではなく、塩酸、硫酸、硝酸などの無機酸を好適に用いることができる。 The RO membrane water supply (water that is passed through the RO membrane device as treated water) has a suitable pH as follows. In order to adjust the pH of the RO membrane water supply, it is preferable to provide a pH adjusting means for adjusting the pH by adding an acid between the pretreatment membrane device and the RO membrane device. Examples of the pH adjusting means include means for adding an acid directly to the RO membrane water supply introduction line and the line mixer provided in the line or to a pH adjusting tank provided separately by a chemical injection pump or the like. The acid used here is not particularly limited, and inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid can be suitably used.
 通常、循環冷却水系では濃縮循環運転により、循環冷却水のpHが8~9程度に上昇している。前処理膜装置における分散剤の透過にはこのような高pHの方が好適である。RO膜装置では、冷却排出水をさらに濃縮するため、スケールの発生が懸念される。スケール抑制の面から、RO膜装置ではpHを下げて運転することが好適である。RO膜給水のpH範囲としては4.0~7.5が好ましい。RO膜給水のpHが7.5を超えると水質によっては、炭酸カルシウム、リン酸カルシウム、硫酸カルシウム、硫酸バリウム等のスケール類が析出する場合がある。 Normally, in the circulating cooling water system, the pH of the circulating cooling water has increased to about 8-9 due to the concentration circulation operation. Such a high pH is suitable for the permeation of the dispersant in the pretreatment membrane device. In the RO membrane device, since the cooling discharge water is further concentrated, there is a concern about generation of scale. In terms of scale suppression, it is preferable that the RO membrane device is operated at a reduced pH. The pH range of the RO membrane water supply is preferably 4.0 to 7.5. When the pH of the RO membrane water supply exceeds 7.5, scales such as calcium carbonate, calcium phosphate, calcium sulfate, and barium sulfate may be deposited depending on the water quality.
 冷却排出水中のシリカ濃度が30mg/Lを超える場合はその析出を抑制するために、RO膜給水のpHを4.0~5.5に下げることが好ましい。RO膜給水のpHは低い程スケール析出防止の点では好ましい。RO膜給水のpHを4.0より低くするには、必要な酸の量が多量になり、経済的に好ましくない。 When the silica concentration in the cooling discharge water exceeds 30 mg / L, it is preferable to lower the pH of the RO membrane water supply to 4.0 to 5.5 in order to suppress the precipitation. The lower the pH of the RO membrane feed water, the better in terms of preventing scale precipitation. In order to lower the pH of the RO membrane water supply to less than 4.0, the amount of acid required becomes large, which is economically undesirable.
 冷却排出水中にフミン酸やフルボ酸が多く含まれていると、RO膜の閉塞が生じる場合がある。その場合には、冷却排出水のpHを5.5~7.0、特に5.5~6.5とすることが好ましい。このpHの範囲であれば、フミン酸やフルボ酸が酸解離してRO膜の閉塞が抑制されるとともに、冷却水中のCaが分散剤により効果的に分散し、フルボ酸とのコンプレックスを形成し難くなる。 If the humic acid or fulvic acid is contained in the cooling discharge water, the RO membrane may be blocked. In that case, the pH of the cooling discharge water is preferably 5.5 to 7.0, particularly preferably 5.5 to 6.5. Within this pH range, humic acid and fulvic acid are dissociated and the RO membrane is blocked, and Ca in the cooling water is effectively dispersed by the dispersant to form a complex with fulvic acid. It becomes difficult.
 本発明では、循環冷却水系に添加する分散剤として、前処理膜を透過するものを用いることにより、冷却排出水に含有されて水回収システムに持ち込まれた分散剤を前処理膜の処理水(透過水)中に透過させ、前処理膜を透過した分散剤によりRO膜装置におけるスケール分散処理を行う。従って、RO膜給水中には、スケール分散処理に有効な濃度で分散剤が含まれている必要がある。 In the present invention, the dispersant added to the circulating cooling water system is one that permeates the pretreatment membrane, so that the dispersant contained in the cooling discharge water and brought into the water recovery system is treated with the treated water ( The scale dispersion treatment in the RO membrane device is performed with the dispersant that has been permeated into the permeated water and permeated through the pretreatment membrane. Therefore, the RO membrane water supply needs to contain a dispersant at a concentration effective for the scale dispersion treatment.
 RO膜装置のスケール分散処理に必要なRO膜給水の分散剤濃度は、冷却排出水の水質、前処理膜及びRO膜の処理条件(水回収率)等により異なり、一概に規定することはできない。一般的には、RO膜給水の分散剤濃度は、3mg/L以上、特に5~30mg/L程度であることが好ましい。 The concentration of the dispersant in the RO membrane water supply required for the scale dispersion treatment of the RO membrane device differs depending on the quality of the cooling discharge water, the treatment conditions (water recovery rate) of the pretreatment membrane and the RO membrane, and cannot be generally specified. . In general, the dispersant concentration of the RO membrane water supply is preferably 3 mg / L or more, particularly about 5 to 30 mg / L.
 RO膜給水の分散剤濃度がRO膜装置において十分なスケール分散効果を得るには不足する場合には、RO膜装置の入口側(前処理膜装置とRO膜装置との間)で分散剤を追加添加することが好ましい。ここで添加する分散剤としては、前述の循環冷却水系で用いる分散剤として好適なものを用いることができるが、循環冷却水系で添加される分散剤と必ずしも同一のものである必要はなく、異なる分散剤を用いてもよい。 When the concentration of the dispersant in the RO membrane water supply is insufficient to obtain a sufficient scale dispersion effect in the RO membrane device, the dispersant is added on the inlet side of the RO membrane device (between the pretreatment membrane device and the RO membrane device). Additional addition is preferred. As the dispersant added here, those suitable as the dispersant used in the circulating cooling water system described above can be used, but it is not necessarily the same as the dispersant added in the circulating cooling water system, and is different. A dispersant may be used.
 RO膜給水の分散剤濃度を測定し、その分散剤濃度が所定の濃度となるように分散剤添加量を制御してもよい。分散剤濃度の測定方法としては比濁法(例えば特開2006-64498号公報に記載の方法)による方法を採用することができる。分散剤は、例えば、RO膜給水の分散剤濃度測定手段に連動する分散剤添加手段によりRO膜給水に追加添加することができる。 The dispersant concentration of the RO membrane water supply may be measured, and the amount of dispersant added may be controlled so that the dispersant concentration becomes a predetermined concentration. As a method for measuring the dispersant concentration, a method using a turbidimetric method (for example, a method described in JP-A-2006-64498) can be employed. The dispersant can be additionally added to the RO membrane water supply by, for example, a dispersant addition unit that is linked to the dispersant concentration measurement unit of the RO membrane water supply.
 本発明に従って、循環冷却水系に添加した分散剤をRO膜装置の分散剤として利用するためには、循環冷却水系に添加後、冷却排出水に含まれて排出された分散剤が、RO膜装置に達した際に、分散剤として機能するだけの活性が残っている必要がある。この分散剤の活性には、循環冷却水系の冷却塔における冷却水の滞留時間が影響することから、RO膜装置において分散剤が十分な活性を発揮するように循環冷却水系の冷却塔の滞留時間を調整することが好ましい場合もある。 According to the present invention, in order to use the dispersant added to the circulating cooling water system as the dispersing agent for the RO membrane device, the dispersant dispersed in the cooling discharge water after being added to the circulating cooling water system is used as the RO membrane device. When this is reached, it is necessary to remain active enough to function as a dispersant. Since the residence time of the cooling water in the cooling tower of the circulating cooling water system affects the activity of the dispersing agent, the residence time of the cooling tower of the circulating cooling water system so that the dispersant exhibits sufficient activity in the RO membrane device. It may be preferable to adjust the value.
 RO膜装置における水回収率は、RO膜装置におけるスケールの析出傾向を考慮して決定することが好ましい。本発明で処理する冷却排出水の導電率や、スケール要因となる冷却排出水中のCa、Mgなどの濃度は変動する可能性があるため、RO濃縮水の導電率やCa濃度、Mg濃度等に応じてRO膜の水回収率を調整してもよい。pHや分散剤濃度、水質等から、スケール発生有無を判定し、水回収率を設定してもよい。 The water recovery rate in the RO membrane device is preferably determined in consideration of the scale precipitation tendency in the RO membrane device. Since the conductivity of the cooling effluent treated in the present invention and the concentration of Ca, Mg, etc. in the cooling effluent as a scale factor may vary, the conductivity, Ca concentration, Mg concentration, etc. The RO membrane water recovery rate may be adjusted accordingly. The water recovery rate may be set by determining the presence or absence of scale from pH, dispersant concentration, water quality, and the like.
 具体的には、冷却排出水、RO膜給水及びRO膜濃縮水の1以上の水の導電率を測定する導電率計を設け、その測定値に基づいて、RO膜装置におけるスケール析出傾向を評価し、RO膜装置の水回収率を制御することが挙げられる。この場合、導電率計の測定値が高い場合、スケール析出傾向が高いと判断し、水回収率が低くなるように、RO膜の透過水取出側のバルブ開度を小さくする。逆に導電率計の測定値が低い場合スケール析出傾向が低いと判断し、水回収率が高くなるように、RO膜装置の透過水取出側のバルブの開度を大きくする。 Specifically, a conductivity meter that measures the conductivity of one or more of the cooling discharge water, RO membrane water supply, and RO membrane concentrated water is provided, and the scale deposition tendency in the RO membrane device is evaluated based on the measured values. And controlling the water recovery rate of the RO membrane device. In this case, if the measured value of the conductivity meter is high, it is determined that the tendency of scale deposition is high, and the valve opening on the permeate water extraction side of the RO membrane is made small so that the water recovery rate becomes low. Conversely, when the measured value of the conductivity meter is low, it is determined that the tendency of scale deposition is low, and the opening degree of the valve on the permeate extraction side of the RO membrane device is increased so that the water recovery rate is high.
 或いは、冷却排出水及び/又はRO膜給水の分散剤濃度を測定し、分散剤濃度の測定値が高い場合にはスケール析出傾向が低いと判断し、水回収率が高くなるようにRO膜装置の透過水取出側のバルブの開度を大きくし、逆に、分散剤濃度の測定値が低い場合にはスケール析出傾向が高いと判断し、水回収率が低くなるように、RO膜装置の透過水取出側のバルブの開度を小さくする。 Alternatively, the dispersion concentration of the cooling discharge water and / or the RO membrane feed water is measured, and when the measured value of the dispersion concentration is high, it is judged that the tendency of scale precipitation is low, and the RO membrane device is set so that the water recovery rate becomes high. If the measured value of the dispersant concentration is low, it is judged that the tendency of scale precipitation is high, and the RO membrane device has a low water recovery rate. Reduce the valve opening on the permeate extraction side.
 RO膜装置において、特にシリカスケールの発生が懸念される場合には、RO膜装置を停止する際は、装置内部を濃縮されていない冷却排出水や、RO膜透過水、純水、又は脱イオン水でフラッシングすることが好ましい。これは、RO膜装置内に濃縮水が残留したままRO膜装置を停止した場合、停止時間によってはシリカスケールやその他のスケールが発生し、運転再開時にRO膜装置の安定運転を行えなくなることがあるためである。この場合、例えばRO膜装置の運転停止に際して、RO膜透過水をRO膜装置の入口側へ循環させ、RO膜濃縮水を系外へ排出し、RO膜装置内を、RO膜の一次側(給水側)も二次側(濃縮水側)もRO膜透過水で置換する操作を行うことが挙げられる。 In the RO membrane device, particularly when there is a concern about the generation of silica scale, when stopping the RO membrane device, the cooling exhaust water that is not concentrated inside the device, RO membrane permeated water, pure water, or deionized Flushing with water is preferred. This is because when the RO membrane device is stopped while the concentrated water remains in the RO membrane device, silica scale and other scales may be generated depending on the stop time, and the RO membrane device cannot be stably operated when the operation is resumed. Because there is. In this case, for example, when the operation of the RO membrane device is stopped, the RO membrane permeate is circulated to the inlet side of the RO membrane device, the RO membrane concentrated water is discharged out of the system, and the inside of the RO membrane device is moved to the primary side of the RO membrane ( For example, the water supply side) and the secondary side (concentrated water side) may be replaced with RO membrane permeate.
<その他の処理>
 本発明に係る循環冷却水系においては、スライムコントロール剤として、次亜塩素酸ナトリウム(NaClO)等の次亜塩素酸塩、塩素ガス、クロラミン、塩素化イソシアヌル酸塩などの塩素剤、モノクロルスルファミン酸などの塩素とアミド硫酸、アミド硫酸基を有する化合物の反応した結合塩素剤、次亜臭素酸ナトリウム等の次亜臭素酸塩、ジブロモヒダントインなどの臭素剤、臭素とアミンやアンモニア、アミド硫酸基を有する化合物の反応した結合臭素剤、DBNPA(ジブロモニトリロプロピオンアシド)、MIT(メチルイソチアゾロン)などの有機剤、ヒドラジン、ヒダントイン(5,5-ジメチルヒダントイン)などを添加してもよい。これらは1種のみを単独で添加してもよく、複数種を組み合わせて添加してもよい。
<Other processing>
In the circulating cooling water system according to the present invention, as a slime control agent, hypochlorites such as sodium hypochlorite (NaClO), chlorine agents such as chlorine gas, chloramine, chlorinated isocyanurate, monochlorosulfamic acid, etc. Chlorinated with amide sulfuric acid, compound with amide sulfate group reacted with chlorine, hypobromite such as sodium hypobromite, bromine such as dibromohydantoin, bromine with amine, ammonia, amide sulfate group A bound bromine agent reacted with the compound, an organic agent such as DBNPA (dibromonitrilopropion acid), MIT (methylisothiazolone), hydrazine, hydantoin (5,5-dimethylhydantoin) and the like may be added. These may be added alone or in combination of two or more.
 RO膜装置において、循環冷却水系で添加されたこれらのスライムコントロール剤を利用してスライムコントロール処理を行ってもよい。RO膜装置の前段で更にスライムコントロール剤を追加添加してスライムコントロール処理を行ってもよい。塩素剤等によるRO膜の酸化劣化が問題となる場合は、冷却排出水中の塩素剤を一旦還元除去してから、別途スライムコントロール剤を添加してもよい。 In the RO membrane apparatus, the slime control treatment may be performed using these slime control agents added in the circulating cooling water system. A slime control treatment may be performed by adding an additional slime control agent before the RO membrane device. When the oxidation deterioration of the RO membrane due to a chlorine agent or the like becomes a problem, a slime control agent may be added separately after reducing and removing the chlorine agent in the cooling discharge water.
 これらのスライムコントロール剤は、一種類を添加しても良いし、二種類以上を同時又は交互に添加しても良い。また、連続的に添加してもよく間欠添加としてもよい。 One type of these slime control agents may be added, or two or more types may be added simultaneously or alternately. Further, it may be added continuously or intermittently.
 冷却排出水に熱交換器由来の銅、鉄などの重金属イオンが含まれている場合、酸化還元作用を持つ薬剤、例えば次亜塩素酸トリウム、ヒドラジンと、重金属イオンの存在下でRO膜が促進劣化を受けることがある。その場合、重金属のキレート作用がある物質(たとえばEDTA)を添加することで、膜と重金属の接触を防止し、促進劣化を防止することができる。 When cooling discharge water contains heavy metal ions such as copper and iron derived from heat exchangers, the RO membrane is promoted in the presence of redox agents such as thorium hypochlorite and hydrazine and heavy metal ions. May be deteriorated. In that case, by adding a substance having a chelating action of heavy metal (for example, EDTA), contact between the membrane and heavy metal can be prevented, and accelerated deterioration can be prevented.
 ポリアミド系RO膜は重金属の有無にかかわらず、次亜塩素酸塩との接触で劣化する。次亜塩素酸塩は膜劣化の原因になる可能性が高いため、できる限り適用を避け、適用する場合には残留塩素を除去した後、RO膜装置に通水するのが好ましい。  Polyamide-based RO membranes deteriorate with contact with hypochlorite regardless of the presence or absence of heavy metals. Hypochlorite has a high possibility of causing membrane deterioration. Therefore, it is preferable to avoid application as much as possible, and to apply it, after removing residual chlorine, it is preferable to pass water through the RO membrane device. *
 前処理膜装置やRO膜装置を安定化させるために、被処理水である冷却排出水に凝集助剤としてフェノール系水酸基を有する高分子化合物(以下「フェノール性高分子」と称す場合がある。)を添加してもよい。 In order to stabilize the pretreatment membrane device and the RO membrane device, a polymer compound having a phenolic hydroxyl group (hereinafter referred to as “phenolic polymer”) as a coagulation aid in the cooling discharge water that is the treated water. ) May be added.
 フェノール性高分子としては、ビニルフェノールの単独重合体、変性ビニルフェノールの単独重合体、ビニルフェノールと変性ビニルフェノールとの共重合体、ビニルフェノール及び/又は変性ビニルフェノールと疎水性ビニルモノマーとの共重合体のようなポリビニルフェノール系重合体;フェノールとホルムアルデヒドの重縮合物、クレゾールとホルムアルデヒドの重縮合物、キシレノールとホルムアルデヒドの重縮合物といったフェノール系樹脂;が挙げられる。フェノール性高分子としては、特に特開2010-131469号公報、特開2013-255922号公報、特開2013-255923号公報等に記載されるノボラック型フェノール樹脂にレゾール型の2次反応を行って得られた反応物を用いることが好ましい。 Examples of phenolic polymers include vinylphenol homopolymers, modified vinylphenol homopolymers, copolymers of vinylphenol and modified vinylphenol, vinylphenol and / or copolymers of modified vinylphenol and hydrophobic vinyl monomers. And polyvinylphenol polymers such as polymers; phenol resins such as polycondensates of phenol and formaldehyde, polycondensates of cresol and formaldehyde, and polycondensates of xylenol and formaldehyde. As the phenolic polymer, a resol type secondary reaction is performed on a novolac type phenol resin described in JP2010-131469A, JP2013-255922A, JP2013-255923A, and the like. It is preferable to use the obtained reaction product.
 ノボラック型フェノール樹脂にレゾール型の2次反応を行って得られるフェノール性高分子の融点は130~220℃、特に150~200℃であることが好ましい。このフェノール性高分子の重量平均分子量は5,000~50,000であることが好ましく、10,000~30,000であることがより好ましい。 The melting point of the phenolic polymer obtained by subjecting the novolac type phenol resin to the resol type secondary reaction is preferably 130 to 220 ° C., particularly 150 to 200 ° C. The phenolic polymer has a weight average molecular weight of preferably 5,000 to 50,000, and more preferably 10,000 to 30,000.
 フェノール性高分子の添加量は、冷却排出水の水質により異なり、特に制限はないが、有効成分濃度として0.01~10mg/L程度とすることが好ましい。 The amount of the phenolic polymer added varies depending on the quality of the cooling effluent, and is not particularly limited, but is preferably about 0.01 to 10 mg / L as the active ingredient concentration.
 長時間冷却排出水の処理を行うことで、MF膜装置等の前処理膜装置やRO膜装置が閉塞し、得られる処理水(透過水)量が低下した場合(即ち、水回収率が低下した場合)には、これらの膜装置を洗浄処理することで閉塞物を除去し、処理水量を回復させる。洗浄処理に使用する薬品としては閉塞物質、膜素材に応じて適宜選択することができ、例えば、塩酸、硫酸、硝酸、次亜塩素酸ナトリウム、水酸化ナトリウム、クエン酸、シュウ酸等を選択することができる。 When pretreatment membrane devices such as MF membrane devices and RO membrane devices are blocked by the treatment of cooling and draining water for a long time, the amount of treated water (permeated water) obtained decreases (that is, the water recovery rate decreases) In such a case, these membrane devices are washed to remove clogs and recover the amount of treated water. The chemicals used for the cleaning treatment can be appropriately selected according to the occluding substance and membrane material. For example, hydrochloric acid, sulfuric acid, nitric acid, sodium hypochlorite, sodium hydroxide, citric acid, oxalic acid, etc. are selected. be able to.
 以下に実施例を挙げて本発明をより具体的に説明するが、本発明はその要旨を超えない限り以下の実施例により限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist.
[分散剤]
 以下の実施例及び参考例で用いた分散剤の仕様は以下の通りである。
 AA/AMPS:アクリル酸とAMPMとの共重合物、アクリル酸:AMPM(モル比)=70:30、重量平均分子量10,000
 AA/HAPS:アクリル酸とHAPSとの共重合物、アクリル酸:HAPS(モル比)=70:30、重量平均分子量8,000
 AA/AMPS/N-tBAA:アクリル酸とAMPSとN-tert-ブチルアクリルアミドの三元共重合物、アクリル酸:AMPM:N-tBAA(モル比)=70:20:10、重量平均分子量12,000
 AA/MA:アクリル酸とマレイン酸との共重合物、アクリル酸:マレイン酸(モル比)=70:30、重量平均分子量25,000
[Dispersant]
The specifications of the dispersant used in the following Examples and Reference Examples are as follows.
AA / AMPS: copolymer of acrylic acid and AMPM, acrylic acid: AMPM (molar ratio) = 70: 30, weight average molecular weight 10,000
AA / HAPS: copolymer of acrylic acid and HAPS, acrylic acid: HAPS (molar ratio) = 70: 30, weight average molecular weight 8,000
AA / AMPS / N-tBAA: terpolymer of acrylic acid, AMPS, and N-tert-butylacrylamide, acrylic acid: AMPM: N-tBAA (molar ratio) = 70: 20: 10, weight average molecular weight 12, 000
AA / MA: copolymer of acrylic acid and maleic acid, acrylic acid: maleic acid (molar ratio) = 70: 30, weight average molecular weight 25,000
[冷却排出水]
 以下の実施例及び参考例で水回収処理に供した冷却排出水は、千葉工業用水を原水として、濃縮倍率3.5倍で運転を行っている循環冷却水系の冷却塔ブロー水(以下、単に「ブロー水」と称す。)である。
 この循環冷却水系では、それぞれの実施例及び比較例に記載の分散剤を系内の分散剤濃度が所定の保持濃度となるように添加すると共に、次亜塩素酸ナトリウム(NaClO)を、系内の残留塩素濃度が0.5mg/Lになるように添加してスライムコントロール処理が行われている。
 ブロー水のpHは8.5~8.9(約8.8)である。
[Cooling discharge water]
The cooling discharge water used for water recovery treatment in the following examples and reference examples is a cooling tower blow water (hereinafter, simply referred to as a circulating cooling water system) operating at a concentration factor of 3.5 times using Chiba industrial water as raw water. "Blow water").
In this circulating cooling water system, the dispersants described in the respective examples and comparative examples are added so that the dispersant concentration in the system becomes a predetermined retention concentration, and sodium hypochlorite (NaClO) is added in the system. The slime control treatment is performed by adding the residual chlorine concentration of 0.5 mg / L.
The pH of the blow water is 8.5 to 8.9 (about 8.8).
[実施例1]
 前処理膜としてMF膜を用い、ストレーナー、MF膜装置、RO膜装置の順でブロー水を処理することにより水回収を行った。
 ストレーナーのメッシュ孔径は400μmである。MF膜はクラレ社製「ピューリアGS(親水化PVDF、孔径0.02μm、外圧式)」を用いた。RO膜は栗田工業(株)製「KROA-2032-SN(ポリアミド超低圧RO膜)」を用いた。MF膜装置の洗浄頻度は1回/30分とした。
[Example 1]
MF membrane was used as a pretreatment membrane, and water was collected by treating blow water in the order of strainer, MF membrane device, and RO membrane device.
The mesh pore diameter of the strainer is 400 μm. As the MF membrane, “Pureia GS (hydrophilic PVDF, pore size 0.02 μm, external pressure type)” manufactured by Kuraray Co., Ltd. was used. As the RO membrane, “KROA-2032-SN (polyamide ultra-low pressure RO membrane)” manufactured by Kurita Kogyo Co., Ltd. was used. The cleaning frequency of the MF membrane device was 1 time / 30 minutes.
 ブロー水は、pH調整せずにストレーナー、MF膜装置に順次通水した後、RO膜装置の入口側で硫酸を添加してpH5.0に調整した。同様にRO膜装置の入口側で重亜硫酸ナトリウムを添加して、残留塩素濃度を0.05mg/L以下とすると共に、栗田工業(株)製「クリバーター(登録商標)IK-110」(結合塩素系スライムコントロール剤)を10mg/L添加して、RO膜装置のスライムコントロール処理を行った。 The blow water was sequentially passed through the strainer and the MF membrane device without adjusting the pH, and then sulfuric acid was added at the inlet side of the RO membrane device to adjust to pH 5.0. Similarly, sodium bisulfite is added at the inlet side of the RO membrane device to reduce the residual chlorine concentration to 0.05 mg / L or less, and “Kuriverter (registered trademark) IK-110” (bonded chlorine) manufactured by Kurita Kogyo Co., Ltd. The system slime control agent) was added at 10 mg / L, and the slime control treatment of the RO membrane device was performed.
 MF膜装置及びRO膜装置の水回収率はそれぞれ90%、80%から開始し、トータルの水回収率は72%とした。ブロー水は有機物濃度が高いことから、MF膜装置及びRO膜装置の水回収率は経時により徐々に低下する。MF膜装置又はRO膜装置の水回収率が50%を切った場合、装置を一度停止して洗浄処理を行い、再度トータルの水回収率が72%となる条件で通水を再開した。この条件で一ヶ月間、通水、回収処理を継続した。 The water recovery rates of the MF membrane device and RO membrane device started from 90% and 80%, respectively, and the total water recovery rate was 72%. Since the blow water has a high organic substance concentration, the water recovery rate of the MF membrane device and the RO membrane device gradually decreases with time. When the water recovery rate of the MF membrane device or the RO membrane device fell below 50%, the device was once stopped and washed, and water flow was resumed under the condition that the total water recovery rate was 72%. Under this condition, the water flow and recovery process were continued for one month.
 上記の水回収処理において、前処理膜(MF膜)の給水の分散剤濃度は10.5mg/L、RO膜の給水の分散剤濃度は10.3mg/Lであり、一ヶ月間の平均水回収率は70%であった。 In the above water recovery process, the dispersant concentration of the pretreatment membrane (MF membrane) feed water is 10.5 mg / L, and the dispersant concentration of the RO membrane feed water is 10.3 mg / L. The recovery rate was 70%.
[実施例2]
 分散剤として、AA/AMPSの代りにAA/HAPSを用いたこと以外は実施例1と同様の方法でブロー水の回収を行った。前処理膜及びRO膜の給水の分散剤濃度と、平均水回収率は表1に示す通りであった。
[Example 2]
Blow water was collected in the same manner as in Example 1 except that AA / HAPS was used instead of AA / AMPS as the dispersant. Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
[実施例3]
 分散剤として、AA/AMPSの代りにAA/AMPS/N-tBAAを用いたこと以外は実施例1と同様の方法でブロー水の回収を行った。前処理膜及びRO膜の給水の分散剤濃度と、平均水回収率は表1に示す通りであった。
[Example 3]
Blow water was recovered in the same manner as in Example 1 except that AA / AMPS / N-tBAA was used in place of AA / AMPS as the dispersant. Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
[実施例4]
 MF膜の給水のpHを5.5に調整したこと以外は実施例1と同様の方法でブロー水の回収を行った。前処理膜及びRO膜の給水の分散剤濃度と、平均水回収率は表1に示す通りであった。
[Example 4]
Blow water was collected in the same manner as in Example 1 except that the pH of the MF membrane feed water was adjusted to 5.5. Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
[実施例5]
 循環冷却水系における分散剤の保持濃度を3mg/Lとし、RO膜給水に分散剤を7mg/L追加添加した以外は実施例1と同様の方法でブロー水の回収を行った。前処理膜及びRO膜の給水の分散剤濃度と、平均水回収率は表1に示す通りであった。
[Example 5]
Blow water was collected in the same manner as in Example 1 except that the retention concentration of the dispersant in the circulating cooling water system was 3 mg / L and that 7 mg / L of dispersant was added to the RO membrane water supply. Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
[実施例6]
 特開2013-255923号公報の実施例I-1の方法に従って製造した、重量平均分子量12000、融点170℃のフェノール性高分子のアルカリ溶液(有効成分濃度16重量%、pH12)を、ブロー水に、有効成分濃度として1mg/L添加したこと以外は実施例1と同様の方法でブロー水の回収を行った。前処理膜及びRO膜の給水の分散剤濃度と、平均水回収率は表1に示す通りであった。
[Example 6]
An alkaline solution of a phenolic polymer (active ingredient concentration 16% by weight, pH 12) having a weight average molecular weight of 12000 and a melting point of 170 ° C. produced according to the method of Example I-1 of JP2013-255923A is used as blow water. The blow water was recovered in the same manner as in Example 1 except that 1 mg / L was added as the active ingredient concentration. Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
[参考例1]
 MF膜給水のpHを4.5に調整した以外は実施例1と同様の方法でブロー水の回収を行った。前処理膜及びRO膜の給水の分散剤濃度と、平均水回収率は表1に示す通りであった。
[Reference Example 1]
Blow water was collected in the same manner as in Example 1 except that the pH of the MF membrane feed water was adjusted to 4.5. Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
[参考例2]
 前処理膜として分画分子量が10,000のUF膜(GE社製「PW2540C30」)を用いたこと以外は実施例1と同様の方法でブロー水の回収を行った。前処理膜及びRO膜の給水の分散剤濃度と、平均水回収率は表1に示す通りであった。
[Reference Example 2]
Blow water was collected in the same manner as in Example 1 except that a UF membrane (“PW2540C30” manufactured by GE) having a molecular weight cut-off of 10,000 was used as the pretreatment membrane. Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
[参考例3]
 RO膜給水のpHを7.0にしたこと以外は実施例1と同様の方法でブロー水の回収を行った。前処理膜及びRO膜の給水の分散剤濃度と、平均水回収率は表1に示す通りであった。
[Reference Example 3]
Blow water was collected in the same manner as in Example 1 except that the pH of the RO membrane feed water was 7.0. Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
[参考例4]
 分散剤として、AA/AMPSの代りにAA/MAを用いたこと以外は実施例1と同様の方法でブロー水の回収を行った。前処理膜及びRO膜の給水の分散剤濃度と、平均水回収率は表1に示す通りであった。
[Reference Example 4]
Blow water was recovered in the same manner as in Example 1 except that AA / MA was used in place of AA / AMPS as the dispersant. Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
[参考例5]
 循環冷却水系における分散剤の保持濃度を1mg/Lとしたこと以外は実施例1と同様の方法でブロー水の回収を行った。前処理膜及びRO膜の給水の分散剤濃度と、平均水回収率は表1に示す通りであった。
[Reference Example 5]
Blow water was collected in the same manner as in Example 1 except that the concentration of the dispersant retained in the circulating cooling water system was 1 mg / L. Table 1 shows the dispersant concentration of the pretreatment membrane and RO membrane and the average water recovery rate.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より次のことが分かる。
 本発明により、RO膜給水中に有効量の分散剤が残存するように処理を行うことにより、高い水回収率で安定した処理を継続することができる。
Table 1 shows the following.
According to the present invention, by performing the treatment so that an effective amount of the dispersant remains in the RO membrane water supply, a stable treatment can be continued with a high water recovery rate.
 参考例1は、膜の給水pHを低くしたために、前処理膜の分散剤透過率が低く、RO膜給水の分散剤濃度が低いために、平均水回収率が低下している。
 参考例2は、前処理膜として分画分子量の小さいUF膜を用いたため、前処理膜の分散剤透過率が低く、RO膜給水の分散剤濃度が低いために、平均水回収率が低下している。
 参考例3は、RO膜給水のpHが高く、RO膜におけるカルシウムスケール析出、膜閉塞の問題があるため、平均水回収率が低下している。
 参考例4は、分散剤として、カルボキシル基のみで、スルホン酸基のない重合物を用いたため、RO膜給水のpHを低くすると不溶化してしまい、分散剤として機能しないため、RO膜処理が安定せず、平均水回収率が低下している。
 参考例5は、循環冷却水系内の分散剤保持濃度が低く、前処理膜を透過してもRO膜給水の分散剤濃度が低いため、RO膜処理が安定せず、平均水回収率が低下している。
In Reference Example 1, since the membrane feed water pH was lowered, the dispersant permeability of the pretreatment membrane was low, and the dispersant concentration of the RO membrane feed water was low, so the average water recovery rate was lowered.
In Reference Example 2, since a UF membrane having a small fractional molecular weight was used as the pretreatment membrane, the dispersant permeability of the pretreatment membrane was low, and the dispersant concentration of the RO membrane water supply was low, so the average water recovery rate was reduced. ing.
In Reference Example 3, since the pH of the RO membrane water supply is high and there are problems of calcium scale precipitation and membrane blockage in the RO membrane, the average water recovery rate is lowered.
In Reference Example 4, since a polymer containing only carboxyl groups and no sulfonic acid groups was used as the dispersant, it became insoluble when the pH of the RO membrane water supply was lowered, and it did not function as a dispersant, so the RO membrane treatment was stable. The average water recovery rate has declined.
In Reference Example 5, since the dispersant retention concentration in the circulating cooling water system is low and the dispersant concentration in the RO membrane water supply is low even if it passes through the pretreatment membrane, the RO membrane treatment is not stable and the average water recovery rate is reduced. is doing.
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2014年3月14日付で出願された日本特許出願2014-052048に基づいており、その全体が引用により援用される。
Although the present invention has been described in detail using specific embodiments, it will be apparent to those skilled in the art that various modifications can be made without departing from the spirit and scope of the invention.
This application is based on Japanese Patent Application No. 2014-052048 filed on March 14, 2014, which is incorporated by reference in its entirety.

Claims (26)

  1.  スケール成分を分散させる分散剤が添加されている循環冷却水系からの排出水を、前処理膜と逆浸透膜とを含む水回収システムで処理し、処理水を該循環冷却水系に戻す冷却排出水の回収方法において、該循環冷却水系において、前記分散剤が該前処理膜を透過することを特徴とする冷却排出水の回収方法。 Cooled discharged water which treats the discharged water from the circulating cooling water system to which the dispersant for dispersing the scale component is added with a water recovery system including a pretreatment membrane and a reverse osmosis membrane and returns the treated water to the circulating cooling water system. In the circulating cooling water system, wherein the dispersing agent permeates the pretreatment membrane.
  2.  請求項1において、前記前処理膜の、下記式で算出される前記分散剤の透過率が80%以上であることを特徴とする冷却排出水の回収方法。
      透過率=(前処理膜透過水の分散剤濃度/前処理膜給水の分散剤濃度)×100
    The method of claim 1, wherein the pretreatment membrane has a permeability of the dispersant calculated by the following formula of 80% or more.
    Permeability = (dispersant concentration of pretreated membrane permeated water / dispersant concentration of pretreated membrane feed water) × 100
  3.  請求項1又は2において、前記前処理膜は、精密濾過膜又は限外濾過膜であることを特徴とする冷却排出水の回収方法。 3. The cooling drainage recovery method according to claim 1 or 2, wherein the pretreatment membrane is a microfiltration membrane or an ultrafiltration membrane.
  4.  請求項1ないし3のいずれか1項において、前記前処理膜の給水のpHを5以上とすることを特徴とする冷却排出水の回収方法。 4. The method for recovering cooling discharge water according to any one of claims 1 to 3, wherein the pH of the water supplied to the pretreatment film is 5 or more.
  5.  請求項1ないし4のいずれか1項において、前記前処理膜の分画分子量が30,000以上であることを特徴とする冷却排出水の回収方法。 5. The method for recovering cooling effluent according to any one of claims 1 to 4, wherein a fractional molecular weight of the pretreatment film is 30,000 or more.
  6.  請求項1ないし5のいずれか1項において、前記分散剤がスルホン酸基とカルボキシル基を有する重合物であることを特徴とする冷却排出水の回収方法。 6. The method for recovering cooling discharged water according to any one of claims 1 to 5, wherein the dispersant is a polymer having a sulfonic acid group and a carboxyl group.
  7.  請求項6において、前記分散剤が、メタアクリル酸及び/又はアクリル酸と、3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸及び/又は2-アクリルアミド-2-メチルプロパンスルホン酸とを共重合してなる共重合物であることを特徴とする冷却排出水の回収方法。 7. The dispersant according to claim 6, wherein the dispersant is a copolymer of methacrylic acid and / or acrylic acid and 3-allyloxy-2-hydroxy-1-propanesulfonic acid and / or 2-acrylamido-2-methylpropanesulfonic acid. A method for recovering cooling effluent, wherein the cooling effluent is a copolymer.
  8.  請求項1ないし7のいずれか1項において、前記逆浸透膜の給水のpHを4.0~7.5に調整することを特徴とする冷却排出水の回収方法。 8. The method for recovering cooling effluent according to any one of claims 1 to 7, wherein the pH of the reverse osmosis membrane feed water is adjusted to 4.0 to 7.5.
  9.  請求項1ないし8のいずれか1項において、前記逆浸透膜の給水の前記分散剤濃度を測定し、該分散剤濃度が所定の濃度になるように該逆浸透膜給水に該分散剤を添加することを特徴とする冷却排出水の回収方法。 9. The dispersant of any one of claims 1 to 8, wherein the dispersant concentration of the reverse osmosis membrane feed water is measured, and the dispersant is added to the reverse osmosis membrane feed water so that the dispersant concentration becomes a predetermined concentration. A method for recovering cooling effluent.
  10.  請求項1ないし9のいずれか1項において、前記排出水、逆浸透膜給水及び逆浸透膜濃縮水のうちの1以上の水の導電率を測定し、該導電率の測定値に応じて、該逆浸透膜の水回収率を調整することを特徴とする冷却排出水の回収方法。 In any one of Claims 1 thru | or 9, the electrical conductivity of one or more of the said discharged water, reverse osmosis membrane water supply, and reverse osmosis membrane concentrated water is measured, According to the measured value of this conductivity, A method for recovering cooling discharged water, comprising adjusting a water recovery rate of the reverse osmosis membrane.
  11.  請求項1ないし10のいずれか1項において、前記排出水及び/又は逆浸透膜給水の前記分散剤濃度を測定し、該分散剤濃度の測定値に応じて該逆浸透膜の水回収率を調整することを特徴とする冷却排出水の回収方法。 In any 1 item | term of the Claims 1 thru | or 10, the said dispersing agent density | concentration of the said discharged water and / or reverse osmosis membrane water supply is measured, The water recovery rate of this reverse osmosis membrane is set according to the measured value of this dispersing agent density | concentration. A method of recovering cooling effluent characterized by adjusting.
  12.  請求項1ないし11のいずれか1項において、フェノール系水酸基を有する高分子化合物を前記排出水に添加することを特徴とする冷却排出水の回収方法。 12. The method for recovering cooling drainage water according to any one of claims 1 to 11, wherein a polymer compound having a phenolic hydroxyl group is added to the drainage water.
  13.  請求項1ないし12のいずれか1項において、前記水回収システムの停止時に、前記逆浸透膜透過水を循環するか、或いは純水又は脱イオン水を通水し、該逆浸透膜濃縮水を系外へ排出する運転を行った後、該水回収システムを停止することを特徴とする冷却排出水の回収方法。 13. The reverse osmosis membrane concentrated water according to any one of claims 1 to 12, wherein the reverse osmosis membrane permeated water is circulated or pure water or deionized water is passed when the water recovery system is stopped. A cooling drainage recovery method characterized by stopping the water recovery system after performing an operation of discharging to the outside of the system.
  14.  循環冷却水系からの排出水が通水される前処理膜装置と、該前処理膜装置の透過水が通水される逆浸透膜装置と、該逆浸透膜装置の透過水を該循環冷却水系に戻す返送手段とを有する冷却排出水の回収装置において、前記循環冷却水系は、スケール成分を分散させる分散剤を該水系に添加する分散剤添加手段を有し、該分散剤が前記前処理膜を透過するものであることを特徴とする冷却排出水の回収装置。 A pretreatment membrane device through which discharged water from the circulating cooling water system is passed, a reverse osmosis membrane device through which the permeated water of the pretreatment membrane device is passed, and a circulating cooling water system that passes the permeated water of the reverse osmosis membrane device The circulating cooling water system has a dispersant addition means for adding a dispersant for dispersing the scale component to the aqueous system, and the dispersant is the pretreatment film. A cooling drainage recovery device characterized by being permeated through water.
  15.  請求項14において、前記前処理膜の、下記式で算出される前記分散剤の透過率が80%以上であることを特徴とする冷却排出水の回収装置。
      透過率=(前処理膜透過水の分散剤濃度/前処理膜給水の分散剤濃度)×100
    The cooling wastewater recovery device according to claim 14, wherein the pretreatment membrane has a permeability of the dispersant calculated by the following formula of 80% or more.
    Permeability = (dispersant concentration of pretreated membrane permeated water / dispersant concentration of pretreated membrane feed water) × 100
  16.  請求項14又は15において、前記前処理膜は、精密濾過膜又は限外濾過膜であることを特徴とする冷却排出水の回収装置。 16. The cooling drainage recovery apparatus according to claim 14 or 15, wherein the pretreatment membrane is a microfiltration membrane or an ultrafiltration membrane.
  17.  請求項14ないし16のいずれか1項において、前記前処理膜の給水のpHを5以上とすることを特徴とする冷却排出水の回収装置。 17. The apparatus for recovering cooling drainage according to any one of claims 14 to 16, wherein the pH of the feed water of the pretreatment film is 5 or more.
  18.  請求項14ないし17のいずれか1項において、前記前処理膜の分画分子量が30,000以上であることを特徴とする冷却排出水の回収装置。 18. The apparatus for recovering cooling effluent according to any one of claims 14 to 17, wherein a fractional molecular weight of the pretreatment film is 30,000 or more.
  19.  請求項14ないし18のいずれか1項において、前記分散剤がスルホン酸基とカルボキシル基を有する重合物であることを特徴とする冷却排出水の回収装置。 The apparatus for recovering cooling drainage according to any one of claims 14 to 18, wherein the dispersant is a polymer having a sulfonic acid group and a carboxyl group.
  20.  請求項19において、前記分散剤が、メタアクリル酸及び/又はアクリル酸と、3-アリルオキシ-2-ヒドロキシ-1-プロパンスルホン酸及び/又は2-アクリルアミド-2-メチルプロパンスルホン酸とを共重合してなる共重合物であることを特徴とする冷却排出水の回収装置。 20. The dispersant according to claim 19, wherein the dispersant is a copolymer of methacrylic acid and / or acrylic acid and 3-allyloxy-2-hydroxy-1-propanesulfonic acid and / or 2-acrylamido-2-methylpropanesulfonic acid. An apparatus for recovering cooling effluent, characterized by being a copolymer.
  21.  請求項14ないし20のいずれか1項において、前記逆浸透膜の給水のpHを4.0~7.5に調整するpH調整手段を有することを特徴とする冷却排出水の回収装置。 21. The cooling and draining water recovery apparatus according to claim 14, further comprising pH adjusting means for adjusting the pH of the reverse osmosis membrane feed water to 4.0 to 7.5.
  22.  請求項14ないし21のいずれか1項において、前記逆浸透膜の給水の前記分散剤濃度を測定する分散剤濃度測定手段と、該分散剤濃度測定手段で測定される該分散剤濃度が所定の濃度になるように該逆浸透膜給水に該分散剤を添加する分散剤調整手段とを有することを特徴とする冷却排出水の回収装置。 22. The dispersant concentration measuring means for measuring the dispersant concentration of the reverse osmosis membrane feed water, and the dispersant concentration measured by the dispersant concentration measuring means is a predetermined value according to any one of claims 14 to 21. Dispersing agent adjusting means for adding the dispersing agent to the reverse osmosis membrane feed water so as to have a concentration.
  23.  請求項14ないし22のいずれか1項において、前記排出水、逆浸透膜給水及び逆浸透膜濃縮水のうちの1以上の水の導電率を測定する導電率測定手段と、該導電率測定手段の測定値に応じて該逆浸透膜の水回収率を調整する水回収率調整手段とを有することを特徴とする冷却排出水の回収装置。 The conductivity measuring means according to any one of claims 14 to 22, wherein the conductivity measuring means measures the conductivity of one or more of the discharged water, reverse osmosis membrane water supply and reverse osmosis membrane concentrated water, and the conductivity measuring means. And a water recovery rate adjusting means for adjusting the water recovery rate of the reverse osmosis membrane according to the measured value.
  24.  請求項14ないし23のいずれか1項において、前記排出水及び/又は逆浸透膜給水の前記分散剤濃度を測定する分散剤濃度測定手段と、該分散剤濃度測定手段の測定値に応じて該逆浸透膜の水回収率を調整する水回収率調整手段とを有することを特徴とする冷却排出水の回収装置。 24. The dispersant concentration measuring means for measuring the dispersant concentration of the discharged water and / or the reverse osmosis membrane water supply according to any one of claims 14 to 23, and the measured value of the dispersant concentration measuring means according to the measured value of the dispersant concentration measuring means. A cooling drainage recovery apparatus comprising water recovery rate adjusting means for adjusting the water recovery rate of the reverse osmosis membrane.
  25.  請求項14ないし24のいずれか1項において、前記排出水に、フェノール系水酸基を添加する凝集助剤添加手段を有することを特徴とする冷却排出水の回収装置。 25. The cooling / draining water recovery apparatus according to any one of claims 14 to 24, further comprising a coagulation assistant adding means for adding a phenolic hydroxyl group to the draining water.
  26.  請求項14ないし25のいずれか1項において、前記逆浸透膜装置は、該逆浸透膜透過水を該逆浸透膜装置の前段に循環する透過水循環手段、或いは純水又は脱イオン水を該逆浸透膜装置に通水する手段と、該逆浸透膜濃縮水を系外へ排水する濃縮水排出手段とを有し、該冷却排出水の回収装置の停止時に、該逆浸透膜透過水を前段に循環するか、或いは純水又は脱イオン水を通水すると共に、該逆浸透膜濃縮水を系外へ排出する運転を行った後、該冷却排出水の回収装置を停止させる制御手段を有することを特徴とする冷却排出水の回収装置。 26. The reverse osmosis membrane device according to any one of claims 14 to 25, wherein the reverse osmosis membrane device circulates the reverse osmosis membrane permeated water to the front stage of the reverse osmosis membrane device, or pure water or deionized water. Means for passing water through the osmosis membrane device and concentrated water discharge means for draining the reverse osmosis membrane concentrated water out of the system, and when the cooling drainage recovery device is stopped, And a control means for stopping the cooling drainage recovery device after performing an operation of circulating pure water or deionized water and discharging the reverse osmosis membrane concentrated water out of the system. A cooling drainage recovery device characterized by that.
PCT/JP2015/051685 2014-03-14 2015-01-22 Method for recycling cooling water effluent and recycling apparatus WO2015136992A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201580009395.4A CN106029580B (en) 2014-03-14 2015-01-22 Method and apparatus for recovering cooling water
SG11201607245XA SG11201607245XA (en) 2014-03-14 2015-01-22 Method for recycling cooling water effluent and recycling apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-052048 2014-03-14
JP2014052048A JP5773013B1 (en) 2014-03-14 2014-03-14 Cooling discharge water recovery method and recovery device

Publications (1)

Publication Number Publication Date
WO2015136992A1 true WO2015136992A1 (en) 2015-09-17

Family

ID=54071446

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051685 WO2015136992A1 (en) 2014-03-14 2015-01-22 Method for recycling cooling water effluent and recycling apparatus

Country Status (6)

Country Link
JP (1) JP5773013B1 (en)
CN (1) CN106029580B (en)
MY (1) MY175667A (en)
SG (1) SG11201607245XA (en)
TW (1) TWI642635B (en)
WO (1) WO2015136992A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202246A (en) * 2018-05-21 2019-11-28 王子ホールディングス株式会社 Water treatment equipment and water treatment method
EP4122894A1 (en) * 2021-07-22 2023-01-25 Newtec Water Systems NV A method and system for purifying water

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6128171B2 (en) * 2015-07-09 2017-05-17 栗田工業株式会社 Cooling discharge water recovery method and recovery device
JP6682401B2 (en) * 2016-08-18 2020-04-15 オルガノ株式会社 Water treatment method using reverse osmosis membrane
JP2019122943A (en) * 2018-01-19 2019-07-25 オルガノ株式会社 Water treatment method and water treatment equipment
JP6777130B2 (en) * 2018-10-05 2020-10-28 栗田工業株式会社 Membrane water treatment chemicals and membrane treatment methods
WO2020203527A1 (en) * 2019-03-29 2020-10-08 栗田工業株式会社 Scale inhibitor for reverse osmosis membranes and reverse osmosis membrane processing method
JP7173220B1 (en) * 2021-06-03 2022-11-16 栗田工業株式会社 Method of operating a reverse osmosis membrane device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151491A (en) * 1993-11-29 1995-06-16 Kurita Water Ind Ltd Operating method of circulating cooling water system
JPH1133362A (en) * 1997-07-23 1999-02-09 Japan Organo Co Ltd Recovery method and apparatus of polishing agent
JP2000202445A (en) * 1999-01-13 2000-07-25 Kurita Water Ind Ltd Treatment of recovered water containing fluoride ion in semiconductor production process
JP2003001256A (en) * 2001-06-25 2003-01-07 Kurita Water Ind Ltd Method for treating circulating cooling water
JP2010029757A (en) * 2008-07-25 2010-02-12 Miura Co Ltd Membrane filtration system, and operating method of membrane filtration system
JP2010188344A (en) * 2010-04-05 2010-09-02 Kobelco Eco-Solutions Co Ltd Method and apparatus of desalinating seawater
WO2012132892A1 (en) * 2011-03-30 2012-10-04 栗田工業株式会社 Scale preventing agent for reverse osmosis membrane and scale preventing method
US20130056413A1 (en) * 2011-09-01 2013-03-07 General Electric Company Membrane treatment of cooling tower blow down water
JP2013255923A (en) * 2009-08-11 2013-12-26 Kurita Water Ind Ltd Water treatment method and water treatment flocculant

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1880238A (en) * 2005-06-16 2006-12-20 国家海洋局杭州水处理技术开发中心 Air purification cooling waste water treatment method for viscose glue fiber workshop
JP5407994B2 (en) * 2009-08-11 2014-02-05 栗田工業株式会社 Water treatment method and water treatment flocculant
CN203108442U (en) * 2013-02-06 2013-08-07 上海凯鑫分离技术有限公司 Reverse osmosis recovery rate monitoring device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07151491A (en) * 1993-11-29 1995-06-16 Kurita Water Ind Ltd Operating method of circulating cooling water system
JPH1133362A (en) * 1997-07-23 1999-02-09 Japan Organo Co Ltd Recovery method and apparatus of polishing agent
JP2000202445A (en) * 1999-01-13 2000-07-25 Kurita Water Ind Ltd Treatment of recovered water containing fluoride ion in semiconductor production process
JP2003001256A (en) * 2001-06-25 2003-01-07 Kurita Water Ind Ltd Method for treating circulating cooling water
JP2010029757A (en) * 2008-07-25 2010-02-12 Miura Co Ltd Membrane filtration system, and operating method of membrane filtration system
JP2013255923A (en) * 2009-08-11 2013-12-26 Kurita Water Ind Ltd Water treatment method and water treatment flocculant
JP2010188344A (en) * 2010-04-05 2010-09-02 Kobelco Eco-Solutions Co Ltd Method and apparatus of desalinating seawater
WO2012132892A1 (en) * 2011-03-30 2012-10-04 栗田工業株式会社 Scale preventing agent for reverse osmosis membrane and scale preventing method
US20130056413A1 (en) * 2011-09-01 2013-03-07 General Electric Company Membrane treatment of cooling tower blow down water

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019202246A (en) * 2018-05-21 2019-11-28 王子ホールディングス株式会社 Water treatment equipment and water treatment method
EP4122894A1 (en) * 2021-07-22 2023-01-25 Newtec Water Systems NV A method and system for purifying water

Also Published As

Publication number Publication date
TW201600468A (en) 2016-01-01
CN106029580A (en) 2016-10-12
CN106029580B (en) 2020-06-16
SG11201607245XA (en) 2016-10-28
MY175667A (en) 2020-07-03
JP2015174030A (en) 2015-10-05
TWI642635B (en) 2018-12-01
JP5773013B1 (en) 2015-09-02

Similar Documents

Publication Publication Date Title
JP5773013B1 (en) Cooling discharge water recovery method and recovery device
TWI641417B (en) Method for adjusting concentration of cooling water treatment agent in circulating cooling water system, method for recovering and discharging water, and treatment device for cooling and discharging water
JP3870712B2 (en) Circulating cooling water treatment method and treatment apparatus
JP6305368B2 (en) Water treatment method and apparatus
US20100025329A1 (en) Method for treatment with reverse osmosis membrane
JP2008229418A (en) Method and apparatus for industrial water treatment
CN107735365B (en) Method and apparatus for recovering cooling drainage
KR102613600B1 (en) Water treatment device for boiler feed and boiler operation method
JP6550851B2 (en) Water treatment method and water treatment apparatus using reverse osmosis membrane
JP3903746B2 (en) Circulating cooling water treatment method
JP6065066B2 (en) Boiler water treatment apparatus and boiler operation method
JP6735830B2 (en) Membrane filtration method and membrane filtration system
JP2012200696A (en) Desalting method and desalting apparatus
JP4576760B2 (en) Circulating cooling water treatment method
JP2018158310A (en) Water treatment method
CN111051253A (en) Apparatus and method for treating silica-containing water
JP2019042646A (en) Treatment device and treatment method of silica-containing water
WO2019176156A1 (en) Water treatment apparatus
JP2004025027A (en) Water treatment method using reverse osmosis membrane

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15761846

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15761846

Country of ref document: EP

Kind code of ref document: A1