WO2015136929A1 - Frequency signal generator - Google Patents

Frequency signal generator Download PDF

Info

Publication number
WO2015136929A1
WO2015136929A1 PCT/JP2015/001337 JP2015001337W WO2015136929A1 WO 2015136929 A1 WO2015136929 A1 WO 2015136929A1 JP 2015001337 W JP2015001337 W JP 2015001337W WO 2015136929 A1 WO2015136929 A1 WO 2015136929A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
frequency
filter
output
random noise
Prior art date
Application number
PCT/JP2015/001337
Other languages
French (fr)
Japanese (ja)
Inventor
小林 薫
Original Assignee
日本電波工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電波工業株式会社 filed Critical 日本電波工業株式会社
Priority to JP2016507361A priority Critical patent/JP6463336B2/en
Publication of WO2015136929A1 publication Critical patent/WO2015136929A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/02Digital function generators
    • G06F1/03Digital function generators working, at least partly, by table look-up
    • G06F1/0321Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers
    • G06F1/0328Waveform generators, i.e. devices for generating periodical functions of time, e.g. direct digital synthesizers in which the phase increment is adjustable, e.g. by using an adder-accumulator
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2211/00Indexing scheme relating to details of data-processing equipment not covered by groups G06F3/00 - G06F13/00
    • G06F2211/902Spectral purity improvement for digital function generators by adding a dither signal, e.g. noise

Definitions

  • the present invention relates to the technical field of an apparatus for generating an analog waveform based on waveform data consisting of digital values.
  • a DDS Direct Digital Synthesizer
  • a phase accumulator includes a phase accumulator, a waveform data memory, and a D / A (Digital / Analog) converter, and obtains an analog waveform of an arbitrary frequency.
  • an address is output from the phase accumulator based on the frequency setting data, and the waveform data (amplitude data) in the waveform data memory is read out according to the address and consists of a digital signal (digital value group), for example.
  • a sine wave is obtained and converted to an analog signal.
  • Quantization noise can be cited as the cause, and a periodic error generated from the relationship between the clock frequency and the DDS output frequency is also caused.
  • the time interval of the output timing of the analog signal corresponding to the input of each digital signal and the magnitude of the analog value are not strictly constant, which is also a factor of spurious. .
  • JP-A-8-97744 (paragraphs 0192 to 0195)
  • the present invention has been made under such circumstances, and an object thereof is to reduce spurious in a frequency signal generator that generates an analog waveform based on waveform data composed of digital value groups.
  • the frequency signal generator of the present invention includes a waveform output unit that outputs a periodic waveform signal composed of a digital signal, A noise generator that generates random noise composed of digital signals; A filter that performs processing for biasing the signal level of the frequency spectrum in the random noise to a frequency band that deviates from the frequency of the waveform signal, with respect to the output signal output from the noise generation unit, An adder for adding the output signal of the waveform output unit and the output signal of the filter; And a conversion unit for converting the digital signal obtained by the addition unit into an analog signal.
  • random noise consisting of a digital signal is added to a periodic waveform signal consisting of a digital signal output from the waveform output unit, so that spurious appearing in the analog output is diffused.
  • the random noise is processed by a filter so that the signal level of the frequency spectrum is biased to a frequency band that deviates from the frequency of the waveform signal. Therefore, the level of floor noise in the vicinity of the target output frequency (set frequency) can be suppressed low, and a high spurious suppression effect can be obtained.
  • FIG. 1 is a circuit diagram showing a first embodiment of a frequency signal generator of the present invention. It is a circuit diagram which shows a part of circuit of a random noise production
  • FIG. 1 shows an embodiment in which the frequency signal generator of the present invention is applied to a DDS.
  • Reference numeral 1 is a phase accumulator, and 2 is a waveform data memory.
  • the phase accumulator 1 includes an adder 11 and a latch circuit 12.
  • the adder 11 receives frequency setting data for setting a target frequency for the frequency signal output from the DDS. If the frequency setting data is N, for example, N is output from the latch circuit 12 by the first clock signal, and 2N, 3N, 4N... Are sequentially output from the latch circuit 12 by the subsequent clock signal.
  • the waveform data memory 2 stores, for example, waveform data (a digital value group corresponding to the amplitude value of the waveform) for generating a sine wave, and the waveform data is read using the output signal of the latch circuit 12 as an address. Accordingly, the frequency of the frequency signal specified by the waveform data is determined according to the value of N.
  • the phase accumulator 1 and the waveform data memory 2 correspond to a waveform output unit that outputs a periodic waveform signal.
  • random noise generation unit 3 is a random noise generation unit, which is constituted by, for example, a pseudo random noise generation circuit.
  • random noise includes pseudo-random noise.
  • the pseudo random noise generation circuit include a circuit that outputs a PN (Pseudo Noise) series signal in synchronization with a clock signal input to the DDS, for example, 200 MHz.
  • PN Pulseudo Noise
  • a shift register and Ex-OR exclusive logic
  • a circuit that generates a Gold sequence using an M sequence of a prefeed pair In this example, the logic “0” is converted to “1” and the logic “1” is changed to “ ⁇ 1” with respect to the time series signal including the logic “1” and the logic “0” which are PN sequence signals.
  • the random noise generation unit 3 includes a PN sequence generation circuit and a signal processing circuit provided on the output side of the PN sequence generation circuit.
  • FIG. 2 shows an example of the signal processing circuit.
  • FIG. 2 shows an example of the signal processing circuit described above.
  • the signal processing circuit 31 performs a process of adding a 1-bit logic “1” to the 1-bit input signal and outputs a 2-bit signal represented by 2's complement.
  • the signal processing circuit 32 is composed of a multiplexer, and 2-bit signals “01” and “11” expressed by two's complement numbers are input to one input end and the other input end of the multiplexer, respectively. Yes.
  • the multiplexer receives an input signal “11” at the other input terminal when “0”, which is a 1-bit signal, is input as a selection signal, and inputs one when “1” is input as a selection signal.
  • the input signal “01” at the end is output.
  • a noise processing filter 4 is provided on the output side of the random noise generator 3.
  • the filter 4 is configured to perform processing for biasing the signal level (power intensity) of the frequency spectrum of random noise output from the random noise generating unit 3 to a frequency band that deviates from the set frequency (output frequency) of the DDS. Has been. A specific configuration example of the filter 4 will be described later.
  • reference numeral 5 denotes an adder.
  • the adder 5 is a digital signal (amplitude value data) read from the waveform data memory 2, for example, a 32-bit digital signal, and a 32-bit output from the filter 4.
  • the digital signal (output signal) is added.
  • a D / A converter 6 that converts the added value, which is the output value of the adder 5, into an analog signal is provided.
  • a low-pass filter 7 is provided for removing harmonics contained in the analog waveform signal obtained from the D / A converter 6 to obtain a waveform with less distortion. Yes.
  • a high pass filter 8 is provided on the output side of the low pass filter 7.
  • the high-pass filter 8 is for removing noise existing in a frequency band away from the set frequency based on the filtering process performed by the filter 4.
  • FIG. 4 is obtained from the low-pass filter 7 when random noise is not added to the digital signal read from the waveform data memory 2 (a circuit obtained by removing the random noise generator 3 and the adder 5 from the circuit of FIG. 3).
  • This is the frequency spectrum of the frequency signal (DDS output signal).
  • the clock signal is 200 MHz.
  • the set frequency of the DDS output signal is 42 MHz.
  • FIG. 5 is an enlarged view of the vicinity of the set frequency in the frequency spectrum shown in FIG. In the series of frequency spectrum diagrams including FIG. 4, the signal level corresponding to the set frequency is 0 dB. As can be seen from FIGS. 4 and 5, spurious appears in the vicinity of the set frequency.
  • FIG. 6 is a frequency spectrum of random noise generated by the random noise generator 3.
  • FIG. 7 is a frequency spectrum of a frequency signal (DDS output signal) obtained from the low-pass filter 7 using the circuit of FIG.
  • FIG. 8 is an enlarged view of the vicinity of the set frequency (42 MHz) in the frequency spectrum shown in FIG. As can be seen from FIGS. 7 and 8, the floor noise level is high (floor noise is degraded) and the spurious improvement effect is low when only random noise is used.
  • FIG. 1 a frequency spectrum when the circuit shown in FIG. 1 which is an embodiment of the present invention is used will be described.
  • a circuit in which a random noise generating unit 3, a filter 4, and an adding unit 5 are added to the circuit when the frequency spectrum of FIG. 4 is collected is used.
  • the frequency spectrum of the random noise output from the random noise generator 3 is the same as that shown in FIG.
  • FIG. 9 is a frequency spectrum of random noise output from the filter 4.
  • the filter 4 performs processing for biasing the signal level of the frequency spectrum shown in FIG. 3 to a frequency band lower than 42 MHz.
  • FIG. 10 shows the frequency spectrum of the frequency signal obtained from the low-pass filter 7 of the circuit shown in FIG.
  • FIG. 11 is an enlarged view of the vicinity of the set frequency (42 MHz) in the frequency spectrum shown in FIG.
  • the spurious is improved by about 10 to 15 dB, and the floor noise near the set frequency of DDS is also reduced.
  • the floor noise that is increased in the low frequency band by biasing the frequency spectrum of the random noise by the filter 4 is far away from the set frequency, so that a simple filter such as an LC that combines an inductor and a capacitor is used. It can be removed by a filter or the like.
  • a high-pass filter is provided on the output side of the low-pass filter 7.
  • the filter 4 is configured by connecting 10 stages of moving average circuits in series as shown in FIG.
  • the moving average circuit in each stage is 9-n (n is an integer from 1 to 10), and averages a group of digital values consisting of 8 consecutive digital values as shown in FIG.
  • the first digital value of the digital value group is shifted to the next digital value.
  • a digital value group consisting of eight digital values from d0 to d7 by a certain clock signal. Is averaged for the digital value group from d1 to d8 by the next clock signal, and further averaged for the digital value group from d2 to d9 by the next clock signal.
  • FIG. 13 shows a first-stage moving average circuit, to which a 2-bit digital value output from the random noise generator 3 is input.
  • d0 to d7 indicate digital values output from the random noise generating unit 3 by the clock signal.
  • D is a delay circuit that delays and outputs an input value for each clock signal.
  • the digital signal input to the first-stage delay circuit D includes seven clock signals input to the moving averaging circuit. Sometimes, it is output from the delay circuit D at the final stage.
  • A is an adder circuit.
  • a circuit that multiplies a digital value by 1/8 that is, a rounding processing circuit that performs rounding processing to divide the digital value by “8” is provided after the final stage adder A. Yes.
  • a rounding processing circuit that performs rounding processing to divide the digital value by “8”
  • the moving average circuit as a filter used in the present embodiment is for biasing the signal level of the frequency spectrum of random noise to a low frequency band. The target signal can be obtained without dividing the added value of the obtained eight data by “8”. Then, by dividing the added value of the eight data by “8”, the signal level as noise can be made a necessary level.
  • moving averaging circuit Includes a circuit that does not perform rounding processing, and also includes a circuit that performs rounding processing.
  • rounding processing is not performed (when the added value of 8 data is not divided by “8”), the digital value is increased by 3 bits in the moving averaging circuit. Are input, and a 5-bit digital value is output.
  • the 10-stage moving averaging circuit 9-n shown in FIG. 12 uses the same circuit as that shown in FIG. 13 except for the number of bits of the digital value, and the number of bits of the digital value is 1. Since each stage increases by 3 bits, a 32-bit digital value is output from the 10th stage moving average circuit 9-10. 12 and 13, the numbers in parentheses represent the number of bits.
  • the number of samples subject to moving average in the moving average circuit is not limited to 8, and the number of stages in the moving average circuit is not limited to 10.
  • the filter 4 used when obtaining the frequency spectrum of FIG. 9 is configured by connecting a moving average circuit that does not perform rounding processing in a plurality of stages in series.
  • the number of connection stages of the averaging circuit is different from the examples of FIGS.
  • the frequency spectrum of the noise generated by the random noise generating unit 3 is distributed over a wide band, and therefore noise is generated even in a region where the set frequency of the DDS exists, and the floor noise is deteriorated.
  • the role of the filter 4 is to reduce the energy of noise in a region where the set frequency of the DDS exists and in the vicinity of the frequency spectrum of noise distributed over a wide band. Therefore, the filter 4 may be an FIR (Finite impulse response) filter or an IIR (Infinite Impulse Response) filter.
  • the low-pass filter characteristic is biased toward a lower frequency.
  • the number of data values may be selected.
  • the frequency characteristic may be adjusted by adjusting the weighting coefficient multiplied by each tap (each stage).
  • an address is output from the phase accumulator 1 according to the frequency setting data, and waveform data (waveform data such as sine wave data) is output from the waveform data memory 2 by this address.
  • a digital value group corresponding to the amplitude value) is output.
  • a PN sequence signal that is pseudo-random noise is output from the random noise generation unit 3, and the signal processing unit included in the random noise generation unit 3 converts the logic “0” of the signal into “1”. Logic “1” is converted to “ ⁇ 1”.
  • the filter 4 performs processing for biasing the signal level (power intensity) of the frequency spectrum of random noise to a frequency band that deviates from the set frequency of the DDS, and the processed random noise and the waveform data are added. .
  • the addition value is converted into an analog signal by the D / A converter 6 and the analog signal is passed through the low-pass filter 7 and the high-pass filter 8 to obtain a frequency signal that is an output of the DDS.
  • random noise is added to the digital signal output from the waveform data memory 2.
  • the random noise is processed by the filter 4 so that the signal level of the frequency spectrum is biased to a frequency band that deviates from the set frequency of the DDS. Accordingly, the floor noise level in the vicinity of the set frequency (output frequency) in the DDS can be suppressed to a low level, and a high spurious suppression effect can be obtained.
  • the DDS set frequency in the first embodiment is 42 MHz. Even when the set frequency is set to 21 MHz, for example, if the filter 4 used to obtain the frequency spectrum of FIG. There is concern that the level of floor noise will be high. Therefore, in the second embodiment, a process is performed in which a band that is biased in the frequency spectrum of the noise signal output from the filter 4 is moved to a band that is higher than the set frequency and sufficiently far away.
  • FIG. 14 shows a circuit according to the second embodiment, and a band shift processing unit 40 is provided on the output side of the filter 4.
  • the band shift processing unit 40 includes a multiplexer 402 including one input terminal to which input data is input and the other input terminal to which input data is input through a multiplication unit 401 that multiplies by ⁇ 1. A value input to one input terminal and a value input to the other input terminal are alternately output.
  • FIG. 15 is a time chart of the band shift processing unit 40, where d1, d2,... That are input data (output data of the filter 4) are multiplied by -1, and in other words, every other. The polarity of the digital value is reversed.
  • a frequency signal having “ ⁇ 1” and “1” amplitudes at a frequency 1 ⁇ 2 of the frequency fs of the clock signal is mixed (mixed) with the input data. Since the frequency of the clock signal is, for example, 200 MHz, to put it roughly, a portion biased by the filter 4 in the noise frequency spectrum moves to 100 MHz.
  • FIG. 16 is a frequency spectrum of random noise output from the band shift processing unit 40.
  • the frequency spectrum of the noise output from the filter 4 before being input to the band shift processing unit 40 is the same as that shown in FIG.
  • FIG. 17 shows the frequency spectrum of the frequency signal obtained from the low-pass filter 7 of the circuit shown in FIG.
  • FIG. 18 is an enlarged view of the vicinity of the set frequency (21 MHz) in the frequency spectrum shown in FIG.
  • the band shift processing unit 40 Wiped out.
  • the noise band can be distributed only in a limited region, for example, 10 MHz.
  • the band shift processing unit 40 is used, the configuration of the filter 4 is large. There is an advantage that a simple configuration is sufficient.
  • the part where the frequency spectrum is biased moves to 50 MHz.
  • the frequency signal to be mixed with the output of the filter 4 may be set arbitrarily according to the set frequency of the DDS shown in FIG. 1 by using another DDS for mixing processing.
  • the filter 4 in the frequency spectrum of random noise, energy is biased to a band higher than the set frequency (biased to a lower band in FIG. 9), and energy is biased (energy is other than that).
  • the band shift processing unit 40 may shift the band of the portion that is higher than the band to a lower level.
  • a switching unit 50 is provided, and a mode in which the output of the filter 4 is input to the adding unit 5 through the band shift processing unit 40 and an input to the adding unit 5 without passing through the band shift processing unit 40.
  • the mode to be performed may be selectable. According to such a configuration, spurious can be reduced with respect to a wider setting frequency of DDS.

Abstract

[Problem] To reduce spurious output of a DDS. [Solution] Providing an addition unit (5) for adding random noise to a digital signal outputted from a waveform data memory (2). A circuit for generating PN sequential data is used in a random noise generation unit (3), which is provided with a circuit for performing a data process so that digital values that constitute the noise are set to "-1" and "1." This data process prevents an offset (0.5) from being generated in the output value of the noise. A filter (4) is composed, for example, of a plurality of serially connected moving-averaging circuits, the filter (4) performs a process so that the signal level of the frequency spectrum of the random noise is biased toward a frequency band that deviates from the DDS setting frequency. The random noise outputted from the filter (4) is inputted to the addition unit (5).

Description

周波数信号発生装置Frequency signal generator
 本発明は、ディジタル値群からなる波形データに基づいてアナログ波形を発生する装置の技術分野に関する The present invention relates to the technical field of an apparatus for generating an analog waveform based on waveform data consisting of digital values.
 DDS(Direct Digital Synthesizer:ディジタル直接合成発振器)は、位相アキュムレータと、波形データメモリと、D/A(Digital/Analog)変換部と、を備え、任意の周波数のアナログ波形を得るものである。具体的には、周波数設定データに基づいて位相アキュムレータからアドレスが出力され、波形データメモリ内の波形データ(振幅データ)が前記アドレスに応じて読み出されてディジタル信号(ディジタル値群)からなる例えば正弦波が得られ、この正弦波をアナログ信号に変換する。 
 ところでDDSは、スプリアスの発生が避けられない。その要因として量子化雑音が挙げられ、またクロック周波数とDDS出力周波数との関係から発生する周期性誤差も起因する。そしてD/A変換部においては、各ディジタル信号の入力に対応するアナログ信号の出力のタイミングの時間間隔やアナログ値の大きさが厳密には一定ではなく、このこともスプリアスの要因になっている。
A DDS (Direct Digital Synthesizer) includes a phase accumulator, a waveform data memory, and a D / A (Digital / Analog) converter, and obtains an analog waveform of an arbitrary frequency. Specifically, an address is output from the phase accumulator based on the frequency setting data, and the waveform data (amplitude data) in the waveform data memory is read out according to the address and consists of a digital signal (digital value group), for example. A sine wave is obtained and converted to an analog signal.
By the way, spurious generation is inevitable in DDS. Quantization noise can be cited as the cause, and a periodic error generated from the relationship between the clock frequency and the DDS output frequency is also caused. In the D / A converter, the time interval of the output timing of the analog signal corresponding to the input of each digital signal and the magnitude of the analog value are not strictly constant, which is also a factor of spurious. .
 このため従来から、例えば特許文献1に記載されているように、波形データメモリから読み出された波形データに擬似ランダムノイズ(雑音)を加算して前記スプリアスを拡散させる手法が知られている。しかしながらこの手法は、DDSの出力周波数近傍のフロアノイズのレベルが大きくなってS/N比が悪くなり、またスプリアスの改善効果も低いという課題がある。 For this reason, conventionally, as described in Patent Document 1, for example, a technique is known in which pseudo-random noise (noise) is added to waveform data read from the waveform data memory to diffuse the spurious. However, this method has a problem that the level of floor noise in the vicinity of the output frequency of the DDS is increased, the S / N ratio is deteriorated, and the effect of improving the spurious is low.
特開平8-97744号公報(段落0192~0195)JP-A-8-97744 (paragraphs 0192 to 0195)
 本発明はこのような事情の下になされたものであり、その目的は、ディジタル値群からなる波形データに基づいてアナログ波形を発生する周波数信号発生装置において、スプリアスを低減することにある。 The present invention has been made under such circumstances, and an object thereof is to reduce spurious in a frequency signal generator that generates an analog waveform based on waveform data composed of digital value groups.
 本発明の周波数信号発生装置は、ディジタル信号からなる周期的な波形信号を出力する波形出力部と、
 ディジタル信号からなるランダムノイズを発生するノイズ発生部と、
 前記ノイズ発生部から出力された出力信号に対して、前記ランダムノイズにおける周波数スペクトラムの信号レベルを、前記波形信号の周波数から外れた周波数帯域に偏らせる処理を行うフィルタと、
 前記波形出力部の出力信号と前記フィルタの出力信号とを加算する加算部と、
 前記加算部にて得られたディジタル信号をアナログ信号に変換するための変換部と、を備えたことを特徴とする。
The frequency signal generator of the present invention includes a waveform output unit that outputs a periodic waveform signal composed of a digital signal,
A noise generator that generates random noise composed of digital signals;
A filter that performs processing for biasing the signal level of the frequency spectrum in the random noise to a frequency band that deviates from the frequency of the waveform signal, with respect to the output signal output from the noise generation unit,
An adder for adding the output signal of the waveform output unit and the output signal of the filter;
And a conversion unit for converting the digital signal obtained by the addition unit into an analog signal.
 本発明は、波形出力部から出力されるディジタル信号からなる周期的な波形信号に対して、ディジタル信号からなるランダムノイズを加算するようにしているため、アナログ出力に現れるスプリアスが拡散される。そして前記ランダムノイズは、フィルタにより、周波数スペクトラムの信号レベルが前記波形信号の周波数から外れた周波数帯域に偏るように処理されている。従って、目的とする出力周波数(設定周波数)の近傍におけるフロアノイズのレベルを低く抑えることができると共に、高いスプリアスの抑制効果が得られる。 In the present invention, random noise consisting of a digital signal is added to a periodic waveform signal consisting of a digital signal output from the waveform output unit, so that spurious appearing in the analog output is diffused. The random noise is processed by a filter so that the signal level of the frequency spectrum is biased to a frequency band that deviates from the frequency of the waveform signal. Therefore, the level of floor noise in the vicinity of the target output frequency (set frequency) can be suppressed low, and a high spurious suppression effect can be obtained.
本発明の周波数信号発生装置の第1の実施形態を示す回路図である。1 is a circuit diagram showing a first embodiment of a frequency signal generator of the present invention. ランダムノイズ生成部の一部の回路を示す回路図である。It is a circuit diagram which shows a part of circuit of a random noise production | generation part. 周波数信号発生装置の比較例を示す回路図である。It is a circuit diagram which shows the comparative example of a frequency signal generator. ランダムノイズを重畳しないときにおけるDDSの出力の周波数スペクトラムである。It is the frequency spectrum of the output of DDS when random noise is not superimposed. 図4に示す周波数スペクトラムの一部を拡大した図である。It is the figure which expanded a part of frequency spectrum shown in FIG. ランダムノイズ生成部から出力されたランダムノイズの周波数スペクトラムである。It is the frequency spectrum of the random noise output from the random noise generation part. 図3に示す比較例の回路を用いてランダムノイズを重畳したときにおけるDDSの出力の周波数スペクトラムである。It is a frequency spectrum of the output of DDS when a random noise is superimposed using the circuit of the comparative example shown in FIG. 図7に示す周波数スペクトラムの一部を拡大した図である。It is the figure which expanded a part of frequency spectrum shown in FIG. 図6に示すランダムノイズをフィルタにより処理した後のランダムノイズの周波数スペクトラムである。It is the frequency spectrum of the random noise after processing the random noise shown in FIG. 6 with a filter. 図1に示す実施形態の回路を用いてランダムノイズを重畳したときにおけるDDSのローパスフィルタの出力の周波数スペクトラムである。It is a frequency spectrum of the output of the low-pass filter of DDS when random noise is superimposed using the circuit of the embodiment shown in FIG. 図10に示す周波数スペクトラムの一部を拡大した図である。。It is the figure which expanded a part of frequency spectrum shown in FIG. . 本発明に用いられるフィルタの具体例を示す回路である。It is a circuit which shows the specific example of the filter used for this invention. 図12に示すフィルタの移動平均を行う回路の一例を示す回路である。It is a circuit which shows an example of the circuit which performs the moving average of the filter shown in FIG. 本発明の第2の実施形態を示す回路図である。It is a circuit diagram which shows the 2nd Embodiment of this invention. 図14に示す帯域移動処理部のタイムチャートである。It is a time chart of the band movement process part shown in FIG. フィルタにより処理した後のランダムノイズに対して更に帯域移動処理を行った後の周波数スペクトラムである。It is a frequency spectrum after performing a band shift process with respect to the random noise after processing by the filter. 図14に示す実施形態の回路を用いてランダムノイズを重畳したときにおけるDDSのローパスフィルタの出力の周波数スペクトラムである。15 is a frequency spectrum of an output of a low-pass filter of a DDS when random noise is superimposed using the circuit of the embodiment shown in FIG. 図17に示す周波数スペクトラムの一部を拡大した図である。。It is the figure which expanded a part of frequency spectrum shown in FIG. . 本発明の第2の実施形態の変形例を示す回路図である。It is a circuit diagram which shows the modification of the 2nd Embodiment of this invention.
[第1の実施形態]
 図1は、本発明の周波数信号発生装置をDDSに適用した実施形態である。1は、位相アキュムレータ、2は波形データメモリである。位相アキュムレータ1は加算部11とラッチ回路12とを備えている。加算部11には、DDSから出力される周波数信号について目的とする周波数を設定するための周波数設定データが入力される。周波数設定データを例えばNとすると、1番目のクロック信号によりラッチ回路12からNが出力され、後続のクロック信号により、ラッチ回路12から順次2N、3N、4N…が出力される。
[First embodiment]
FIG. 1 shows an embodiment in which the frequency signal generator of the present invention is applied to a DDS. Reference numeral 1 is a phase accumulator, and 2 is a waveform data memory. The phase accumulator 1 includes an adder 11 and a latch circuit 12. The adder 11 receives frequency setting data for setting a target frequency for the frequency signal output from the DDS. If the frequency setting data is N, for example, N is output from the latch circuit 12 by the first clock signal, and 2N, 3N, 4N... Are sequentially output from the latch circuit 12 by the subsequent clock signal.
 波形データメモリ2は、例えば正弦波を生成するための波形データ(波形の振幅値に相当するディジタル値群)が記憶されており、ラッチ回路12の出力信号をアドレスとして波形データが読み出される。従ってNの値に応じて、波形データにより特定される周波数信号の周波数が決まってくる。 
 位相アキュムレータ1及び波形データメモリ2は、周期的な波形信号を出力する波形出力部に相当する。
The waveform data memory 2 stores, for example, waveform data (a digital value group corresponding to the amplitude value of the waveform) for generating a sine wave, and the waveform data is read using the output signal of the latch circuit 12 as an address. Accordingly, the frequency of the frequency signal specified by the waveform data is determined according to the value of N.
The phase accumulator 1 and the waveform data memory 2 correspond to a waveform output unit that outputs a periodic waveform signal.
 3は、ランダムノイズ生成部であり、例えば擬似ランダムノイズ生成回路により構成される。本願では、ランダムノイズは、擬似ランダムノイズを含む。擬似ランダムノイズ生成回路としては、DDSに入力されるクロック信号例えば200MHzに同期してPN(Pseudo Noise)系列の信号を出力する回路を挙げることができ、例えばシフトレジスタとEx-OR(排他的論理和)回路とを組み合わせたM系列の発生回路、あるいはプリフィードペアのM系列を用いたGold系列を発生する回路などを挙げることができる。そしてこの例では、PN系列の信号である論理「1」、論理「0」からなる時系列信号に対して、論理「0」を「1」に変換し、論理「1」を「-1」に変換する論理値処理回路を、ランダムノイズ生成部3の中に設けている。従ってランダムノイズ生成部3は、PN系列発生回路と、PN系列発生回路の出力側に設けられた信号処理回路とを備えていることになる。図2に信号処理回路の一例を示しておく。 3 is a random noise generation unit, which is constituted by, for example, a pseudo random noise generation circuit. In the present application, random noise includes pseudo-random noise. Examples of the pseudo random noise generation circuit include a circuit that outputs a PN (Pseudo Noise) series signal in synchronization with a clock signal input to the DDS, for example, 200 MHz. For example, a shift register and Ex-OR (exclusive logic) And a circuit that generates a Gold sequence using an M sequence of a prefeed pair. In this example, the logic “0” is converted to “1” and the logic “1” is changed to “−1” with respect to the time series signal including the logic “1” and the logic “0” which are PN sequence signals. A logic value processing circuit for converting to a random noise generation unit 3 is provided. Therefore, the random noise generation unit 3 includes a PN sequence generation circuit and a signal processing circuit provided on the output side of the PN sequence generation circuit. FIG. 2 shows an example of the signal processing circuit.
 PN系列の信号である論理「0」及び「1」を夫々「1」及び「-1」に変換する理由は、論理「0」及び「1」のデータの場合には、後述のフィルタ4に入力される入力値に0.5のオフセットが発生するためのである。このようにオフセットが発生すると、周波数信号発生装置の出力にもオフセット分に相当する直流成分が重畳されるという不具合が生じる。なお、PN系列の信号である論理「1」についてはそのまま出力し、論理「0」を「-1」に変換する処理を行うようにしてもよい。 
 図2に上述の信号処理回路の一例を示す。図2(a)では信号処理回路31は、1ビットの入力信号に対して下位に1ビットの論理「1」を付加する処理を行って、2の補数で表現される2ビットの信号を出力する。図2(b)では信号処理回路32はマルチプレクサからなり、マルチプレクサの一方の入力端及び他方の入力端に夫々2の補数で表現される2ビットの信号「01」、「11」が入力されている。マルチプレクサは、1ビットの信号である「0」が選択信号として入力されたときに他方の入力端の入力信号「11」が出力され、「1」が選択信号として入力されたときに一方の入力端の入力信号「01」が出力されるように構成されている。
The reason why the logic “0” and “1”, which are PN series signals, are converted to “1” and “−1”, respectively, is to the filter 4 described later in the case of logic “0” and “1” data. This is because an offset of 0.5 occurs in the input value to be input. When an offset is generated in this way, there is a problem that a DC component corresponding to the offset is also superimposed on the output of the frequency signal generator. Note that the logic “1” which is a PN sequence signal may be output as it is, and the process of converting the logic “0” into “−1” may be performed.
FIG. 2 shows an example of the signal processing circuit described above. In FIG. 2A, the signal processing circuit 31 performs a process of adding a 1-bit logic “1” to the 1-bit input signal and outputs a 2-bit signal represented by 2's complement. To do. In FIG. 2B, the signal processing circuit 32 is composed of a multiplexer, and 2-bit signals “01” and “11” expressed by two's complement numbers are input to one input end and the other input end of the multiplexer, respectively. Yes. The multiplexer receives an input signal “11” at the other input terminal when “0”, which is a 1-bit signal, is input as a selection signal, and inputs one when “1” is input as a selection signal. The input signal “01” at the end is output.
 ランダムノイズ生成部3の出力側には、ノイズ処理用のフィルタ4が設けられている。このフィルタ4は、ランダムノイズ生成部3から出力されたランダムノイズの周波数スペクトラムの信号レベル(電力強度)を、DDSの設定周波数(出力周波数)から外れた周波数帯域に偏らせる処理を行うように構成されている。フィルタ4の具体的な構成例については後述する。 A noise processing filter 4 is provided on the output side of the random noise generator 3. The filter 4 is configured to perform processing for biasing the signal level (power intensity) of the frequency spectrum of random noise output from the random noise generating unit 3 to a frequency band that deviates from the set frequency (output frequency) of the DDS. Has been. A specific configuration example of the filter 4 will be described later.
 図1中、5は加算部であり、加算部5は、波形データメモリ2から読み出されたディジタル信号(振幅値データ)、例えば32ビットのディジタル信号と、フィルタ4から出力される32ビットのディジタル信号(出力信号)と、を加算する。加算部5の出力側には、加算部5の出力値である加算値をアナログ信号に変換するD/A変換部6が設けられている。D/A変換部6の出力側には、D/A変換部6から得られるアナログの波形信号に含まれる高調波を除去して、歪の少ない波形を得るためのローパスフィルタ7が設けられている。 In FIG. 1, reference numeral 5 denotes an adder. The adder 5 is a digital signal (amplitude value data) read from the waveform data memory 2, for example, a 32-bit digital signal, and a 32-bit output from the filter 4. The digital signal (output signal) is added. On the output side of the adder 5, a D / A converter 6 that converts the added value, which is the output value of the adder 5, into an analog signal is provided. On the output side of the D / A converter 6, a low-pass filter 7 is provided for removing harmonics contained in the analog waveform signal obtained from the D / A converter 6 to obtain a waveform with less distortion. Yes.
 更にローパスフィルタ7の出力側には、ハイパスフィルタ8が設けられている。ハイパスフィルタ8は、フィルタ4においてフィルタ処理をしたことに基づいて、設定周波数から離れた周波数帯域に存在するノイズを除去するためのものである。 Furthermore, a high pass filter 8 is provided on the output side of the low pass filter 7. The high-pass filter 8 is for removing noise existing in a frequency band away from the set frequency based on the filtering process performed by the filter 4.
 本発明の作用の理解を容易にするために、ランダムノイズを用いない場合、ランダムノイズを用いるが、フィルタ4を設けない場合(図3参照)、図1に示す回路を用いた場合について、この順で作用を説明する。 In order to facilitate understanding of the operation of the present invention, when random noise is not used, random noise is used, but when the filter 4 is not provided (see FIG. 3), and when the circuit shown in FIG. The operation will be described in order.
 図4は、波形データメモリ2から読み出されたディジタル信号にランダムノイズを加算しない場合(図3の回路からランダムノイズ生成部3及び加算部5を除いた回路)において、ローパスフィルタ7から得られた周波数信号(DDSの出力信号)の周波数スペクトラムである。クロック信号は200MHzである。この例では、DDSの出力信号の設定周波数は42MHzである。図5は、図4に示した周波数スペクトラムにおいて、設定周波数の近傍を拡大した図である。なお、図4を含む一連の周波数スペクトラムの図において、設定周波数に対応する信号レベルを0dBとしている。図4及び図5から分かるように、設定周波数の近傍にスプリアスが表れている。 4 is obtained from the low-pass filter 7 when random noise is not added to the digital signal read from the waveform data memory 2 (a circuit obtained by removing the random noise generator 3 and the adder 5 from the circuit of FIG. 3). This is the frequency spectrum of the frequency signal (DDS output signal). The clock signal is 200 MHz. In this example, the set frequency of the DDS output signal is 42 MHz. FIG. 5 is an enlarged view of the vicinity of the set frequency in the frequency spectrum shown in FIG. In the series of frequency spectrum diagrams including FIG. 4, the signal level corresponding to the set frequency is 0 dB. As can be seen from FIGS. 4 and 5, spurious appears in the vicinity of the set frequency.
 次に、波形データメモリ2から読み出されたディジタル信号にランダムノイズを加算した場合の周波数スペクトラムについて説明する。図6は、ランダムノイズ生成部3により生成されたランダムノイズの周波数スペクトラムである。図7は、図3の回路を用いてローパスフィルタ7から得られた周波数信号(DDSの出力信号)の周波数スペクトラムである。図8は、図7に示した周波数スペクトラムにおいて、設定周波数(42MHz)の近傍を拡大した図である。図7及び図8から分かるように、ランダムノイズを用いただけでは、フロアノイズのレベルが高く(フロアノイズが劣化し)、またスプリアス改善効果が低い。 Next, the frequency spectrum when random noise is added to the digital signal read from the waveform data memory 2 will be described. FIG. 6 is a frequency spectrum of random noise generated by the random noise generator 3. FIG. 7 is a frequency spectrum of a frequency signal (DDS output signal) obtained from the low-pass filter 7 using the circuit of FIG. FIG. 8 is an enlarged view of the vicinity of the set frequency (42 MHz) in the frequency spectrum shown in FIG. As can be seen from FIGS. 7 and 8, the floor noise level is high (floor noise is degraded) and the spurious improvement effect is low when only random noise is used.
 続いて、本発明の実施形態である図1に示す回路を用いた場合の周波数スペクトラムについて説明する。なお、この例では、図4の周波数スペクトラムを採取したときの回路に、ランダムノイズ生成部3、フィルタ4及び加算部5を追加した回路を用いている。またランダムノイズ生成部3から出力されたランダムノイズの周波数スペクトラムは、図6に示すものと同じである。図9は、フィルタ4から出力されたランダムノイズの周波数スペクトラムである。この例では、フィルタ4にて、図3に示す周波数スペクトラムの信号レベルを、42MHzよりも低い周波数帯域に偏らせる処理を行っている。図10は、図1に示す回路のローパスフィルタ7から得られた周波数信号の周波数スペクトラムである。図11は、図10に示した周波数スペクトラムにおいて、設定周波数(42MHz)の近傍を拡大した図である。 Subsequently, a frequency spectrum when the circuit shown in FIG. 1 which is an embodiment of the present invention is used will be described. In this example, a circuit in which a random noise generating unit 3, a filter 4, and an adding unit 5 are added to the circuit when the frequency spectrum of FIG. 4 is collected is used. The frequency spectrum of the random noise output from the random noise generator 3 is the same as that shown in FIG. FIG. 9 is a frequency spectrum of random noise output from the filter 4. In this example, the filter 4 performs processing for biasing the signal level of the frequency spectrum shown in FIG. 3 to a frequency band lower than 42 MHz. FIG. 10 shows the frequency spectrum of the frequency signal obtained from the low-pass filter 7 of the circuit shown in FIG. FIG. 11 is an enlarged view of the vicinity of the set frequency (42 MHz) in the frequency spectrum shown in FIG.
 図4と、図10及び図11と、を比較してわかるように、図1の回路によれば、スプリアスが10~15dB程度改善されており、またDDSの設定周波数の近傍のフロアノイズも低減されている。フィルタ4によりランダムノイズの周波数スペクトラムを偏らせることにより低い周波数帯域において大きくなったフロアノイズは、その周波数帯域が前記設定周波数から大きく離れているため、簡単なフィルタ、例えばインダクタ及びコンデンサを組み合わせたLCフィルタなどにより除去できる。図1では、このようなフィルタとして、ローパスフィルタ7の出力側にハイパスフィルタを設けている。 As can be seen by comparing FIG. 4 with FIG. 10 and FIG. 11, according to the circuit of FIG. 1, the spurious is improved by about 10 to 15 dB, and the floor noise near the set frequency of DDS is also reduced. Has been. The floor noise that is increased in the low frequency band by biasing the frequency spectrum of the random noise by the filter 4 is far away from the set frequency, so that a simple filter such as an LC that combines an inductor and a capacitor is used. It can be removed by a filter or the like. In FIG. 1, as such a filter, a high-pass filter is provided on the output side of the low-pass filter 7.
 ここで、フィルタ4の具体的な回路の一例を図12及び図13に示す。この例ではフィルタ4は、図12に示すように移動平均化回路を10段直列に接続して構成されている。各段の移動平均化回路は9-n(nは1から10までの整数)は、図13に示すように、連続した8個のディジタル値からなるディジタル値群を平均化し、1クロック信号毎にディジタル値群の先頭のディジタル値を、1個後のディジタル値にシフトするように構成されている。例えばクロック信号により順次d0、d1、d2…d7、d8、d9、d10…のようにディジタル値が入力される場合、あるクロック信号により、d0~d7までの8個のディジタル値からなるディジタル値群について平均化し、次のクロック信号によりd1~d8までのディジタル値群について平均化し、更に次のクロック信号によりd2~d9までのディジタル値群について平均化するという処理となる。 Here, an example of a specific circuit of the filter 4 is shown in FIGS. In this example, the filter 4 is configured by connecting 10 stages of moving average circuits in series as shown in FIG. The moving average circuit in each stage is 9-n (n is an integer from 1 to 10), and averages a group of digital values consisting of 8 consecutive digital values as shown in FIG. The first digital value of the digital value group is shifted to the next digital value. For example, when digital values are sequentially input as d0, d1, d2,... D7, d8, d9, d10... By a clock signal, a digital value group consisting of eight digital values from d0 to d7 by a certain clock signal. Is averaged for the digital value group from d1 to d8 by the next clock signal, and further averaged for the digital value group from d2 to d9 by the next clock signal.
 図13は、1段目の移動平均化回路を示しており、ランダムノイズ生成部3から出力される2ビットのディジタル値が入力される。d0~d7は、クロック信号によりランダムノイズ生成部3から出力されたディジタル値を示している。Dは、1クロック信号ごとに入力値を遅延させて出力する遅延回路であり、1段目の遅延回路Dに入力されたディジタル信号は、7個のクロック信号が移動平均化回路に入力されたときに、最終段の遅延回路Dから出力される。Aは加算回路である。 FIG. 13 shows a first-stage moving average circuit, to which a 2-bit digital value output from the random noise generator 3 is input. d0 to d7 indicate digital values output from the random noise generating unit 3 by the clock signal. D is a delay circuit that delays and outputs an input value for each clock signal. The digital signal input to the first-stage delay circuit D includes seven clock signals input to the moving averaging circuit. Sometimes, it is output from the delay circuit D at the final stage. A is an adder circuit.
 一般的な移動平均化回路では、最終段の加算部Aの後段にディジタル値に1/8を掛け算する回路、即ちディジタル値を「8」で割り算するまるめ処理を行うまるめ処理回路が設けられている。8個の連続した時系列データを「8」で割ることにより、前記8個のディジタル値の平均値が得られる。これに対して、本実施の形態に用いるフィルタとしての移動平均化回路は、ランダムノイズの周波数スペクトルの信号レベルを周波数の低い帯域に偏らせるためのものであるから、最終段の加算部Aから得られた8個のデータの加算値を「8」で割らなくとも、目的とする信号を得ることができる。そして8個のデータの加算値を「8」で割らないことにより、ノイズとしての信号レベルを必要なレベルとすることができる
 本願の明細書及び特許請求の範囲において、「移動平均化回路」とは、このようにまるめ処理を行わない回路も含まれ、またまるめ処理を行う回路も含まれる。まるめ処理を行わない場合(8個のデータの加算値を「8」で割らない場合)には、移動平均化回路にて3ビット分だけディジタル値が増えるので、ランダムノイズ生成部3から2ビットのディジタル値が入力され、5ビットのディジタル値が出力される。
In a general moving average circuit, a circuit that multiplies a digital value by 1/8, that is, a rounding processing circuit that performs rounding processing to divide the digital value by “8” is provided after the final stage adder A. Yes. By dividing eight continuous time series data by “8”, an average value of the eight digital values is obtained. On the other hand, the moving average circuit as a filter used in the present embodiment is for biasing the signal level of the frequency spectrum of random noise to a low frequency band. The target signal can be obtained without dividing the added value of the obtained eight data by “8”. Then, by dividing the added value of the eight data by “8”, the signal level as noise can be made a necessary level. In the specification and claims of this application, “moving averaging circuit” Includes a circuit that does not perform rounding processing, and also includes a circuit that performs rounding processing. When rounding processing is not performed (when the added value of 8 data is not divided by “8”), the digital value is increased by 3 bits in the moving averaging circuit. Are input, and a 5-bit digital value is output.
 図12に示す10段の移動平均化回路9-nは、ディジタル値のビット数を除いては、いずれも図13に示した回路と同じ回路が用いられており、ディジタル値のビット数が1段毎に3ビットずつ増えていくので、10段目の移動平均化回路9-10からは、32ビットのディジタル値が出力されることになる。図12及び図13において括弧内の数字はビット数を表している。 The 10-stage moving averaging circuit 9-n shown in FIG. 12 uses the same circuit as that shown in FIG. 13 except for the number of bits of the digital value, and the number of bits of the digital value is 1. Since each stage increases by 3 bits, a 32-bit digital value is output from the 10th stage moving average circuit 9-10. 12 and 13, the numbers in parentheses represent the number of bits.
 移動平均化回路における移動平均の対象となるサンプル数は、8個に限られるものではないし、移動平均化回路の段数も10段に限られるものではない。なお、図9の周波数スペクトラムを得るときに用いたフィルタ4は、まるめ処理を行わない移動平均化回路を複数段直列に接続して構成しているが、移動平均の対象となるサンプル数及び移動平均化回路の接続段数は、図12及び図13の例とは異なっている。 The number of samples subject to moving average in the moving average circuit is not limited to 8, and the number of stages in the moving average circuit is not limited to 10. The filter 4 used when obtaining the frequency spectrum of FIG. 9 is configured by connecting a moving average circuit that does not perform rounding processing in a plurality of stages in series. The number of connection stages of the averaging circuit is different from the examples of FIGS.
 ランダムノイズ生成部3にて生成されたノイズの周波数スペクトラムは広い帯域に分布しており、このためDDSの設定周波数が存在する領域にもノイズが発生してしまい、フロアノイズが悪化してしまう。フィルタ4の役割は、広い帯域に分布するノイズの周波数スペクトラムに対して、DDSの設定周波数が存在する領域及びその近傍のノイズのエネルギーを低くすることにある。従って、フィルタ4は、FIR(Finite impulse response)フィルタを用いてもよいし、あるいはIIR(Infinite impulse response)フィルタなどを用いても良い。 The frequency spectrum of the noise generated by the random noise generating unit 3 is distributed over a wide band, and therefore noise is generated even in a region where the set frequency of the DDS exists, and the floor noise is deteriorated. The role of the filter 4 is to reduce the energy of noise in a region where the set frequency of the DDS exists and in the vicinity of the frequency spectrum of noise distributed over a wide band. Therefore, the filter 4 may be an FIR (Finite impulse response) filter or an IIR (Infinite Impulse Response) filter.
 FIRフィルタあるいは移動平均化回路を用いた場合には、平均化する対象となる1グループのデータ値の数が多いほど、ローパスフィルタ特性は、低い周波数に偏ることから、DDSの設定周波数に応じて前記データ値の数を選択すればよい。またFIRフィルタを用いる場合には、各タップ(各段)に乗算される重みづけ係数を調整して、周波数特性を調整してもよい。 When an FIR filter or a moving averaging circuit is used, as the number of data values of one group to be averaged increases, the low-pass filter characteristic is biased toward a lower frequency. The number of data values may be selected. When using an FIR filter, the frequency characteristic may be adjusted by adjusting the weighting coefficient multiplied by each tap (each stage).
 図1に示されているDDSの動作の全体をまとめると、位相アキュムレータ1から周波数設定データに応じてアドレスが出力され、このアドレスにより波形データメモリ2から例えば正弦波データである波形データ(波形の振幅値に相当するディジタル値群)が出力される。一方ランダムノイズ生成部3から擬似ランダムノイズであるPN系列の信号が出力され、ランダムノイズ生成部3内に含まれる信号処理部にて、この信号の論理「0」が「1」に変換され、論理「1」が「-1」に変換される。そしてフィルタ4にてランダムノイズの周波数スペクトラムの信号レベル(電力強度)を、DDSの設定周波数から外れた周波数帯域に偏らせる処理が行われ、処理後のランダムノイズと前記波形データとが加算される。次いで加算値をD/A変換部6にてアナログ信号に変換し、アナログ信号をローパスフィルタ7及びハイパスフィルタ8を通過させて、DDSの出力である周波数信号が得られる。 When the entire operation of the DDS shown in FIG. 1 is summarized, an address is output from the phase accumulator 1 according to the frequency setting data, and waveform data (waveform data such as sine wave data) is output from the waveform data memory 2 by this address. A digital value group corresponding to the amplitude value) is output. On the other hand, a PN sequence signal that is pseudo-random noise is output from the random noise generation unit 3, and the signal processing unit included in the random noise generation unit 3 converts the logic “0” of the signal into “1”. Logic “1” is converted to “−1”. The filter 4 performs processing for biasing the signal level (power intensity) of the frequency spectrum of random noise to a frequency band that deviates from the set frequency of the DDS, and the processed random noise and the waveform data are added. . Next, the addition value is converted into an analog signal by the D / A converter 6 and the analog signal is passed through the low-pass filter 7 and the high-pass filter 8 to obtain a frequency signal that is an output of the DDS.
 上述実施形態によれば、波形データメモリ2から出力されるディジタル信号に対して、ランダムノイズを加算している。そして前記ランダムノイズは、フィルタ4により、周波数スペクトラムの信号レベルがDDSの設定周波数から外れた周波数帯域に偏るように処理されている。従って、DDSにおける設定周波数(出力周波数)の近傍におけるフロアノイズのレベルを低く抑えることができると共に、高いスプリアスの抑制効果が得られる。
[第2の実施形態]
 第1の実施形態におけるDDSの設定周波数は42MHzであるが、前記設定周波数を例えば21MHzとした場合においても、図9の周波数スペクトラムを得るために使用したフィルタ4をそのまま用いると、設定周波数の近傍のフロアノイズのレベルが高くなる懸念がある。そこで第2の実施形態では、フィルタ4から出力されるノイズ信号の周波数スペクトラムにおいて偏っている帯域を、設定周波数よりも高域側でありかつ十分離れている帯域に移動する処理を行う。
According to the above-described embodiment, random noise is added to the digital signal output from the waveform data memory 2. The random noise is processed by the filter 4 so that the signal level of the frequency spectrum is biased to a frequency band that deviates from the set frequency of the DDS. Accordingly, the floor noise level in the vicinity of the set frequency (output frequency) in the DDS can be suppressed to a low level, and a high spurious suppression effect can be obtained.
[Second Embodiment]
The DDS set frequency in the first embodiment is 42 MHz. Even when the set frequency is set to 21 MHz, for example, if the filter 4 used to obtain the frequency spectrum of FIG. There is concern that the level of floor noise will be high. Therefore, in the second embodiment, a process is performed in which a band that is biased in the frequency spectrum of the noise signal output from the filter 4 is moved to a band that is higher than the set frequency and sufficiently far away.
 図14は、第2の実施形態の回路を示し、フィルタ4の出力側に、帯域移動処理部40を設けている。帯域移動処理部40は、入力データが入力される一方の入力端子と、-1を乗算する乗算部401を通して入力データが入力される他方の入力端子と、を含むマルチプレクサ402を備え、トグル信号により一方の入力端子に入力された値と他方の入力端子に入力された値とが交互に出力される。 
 図15は、帯域移動処理部40のタイムチャートであり、入力データ(フィルタ4の出力データ)であるd1、d2、…について一つ置きに-1が掛け算されており、言い換えれば一つ置きにディジタル値の極性が反転している。即ち、クロック信号の周波数fsの1/2の周波数で、振幅が「-1」と「1」からなる周波数信号が入力データに混合(ミキシング)されていることになる。クロック信号の周波数は例えば200MHzであるから、概略的な言い方をすれば、ノイズの周波数スペクトラムにおいてフィルタ4により偏った部分が100MHzのところに移動する。
FIG. 14 shows a circuit according to the second embodiment, and a band shift processing unit 40 is provided on the output side of the filter 4. The band shift processing unit 40 includes a multiplexer 402 including one input terminal to which input data is input and the other input terminal to which input data is input through a multiplication unit 401 that multiplies by −1. A value input to one input terminal and a value input to the other input terminal are alternately output.
FIG. 15 is a time chart of the band shift processing unit 40, where d1, d2,... That are input data (output data of the filter 4) are multiplied by -1, and in other words, every other. The polarity of the digital value is reversed. In other words, a frequency signal having “−1” and “1” amplitudes at a frequency ½ of the frequency fs of the clock signal is mixed (mixed) with the input data. Since the frequency of the clock signal is, for example, 200 MHz, to put it roughly, a portion biased by the filter 4 in the noise frequency spectrum moves to 100 MHz.
 図16は、帯域移動処理部40から出力されたランダムノイズの周波数スペクトラムである。帯域移動処理部40に入力する前における、フィルタ4から出力されたノイズの周波数スペクトラムは、図9に示すものと同じである。図17は、図1に示す回路のローパスフィルタ7から得られた周波数信号の周波数スペクトラムである。図18は、図17に示した周波数スペクトラムにおいて、設定周波数(21MHz)の近傍を拡大した図である。この結果からわかるように、フィルタ4を用いただけでは、DDSの設定周波数の近傍のフロアノイズが大きくなる懸念がある場合であっても、帯域移動処理部40を用いることにより、このような懸念が払拭される。 FIG. 16 is a frequency spectrum of random noise output from the band shift processing unit 40. The frequency spectrum of the noise output from the filter 4 before being input to the band shift processing unit 40 is the same as that shown in FIG. FIG. 17 shows the frequency spectrum of the frequency signal obtained from the low-pass filter 7 of the circuit shown in FIG. FIG. 18 is an enlarged view of the vicinity of the set frequency (21 MHz) in the frequency spectrum shown in FIG. As can be seen from this result, even if there is a concern that the floor noise in the vicinity of the set frequency of the DDS is increased only by using the filter 4, such a concern is caused by using the band shift processing unit 40. Wiped out.
 ところでフィルタ4の規模を大きくすれば、ノイズの帯域を限られた領域、例えば10MHzにだけ分布させることが可能であるが、帯域移動処理部40を用いれば、フィルタ4の構成を大規模なものとせずに簡素な構成で済む利点がある。 By the way, if the size of the filter 4 is increased, the noise band can be distributed only in a limited region, for example, 10 MHz. However, if the band shift processing unit 40 is used, the configuration of the filter 4 is large. There is an advantage that a simple configuration is sufficient.
 また例えば200MHzのクロック信号のタイミングに基づいて、「0」、「1」、「0」、「-1」、の並びが繰り返されるデータ列を作成して、フィルタ4のデータにミキシングすれば、周波数スペクトラムの偏った部分が50MHzのところに移動する。フィルタ4の出力にミキシングする周波数信号は、ミキシング処理用として別のDDSを用いて、その周波数を図1に示すDDSの設定周波数に応じて任意に設定してもよい。更にまた、フィルタ4としては、ランダムノイズの周波数スペクトラムにおいて、設定周波数よりも高い帯域にエネルギーを偏らせ(図9では低い帯域に偏らせている)、エネルギーが偏っている部分(エネルギーがほかの帯域よりも高くなっている部分)の帯域を、帯域移動処理部40によって例えば低くシフトさせるようにしてもよい。 For example, based on the timing of a clock signal of 200 MHz, if a data string in which the arrangement of “0”, “1”, “0”, “−1” is repeated and mixed with the data of the filter 4, The part where the frequency spectrum is biased moves to 50 MHz. The frequency signal to be mixed with the output of the filter 4 may be set arbitrarily according to the set frequency of the DDS shown in FIG. 1 by using another DDS for mixing processing. Furthermore, as the filter 4, in the frequency spectrum of random noise, energy is biased to a band higher than the set frequency (biased to a lower band in FIG. 9), and energy is biased (energy is other than that). For example, the band shift processing unit 40 may shift the band of the portion that is higher than the band to a lower level.
 このようにフィルタ4と帯域移動処理部40とを組み合わせれば、DDSの設定周波数に応じて、適切な周波数スペクトラムを持ったランダムノイズを得て、波形信号に重畳することができる。 
 更にまた、図19に示すように切り替え部50を設けて、フィルタ4の出力を帯域移動処理部40を通して加算部5に入力するモードと、帯域移動処理部40を通さずに加算部5に入力するモードと、を選択できるようにしてもよい。このような構成によれば、DDSのより一層広い設定周波数に対して、スプリアスを低減することができる。

 
By combining the filter 4 and the band shift processing unit 40 in this way, it is possible to obtain random noise having an appropriate frequency spectrum according to the set frequency of the DDS and to superimpose it on the waveform signal.
Furthermore, as shown in FIG. 19, a switching unit 50 is provided, and a mode in which the output of the filter 4 is input to the adding unit 5 through the band shift processing unit 40 and an input to the adding unit 5 without passing through the band shift processing unit 40. The mode to be performed may be selectable. According to such a configuration, spurious can be reduced with respect to a wider setting frequency of DDS.

Claims (5)

  1.  ディジタル信号からなる周期的な波形信号を出力する波形出力部と、
     ディジタル信号からなるランダムノイズを発生するノイズ発生部と、
     前記ノイズ発生部から出力された出力信号に対して、前記ランダムノイズにおける周波数スペクトラムの信号レベルを、前記波形信号の周波数から外れた周波数帯域に偏らせる処理を行うフィルタと、
     前記波形出力部の出力信号と前記フィルタの出力信号とを加算する加算部と、
     前記加算部にて得られたディジタル信号をアナログ信号に変換するための変換部と、を備えたことを特徴とする周波数信号発生装置。
    A waveform output unit for outputting a periodic waveform signal composed of a digital signal;
    A noise generator that generates random noise composed of digital signals;
    A filter that performs processing for biasing the signal level of the frequency spectrum in the random noise to a frequency band that deviates from the frequency of the waveform signal, with respect to the output signal output from the noise generation unit,
    An adder for adding the output signal of the waveform output unit and the output signal of the filter;
    A frequency signal generator comprising: a converter for converting the digital signal obtained by the adder into an analog signal.
  2.  前記フィルタは、前記ノイズ発生部から出力されたディジタル値に対して移動平均処理を行う回路部であることを特徴とする請求項1記載の周波数信号発生装置。 The frequency signal generator according to claim 1, wherein the filter is a circuit unit that performs a moving average process on the digital value output from the noise generator.
  3.  前記信号レベルが偏った周波数帯域を、前記波形信号の周波数からより一層はなれた位置に移動させるために、前記フィルタと前記加算部との間に、当該フィルタの出力における前記周波数帯域を移動するための帯域移動処理部が介在していることを特徴とする請求項1記載の周波数信号発生装置。 In order to move the frequency band in the output of the filter between the filter and the adding unit in order to move the frequency band in which the signal level is biased to a position further away from the frequency of the waveform signal. The frequency signal generator according to claim 1, wherein a band shift processing unit is interposed.
  4.  前記帯域移動処理部は、前記フィルタに周波数帯域を移動させるための周波数信号を混合するように構成されていることを特徴とする請求項3記載の周波数信号発生装置。 The frequency signal generator according to claim 3, wherein the band shift processing unit is configured to mix a frequency signal for moving a frequency band to the filter.
  5.  前記フィルタの出力を前記帯域移動処理部を通して前記加算部に入力する信号路と、前記フィルタの出力を前記帯域移動処理部を通さずに前記加算部に入力する信号路と、の間で切り替え可能な切替え部を備えたことを特徴とする請求項3記載の周波数信号発生装置。

     
    Switchable between a signal path for inputting the output of the filter to the adder through the band shift processor and a signal path for inputting the output of the filter to the adder without passing through the band shift processor The frequency signal generator according to claim 3, further comprising a switching unit.

PCT/JP2015/001337 2014-03-12 2015-03-11 Frequency signal generator WO2015136929A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016507361A JP6463336B2 (en) 2014-03-12 2015-03-11 Frequency signal generator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-049392 2014-03-12
JP2014049392 2014-03-12

Publications (1)

Publication Number Publication Date
WO2015136929A1 true WO2015136929A1 (en) 2015-09-17

Family

ID=54071386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/001337 WO2015136929A1 (en) 2014-03-12 2015-03-11 Frequency signal generator

Country Status (2)

Country Link
JP (1) JP6463336B2 (en)
WO (1) WO2015136929A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04502092A (en) * 1987-12-14 1992-04-09 クアルコム,インコーポレイテッド Pseudo-random oscillations for frequency synthesized noise
JPH0897744A (en) * 1994-09-29 1996-04-12 Mitsubishi Electric Corp Communication equipment, frequency synthesizer, communication method and synthesizing method
JP2000252750A (en) * 1999-03-02 2000-09-14 Matsushita Electric Ind Co Ltd Numerically controlled oscillator

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5667596B2 (en) * 2012-04-12 2015-02-12 旭化成エレクトロニクス株式会社 Direct digital synthesizer

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04502092A (en) * 1987-12-14 1992-04-09 クアルコム,インコーポレイテッド Pseudo-random oscillations for frequency synthesized noise
JPH0897744A (en) * 1994-09-29 1996-04-12 Mitsubishi Electric Corp Communication equipment, frequency synthesizer, communication method and synthesizing method
JP2000252750A (en) * 1999-03-02 2000-09-14 Matsushita Electric Ind Co Ltd Numerically controlled oscillator

Also Published As

Publication number Publication date
JP6463336B2 (en) 2019-01-30
JPWO2015136929A1 (en) 2017-04-06

Similar Documents

Publication Publication Date Title
EP1066556A1 (en) Dither noise source with notched frequency spectrum
JP2009290867A (en) System and method for synthesizing signal
CN110957983B (en) Three-frequency pseudo-random variable spread spectrum modulation method and filter-free pulse width modulator constructed by same
JP2008021119A (en) Digital filter and image processor using the same
US20160330053A1 (en) Method and apparatus for spectrum spreading of a pulse-density modulated waveform
JP6463336B2 (en) Frequency signal generator
CN106026988B (en) The spectrum shaping of pseudo-random binary sequence
US8223819B2 (en) Spectrally shaped pseudo-random noise sequence generator and method thereof
JP2018201142A (en) Idle tone distribution device and frequency ratio measuring device
JP2018516518A5 (en)
US9929738B2 (en) Spectrally shaped random signal
JP5230528B2 (en) DA conversion circuit
JP2009303212A (en) Digital modulator, digital modulating method, digital transceiver system, and testing apparatus
US7385538B2 (en) Delta sigma modulator with multiple filters
TWI469529B (en) Fractional-n clock generator and method thereof
EP2687864A1 (en) Method and apparatus for reduction of the subpulses reciprocal intermodulation in a complex electromagnetic pulse
JP4013958B2 (en) Signal conversion apparatus and signal conversion method
JP2016092675A (en) Pwm modulation device and audio signal output device
JP2008227861A (en) Noise signal generator
JP5958232B2 (en) Digital-analog converter
WO2001063867A1 (en) Receiver
RU2625559C2 (en) Sidelobe suppression device for pulsed compression of multiphase p3 codes
JP6346041B2 (en) Feedback type pulse width modulation A / D converter
JPH04160822A (en) D/a converter
Vanderkooy et al. Digital dither: processing with resolution far below the least significant bit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15760885

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507361

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15760885

Country of ref document: EP

Kind code of ref document: A1