WO2015136823A1 - 目標抽出システム、目標抽出方法、情報処理装置およびその制御方法と制御プログラム - Google Patents

目標抽出システム、目標抽出方法、情報処理装置およびその制御方法と制御プログラム Download PDF

Info

Publication number
WO2015136823A1
WO2015136823A1 PCT/JP2014/084613 JP2014084613W WO2015136823A1 WO 2015136823 A1 WO2015136823 A1 WO 2015136823A1 JP 2014084613 W JP2014084613 W JP 2014084613W WO 2015136823 A1 WO2015136823 A1 WO 2015136823A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
chirp
frequency
signal
chirp wave
Prior art date
Application number
PCT/JP2014/084613
Other languages
English (en)
French (fr)
Inventor
宝珠山 治
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US15/124,200 priority Critical patent/US10746863B2/en
Priority to JP2016507281A priority patent/JP6536910B2/ja
Publication of WO2015136823A1 publication Critical patent/WO2015136823A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • G01S7/352Receivers
    • G01S7/354Extracting wanted echo-signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/06Systems determining position data of a target
    • G01S13/08Systems for measuring distance only
    • G01S13/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S13/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • G01S13/343Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal using sawtooth modulation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S13/583Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • G01S13/584Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets adapted for simultaneous range and velocity measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/06Systems determining the position data of a target
    • G01S15/08Systems for measuring distance only
    • G01S15/32Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated
    • G01S15/34Systems for measuring distance only using transmission of continuous waves, whether amplitude-, frequency-, or phase-modulated, or unmodulated using transmission of continuous, frequency-modulated waves while heterodyning the received signal, or a signal derived therefrom, with a locally-generated signal related to the contemporaneously transmitted signal
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/02Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems using reflection of acoustic waves
    • G01S15/50Systems of measurement, based on relative movement of the target
    • G01S15/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • G01S15/586Velocity or trajectory determination systems; Sense-of-movement determination systems using transmission of continuous unmodulated waves, amplitude-, frequency-, or phase-modulated waves and based upon the Doppler effect resulting from movement of targets
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/52Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S15/00
    • G01S7/534Details of non-pulse systems
    • G01S7/536Extracting wanted echo signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/881Radar or analogous systems specially adapted for specific applications for robotics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/886Radar or analogous systems specially adapted for specific applications for alarm systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/93Radar or analogous systems specially adapted for specific applications for anti-collision purposes
    • G01S13/931Radar or analogous systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S15/00Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
    • G01S15/88Sonar systems specially adapted for specific applications
    • G01S15/93Sonar systems specially adapted for specific applications for anti-collision purposes
    • G01S15/931Sonar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • the present invention relates to a target extraction system, a target extraction method, an information processing apparatus, and a control method and control program for extracting a target based on a reflected wave of a transmitted chirp wave.
  • Patent Documents 1 and 2 disclose a technique for obtaining a distance to a target from a frequency difference between a transmitted chirp wave and a chirp wave reflected from the target.
  • Patent Document 3 Non-Patent Document 1, and Non-Patent Document 2, a dial soup signal that sweeps a frequency band doubled in two cycles of the transmitted chirp wave is used as a heterodyne signal. Then, by multiplying the received signal of the chirp wave reflected from the target, a beat which is a frequency difference between the heterodyne signal and the received signal in one heterodyne process regardless of the delay of the received signal of the chirp wave.
  • a technique for generating a frequency is disclosed.
  • An object of the present invention is to provide a technique for solving the above-described problems.
  • an information processing apparatus provides: Receiving means for receiving the reflected chirp wave reflected from the target and outputting a received signal; Dual sweep signal generation means for generating a dual sweep signal of the chirp wave, having a frequency that does not overlap with the frequency band of the chirp wave; Heterodyne processing means for generating a beat frequency by multiplying the received signal by the dual sweep signal as a heterodyne signal; Is provided.
  • a method for controlling an information processing apparatus includes: Receiving a reflected wave of the chirp wave reflected from the target, and outputting a received signal; A heterodyne processing step of generating a beat frequency by multiplying the received signal with a frequency of the chirp wave that does not overlap with the dual sweep signal of the chirp wave as a heterodyne signal, including.
  • a control program for an information processing apparatus provides: Receiving a reflected wave of the chirp wave reflected from the target, and outputting a received signal; A heterodyne processing step of generating a beat frequency by multiplying the received signal with a frequency of the chirp wave that does not overlap with the dual sweep signal of the chirp wave as a heterodyne signal, Is executed on the computer.
  • a target extraction system includes: A transmission device for transmitting chirp waves; Receiving a reflected wave of the chirp wave reflected from the target, and extracting the target; With The wave receiving device is: Receiving means for receiving the reflected wave and outputting a received signal; Heterodyne processing means for generating a beat frequency by multiplying the received signal with a frequency of the chirp wave that does not overlap with the dual sweep signal of the chirp wave as a heterodyne signal; Have
  • a target extraction method includes: A transmission step for transmitting a chirp wave; Multiply the chirped wave dual sweep signal as a heterodyne signal to the received signal reflected from the target and receive the reflected wave of the chirped wave. Generating a target based on the frequency spectrum of the beat frequency, and extracting a target; including.
  • target extraction accuracy can be improved.
  • the “chirp wave” used in this specification is a wave whose frequency changes linearly.
  • a wave whose frequency rises linearly is called an “UP chirp wave”
  • a wave whose frequency falls linearly is called a “DOWN chirp wave”.
  • a wave that repeats an UP chirp wave and a DOWN chirp wave is referred to as a “saw-shaped chirp wave”, as distinguished from a wave that repeats only an UP chirp wave or a DOWN chirp wave.
  • the “dial sweep signal” is a signal that linearly changes in a frequency band that is twice the frequency change of the chirp wave with a period of twice.
  • a signal whose frequency rises linearly is called an “UP dual sweep signal”, and a wave whose frequency falls linearly is called a “DOWN dual sweep signal”.
  • the “beat frequency” This is a frequency of a composite wave whose amplitude slowly and periodically changes due to interference between two waves having slightly different frequencies.
  • heterodyne processing is performed to integrate the received signal corresponding to the received chirp wave and the heterodyne signal corresponding to the transmitted chirp wave, and the “beat frequency” corresponding to the frequency difference of the calculation result is calculated.
  • the “heterodyne signal” includes a “dial soup signal”.
  • the information processing apparatus 100 is an apparatus for extracting a target based on a reflected wave of a transmitted chirp wave.
  • the information processing apparatus 100 includes a wave receiving unit 110, a dual sweep signal generating unit 120, and a heterodyne processing unit 130.
  • the wave receiving unit 110 receives the reflected wave 112 of the chirp wave 111 reflected from the target 150 and outputs a received wave signal.
  • the dual sweep signal generation unit 120 generates a dual sweep signal of the chirp wave 111 whose frequency does not overlap with the chirp wave 111.
  • the heterodyne processing unit 130 multiplies the received signal by a dual sweep signal as a heterodyne signal to generate a beat frequency.
  • the target extraction accuracy is improved by preventing the beat frequency necessary for target extraction, target speed estimation, and Doppler influence detection from overlapping with unnecessary frequencies. Can do.
  • a dual sweep signal in a frequency band that does not overlap with the chirp wave transmitted by the transmission unit is used as a heterodyne signal, and beat frequency generation and display, target extraction, and movement Target speed, Doppler effect correction, etc. are executed.
  • FIG. 2A is a diagram illustrating characteristics of the target extraction method by the information processing apparatus according to the present embodiment. Note that FIG. 2A illustrates a change in frequency of a transmission wave and a heterodyne signal in order to clarify the difference. Also in the figures showing the following signals, the signals are shown as frequency changes. In this embodiment, the case where the center frequency is 40 kHz and the sampling frequency is 160 kHz will be described, but the present invention is not limited to this.
  • the basic heterodyne signal 210 is the same as the chirp wave frequency change, and is a heterodyne signal used in Patent Document 1 and Patent Document 2.
  • the dual sweep signal 220 which is a dual sweep type heterodyne signal, This is a frequency change in a frequency band that is doubled with a double period in which two chirp waves are connected, and is a signal in which the frequency band overlaps with the chirp wave used in Patent Document 3, Non-Patent Document 1, and Non-Patent Document 2.
  • the dual sweep signal 230 of the new heterodyne signal in FIG. 2A is a dual sweep signal used in this embodiment, but is a signal in which the chirp wave and the frequency band do not overlap. That is, in this embodiment, the dual sweep signal 231b for heterodyne is generated so as to satisfy the minimum condition that the chirp wave 231a to be transmitted is different in frequency band and does not overlap.
  • FIG. 2B is a diagram illustrating frequency changes of the transmission signal 240 and the reception signal 250 in the target extraction system including the information processing apparatus according to the present embodiment.
  • FIG. 2B shows a transmission signal 240 that is the basis of the chirp wave and a reception signal 250 corresponding to the received chirp wave.
  • the solid line is the received signal of the stationary object, and the delay time from the transmitted signal 240 is constant.
  • the received signal 250 the broken line is the received signal of the moving object, and the delay time with respect to the transmitted signal 240 changes.
  • FIG. 2B shows a case where the distance to the moving object is open.
  • the solid line is the static object and the broken line is the moving object.
  • FIG. 2C is a diagram showing a heterodyne processing result 270 between the received signal 250 and the dual sweep signal 220 in the base technology.
  • the received signal 250 is in the same frequency band as in FIG. 2B.
  • a dual sweep signal 220 is generated as a dual sweep signal 220 using the same signal 220a as the transmission signal 240 and a signal 220b in a frequency band continuous to the signal 220a, and the received signal 250 is multiplied by the heterodyne. Processing is executed.
  • the beat frequency 271 indicating the static object and the moving object overlaps with the unnecessary frequency 272 in the time zone 273. For this reason, identification is difficult when visually observed, and separation becomes impossible when separated by a filter. Therefore, when this time zone 273, that is, when the distance to the target is within a predetermined range, target extraction, distance estimation, and Doppler correction become difficult.
  • FIG. 2D is a diagram showing a frequency change between the received signal 250 and the dual sweep signal 230 according to the present embodiment.
  • the received signal 250 has the same frequency band as in FIGS. 2B and 2C.
  • a dual sweep signal is generated by a signal 230 b in a frequency band that is continuous with the signal 230 a and the signal 230 a that does not overlap with the transmission signal 240 and multiplied by the received signal 250. Heterodyne processing is performed.
  • FIG. 2E is a diagram showing a beat frequency change of the heterodyne processing result in the information processing apparatus according to the present embodiment.
  • the result of the heterodyne processing by the signal 230a is the target beat frequency 280a.
  • the heterodyne processing result by the signal 230b is the target beat frequency 280b.
  • the beat frequency 280a and the beat frequency 280b are connected, and a target heterodyne processing result 290 is obtained.
  • the target heterodyne processing result 290 does not overlap with the unnecessary frequency 292
  • the target heterodyne processing result 290 can be easily identified by visual observation, and can be easily separated when separated by a filter. Therefore, target extraction, distance estimation, and Doppler correction can be performed regardless of the distance to the target.
  • FIG. 3 is a block diagram illustrating a functional configuration of a target extraction system including the information processing apparatus 300 according to the present embodiment.
  • the transmission generator 350 generates and transmits a chirp wave having a predetermined frequency band and a predetermined period.
  • the chirp wave transmitted from the transmission generation unit 350 propagates through the propagation path 360, is reflected from the target, and is detected by the reception unit 310 of the information processing apparatus 300.
  • the propagation path 360 is It is underwater such as in the sea or body, but is not limited to this.
  • the propagation path 360 is modeled by delay, Doppler effect, noise generation, etc., but this is an example and is not limited.
  • the information processing apparatus 300 includes a wave receiving unit 310, a dual sweep signal generating unit 320, a heterodyne processing unit 330, and a spectrogram unit 340.
  • the wave receiving unit 310 receives a sound wave including a chirp wave from the transmission generation unit 350 that has propagated through the propagation path 360 and reached the wave receiving unit 310.
  • the dual sweep signal generation unit 320 generates a dual sweep signal that does not overlap the frequency band of the chirp wave transmitted by the transmission generation unit 350 and is double the transmission signal as a heterodyne signal.
  • FIG. 3 shows an example in which the dual sweep signal generation unit 320 acquires the frequency band and period of the chirp wave transmitted from the transmission generation unit 350.
  • a dual sweep signal can be generated without acquiring the frequency band and period of the chirp wave.
  • the heterodyne processing unit 330 multiplies the received signal output from the receiving unit 310 and the dual sweep signal whose frequency band does not overlap with the received signal, and is a frequency difference between the received signal and the dual sweep signal. Generate beat frequency.
  • the spectrogram unit 340 generates a spectrogram (hereinafter referred to as a beat frequency spectrogram) from a frequency change in which the frequency on the vertical axis is replaced with the beat frequency, thereby generating a spectrogram from the target in the received signal.
  • a beat frequency spectrogram a spectrogram
  • the output from the spectrogram unit 340 is displayed as a spectrogram from the output unit 301, or the calculation unit 302 further calculates the distance to the target, estimates the target speed, corrects the Doppler effect, and the like.
  • the output unit 301 and the calculation unit 302 may be included in the information processing apparatus 300.
  • FIG. 4A is a block diagram illustrating a functional configuration of the transmission generation unit 350 according to the present embodiment.
  • the functional configuration of the transmission generator 350 in FIG. 4A is an example, and is not limited to this as long as it outputs a chirp wave in the present embodiment.
  • the transmission generator 350 includes a signal generator 410, a digital / analog converter (DAC in the figure) 420, a transmission processor 430, and a transmitter 440.
  • the signal generator 410 includes a signal generation unit 411 that generates a signal for generating a chirp wave, a chirp wave table 412 that stores the frequency band and period of the chirp wave generated by the signal generation unit 411, and a signal generation unit 411. And an oscillator 413 that generates a chirp wave based on the signal from the.
  • the digital / analog converter 420 converts the chirp wave generated by the signal generator 410 into an analog signal.
  • the transmission processor 430 performs processing such as amplification on the analog signal of the chirp wave.
  • the wave transmitter 440 transmits a chirp wave according to the signal from the wave transmission processor 430 to the propagation path 360.
  • the chirp wave table 412 may be omitted when the chirp wave is fixed.
  • FIG. 4B is a diagram showing a configuration of the chirp wave table 412 according to the present embodiment.
  • the chirp wave table 412 is used to set the frequency band and period of the chirp wave generated by the signal generation unit 411.
  • the chirp wave table 412 stores a wave type 422, a frequency band 423, and a period 424 corresponding to a use wave flag 421 indicating a chirp wave to be used.
  • is a used wave
  • x is an unused wave.
  • the wave types 422 include an UP chirp wave whose frequency increases linearly, a DOWN chirp wave whose frequency decreases linearly, and a saw-shaped chirp wave which alternately repeats an UP chirp wave and a DOWN chirp wave.
  • a DOWN chirp wave as shown in FIGS. 2A to 2E is selected as a use wave.
  • FIG. 5A is a block diagram illustrating a functional configuration of the dual sweep signal generation unit 320 according to the present embodiment.
  • the functional configuration of the dual sweep signal generator 320 of FIG. 5A is an example, The present invention is not limited to this as long as it outputs a dual sweep signal in which the chirp wave and the frequency band in this embodiment do not overlap.
  • the dual sweep signal generation unit 320 includes a transmitted chirp wave information acquisition unit 510, a dual sweep signal frequency generation unit 520, a low frequency side oscillator 530 of the dual sweep signal, and a high frequency side oscillator 540 of the dual sweep signal. , A signal synthesizer 550.
  • the transmitted chirp wave information acquisition unit 510 acquires the information (UP or DOWN, frequency band, period) in order to generate a dual sweep signal. If the chirp wave to be transmitted is known and fixed, the transmitted chirp wave information acquisition unit 510 may be omitted.
  • the dual sweep signal frequency generation unit 520 has a dual sweep signal table 521, and generates frequency data of a dual sweep signal in which the chirp wave and the frequency band do not overlap based on the transmitted chirp wave.
  • the oscillator 530 and the oscillator 540 have the same degree of frequency change as the chirp wave and frequency change that do not overlap with the transmitted chirp wave, but the frequency change continues.
  • the signal synthesizer 550 synthesizes the outputs of the oscillator 530 and the oscillator 540 and outputs a dual sweep signal in which the transmitted chirp wave and the frequency band do not overlap.
  • a broken line from the transmitted chirp wave information acquisition unit 510 to the signal synthesizer 550 indicates a case where a signal corresponding to the transmitted chirp wave is acquired and used as it is.
  • FIG. 5B is a diagram showing a configuration of the dual sweep signal table 521 according to the present embodiment.
  • the dual sweep signal table 521 is used to generate a dual sweep signal corresponding to the chirp wave to be transmitted.
  • the dual sweep signal table 521 stores a frequency band 503 and a period 504 set based on the signal type 501 and the transmitted chirp wave 502 to be transmitted.
  • the signal type 501 has a low frequency side and a high frequency side for one dual sweep signal.
  • the used chirp wave 502 stores information on the chirp wave acquired by the transmitted chirp wave information acquisition unit 510.
  • a frequency band in which the chirp wave and the frequency band do not overlap and is close to the chirp wave is set based on the transmitted chirp wave information.
  • the frequency band 503 of the low frequency side and the high frequency side is continuous.
  • the cycle 504 the same cycle as the chirp wave is set.
  • FIG. 6A is a block diagram illustrating a functional configuration of the heterodyne processing unit 330 according to the present embodiment.
  • the functional configuration of the heterodyne processing unit 330 in FIG. 6A is an example, and is not limited to this as long as the received signal and the dual sweep signal in the present embodiment are multiplied.
  • the heterodyne processing unit 330 includes a received signal acquisition unit 610, a dual sweep signal acquisition unit 620, a multiplication unit 630, and an unnecessary signal removal filter 640 as an option.
  • the reception signal acquisition unit 610 acquires the reception signal from the reception unit 310.
  • the dual sweep signal acquisition unit 620 acquires a dual sweep signal from the dual sweep signal generation unit 320.
  • Multiplier 630 multiplies the received signal and the dual sweep signal to generate a beat frequency that is a difference frequency.
  • the unnecessary signal removal filter 640 removes frequency components that are not required for target extraction included in the output of the multiplier 630 based on the filter parameter table 641 predicted based on the chirp wave and the dual sweep signal. When the chirp wave and the dual sweep signal are known and fixed, the filter parameter table 641 may not be provided.
  • FIG. 6B is a diagram showing a configuration of the filter parameter table 641 according to the present embodiment.
  • the filter parameter table 641 stores filter parameters predicted based on the chirp wave and the dual sweep signal.
  • the filter parameter table 641 stores a filter frequency band 604 estimated based on the used chirp wave 602 and the used dual sweep signal 603 of each filter type 601.
  • the filter frequency band 604 may be a plurality of frequency bands including unnecessary frequencies.
  • FIG. 7 is a block diagram showing a functional configuration of the spectrogram unit 340 according to the present embodiment.
  • the functional configuration of the spectrogram unit 340 in FIG. 7 is an example, and is not limited to this as long as it generates a spectrogram of the beat frequency after heterodyne processing in the present embodiment.
  • the spectrogram section 340 includes a fast Fourier transform section (FFT: Fast Fourier Transform in the figure) 710 and a spectrogram generation section 720.
  • the fast Fourier transform unit 710 generates a frequency characteristic of the beat frequency after heterodyne processing.
  • the spectrogram generation unit 720 generates, for example, a frequency versus level spectrogram diagram from the frequency characteristic of the beat frequency (not shown).
  • FIG. 8 is a block diagram showing a hardware configuration of the information processing apparatus 300 according to the present embodiment.
  • a CPU 810 is a processor for arithmetic control, and the CPU 810 executes programs and modules stored in the storage 850 while using the RAM 840, whereby each functional configuration of the information processing apparatus 300 shown in FIG. The function of the part is realized.
  • the ROM 820 stores fixed data and programs such as initial data and programs. Note that the number of CPUs 810 is not limited to one, and may be a plurality of CPUs or may include a GPU for image processing.
  • the RAM 840 is a random access memory that the CPU 810 uses as a work area for temporary storage.
  • the RAM 840 has an area for storing data necessary for realizing the present embodiment.
  • the transmitted chirp wave data 841 is data on the frequency band and period of the UP or DOWN of the chirp wave transmitted by the transmission generator 350.
  • the received signal data 842 is data of a signal received by the receiving unit 310.
  • the heterodyne signal data 843 is dual sweep signal data used for heterodyne processing generated based on the transmitted chirp wave.
  • the heterodyne processing data (beat frequency) 844 is data representing the beat frequency of the heterodyne processing result.
  • the spectrogram data 845 is data of a beat frequency spectrogram processing result.
  • the target distance data 846 is distance data to the target calculated based on the spectrogram data 845.
  • the target speed data 847 is data on the target moving speed calculated based on the spectrogram data 845.
  • the storage 850 stores a database, various parameters, or the following data or programs necessary for realizing the present embodiment.
  • the dual sweep signal table 521 stores frequency change data of the dual sweep signal shown in FIG. 5B.
  • the filter parameter table 641 stores parameters of the unnecessary signal removal filter shown in FIG. 6B.
  • the calculation parameter / algorithm 851 stores parameters and algorithms used for calculation such as target distance and target speed as options.
  • the storage 850 stores the following programs.
  • the information processing device control program 852 is a control program that controls the entire information processing device 300.
  • the heterodyne signal generation module 853 is a module that generates a dual sweep signal in which frequency bands corresponding to transmitted chirp waves do not overlap.
  • the heterodyne processing module 854 This module performs heterodyne processing using a received signal and a dual sweep signal.
  • the spectrogram module 855 is a module that generates a spectrogram of the beat frequency of the heterodyne processing result.
  • the target distance calculation module 856 is a module that calculates the distance from the spectrogram of the beat frequency to the target.
  • the target speed calculation module 857 is a module for calculating the target moving speed from the spectrogram of the beat frequency.
  • the input / output interface 860 interfaces input / output data with input / output devices.
  • the input / output interface 860 is connected to a receiving unit 310, a display unit 861, an operation unit 862 such as a keyboard, a touch panel, and a pointing device, a GPS position inversion unit 863, and the like.
  • RAM 840 and the storage 850 in FIG. 8 do not show programs and data related to general-purpose functions and other realizable functions of the information processing apparatus 300. Also, The calculation of the target distance and target speed in FIG. 8 is optional.
  • FIG. 9 is a flowchart illustrating a processing procedure of the information processing apparatus 300 according to the present embodiment. This flowchart is executed by the CPU 810 of FIG. 8 using the RAM 840. The functional configuration unit of FIG. 3 is realized.
  • step S901 the information processing apparatus 300 acquires the transmitted chirp wave or its parameters. If the chirp wave to be transmitted is known and fixed, step S901 can be omitted. In step S903, the information processing apparatus 300 generates a dual sweep signal in which the frequency band does not overlap with the chirp wave. In step S905, the information processing apparatus 300 receives the chirp wave transmitted and reflected by the target. Next, in step S907, the information processing apparatus 300 performs heterodyne processing using the received chirp wave and the dual sweep signal. In step S909, the information processing apparatus 300 generates and outputs a spectrogram of the beat frequency as a result of the heterodyne processing. Note that the information processing apparatus 300 optionally has, in step S911, The target distance and target speed are calculated based on the spectrogram of the beat frequency.
  • FIG. 10A is a flowchart illustrating a procedure of dual sweep signal generation processing (S903) according to the present embodiment.
  • step S1011 the information processing apparatus 300 generates a first copy signal in which the transmitted chirp wave and the frequency band do not overlap.
  • the copy signal indicates that the degree of frequency change is the same as shown in FIGS. 2A to 2E and does not mean the same frequency.
  • the frequency band of the first copy signal is close to the frequency band of the chirp wave.
  • step S1013 the information processing apparatus 300 generates a second copy signal in which the transmitted chirp wave and the frequency band do not overlap and the first copy signal and the frequency band are continuous.
  • step S1015 the information processing apparatus 300 adds the first copy signal and the second copy signal to generate a dual sweep signal in which the transmitted chirp wave and the frequency band do not overlap.
  • step S1017 the information processing apparatus 300 outputs the generated dual sweep signal to the heterodyne processing unit 330.
  • FIG. 10B is a flowchart showing procedures of the heterodyne process (S907) and the spectrogram process (S909) according to the present embodiment.
  • step S1021 the information processing apparatus 300 acquires a received signal.
  • the information processing apparatus 300 acquires a dual sweep signal in step S1023.
  • step S1025 the information processing apparatus 300 multiplies the received signal and the dual sweep signal to generate a beat frequency.
  • the information processing apparatus 300 removes unnecessary frequencies with a filter in step S1027.
  • step S1029 the information processing apparatus 300 performs a fast Fourier transform process on the beat frequency to generate a frequency spectrum.
  • the information processing apparatus 300 generates a spectrogram based on the frequency spectrum.
  • the information processing apparatus 300 outputs the generated spectrogram.
  • target extraction can be performed effectively.
  • the information processing apparatus according to the present embodiment is different from the second embodiment in that there are a plurality of chirp waves to be transmitted. Since other configurations and operations are the same as those of the second embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 11A is a diagram illustrating frequency changes of the transmission signal 1110 and the reception signal 1120 in the target extraction system including the information processing apparatus according to the present embodiment.
  • FIG. 11A shows a transmission signal 1110 composed of a plurality of chirp waves whose frequency changes in a “C” shape and its reception signal 1120.
  • the solid line is the received signal of the still object
  • the broken line is the received signal of the moving object.
  • FIG. 11A shows a case where the distance to the moving object is open over time.
  • a transmission signal 1110 composed of a plurality of chirp waves whose frequency changes in a “C” shape will be described as an example.
  • a combination with a saw-shaped chirp wave may be used.
  • the dual sweep signal for heterodyne separates the signal necessary for target extraction and the unnecessary signal from the heterodyne result by preventing the frequency bands from overlapping the multiple chirp waves to be transmitted. can do.
  • FIG. 11B is a diagram showing frequency changes of the received signal 1120 and the UP heterodyne signal 1130 according to the present embodiment.
  • the UP heterodyne signal 1130 is set to a high frequency band in which the frequency band does not overlap the received signal 1120, but may be set to a low frequency band. Such a frequency band is selected so that the frequency use band is not as wide as possible.
  • FIG. 11C is a diagram showing a beat frequency change of the UP heterodyne processing result 1140 according to this embodiment.
  • two sets of beat frequencies 1141 and 1142 of a still object / animal body corresponding to two received signals are generated separately from unnecessary frequencies 1143.
  • the shift in beat frequency between the stationary object and the moving object at the two sets of beat frequencies 1141 and 1142 varies depending on the influence of the Doppler effect. Therefore, the exact position and velocity of the moving target corrected for the influence of Doppler from this output data. Can be calculated.
  • FIG. 11D is a diagram showing a frequency change of the received signal 1120 and the DOWN heterodyne signal 1150 according to the present embodiment.
  • the DOWN heterodyne signal 1150 is set to a low and high frequency band that does not overlap with the received signal 1120, but may be set to a high frequency band. Such a frequency band is selected so that the frequency use band is not as wide as possible.
  • FIG. 11E is a diagram showing a beat frequency change of the DOWN heterodyne processing result 1160 according to the present embodiment.
  • two sets of beat frequencies 1161 and 1162 corresponding to two received signals are generated separately from unnecessary frequencies 1163.
  • the shift in beat frequency between the stationary object and the moving object at the two sets of beat frequencies 1161 and 1162 varies depending on the influence of the Doppler effect. Therefore, the exact position and velocity of the moving target obtained by correcting the influence of Doppler from this output data. Can be calculated.
  • heterodyne processing results shown in FIGS. 11C and 11E show that it is preferable to set the dual sweep signal for heterodyne to the lowest possible frequency band because the frequency band becomes narrower.
  • FIG. 12 is a block diagram illustrating a functional configuration of a target extraction system including the information processing apparatus 1200 according to the present embodiment.
  • the same functional components as those in FIG. 3 are denoted by the same reference numerals, and description thereof is omitted.
  • the wave generation unit 1250 generates and transmits a plurality of chirp waves having a predetermined frequency band and a predetermined period.
  • a predetermined frequency band and a predetermined period For example, an example of transmitting two chirp waves whose frequency changes to a “C” shape will be described, but the present invention is not limited to this.
  • the information processing apparatus 1200 includes a wave receiving unit 310, a dual sweep signal generating unit 1220, A heterodyne processing unit 1230 and a spectrogram unit 340 are provided.
  • the dual sweep signal generation unit 1220 generates a dual sweep signal that does not overlap the frequency band of the plurality of chirp waves transmitted by the transmission generation unit 1250, and is a double sweep signal of each transmission signal as a heterodyne signal.
  • 12 shows an example in which the dual sweep signal generation unit 1220 acquires the frequency band and period of the chirp wave transmitted from the transmission generation unit 1250.
  • the frequency bands and periods of a plurality of chirp waves transmitted from the transmission generator 1250 are known, a dual sweep signal can be generated without acquiring the frequency bands and periods of the chirp waves.
  • the heterodyne processing unit 1230 multiplies a plurality of received signals output from the receiving unit 310 and a dual sweep signal whose frequency bands do not overlap with each other, and generates a beat frequency that is a frequency difference between them. To do.
  • FIG. 13A is a block diagram illustrating a functional configuration of the transmission generation unit 1250 according to the present embodiment.
  • the same functional components as those in FIG. 4A are denoted by the same reference numerals, and description thereof is omitted.
  • the functional configuration of the transmission generator 1250 in FIG. 13A is an example, and is not limited to this as long as it outputs a plurality of chirp waves in the present embodiment.
  • the transmission generator 1250 includes a signal generator 1310, a digital / analog converter (DAC in the figure) 420, a transmission processor 430, and a transmitter 440.
  • the signal generator 1310 includes a signal generation unit 1311 that generates a signal for generating a chirp wave, and a chirp wave table 1312 that stores the frequency band and period of the chirp wave generated by the signal generation unit 1311.
  • the signal generator 1310 includes oscillators 1313 and 1314 that generate a plurality of chirp waves based on a signal from the signal generation unit 1311 and a synthesis unit 1315 that combines the plurality of chirp waves.
  • FIG. 13A shows a configuration in which the frequency band and period of the chirp wave to be transmitted can be freely set
  • the chirp wave table 1312 may not be provided when a plurality of chirp waves are fixed. .
  • FIG. 13B is a diagram showing a configuration of the chirp wave table 1312 according to the present embodiment.
  • the chirp wave table 1312 is used for setting frequency bands and periods of a plurality of chirp waves generated by the signal generation unit 1311.
  • the chirp wave table 1312 stores a wave type 1322, a frequency band 1323, and a period 1324 corresponding to a use wave flag 1321 indicating a chirp wave to be used.
  • is a used wave
  • x is an unused wave.
  • the wave type 1322 includes an UP chirp wave whose frequency rises linearly, a DOWN chirp wave whose frequency falls linearly, a saw-shaped chirp wave which alternately repeats an UP chirp wave and a DOWN chirp wave, Is included.
  • a plurality of chirp waves used corresponding to each of the used wave flags 1321 are stored.
  • FIG. 13B an UP chirp wave and a DOWN chirp wave having a “C” shape as shown in FIG. 11A are selected as the used waves.
  • FIG. 14A is a block diagram illustrating a functional configuration of the dual sweep signal generation unit 1220 according to the present embodiment.
  • the functional configuration of the dual sweep signal generation unit 1220 in FIG. 14A is an example, and the present invention is not limited to this as long as it outputs a dual sweep signal in which a plurality of chirp waves and frequency bands in this embodiment do not overlap.
  • the configuration for generating both the UP dual sweep signal and the DOWN dual sweep signal has been shown, but as shown in FIG. 11B and FIG. There may be.
  • the structure which selects one of two may be sufficient.
  • the dual sweep signal generation unit 1220 includes a transmitted UP chirp wave information acquisition unit 1410, a dual sweep signal frequency generation unit 1420, a low frequency oscillator 1430 for the dual sweep signal, and a high frequency oscillator 1440 for the dual sweep signal. And a signal synthesizer 1450.
  • the dual sweep signal generation unit 1220 includes a transmitted DOWN chirp wave information acquisition unit 1460, a low-frequency oscillator 1470 of the dual sweep signal, An oscillator 1480 on the high frequency side of the dual sweep signal and a signal synthesizer 1490 are included.
  • the transmitted UP chirp wave information acquisition unit 1410 and the transmitted DOWN chirp wave information acquisition unit 1460 may be a single chirp wave information acquisition unit. If the chirp wave to be transmitted is known and fixed, the chirp wave information acquisition unit may be omitted.
  • the dual sweep signal frequency generation unit 1420 has a dual sweep signal table 1421 and generates frequency data of a dual sweep signal in which a plurality of chirp waves and frequency bands do not overlap based on a plurality of transmitted chirp waves.
  • the oscillator 1430 and the oscillator 1440 do not overlap with each of the plurality of chirp waves transmitted, but the frequency change continues.
  • the signal synthesizer 1450 synthesizes the outputs of the oscillator 1430 and the oscillator 1440 and outputs an UP dual sweep signal that does not overlap the frequency band with the transmitted chirp waves.
  • the oscillator 1470 and the oscillator 1480 do not overlap with each of the transmitted chirp waves, but the frequency change continues. Generate signals with similar degrees.
  • the signal synthesizer 1490 synthesizes the outputs of the oscillator 1470 and the oscillator 1480, and outputs a DOWN dual sweep signal in which the frequency bands do not overlap with the transmitted chirp waves.
  • the frequency band and period of a plurality of chirp waves to be transmitted are shown as a configuration that can be freely set, but when a plurality of chirp waves are known and fixed,
  • the dual sweep signal table 1421 may be omitted.
  • FIG. 14B is a diagram showing a configuration of the dual sweep signal table 1421 according to the present embodiment.
  • the dual sweep signal table 1421 is used to generate a dual sweep signal corresponding to a plurality of chirp waves to be transmitted.
  • the dual sweep signal table 1421 stores a signal type 1401, a used chirp wave 1402 to be transmitted, and a frequency band 1404 and a period 1405 set based on another chirp wave 1403.
  • the number of other chirp waves 1403 is not limited to one.
  • the signal type 1401 has a low frequency side and a high frequency side for one dual sweep signal.
  • the used chirp wave 1402 and the other chirp wave 1403 store the chirp wave information acquired by the transmitted UP chirp wave information acquisition unit 1410 and the DOWN chirp wave information acquisition unit 1460.
  • the frequency band 1404 based on the information of the used chirp wave 1402 transmitted, a frequency band that does not overlap with the plurality of chirp waves and is close to the plurality of chirp waves is set.
  • the frequency band 1443 of the low frequency side and the high frequency side is continuous.
  • the same period as the used chirp wave is set.
  • FIG. 15A is a block diagram showing a functional configuration of the heterodyne processing unit 1230 according to the present embodiment.
  • the functional configuration of the heterodyne processing unit 1230 in FIG. 15A is an example, and is not limited to this as long as the received signal and the dual sweep signal in the present embodiment are subjected to multiplication processing.
  • the configuration for performing both the heterodyne processing by the UP dual sweep signal and the heterodyne processing by the DOWN dual sweep signal is shown, but as shown in FIG. 11B and FIG. 11D, Either one may be used.
  • the structure which selects one of two may be sufficient.
  • the heterodyne processing unit 1230 includes a received signal acquisition unit 1510, an UP dual sweep signal acquisition unit 1520, a multiplication unit 1530, and an unnecessary signal removal filter 1540 as an option.
  • the heterodyne processing unit 1230 includes a DOWN dual sweep signal acquisition unit 1550, a multiplication unit 1560, and an unnecessary signal removal filter 1570 as an option.
  • the received signal acquisition unit 1510 acquires a received signal including a plurality of chirp waves from the receiving unit 310.
  • the UP dual sweep signal acquisition unit 1520 acquires the UP dual sweep signal from the dual sweep signal generation unit 1220.
  • the DOWN dual sweep signal acquisition unit 1550 acquires a DOWN dual sweep signal from the dual sweep signal generation unit 1220.
  • Multiplier 1530 multiplies the received signal and the UP dual sweep signal to generate a beat frequency that is a difference frequency.
  • the multiplier 1560 multiplies the received signal and the DOWN dual sweep signal to generate a beat frequency that is a difference frequency.
  • the unnecessary signal removal filter 1540 removes frequency components that are not required for target extraction included in the output of the multiplier 1530 based on the filter parameter table 1541 predicted based on the plurality of chirp waves and the UP dual sweep signal. .
  • the unnecessary signal removal filter 1570 generates frequency components that are not required for target extraction included in the output of the multiplier 1560 based on a filter parameter table 1571 predicted based on a plurality of chirp waves and a DOWN dual sweep signal. Remove.
  • the filter parameter tables 1541 and 1571 may be one table in which each parameter can be identified. If a plurality of chirp waves and dual sweep signals are known and fixed, the filter parameter tables 1541 and 1571 may be omitted.
  • FIG. 15B is a diagram showing a configuration of the filter parameter tables 1541 and 1571 according to the present embodiment.
  • the filter parameter tables 1541 and 1571 store filter parameters predicted based on a plurality of chirp waves and an UP dual sweep signal or a DOWN dual sweep signal.
  • the filter parameter tables 1541 and 1571 store the filter frequency band 1504 estimated based on the used chirp wave 1502 and the used dual sweep signal 1503 of each filter type 1501. Note that the filter frequency band 1504 may be a plurality of frequency bands including unnecessary frequencies.
  • FIG. 16A is a flowchart illustrating a processing procedure of the transmission generation unit 1250 according to the present embodiment.
  • step S1601 the transmission generation unit 1250 acquires the first chirp wave parameters (UP or DOWN, frequency band, period) from the chirp wave table 1312.
  • step S1603 the transmission generation unit 1250 generates a first chirp wave.
  • step S1605 the transmission generation unit 1250 has a frequency band different from that of the first chirp wave from the chirp wave table 1312 and has a UP / DOWN parameter opposite to that of the second chirp wave (whether it is UP or DOWN). , Frequency band, period).
  • step S1607 the transmission generation unit 1250 generates a second chirp wave.
  • step S1609 the wave generation unit 1250 transmits the first chirp wave and the second chirp wave.
  • the combination of the two chirp waves or the number of chirp waves is not limited to this example.
  • FIG. 16B is a flowchart illustrating a procedure of a dual sweep signal generation process according to the present embodiment. This flowchart is executed by the CPU 810 of FIG. 8 using the RAM 840 to realize the dual sweep signal generation unit 1220 of FIG.
  • step S1611 the information processing apparatus 1200 acquires the transmitted first chirp wave and second chirp wave, or parameters thereof.
  • step S ⁇ b> 1613 the information processing apparatus 1200 generates a first copy signal of the first chirp wave and a second copy signal of the second chirp wave whose frequency bands do not overlap with the first chirp wave and the second chirp wave.
  • the copy signal indicates that the degree of frequency change is the same as shown in FIGS. 11A, 11B, and 11D, and does not mean the same frequency.
  • the frequency band of the first copy signal or the second copy signal is close to the frequency band of a plurality of chirp waves.
  • the information processing apparatus 1200 includes a third copy signal in which the frequency band is not overlapped with the plurality of transmitted chirp waves and the frequency band is continuous with the first copy signal or the second copy signal. And a fourth copy signal.
  • step S ⁇ b> 1617 the information processing apparatus 1200 adds the first copy signal and the third copy signal to generate a first dual sweep signal in which the transmitted chirp waves do not overlap with the frequency band.
  • step S ⁇ b> 1618 the information processing apparatus 1200 adds the second copy signal and the fourth copy signal to generate a second dual sweep signal in which the transmitted chirp waves do not overlap with the frequency band.
  • the information processing apparatus 1200 outputs the generated first and second dual sweep signals to the heterodyne processing unit 1230.
  • FIG. 17 is a diagram illustrating conditions for generating a transmission according to the present embodiment.
  • FIG. 17 shows a condition for reducing the waste of the frequency spectrum of the beat frequency when using a chirp wave whose frequency changes to a “c” shape in this example.
  • this condition can also be applied when using a plurality of other chirp waves.
  • the first condition is that a chirp wave does not enter the region where the frequency change of the heterodyne signal is moved in parallel (see frequency change 1710).
  • the heterodyne signal does not enter the region where the frequency change of the chirp wave is moved in parallel.
  • the second condition is that by combining two chirp waves with a half shift of the period, the wasted bandwidth is reduced to half compared to the “ha” shape with the same period (frequency changes 1720 and 1730 are reduced). reference).
  • a plurality of chirp waves are separated by a bandpass filter at a predetermined frequency interval before transmission, a plurality of chirp waves with reduced waste of the frequency spectrum of the beat frequency can be generated with a simple configuration ( See frequency change 1740).
  • FIG. 18 is a diagram for explaining speed estimation of a target object and correction of Doppler influence according to the present embodiment.
  • a frequency change 1810 in FIG. 18 is a diagram for explaining target speed estimation when a “c” -shaped UP chirp wave and a DOWN chirp wave are used. This is a case where the frequency Fc is the center frequency of the UP chirp wave and the DOWN chirp wave.
  • the frequency of the transmitted UP chirp wave is Fsu
  • the frequency of the transmitted DOWN chirp wave is Fsd
  • the frequency of the received UP chirp wave is Fru
  • the frequency of the received DOWN chirp wave is Frd
  • the Doppler shift ratio is D , And. All these pieces of information can be acquired from FIG. 11D or FIG. 11E, for example.
  • the target speed calculation (estimation) can be performed by one process by transmitting a plurality of chirp waves.
  • a frequency change 1820 in FIG. 18 is a diagram illustrating correction of Doppler influence when a “C” shaped UP chirp wave and a DOWN chirp wave are used.
  • a signal necessary for target extraction and an unnecessary signal can be separated from the heterodyne result, and different Doppler influence results can be obtained at a time. Guess and doppler effects can be corrected.
  • the information processing apparatus is different from the third embodiment in that the received signals of a plurality of chirp waves are separated and subjected to heterodyne processing. That is, in the present embodiment, the received wave is divided by the band separation filter, and another heterodyne process is performed for each chirp. In addition, synthesis is performed using a bandpass filter or the like so that beat frequencies and the like generated by the heterodyne processing do not overlap. An image of beat frequency change is obtained for each heterodyne result, and the two beat frequency change images are synthesized.
  • Other configurations and operations are the same as those in the second embodiment and the third embodiment. Therefore, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 19A is a diagram illustrating characteristics of a target extraction method performed by the information processing apparatus according to the present embodiment.
  • FIG. 19A is a frequency change of a received signal showing an example in which the received signal is separated by a band separation filter.
  • a frequency change 1900 indicates that the received signal of the “C” chirp wave is separated into an UP received signal and a DOWN received signal by a band separation filter.
  • the separated UP received signal and DOWN received signal are subjected to heterodyne processing with a dual sweep signal in which frequency bands do not overlap each other, and then synthesized.
  • the frequency change 1910 is further separated into three received signals by a band separation filter in the case of three chirp waves, and each of them is subjected to heterodyne processing with a dual sweep signal in which frequency bands do not overlap each other. Synthesize.
  • a dual sweep signal in which each received signal and the frequency band do not overlap can be generated, so that the frequency band can be effectively used.
  • FIG. 19B is a diagram showing frequency changes of the separated UP received signal 1921 and UP heterodyne signal 1130, DOWN received signal 1922, and DOWN heterodyne signal 1150 according to the present embodiment.
  • an UP received signal 1921 and a DOWN received signal 1922 are signals obtained by separating the signals received by the receiving unit 310 by the band separation filters in accordance with the chirp waves.
  • the received signal 1120 shown in FIGS. 11A and 11B is separated into an UP received signal 1921 and a DOWN received signal 1922 and subjected to heterodyne processing. Therefore, even if the UP heterodyne signal 1130 is in the lower frequency band of the UP received signal 1921 and the DOWN heterodyne signal 1150 is in the upper frequency band of the DOWN received signal 1922, Received signal and heterodyne dual sweep signal do not overlap. Therefore, there is a margin in the selection of the frequency band of the dual sweep signal, and the frequency range to be used can be narrowed.
  • FIG. 19C is a diagram showing a beat frequency change of the heterodyne processing result in the information processing apparatus according to the present embodiment.
  • 19C shows a beat frequency 1940 generated by the heterodyne processing of the UP received signal 1921 and the UP heterodyne signal 1130, and a beat frequency 1960 generated by the heterodyne processing of the DOWN received signal 1922 and the DOWN heterodyne signal 1150. , Are synthesized and output.
  • FIG. 20 is a block diagram illustrating a functional configuration of a target extraction system including the information processing apparatus 2000 according to the present embodiment.
  • the same functional components as those in FIGS. 3 and 12 are denoted by the same reference numerals, and description thereof is omitted.
  • FIG. 20 shows a configuration that follows a “c” -shaped chirp wave, but a plurality of chirp waves are not limited to a “c” -shape.
  • the information processing apparatus 2000 includes a band separation filter 2070, a filter parameter table 2011 for the band separation filter 2070, an UP chart wave dual sweep signal generation unit 2021, and a DOWN chart wave dual sweep signal generation unit 2022. . Further, the information processing apparatus 2000 includes an UP multiplier 2031, a DOWN multiplier 2032, an UP chart band pass filter 2081, a DOWN chart band pass filter 2082, and a filter parameter table 2012 for a band pass filter. , A heterodyne processing result synthesis unit 2090.
  • the band separation filter 2070 separates the received signal into a UA received signal and a DOWN received signal according to the filter parameter table 2011.
  • the UP chart wave dual sweep signal generator 2021 generates an UP dual sweep signal whose frequency bands do not overlap with each other in response to the transmitted UP chart wave.
  • the DOWN chart wave dual sweep signal generator 2022 generates a DOWN dual sweep signal whose frequency bands do not overlap with each other in response to the transmitted DOWN chart wave.
  • the UP multiplier 2031 multiplies the UA received signal and the UP dual sweep signal to generate a beat frequency.
  • the DOWN multiplier 2032 multiplies the DOWN reception signal and the DOWN dual sweep signal to generate a beat frequency.
  • the UP chart band pass filter 2081 removes unnecessary frequencies from the output of the UP multiplier 2031 according to the filter parameter table 2012.
  • the DOWN chart band pass filter 2082 removes unnecessary frequencies from the output of the DOWN multiplier 2032 in accordance with the filter parameter table 2012.
  • the heterodyne processing result synthesis unit 2090 synthesizes beat frequencies from which unnecessary frequencies are removed (see FIG. 19C).
  • the filter parameter tables 2011 and 2012 may be included in the band separation filter 2070 or the band pass filters 2081 and 2082, respectively. Alternatively, the filter parameter table may be combined into one. If a plurality of chirp waves and a plurality of dual sweep signals are all known and fixed, the filter parameter table may be omitted.
  • FIG. 21A is a block diagram showing a functional configuration of the band separation filter 2070 according to the present embodiment.
  • the functional configuration of the band separation filter 2070 is not limited to FIG. 21A. Any configuration that can extract received signals corresponding to a plurality of transmitted chirp waves from the received signal is acceptable.
  • Band separation filter 2070 includes an UP chart wave band-pass filter 2171 and a DOWN chart wave band-pass filter 2172. Then, according to the filter parameter table 2011, the received signal is separated into received signals corresponding to a plurality of transmitted chirp waves.
  • FIG. 21B is a diagram showing a configuration of a filter parameter table 2011 for the band separation filter according to the present embodiment.
  • the filter parameter table 2011 is used to set the frequency band of the band separation filter 2070 corresponding to the chirp wave used.
  • the filter parameter table 2011 stores the separation frequency band 2103 corresponding to the filter type 2101 and the used chirp wave 2102.
  • FIG. 22 is a diagram showing a configuration of a filter parameter table 2012 for a bandpass filter according to the present embodiment.
  • the filter parameter table 2012 is used to set the frequency band of the band pass filter after heterodyne processing.
  • the filter parameter table 2012 stores an unnecessary signal frequency band 2204 corresponding to the unnecessary signal removal filter type 2201, the used chirp wave 2202 and the used dual sweep signal 2203. Note that a plurality of frequency bands 2204 may be set by the used chirp wave 2202 and the used dual sweep signal 2203.
  • FIG. 23 is a flowchart illustrating a processing procedure of the information processing apparatus 2000 according to the present embodiment. This flowchart is executed by the CPU 810 of FIG. 8 using the RAM 840, and implements the functional configuration unit of FIG. In FIG. 23, steps similar to those in FIG. 9 are denoted by the same step numbers, and description thereof is omitted.
  • step S2301 the information processing apparatus 2000 acquires an UP chirp wave and a DOWN chirp wave, or parameters thereof. In addition, when using three or more chirp waves, each data is acquired.
  • step S2303 the information processing apparatus 2000 generates an UP dual sweep signal corresponding to the transmitted UP chirp wave.
  • step S2304 the information processing apparatus 2000 generates a DOWN dual sweep signal corresponding to the transmitted DOWN chirp wave. Note that the processing in steps S2303 and S2304 is the same as the processing in FIG. 10A of the second embodiment, and detailed description thereof is omitted.
  • step S2306 the information processing apparatus 2000 separates the received signal into an UP received signal and a DOWN received signal.
  • step S2307 the information processing apparatus 2000 executes an UP heterodyne process of multiplying the UP reception signal and the UP dual sweep signal.
  • step S2308 the information processing apparatus 2000 executes DOWN heterodyne processing for multiplying the DOWN received signal and the DOWN dual sweep signal. Note that the processes in steps S2307 and S2308 are the same as steps S1021 to S1027 in FIG. 10B of the second embodiment, and thus detailed description thereof is omitted. Then, the information processing apparatus 2000 configures the heterodyne result in step S2309.
  • the chirp wave and the heterodyne signal can be set to a narrow frequency band, target extraction is effective, The target speed can be estimated and the Doppler effect can be corrected.
  • the information processing apparatus is different from the second to fourth embodiments in that the chirp wave to be transmitted is a dual sweep. Since other configurations and operations are the same as those of the second to fourth embodiments, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 24A is a diagram illustrating the frequencies of the transmission signal 2410 and the reception signal 2420 in the target extraction system including the information processing apparatus according to the present embodiment.
  • the transmission signal 2410 and the reception signal 2420 are dual sweep signals.
  • a plurality of pseudo chirp waves are generated with a simpler configuration, and a plurality of sets of beat signals can be generated at one time.
  • FIG. 24B is a diagram showing a frequency change between the received signal 2420 and the dual sweep signal 2430 according to the present embodiment.
  • the dual sweep signal 2430 is set on the low frequency side that does not overlap the received signal 2420, but may be set on the high frequency side.
  • the setting of the dual sweep signal 2430 is preferably on the low frequency side in order to narrow the operating frequency range.
  • FIG. 24C is a diagram showing a beat frequency change of the heterodyne processing result 2450 in the information processing apparatus according to the present embodiment.
  • the heterodyne processing result 2450 is separated from other unnecessary frequency bands, and a plurality of sets are output in frequency bands close to each other.
  • FIG. 25A is a block diagram illustrating a functional configuration of the transmission generation unit 2550 according to the present embodiment.
  • the same functional components as those in FIGS. 4A and 13A are denoted by the same reference numerals, and description thereof is omitted.
  • the functional configuration of the transmission generation unit 2550 in FIG. 25A is an example, and the present invention is not limited to this as long as it outputs a dual sweep chirp wave in the present embodiment.
  • the wave generation unit 2550 includes a signal generator 2510, a digital / analog converter (DAC in the figure) 420, a wave transmission processor 430, and a wave transmitter 440.
  • the signal generator 2510 includes a signal generator 2511 that generates a chirp waveform signal, and a chirp wave table 2512 that stores the frequency band and period of the chirp waveform generated by the signal generator 2511.
  • the frequency band and period of the dual sweep chirp wave to be transmitted are shown as freely configurable, but when the dual sweep chirp wave is fixed, the chirp waveform table 2512 is There is no need.
  • FIG. 25B is a diagram showing a configuration of the chirp wave table 2512 according to the present embodiment.
  • the chirp wave table 2512 is used to set the frequency band and period of the dual sweep chirp wave generated by the signal generation unit 2511.
  • the chirp wave table 2512 stores a wave type 2522, a frequency band 2523, and a period 2524 corresponding to a use wave flag 2521 indicating a chirp wave to be used.
  • is a used wave
  • x is an unused wave.
  • the wave types 2522 include a dual sweep UP chirp wave, a dual sweep DOWN chirp wave, and a saw-like chirp wave that alternately repeats a dual sweep UP chirp wave and a DOWN chirp wave.
  • a plurality of chirp waves having consecutive frequency bands used corresponding to each of the used wave flags 2521 are stored.
  • FIG. 26 is a diagram showing a configuration of the dual sweep signal table 2621 according to the present embodiment.
  • the dual sweep signal table 2621 is used to generate a dual sweep signal for heterodyne processing corresponding to a dual sweep chirp wave.
  • the dual sweep signal table 2621 may not be provided.
  • the dual sweep signal table 2621 includes a dual sweep signal type 2601, Corresponding to the low frequency side 2602 and the high frequency side 2603 of the dual sweep chirp wave to be used, a frequency band 2604 that does not overlap with the dual sweep chirp wave and a period 2605 are stored.
  • FIG. 27 is a flowchart illustrating a processing procedure of the transmission generation unit 2550 according to the present embodiment.
  • steps similar to those in FIG. 16 are denoted by the same step numbers and description thereof is omitted.
  • step S2705 the transmission generation unit 2550 generates parameters of the second chirp wave in which the first chirp wave and the frequency band generated in step S1603 are continuous and have the same UP / DOWN.
  • step S1607 the transmission generation unit 2550 generates a second chirp wave.
  • the information processing apparatus is different from the second to fifth embodiments in that the information processing apparatus includes a wave transmission unit. Since other configurations and operations are the same as those in the second embodiment to the fifth embodiment, the same configurations and operations are denoted by the same reference numerals, and detailed description thereof is omitted.
  • FIG. 28 is a block diagram illustrating a functional configuration of the information processing apparatus 2800 according to the present embodiment.
  • the same functional components as those in FIG. 28 are identical functional components as those in FIG. 28.
  • a transmission generation unit 2850 is included in the information processing apparatus 2800.
  • the functional configuration of the transmission generation unit 2850 is the same as that in FIG. 4A, FIG. 13A, or FIG. 25A. Further, the configuration can be simplified by integrating the transmission generation unit 2850 and the dual sweep signal generation unit 320 as the signal generation unit 2810. Further, all components of the output unit 301 and the calculation unit 302 can be included in the information processing apparatus 2800.
  • the chirp wave to be transmitted and the dual sweep signal to be heterodyne processed can be accurately adjusted, more accurate target extraction, target speed estimation, and Doppler influence correction can be performed.
  • the target extraction method using sound waves or ultrasonic waves described above can be used for a technique for passing robots without colliding with each other and a technique for avoiding a collision of a vehicle.
  • the present invention is not limited to this, and can be used for monitoring intruders in offices, detecting human movements in gymnasiums, and monitoring obstacles in water. .
  • ultrasonic waves are often attenuated and cannot be used in many cases.
  • the target object detection method that uses sound waves called Active Sonar, the distance measurement method, The present invention can be applied to the principle of the speed measurement method.
  • the carrier frequency center frequency
  • waveform length waveform length
  • the transmission waveform in the present invention can also be used for radar using radio waves.
  • the present invention may be applied to a system composed of a plurality of devices, or may be applied to a single device. Furthermore, the present invention can also be applied to a case where an information processing program that implements the functions of the embodiments is supplied directly or remotely to a system or apparatus. Therefore, in order to realize the functions of the present invention on a computer, a program installed on the computer, a medium storing the program, and a WWW (World Wide Web) server that downloads the program are also included in the scope of the present invention. . In particular, at least a non-transitory computer readable medium storing a program for causing a computer to execute the processing steps included in the above-described embodiments is included in the scope of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

 ヘテロダイン処理結果において、目標抽出、目標速度推定、ドップラーの影響検出に必要なビート周波数と不必要な周波数とが重ならないようにすることにより、必要なビート周波数を取得するため、目標から反射した、チャープ波の反射波を受波して、受波信号を出力する受波部と、チャープ波と周波数が重ならない、チャープ波のデュアルスイープ信号を生成するデュアルスイープ信号生成部と、受波信号に対して、デュアルスイープ信号をヘテロダイン用信号として乗算して、ビート周波数を生成するヘテロダイン処理部と、を備える。

Description

目標抽出システム、目標抽出方法、情報処理装置およびその制御方法と制御プログラム
 本発明は、送波したチャープ波の反射波に基づいて目標を抽出するための、目標抽出システム、目標抽出方法、情報処理装置およびその制御方法と制御プログラムに関する。
 上記技術分野において、特許文献1および特許文献2には、送信したチャープ波と目標から反射したチャープ波との周波数の差から目標までの距離を求める技術が開示されている。また、特許文献3、非特許文献1および非特許文献2には、送信したチャープ波の2周期で倍の周波数帯をスイープするディアルスープ信号をヘテロダイン用信号として用いる。そして、目標から反射したチャープ波の受波信号に乗算することより、チャープ波の受波信号の遅延によらず、1回のヘテロダイン処理でヘテロダイン用信号と受波信号との周波数差分であるビート周波数を生成する技術が開示されている。
特公昭59-44593号公報 特開昭63-208779号公報 米国特許US7,149、148B2
M.A. Do, "New dual-sweep receiver for CTFM sonar," Ultrasonics 1986 Vol. 24 July Yang Wang and Jun Yang, "Continuous Transmission Frequency Modulation Detection under Variable Sonar-Target Speed Conditions," Sensors 2013, March 13, 3549-3567
 しかしながら、上記文献に記載の技術では、ヘテロダイン処理結果において、目標抽出、目標速度推定、ドップラーの影響検出に必要なビート周波数と不必要な周波数とが重なり、目標抽出精度が十分ではない場合があった。
 本発明の目的は、上述の課題を解決する技術を提供することにある。
 上記目的を達成するため、本発明に係る情報処理装置は、
 目標から反射した、チャープ波の反射波を受波して、受波信号を出力する受波手段と、
 前記チャープ波の周波数帯域と重ならない周波数を備え、前記チャープ波のデュアルスイープ信号を生成するデュアルスイープ信号生成手段と、
 前記受波信号に対して、前記デュアルスイープ信号をヘテロダイン用信号として乗算して、ビート周波数を生成するヘテロダイン処理手段と、
 を備える。
 上記目的を達成するため、本発明に係る情報処理装置の制御方法は、
 目標から反射した、チャープ波の反射波を受波して、受波信号を出力する受波ステップと、
 前記受波信号に対して、前記チャープ波と周波数が重ならない、前記チャープ波のデュアルスイープ信号をヘテロダイン用信号として乗算して、ビート周波数を生成するヘテロダイン処理ステップと、
 を含む。
 上記目的を達成するため、本発明に係る情報処理装置の制御プログラムは、
 目標から反射した、チャープ波の反射波を受波して、受波信号を出力する受波ステップと、
 前記受波信号に対して、前記チャープ波と周波数が重ならない、前記チャープ波のデュアルスイープ信号をヘテロダイン用信号として乗算して、ビート周波数を生成するヘテロダイン処理ステップと、
 をコンピュータに実行させる。
 上記目的を達成するため、本発明に係る目標抽出システムは、
 チャープ波を送波する送波装置と、
 目標から反射した、前記チャープ波の反射波を受波して、目標を抽出する受波装置と、
 を備え、
 前記受波装置は、
  前記反射波を受波して、受波信号を出力する受波手段と、
  前記受波信号に対して、前記チャープ波と周波数が重ならない、前記チャープ波のデュアルスイープ信号をヘテロダイン用信号として乗算して、ビート周波数を生成するヘテロダイン処理手段と、
 を有する。
 上記目的を達成するため、本発明に係る目標抽出方法は、
 チャープ波を送波する送波ステップと、
 目標から反射した、前記チャープ波の反射波を受波した受波信号に対して、前記チャープ波と周波数が重ならない、前記チャープ波のデュアルスイープ信号をヘテロダイン用信号として乗算して、ビート周波数を生成し、前記ビート周波数の周波数スペクトルに基づいて、目標を抽出する目標抽出ステップと、
 を含む。
 本発明によれば、目標抽出精度を向上させることができる。
本発明の第1実施形態に係る情報処理装置の構成を示すブロック図である。 本発明の第2実施形態に係る情報処理装置による目標抽出方法の特徴を示す図である。 本発明の第2実施形態に係る情報処理装置を含む目標抽出システムにおける送波信号および受波信号の周波数変化を示す図である。 前提技術における受波信号とデュアルスイープ信号とのヘテロダイン処理結果を示す図である。 本発明の第2実施形態に係る受波信号とデュアルスイープ信号との周波数変化を示す図である。 本発明の第2実施形態に係る情報処理装置におけるヘテロダイン処理結果のビート周波数変化を示す図である。 本発明の第2実施形態に係る情報処理装置を含む目標抽出システムの機能構成を示すブロック図である。 本発明の第2実施形態に係る送波発生部の機能構成を示すブロック図である。 本発明の第2実施形態に係るチャープ波テーブルの構成を示す図である。 本発明の第2実施形態に係るデュアルスイープ信号生成部の機能構成を示すブロック図である。 本発明の第2実施形態に係るデュアルスイープ信号テーブルの構成を示す図である。 本発明の第2実施形態に係るヘテロダイン処理部の機能構成を示すブロック図である。 本発明の第2実施形態に係るフィルタパラメータテーブルの構成を示す図である。 本発明の第2実施形態に係るスペクトログラム部の機能構成を示すブロック図である。 本発明の第2実施形態に係る情報処理装置のハードウェア構成を示すブロック図である。 本発明の第2実施形態に係る情報処理装置の処理手順を示すフローチャートである。 本発明の第2実施形態に係るデュアルスイープ信号生成処理の手順を示すフローチャートである。 本発明の第2実施形態に係るヘテロダイン処理およびスペクトログラム処理の手順を示すフローチャートである。 本発明の第3実施形態に係る情報処理装置を含む目標抽出システムにおける送波信号および受波信号の周波数変化を示す図である。 本発明の第3実施形態に係る受波信号およびUPヘテロダイン用信号の周波数変化を示す図である。 本発明の第3実施形態に係るUPヘテロダイン処理結果のビート周波数変化を示す図である。 本発明の第3実施形態に係る受波信号およびDOWNヘテロダイン用信号の周波数変化を示す図である。 本発明の第3実施形態に係るDOWNヘテロダイン処理結果のビート周波数変化を示す図である。 本発明の第3実施形態に係る情報処理装置を含む目標抽出システムの機能構成を示すブロック図である。 本発明の第3実施形態に係る送波発生部の機能構成を示すブロック図である。 本発明の第3実施形態に係るチャープ波テーブルの構成を示す図である。 本発明の第3実施形態に係るデュアルスイープ信号生成部の機能構成を示すブロック図である。 本発明の第3実施形態に係るデュアルスイープ信号テーブルの構成を示す図である。 本発明の第3実施形態に係るヘテロダイン処理部の機能構成を示すブロック図である。 本発明の第3実施形態に係るフィルタパラメータの構成を示す図である。 本発明の第3実施形態に係る送波発生部の処理手順を示すフローチャートである。 本発明の第3実施形態に係るデュアルスイープ信号生成処理の手順を示すフローチャートである。 本発明の第3実施形態に係る送波発生の条件を説明する図である。 本発明の第3実施形態に係る目標物体の速度推測およびドップラー影響の補正を説明する図である。 本発明の第4実施形態に係る情報処理装置による目標抽出方法の特徴を示す図である。 本発明の第4実施形態に係る分離されたUP受波信号およびUPヘテロダイン用信号とDOWN受波信号およびDOWNヘテロダイン用信号との周波数変化を示す図である。 本発明の第4実施形態に係る情報処理装置におけるヘテロダイン処理結果のビート周波数変化を示す図である。 本発明の第4実施形態に係る情報処理装置を含む目標抽出システムの機能構成を示すブロック図である。 本発明の第4実施形態に係る帯域分離フィルタの機能構成を示すブロック図である。 本発明の第4実施形態に係る帯域分離フィルタ用のフィルタパラメータテーブルの構成を示す図である。 本発明の第4実施形態に係る帯域通過フィルタ用のフィルタパラメータテーブルの構成を示す図である。 本発明の第4実施形態に係る情報処理装置の処理手順を示すフローチャートである。 本発明の第5実施形態に係る情報処理装置を含む目標抽出システムにおける送波信号および受波信号の周波数変化を示す図である。 本発明の第5実施形態に係る受波信号とデュアルスイープ信号との周波数変化を示す図である。 本発明の第5実施形態に係る情報処理装置におけるヘテロダイン処理結果のビート周波数変化を示す図である。 本発明の第5実施形態に係る送波発生部の機能構成を示すブロック図である。 本発明の第5実施形態に係るチャープ波テーブルの構成を示す図である。 本発明の第5実施形態に係るデュアルスイープ信号テーブルの構成を示す図である。 本発明の第5実施形態に係る送波発生部の処理手順を示すフローチャートである。 本発明の第6実施形態に係る情報処理装置の機能構成を示すブロック図である。
 以下に、図面を参照して、本発明の実施の形態について例示的に詳しく説明する。ただし、以下の実施の形態に記載されている構成要素はあくまで例示であり、本発明の技術範囲をそれらのみに限定する趣旨のものではない。なお、本明細書で使用される「チャープ波」は、周波数が線形的に変化する波である。ここでは、線形に周波数が上昇する波を「UPチャープ波」、線形に周波数が下降する波を「DOWNチャープ波」と称す。UPチャープ波やDOWNチャープ波のみを繰り返す波と区別して、UPチャープ波とDOWNチャープ波とを繰り返す波を「鋸状のチャープ波」と称す。「ディアルスイープ信号」は、チャープ波の周波数変化の倍の周波数帯を2倍の周期で線形的に変化する信号である。
 ここでは、線形に周波数が上昇する信号を「UPデュアルスイープ信号」、線形に周波数が下降する波を「DOWNデュアルスイープ信号」と称す。また、「ビート周波数」は、
 周波数が僅かに異なる2つの波が干渉して、振幅がゆっくり周期的に変わる合成波の周波数である。本例では、受波したチャープ波に対応する受波信号と送波したチャープ波に対応するヘテロダイン用信号を積算するヘテロダイン処理をし、その演算結果の周波数差分に相当する「うなりの周波数」を意味する。ここで、「ヘテロダイン用信号」には、「ディアルスープ信号」が含まれる。
 [第1実施形態]
 本発明の第1実施形態としての情報処理装置100について、図1を用いて説明する。
 情報処理装置100は、送波したチャープ波の反射波に基づいて目標を抽出するための装置である。
 図1に示すように、情報処理装置100は、受波部110と、デュアルスイープ信号生成部120と、ヘテロダイン処理部130と、を含む。受波部110は、目標150から反射した、チャープ波111の反射波112を受波して、受波信号を出力する。デュアルスイープ信号生成部120は、チャープ波111と周波数が重ならない、チャープ波111のデュアルスイープ信号を生成する。ヘテロダイン処理部130は、受波信号に対して、デュアルスイープ信号をヘテロダイン用信号として乗算して、ビート周波数を生成する。
 本実施形態によれば、ヘテロダイン処理結果において、目標抽出、目標速度推定、ドップラーの影響検出に必要なビート周波数と不必要な周波数とが重ならないようにすることにより、目標抽出精度を向上させることができる。
 [第2実施形態]
 次に、本発明の第2実施形態に係る情報処理装置について説明する。本実施形態に係る情報処理装置においては、送波部が送波するチャープ波と重ならない周波数帯のデュアルスイープ信号をヘテロダイン用信号として使用して、ビート周波数の生成および表示、目標の抽出、移動目標の速度、ドップラー影響の補正などを実行する。
 《本実施形態の処理の概要》
 (ヘテロダイン用信号)
 図2Aは、本実施形態に係る情報処理装置による目標抽出方法の特徴を示す図である。
 なお、図2Aは、相違点を明瞭とするために、送信波やヘテロダイン用信号の周波数変化を図示したものである。以下の各信号を示す図においても、信号は周波数変化として図示される。また、本実施形態では、中心周波数40kHz、サンプリング周波数160kHzの場合における場合を説明するが、これに限定されるものではない。
 図2Aにおいて、基本方式のヘテロダイン用信号210はチャープ波の周波数変化と同じであり、特許文献1および特許文献2において使用するヘテロダイン用信号である。また、デュアルスイープ方式のヘテロダイン用信号であるデュアルスイープ信号220は、
 チャープ波を2つ繋いだ2倍周期で倍の周波数帯の周波数変化であり、特許文献3、非特許文献1および非特許文献2において使用するチャープ波と周波数帯が重なった信号である。
 図2Aの新ヘテロダイン用信号のデュアルスイープ信号230は、本実施形態で使用する、デュアルスイープ信号であるが、チャープ波と周波数帯が重ならない信号である。すなわち、本実施形態では、ヘテロダイン用のデュアルスイープ信号231bは、送波するチャープ波231aと周波数帯が異なり、重ならないという最低条件を満足するように生成される。
 (送波信号および受波信号)
 図2Bは、本実施形態に係る情報処理装置を含む目標抽出システムにおける送波信号240および受波信号250の周波数変化を示す図である。図2Bには、チャープ波の基となった送波信号240と受波したチャープ波に対応する受波信号250とが示されている。ここで、受波信号250において、実線が静物体の受波信号であり送波信号240との遅延時間が一定である。一方、受波信号250において、破線が動物体の受波信号であり送波信号240との遅延時間が変化している。図2Bでは、動物体までの距離が開いている場合を示している。
 以下、各図の受波信号およびヘテロダイン結果において、実線が静物体とし破線が動物体とする。
 (前提技術におけるヘテロダイン処理結果)
 図2Cは、前提技術における受波信号250とデュアルスイープ信号220とのヘテロダイン処理結果270を示す図である。ここで、受波信号250は図2Bと同様の周波数帯である。
 図2Cにおいては、デュアルスイープ信号220として、送波信号240と同じ信号220aと、信号220aに連続する周波数帯の信号220bと、によりデュアルスイープ信号が生成されて、受波信号250に乗算するヘテロダイン処理が実行される。
 ヘテロダイン処理結果270において、静物体および動物体を示すビート周波数271と不要な周波数272とが、時間帯273では重なっている。このため、目視による場合には識別が難しく、フィルタで分離する場合には分離ができなくなる。したがって、この時間帯273、すなわち、目標までの距離が所定範囲の場合に、目標抽出、距離推定およびドップラー補正が困難となる。
 (本実施形態の受波信号とデュアルスイープ信号)
 図2Dは、本実施形態に係る受波信号250とデュアルスイープ信号230との周波数変化を示す図である。ここで、受波信号250は図2Bおよび図2Cと同様の周波数帯である。
 図2Dにおいては、デュアルスイープ信号230として、送波信号240と周波数帯が重ならない、信号230aおよび信号230aに連続する周波数帯の信号230bによりデュアルスイープ信号が生成されて、受波信号250に乗算するヘテロダイン処理が実行される。
 (本実施形態におけるヘテロダイン処理結果)
 図2Eは、本発実施形態に係る情報処理装置におけるヘテロダイン処理結果のビート周波数変化を示す図である。
 図2Dにおけるデュアルスイープ信号230によるヘテロダイン処理結果280の内、
 信号230aによるヘテロダイン処理結果が、目標のビート周波数280aである。また、信号230bによるヘテロダイン処理結果が、目標のビート周波数280bである。ビート周波数280aとビート周波数280bとが繋がり、目標のヘテロダイン処理結果290となる。
 この目標のヘテロダイン処理結果290は、不要な周波数292と周波数帯が重ならないため、目視による場合には識別が容易であり、フィルタで分離する場合には簡単に分離ができる。したがって、目標までの距離に関わらず、目標抽出、距離推定およびドップラー補正ができる。
 《情報処理装置を含む目標抽出システムの機能構成》
 図3は、本実施形態に係る情報処理装置300を含む目標抽出システムの機能構成を示すブロック図である。
 送波発生部350は、所定の周波数帯および所定周期のチャープ波を発生して送波する。送波発生部350から送波されたチャープ波は、伝搬路360を伝搬して目標から反射して情報処理装置300の受波部310によって検出される。ここで、伝搬路360は、
 海中あるいは身体などの水中であるが、これに限定されない。なお、図3において、伝搬路360が遅延、ドップラー効果、ノイズ発生などでモデル化されているが、これは一例であって限定されるものではない。
 情報処理装置300は、受波部310と、デュアルスイープ信号生成部320と、ヘテロダイン処理部330と、スペクトログラム部340とを備える。受波部310は、伝搬路360を伝搬して受波部310に到達した、送波発生部350からのチャープ波を含む音波を受波する。
 デュアルスイープ信号生成部320は、送波発生部350が送波するチャープ波に周波数帯が重ならない、送波信号の倍のデュアルスイープ信号をヘテロダイン用信号として生成する。なお、図3においては、デュアルスイープ信号生成部320が送波発生部350から送波したチャープ波の周波数帯や周期を取得する例を示している。しかし、送波発生部350から送波するチャープ波の周波数帯や周期が既知であれば、デュアルスイープ信号をチャープ波の周波数帯や周期を取得することなく生成できる。
 ヘテロダイン処理部330は、受波部310が出力する受波信号と、受波信号と周波数帯が重ならないデュアルスイープ信号とを乗算処理して、受波信号とデュアルスイープ信号との周波数差分であるビート周波数を生成する。スペクトログラム部340は、ヘテロダイン処理部330の処理結果として、縦軸の周波数がビート周波数に置き換わった周波数変化からスペクトログラム(以下、ビート周波数のスペクトログラム)を生成することにより、受波信号内の目標からの反射音の識別を容易にする。
 なお、スペクトログラム部340からの出力は、出力部301からスペクトログラム表示されたり、演算部302においてさらに目標までの距離算出、目標速度の推定、ドップラー影響の補正などが行なわれる。これら、出力部301や演算部302は、情報処理装置300に含まれてもよい。
 (送波発生部の機能構成)
 図4Aは、本実施形態に係る送波発生部350の機能構成を示すブロック図である。図4Aの送波発生部350の機能構成は一例であって、本実施形態におけるチャープ波を出力するものであればこれに限定されない。
 送波発生部350は、信号発生器410と、デジタル/アナログ変換器(図ではDAC)420と、送波処理器430と、送波器440と、を含む。信号発生器410は、チャープ波を発生するための信号を生成する信号生成部411と、信号生成部411で生成するチャープ波の周波数帯および周期を記憶するチャープ波テーブル412と、信号生成部411からの信号に基づいてチャープ波を生成する発振器413とを有する。
 デジタル/アナログ変換器420は、信号発生器410が発生したチャープ波をアナログ信号に変換する。送波処理器430は、チャープ波のアナログ信号に対して増幅などの処理を行なう。送波器440は、送波処理器430の信号に従うチャープ波を伝搬路360に送波する。
 なお、図4Aにおいては、送波するチャープ波の周波数帯や周期を自由に設定可能な構成として示したが、チャープ波が固定である場合には、チャープ波テーブル412は無くてもよい。
 図4Bは、本実施形態に係るチャープ波テーブル412の構成を示す図である。チャープ波テーブル412は、信号生成部411が生成するチャープ波の周波数帯および周期を設定するために使用される。
 チャープ波テーブル412は、使用するチャープ波を示す使用波フラグ421に対応して、波の種類422と、その周波数帯423および周期424とを記憶する。図中、使用波フラグ421において、○が使用波であり、×は不使用波である。波の種類422には、周波数が線形に上昇するUPチャープ波、周波数が線形に下降するDOWNチャープ波、UPチャープ波とDOWNチャープ波とを交互に繰り返す鋸状のチャープ波、が含まれる。
 図4Bにおいては、図2A乃至図2Eに図示したような、DOWNチャープ波が使用波として選択されている。
 (デュアルスイープ信号生成部の機能構成)
 図5Aは、本実施形態に係るデュアルスイープ信号生成部320の機能構成を示すブロック図である。図5Aのデュアルスイープ信号生成部320の機能構成は一例であって、
 本実施形態におけるチャープ波と周波数帯が重ならないデュアルスイープ信号を出力するものであればこれに限定されない。
 デュアルスイープ信号生成部320は、送波したチャープ波情報取得部510と、デュアルスイープ信号周波数生成部520と、デュアルスイープ信号の低周波側の発振器530と、デュアルスイープ信号の高周波側の発振器540と、信号合成器550と、を含む。送波したチャープ波情報取得部510は、送波するチャープ波が変化する場合にはその情報(UPかDOWNか、周波数帯、周期)を、デュアルスイープ信号を生成するために取得する。なお、送波するチャープ波が既知の固定であれば、送波したチャープ波情報取得部510は無くてよい。
 デュアルスイープ信号周波数生成部520は、デュアルスイープ信号テーブル521を有し、送波されたチャープ波に基づいて、チャープ波と周波数帯が重ならないデュアルスイープ信号の周波数データを生成する。発振器530と発振器540とは、デュアルスイープ信号周波数生成部520からの出力に従って、それぞれ送波されたチャープ波とは周波数帯が重ならないが周波数変化が継続する、チャープ波と周波数変化の度合いが同様の信号を生成する。信号合成器550は、発振器530と発振器540との出力を合成して、送波されたチャープ波と周波数帯が重ならないデュアルスイープ信号を出力する。
 なお、図5Aにおいては、送波するチャープ波の周波数帯や周期を自由に設定可能な場合の構成として示したが、チャープ波が既知でかつ固定である場合には、デュアルスイープ信号テーブル521は無くてもよい。また、送波したチャープ波情報取得部510から信号合成器550への破線は、送波したチャープ波に対応する信号を取得してそのまま使用する場合を示している。
 図5Bは、本実施形態に係るデュアルスイープ信号テーブル521の構成を示す図である。デュアルスイープ信号テーブル521は、送波されるチャープ波に対応するデュアルスイープ信号を生成するために使用される。
 デュアルスイープ信号テーブル521は、信号の種類501と送信される使用チャープ波502とに基づいて設定される、周波数帯503と周期504とを記憶する。信号の種類501は、1つのデュアルスイープ信号に対して低周波数側と高周波数側とを有する。
 使用チャープ波502には、送波したチャープ波情報取得部510が取得したチャープ波の情報を記憶する。
 周波数帯503には、送波したチャープ波の情報に基づいて、チャープ波と周波数帯が重ならない、かつ、チャープ波と近い周波数帯が設定される。ここで、低周波数側と高周波数側との周波数帯503は連続している。また、周期504には、チャープ波と同じ周期が設定される。
 (ヘテロダイン処理部の機能構成)
 図6Aは、本実施形態に係るヘテロダイン処理部330の機能構成を示すブロック図である。図6Aのヘテロダイン処理部330の機能構成は一例であって、本実施形態における受波信号とデュアルスイープ信号とを乗算処理するものであればこれに限定されない。
 ヘテロダイン処理部330は、受波信号取得部610と、デュアルスイープ信号取得部620と、乗算部630と、オプションとして不要信号除去フィルタ640と、を含む。
 受波信号取得部610は、受波部310から受波信号を取得する。デュアルスイープ信号取得部620は、デュアルスイープ信号生成部320からデュアルスイープ信号を取得する。乗算部630は、受波信号とデュアルスイープ信号とを乗算して差分周波数であるビート周波数を生成する。
 不要信号除去フィルタ640は、チャープ波とデュアルスイープ信号とに基づいて予測されるフィルタパラメータテーブル641に基づいて、乗算部630の出力に含まれる目標抽出に必要としない周波数成分を除去する。なお、チャープ波およびデュアルスイープ信号が既知で固定である場合は、フィルタパラメータテーブル641は無くてもよい。
 図6Bは、本実施形態に係るフィルタパラメータテーブル641の構成を示す図である。フィルタパラメータテーブル641は、チャープ波とデュアルスイープ信号とに基づいて予測されるフィルタパラメータを記憶する。
 フィルタパラメータテーブル641は、各フィルタ種類601の、使用チャープ波602および使用デュアルスイープ信号603に基づいて推定される、フィルタ周波数帯604を記憶する。なお、フィルタ周波数帯604は、不要な周波数を含む複数の周波数帯であってもよい。
 (スペクトログラム部の機能構成)
 図7は、本実施形態に係るスペクトログラム部340の機能構成を示すブロック図である。図7のスペクトログラム部340の機能構成は一例であって、本実施形態におけるヘテロダイン処理後のビート周波数のスペクトログラムを生成するものであればこれに限定されない。
 スペクトログラム部340は、高速フーリエ変換部(図ではFFT:Fast Fourier Transform)710と、スペクトログラム生成部720とを含む。高速フーリエ変換部710は、ヘテロダイン処理後のビート周波数の周波数特性を生成する。スペクトログラム生成部720は、ビート周波数の周波数特性から、例えば、周波数対レベルのスペクトログラム図を生成する(不図示)。
 《情報処理装置のハードウェア構成》
 図8は、本実施形態に係る情報処理装置300のハードウェア構成を示すブロック図である。
 図8で、CPU810は演算制御用のプロセッサであり、CPU810がRAM840を使用しながらストレージ850に格納されたプログラムおよびモジュールを実行することで、図3に示された情報処理装置300の各機能構成部の機能が実現される。ROM820は、初期データおよびプログラムなどの固定データおよびプログラムを記憶する。なお、CPU810は1つに限定されず、複数のCPUであっても、あるいは画像処理用のGPUを含んでもよい。
 RAM840は、CPU810が一時記憶のワークエリアとして使用するランダムアクセスメモリである。RAM840には、本実施形態の実現に必要なデータを記憶する領域が確保されている。送波したチャープ波のデータ841は、送波発生部350が送波したチャープ波のUPかDOWNか、周波数帯、周期のデータである。受波信号データ842は、受波部310が受波した信号のデータである。ヘテロダイン信号データ843は、送波したチャープ波に基づいて生成されたヘテロダイン処理に使用されるデュアルスイープ信号のデータである。ヘテロダイン処理データ(ビート周波数)844は、ヘテロダイン処理結果のビート周波数を表わすデータである。スペクトログラムデータ845は、ビート周波数のスペクトログラム処理結果のデータである。目標距離データ846は、スペクトログラムデータ845に基づいて算出された目標までの距離データである。目標速度データ847は、スペクトログラムデータ845に基づいて算出された目標の移動速度のデータである。
 ストレージ850には、データベースや各種のパラメータ、あるいは本実施形態の実現に必要な以下のデータまたはプログラムが記憶されている。デュアルスイープ信号テーブル521は、図5Bに示した、デュアルスイープ信号の周波数変化のデータを格納する。
 フィルタパラメータテーブル641は、図6Bに示した、不要信号除去フィルタのパラメータを格納する。演算用パラメータ/アルゴリズム851は、オプションである目標距離や目標速度などの演算に使用するパラメータ、アルゴリズムを記憶する。
 ストレージ850には、以下のプログラムが格納される。情報処理装置制御プログラム852は、本情報処理装置300の全体を制御する制御プログラムである。ヘテロダイン信号生成モジュール853は、送波したチャープ波に対応する周波数帯が重ならないデュアルスイープ信号を生成するモジュールである。ヘテロダイン処理モジュール854は、
 受波信号とデュアルスイープ信号とによりヘテロダイン処理を行なうモジュールである。
 スペクトログラムモジュール855は、ヘテロダイン処理結果のビート周波数のスペクトログラムを生成するモジュールである。目標距離演算モジュール856は、ビート周波数のスペクトログラムから目標までの距離を演算するモジュールである。目標速度演算モジュール857は、ビート周波数のスペクトログラムから目標の移動速度を演算するモジュールである。
 入出力インタフェース860は、入出力機器との入出力データをインタフェースする。
 入出力インタフェース860には、受波部310、表示部861、キーボード、タッチパネル、ポインティンデバイスなどの操作部862、GPS位置反転部863などが接続される。
 なお、図8のRAM840やストレージ850には、情報処理装置300が有する汎用の機能や他の実現可能な機能に関連するプログラムやデータは図示されていない。また、
 図8の目標距離や目標速度の演算は、オプションである。
 《情報処理装置の処理手順》
 図9は、本実施形態に係る情報処理装置300の処理手順を示すフローチャートである。このフローチャートは、図8のCPU810がRAM840を使用しながら実行して、
 図3の機能構成部を実現する。
 情報処理装置300は、ステップS901において、送波されたチャープ波あるいはそのパラメータを取得する。なお、送波されるチャープ波が既知で固定であれば、ステップS901は省略できる。情報処理装置300は、ステップS903において、チャープ波に周波数帯が重ならないデュアルスイープ信号を生成する。情報処理装置300は、ステップS905において、送波されて目標で反射されたチャープ波を受波する。次に、情報処理装置300は、ステップS907において、受波したチャープ波とデュアルスイープ信号とによりヘテロダイン処理を実行する。そして、情報処理装置300は、ステップS909において、ヘテロダイン処理結果のビート周波数のスペクトログラムを生成して出力する。なお、情報処理装置300は、オプションとして、ステップS911において、
 ビート周波数のスペクトログラムに基づき目標距離や目標速度を演算する。
 (デュアルスイープ信号生成処理)
 図10Aは、本実施形態に係るデュアルスイープ信号生成処理(S903)の手順を示すフローチャートである。
 情報処理装置300は、ステップS1011において、送波されたチャープ波と周波数帯が重ならない第1コピー信号を生成する。なお、ここでコピー信号とは、図2A乃至図2Eのように、その周波数変化の度合いが同様であることを示すものであり、同じ周波数を意味しない。また、第1コピー信号の周波数帯はチャープ波の周波数帯に近いものとする。次に、情報処理装置300は、ステップS1013において、送波されたチャープ波と周波数帯が重ならない、かつ、第1コピー信号と周波数帯が連続する第2コピー信号を生成する。そして、情報処理装置300は、ステップS1015において、第1コピー信号と第2コピー信号とを加えて、送波したチャープ波と周波数帯が重ならないデュアルスイープ信号を生成する。情報処理装置300は、ステップS1017において、生成したデュアルスイープ信号をヘテロダイン処理部330に出力する。
 (ヘテロダイン処理およびスペクトログラム処理)
 図10Bは、本実施形態に係るヘテロダイン処理(S907)およびスペクトログラム処理(S909)の手順を示すフローチャートである。
 情報処理装置300は、ステップS1021において、受波信号を取得する。また、情報処理装置300は、ステップS1023において、デュアルスイープ信号を取得する。
 そして、情報処理装置300は、ステップS1025において、受波信号とデュアルスイープ信号とを乗算処理してビート周波数を生成する。なお、オプションとして、情報処理装置300は、ステップS1027において、不要周波数をフィルタで除去する。
 次に、情報処理装置300は、ステップS1029において、ビート周波数に対して高速フーリエ変換処理を行ない、周波数スペクトルを生成する。情報処理装置300は、ステップS1031において、周波数スペクトルに基づいてスペクトログラムを生成する。
 そして、情報処理装置300は、ステップS1033において、生成したスペクトログラムを出力する。
 本実施形態によれば、ヘテロダイン結果から目標抽出に必要な信号と不必要な信号とを分離することができるので、効果的に目標抽出ができる。
 [第3実施形態]
 次に、本発明の第3実施形態に係る情報処理装置につい説明する。本実施形態に係る情報処理装置は、上記第2実施形態と比べると、送波するチャープ波が複数である点で異なる。その他の構成および動作は、第2実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
 《本実施形態の処理の概要》
 (送波信号および受波信号)
 図11Aは、本実施形態に係る情報処理装置を含む目標抽出システムにおける送波信号1110および受波信号1120の周波数変化を示す図である。
 図11Aには、"ハ"形に周波数変化をする複数のチャープ波からなる送波信号1110とその受波信号1120とが示されている。ここで、受波信号1120において、実線が静物体の受波信号であり、破線が動物体の受波信号である。図11Aでは、動物体までの距離が時間経過に従って開いている場合を示している。なお、本実施形態においては、
 "ハ"形に周波数変化をする複数のチャープ波からなる送波信号1110を例に説明するが、複数のチャープ波からなる送波信号であれば、UPチャープ波同士やDOWNチャープ波同士であっても、鋸状のチャープ波との組み合わせであってもよい。
 本実施形態においては、ヘテロダイン用のデュアルスイープ信号が、送信される複数のチャープ波と周波数帯が重ならないようにすることで、ヘテロダイン結果から目標抽出に必要な信号と不必要な信号とを分離することができる。
 (受波信号およびUPヘテロダイン用信号)
 図11Bは、本実施形態に係る受波信号1120およびUPヘテロダイン用信号1130の周波数変化を示す図である。なお、UPヘテロダイン用信号1130は、受波信号1120に周波数帯が重ならない、高周波数帯に設定されているが、低周波数帯に設定されてもよい。かかる周波数帯は、周波数の使用帯域ができるだけ広がらないように選択される。
 図11Cは、本実施形態に係るUPヘテロダイン処理結果1140のビート周波数変化を示す図である。図11Cに図示するように、2つの受波信号に対応する2組の静物体・動物体のビート周波数1141および1142が、不要な周波数1143と分離して生成される。この2組のビート周波数1141および1142における、静物体と動物体とのビート周波数のずれは、ドップラー効果の影響により異なるので、この出力データからドップラーの影響を補正した移動目標の正確な位置と速度との演算ができる。
 (受波信号およびDOWNヘテロダイン用信号)
 図11Dは、本実施形態に係る受波信号1120およびDOWNヘテロダイン用信号1150の周波数変化を示す図である。なお、DOWNヘテロダイン用信号1150は、受波信号1120に周波数帯が重ならない低高周波数帯に設定されているが、高周波数帯に設定されてもよい。かかる周波数帯は、周波数の使用帯域ができるだけ広がらないように選択される。
 図11Eは、本実施形態に係るDOWNヘテロダイン処理結果1160のビート周波数変化を示す図である。図11Eに図示するように、2つの受波信号に対応する2組の静物体・動物体のビート周波数1161および1162が、不要な周波数1163と分離して生成される。この2組のビート周波数1161および1162における、静物体と動物体とのビート周波数のずれは、ドップラー効果の影響により異なるので、この出力データからドップラーの影響を補正した移動目標の正確な位置と速度との演算ができる。
 なお、図11Cと図11Eとのヘテロダイン処理結果から、ヘテロダイン用のデュアルスイープ信号はできるだけ低周波数帯に設定する方が、周波数帯域が狭くなり望ましいことが分かる。
 《情報処理装置を含む目標抽出システムの機能構成》
 図12は、本実施形態に係る情報処理装置1200を含む目標抽出システムの機能構成を示すブロック図である。なお、図12において、図3と同様の機能構成部には同じ参照番号を付して、説明を省略する。
 送波発生部1250は、所定の周波数帯および所定周期の複数のチャープ波を発生して送波する。本例では、"ハ"形に周波数変化する2つのチャープ波を送波する例を説明するがこれに限定されない。
 情報処理装置1200は、受波部310と、デュアルスイープ信号生成部1220と、
 ヘテロダイン処理部1230と、スペクトログラム部340とを備える。デュアルスイープ信号生成部1220は、送波発生部1250が送波する複数のチャープ波に周波数帯が重ならない、各送波信号の倍のデュアルスイープ信号をヘテロダイン用信号として生成する。なお、図12においては、デュアルスイープ信号生成部1220が送波発生部1250から送波したチャープ波の周波数帯や周期を取得する例を示している。しかし、送波発生部1250から送波する複数のチャープ波の周波数帯や周期が既知であれば、デュアルスイープ信号をチャープ波の周波数帯や周期を取得することなく生成できる。
 ヘテロダイン処理部1230は、受波部310が出力する複数の受波信号と、複数の受波信号と周波数帯が重ならないデュアルスイープ信号とを乗算処理して、その周波数差分であるビート周波数を生成する。
 (送波発生部の機能構成)
 図13Aは、本実施形態に係る送波発生部1250の機能構成を示すブロック図である。なお、図13Aにおいて、図4Aと同様の機能構成部には同じ参照番号を付して、説明は省略する。また、図13Aの送波発生部1250の機能構成は一例であって、本実施形態における複数のチャープ波を出力するものであればこれに限定されない。
 送波発生部1250は、信号発生器1310と、デジタル/アナログ変換器(図ではDAC)420と、送波処理器430と、送波器440と、を含む。信号発生器1310は、チャープ波を発生するための信号を生成する信号生成部1311と、信号生成部1311で生成するチャープ波の周波数帯および周期を記憶するチャープ波テーブル1312と、を有する。また、信号発生器1310は、信号生成部1311からの信号に基づいて複数のチャープ波を生成する発振器1313および1314と、複数のチャープ波を合成する合成部1315とを有する。
 なお、図13Aにおいては、送波するチャープ波の周波数帯や周期を自由に設定可能な構成として示したが、複数のチャープ波が固定である場合には、チャープ波テーブル1312は無くてもよい。
 図13Bは、本実施形態に係るチャープ波テーブル1312の構成を示す図である。チャープ波テーブル1312は、信号生成部1311が生成する複数のチャープ波の周波数帯および周期を設定するために使用される。
 チャープ波テーブル1312は、使用するチャープ波を示す使用波フラグ1321に対応して、波の種類1322と、その周波数帯1323および周期1324とを記憶する。
 使用波フラグ1321において、○が使用波であり、×は不使用波である。波の種類1322には、周波数が線形に上昇するUPチャープ波、周波数が線形に下降するDOWNチャープ波、UPチャープ波とDOWNチャープ波とを交互に繰り返す鋸状のチャープ波、
 が含まれる。本例では、使用波フラグ1321の各々に対応して使用する複数のチャープ波を記憶している。
 図13Bにおいては、図11Aに図示したような、"ハ"形となるUPチャープ波とDOWNチャープ波とが使用波として選択されている。
 (デュアルスイープ信号生成部の機能構成)
 図14Aは、本実施形態に係るデュアルスイープ信号生成部1220の機能構成を示すブロック図である。なお、図14Aのデュアルスイープ信号生成部1220の機能構成は一例であって、本実施形態における複数のチャープ波と周波数帯が重ならないデュアルスイープ信号を出力するものであればこれに限定されない。また、図14Aのデュアルスイープ信号生成部1220においては、UPデュアルスイープ信号とDOWNデュアルスイープ信号との両方を生成する構成を示したが、図11Bや図11Dに示したように、いずれか一方であってもよい。また、2つの一方を選択する構成であってもよい。
 デュアルスイープ信号生成部1220は、送波したUPチャープ波情報取得部1410と、デュアルスイープ信号周波数生成部1420と、デュアルスイープ信号の低周波側の発振器1430と、デュアルスイープ信号の高周波側の発振器1440と、信号合成器1450と、を含む。また、デュアルスイープ信号生成部1220は、送波したDOWNチャープ波情報取得部1460と、デュアルスイープ信号の低周波側の発振器1470と、
 デュアルスイープ信号の高周波側の発振器1480と、信号合成器1490と、を含む。
 なお、送波したUPチャープ波情報取得部1410と、送波したDOWNチャープ波情報取得部1460とは、1つのチャープ波情報取得部であってもよい。また、送波するチャープ波が既知で固定であれば、チャープ波情報取得部は無くてよい。
 デュアルスイープ信号周波数生成部1420は、デュアルスイープ信号テーブル1421を有し、送波された複数のチャープ波に基づいて、複数のチャープ波と周波数帯が重ならないデュアルスイープ信号の周波数データを生成する。発振器1430と発振器1440は、デュアルスイープ信号周波数生成部1420からの出力に従って、それぞれ送波された複数のチャープ波とは重ならないが周波数変化が継続する、UPチャープ波と周波数変化の度合いが同様の信号を生成する。信号合成器1450は、発振器1430と発振器1440との出力を合成して、送波された複数のチャープ波と周波数帯が重ならないUPデュアルスイープ信号を出力する。一方、発振器1470と発振器1480は、デュアルスイープ信号周波数生成部1420からの出力に従って、それぞれ送波された複数のチャープ波とは重ならないが周波数変化が継続する、DOWNチャープ波と数は数変化の度合いが同様の信号を生成する。信号合成器1490は、発振器1470と発振器1480との出力を合成して、送波された複数のチャープ波と周波数帯が重ならないDOWNデュアルスイープ信号を出力する。
 なお、図14Aにおいては、送波する複数のチャープ波の周波数帯や周期を自由に設定可能な場合の構成として示したが、複数のチャープ波が既知でかつ固定である場合には、
 デュアルスイープ信号テーブル1421は無くてもよい。
 図14Bは、本実施形態に係るデュアルスイープ信号テーブル1421の構成を示す図である。デュアルスイープ信号テーブル1421は、送波される複数のチャープ波に対応するデュアルスイープ信号を生成するために使用される。
 デュアルスイープ信号テーブル1421は、信号の種類1401と、送信される使用チャープ波1402と、他のチャープ波1403に基づいて設定される、周波数帯1404と周期1405とを記憶する。なお、他のチャープ波1403は1つに限らない。信号の種類1401は、1つのデュアルスイープ信号に対して低周波数側と高周波数側を有する。使用チャープ波1402および他のチャープ波1403には、送波したUPチャープ波情報取得部1410およびDOWNチャープ波情報取得部1460が取得したチャープ波の情報を記憶する。
 周波数帯1404には、送波した使用チャープ波1402の情報に基づいて、複数のチャープ波と周波数帯が重ならない、かつ、複数のチャープ波と近い周波数帯が設定される。ここで、低周波数側と高周波数側との周波数帯1443は連続している。また、周期1405には、使用チャープ波と同じ周期が設定される。
 (ヘテロダイン処理部の機能構成)
 図15Aは、本実施形態に係るヘテロダイン処理部1230の機能構成を示すブロック図である。なお、図15Aのヘテロダイン処理部1230の機能構成は一例であって、本実施形態における受波信号とデュアルスイープ信号とを乗算処理するものであればこれに限定されない。また、図15Aのヘテロダイン処理部1230においては、UPデュアルスイープ信号によるヘテロダイン処理とDOWNデュアルスイープ信号によるヘテロダイン処理との両方を実行する構成を示したが、図11Bや図11Dに示したように、いずれか一方であってもよい。また、2つの一方を選択する構成であってもよい。
 ヘテロダイン処理部1230は、受波信号取得部1510と、UPデュアルスイープ信号取得部1520と、乗算部1530と、オプションとして不要信号除去フィルタ1540と、を含む。また、ヘテロダイン処理部1230は、DOWNデュアルスイープ信号取得部1550と、乗算部1560と、オプションとして不要信号除去フィルタ1570と、を含む。
 受波信号取得部1510は、受波部310から複数のチャープ波を含む受波信号を取得する。UPデュアルスイープ信号取得部1520は、デュアルスイープ信号生成部1220からUPデュアルスイープ信号を取得する。一方、DOWNデュアルスイープ信号取得部1550は、デュアルスイープ信号生成部1220からDOWNデュアルスイープ信号を取得する。乗算部1530は、受波信号とUPデュアルスイープ信号とを乗算して差分周波数であるビート周波数を生成する。一方、乗算部1560は、受波信号とDOWNデュアルスイープ信号とを乗算して差分周波数であるビート周波数を生成する。
 不要信号除去フィルタ1540は、複数のチャープ波とUPデュアルスイープ信号とに基づいて予測されるフィルタパラメータテーブル1541に基づいて、乗算部1530の出力に含まれる目標抽出に必要としない周波数成分を除去する。一方、不要信号除去フィルタ1570は、複数のチャープ波とDOWNデュアルスイープ信号とに基づいて予測されるフィルタパラメータテーブル1571に基づいて、乗算部1560の出力に含まれる目標抽出に必要としない周波数成分を除去する。なお、フィルタパラメータテーブル1541と1571とは、各パラメータが識別可能な1つのテーブルであってもよい。複数のチャープ波およびデュアルスイープ信号が既知で固定である場合は、フィルタパラメータテーブル1541や1571は無くてもよい。
 図15Bは、本実施形態に係るフィルタパラメータテーブル1541、1571の構成を示す図である。フィルタパラメータテーブル1541、1571は、複数のチャープ波とUPデュアルスイープ信号またはDOWNデュアルスイープ信号とに基づいて予測されるフィルタパラメータを記憶する。
 フィルタパラメータテーブル1541、1571は、各フィルタ種類1501の、使用チャープ波1502および使用デュアルスイープ信号1503に基づいて推定される、フィルタ周波数帯1504を記憶する。なお、フィルタ周波数帯1504は、不要な周波数を含む複数の周波数帯であってもよい。
 《送波発生部の処理手順》
 図16Aは、本実施形態に係る送波発生部1250の処理手順を示すフローチャートである。
 送波発生部1250は、ステップS1601において、チャープ波テーブル1312から第1チャープ波のパラメータ(UPかDOWNか、周波数帯、周期)を取得する。そして、送波発生部1250は、ステップS1603において、第1チャープ波を生成する。
 次に、送波発生部1250は、ステップS1605において、本例では、チャープ波テーブル1312から第1チャープ波と周波数帯が異なり、UP/DOWNが逆の第2チャープ波のパラメータ(UPかDOWNか、周波数帯、周期)を取得する。そして、送波発生部1250は、ステップS1607において、第2チャープ波を生成する。
 送波発生部1250は、ステップS1609において、第1チャープ波と第2チャープ波とを送波する。なお、上記2つのチャープ波の組み合わせ、あるいはチャープ波の数は本例に限定されない。
 (デュアルスイープ信号生成処理)
 図16Bは、本実施形態に係るデュアルスイープ信号生成処理の手順を示すフローチャートである。このフローチャートは、図8のCPU810がRAM840を使用して実行し、図12のデュアルスイープ信号生成部1220を実現する。
 情報処理装置1200は、ステップS1611において、送波した第1チャープ波および第2チャープ波、あるいはそのパラメータを取得する。情報処理装置1200は、ステップS1613において、第1チャープ波および第2チャープ波と周波数帯が重ならない第1チャープ波の第1コピー信号と、第2チャープ波の第2コピー信号とを生成する。なお、ここでコピー信号とは、図11A、図11Bおよび図11Dのように、その周波数変化の度合いが同様であることを示すものであり、同じ周波数を意味しない。また、第1コピー信号あるいは第2コピー信号の周波数帯は複数のチャープ波の周波数帯に近いものとする。
 次に、情報処理装置1200は、ステップS1615において、送波された複数のチャープ波と周波数帯が重ならない、かつ、第1コピー信号または第2コピー信号と周波数帯が連続する第3コピー信号と第4コピー信号とを生成する。そして、情報処理装置1200は、ステップS1617において、第1コピー信号と第3コピー信号とを加えて、送波した複数のチャープ波と周波数帯が重ならない第1デュアルスイープ信号を生成する。また、情報処理装置1200は、ステップS1618において、第2コピー信号と第4コピー信号とを加えて、送波した複数のチャープ波と周波数帯が重ならない第2デュアルスイープ信号を生成する。情報処理装置1200は、ステップS1619において、生成した第1および第2デュアルスイープ信号をヘテロダイン処理部1230に出力する。
 《送波発生の条件》
 図17は、本実施形態に係る送波発生の条件を説明する図である。図17には、本例の"ハ"形に周波数変化するチャープ波を使用する場合の、ビート周波数の周波数スペクトルの無駄を減らす条件を示す。しかしながら、この条件は他の複数のチャープ波を使用する場合にも敷衍することができる。
 まず、第1の条件は、ヘテロダイン用信号の周波数変化を並行移動させた領域に、チャープ波が入らないことである(周波数変化1710を参照)。逆に言えば、チャープ波の周波数変化を並行移動させた領域にヘテロダイン用信号が入らないことである。
 第2の条件は、2つのチャープ波を互いに周期の半分ずらして組むことにより、周期の揃った"ハ"形と比較すると無駄な使用帯域が半分に減ることになる(周波数変化1720、1730を参照)。
 そして、送波前に複数のチャープ波を帯域フィルタにより所定周波数間隔となるように分離するようにすれば、簡単な構成でビート周波数の周波数スペクトルの無駄を減らした複数のチャープ波を生成できる(周波数変化1740を参照)。
 《目標物体の速度推測およびドップラー影響の補正》
 図18は、本実施形態に係る目標物体の速度推測およびドップラー影響の補正を説明する図である。
 図18の周波数変化1810は、"ハ"形のUPチャープ波とDOWNチャープ波とを使用した場合の、目標の速度推定を説明する図である。周波数FcをUPチャープ波とDOWNチャープ波との中心周波数とする場合である。
 この場合に、送信したUPチャープ波の周波数をFsu、送信したDOWNチャープ波の周波数をFsd、受信したUPチャープ波の周波数をFru、受信したDOWNチャープ波の周波数をFrd、ドップラー偏移比をD、とする。これらの全ての情報が、例えば、図11Dあるいは図11Eから取得できる。
 したがって、複数のチャープ波を送波することによって、1回の処理で目標の速度演算(推定)ができることになる。
 図18の周波数変化1820は、"ハ"形のUPチャープ波とDOWNチャープ波とを使用した場合の、ドップラー影響の補正を説明する図である。
 ドップラー偏移比Dは、
 D=(Fru+Frd)/(Fsu+Fsd)=(Fru+Frd)/2Fcにより算出できるので、複数のチャープ波を送波することによって、1回の処理でドップラー効果の影響の補正ができることになる。
 なお、上記説明ではチャープ波が2つである場合について説明するが、2つでなく3つ以上でもよいことは明らかである。複数のヘテロダイン結果が得られることにより、平均などの統計処理も可能になり、さらに測定精度を上げることができる。
 本実施形態によれば、ヘテロダイン結果から目標抽出に必要な信号と不必要な信号とを分離することができ、一度に異なるドップラー影響の結果を得られるので、効果的に目標抽出、目標速度の推測、ドップラー影響の補正ができる。
 [第4実施形態]
 次に、本発明の第4実施形態に係る情報処理装置について説明する。本実施形態に係る情報処理装置は、上記第3実施形態と比べると、複数のチャープ波の受波信号を分離してヘテロダイン処理する点で異なる。すなわち、本実施形態においては、受信波を帯域分離フィルタで分け、それぞれのチャープごとに別のヘテロダイン処理を行う。ヘテロダイン処理で出てきたビート周波数などが重ならないようにさらに帯域フィルタなどを用いて合成する。それぞれのヘテロダイン結果に対してビート周波数変化の画像を得て、この2つのビート周波数変化の画像を合成する。その他の構成および動作は、第2実施形態および第3実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
 《本実施形態の処理の概要》
 (受波信号の分離)
 図19Aは、本実施形態に係る情報処理装置による目標抽出方法の特徴を示す図である。
 図19Aは、受波信号を帯域分離フィルタで分離する例を示した受波信号の周波数変化である。周波数変化1900は、"ハ"のチャープ波の受波信号を帯域分離フィルタでUP受波信号とDOWN受波信号とに分離したものを示している。本実施形態においては、
 分離されたUP受波信号とDOWN受波信号とをそれぞれ別個に周波数帯の重ならないデュアルスイープ信号でヘテロダイン処理をして、後で合成する。
 また、周波数変化1910は、さらに、3つのチャープ波の場合に帯域分離フィルタで3つの受波信号に分離して、それぞれ別個に周波数帯の重ならないデュアルスイープ信号でヘテロダイン処理をして、後で合成する。
 本実施形態によれば、それぞれの受波信号と周波数帯が重ならないデュアルスイープ信号を生成できるので、周波数帯の有効な利用ができる。
 (分離されたUP受波信号およびUPヘテロダイン用信号とDOWN受波信号およびDOWNヘテロダイン用信号)
 図19Bは、本実施形態に係る分離されたUP受波信号1921およびUPヘテロダイン用信号1130とDOWN受波信号1922およびDOWNヘテロダイン用信号1150との周波数変化を示す図である。
 図19Bにおいて、UP受波信号1921とDOWN受波信号1922とは、それぞれ帯域分離フィルタで受波部310が受波した信号をチャープ波に対応して分離した信号である。なお、図11Aおよび図11Bに示した受波信号1120は、UP受波信号1921とDOWN受波信号1922とに分離してヘテロダイン処理をする。したがって、UPヘテロダイン用信号1130がUP受波信号1921の下方周波数帯であっても、DOWNヘテロダイン用信号1150がDOWN受波信号1922の上方周波数帯であっても、
 受波信号とヘテロダイン用のデュアルスイープ信号とが重ならない。そのため、デュアルスイープ信号の周波数帯の選択に余裕ができ、使用する周波数域を狭くすることができる。
 (本実施形態におけるヘテロダイン処理結果)
 図19Cは、本実施形態に係る情報処理装置におけるヘテロダイン処理結果のビート周波数変化を示す図である。
 図19Cには、UP受波信号1921とUPヘテロダイン用信号1130とのヘテロダイン処理により生成したビート周波数1940と、DOWN受波信号1922とDOWNヘテロダイン用信号1150とのヘテロダイン処理により生成したビート周波数1960と、が合成されて出力されている。
 《情報処理装置を含む目標抽出システムの機能構成》
 図20は、本実施形態に係る情報処理装置2000を含む目標抽出システムの機能構成を示すブロック図である。なお、図20において、図3および図12と同様の機能構成部には同じ参照番号を付して、説明を省略する。また、図20では、"ハ"形のチャープ波に従う構成が示されているが、複数のチャープ波は"ハ"形に限定されない。
 情報処理装置2000は、帯域分離フィルタ2070と、帯域分離フィルタ2070用のフィルタパラメータテーブル2011と、UPチャート波用デュアルスイープ信号発生部2021と、DOWNチャート波用デュアルスイープ信号発生部2022と、を含む。
 さらに、情報処理装置2000は、UP用乗算器2031と、DOWN用乗算器2032と、UPチャート用帯域通過フィルタ2081と、DOWNチャート用帯域通過フィルタ2082と、帯域通過フィルタ用のフィルタパラメータテーブル2012と、ヘテロダイン処理結果合成部2090と、を含む。
 帯域分離フィルタ2070は、フィルタパラメータテーブル2011に従って受波信号をUA受波信号とDOWN受波信号とに分離する。UPチャート波用デュアルスイープ信号発生部2021は、送波されたUPチャート波に対応して周波数帯の重ならないUPデュアルスイープ信号を生成する。一方、DOWNチャート波用デュアルスイープ信号発生部2022は、送波されたDOWNチャート波に対応して周波数帯の重ならないDOWNデュアルスイープ信号を生成する。UP用乗算器2031は、UA受波信号とUPデュアルスイープ信号とを乗算して、ビート周波数を生成する。一方、DOWN用乗算器2032は、DOWN受波信号とDOWNデュアルスイープ信号とを乗算して、ビート周波数を生成する。
 UPチャート用帯域通過フィルタ2081は、フィルタパラメータテーブル2012に従って、UP用乗算器2031の出力から不要な周波数を除去する。一方、DOWNチャート用帯域通過フィルタ2082は、フィルタパラメータテーブル2012に従って、DOWN用乗算器2032の出力から不要な周波数を除去する。そして、ヘテロダイン処理結果合成部2090は、互いに不要周波数が除去されたビート周波数を合成する(図19C参照)。
 なお、フィルタパラメータテーブル2011および2012は、それぞれ帯域分離フィルタ2070に含まれても、帯域通過フィルタ2081、2082に含まれてもよい。あるいは、フィルタパラメータテーブルを1つにまとめてもよい。また、複数のチャープ波や複数のデュアルスイープ信号がいずれも既知で固定であれば、フィルタパラメータテーブルは無くてもよい。
 (帯域分離フィルタの機能構成)
 図21Aは、本実施形態に係る帯域分離フィルタ2070の機能構成を示すブロック図である。なお、帯域分離フィルタ2070の機能構成は、図21Aに限定されない。受波信号から、送波された複数のチャープ波に対応する受波信号を取り出せる構成であればよい。
 帯域分離フィルタ2070は、UPチャート波用帯域通過フィルタ2171と、DOWNチャート波用帯域通過フィルタ2172とを含む。そして、フィルタパラメータテーブル2011に従って、受波信号を複数の送波された複数のチャープ波に対応する受波信号に分離する。
 図21Bは、本実施形態に係る帯域分離フィルタ用のフィルタパラメータテーブル2011の構成を示す図である。フィルタパラメータテーブル2011は、使用チャープ波に対応して帯域分離フィルタ2070の周波数帯を設定するために使用される。
 フィルタパラメータテーブル2011は、フィルタ種類2101と使用チャープ波2102とに対応して、分離周波数帯2103を記憶する。
 (帯域通過フィルタ用のフィルタパラメータ)
 図22は、本実施形態に係る帯域通過フィルタ用のフィルタパラメータテーブル2012の構成を示す図である。フィルタパラメータテーブル2012は、ヘテロダイン処理後の帯域通過フィルタの周波数帯を設定するために使用される。
 フィルタパラメータテーブル2012は、不要信号除去用フィルタの種類2201と、使用チャープ波2202および使用デュアルスイープ信号2203とに対応して、不要信号の周波数帯2204を記憶する。なお、周波数帯2204は、使用チャープ波2202および使用デュアルスイープ信号2203により複数設定される場合もある。
 《情報処理装置の処理手順》
 図23は、本実施形態に係る情報処理装置2000の処理手順を示すフローチャートである。このフローチャートは、図8のCPU810がRAM840を使用して実行し、図20の機能構成部を実現する。なお、図23において、図9と同様のステップには同じステップ番号を付して、説明を省略する。
 情報処理装置2000は、ステップS2301において、UPチャープ波およびDOWNチャープ波、またはそのパラメータを取得する。なお、3つ以上のチャープ波を使用する場合には、それぞれのデータを取得する。情報処理装置2000は、ステップS2303において、送波したUPチャープ波に対応するUPデュアルスイープ信号を生成する。
 また、情報処理装置2000は、ステップS2304において、送波したDOWNチャープ波に対応するDOWNデュアルスイープ信号を生成する。なお、ステップS2303およびS2304の処理は、第2実施形態の図10Aの処理と同様であるので、詳細な説明を省略する。
 情報処理装置2000は、ステップS2306において、受波信号をUP受波信号とDOWN受波信号とに帯域分離する。そして、情報処理装置2000は、ステップS2307において、UP受波信号とUPデュアルスイープ信号とを乗算するUPヘテロダイン処理を実行する。また、情報処理装置2000は、ステップS2308において、DOWN受波信号とDOWNデュアルスイープ信号とを乗算するDOWNヘテロダイン処理を実行する。なお、ステップS2307およびS2308の処理は、第2実施形態の図10BのステップS1021~S1027と同様であるので、詳細な説明を省略する。そして、情報処理装置2000は、ステップS2309において、ヘテロダイン結果を構成する。
 本実施形態によれば、複数のチャープ波の受波を分離してヘテロダイン処理するので、
 チャープ波やヘテロダイン用信号を狭い周波数帯に設定できるので、効果的に目標抽出、
 目標速度の推測、ドップラー影響の補正ができる。
 [第5実施形態]
 次に、本発明の第5実施形態に係る情報処理装置について説明する。本実施形態に係る情報処理装置は、上記第2実施形態乃至第4実施形態と比べると、送波するチャープ波をデュアルスイープとする点で異なる。その他の構成および動作は、第2実施形態乃至第4実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
 《本実施形態の処理の概要》
 (送波信号および受波信号)
 図24Aは、本実施形態に係る情報処理装置を含む目標抽出システムにおける送波信号2410および受波信号2420の周波数を示す図である。
 図24Aにおいては、送波信号2410および受波信号2420が、デュアルスイープ信号である。本実施形態においては、より簡単な構成で擬似的な複数のチャープ波が生成され、複数組みのビート信号を一度に生成できる。
 (受波信号とデュアルスイープ信号)
 図24Bは、本実施形態に係る受波信号2420とデュアルスイープ信号2430との周波数変化を示す図である。なお、図24Bにおいては、デュアルスイープ信号2430を受波信号2420に重ならない低周波数側に設定したが、高周波数側に設定してもよい。デュアルスイープ信号2430の設定は、使用周波数域を狭くするため低周波数側が望ましい。
 (情報処理装置におけるヘテロダイン処理結果)
 図24Cは、本実施形態に係る情報処理装置におけるヘテロダイン処理結果2450のビート周波数変化を示す図である。
 図24Cに図示するように、ヘテロダイン処理結果2450は他の不要な周波数帯と分離して、互いに接近した周波数帯に複数組みが出力される。
 《送波発生部の機能構成》
 図25Aは、本実施形態に係る送波発生部2550の機能構成を示すブロック図である。なお、図25Aにおいて、図4Aおよび図13Aと同様の機能構成部には同じ参照番号を付して、説明は省略する。また、図25Aの送波発生部2550の機能構成は一例であって、本実施形態におけるデュアルスイープのチャープ波を出力するものであればこれに限定されない。
 送波発生部2550は、信号発生器2510と、デジタル/アナログ変換器(図ではDAC)420と、送波処理器430と、送波器440と、を含む。信号発生器2510は、チャープ波形の信号を生成する信号生成部2511と、信号生成部2511で生成するチャープ波形の周波数帯および周期を記憶するチャープ波テーブル2512と、を有する。
 なお、図25Aにおいては、送波するデュアルスイープのチャープ波の周波数帯や周期を自由に設定可能な構成として示したが、デュアルスイープのチャープ波が固定である場合には、チャープ波形テーブル2512は無くてもよい。
 図25Bは、本実施形態に係るチャープ波テーブル2512の構成を示す図である。チャープ波テーブル2512は、信号生成部2511が生成するデュアルスイープのチャープ波の周波数帯および周期を設定するために使用される。
 チャープ波テーブル2512は、使用するチャープ波を示す使用波フラグ2521に対応して、波の種類2522と、その周波数帯2523および周期2524とを記憶する。
 図中、使用波フラグ2521において、○が使用波であり、×は不使用波である。波の種類2522には、デュアルスイープのUPチャープ波、デュアルスイープのDOWNチャープ波、デュアルスイープのUPチャープ波とDOWNチャープ波とを交互に繰り返す鋸状のチャープ波、が含まれる。本例では、使用波フラグ2521の各々に対応して使用する周波数帯が連続する複数のチャープ波を記憶している。
 (デュアルスイープ信号テーブル)
 図26は、本実施形態に係るデュアルスイープ信号テーブル2621の構成を示す図である。デュアルスイープ信号テーブル2621は、デュアルスイープのチャープ波に対応するヘテロダイン処理用のデュアルスイープ信号を生成するために使用される。なお、デュアルスイープのチャープ波が既知で固定である場合は、デュアルスイープ信号テーブル2621が無くてもよい。
 デュアルスイープ信号テーブル2621は、デュアルスイープ信号の種類2601と、
 使用するデュアルスイープのチャープ波の低周波数側2602および高周波数側2603とに対応して、デュアルスイープのチャープ波に重ならない周波数帯2604と、周期2605とを記憶する。
 《送波発生部の処理手順》
 図27は、本実施形態に係る送波発生部2550の処理手順を示すフローチャートである。なお、図27において、図16と同様のステップには同じステップ番号を付して、説明を省略する。
 送波発生部2550は、ステップS2705において、ステップS1603で生成した第1チャープ波と周波数帯が連続し、UP/DOWNが同じ第2チャープ波のパラメータを生成する。そして、送波発生部2550は、ステップS1607において、第2チャープ波を生成する。
 本実施形態によれば、1回のヘテロダイン処理およびスペクトグラム処理により複数の処理結果が出力されるので、簡単な構成で効果的に目標抽出、目標速度の推測、ドップラー影響の補正ができる。
 [第6実施形態]
 次に、本発明の第6実施形態に係る情報処理装置について説明する。本実施形態に係る情報処理装置は、上記第2実施形態乃至第5実施形態と比べると、情報処理装置が送波部を含む点で異なる。その他の構成および動作は、第2実施形態乃)至第5実施形態と同様であるため、同じ構成および動作については同じ符号を付してその詳しい説明を省略する。
 《情報処理装置の機能構成》
 図28は、本実施形態に係る情報処理装置2800の機能構成を示すブロック図である。なお、図28において、図3と同じ機能構成部には同じ参照番号を付して、説明を省略する。
 図28においては、送波発生部2850が、情報処理装置2800に含まれている。なお、送波発生部2850の機能構成は、図4A、図13Aまたは図25Aと同様である。
 さらに、送波発生部2850とデュアルスイープ信号生成部320とを信号発生部2810として一体とすることで、構成を簡単にすることができる。また、出力部301や演算部302の全構成要素を情報処理装置2800に含むこともできる。
 本実施形態によれば、送波するチャープ波と、ヘテロダイン処理するデュアルスイープ信号とを正確に調整できるので、より精度の高い目標抽出、目標速度の推測、ドップラー影響の補正ができる。
 [他の実施形態]
 なお、以上に説明した音波または超音波による目標抽出方法は、ロボット同士がぶつからずにすれ違うための技術や、車両の衝突回避技術に利用することができる。しかし、本発明はこれに限定されるものではなく、オフィスなどでの侵入者の監視や、体育館での人の動きの検出や、水中での障害物の監視などにも用いることが可能である。港湾など水中の監視では、超音波はすぐに減衰してしまうため使用できない場合が多いが、アクティブソーナー(Active Sonar)と呼ばれる音波を利用した対象物体検出方法、距離測定方式、
 速度測定方式の原理に本発明を適用できる。したがって水中に適したキャリア周波数(中心周波数)、波形長、変調波周波数などを適切に設定すれば、本発明の効果は同様に得られる。さらに、本発明における送信波形は、電波によるレーダーにも用いることができる。
 また、実施形態を参照して本発明を説明したが、本発明は上記実施形態に限定されるものではない。本発明の構成や詳細には、本発明のスコープ内で当業者が理解し得る様々な変更をすることができる。また、それぞれの実施形態に含まれる別々の特徴を如何様に組み合わせたシステムまたは装置も、本発明の範疇に含まれる。
 また、本発明は、複数の機器から構成されるシステムに適用されてもよいし、単体の装置に適用されてもよい。さらに、本発明は、実施形態の機能を実現する情報処理プログラムが、システムあるいは装置に直接あるいは遠隔から供給される場合にも適用可能である。したがって、本発明の機能をコンピュータで実現するために、コンピュータにインストールされるプログラム、あるいはそのプログラムを格納した媒体、そのプログラムをダウンロードさせるWWW(World Wide Web)サーバも、本発明の範疇に含まれる。特に、少なくとも、上述した実施形態に含まれる処理ステップをコンピュータに実行させるプログラムを格納した非一時的コンピュータ可読媒体(non-transitory computer readable medium)は本発明の範疇に含まれる。
 この出願は、2014年3月11日に出願された日本出願特願2014-048144を基礎とする優先権を主張し、その開示の全てをここに取り込む。

Claims (17)

  1.  目標から反射した、チャープ波の反射波を受波して、受波信号を出力する受波手段と、
     前記チャープ波の周波数帯域と重ならない周波数を備え、前記チャープ波のデュアルスイープ信号を生成するデュアルスイープ信号生成手段と、
     前記受波信号に対して、前記デュアルスイープ信号をヘテロダイン用信号として乗算して、ビート周波数を生成するヘテロダイン処理手段と、
     を備える情報処理装置。
  2.  前記デュアルスイープ信号は、前記チャープ波と周波数帯が重ならない、かつ、互いに周波数帯が連続する、前記チャープ波と周波数変化が等しい2つの信号により生成される請求項1に記載の情報処理装置。
  3.  前記チャープ波が、周波数が線形に上昇するUPチャープ波の場合、前記デュアルスイープ信号の周波数は、前記UPチャープ波の周波数帯に重ならない高い周波数帯に設定され、前記チャープ波が、周波数が線形の下降するDOWNチャープ波の場合、前記デュアルスイープ信号の周波数は、前記DOWNチャープ波の周波数帯に重ならない低い周波数帯に設定される請求項1または2に記載の情報処理装置。
  4.  前記チャープ波は、周波数が線形に上昇するUPチャープ波と周波数が線形に下降するDOWNチャープ波とを繰り返す鋸状のチャープ波、または、送波された複数のチャープ波を含む請求項1乃至3のいずれか1項に記載の情報処理装置。
  5.  前記チャープ波は、周波数帯が連続する複数のUPチャープ波からなるデュアルスイープのUPチャープ波、または、周波数帯が連続する複数のDOWNチャープ波からなるデュアルスイープのDOWNチャープ波である請求項4に記載の情報処理装置。
  6.  前記ビート周波数の周波数スペクトルを生成するスペクトログラム生成手段を、さらに備える請求項1乃至5のいずれか1項に記載の情報処理装置。
  7.  前記周波数スペクトルを表示するスペクトログラム表示手段を、さらに備える請求項6に記載の情報処理装置。
  8.  前記周波数スペクトルに基づいて、目標までの距離を演算する目標距離演算手段を、さらに備える請求項6または7に記載の情報処理装置。
  9.  前記周波数スペクトルに基づいて、目標の移動速度を演算する目標速度演算手段を、さらに備える請求項6乃至8のいずれか1項に記載の情報処理装置。
  10.  チャープ波を送波する送波手段を、さらに備える請求項1乃至9のいずれか1項に記載の情報処理装置。
  11.  前記送波手段は、周波数が線形に上昇するUPチャープ波、周波数が線形の下降するDOWNチャープ波、または、前記UPチャープ波と前記DOWNチャープ波とを繰り返すチャープ波、を送波する請求項10に記載の情報処理装置。
  12.  前記送波手段は、異なる周波数帯の複数のチャープ波を送波する請求項10に記載の情報処理装置。
  13.  前記チャープ波は、周波数帯が連続する複数のUPチャープ波からなるデュアルスイープのUPチャープ波、または、周波数帯が連続する複数のDOWNチャープ波からなるデュアルスイープのDOWNチャープ波である請求項11または12に記載の情報処理装置。
  14.  目標から反射した、チャープ波の反射波を受波して、受波信号を出力する受波ステップと、
     前記受波信号に対して、前記チャープ波と周波数が重ならない、前記チャープ波のデュアルスイープ信号をヘテロダイン用信号として乗算して、ビート周波数を生成するヘテロダイン処理ステップと、
     を含む情報処理装置の制御方法。
  15.  目標から反射した、チャープ波の反射波を受波して、受波信号を出力する受波ステップと、
     前記受波信号に対して、前記チャープ波と周波数が重ならない、前記チャープ波のデュアルスイープ信号をヘテロダイン用信号として乗算して、ビート周波数を生成するヘテロダイン処理ステップと、
     をコンピュータに実行させる情報処理装置の制御プログラム。
  16.  チャープ波を送波する送波装置と、
     目標から反射した、前記チャープ波の反射波を受波して、目標を抽出する受波装置と、
     を備え、
     前記受波装置は、
      前記反射波を受波して、受波信号を出力する受波手段と、
      前記受波信号に対して、前記チャープ波と周波数が重ならない、前記チャープ波のデュアルスイープ信号をヘテロダイン用信号として乗算して、ビート周波数を生成するヘテロダイン処理手段と、
     を有する目標抽出システム。
  17.  チャープ波を送波する送波ステップと、
     目標から反射した、前記チャープ波の反射波を受波した受波信号に対して、前記チャープ波と周波数が重ならない、前記チャープ波のデュアルスイープ信号をヘテロダイン用信号として乗算して、ビート周波数を生成し、前記ビート周波数の周波数スペクトルに基づいて、目標を抽出する目標抽出ステップと、
     を含む目標抽出方法。
PCT/JP2014/084613 2014-03-11 2014-12-26 目標抽出システム、目標抽出方法、情報処理装置およびその制御方法と制御プログラム WO2015136823A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/124,200 US10746863B2 (en) 2014-03-11 2014-12-26 Target extraction system, target extraction method, information processing apparatus, and control method and control program of information processing apparatus
JP2016507281A JP6536910B2 (ja) 2014-03-11 2014-12-26 目標抽出システム、目標抽出方法、情報処理装置およびその制御方法と制御プログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014048144 2014-03-11
JP2014-048144 2014-03-11

Publications (1)

Publication Number Publication Date
WO2015136823A1 true WO2015136823A1 (ja) 2015-09-17

Family

ID=54071286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084613 WO2015136823A1 (ja) 2014-03-11 2014-12-26 目標抽出システム、目標抽出方法、情報処理装置およびその制御方法と制御プログラム

Country Status (3)

Country Link
US (1) US10746863B2 (ja)
JP (1) JP6536910B2 (ja)
WO (1) WO2015136823A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021524027A (ja) * 2018-05-25 2021-09-09 華為技術有限公司Huawei Technologies Co.,Ltd. 情報測定方法および情報測定装置
WO2021181598A1 (ja) * 2020-03-12 2021-09-16 三菱電機株式会社 レーダ装置

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6984030B2 (ja) * 2017-10-31 2021-12-17 ビ−エイイ− システムズ パブリック リミテッド カンパニ−BAE SYSTEMS plc ソナーにおける改良及びソナーに関する改良
EP3477336A1 (en) * 2017-10-31 2019-05-01 BAE SYSTEMS plc Improvements in and relating to sonar
US11467250B2 (en) * 2020-01-30 2022-10-11 Aptiv Technologies Limited Scalable cascading radar system
US11047963B1 (en) * 2020-08-21 2021-06-29 Aeva, Inc. Selective sub-band processing for angular resolution and detection sensitivity in a LIDAR system
US11327158B1 (en) * 2020-10-19 2022-05-10 Aeva, Inc. Techniques to compensate for mirror Doppler spreading in coherent LiDAR systems using matched filtering

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240945A (ja) * 1992-02-26 1993-09-21 Mitsubishi Electric Corp 周波数変調持続波レーダ
US7149148B2 (en) * 2003-06-30 2006-12-12 Bbn Technologies Corp. Localization of high speed vehicles using continuous transmit waves

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944593B2 (ja) 1977-10-28 1984-10-30 日本電気株式会社 ソ−ナ−
JPS63208779A (ja) 1987-02-24 1988-08-30 Nec Corp ソ−ナ−受信方式
JP4668198B2 (ja) * 2004-08-02 2011-04-13 三菱電機株式会社 レーダ装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05240945A (ja) * 1992-02-26 1993-09-21 Mitsubishi Electric Corp 周波数変調持続波レーダ
US7149148B2 (en) * 2003-06-30 2006-12-12 Bbn Technologies Corp. Localization of high speed vehicles using continuous transmit waves

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GUYONIC STEPHANE: "Traitement d'ouverture synthetique sur des donnees simulees d'un sonar a emission continue modulee lineairement en frequence (CTFM).", TRAITEMENT DU SIGNAL 1994, vol. 11, no. 4, 1994, pages 315 - 324, XP055223734, ISSN: 0765-0019 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021524027A (ja) * 2018-05-25 2021-09-09 華為技術有限公司Huawei Technologies Co.,Ltd. 情報測定方法および情報測定装置
JP7055903B2 (ja) 2018-05-25 2022-04-18 華為技術有限公司 情報測定方法および情報測定装置
WO2021181598A1 (ja) * 2020-03-12 2021-09-16 三菱電機株式会社 レーダ装置
JPWO2021181598A1 (ja) * 2020-03-12 2021-09-16
JP7270835B2 (ja) 2020-03-12 2023-05-10 三菱電機株式会社 レーダ装置

Also Published As

Publication number Publication date
US10746863B2 (en) 2020-08-18
JPWO2015136823A1 (ja) 2017-04-06
US20170016983A1 (en) 2017-01-19
JP6536910B2 (ja) 2019-07-03

Similar Documents

Publication Publication Date Title
WO2015136823A1 (ja) 目標抽出システム、目標抽出方法、情報処理装置およびその制御方法と制御プログラム
JP6222523B2 (ja) 移動目標抽出システム、移動目標抽出方法、情報処理装置およびその制御方法と制御プログラム
EP2271951B1 (en) Multi-range object location estimation
JP5411417B2 (ja) パルス信号の送受信装置および送受信方法
CN104434216A (zh) 根据分析数据的剪切波估计
JP2008232861A (ja) アクティブソーナー装置、ソーナー用受信信号処理方法、及びその信号処理プログラム
RU2016142405A (ru) Система и способ акустической визуализации с помощью когерентного объединения с использованием межреберных пространств
JP6724593B2 (ja) アクティブソーナーおよびアクティブソーナーの制御方法
US20150366541A1 (en) Subject information acquisition apparatus, subject information acquisition method, and program
JP2010127771A (ja) 合成開口ソーナー、合成開口ソーナーの位相誤差補正方法及びプログラム
JP2010210394A (ja) 地中レーダ装置
CN104765033B (zh) 利用互相关函数抑制步进频率成像中距离旁瓣的方法
JP6922930B2 (ja) 信号処理装置、信号処理方法および信号処理プログラム
JP6339446B2 (ja) 探知装置、探知方法、およびプログラム
JP2006284257A (ja) 音波伝搬距離推定方法及び音波伝搬距離推定装置
US8045419B1 (en) Method for mitigating spatial aliasing
JP6669987B2 (ja) ソーナー装置、聴音出力方法及びプログラム
JP2017227480A (ja) 音波監視装置および航走体
JP7069644B2 (ja) 信号処理システム、信号処理装置、信号処理方法および信号処理プログラム
JP6610224B2 (ja) バイスタティックアクティブソーナー装置およびその受信器
JP2016151418A (ja) 目標物検出装置、目標物検出方法、目標物検出プログラムおよび記憶媒体
US20220260711A1 (en) Target detection device and target detection method
JP5553463B1 (ja) パルス圧縮超音波探知装置
JP2012112922A (ja) 探知装置、水中探知装置、探知方法及びプログラム
JP2011217898A (ja) 超音波診断装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885805

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016507281

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15124200

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885805

Country of ref document: EP

Kind code of ref document: A1