WO2015136682A1 - Electricity storage system - Google Patents

Electricity storage system Download PDF

Info

Publication number
WO2015136682A1
WO2015136682A1 PCT/JP2014/056815 JP2014056815W WO2015136682A1 WO 2015136682 A1 WO2015136682 A1 WO 2015136682A1 JP 2014056815 W JP2014056815 W JP 2014056815W WO 2015136682 A1 WO2015136682 A1 WO 2015136682A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power supply
supply unit
bypass circuit
unit
Prior art date
Application number
PCT/JP2014/056815
Other languages
French (fr)
Japanese (ja)
Inventor
伸治 今井
啓 坂部
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/056815 priority Critical patent/WO2015136682A1/en
Publication of WO2015136682A1 publication Critical patent/WO2015136682A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0012Control circuits using digital or numerical techniques
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • H02M1/325Means for protecting converters other than automatic disconnection with means for allowing continuous operation despite a fault, i.e. fault tolerant converters

Definitions

  • the present invention relates to a power storage system.
  • the power storage system includes a power storage device (power storage device) that discharges and stores power and a power conversion system that converts the power into a form that can be easily used.
  • the power storage system stores power when the amount of power is surplus, and keeps the amount of power supplied from renewable energy substantially constant by discharging the shortage of power when the amount of power is insufficient.
  • the power conversion system plays an important role in enabling electric power entering and exiting the power storage device to be connected to the AC power supply system. Therefore, high efficiency of the power conversion system in the power storage system is desired. Moreover, cost reduction of the power conversion system is also desired.
  • the power storage device For power storage devices, it is desirable to reduce storage battery costs, reduce running costs by extending the life of storage batteries, and improve maintainability when replacing power storage devices.
  • the power storage device include a device mounted with a secondary battery, a device mounted with a capacitor, and a capacitor.
  • Patent Document 1 discloses a method for realizing high-efficiency operation and cost reduction of the power conversion system. is there.
  • Patent Document 1 Japanese Patent Laying-Open No. 2012-1000039
  • a power converter comprising a plurality of cascaded single-phase power converters and a central control device for controlling the plurality of single-phase power converters, wherein the plurality of single-phase power converters
  • Each power converter has a single-phase power converter control device, and the central control device and the plurality of single-phase power converter control devices are connected by communication means having a daisy chain structure, and the single-phase power converter control
  • the apparatus transmits / receives a control signal via the communication means having the daisy chain structure, and transmits / receives a signal having a specific pattern that can be distinguished from the control signal frame in addition to the control signal frame. It is described as determining. "Communication abnormality due to discrepancies between the unreceived or received signal with the specific pattern signal of the specific pattern signal of the power converter controller (see Abstract).
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2012-253862
  • Patent Document 2 Japanese Patent Application Laid-Open No. 2012-253862
  • Patent Document 2 It is an object to provide a power storage system in which a power storage unit can be replaced without stopping the system.
  • the above problem loads power converters 4, 5, 6, 7. Electrically connected in series on the connection end side, and electrically connect any one of the power storage devices 8, 9, 10, 11 to the power connection ends of the power converters 4, 5, 6, 7
  • power usage rate changing means for changing the ratio of the power usage rates of the corresponding power converters 4, 5, 6, 7 corresponding to each of the power converters 4, 5, 6, 7. It is set as a typical solution means for solving the above representative problem ”(see the summary).
  • Patent Document 1 includes a plurality of power converters connected in cascade (series connection) and a central control device that controls the plurality of power converters, and each of the plurality of power converters includes a power converter control device.
  • the central control unit and the plurality of power conversion devices are connected by communication means (for example, optical fiber cable) having a daisy chain structure, and the power conversion device transmits and receives signals through the communication means having a daisy chain structure.
  • the power converter is described.
  • the cost of the communication cable length and the withstand voltage element for communication can be greatly increased compared to providing communication means one-to-one with each power converter from the central controller. Can be reduced.
  • Patent Document 2 it is possible to replace the power storage device and the power storage device without stopping the operation of the power storage system, and it is possible to improve the maintainability during system operation.
  • Patent Document 1 and Patent Document 2 in order to reduce the cost of control communication of the power conversion device, when a communication means having a daisy chain structure is employed, in the related art, a specific power storage device or When the power converter is removed and replaced, the communication line is interrupted, and there is a problem that the system cannot be controlled.
  • the communication means is not shut off when the power storage device and the power conversion device are replaced and replaced, and non-stop replacement of the system is realized.
  • the purpose is to provide a power storage system that can be used.
  • the power storage system 1 of the present invention includes a plurality of power supply units M1 to M7 having power storage devices E1 to E7 and power conversion devices 10 to 70 connected to the power storage devices E1 to E7.
  • the control signal terminals 10s to 70s of the power conversion devices 10 to 70 included in the power supply units M1 to M7 are connected to each other in a daisy chain structure via the communication line 6, and the power supply units M1 to M7 are connected to the power supply units M1 to M7.
  • the communication line bypass circuits B1 to B7 corresponding to M7 are connected in parallel, and the communication line bypass circuits B1 to B7 are connected to the power supply unit when the power supply units M1 to M7 corresponding to the communication line bypass circuits B1 to B7 are disconnected. It has a switch which enables communication with an adjacent power supply unit.
  • the AC side connection terminals 10a to 70a of the power converters 10 to 70 included in the power supply units M1 to M7 are connected in series via the AC power line 7, respectively, and the respective power supply units M1 To M7 are connected in parallel with power line bypass circuits R1 to R7 corresponding to the power supply units M1 to M7, and the power line bypass circuits R1 to R7 have power supply units corresponding to the power line bypass circuits R1 to R7.
  • the power supply unit includes a switch that enables power transfer to and from a power supply unit adjacent to the power supply unit.
  • the communication means is not shut off when the power storage device and the power conversion device are replaced and replaced, and non-stop replacement of the system is realized.
  • An electricity storage system that can be used can be provided.
  • FIG. 2 is a schematic diagram illustrating a configuration after removing a power supply unit M1 in the power storage system illustrated in FIG. 1.
  • FIG. 10 is an example of a flowchart showing a control procedure for attaching the power supply unit M1 to the power storage system shown in FIG. 9; It is a figure which shows the electric power generation farm which becomes one Example of this invention.
  • the invention of the present application is used as a power storage system in a power generation system 100 using a renewable energy, for example, a wind power generation system 110 or a solar power generation system 120.
  • a renewable energy for example, a wind power generation system 110 or a solar power generation system 120.
  • a case where the present invention is applied to the installed power storage system 1 will be described as an example.
  • the power storage system 1 is provided for suppressing (relaxing) the output fluctuation of the power generation system 100.
  • the power storage system 1 When the power output from the power generation system 100 to the power system 200 is in a shortage state with respect to the predetermined output power, the power storage system 1 is discharged, and the power shortage of the power generation system 100 is compensated.
  • the power storage system 1 receives and charges the surplus power of the power generation system.
  • the power generation system 100, the power system 200, and the power storage system 1 are electrically connected by an AC power supply system 210, respectively, so that power can be exchanged.
  • AC power supply system 210 AC power supply system 210
  • Other application applications of the invention
  • the configuration of the embodiment described below can also be applied to a stationary power storage system that is installed as an uninterruptible power supply (backup power supply) such as a data center server system or communication facility.
  • backup power supply uninterruptible power supply
  • the configuration of the embodiment described below is a stationary device that is installed in a consumer, stores nighttime power, and releases the stored power in the daytime to level the power load. It can also be applied to power storage systems.
  • the configuration of the embodiment described below is electrically connected in the middle of the transmission / distribution system, and is used as a countermeasure for fluctuations in power transmitted / distributed in the transmission / distribution system, a countermeasure for surplus power, a countermeasure for frequency, a countermeasure for reverse power flow, etc. It can also be applied to a stationary power storage system.
  • a hybrid electric vehicle using an engine and a motor as a driving source of the vehicle and a pure electric vehicle using a motor as a sole driving source of the vehicle that is, a land traveling vehicle (a passenger car, a truck such as a truck, railway cars such as buses), railway cars such as hybrid trains that use a motor driven by the power generated by the diesel engine, and industrial vehicles such as construction machinery and forklift trucks. and so on.
  • FIG. 1 is a schematic diagram of the overall configuration of a power storage system 1 in the present embodiment.
  • the power storage system 1 includes an AC side connection terminal 2, power supply units M1 to M7, power line bypass circuits R1 to R7, a central control device 3, a current measuring device 4, a voltage measuring device 5, a communication line 6, and a communication line bypass circuit B1 to B7, AC power line 7 is provided.
  • the power supply units M1 to M7 have the same configuration, and each unit includes one power conversion device 10 to 70 and one power storage device E1 to E7.
  • each unit includes one power conversion device 10 to 70 and one power storage device E1 to E7.
  • a configuration in which seven power supply units are electrically connected in series is shown.
  • any number of similar power supply units may be used as long as two or more similar power supply units are connected in series.
  • the power storage devices mounted on the power supply unit are all seven secondary batteries, but different types of power storage devices may be mixed between the plurality of power supply units. .
  • a power storage device mounted on one power supply unit may be configured with a capacitor
  • a power storage device mounted on another power supply unit may be configured with a secondary battery.
  • the power converters 10 to 70 are converters having a function of converting DC power into AC power or, conversely, converting AC power into DC power.
  • the power storage devices E1 to E7 are connected to the DC side connection terminals 10d to 70d of the power conversion devices 10 to 70, respectively.
  • the power conversion devices 10 to 70 convert the DC power output from the corresponding power storage devices E1 to E7 into AC power, and generate AC power at the AC side connection terminals 10a to 70a of the power conversion devices 10 to 70, respectively. Let On the contrary, the power conversion devices 10 to 70 convert the AC power supplied from the AC side connection terminals 10a to 70a into DC power and output the DC power to the corresponding power storage devices E1 to E7, respectively.
  • the AC side connection terminals 10a to 70a of the power conversion devices 10 to 70 are electrically connected in series with each other, and one end of the AC side connection terminal 10a of the power conversion device 10 and the power conversion device 70 are connected. One end of each AC side connection terminal 70 a is connected to the AC side connection terminal 2 of the power storage system 1.
  • the combined voltage of the input and output voltages of the AC side connection terminals 10a to 70a of the power conversion devices 10 to 70 is stored in the power storage system. 1 appears at the AC side connection terminal 2 as the entire input / output voltage.
  • the power line bypass circuits R1 to R7 are electrically connected in parallel with the power converters 10 to 70, respectively.
  • the power line bypass circuits R1 to R7 may be any circuit that can cut off the current, such as a relay switch. Normally, the power line bypass circuits R1 to R7 are in a non-conductive state (off), but are used as a current bypass circuit when the power supply unit is replaced.
  • the control signal terminals 10s to 70s are communication line terminals used for communication of control signals for controlling the operation of the power converters 10 to 70. As shown in FIG. 1, the control signal terminals 10 s to 70 s and the control signal terminal 3 s of the central controller 3 are connected by a communication line 6 having a daisy chain structure.
  • the communication line bypass circuits B1 to B7 are provided in parallel with the power supply units M1 to M7, respectively, with respect to the communication line 6 having the daisy chain structure described above.
  • the communication line bypass circuits B1 to B7 may use any switching element as long as it has a function of conducting and blocking communication signals. Normally, the communication line bypass circuits B1 to B7 are in the cut-off state (off), but are controlled to be in a conductive state as necessary, such as when the power supply unit is replaced.
  • the power storage devices E1 to E7 have secondary batteries mounted therein as power storage elements.
  • each of the power storage devices E1 to E7 is configured as a cell group in which a plurality of secondary battery cells are connected in series and a secondary battery module formed by connecting these cell groups in parallel.
  • a secondary battery cell for example, a lithium ion secondary battery, a lead storage battery, or a nickel metal hydride battery can be used.
  • a capacitor can be used instead of the secondary battery.
  • an electric double layer capacitor or a lithium ion capacitor can be used.
  • an AC power supply system 210 such as a power generation system is electrically connected to the outside of the AC side connection terminal 2 of the power storage system 1, and the power storage devices E1 to E7 and the AC power supply system 210 are connected to each other. Electric energy can be sent and received between the two.
  • the power storage system 1 discharges the electric energy stored in the power storage devices E1 to E7 as DC power, converts the discharged DC power into AC power by the power conversion devices 10 to 70, and converts the AC power to AC power It is possible to output to the system side 210. Further, the power storage system 1 inputs AC power supplied from the AC power supply system 210 side or the power generation system 100 from the AC side connection terminal 2, and converts the input AC power into DC power by the power converters 10 to 70. Thus, it is possible to store this DC power as electric energy in each of the power storage devices E1 to E7.
  • ⁇ Description of Central Controller 3 >> An overview of the central control device 3 shown in FIG. 1 will be described. The role of the central controller 3 is to control the operation of the power supply units M1 to M7 so that the power storage system 1 and the AC power supply system 210 can be connected to each other to exchange power.
  • the central controller 3 calculates command values for controlling the operations of the power supply units M1 to M7 based on various information and control programs.
  • the central control device 3 calculates the command value, the central control device 3 relates to the information regarding the AC voltage of the AC power supply system 210 and the AC current flowing between the AC power supply system 210 and the AC side connection terminal 2 of the power storage system 1.
  • Information, and input / output voltage information of each power storage device connected to the power conversion devices 10 to 70 are used.
  • the central controller 3 outputs the calculated command value from the control signal terminal 3s and transmits the signal to each of the power supply units M1 to M7 via the communication line 6.
  • each of the connection pairs of power conversion devices 10 to 70 and power storage devices E1 to E7 the operation of each internal switching circuit of power conversion devices 10 to 70 (details will be described later using FIG. 2) is controlled.
  • the electrical connection between the switching circuit and the plurality of storage batteries is controlled, and the power exchanged between the two is controlled so that the power storage system 1 and the AC power supply system are linked.
  • the outline of the internal configuration of the central controller 3 will be described later.
  • FIG. 2 is a diagram showing a configuration of the power conversion device 10 mounted on the power supply unit M1.
  • the power storage system 1 in the present embodiment also includes the power conversion devices 20 to 70 in addition to the power conversion device 10. However, since the power conversion devices 10 to 70 all have the same configuration, the power conversion device 10 will be described below. I will explain only.
  • the power converter 10 includes a switching circuit 11, a smoothing capacitor 12, a control device 13 that controls the switching circuit 11, and a voltage measuring device 14 that detects an input / output voltage of the power storage device E1. Furthermore, an AC side connection terminal 10a electrically connected to the switching circuit 11, a DC side connection terminal 10d electrically connected to the power storage device E1, and a control signal terminal 10s are provided.
  • the control device 13 controls the operation of the switching circuit 11 based on information transmitted from the central control device 3 via the communication line 6 and the control signal terminal 10s.
  • the internal configuration of the switching circuit 11 and the control device 13 will be described later.
  • the DC side connection terminal 10d is electrically connected to the power storage device E1, and the voltage appearing at both ends of the terminal is referred to as V E1 .
  • the voltages appearing at both ends of the DC side connection terminals of the power converters 20 to 70 are also referred to as V E2 , V E3 , V E4 , V E5 , V E6, and V E7 , respectively.
  • the switching circuit 11 shown in FIG. 2 will be described.
  • the switching circuit 11 includes normally-off type MOSFET (Metal Oxide Field Effect Transistor) 111, 112, 113, and 114, which are semiconductor switching elements. And the switching circuit 11 comprises the single phase full bridge inverter circuit by these four switching elements.
  • MOSFET Metal Oxide Field Effect Transistor
  • the drain sides of the MOSFETs 111 and 113 and the source sides of the MOSFETs 112 and 114 are connected to the DC side connection terminal 10d, and the source side of the MOSFET 111 (the drain side of the MOSFET 112) and the source side of the MOSFET 113 (the drain side of the MOSFET 114) are AC. It is connected to the side connection terminal 10a.
  • D111, D112, D113, and D114 are parasitic in the MOSFETs 111, 112, 113, and 114 as body diodes, respectively.
  • FIG. 3 is a timing showing a relationship of the four switching elements (MOSFET 111 ⁇ 114) on-off operation and the AC side connection terminals 10a terminal voltage V 10 of the power conversion apparatus 10 of the switching circuit 11 shown in FIG. 2 It is a chart.
  • the directions of the potentials V E1 and V 10 for explaining the present embodiment are the directions of the arrows shown in the vicinity of the DC side connection terminal 10d and the AC side connection terminal 10a shown in FIG.
  • the direction of the arrow is defined as the plus direction.
  • switching circuits incorporated in each of the power conversion devices 20 to 70 also operate on the same principle as the switching circuit 11 of the power conversion device 10 described below.
  • the four MOSFETs included in the switching circuit 11 are controlled such that the MOSFETs 111 and 112 are paired and the MOSFETs 113 and 114 are paired, and in principle, the ON and OFF are in a reverse relationship within the same pair.
  • the switch When each switch is controlled as in the period ⁇ 1> and the period ⁇ 3> shown in the timing chart of FIG. 3, the switch functions so that the switching circuit 11 is short-circuited when viewed from the AC side connection terminal 10a. The potential difference between the terminals is zero.
  • the control apparatus 13 mounted in the power converter device 10 is demonstrated using FIG. A device similar to the control device 13 described below is mounted in the power conversion devices 20 to 70 as well.
  • the control device 13 includes a slave communication unit 131, a data holding unit 132, a switch control / drive unit 133, and a voltage determination unit 134.
  • the slave communication unit 131 receives a control signal transmitted from the master communication unit 34 (described later) of the central control device 3 via the communication line 6 and the control signal terminal 10s, and only data related to the control of the power conversion device 10 is received.
  • the control signal required by the power conversion device 10 is transmitted to the data holding unit 132 after identification and extraction.
  • the slave communication unit 131 sends information such as the voltage value of the power storage device E1, the presence or absence of abnormality of the power storage device, and control signals required by the other power conversion devices 20 to 70 to the control signal terminal 10s and the communication. Transmission is output to the control device of another power supply unit and the master communication unit 34 (described later) of the central control device 3 via the line 6.
  • CAN Controller Area Network
  • I 2 C Inter Any system that satisfies the required functions, such as -Integrated Circuit (SPI) and System Packet Interface (SPI) may be used.
  • SPI System Packet Interface
  • the data holding unit 132 stores the control signal transmitted from the master communication unit 34 of the central control device 3 and the voltage information of the power storage device E1. Of the stored data, the control signal is read when the switch control / drive unit 133 (described later) is operated.
  • the switch control / drive unit 133 controls the on / off state of each switch of the MOSFETs 111 to 114 of the switching circuit 11 based on the control signal stored in the data holding unit.
  • the switch control / drive unit 133 is provided with a gate drive circuit (not shown) for generating the gate voltage of these switches for each switch in order to turn on and off the MOSFETs 111 to 114.
  • Voltage determination unit 134 receives input / output voltage V E1 of power storage device E1 detected by voltage measurement device 14, and determines whether the voltage value falls within an assumed value range. If there is no abnormality, the voltage information is passed to the data holding unit 132. If it is determined that the voltage value of the power storage device E1 is abnormal, an abnormal signal is sent to the data holding unit 132, and the central control device 3 passes through the slave communication unit 131 and the control devices of the other power supply units M2 to M7. An abnormal signal is sent to.
  • FIG. 5 is a block diagram showing an outline of functions of the central control device 3.
  • the central control device 3 includes a command voltage calculation unit 31, a carrier calculation unit 32, an ON / OFF pattern calculation unit 33, a master communication unit 34, a power supply unit replacement control unit 35, and a bypass circuit control unit 36 therein.
  • the power supply unit replacement control unit 35 and the bypass circuit control unit 36 do not operate when the power storage system 1 is performing a normal operation, and operate when the power supply unit is removed and replaced.
  • the command voltage calculation part 31 calculates the voltage waveform which the electrical storage system 1 inputs / outputs based on the electric current and voltage information of the alternating current system obtained from the current measuring device 4 and the voltage measuring device 5 shown in FIG.
  • the carrier calculation unit 32 shown in FIG. 5 is configured based on the input / output voltage values V E1 to V E7 of the power storage devices E1 to E7 and the command voltage information calculated by the command voltage calculation unit 31. For example, the position of the voltage level assigned to each power converter is determined.
  • the input / output voltage value information of the power storage devices E1 to E7 is output from each control device in each power conversion device in addition to the control device 13 in the power conversion device 10 shown in FIG.
  • the data is sent to the carrier calculation unit 32 via the master communication unit 34 of the device 3.
  • the ON / OFF pattern calculation unit 33 shown in FIG. 5 converts each power conversion based on the command voltage output from the command voltage calculation unit 31 and each information of the carrier of each power conversion device output from the carrier calculation unit 32.
  • the operation pattern of the switching circuit in the apparatus that is, the ON / OFF pattern of the AC side output of each power converter is calculated.
  • FIG. 6 shows an example of a timing chart of the command voltage for one cycle, the carriers (C1 to C7) of each power converter, and the ON / OFF pattern of the AC side output of each power converter.
  • the command voltage 1 indicated by the solid line waveform on the lower side of FIG. 6 is a voltage waveform to be input / output when the power storage system 1 exchanges power with the AC power supply system.
  • a command voltage 2 indicated by a broken line is a voltage waveform having a phase opposite to that of the command voltage 1.
  • broken triangle waves C1 to C7 are carriers for the power converters 10 to 70, respectively.
  • the assigned voltage levels are assigned as power conversion devices 70, 60, 50, 40, 30, 20, and 10 in order from the bottom, but this order depends on the output voltage and charge state of the power storage device. May be changed as appropriate.
  • the ON / OFF pattern of the AC output of each power conversion device shown on the upper side of FIG. 6 will be described.
  • the command voltage 1 and the command voltage 2 are compared in magnitude relationship with each of the carriers C1 to C7.
  • the carrier is smaller than the command voltage 1
  • the AC output of the power converter corresponding to the carrier is turned on in the positive direction (indicated as “ON (+)” in FIG. 6). This is an operation corresponding to the period ⁇ 2> of the timing chart shown in FIG.
  • the AC side output of the corresponding power converter is controlled to be OFF. This corresponds to the period ⁇ 1> or the period ⁇ 3> in the timing chart shown in FIG. 3, and the inter-terminal voltage of the AC side connection terminal of the corresponding power converter is 0 volt.
  • the ON / OFF pattern of each AC side input / output of the power converters 10 to 70 is determined by comparing the command voltage with the carrier.
  • FIG. 6 shows an example in which six power converters are sufficient because of the amplitude of the command voltage. For this reason, in the timing chart on the upper side of FIG. 6, the AC output of the power converter 10 is always OFF for one cycle.
  • FIG. 7 shows a composite voltage appearing at the AC side connection terminal 2 of the power storage system 1 when the operation pattern of each power conversion device calculated by the ON / OFF pattern calculation unit 33 shown in FIG. 5 is directly output to the power conversion device.
  • the waveform pattern of V is shown.
  • the solid line waveform is the command voltage 1
  • the solid line rectangular waveform is the combined voltage.
  • the power storage system 1 can maintain the command voltage 1 even if the number of power supply units is reduced by the amount removed until the power supply unit is removed, replaced, or attached. Must be able to input and output. For example, in the waveform pattern of the command voltage 1 shown in FIG. 6, even if the AC output V 10 of the power converter 10 is always OFF for one cycle, the power converters 20 to 70 are interlocked. If the ON / OFF operation is performed, a voltage sufficient to input / output the command voltage 1 can be obtained. Therefore, the power storage system 1 can continue to operate even if there is no power conversion device as long as it is any one of the seven power conversion devices.
  • the external device 37 also has a function of detecting the installation state of each power supply unit mounted on the power storage device 1 and transmitting the information to the power supply unit replacement control unit 35.
  • FIG. 8 is a flowchart showing a control procedure performed by the central controller 3 when the power supply unit M1 is removed from the power storage system 1.
  • step S101 a request for replacement of the power supply unit M1 is issued from the external device 37, and when the power supply unit replacement control unit 35 receives the request, the process proceeds to step S102.
  • a trigger for the external device 37 to transmit the above request for example, there is a method in which an operator manually operates.
  • the system may be constructed such that the external device 37 automatically operates when the power supply unit M1 is unlocked.
  • step S102 the power supply unit replacement control unit 35 sends a request to the ON / OFF pattern calculation unit 33 to make the output voltage of the power conversion device 10 of the power supply unit M1 zero. This is to ensure safety when removing the power supply unit M1.
  • the ON / OFF pattern calculation unit 33 calculates and outputs an ON / OFF pattern so that both ends of the AC side connection terminal 10a of the power conversion device 10 are short-circuit controlled.
  • the switching circuit 11 in the power converter 10 is controlled as in the period ⁇ 1> or the period ⁇ 3> shown in the timing chart of FIG.
  • the power supply unit replacement control unit 35 is notified from the ON / OFF pattern calculation unit 33 that the AC side output voltage of the power supply unit M1 to be replaced is controlled to be zero (the AC side connection terminal 10a is internally short-circuited). Then, a signal is sent to the bypass circuit control unit 36 to operate the power line bypass circuit R1.
  • step S103 the bypass circuit control unit 36 controls (turns on) the power line bypass circuit R1.
  • step 104 the power supply unit replacement control unit 35 is controlled by the ON / OFF pattern calculation unit 33 so that all of the MOSFETs 111 to 114 of the switching circuit 11 (FIG. 2) in the power conversion device 10 are turned off.
  • the switching circuit 11 is controlled in this way, the power supply unit M1 is electrically disconnected from the AC power line of the power storage system 1.
  • the power bypass circuit R1 is turned on earlier than the communication line bypass circuit B1 described later.
  • step 105 the bypass circuit control unit 36 controls (turns on) the communication line bypass circuit B1.
  • the slave communication unit 131 of the control device 13 (FIG. 4) simultaneously cuts off communication with the outside.
  • the power supply unit M1 is removed from the power storage system 1 in step S106.
  • FIG. 9 is a configuration diagram showing the power storage system 1 with the power supply unit M1 removed. However, the wiring for controlling the power line bypass circuits R1 to R7 and the communication line bypass circuits B1 to B7 from the central controller 3 is not shown. As shown in FIG. 9, since both the power line bypass circuit R1 and the communication line bypass circuit B1 are ON-controlled, the power line and the communication line are not cut off even without the power supply unit M1, and the power storage system 1 operates. Can continue.
  • step S201 in FIG. 10 when the power supply unit M1 is set at a predetermined position (original position) of the power storage system 1, the external device 37 shown in FIG. 5 detects the set state of the power supply unit M1, and the power supply unit A connection request signal for the power supply unit M1 is sent to the exchange control unit 35.
  • the switching circuit 11 of the power supply unit M1 is composed of a normally-off type MOSFET, the DC side connection terminal 10d, the AC side connection terminal 10a, and the AC power line 7 are electrically disconnected. .
  • step S202 the power supply unit replacement control unit 35 issues a signal to the bypass circuit control unit 36 to open (turn off) the communication bypass circuit B1, and the bypass circuit control unit 36 that has received this signal
  • the communication line bypass circuit B1 is controlled to be opened (off).
  • the slave communication unit 131 in the control device 13 of the power conversion device 10 returns to a state in which communication with other control devices and the central control device 3 is possible.
  • step S203 the power supply unit replacement control unit 35 sends a command signal to the ON / OFF pattern calculation unit 33 so as to short-circuit control the AC side connection terminal 10a of the power conversion device 10.
  • the ON / OFF pattern calculation unit 33 receives this signal and calculates an ON / OFF pattern so that both ends of the AC side connection terminal 10a of the power conversion device 10 are controlled to be short-circuited.
  • the switching circuit 11 in the power converter 10 is controlled as in the period ⁇ 1> or the period ⁇ 3> shown in the timing chart of FIG.
  • the step of short-circuiting the AC side connection terminal 10a after the communication bypass circuit is turned off first and the control device 13 is brought into a communicable state allows the potential difference applied to the AC side connection terminal 10a to be changed to the power line. Since the potential difference between both ends of the bypass circuit R1 is aligned, it is possible to prevent malfunction of each device due to abnormal current such as inrush current flowing in the power line when the power line bypass circuit R1 described later is shut off.
  • step S204 the power supply unit 35 issues a signal to the bypass circuit control unit 36 to open (turn off) the power line bypass circuit B1, and the bypass circuit control unit 36 that has received the signal outputs the power line bypass circuit R1. Open control (off).
  • the power supply unit M1 is installed at a predetermined position of the power storage system 1, and the power line and the communication line are returned to the state before the replacement.
  • step S205 the control mode of the central controller 3 returns to the same operation as when seven power supply units are connected in series.
  • the above is an example of a method of replacing the power supply unit without stopping the system in the power storage system 1.
  • the power storage system 1 of the present invention includes a plurality of power supply units M1 to M7 having the power storage devices E1 to E7 and the power conversion devices 10 to 70 connected to the power storage devices E1 to E7.
  • the control signal terminals 10s to 70s of the power converters 10 to 70 included in M1 to M7 are connected to each other in a daisy chain structure via the communication line 6, and the power supply units M1 to M7 are connected to the power supply units M1 to M7.
  • Corresponding communication line bypass circuits B1 to B7 are connected in parallel, and the communication line bypass circuits B1 to B7 are adjacent to the power supply unit when the power supply units M1 to M7 corresponding to the communication line bypass circuits B1 to B7 are disconnected.
  • a switch that enables communication with the power supply unit is provided.
  • control can be performed without disconnecting the communication line when any of the power supply units M1 to M7 is removed and replaced. Is possible. Therefore, continuous driving in a non-stop state is possible during maintenance of the power storage system 1 or the like.
  • the AC side connection terminals 10a to 70a of the power converters 10 to 70 included in the power supply units M1 to M7 are connected in series via the AC power line 7, respectively, and the respective power supply units M1 To M7 are connected in parallel with power line bypass circuits R1 to R7 corresponding to the power supply units M1 to M7, and the power line bypass circuits R1 to R7 have power supply units corresponding to the power line bypass circuits R1 to R7.
  • the power supply unit has a switch that enables power transfer to and from the power supply unit adjacent to the power supply unit.
  • the power storage system 1 of the present invention includes a central control device 3 that controls the power supply units M1 to M7.
  • the central control device 3 includes a power supply unit replacement control unit 35 and an ON / OFF pattern calculation unit 33.
  • the unit replacement control unit 35 specifies a target power supply unit based on a signal from the outside, and the ON / OFF pattern calculation unit 33 selects a target power supply unit M1 ⁇ M based on a signal from the power supply unit replacement control unit 35.
  • a signal for short-circuiting control of the M7 power converters 10 to 70 is calculated.
  • the central control device 3 has the bypass circuit control unit 36, and the power supply unit replacement control unit 35 puts the power conversion devices 10 to 70 of the target power supply units M1 to M7 into a short circuit state.
  • a bypass circuit operation signal is output to the bypass circuit control unit 36, and the bypass circuit control unit 36 receives the bypass circuit operation signal and then receives the power line bypass circuit corresponding to the target power supply units M1 to M7. Control is performed to turn off the switches R1 to R7.
  • the target power supply units M1 to M1 Control is performed to turn on the switches of the communication line bypass circuits B1 to B7 corresponding to M7.
  • the power storage system 1 of the present invention includes a central control device 3 that controls the power supply units M1 to M7.
  • the central control device 3 includes a power supply unit replacement control unit 35 and a bypass circuit control unit 36 to control power supply unit replacement control.
  • the unit 35 identifies the attached power supply unit
  • the bypass circuit control unit 36 determines the power supply attached based on the signal from the power supply unit replacement control unit 35. Control is performed to turn off the switches of the communication line bypass circuits B1 to B7 corresponding to the units M1 to M7.
  • the power supply units M1 to M7 can be connected and used immediately.
  • the power converters 10 to 70 since the power converters 10 to 70 are in a controllable state before being connected to the power line 7, it is possible to prevent destruction of other devices due to malfunctions or the like.
  • the central controller 3 has an ON / OFF pattern calculation unit 33, and the ON / OFF pattern calculation unit 33 is attached based on a signal from the power supply unit replacement control unit 35.
  • the power conversion devices 10 to 70 of the power supply units M1 to M7 are controlled to be short-circuited. By making the power supply units M1 to M7 communicable in this way, the power converters 10 to 70 are brought into a short-circuited state, whereby an inrush current when reconnecting the power supply units M1 to M7 to the power line 7 is achieved. Can be prevented.
  • the bypass circuit control unit 36 applies power to the attached power supply units M1 to M7 after the power converters 10 to 70 of the attached power supply units M1 to M7 are in a short circuit state. Control is performed to turn off the switch of the corresponding power line bypass circuit 36. In this way, once the power converters 10 to 70 are short-circuited and then the power supply units M1 to M7 are disconnected, the safety when the power supply units M1 to M7 are disconnected is improved.
  • the communication means is not shut off when the power storage device and the power conversion device are replaced and replaced.
  • a power storage system that can realize stop replacement can be provided.
  • Power storage system 2 AC side connection terminal 3: Central control device 3s: Control signal terminal 4: Current measurement device 5: Voltage detection device 6: Communication line 7: AC power line 31: Command voltage calculation unit 32: Carrier calculation unit 33: ON / OFF pattern calculation unit, 34: Master communication unit 35: Power supply unit replacement control unit 36: Bypass circuit control unit, 37: External device, 10 to 70: Power conversion devices 10a to 70a: AC side connection terminals 10d to 70d: DC side connection terminals 10s to 70s: Control signal terminal 11: Switching circuit 12: Smoothing capacitor 13: Control device 14: Voltage measurement device E1 to E7: Power storage devices M1 to M7: Power supply units R1 to R7: Power line bypass circuits B1 to B7: Communication line bypass circuits 111 to 114: MOSFET D111 to D114: Body diode 131: Slave communication unit 132: Data holding unit 133: Switch control / drive unit 134: Voltage determination unit C1 to C7: Carrier

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

The purpose of the present invention is to provide an electricity storage system in which a plurality of power conversion devices are connected by a communication means having a daisy chain structure and electricity storage devices and the power conversion devices can be replaced without interrupting the communication means and stopping the system during the replacement. An electricity storage system of the present invention has a plurality of power supply units each having an electricity storage device and a power conversion device connected to the electricity storage device. Control signal terminals of the power conversion devices included in the power supply units are connected in a daisy chain structure through a communication line. A communication line bypass circuit corresponding to each of the power supply units is connected to the each of the power supply units in parallel. The communication line bypass circuit has a switch that, when the power supply unit corresponding to the communication line bypass circuit is disconnected, makes it possible to communicate with power supply units adjacent to the power supply unit.

Description

蓄電システムPower storage system
 本発明は、蓄電システムに関する。 The present invention relates to a power storage system.
 近年、二酸化炭素の排出量増大による地球温暖化や、化石燃料の枯渇が懸念されている。化石燃料への依存度を低下させる手段の一つとして、風力や太陽光など自然から得られる再生可能エネルギーの導入が進んでいる。再生可能エネルギーは枯渇しないことがメリットの一つである。一方、再生可能エネルギーは気象条件に依存するため、利用可能エネルギー量の変動が大きいといったデメリットもある。今後、再生可能エネルギーを利用した電力発電装置や施設の導入が拡大すると見込まれており、上記デメリットに起因する電力変動を低減する技術が必須である。 In recent years, there are concerns about global warming due to an increase in carbon dioxide emissions and the depletion of fossil fuels. As one means of reducing the dependence on fossil fuels, the introduction of renewable energy obtained from nature such as wind power and sunlight is in progress. One of the advantages is that renewable energy is not depleted. On the other hand, since renewable energy depends on weather conditions, there is a demerit that the amount of available energy is large. In the future, the introduction of power generators and facilities using renewable energy is expected to expand, and technology to reduce power fluctuations due to the above disadvantages is essential.
 上記電力変動を抑制する手段の一つとして、蓄電池搭載の蓄電システムが注目されている。蓄電システムは、電力を放出したり貯蔵したりする蓄電装置(電力貯蔵装置)と、電力を利用しやすい形態へと変換する電力変換システムにより構成される。蓄電システムは、電力量の余剰時に電力を貯蔵し、電力量の不足時には不足分の電力を放出することで再生可能エネルギーから供給する電力量をほぼ一定に保つ。 As one of the means for suppressing the above power fluctuation, a power storage system equipped with a storage battery is attracting attention. The power storage system includes a power storage device (power storage device) that discharges and stores power and a power conversion system that converts the power into a form that can be easily used. The power storage system stores power when the amount of power is surplus, and keeps the amount of power supplied from renewable energy substantially constant by discharging the shortage of power when the amount of power is insufficient.
 電力変換システムは、蓄電装置に出入りする電力を交流電源系統と連系可能とするための重要な役割を担う。したがって、蓄電システムにおける電力変換システムの高効率化が望まれる。また、電力変換システムの低コスト化もまた望まれる。 The power conversion system plays an important role in enabling electric power entering and exiting the power storage device to be connected to the AC power supply system. Therefore, high efficiency of the power conversion system in the power storage system is desired. Moreover, cost reduction of the power conversion system is also desired.
 蓄電装置には蓄電池コストの削減や蓄電池の長寿命化運用によるランニングコスト削減、蓄電装置交換時のメンテナンス性の向上等が望まれる。なお、蓄電装置の例としては、二次電池を搭載したものやキャパシタおよびコンデンサを搭載したものなどがある。 For power storage devices, it is desirable to reduce storage battery costs, reduce running costs by extending the life of storage batteries, and improve maintainability when replacing power storage devices. Note that examples of the power storage device include a device mounted with a secondary battery, a device mounted with a capacitor, and a capacitor.
 上記のような蓄電装置および電力変換システムを搭載する蓄電システムにおいて、高効率化運用および電力変換システムの低コスト化を実現するものとして、例えば、特開2012-100398号公報(特許文献1)がある。この公報には、「<課題>各単相電力変換器の制御装置からの送信不能や光ファイバケーブルの断線や短絡などによる通信不通といった異常の検出を、低コストで容易に行う電力変換器構成を提供する。<解決手段> カスケード接続された複数の単相電力変換器と該複数の単相電力変換器を制御する中央制御装置とを備えた電力変換装置であって、前記複数の単相電力変換器はそれぞれに単相電力変換器制御装置を有し、前記中央制御装置と前記複数の単相電力変換器制御装置はデイジーチェーン構造の通信手段で接続され、前記単相電力変換器制御装置が前記デイジーチェーン構造の通信手段を介して制御信号を送受信するとともに、制御信号フレーム以外に前記制御信号フレームとは区別できる特定パターンの信号を送受信し、前記単相電力変換器制御装置での前記特定パターン信号の未受信あるいは受信信号と前記特定パターン信号との不一致により通信異常を判定する。」と記載されている(要約参照)。 In a power storage system equipped with the power storage device and the power conversion system as described above, for example, Japanese Patent Laying-Open No. 2012-1000039 (Patent Document 1) discloses a method for realizing high-efficiency operation and cost reduction of the power conversion system. is there. In this publication, “<Problem> Power converter configuration that easily detects low-cost abnormalities such as inability to transmit from the control device of each single-phase power converter and communication failure due to disconnection or short circuit of the optical fiber cable. <Solution> A power converter comprising a plurality of cascaded single-phase power converters and a central control device for controlling the plurality of single-phase power converters, wherein the plurality of single-phase power converters Each power converter has a single-phase power converter control device, and the central control device and the plurality of single-phase power converter control devices are connected by communication means having a daisy chain structure, and the single-phase power converter control The apparatus transmits / receives a control signal via the communication means having the daisy chain structure, and transmits / receives a signal having a specific pattern that can be distinguished from the control signal frame in addition to the control signal frame. It is described as determining. "Communication abnormality due to discrepancies between the unreceived or received signal with the specific pattern signal of the specific pattern signal of the power converter controller (see Abstract).
 また、上記のような蓄電システムにおいて、システム運用を停止することなく蓄電装置の取り換え交換を実現するものとして、特開2012-253862(特許文献2)がある。この公報には、「<課題>システムを停止させることなく、蓄電器の交換ができる蓄電システムの提供を課題とする。<解決手段>上記課題は、電力変換器4、5、6、7を負荷接続端側において電気的に直列に接続し、電力変換器4、5、6、7のそれぞれの電源接続端に蓄電装置8、9、10、11のいずれか1つを電気的に接続してなる蓄電システム1において、電力変換器4、5、6、7のそれぞれに対応して、対応する電力変換器4、5、6、7の電力利用率の比率を変更する電力利用率変更手段を設けることを、上記代表課題を解決する代表的な解決手段とする。」と記載されている(要約参照)。 Moreover, in the power storage system as described above, Japanese Patent Application Laid-Open No. 2012-253862 (Patent Document 2) is one that realizes replacement and replacement of a power storage device without stopping system operation. In this publication, “<Problem> It is an object to provide a power storage system in which a power storage unit can be replaced without stopping the system. <Solution> The above problem loads power converters 4, 5, 6, 7. Electrically connected in series on the connection end side, and electrically connect any one of the power storage devices 8, 9, 10, 11 to the power connection ends of the power converters 4, 5, 6, 7 In the power storage system 1, power usage rate changing means for changing the ratio of the power usage rates of the corresponding power converters 4, 5, 6, 7 corresponding to each of the power converters 4, 5, 6, 7. It is set as a typical solution means for solving the above representative problem ”(see the summary).
 前記特許文献1には、カスケード接続(直列接続)された複数の電力変換器と複数の電力変換器を制御する中央制御装置を備え、複数の電力変換器はそれぞれ電力変換器制御装置を有し、中央制御装置と複数の電力変換装置はデイジーチェーン(daisy chain、数珠つなぎ状)構造の通信手段(例えば、光ファイバケーブル)で接続され、電力変換装置がデイジーチェーン構造の通信手段で信号を送受信する電力変換装置について記載されている。 Patent Document 1 includes a plurality of power converters connected in cascade (series connection) and a central control device that controls the plurality of power converters, and each of the plurality of power converters includes a power converter control device. The central control unit and the plurality of power conversion devices are connected by communication means (for example, optical fiber cable) having a daisy chain structure, and the power conversion device transmits and receives signals through the communication means having a daisy chain structure. The power converter is described.
 このデイジーチェーン構造の通信手段を採用することにより、中央制御装置から各電力変換装置のそれぞれと1対1で通信手段を設けるよりも通信ケーブル長や通信のための絶縁耐圧素子にかかるコストを大幅に削減することができる。 By adopting this daisy chain structure communication means, the cost of the communication cable length and the withstand voltage element for communication can be greatly increased compared to providing communication means one-to-one with each power converter from the central controller. Can be reduced.
 また、前記特許文献2によれば、蓄電システムの運用を停止することなく、蓄電器や蓄電装置の交換が可能となり、システム運用時のメンテナンス性の向上が図れる。 Further, according to Patent Document 2, it is possible to replace the power storage device and the power storage device without stopping the operation of the power storage system, and it is possible to improve the maintainability during system operation.
特開2012-100398号公報JP 2012-1000039 Gazette 特開2012-253862号公報JP 2012-253862 A
 しかし、上述した特許文献1及び特許文献2に開示の発明では電力変換装置の制御用通信の低コスト化のため、デイジーチェーン構造の通信手段を採用した場合、従来技術では、特定の蓄電装置や電力変換装置を取外し交換するときに通信ラインが遮断されてしまい、システムの制御が不能となる課題がある。 However, in the inventions disclosed in Patent Document 1 and Patent Document 2 described above, in order to reduce the cost of control communication of the power conversion device, when a communication means having a daisy chain structure is employed, in the related art, a specific power storage device or When the power converter is removed and replaced, the communication line is interrupted, and there is a problem that the system cannot be controlled.
 そこで、本発明では、複数の電力変換装置がデイジーチェーン構造の通信手段で接続された蓄電システムにおいて、蓄電装置および電力変換装置を取り換え交換時に通信手段が遮断されず、システムの非停止交換を実現できる蓄電システムの提供を目的とするものである。 Therefore, in the present invention, in a power storage system in which a plurality of power conversion devices are connected by communication means having a daisy chain structure, the communication means is not shut off when the power storage device and the power conversion device are replaced and replaced, and non-stop replacement of the system is realized. The purpose is to provide a power storage system that can be used.
 上記課題を解決するために、本発明の蓄電システム1は、蓄電装置E1~E7と、蓄電装置E1~E7と接続される電力変換装置10~70を有する電源ユニットM1~M7を複数有し、電源ユニットM1~M7に含まれる電力変換装置10~70の制御信号端子10s~70sはそれぞれ通信ライン6を介してデイジーチェーン構造に接続され、それぞれの電源ユニットM1~M7には当該電源ユニットM1~M7に対応した通信ラインバイパス回路B1~B7が並列に接続され、通信ラインバイパス回路B1~B7は、通信ラインバイパス回路B1~B7に対応する電源ユニットM1~M7が切り離された場合、電源ユニットに隣接する電源ユニットと通信可能にするスイッチを有することを特徴とする。 In order to solve the above problems, the power storage system 1 of the present invention includes a plurality of power supply units M1 to M7 having power storage devices E1 to E7 and power conversion devices 10 to 70 connected to the power storage devices E1 to E7. The control signal terminals 10s to 70s of the power conversion devices 10 to 70 included in the power supply units M1 to M7 are connected to each other in a daisy chain structure via the communication line 6, and the power supply units M1 to M7 are connected to the power supply units M1 to M7. The communication line bypass circuits B1 to B7 corresponding to M7 are connected in parallel, and the communication line bypass circuits B1 to B7 are connected to the power supply unit when the power supply units M1 to M7 corresponding to the communication line bypass circuits B1 to B7 are disconnected. It has a switch which enables communication with an adjacent power supply unit.
 また、本発明の蓄電システム1は電源ユニットM1~M7に含まれる電力変換装置10~70の交流側接続端子10a~70aはそれぞれ交流電力ライン7を介して直列に接続され、それぞれの電源ユニットM1~M7には当該電源ユニットM1~M7に対応した電力ラインバイパス回路R1~R7が並列に接続され、前記電力ラインバイパス回路R1~R7は、当該電力ラインバイパス回路R1~R7に対応する電源ユニットが切り離された場合、当該電源ユニットに隣接する電源ユニットと電力の授受を可能にするスイッチを有することを特徴とする。 Further, in the power storage system 1 of the present invention, the AC side connection terminals 10a to 70a of the power converters 10 to 70 included in the power supply units M1 to M7 are connected in series via the AC power line 7, respectively, and the respective power supply units M1 To M7 are connected in parallel with power line bypass circuits R1 to R7 corresponding to the power supply units M1 to M7, and the power line bypass circuits R1 to R7 have power supply units corresponding to the power line bypass circuits R1 to R7. When disconnected, the power supply unit includes a switch that enables power transfer to and from a power supply unit adjacent to the power supply unit.
 本発明によれば、複数の電力変換装置がデイジーチェーン構造の通信手段で接続された蓄電システムにおいて、蓄電装置および電力変換装置を取り換え交換時に通信手段が遮断されず、システムの非停止交換を実現できる蓄電システムの提供ができる。 According to the present invention, in a power storage system in which a plurality of power conversion devices are connected by communication means having a daisy chain structure, the communication means is not shut off when the power storage device and the power conversion device are replaced and replaced, and non-stop replacement of the system is realized. An electricity storage system that can be used can be provided.
本発明の一実施例になる蓄電システムの概略構成図である。It is a schematic block diagram of the electrical storage system which becomes one Example of this invention. 図1に記載の電力変換装置10の概略を示す構成図である。It is a block diagram which shows the outline of the power converter device 10 of FIG. 図2に記載のスイッチング回路11内のスイッチ動作および交流側接続端子の端子間電圧の関係を模式的に示したタイミングチャートである。3 is a timing chart schematically showing the relationship between the switch operation in the switching circuit 11 shown in FIG. 2 and the voltage between the terminals of the AC side connection terminals. 図2に記載の制御装置13の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the control apparatus 13 described in FIG. 図1に記載の中央制御装置3の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the central control apparatus 3 described in FIG. 本発明の一実施例になる蓄電システムの1周期分の指令電圧波形例および電力変換装置交流側接続端子のオン・オフ動作パターンを示すタイミングチャートである。It is a timing chart which shows the example of command voltage waveform for one cycle of the electrical storage system which becomes one example of the present invention, and the ON / OFF operation pattern of the power converter AC side connection terminal. 各電力変換装置の交流側出力電圧を合成した電圧波形である。It is the voltage waveform which synthesize | combined the alternating current side output voltage of each power converter device. 図1に記載の電源ユニットM1を取り外す際の手順を示したフローチャートの例である。It is the example of the flowchart which showed the procedure at the time of removing the power supply unit M1 described in FIG. 図1に記載の蓄電システムにおいて、電源ユニットM1を取り外した後の構成を示した概略図である。FIG. 2 is a schematic diagram illustrating a configuration after removing a power supply unit M1 in the power storage system illustrated in FIG. 1. 図9に記載の蓄電システムに対して、電源ユニットM1を取りつける際の制御手順を示したフローチャートの例である。FIG. 10 is an example of a flowchart showing a control procedure for attaching the power supply unit M1 to the power storage system shown in FIG. 9; 本発明の一実施例になる発電ファームを示す図である。It is a figure which shows the electric power generation farm which becomes one Example of this invention.
 以下、本発明の第一の実施形態について説明する。
《発明の適用アプリケーション》
 以下に説明する実施形態では、図11に示すように、本願の発明を、再生可能エネルギーを利用した発電システム100、例えば風力発電システム110或いは太陽光発電システム120と共に発電ファームに、電力貯蔵システムとして設置された蓄電システム1に適用した場合を例に挙げて説明する。
Hereinafter, a first embodiment of the present invention will be described.
<< Application of Invention >>
In the embodiment described below, as shown in FIG. 11, the invention of the present application is used as a power storage system in a power generation system 100 using a renewable energy, for example, a wind power generation system 110 or a solar power generation system 120. A case where the present invention is applied to the installed power storage system 1 will be described as an example.
 再生可能エネルギーを利用した発電システム100は、自然環境に及ぼす負荷が少ないという利点がある反面、天候などの自然環境に発電能力が左右され、電力系統200に対する出力が変動する。蓄電システム1は、発電システム100の上記出力変動の抑制(緩和)を図るために設けられている。発電システム100から電力系統200に出力される電力が所定の出力電力に対して不足状態にある場合には、蓄電システム1は放電し、発電システム100の不足分の電力を補う。発電システム100から電力系統200に出力される電力が所定の電力に対して余剰状態にある場合には、蓄電システム1は、発電システムの余剰分の電力を受けて充電する。 Although the power generation system 100 using renewable energy has an advantage that the load on the natural environment is small, the power generation capacity depends on the natural environment such as the weather, and the output to the power system 200 fluctuates. The power storage system 1 is provided for suppressing (relaxing) the output fluctuation of the power generation system 100. When the power output from the power generation system 100 to the power system 200 is in a shortage state with respect to the predetermined output power, the power storage system 1 is discharged, and the power shortage of the power generation system 100 is compensated. When the power output from the power generation system 100 to the power system 200 is in a surplus state with respect to the predetermined power, the power storage system 1 receives and charges the surplus power of the power generation system.
 なお、発電システム100、電力系統200及び蓄電システム1はそれぞれ交流電源系統210によって電気的に接続されており、電力の授受が可能となっている。
《発明の他の適用アプリケーション》
 以下に説明する実施形態の構成は、データセンタのサーバーシステムや通信設備などの無停電用電源(バックアップ用電源)として設置される定置用の蓄電システムにも適用できる。また、以下に説明する実施形態の構成は、需要家に配置され、夜間電力を貯蔵し、この貯蔵された電力を昼間に放出して電力負荷の平準化を図る電力貯蔵システムとして設置される定置用の蓄電システムにも適用できる。
The power generation system 100, the power system 200, and the power storage system 1 are electrically connected by an AC power supply system 210, respectively, so that power can be exchanged.
<< Other application applications of the invention >>
The configuration of the embodiment described below can also be applied to a stationary power storage system that is installed as an uninterruptible power supply (backup power supply) such as a data center server system or communication facility. In addition, the configuration of the embodiment described below is a stationary device that is installed in a consumer, stores nighttime power, and releases the stored power in the daytime to level the power load. It can also be applied to power storage systems.
 さらに、以下に説明する実施形態の構成は、送配電系統の途中に電気的に接続され、送配電系統において送配電される電力の変動対策、余剰電力対策、周波数対策、逆潮流対策などとして用いられる定置用の蓄電システムにも適用できる。 Further, the configuration of the embodiment described below is electrically connected in the middle of the transmission / distribution system, and is used as a countermeasure for fluctuations in power transmitted / distributed in the transmission / distribution system, a countermeasure for surplus power, a countermeasure for frequency, a countermeasure for reverse power flow, etc. It can also be applied to a stationary power storage system.
 さらにまた、以下に説明する実施形態の構成は、移動体に設置され、移動体の駆動用電源や、移動体に搭載された負荷を駆動する駆動用電源などとして用いられる移動用蓄電システムにも適用できる。移動体としては、エンジン及びモータを車両の駆動源とするハイブリッド電気自動車やモータを車両の唯一の駆動源とする純粋な電気自動車などの自動車、すなわち陸上走行車両(乗用車、トラックなどの貨物自動車、バスなどの乗合自動車など)、ディーゼルエンジンの動力で発電し、この発電によって得られた電力により駆動されるモータを駆動源とするハイブリッド電車などの鉄道車両、建設機械やフォークリフトトラックなどの産業用車両などがある。 Furthermore, the configuration of the embodiment described below is also applied to a mobile power storage system that is installed in a mobile body and used as a drive power source for driving the mobile body or a drive power source for driving a load mounted on the mobile body. Applicable. As the moving body, a hybrid electric vehicle using an engine and a motor as a driving source of the vehicle and a pure electric vehicle using a motor as a sole driving source of the vehicle, that is, a land traveling vehicle (a passenger car, a truck such as a truck, Railway cars such as buses), railway cars such as hybrid trains that use a motor driven by the power generated by the diesel engine, and industrial vehicles such as construction machinery and forklift trucks. and so on.
 以下、実施例を、図面を用いて説明する。本実施例では、二次電池を用いた蓄電装置を、電力変換装置を介して複数直列接続した蓄電システム1の例を説明する。
《全体構成》
 図1は、本実施例における蓄電システム1の全体構成の概略図である。蓄電システム1は、交流側接続端子2、電源ユニットM1~M7、電力ラインバイパス回路R1~R7、中央制御装置3、電流計測装置4、電圧計測装置5、通信ライン6、通信ラインバイパス回路B1~B7、交流電力ライン7を備えている。
Hereinafter, examples will be described with reference to the drawings. In this embodiment, an example of a power storage system 1 in which a plurality of power storage devices using secondary batteries are connected in series via a power conversion device will be described.
"overall structure"
FIG. 1 is a schematic diagram of the overall configuration of a power storage system 1 in the present embodiment. The power storage system 1 includes an AC side connection terminal 2, power supply units M1 to M7, power line bypass circuits R1 to R7, a central control device 3, a current measuring device 4, a voltage measuring device 5, a communication line 6, and a communication line bypass circuit B1 to B7, AC power line 7 is provided.
 電源ユニットM1~M7はそれぞれ同一構成であり、各ユニットの内部には電力変換装置10~70および蓄電装置E1~E7を各一つずつ備えている。なお本実施例においては、7つの電源ユニットを電気的に直列接続する構成を示しているが、同様な電源ユニットが2直列以上であればどのような直列数であっても構わない。また本実施例では、電源ユニットに搭載する蓄電装置を、7つすべて二次電池で構成したものを前提としているが、複数の電源ユニット間で、異種類の蓄電装置を混在させても構わない。例えば、複数ある電源ユニットのうち、1つの電源ユニットに搭載する蓄電装置をキャパシタで構成したものとし、他の電源ユニットに搭載する蓄電装置を、二次電池で構成したものとしても良い。 The power supply units M1 to M7 have the same configuration, and each unit includes one power conversion device 10 to 70 and one power storage device E1 to E7. In the present embodiment, a configuration in which seven power supply units are electrically connected in series is shown. However, any number of similar power supply units may be used as long as two or more similar power supply units are connected in series. Further, in this embodiment, it is assumed that the power storage devices mounted on the power supply unit are all seven secondary batteries, but different types of power storage devices may be mixed between the plurality of power supply units. . For example, among a plurality of power supply units, a power storage device mounted on one power supply unit may be configured with a capacitor, and a power storage device mounted on another power supply unit may be configured with a secondary battery.
 ≪電力変換装置10~70の概要説明≫
 電力変換装置10~70は、直流電力を交流電力へと変換する、あるいは反対に、交流電力を直流電力へと変換する機能を有する変換装置である。電力変換装置10~70の直流側接続端子10d~70dには蓄電装置E1~E7がそれぞれ対応して接続される。
≪Overview of power converters 10 to 70≫
The power converters 10 to 70 are converters having a function of converting DC power into AC power or, conversely, converting AC power into DC power. The power storage devices E1 to E7 are connected to the DC side connection terminals 10d to 70d of the power conversion devices 10 to 70, respectively.
 また電力変換装置10~70は、各々対応する蓄電装置E1~E7から出力された直流電力を交流電力へ変換し、各電力変換装置10~70の交流側接続端子10a~70aに交流電力を生成させる。これとは反対に、電力変換装置10~70は、各交流側接続端子10a~70aから供給される交流電力を直流電力へ変換して、それぞれ対応する蓄電装置E1~E7にそれぞれ出力する。 The power conversion devices 10 to 70 convert the DC power output from the corresponding power storage devices E1 to E7 into AC power, and generate AC power at the AC side connection terminals 10a to 70a of the power conversion devices 10 to 70, respectively. Let On the contrary, the power conversion devices 10 to 70 convert the AC power supplied from the AC side connection terminals 10a to 70a into DC power and output the DC power to the corresponding power storage devices E1 to E7, respectively.
 さらに、図1に示した通り、電力変換装置10~70の交流側接続端子10a~70aは、互いに電気的に直列接続され、電力変換装置10の交流側接続端子10aの一端と電力変換装置70の交流側接続端子70aの一端が、蓄電システム1の交流側接続端子2にそれぞれ接続される。 Further, as shown in FIG. 1, the AC side connection terminals 10a to 70a of the power conversion devices 10 to 70 are electrically connected in series with each other, and one end of the AC side connection terminal 10a of the power conversion device 10 and the power conversion device 70 are connected. One end of each AC side connection terminal 70 a is connected to the AC side connection terminal 2 of the power storage system 1.
 このように各電力変換装置の交流側接続端子10a~70aを電気的に直列接続することで、電力変換装置10~70の各交流側接続端子10a~70aの入出力電圧の合成電圧が蓄電システム1の全体の入出力電圧として交流側接続端子2に現れることとなる。 Thus, by electrically connecting the AC side connection terminals 10a to 70a of the power conversion devices in series, the combined voltage of the input and output voltages of the AC side connection terminals 10a to 70a of the power conversion devices 10 to 70 is stored in the power storage system. 1 appears at the AC side connection terminal 2 as the entire input / output voltage.
 電力ラインバイパス回路R1~R7は、それぞれ電力変換装置10~70と電気的に並列に接続される。電力ラインバイパス回路R1~R7は、リレースイッチなど、電流を遮断できるものであればどのようなものでも構わない。通常時、電力ラインバイパス回路R1~R7は、非導通状態(オフ)となっているが、電源ユニット交換時などに、電流のバイパス回路として利用される。 The power line bypass circuits R1 to R7 are electrically connected in parallel with the power converters 10 to 70, respectively. The power line bypass circuits R1 to R7 may be any circuit that can cut off the current, such as a relay switch. Normally, the power line bypass circuits R1 to R7 are in a non-conductive state (off), but are used as a current bypass circuit when the power supply unit is replaced.
 制御信号端子10s~70sは、電力変換装置10~70の動作を制御するための制御信号の通信に利用される通信線端子である。図1に示す通り、制御信号端子10s~70sおよび中央制御装置3の制御信号端子3sは、デイジーチェーン構造の通信ライン6で接続される。 The control signal terminals 10s to 70s are communication line terminals used for communication of control signals for controlling the operation of the power converters 10 to 70. As shown in FIG. 1, the control signal terminals 10 s to 70 s and the control signal terminal 3 s of the central controller 3 are connected by a communication line 6 having a daisy chain structure.
 通信ラインバイパス回路B1~B7は、上述したデイジーチェーン構造の通信ライン6に対して、各電源ユニットM1~M7とそれぞれ並列に設けられる。通信ラインバイパス回路B1~B7は、通信信号の導通および遮断する機能を有すものであれば、どのようなスイッチ素子を用いても構わない。通常時、通信ラインバイパス回路B1~B7は、遮断状態(オフ)であるが、電源ユニット交換時など、必要に応じて導通状態に制御される。 The communication line bypass circuits B1 to B7 are provided in parallel with the power supply units M1 to M7, respectively, with respect to the communication line 6 having the daisy chain structure described above. The communication line bypass circuits B1 to B7 may use any switching element as long as it has a function of conducting and blocking communication signals. Normally, the communication line bypass circuits B1 to B7 are in the cut-off state (off), but are controlled to be in a conductive state as necessary, such as when the power supply unit is replaced.
 上記、通信ラインバイパス回路や電力ラインバイパス回路の具体的な動作については後述する。
《蓄電装置の説明》
 蓄電装置E1~E7は、その内部に蓄電素子として二次電池を搭載している。詳細は図示しないが、蓄電装置E1~E7の各蓄電装置は、複数の二次電池セルが直列に接続されたセル群と、これらセル群を並列に接続して成る二次電池モジュールとして構成されている。このような二次電池セルとして、例えばリチウムイオン二次電池、鉛蓄電池、またはニッケル水素電池等を用いることができる。また、二次電池の代わりにキャパシタを用いることもできる。このようなキャパシタとしては、例えば電気二重層キャパシタや、リチウムイオンキャパシタを用いることができる。
《交流端子2とエネルギー授受の説明》
 図1には図示していないが、蓄電システム1の交流側接続端子2より外側には、発電システム等の交流電源系統210が電気的に接続され、蓄電装置E1~E7と交流電源系統210との間で電気エネルギーの送受ができる。
Specific operations of the communication line bypass circuit and the power line bypass circuit will be described later.
<Description of power storage device>
The power storage devices E1 to E7 have secondary batteries mounted therein as power storage elements. Although not shown in detail, each of the power storage devices E1 to E7 is configured as a cell group in which a plurality of secondary battery cells are connected in series and a secondary battery module formed by connecting these cell groups in parallel. ing. As such a secondary battery cell, for example, a lithium ion secondary battery, a lead storage battery, or a nickel metal hydride battery can be used. Further, a capacitor can be used instead of the secondary battery. As such a capacitor, for example, an electric double layer capacitor or a lithium ion capacitor can be used.
<< Description of AC terminal 2 and energy transfer >>
Although not shown in FIG. 1, an AC power supply system 210 such as a power generation system is electrically connected to the outside of the AC side connection terminal 2 of the power storage system 1, and the power storage devices E1 to E7 and the AC power supply system 210 are connected to each other. Electric energy can be sent and received between the two.
 すなわち蓄電システム1は、蓄電装置E1~E7に蓄電された電気エネルギーを直流電力として放電し、この放電した直流電力を電力変換装置10~70によって交流電力へと変換し、この交流電力を交流電源系統側210に出力することが可能である。さらに蓄電システム1は、交流電源系統210側或いは発電システム100から供給された交流電力を交流側接続端子2より入力し、この入力した交流電力を電力変換装置10~70によって直流電力へと変換して、この直流電力を電気エネルギーとして各蓄電装置E1~E7へ蓄電することが可能である。
《中央制御装置3の説明》
 図1に示した中央制御装置3の概要を説明する。中央制御装置3の役割は、蓄電システム1と交流電源系統210とが連系して電力の授受ができるように電源ユニットM1~M7の作動を制御することである。
That is, the power storage system 1 discharges the electric energy stored in the power storage devices E1 to E7 as DC power, converts the discharged DC power into AC power by the power conversion devices 10 to 70, and converts the AC power to AC power It is possible to output to the system side 210. Further, the power storage system 1 inputs AC power supplied from the AC power supply system 210 side or the power generation system 100 from the AC side connection terminal 2, and converts the input AC power into DC power by the power converters 10 to 70. Thus, it is possible to store this DC power as electric energy in each of the power storage devices E1 to E7.
<< Description of Central Controller 3 >>
An overview of the central control device 3 shown in FIG. 1 will be described. The role of the central controller 3 is to control the operation of the power supply units M1 to M7 so that the power storage system 1 and the AC power supply system 210 can be connected to each other to exchange power.
 中央制御装置3は、各種情報や制御プログラムに基づいて電源ユニットM1~M7の作動を制御するための指令値を演算する。中央制御装置3が指令値を演算する際、中央制御装置3は交流電源系統210の交流電圧に関する情報と、交流電源系統210と蓄電システム1の交流側接続端子2との間において流れる交流電流に関する情報、さらには電力変換装置10~70に接続される各蓄電装置の入出力電圧情報等を利用する。 The central controller 3 calculates command values for controlling the operations of the power supply units M1 to M7 based on various information and control programs. When the central control device 3 calculates the command value, the central control device 3 relates to the information regarding the AC voltage of the AC power supply system 210 and the AC current flowing between the AC power supply system 210 and the AC side connection terminal 2 of the power storage system 1. Information, and input / output voltage information of each power storage device connected to the power conversion devices 10 to 70 are used.
 そして、中央制御装置3は、演算された指令値を制御信号端子3sから出力し、通信ライン6を介して電源ユニットM1~M7のそれぞれに信号伝送する。 The central controller 3 outputs the calculated command value from the control signal terminal 3s and transmits the signal to each of the power supply units M1 to M7 via the communication line 6.
 これにより、電力変換装置10~70と蓄電装置E1~E7との接続対のそれぞれにおいて、電力変換装置10~70の各内部のスイッチング回路(詳細は図2を用いて後述)の作動が制御されると共に、スイッチング回路と複数の蓄電池との電気的な接続が制御され、蓄電システム1と交流電源系統とが連系するように、両者間において授受される電力が制御される。中央制御装置3の内部構成の概略については後述する。 As a result, in each of the connection pairs of power conversion devices 10 to 70 and power storage devices E1 to E7, the operation of each internal switching circuit of power conversion devices 10 to 70 (details will be described later using FIG. 2) is controlled. In addition, the electrical connection between the switching circuit and the plurality of storage batteries is controlled, and the power exchanged between the two is controlled so that the power storage system 1 and the AC power supply system are linked. The outline of the internal configuration of the central controller 3 will be described later.
 電圧計測装置5は交流電源系統の交流電圧を計測し、この計測した交流電圧に関する信号を中央制御装置3に出力する。電流計測装置4は、蓄電システム1の交流側接続端子2に流れる交流電流を計測し、この計測した交流電流に関する信号を中央制御装置3に出力する。
《電力変換装置10の説明》
 図2は、電源ユニットM1に搭載される電力変換装置10の構成を示した図である。本実施例における蓄電システム1は、電力変換装置10のほかに電力変換装置20~70も搭載しているが、電力変換装置10~70はすべて同一の構成であるため、以下では電力変換装置10のみを説明する。
The voltage measuring device 5 measures the AC voltage of the AC power supply system and outputs a signal related to the measured AC voltage to the central control device 3. The current measuring device 4 measures an alternating current flowing through the alternating current side connection terminal 2 of the power storage system 1 and outputs a signal related to the measured alternating current to the central control device 3.
<< Description of Power Converter 10 >>
FIG. 2 is a diagram showing a configuration of the power conversion device 10 mounted on the power supply unit M1. The power storage system 1 in the present embodiment also includes the power conversion devices 20 to 70 in addition to the power conversion device 10. However, since the power conversion devices 10 to 70 all have the same configuration, the power conversion device 10 will be described below. I will explain only.
 電力変換装置10は、図2中の一点鎖で囲まれたスイッチング回路11、平滑化コンデンサ12、スイッチング回路11の制御をする制御装置13、蓄電装置E1の入出力電圧を検出する電圧計測装置14、さらにスイッチング回路11と電気的に接続された交流側接続端子10a、蓄電装置E1に電気的に接続される直流側接続端子10d、そして制御信号端子10sを備えている。 The power converter 10 includes a switching circuit 11, a smoothing capacitor 12, a control device 13 that controls the switching circuit 11, and a voltage measuring device 14 that detects an input / output voltage of the power storage device E1. Furthermore, an AC side connection terminal 10a electrically connected to the switching circuit 11, a DC side connection terminal 10d electrically connected to the power storage device E1, and a control signal terminal 10s are provided.
 制御装置13は、通信ライン6および制御信号端子10sを介して中央制御装置3から送信される情報に基づいてスイッチング回路11の作動を制御する。スイッチング回路11および制御装置13の内部構成については後述する。 The control device 13 controls the operation of the switching circuit 11 based on information transmitted from the central control device 3 via the communication line 6 and the control signal terminal 10s. The internal configuration of the switching circuit 11 and the control device 13 will be described later.
 直流側接続端子10dは、図1に示した通り、蓄電装置E1に電気的に接続され、この端子両端に現れる電圧をVE1と呼ぶこととする。図示はしないが、電力変換装置20~70の各直流側接続端子の両端に現れる電圧も同様にそれぞれVE2、VE3、VE4、VE5、VE6およびVE7と呼ぶこととする。 As shown in FIG. 1, the DC side connection terminal 10d is electrically connected to the power storage device E1, and the voltage appearing at both ends of the terminal is referred to as V E1 . Although not shown, the voltages appearing at both ends of the DC side connection terminals of the power converters 20 to 70 are also referred to as V E2 , V E3 , V E4 , V E5 , V E6, and V E7 , respectively.
 また、交流側接続端子10aの両端に現れる電圧をV10と呼ぶこととする。図示はしないが、電力変換装置20~70の交流側接続端子20a~70aの各両端に現れる電圧をそれぞれV20、V30、V40、V50、V60およびV70と呼ぶこととする。《スイッチング回路11の説明》
 図2に示したスイッチング回路11について説明する。スイッチング回路11は、半導体スイッチング素子であるノーマリーオフタイプのMOSFET(Metal Oxide Semiconductor Field Effect Transistor)111、112、113および114を備えている。そして、スイッチング回路11は、これら4つのスイッチング素子によって単相フルブリッジインバータ回路を構成している。具体的には、MOSFET111、113のドレイン側およびMOSFET112、114のソース側が直流側接続端子10dに接続され、MOSFET111のソース側(MOSFET112のドレイン側)とMOSFET113のソース側(MOSFET114のドレイン側)が交流側接続端子10aに接続される。
Also, it will be referred to a voltage appearing across the AC-side connection terminals 10a and V 10. Although not shown, the voltages appearing at both ends of the AC side connection terminals 20a to 70a of the power conversion devices 20 to 70 are referred to as V 20 , V 30 , V 40 , V 50 , V 60 and V 70 , respectively. << Description of Switching Circuit 11 >>
The switching circuit 11 shown in FIG. 2 will be described. The switching circuit 11 includes normally-off type MOSFET (Metal Oxide Field Effect Transistor) 111, 112, 113, and 114, which are semiconductor switching elements. And the switching circuit 11 comprises the single phase full bridge inverter circuit by these four switching elements. Specifically, the drain sides of the MOSFETs 111 and 113 and the source sides of the MOSFETs 112 and 114 are connected to the DC side connection terminal 10d, and the source side of the MOSFET 111 (the drain side of the MOSFET 112) and the source side of the MOSFET 113 (the drain side of the MOSFET 114) are AC. It is connected to the side connection terminal 10a.
 MOSFETは、素子の構造上、そのソース・ドレイン間にはダイオード(ボディダイオード)が形成される。したがって、図2に示すとおり、MOSFET111、112、113および114には、ボディダイオードとしてD111、D112、D113およびD114がそれぞれ寄生する。 In the MOSFET, a diode (body diode) is formed between the source and the drain due to the structure of the element. Therefore, as shown in FIG. 2, D111, D112, D113, and D114 are parasitic in the MOSFETs 111, 112, 113, and 114 as body diodes, respectively.
 通常、スイッチング素子でインバータ回路を構成する場合、電流が流れているスイッチング素子をオフしたときに誘導性負荷のエネルギーを電源側へバイパスさせる経路として帰還ダイオードをスイッチング素子と並列に設ける必要がある。しかし、本実施例ではMOSFETに内蔵するボディダイオードD111~114が、帰還ダイオードとして機能するため、MOSFETとは別にダイオードを設ける必要がない。 Normally, when an inverter circuit is configured with a switching element, it is necessary to provide a feedback diode in parallel with the switching element as a path for bypassing the energy of the inductive load to the power supply side when the switching element through which the current flows is turned off. However, in this embodiment, since the body diodes D111 to D114 built in the MOSFET function as feedback diodes, it is not necessary to provide a diode separately from the MOSFET.
 尚、本実施例ではスイッチング素子として、MOSFETを用いた例を挙げて説明しているが、IGBT(Insulated Gate Bipolar Transistor)など、他のスイッチング素子を用いても構わない。ただし、IGBTには上述したボディダイオードが内蔵されないため、IGBTをスイッチング素子として適用する場合、別途、帰還ダイオードを並列に設ける必要がある。
<スイッチ動作の説明>
 図3は、図2に示したスイッチング回路11内の4つのスイッチング素子(MOSFET111~114)のオン・オフ動作と電力変換装置10の交流側接続端子10aの端子間電圧V10の関係を示すタイミングチャートである。なお、本実施例を説明するためのVE1とV10の電位の向きは、図2に示した直流側接続端子10d付近および交流側接続端子10a付近に記した矢印の向きの通りとする(矢印の向きをプラス方向と定義する。)。
In this embodiment, an example using a MOSFET is described as a switching element. However, other switching elements such as an IGBT (Insulated Gate Bipolar Transistor) may be used. However, since the body diode described above is not built in the IGBT, when the IGBT is applied as a switching element, it is necessary to separately provide a feedback diode in parallel.
<Description of switch operation>
Figure 3 is a timing showing a relationship of the four switching elements (MOSFET 111 ~ 114) on-off operation and the AC side connection terminals 10a terminal voltage V 10 of the power conversion apparatus 10 of the switching circuit 11 shown in FIG. 2 It is a chart. Note that the directions of the potentials V E1 and V 10 for explaining the present embodiment are the directions of the arrows shown in the vicinity of the DC side connection terminal 10d and the AC side connection terminal 10a shown in FIG. The direction of the arrow is defined as the plus direction.)
 なお、電力変換装置20~70内に各々内蔵されるスイッチング回路もまた以下で説明する電力変換装置10のスイッチング回路11と同様の原理で動作する。 Note that the switching circuits incorporated in each of the power conversion devices 20 to 70 also operate on the same principle as the switching circuit 11 of the power conversion device 10 described below.
 スイッチング回路11に含まれる4つのMOSFETは、MOSFET111と112がペア、そしてMOSFET113と114がペアとなり、同一ペア内では原則としてオンとオフが互いに逆の関係となるよう制御される。 The four MOSFETs included in the switching circuit 11 are controlled such that the MOSFETs 111 and 112 are paired and the MOSFETs 113 and 114 are paired, and in principle, the ON and OFF are in a reverse relationship within the same pair.
 例えば、直流側接続端子10dに電位がかかっているときに、スイッチング回路11の同一ペア内の2つのスイッチが同時にオンされると、電気的に短絡状態となり、スイッチング素子が故障する程の大きな電流が流れる恐れがある。したがって、如何なる場合も、同一ペア内の二つのスイッチが同時にオンされる制御はしない。なお、同一ペア内の二つのスイッチが同時にオフに制御されると、直流側接続端子10dと交流側接続端子10aとの間は電気的に遮断状態となり、電流は流れない。 For example, when a potential is applied to the DC side connection terminal 10d, if two switches in the same pair of the switching circuits 11 are turned on at the same time, a current that is large enough to cause an electrical short circuit and cause the switching element to fail. May flow. Therefore, in any case, control is not performed so that two switches in the same pair are simultaneously turned on. When two switches in the same pair are controlled to be turned off at the same time, the DC side connection terminal 10d and the AC side connection terminal 10a are electrically disconnected and no current flows.
 図3のタイミングチャートに示す期間<1>および期間<3>のように各スイッチが制御されると、交流側接続端子10aからみてスイッチング回路11が短絡接続されるようにスイッチが機能するため、同端子間電位差は0となる。 When each switch is controlled as in the period <1> and the period <3> shown in the timing chart of FIG. 3, the switch functions so that the switching circuit 11 is short-circuited when viewed from the AC side connection terminal 10a. The potential difference between the terminals is zero.
 また図3のタイミングチャートの期間<2>のように各スイッチが制御されると、交流側接続端子10aには直流側接続端子10dにかかる電位差、すなわち蓄電装置E1の入出力電圧VE1が現れる。反対に、期間<4>のように各スイッチが制御されると、正負の極性が反対となり、交流側接続端子10aには出力電圧-VE1が現れる。 When each switch is controlled as in the period <2> in the timing chart of FIG. 3, the potential difference applied to the DC side connection terminal 10d, that is, the input / output voltage V E1 of the power storage device E1 appears at the AC side connection terminal 10a. . On the contrary, when each switch is controlled as in the period <4>, the positive and negative polarities are reversed, and the output voltage −V E1 appears at the AC side connection terminal 10a.
 なお、実際にはMOSFETのオン抵抗等の影響で、各スイッチに電流が流れているときにはスイッチ素子部で電位差が生じる。このため、図3タイミングチャートに示した期間<2>および期間<4>のようなスイッチ制御をしても、交流側接続端子10aの端子間電圧V10の値と直流側接続端子10dの端子間電圧VE1の値の大きさは必ずしも等しくなるとは限らない。しかし、本実施例では簡略化のため、図3も含めて以下ではMOSFETのオン抵抗の影響は十分無視できる大きさとみなし、タイミングチャートの期間<2>のようにスイッチ制御されればV10=VE1、また、期間<4>のようにスイッチ制御されればV10=-VE1となるものとする。他の電力変換装置20~70の機能に関しても、上述した電力変換装置10と同様である。
《制御装置13の説明》
 図4を用いて電力変換装置10の中に搭載される制御装置13を説明する。なお、電力変換装置20~70の中にも以降で説明する制御装置13と同様の装置が搭載される。制御装置13は、スレーブ通信部131、データ保持部132、スイッチ制御・駆動部133、電圧判定部134を備える。
Actually, due to the influence of the on-resistance of the MOSFET, a potential difference is generated in the switch element portion when a current flows through each switch. Therefore, even if the switch control as time <2> and duration <4> shown in FIG. 3 a timing chart, the terminal value and the DC-side connecting terminal 10d of the terminal voltage V 10 of the AC-side connection terminals 10a The magnitudes of the values of the inter-voltage V E1 are not necessarily equal. However, for the sake of simplification in this embodiment, the influence of the on-resistance of the MOSFET is considered to be sufficiently negligible in the following including FIG. 3, and if the switch control is performed as in the period <2> of the timing chart, V 10 = V E1 , and V 10 = −V E1 when switch-controlled as in period <4>. The functions of the other power converters 20 to 70 are the same as those of the power converter 10 described above.
<< Description of Control Device 13 >>
The control apparatus 13 mounted in the power converter device 10 is demonstrated using FIG. A device similar to the control device 13 described below is mounted in the power conversion devices 20 to 70 as well. The control device 13 includes a slave communication unit 131, a data holding unit 132, a switch control / drive unit 133, and a voltage determination unit 134.
 スレーブ通信部131は、通信ライン6および制御信号端子10sを介して中央制御装置3のマスタ通信部34(後述)より送信された制御信号を受信し、電力変換装置10の制御に関係するデータのみ識別・抽出してデータ保持部132へ電力変換装置10が必要とする制御信号を送信する。これとともに、スレーブ通信部131は、蓄電装置E1の電圧値や蓄電装置の異常の有無等の情報、さらには他の電力変換装置20~70が必要とする制御信号を、制御信号端子10sおよび通信ライン6を介して他の電源ユニットの制御装置ならびに中央制御装置3のマスタ通信部34(後述)へと送信出力する。 The slave communication unit 131 receives a control signal transmitted from the master communication unit 34 (described later) of the central control device 3 via the communication line 6 and the control signal terminal 10s, and only data related to the control of the power conversion device 10 is received. The control signal required by the power conversion device 10 is transmitted to the data holding unit 132 after identification and extraction. At the same time, the slave communication unit 131 sends information such as the voltage value of the power storage device E1, the presence or absence of abnormality of the power storage device, and control signals required by the other power conversion devices 20 to 70 to the control signal terminal 10s and the communication. Transmission is output to the control device of another power supply unit and the master communication unit 34 (described later) of the central control device 3 via the line 6.
 スレーブ通信部131の他、他の電源ユニットに搭載される複数のスレーブ通信部と、中央制御装置3のマスタ通信部34との通信機能としては、CAN(Controller Area Network)、I2C(Inter-Integrated Circuit)、SPI(System Packet Interface)など、必要な機能を満たすものであればどのようなものでも構わない。 In addition to the slave communication unit 131, communication functions between a plurality of slave communication units mounted on other power supply units and the master communication unit 34 of the central control device 3 include CAN (Controller Area Network), I 2 C (Inter Any system that satisfies the required functions, such as -Integrated Circuit (SPI) and System Packet Interface (SPI) may be used.
 データ保持部132は、中央制御装置3のマスタ通信部34から送信された制御信号や、蓄電装置E1の電圧情報を格納する。格納されるデータのうち、制御信号はスイッチ制御・駆動部133(後述)の作動の際に読み出される。 The data holding unit 132 stores the control signal transmitted from the master communication unit 34 of the central control device 3 and the voltage information of the power storage device E1. Of the stored data, the control signal is read when the switch control / drive unit 133 (described later) is operated.
 スイッチ制御・駆動部133は、データ保持部に格納された制御信号に基づいてスイッチング回路11のMOSFET111~114の各スイッチのオンまたはオフ状態を制御する。スイッチ制御・駆動部133には、MOSFET111~114をオン・オフ制御するために、これらスイッチのゲート電圧を発生するゲート駆動回路(図示せず)をスイッチ毎に設けている。 The switch control / drive unit 133 controls the on / off state of each switch of the MOSFETs 111 to 114 of the switching circuit 11 based on the control signal stored in the data holding unit. The switch control / drive unit 133 is provided with a gate drive circuit (not shown) for generating the gate voltage of these switches for each switch in order to turn on and off the MOSFETs 111 to 114.
 電圧判定部134は、電圧測定装置14によって検出された蓄電装置E1の入出力電圧VE1を受け、その電圧値が想定された値の範囲内に入っているかを判定する。そして、異常がなければその電圧情報をデータ保持部132へと渡す。仮に蓄電装置E1の電圧値が異常と判定されれば、異常信号をデータ保持部132へと送り、スレーブ通信部131および他の電源ユニットM2~M7の各制御装置を経由して中央制御装置3へと異常信号が送信される。 Voltage determination unit 134 receives input / output voltage V E1 of power storage device E1 detected by voltage measurement device 14, and determines whether the voltage value falls within an assumed value range. If there is no abnormality, the voltage information is passed to the data holding unit 132. If it is determined that the voltage value of the power storage device E1 is abnormal, an abnormal signal is sent to the data holding unit 132, and the central control device 3 passes through the slave communication unit 131 and the control devices of the other power supply units M2 to M7. An abnormal signal is sent to.
 《中央制御装置3の説明》
 図5は、中央制御装置3の機能の概略を示すブロック図である。中央制御装置3は、その内部に指令電圧演算部31、キャリア演算部32、ON/OFFパターン演算部33およびマスタ通信部34、電源ユニット交換制御部35、バイパス回路制御部36を備える。これらのうち、電源ユニット交換制御部35とバイパス回路制御部36は、蓄電システム1が通常動作を行っているときは動作せず、電源ユニットを抜き取り交換する場合に動作する。
<< Description of Central Controller 3 >>
FIG. 5 is a block diagram showing an outline of functions of the central control device 3. The central control device 3 includes a command voltage calculation unit 31, a carrier calculation unit 32, an ON / OFF pattern calculation unit 33, a master communication unit 34, a power supply unit replacement control unit 35, and a bypass circuit control unit 36 therein. Among these, the power supply unit replacement control unit 35 and the bypass circuit control unit 36 do not operate when the power storage system 1 is performing a normal operation, and operate when the power supply unit is removed and replaced.
 指令電圧演算部31は、図1に示した電流計測装置4と電圧計測装置5から得られる交流系統の電流と電圧情報に基づいて蓄電システム1が入出力する電圧波形を演算する。 The command voltage calculation part 31 calculates the voltage waveform which the electrical storage system 1 inputs / outputs based on the electric current and voltage information of the alternating current system obtained from the current measuring device 4 and the voltage measuring device 5 shown in FIG.
 図5に示すキャリア演算部32は、各蓄電装置E1~E7の入出力電圧値VE1~VE7の値および指令電圧演算部31にて演算された指令電圧情報に基づいて、各電力変換装置用のキャリア(搬送波)を演算し、さらに各電力変換装置に割り当てる電圧レベルの位置を決定する。 The carrier calculation unit 32 shown in FIG. 5 is configured based on the input / output voltage values V E1 to V E7 of the power storage devices E1 to E7 and the command voltage information calculated by the command voltage calculation unit 31. For example, the position of the voltage level assigned to each power converter is determined.
 蓄電装置E1~E7の入出力電圧値情報は、図2に示した電力変換装置10内の制御装置13の他、各電力変換装置内の各制御装置よりそれぞれ出力され、通信ライン6および中央制御装置3のマスタ通信部34を介してキャリア演算部32に送られる。 The input / output voltage value information of the power storage devices E1 to E7 is output from each control device in each power conversion device in addition to the control device 13 in the power conversion device 10 shown in FIG. The data is sent to the carrier calculation unit 32 via the master communication unit 34 of the device 3.
 図5に示すON/OFFパターン演算部33は、指令電圧演算部31から出力される指令電圧と、キャリア演算部32から出力される各電力変換装置のキャリアの各情報に基づいて、各電力変換装置内のスイッチング回路の動作パターン、すなわち各電力変換装置の交流側出力のON/OFFパターンを演算する。 The ON / OFF pattern calculation unit 33 shown in FIG. 5 converts each power conversion based on the command voltage output from the command voltage calculation unit 31 and each information of the carrier of each power conversion device output from the carrier calculation unit 32. The operation pattern of the switching circuit in the apparatus, that is, the ON / OFF pattern of the AC side output of each power converter is calculated.
 図5のON/OFFパターン演算部33の動作の一例を、図6を用いて説明する。図6に、1周期分の指令電圧、各電力変換装置のキャリア(C1~C7)、さらに各電力変換装置の交流側出力のON/OFFパターンのタイミングチャート例を示す。 An example of the operation of the ON / OFF pattern calculation unit 33 in FIG. 5 will be described with reference to FIG. FIG. 6 shows an example of a timing chart of the command voltage for one cycle, the carriers (C1 to C7) of each power converter, and the ON / OFF pattern of the AC side output of each power converter.
 図6下側の実線波形で示した指令電圧1は、蓄電システム1が交流電源系統と電力授受する際に入出力すべき電圧波形である。また、破線で示した指令電圧2は、指令電圧1と逆位相の電圧波形である。さらに、破線の三角波C1~C7はそれぞれ、電力変換装置10~70の各装置用のキャリア(搬送波)である。 The command voltage 1 indicated by the solid line waveform on the lower side of FIG. 6 is a voltage waveform to be input / output when the power storage system 1 exchanges power with the AC power supply system. A command voltage 2 indicated by a broken line is a voltage waveform having a phase opposite to that of the command voltage 1. Further, broken triangle waves C1 to C7 are carriers for the power converters 10 to 70, respectively.
 図6に示した例では、担当電圧レベルを下から順に電力変換装置70、60、50、40、30、20、10として割り当てているが、この順番は蓄電装置の出力電圧や充電状態に応じて適宜入れ替え変更しても構わない。 In the example shown in FIG. 6, the assigned voltage levels are assigned as power conversion devices 70, 60, 50, 40, 30, 20, and 10 in order from the bottom, but this order depends on the output voltage and charge state of the power storage device. May be changed as appropriate.
 図6の上側に示した各電力変換装置の交流側出力のON/OFFパターンについて説明する。指令電圧1および指令電圧2は、各キャリアC1~C7のそれぞれと大小関係を比較される。指令電圧1よりもキャリアの方が小さい時、そのキャリアに対応する電力変換装置の交流側出力が正の方向にONされる(図6では「ON(+)」と表記)。これは、図3に示したタイミングチャートの期間<2>に相当する動作である。 The ON / OFF pattern of the AC output of each power conversion device shown on the upper side of FIG. 6 will be described. The command voltage 1 and the command voltage 2 are compared in magnitude relationship with each of the carriers C1 to C7. When the carrier is smaller than the command voltage 1, the AC output of the power converter corresponding to the carrier is turned on in the positive direction (indicated as “ON (+)” in FIG. 6). This is an operation corresponding to the period <2> of the timing chart shown in FIG.
 また、指令電圧2よりもキャリアの方が小さい時、そのキャリアに対応する電力変換装置の交流側出力は負の方向にONされる(図6では「ON(-)」と表記)。これは、図3に示したタイミングチャートの期間<4>に相当する動作である。 Further, when the carrier is smaller than the command voltage 2, the AC side output of the power converter corresponding to the carrier is turned ON in the negative direction (indicated as “ON (−)” in FIG. 6). This is an operation corresponding to the period <4> of the timing chart shown in FIG.
 指令電圧1および指令電圧2よりもキャリアの方が大きい時は、対応する電力変換装置の交流側出力はそれぞれOFF制御される。これは、図3に示したタイミングチャートの期間<1>または期間<3>に相当し、対応する電力変換装置の交流側接続端子の端子間電圧は0ボルトとなる。 When the carrier is larger than the command voltage 1 and the command voltage 2, the AC side output of the corresponding power converter is controlled to be OFF. This corresponds to the period <1> or the period <3> in the timing chart shown in FIG. 3, and the inter-terminal voltage of the AC side connection terminal of the corresponding power converter is 0 volt.
 上記のように、指令電圧とキャリアとの比較により電力変換装置10~70の各交流側入出力のON/OFFパターンが決定される。なお図6には、指令電圧の振幅の大きさから、電力変換装置は6台でも足りる例を示した。このため、図6上側のタイミングチャートでは電力変換装置10の交流側出力が1周期にわたって常にOFFとなっている。 As described above, the ON / OFF pattern of each AC side input / output of the power converters 10 to 70 is determined by comparing the command voltage with the carrier. FIG. 6 shows an example in which six power converters are sufficient because of the amplitude of the command voltage. For this reason, in the timing chart on the upper side of FIG. 6, the AC output of the power converter 10 is always OFF for one cycle.
 図7に、図5に示したON/OFFパターン演算部33で演算した各電力変換装置の動作パターンをそのまま電力変換装置に出力させた場合の蓄電システム1の交流側接続端子2に現れる合成電圧Vの波形パターンを示す。図7において、実線の波形が指令電圧1、実線の矩形状波形が合成電圧である。
<電源ユニット交換時の手順>
 次に、図5および図8~図10を用いて蓄電システム1に搭載される複数の電源ユニットのうち、一例として電源ユニットM1を取り外し交換する具体的手順について説明する。蓄電システム1から特定の電源ユニットを取り外す際の前提として、電源ユニットの取り外しから交換、取り付けが完了するまでの間、電源ユニットの数が取外した分だけ少なくなっても蓄電システム1が指令電圧1を入出力可能なことが必要である。例えば、図6に示した指令電圧1の波形パターンであれば、電力変換装置10の交流側出力V10が1周期に渡って常にOFF状態であっても、電力変換装置20~70が連動してON/OFF動作すれば指令電圧1を入出力するだけの電圧が得られる。したがって、7つある電力変換装置のうち、いずれか一つまでであれば電力変換装置がなくても蓄電システム1は継続動作可能である。
FIG. 7 shows a composite voltage appearing at the AC side connection terminal 2 of the power storage system 1 when the operation pattern of each power conversion device calculated by the ON / OFF pattern calculation unit 33 shown in FIG. 5 is directly output to the power conversion device. The waveform pattern of V is shown. In FIG. 7, the solid line waveform is the command voltage 1, and the solid line rectangular waveform is the combined voltage.
<Procedure for replacing the power supply unit>
Next, a specific procedure for removing and replacing the power supply unit M1 as an example among the plurality of power supply units mounted on the power storage system 1 will be described with reference to FIGS. 5 and 8 to 10. As a premise for removing a specific power supply unit from the power storage system 1, the power storage system 1 can maintain the command voltage 1 even if the number of power supply units is reduced by the amount removed until the power supply unit is removed, replaced, or attached. Must be able to input and output. For example, in the waveform pattern of the command voltage 1 shown in FIG. 6, even if the AC output V 10 of the power converter 10 is always OFF for one cycle, the power converters 20 to 70 are interlocked. If the ON / OFF operation is performed, a voltage sufficient to input / output the command voltage 1 can be obtained. Therefore, the power storage system 1 can continue to operate even if there is no power conversion device as long as it is any one of the seven power conversion devices.
 図5の外部装置37は、特定の電源ユニットを取り外す際に、中央制御装置3の電源ユニット交換制御部35に対して電源ユニットの取外し要求信号を送る機能を有す。また、外部装置37は、蓄電装置1に搭載されている各電源ユニットの設置状態を検知し、その情報を電源ユニット交換制御部35へ送信する機能も有す。 5 has a function of sending a power supply unit removal request signal to the power supply unit replacement control unit 35 of the central control device 3 when removing a specific power supply unit. The external device 37 also has a function of detecting the installation state of each power supply unit mounted on the power storage device 1 and transmitting the information to the power supply unit replacement control unit 35.
 図8は、電源ユニットM1を蓄電システム1から取り外す場合に中央制御装置3が行う制御手順を示したフローチャートである。 FIG. 8 is a flowchart showing a control procedure performed by the central controller 3 when the power supply unit M1 is removed from the power storage system 1.
 ステップS101において、外部装置37より電源ユニットM1の交換要求が出され、電源ユニット交換制御部35がその要求を受信するとステップS102へ移行する。外部装置37が上記の要求を発信するトリガーとしては、例えば操作員が手動で操作する方法がある。または、電源ユニットM1のロックが外されると自動的に外部装置37が作動するようにシステムを構築しても良い。 In step S101, a request for replacement of the power supply unit M1 is issued from the external device 37, and when the power supply unit replacement control unit 35 receives the request, the process proceeds to step S102. As a trigger for the external device 37 to transmit the above request, for example, there is a method in which an operator manually operates. Alternatively, the system may be constructed such that the external device 37 automatically operates when the power supply unit M1 is unlocked.
 ステップS102において、電源ユニット交換制御部35は、ON/OFFパターン演算部33に対して電源ユニットM1の電力変換装置10の出力電圧をゼロにするように要求を送る。これは、電源ユニットM1を取り外す際に安全性を確保するためである。ON/OFFパターン演算部33は、この要求を受けて電力変換装置10の交流側接続端子10aの両端が短絡制御されるようにON/OFFパターンを演算・出力する。このとき、電力変換装置10内のスイッチング回路11は、図3のタイミングチャートに示した期間<1>、または期間<3>のように制御される。 In step S102, the power supply unit replacement control unit 35 sends a request to the ON / OFF pattern calculation unit 33 to make the output voltage of the power conversion device 10 of the power supply unit M1 zero. This is to ensure safety when removing the power supply unit M1. In response to this request, the ON / OFF pattern calculation unit 33 calculates and outputs an ON / OFF pattern so that both ends of the AC side connection terminal 10a of the power conversion device 10 are short-circuit controlled. At this time, the switching circuit 11 in the power converter 10 is controlled as in the period <1> or the period <3> shown in the timing chart of FIG.
 電源ユニット交換制御部35は、交換対象の電源ユニットM1の交流側出力電圧がゼロ(交流側接続端子10aが内部で短絡状態)に制御されたことを、ON/OFFパターン演算部33から伝えられると、バイパス回路制御部36に対して電力ラインバイパス回路R1を動作させるよう信号を送る。 The power supply unit replacement control unit 35 is notified from the ON / OFF pattern calculation unit 33 that the AC side output voltage of the power supply unit M1 to be replaced is controlled to be zero (the AC side connection terminal 10a is internally short-circuited). Then, a signal is sent to the bypass circuit control unit 36 to operate the power line bypass circuit R1.
 ステップS103では、バイパス回路制御部36が、電力ラインバイパス回路R1を導通制御(オン)する。引き続きステップ104では、電源ユニット交換制御部35がON/OFFパターン演算部33に対して、電力変換装置10内のスイッチング回路11(図2)のMOSFET111~114のすべてがOFFとなるように制御される。スイッチング回路11がこのように制御されると、電源ユニットM1は、蓄電システム1の交流電力ラインから電気的に切り離されることとなる。このとき、スイッチング回路11がOFF制御された状態で電力ラインバイパス回路R1を導通させる必要があるため、電力ラインバイパス回路R1の導通処理時は、制御装置13と外部との通信が維持されている必要がある。そのため、後述する通信ラインバイパス回路B1よりも電力バイパス回路R1の方が先にON状態となる。 In step S103, the bypass circuit control unit 36 controls (turns on) the power line bypass circuit R1. In step 104, the power supply unit replacement control unit 35 is controlled by the ON / OFF pattern calculation unit 33 so that all of the MOSFETs 111 to 114 of the switching circuit 11 (FIG. 2) in the power conversion device 10 are turned off. The When the switching circuit 11 is controlled in this way, the power supply unit M1 is electrically disconnected from the AC power line of the power storage system 1. At this time, since it is necessary to conduct the power line bypass circuit R1 while the switching circuit 11 is controlled to be OFF, communication between the control device 13 and the outside is maintained during the conduction process of the power line bypass circuit R1. There is a need. Therefore, the power bypass circuit R1 is turned on earlier than the communication line bypass circuit B1 described later.
 ステップ105において、バイパス回路制御部36は通信ラインバイパス回路B1を導通制御(オン)する。このとき、同時に制御装置13(図4)のスレーブ通信部131は外部との通信を遮断する。そして最後に、ステップS106にて電源ユニットM1を蓄電システム1から取り外す。 In step 105, the bypass circuit control unit 36 controls (turns on) the communication line bypass circuit B1. At this time, the slave communication unit 131 of the control device 13 (FIG. 4) simultaneously cuts off communication with the outside. Finally, the power supply unit M1 is removed from the power storage system 1 in step S106.
 図9は、電源ユニットM1を取り外した蓄電システム1を示した構成図である。ただし、中央制御装置3から電力ラインバイパス回路R1~R7および通信ラインバイパス回路B1~B7を制御する配線は図示していない。図9に示した通り、電力ラインバイパス回路R1および通信ラインバイパス回路B1が共にON制御されているため、電源ユニットM1がなくても電力ラインおよび通信ラインは遮断されず、蓄電システム1は動作を継続することができる。 FIG. 9 is a configuration diagram showing the power storage system 1 with the power supply unit M1 removed. However, the wiring for controlling the power line bypass circuits R1 to R7 and the communication line bypass circuits B1 to B7 from the central controller 3 is not shown. As shown in FIG. 9, since both the power line bypass circuit R1 and the communication line bypass circuit B1 are ON-controlled, the power line and the communication line are not cut off even without the power supply unit M1, and the power storage system 1 operates. Can continue.
 続いて、電源ユニットM1を蓄電システム1に取りつける手順を図10のフローチャートに沿って説明する。なお、電源ユニットM1が取り外されているときは、電力ラインバイパス回路R1および通信ラインバイパス回路R1はともにオン状態を継続維持していることを前提とする。 Next, the procedure for attaching the power supply unit M1 to the power storage system 1 will be described with reference to the flowchart of FIG. When power supply unit M1 is removed, it is assumed that both power line bypass circuit R1 and communication line bypass circuit R1 are kept on.
 図10のステップS201において、電源ユニットM1が蓄電システム1の所定の位置(元の位置)にセットされると、図5に示した外部装置37は電源ユニットM1のセット状態を検知し、電源ユニット交換制御部35に対して電源ユニットM1の接続要求信号を送る。このとき、電源ユニットM1のスイッチング回路11はノーマリーオフ型のMOSFETで構成されるため、直流側接続端子10dと交流側接続端子10aおよび交流電力ライン7とは電気的に遮断状態となっている。 In step S201 in FIG. 10, when the power supply unit M1 is set at a predetermined position (original position) of the power storage system 1, the external device 37 shown in FIG. 5 detects the set state of the power supply unit M1, and the power supply unit A connection request signal for the power supply unit M1 is sent to the exchange control unit 35. At this time, since the switching circuit 11 of the power supply unit M1 is composed of a normally-off type MOSFET, the DC side connection terminal 10d, the AC side connection terminal 10a, and the AC power line 7 are electrically disconnected. .
 次に、ステップS202において、電源ユニット交換制御部35は、バイパス回路制御部36に対して、通信バイパス回路B1を開放(オフ)するよう信号を出し、これを受けたバイパス回路制御部36は、通信ラインバイパス回路B1を開放制御(オフ)する。これと同時に電力変換装置10の制御装置13内のスレーブ通信部131は、他の制御装置および中央制御装置3との通信可能な状態に復帰する。 Next, in step S202, the power supply unit replacement control unit 35 issues a signal to the bypass circuit control unit 36 to open (turn off) the communication bypass circuit B1, and the bypass circuit control unit 36 that has received this signal The communication line bypass circuit B1 is controlled to be opened (off). At the same time, the slave communication unit 131 in the control device 13 of the power conversion device 10 returns to a state in which communication with other control devices and the central control device 3 is possible.
 ステップS203において、電源ユニット交換制御部35は、ON/OFFパターン演算部33に対して電力変換装置10の交流側接続端子10aを短絡制御するよう指令信号を送る。ON/OFFパターン演算部33はこの信号を受けて、電力変換装置10の交流側接続端子10aの両端が短絡制御されるようにON/OFFパターンを演算する。このとき、電力変換装置10内のスイッチング回路11は、図3のタイミングチャートに示した期間<1>または期間<3>のように制御される。このように、先に通信バイパス回路をオフし、制御装置13を通信可能な状態とした後に交流側接続端子10aを短絡制御させるステップを入れることで、交流側接続端子10aにかかる電位差を電力ラインバイパス回路R1の両端の電位差がそろうため、後述する電力ラインバイパス回路R1の遮断時にパワーラインに突入電流などの異常な電流が流れることによる各機器の誤動作を防止できる。 In step S203, the power supply unit replacement control unit 35 sends a command signal to the ON / OFF pattern calculation unit 33 so as to short-circuit control the AC side connection terminal 10a of the power conversion device 10. The ON / OFF pattern calculation unit 33 receives this signal and calculates an ON / OFF pattern so that both ends of the AC side connection terminal 10a of the power conversion device 10 are controlled to be short-circuited. At this time, the switching circuit 11 in the power converter 10 is controlled as in the period <1> or the period <3> shown in the timing chart of FIG. As described above, the step of short-circuiting the AC side connection terminal 10a after the communication bypass circuit is turned off first and the control device 13 is brought into a communicable state allows the potential difference applied to the AC side connection terminal 10a to be changed to the power line. Since the potential difference between both ends of the bypass circuit R1 is aligned, it is possible to prevent malfunction of each device due to abnormal current such as inrush current flowing in the power line when the power line bypass circuit R1 described later is shut off.
 ステップS204において、電源ユニット35はバイパス回路制御部36に対して、電力ラインバイパス回路B1を開放(オフ)するよう信号を出し、これを受けたバイパス回路制御部36は、電力ラインバイパス回路R1を開放制御(オフ)する。この時点で、電源ユニットM1は、蓄電システム1の所定の位置に設置されるとともに、電力ライン、通信ラインが取り換え前の状態に戻ったこととなる。 In step S204, the power supply unit 35 issues a signal to the bypass circuit control unit 36 to open (turn off) the power line bypass circuit B1, and the bypass circuit control unit 36 that has received the signal outputs the power line bypass circuit R1. Open control (off). At this time, the power supply unit M1 is installed at a predetermined position of the power storage system 1, and the power line and the communication line are returned to the state before the replacement.
 ステップS205において、中央制御装置3の制御形態は電源ユニットが7つ直列接続されていた時と同様の動作に復帰する。 In step S205, the control mode of the central controller 3 returns to the same operation as when seven power supply units are connected in series.
 以上が蓄電システム1におけるシステム非停止の電源ユニット交換方法の一例である。 The above is an example of a method of replacing the power supply unit without stopping the system in the power storage system 1.
 以上、上述したように本発明の蓄電システム1は、蓄電装置E1~E7と、蓄電装置E1~E7と接続される電力変換装置10~70を有する電源ユニットM1~M7を複数有し、電源ユニットM1~M7に含まれる電力変換装置10~70の制御信号端子10s~70sはそれぞれ通信ライン6を介してデイジーチェーン構造に接続され、それぞれの電源ユニットM1~M7には当該電源ユニットM1~M7に対応した通信ラインバイパス回路B1~B7が並列に接続され、通信ラインバイパス回路B1~B7は、通信ラインバイパス回路B1~B7に対応する電源ユニットM1~M7が切り離された場合、電源ユニットに隣接する電源ユニットと通信可能にするスイッチを有する。このような構成にすることによって、デイジーチェーン構造を取ってコストを削減した場合であっても、電源ユニットM1~M7のいずれかを取り外して交換する際に、通信ラインを切ること無く制御することが可能となる。そのため、蓄電システム1のメンテナンス時等に非停止状態での連続駆動が可能となる。 As described above, the power storage system 1 of the present invention includes a plurality of power supply units M1 to M7 having the power storage devices E1 to E7 and the power conversion devices 10 to 70 connected to the power storage devices E1 to E7. The control signal terminals 10s to 70s of the power converters 10 to 70 included in M1 to M7 are connected to each other in a daisy chain structure via the communication line 6, and the power supply units M1 to M7 are connected to the power supply units M1 to M7. Corresponding communication line bypass circuits B1 to B7 are connected in parallel, and the communication line bypass circuits B1 to B7 are adjacent to the power supply unit when the power supply units M1 to M7 corresponding to the communication line bypass circuits B1 to B7 are disconnected. A switch that enables communication with the power supply unit is provided. By adopting such a configuration, even when the cost is reduced by adopting a daisy chain structure, control can be performed without disconnecting the communication line when any of the power supply units M1 to M7 is removed and replaced. Is possible. Therefore, continuous driving in a non-stop state is possible during maintenance of the power storage system 1 or the like.
 また、本発明の蓄電システム1は電源ユニットM1~M7に含まれる電力変換装置10~70の交流側接続端子10a~70aはそれぞれ交流電力ライン7を介して直列に接続され、それぞれの電源ユニットM1~M7には当該電源ユニットM1~M7に対応した電力ラインバイパス回路R1~R7が並列に接続され、前記電力ラインバイパス回路R1~R7は、当該電力ラインバイパス回路R1~R7に対応する電源ユニットが切り離された場合、当該電源ユニットに隣接する電源ユニットと電力の授受を可能にするスイッチを有する。このような構成にすることによって、上述した通り蓄電システム1のメンテナンス時等に非停止状態での連続駆動が可能となる。 Further, in the power storage system 1 of the present invention, the AC side connection terminals 10a to 70a of the power converters 10 to 70 included in the power supply units M1 to M7 are connected in series via the AC power line 7, respectively, and the respective power supply units M1 To M7 are connected in parallel with power line bypass circuits R1 to R7 corresponding to the power supply units M1 to M7, and the power line bypass circuits R1 to R7 have power supply units corresponding to the power line bypass circuits R1 to R7. When disconnected, the power supply unit has a switch that enables power transfer to and from the power supply unit adjacent to the power supply unit. By adopting such a configuration, as described above, continuous driving in a non-stop state is possible during maintenance of the power storage system 1 or the like.
 また、本発明の蓄電システム1は、電源ユニットM1~M7を制御する中央制御装置3を有し、中央制御装置3は電源ユニット交換制御部35及びON/OFFパターン演算部33を有し、電源ユニット交換制御部35は外部からの信号に基づいて対象とする電源ユニットを特定し、ON/OFFパターン演算部33は、電源ユニット交換制御部35からの信号に基づいて対象とする電源ユニットM1~M7の電力変換装置10~70を短絡制御する信号を演算する。このような構成にすることによって、交換時に電源ユニットM1~M7の電圧変動を抑制し、接続によるノイズを抑制して他の電力変換装置へ安定した制御を可能とする。 The power storage system 1 of the present invention includes a central control device 3 that controls the power supply units M1 to M7. The central control device 3 includes a power supply unit replacement control unit 35 and an ON / OFF pattern calculation unit 33. The unit replacement control unit 35 specifies a target power supply unit based on a signal from the outside, and the ON / OFF pattern calculation unit 33 selects a target power supply unit M1˜M based on a signal from the power supply unit replacement control unit 35. A signal for short-circuiting control of the M7 power converters 10 to 70 is calculated. With such a configuration, voltage fluctuations of the power supply units M1 to M7 are suppressed during replacement, noise due to connection is suppressed, and stable control to other power conversion devices is possible.
 また、本発明の蓄電システム1は、中央制御装置3がバイパス回路制御部36を有し、電源ユニット交換制御部35は対象とする電源ユニットM1~M7の電力変換装置10~70が短絡状態になった場合に、バイパス回路制御部36にバイパス回路動作信号を出力し、バイパス回路制御部36は、バイパス回路動作信号を受けた後、対象とする電源ユニットM1~M7に対応する電力ラインバイパス回路R1~R7のスイッチを遮断状態にする制御を行う。このように先に電源ユニットM1~M7の電力変換装置10~70を遮断することによって、電力ライン遮断時の急激な電圧変動を抑制し、他の機器の誤動作を防止することが可能となる。 In the power storage system 1 of the present invention, the central control device 3 has the bypass circuit control unit 36, and the power supply unit replacement control unit 35 puts the power conversion devices 10 to 70 of the target power supply units M1 to M7 into a short circuit state. In this case, a bypass circuit operation signal is output to the bypass circuit control unit 36, and the bypass circuit control unit 36 receives the bypass circuit operation signal and then receives the power line bypass circuit corresponding to the target power supply units M1 to M7. Control is performed to turn off the switches R1 to R7. Thus, by shutting off the power conversion devices 10 to 70 of the power supply units M1 to M7 first, it is possible to suppress a sudden voltage fluctuation when the power line is shut off and prevent malfunction of other devices.
 また、本発明の蓄電システム1は、バイパス回路制御部36が対象とする電源ユニットM1~M7に対応する電力ラインバイパス回路R1~R7のスイッチを遮断状態にした後に、対象とする電源ユニットM1~M7に対応する通信ラインバイパス回路B1~B7のスイッチを通電状態にする制御を行う。このように先に電力ラインを遮断して、その後に通信ラインを接続することによって、電力ライン遮断によるノイズの影響を抑えて各機器の誤動作を防止することが可能となる。 Further, in the power storage system 1 of the present invention, after the switches of the power line bypass circuits R1 to R7 corresponding to the power supply units M1 to M7 targeted by the bypass circuit control unit 36 are turned off, the target power supply units M1 to M1 Control is performed to turn on the switches of the communication line bypass circuits B1 to B7 corresponding to M7. Thus, by cutting off the power line first and then connecting the communication line, it is possible to suppress the influence of noise caused by the power line cutoff and prevent malfunction of each device.
 また、本発明の蓄電システム1は電源ユニットM1~M7を制御する中央制御装置3を有し、中央制御装置3は電源ユニット交換制御部35及びバイパス回路制御部36を有し、電源ユニット交換制御部35は、電源ユニットM1~M7が外部から取り付けられた場合に当該取り付けられた電源ユニットを特定し、バイパス回路制御部36は、電源ユニット交換制御部35からの信号に基づいて取り付けられた電源ユニットM1~M7に対応する通信ラインバイパス回路B1~B7のスイッチを遮断状態にする制御を行う。このように先に電力変換装置10~70を制御可能な状態とすることによって、電源ユニットM1~M7を接続して即使用することが可能となる。また、電力ライン7に接続する前に電力変換装置10~70を制御可能な状態にしているため、誤動作等による他の機器の破壊を防ぐことが可能となる。 The power storage system 1 of the present invention includes a central control device 3 that controls the power supply units M1 to M7. The central control device 3 includes a power supply unit replacement control unit 35 and a bypass circuit control unit 36 to control power supply unit replacement control. When the power supply units M1 to M7 are attached from the outside, the unit 35 identifies the attached power supply unit, and the bypass circuit control unit 36 determines the power supply attached based on the signal from the power supply unit replacement control unit 35. Control is performed to turn off the switches of the communication line bypass circuits B1 to B7 corresponding to the units M1 to M7. As described above, when the power conversion devices 10 to 70 are brought into a controllable state in advance, the power supply units M1 to M7 can be connected and used immediately. In addition, since the power converters 10 to 70 are in a controllable state before being connected to the power line 7, it is possible to prevent destruction of other devices due to malfunctions or the like.
 また、本発明の蓄電システム1は、中央制御装置3がON/OFFパターン演算部33を有し、ON/OFFパターン演算部33は、前記電源ユニット交換制御部35からの信号に基づいて前記取り付けられた電源ユニットM1~M7の電力変換装置10~70を短絡状態にする制御をする。このようにすることによって電源ユニットM1~M7を通信可能な状態にした後に電力変換装置10~70を短絡状態にすることによって、電源ユニットM1~M7を電力ライン7に再接続する際の突入電流を防止することが可能になる。 Further, in the power storage system 1 of the present invention, the central controller 3 has an ON / OFF pattern calculation unit 33, and the ON / OFF pattern calculation unit 33 is attached based on a signal from the power supply unit replacement control unit 35. The power conversion devices 10 to 70 of the power supply units M1 to M7 are controlled to be short-circuited. By making the power supply units M1 to M7 communicable in this way, the power converters 10 to 70 are brought into a short-circuited state, whereby an inrush current when reconnecting the power supply units M1 to M7 to the power line 7 is achieved. Can be prevented.
 また、本発明の蓄電システム1は、バイパス回路制御部36が、取り付けられた電源ユニットM1~M7の電力変換装置10~70が短絡状態になった後に、前記取り付けられた電源ユニットM1~M7に対応する電力ラインバイパス回路36のスイッチを遮断状態にする制御をする。このように一旦電力変換装置10~70の短絡状態を挟んでから電源ユニットM1~M7を切り離すことによって、電源ユニットM1~M7の切り離し時の安全性が向上する。 Further, in the power storage system 1 of the present invention, the bypass circuit control unit 36 applies power to the attached power supply units M1 to M7 after the power converters 10 to 70 of the attached power supply units M1 to M7 are in a short circuit state. Control is performed to turn off the switch of the corresponding power line bypass circuit 36. In this way, once the power converters 10 to 70 are short-circuited and then the power supply units M1 to M7 are disconnected, the safety when the power supply units M1 to M7 are disconnected is improved.
 以上のように本発明によれば、複数の電力変換装置がデイジーチェーン構造の通信手段で接続された蓄電システムにおいて、蓄電装置および電力変換装置を取り換え交換時に通信手段が遮断されず、システムの非停止交換を実現できる蓄電システムの提供ができる。 As described above, according to the present invention, in a power storage system in which a plurality of power conversion devices are connected by communication means having a daisy chain structure, the communication means is not shut off when the power storage device and the power conversion device are replaced and replaced. A power storage system that can realize stop replacement can be provided.
1:蓄電システム
2:交流側接続端子
3:中央制御装置
3s:制御信号端子
4:電流計測装置
5:電圧検出装置
6:通信ライン
7:交流電力ライン
31:指令電圧演算部
32:キャリア演算部
33:ON/OFFパターン演算部、
34:マスタ通信部
35:電源ユニット交換制御部
36:バイパス回路制御部、
37:外部装置、
10~70:電力変換装置
10a~70a:交流側接続端子
10d~70d:直流側接続端子
10s~70s:制御信号端子
11:スイッチング回路
12:平滑化コンデンサ
13:制御装置
14:電圧計測装置
E1~E7:蓄電装置
M1~M7:電源ユニット
R1~R7:電力ラインバイパス回路
B1~B7:通信ラインバイパス回路

111~114:MOSFET
D111~D114:ボディダイオード
131:スレーブ通信部
132:データ保持部
133:スイッチ制御・駆動部
134:電圧判定部
C1~C7:キャリア
1: Power storage system 2: AC side connection terminal 3: Central control device 3s: Control signal terminal 4: Current measurement device 5: Voltage detection device 6: Communication line 7: AC power line 31: Command voltage calculation unit 32: Carrier calculation unit 33: ON / OFF pattern calculation unit,
34: Master communication unit 35: Power supply unit replacement control unit 36: Bypass circuit control unit,
37: External device,
10 to 70: Power conversion devices 10a to 70a: AC side connection terminals 10d to 70d: DC side connection terminals 10s to 70s: Control signal terminal 11: Switching circuit 12: Smoothing capacitor 13: Control device 14: Voltage measurement device E1 to E7: Power storage devices M1 to M7: Power supply units R1 to R7: Power line bypass circuits B1 to B7: Communication line bypass circuits

111 to 114: MOSFET
D111 to D114: Body diode 131: Slave communication unit 132: Data holding unit 133: Switch control / drive unit 134: Voltage determination unit C1 to C7: Carrier

Claims (7)

  1.  蓄電装置と、当該蓄電装置と接続される電力変換装置を有する電源ユニットを複数有する蓄電システムにおいて、
     前記電源ユニットに含まれる電力変換装置の制御信号端子はそれぞれ通信ラインを介してデイジーチェーン構造に接続され、
     それぞれの前記電源ユニットには、前記電源ユニットに対応した通信ラインバイパス回路が並列に接続され、前記通信ラインバイパス回路は、当該通信ラインバイパス回路に対応する電源ユニットが切り離された場合、当該電源ユニットに隣接する電源ユニットと通信可能にするスイッチを有し、
     前記電源ユニットに含まれる電力変換装置の交流側接続端子はそれぞれ交流電力ラインを介して直列に接続され、
     それぞれの前記電源ユニットには、前記電源ユニットに対応した電力ラインバイパス回路を有し、
     前記電力ラインバイパス回路は、当該電力ラインバイパス回路に対応する電源ユニットが切り離された場合、当該電源ユニットに隣接する電源ユニットと電力の授受を可能にするスイッチを有することを特徴とする蓄電システム。
    In a power storage system having a plurality of power supply units having a power storage device and a power conversion device connected to the power storage device,
    The control signal terminal of the power converter included in the power supply unit is connected to the daisy chain structure via a communication line,
    A communication line bypass circuit corresponding to the power supply unit is connected in parallel to each of the power supply units. When the power supply unit corresponding to the communication line bypass circuit is disconnected, the power supply unit A switch that enables communication with the power supply unit adjacent to
    The AC side connection terminals of the power converters included in the power supply unit are connected in series via AC power lines, respectively.
    Each of the power supply units has a power line bypass circuit corresponding to the power supply unit,
    The power line bypass circuit includes a switch that allows power to be exchanged with a power supply unit adjacent to the power supply unit when the power supply unit corresponding to the power line bypass circuit is disconnected.
  2.  請求項1に記載の蓄電システムにおいて、
     前記電源ユニットを制御する中央制御装置を有し、
     前記中央制御装置は電源ユニット交換制御部及びON/OFFパターン演算部を有し、
     前記電源ユニット交換制御部は外部からの信号に基づいて対象とする電源ユニットを特定し、
     前記ON/OFFパターン演算部は、前記電源ユニット交換制御部からの信号に基づいて前記対象とする電源ユニットの電力変換装置を短絡制御する信号を演算することを特徴とする蓄電システム。
    The power storage system according to claim 1,
    A central control device for controlling the power supply unit;
    The central control unit has a power supply unit replacement control unit and an ON / OFF pattern calculation unit,
    The power supply unit replacement control unit identifies a target power supply unit based on an external signal,
    The ON / OFF pattern calculation unit calculates a signal for performing short-circuit control on the power conversion device of the target power supply unit based on a signal from the power supply unit replacement control unit.
  3.  請求項2に記載の蓄電システムにおいて、
     前記中央制御装置はバイパス回路制御部を有し、
     前記電源ユニット交換制御部は前記対象とする電源ユニットの電力変換装置が短絡状態になった場合に、バイパス回路制御部にバイパス回路動作信号を出力し、
     前記バイパス回路制御部は、前記バイパス回路動作信号を受けた後、前記対象とする電源ユニットに対応する電力ラインバイパス回路のスイッチを遮断状態にする制御を行うことを特徴とする蓄電システム。
    The power storage system according to claim 2,
    The central control unit has a bypass circuit control unit,
    The power supply unit replacement control unit outputs a bypass circuit operation signal to the bypass circuit control unit when the power conversion device of the target power supply unit is in a short circuit state,
    The said bypass circuit control part performs the control which makes the switch of the electric power line bypass circuit corresponding to the said power supply unit made into an interruption | blocking state after receiving the said bypass circuit operation signal.
  4.  請求項3に記載の蓄電システムにおいて、
     前記バイパス回路制御部は、前記対象とする電源ユニットに対応する電力ラインバイパス回路のスイッチを遮断状態にした後に、前記対象とする電源ユニットに対応する通信ラインバイパス回路のスイッチを通電状態にする制御を行うことを特徴とする蓄電システム。
    The power storage system according to claim 3,
    The bypass circuit control unit controls the switch of the communication line bypass circuit corresponding to the target power supply unit to be energized after the switch of the power line bypass circuit corresponding to the target power supply unit is cut off. A power storage system characterized by
  5.  請求項1に記載の蓄電システムにおいて、
     前記電源ユニットを制御する中央制御装置を有し、
     前記中央制御装置は電源ユニット交換制御部及びバイパス回路制御部を有し、
     前記電源ユニット交換制御部は、電源ユニットが外部から取り付けられた場合に当該取り付けられた電源ユニットを特定し、
     前記バイパス回路制御部は、前記電源ユニット交換制御部からの信号に基づいて前記取り付けられた電源ユニットに対応する通信ラインバイパス回路のスイッチを遮断状態にする制御を行うことを特徴とする蓄電システム。
    The power storage system according to claim 1,
    A central control device for controlling the power supply unit;
    The central control unit has a power supply unit replacement control unit and a bypass circuit control unit,
    The power supply unit replacement control unit identifies the attached power supply unit when the power supply unit is attached from the outside,
    The power storage system, wherein the bypass circuit control unit performs control to turn off a switch of a communication line bypass circuit corresponding to the attached power supply unit based on a signal from the power supply unit replacement control unit.
  6.  請求項5に記載の蓄電システムにおいて、
     前記中央制御装置はON/OFFパターン演算部を有し、
     前記ON/OFFパターン演算部は、前記電源ユニット交換制御部からの信号に基づいて前記取り付けられた電源ユニットの電力変換装置を短絡状態にする制御をすることを特徴とする蓄電システム。
    The power storage system according to claim 5,
    The central control unit has an ON / OFF pattern calculation unit,
    The ON / OFF pattern calculation unit controls the power conversion device of the attached power supply unit to be in a short circuit state based on a signal from the power supply unit replacement control unit.
  7.  請求項6に記載の蓄電システムにおいて、
     前記バイパス回路制御部は、前記取り付けられた電源ユニットの電力変換装置が短絡状態になった後に、前記取り付けられた電源ユニットに対応する電力ラインバイパス回路のスイッチを遮断状態にする制御を行うことを特徴とする蓄電システム。
    The power storage system according to claim 6,
    The bypass circuit control unit performs control to turn off a switch of the power line bypass circuit corresponding to the attached power supply unit after the power converter of the attached power supply unit is in a short circuit state. A featured power storage system.
PCT/JP2014/056815 2014-03-14 2014-03-14 Electricity storage system WO2015136682A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/056815 WO2015136682A1 (en) 2014-03-14 2014-03-14 Electricity storage system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/056815 WO2015136682A1 (en) 2014-03-14 2014-03-14 Electricity storage system

Publications (1)

Publication Number Publication Date
WO2015136682A1 true WO2015136682A1 (en) 2015-09-17

Family

ID=54071159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/056815 WO2015136682A1 (en) 2014-03-14 2014-03-14 Electricity storage system

Country Status (1)

Country Link
WO (1) WO2015136682A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109245123A (en) * 2018-11-07 2019-01-18 威凡智能电气高科技有限公司 A kind of cascade connection type energy-storage system multi-machine parallel connection virtual synchronous control system and method
WO2021093776A1 (en) * 2019-11-11 2021-05-20 华为技术有限公司 Method for transmitting information in plc network, apparatus, and system
WO2023170898A1 (en) * 2022-03-11 2023-09-14 東芝三菱電機産業システム株式会社 Uninterruptible power supply device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154746A (en) * 1984-01-25 1985-08-14 Chino Works Ltd Transmitter
JP2009296858A (en) * 2008-06-09 2009-12-17 Hitachi Ltd Power converting apparatus
WO2010032637A1 (en) * 2008-09-22 2010-03-25 ダイキン工業株式会社 Communication module, communication system and air conditioner
JP2011193615A (en) * 2010-03-15 2011-09-29 Hitachi Ltd Electric power conversion apparatus
JP2012253862A (en) * 2011-06-01 2012-12-20 Hitachi Ltd Power storage system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60154746A (en) * 1984-01-25 1985-08-14 Chino Works Ltd Transmitter
JP2009296858A (en) * 2008-06-09 2009-12-17 Hitachi Ltd Power converting apparatus
WO2010032637A1 (en) * 2008-09-22 2010-03-25 ダイキン工業株式会社 Communication module, communication system and air conditioner
JP2011193615A (en) * 2010-03-15 2011-09-29 Hitachi Ltd Electric power conversion apparatus
JP2012253862A (en) * 2011-06-01 2012-12-20 Hitachi Ltd Power storage system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109245123A (en) * 2018-11-07 2019-01-18 威凡智能电气高科技有限公司 A kind of cascade connection type energy-storage system multi-machine parallel connection virtual synchronous control system and method
CN109245123B (en) * 2018-11-07 2022-04-19 威凡智能电气高科技有限公司 Multi-machine parallel virtual synchronous control system and method for cascade type energy storage system
WO2021093776A1 (en) * 2019-11-11 2021-05-20 华为技术有限公司 Method for transmitting information in plc network, apparatus, and system
WO2023170898A1 (en) * 2022-03-11 2023-09-14 東芝三菱電機産業システム株式会社 Uninterruptible power supply device

Similar Documents

Publication Publication Date Title
US20220239136A1 (en) Advanced battery charging on modular levels of energy storage systems
JP5798887B2 (en) Power storage system
WO2014132321A1 (en) Power source device
EP3000646B1 (en) Hybrid drive system
KR101560995B1 (en) Rail vehicle system
CN103269117B (en) Control method for multi-energy convergence coordinated control system
CA2916574C (en) Hybrid drive system
RU2667019C1 (en) Vehicle
CN103731059B (en) A kind of two clamped sub-module structure circuit of modularization multi-level converter
US20140104906A1 (en) Energy storage device, and system having an energy storage device
US20230365003A1 (en) Systems, devices, and methods for charging and discharging module-based cascaded energy systems
CN102842929A (en) Electrical storage apparatus
US11794599B2 (en) Systems, devices, and methods for rail-based and other electric vehicles with modular cascaded energy systems
Helling et al. Low voltage power supply in modular multilevel converter based split battery systems for electrical vehicles
WO2015136682A1 (en) Electricity storage system
JP5853094B2 (en) Power supply
CN104981370A (en) Internal energy supply of energy storage modules for an energy storage device, and energy storage device with such an internal energy supply
CN110116639A (en) The method of supplying power to of rail vehicle based on super capacitor
JP2017112795A (en) vehicle
JP2013031238A (en) Power conversion device
CN104411531A (en) Method for operating an electric traction drive system with a battery direct inverter and associated control apparatus
CN116529119A (en) Systems, devices, and methods for intra-phase and inter-phase balancing in a module-based cascade energy system
WO2014141396A1 (en) Power source device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885220

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP