WO2014141396A1 - Power source device - Google Patents

Power source device Download PDF

Info

Publication number
WO2014141396A1
WO2014141396A1 PCT/JP2013/056894 JP2013056894W WO2014141396A1 WO 2014141396 A1 WO2014141396 A1 WO 2014141396A1 JP 2013056894 W JP2013056894 W JP 2013056894W WO 2014141396 A1 WO2014141396 A1 WO 2014141396A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power storage
side connection
power supply
storage device
Prior art date
Application number
PCT/JP2013/056894
Other languages
French (fr)
Japanese (ja)
Inventor
伸治 今井
啓 角谷
寛 岩澤
Original Assignee
株式会社 日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 日立製作所 filed Critical 株式会社 日立製作所
Priority to PCT/JP2013/056894 priority Critical patent/WO2014141396A1/en
Publication of WO2014141396A1 publication Critical patent/WO2014141396A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/11DC charging controlled by the charging station, e.g. mode 4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/20Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by converters located in the vehicle
    • B60L53/22Constructional details or arrangements of charging converters specially adapted for charging electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4835Converters with outputs that each can have more than two voltages levels comprising two or more cells, each including a switchable capacitor, the capacitors having a nominal charge voltage which corresponds to a given fraction of the input voltage, and the capacitors being selectively connected in series to determine the instantaneous output voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/18Buses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/26Rail vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/36Vehicles designed to transport cargo, e.g. trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2200/00Type of vehicles
    • B60L2200/40Working vehicles
    • B60L2200/42Fork lift trucks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a power supply device.
  • a power supply system equipped with a storage battery is attracting attention.
  • This power supply system is composed of a power storage device (power storage device) that discharges and stores power and a power conversion system that converts the power into a form that is easy for the user to use, and stores power when the amount of power is surplus
  • the amount of power supplied from renewable energy is kept almost constant by releasing the shortage of power when there is a shortage.
  • the power conversion system plays an important role in enabling the power entering and exiting the power storage device to be linked to the AC power supply system. Therefore, in order to effectively use the obtained power, it is desired to increase the efficiency of the power conversion system in the power storage system.
  • Examples of the power storage device include those equipped with a secondary battery and those equipped with a capacitor, which are desired to reduce the storage battery cost and the running cost by extending the life of the storage battery.
  • Patent Document 1 discloses a power supply system equipped with a storage battery as described above, which realizes high-efficiency operation.
  • n (n) connected to a DC power supply circuit is provided in order to equalize the power consumption of a plurality of single-phase power converters without impairing the harmonic suppression effect and to ensure safe and stable operation.
  • the means for calculating the PWM signal synchronized with the voltage command for the serial multiple power converter, and the timing at which the PWM signal changes are interchanged between the n single-phase power converters, and the single-phase power converters
  • a control device for a serial multiple power conversion device including means for equalizing voltage output periods is described.
  • Patent Document 1 discloses a method of replacing the PWM signal every half cycle of the voltage command.
  • the present invention provides a power supply device that can reduce the storage battery cost for a power supply device that uses a series multiple power conversion device and a power storage device, as compared with the case where all of the same type of storage battery is applied.
  • a plurality of power conversion devices each having a DC side connection terminal to which a power storage device capable of charging and discharging electric power is electrically connected, and an AC side connection terminal, each of the plurality of power conversion devices being connected to each AC side
  • a power supply device that can be connected to an AC power supply system by electrically connecting terminals in series, wherein the plurality of power conversion devices are classified into at least two groups, and the power constituting the group
  • the combination of the positive electrode active material and the negative electrode active material of the power storage element built in the power storage device connected to the DC side connection terminal of the conversion device is the same within the group, and the power storage element built in the power storage device A combination of the positive electrode active material and the negative electrode active material is different between the groups.
  • the present invention it is possible to provide a power supply device that can reduce the storage battery cost for a power supply device that uses a serial multiple power conversion device and a power storage device, as compared to the case where the same type of storage battery is applied.
  • FIG. 3 It is a schematic block diagram of the power supply device which concerns on one Example of this invention. It is a block diagram which shows schematic structure of the power converter device of FIG. 3 is a timing chart schematically showing the relationship between the switch operation in the switching circuit shown in FIG. 2 and the voltage between the terminals of the AC side connection terminals. It is a block diagram which shows schematic structure of the control apparatus described in FIG. It is a block diagram which shows schematic structure of the central control apparatus described in FIG. It is a timing chart which shows the example of the command voltage waveform of the power unit concerning one example of the present invention, and the ON / OFF operation pattern of the power converter AC side connection terminal. It is the voltage waveform which synthesize
  • FIG. 10 is a bar graph showing a comparison of power consumption of each power storage device after power amount correction by a method different from the method shown in FIG. 9.
  • FIG. 13 is a timing chart of an AC side output pattern of each power conversion device and a schematic diagram of the combined voltage when power amount correction is performed in the power amount distribution illustrated in FIG. 12.
  • the invention of the present application is applied to a stationary power storage system installed as a power storage system in a power generation farm using a renewable energy, for example, a solar power generation system or a wind power generation system.
  • a renewable energy for example, a solar power generation system or a wind power generation system.
  • the stationary power storage system is provided for suppressing (relaxing) the output fluctuation of the power generation system.
  • the stationary power storage system When the power output from the power generation system to the power system is in a shortage state with respect to the predetermined output power, the stationary power storage system is discharged to compensate for the power shortage of the power generation system.
  • the stationary power storage system receives and charges the surplus power of the power generation system.
  • the configuration of the embodiment described below can also be applied to a stationary power storage system installed as an uninterruptible power supply (backup power supply) such as a data center server system or communication equipment.
  • a stationary power storage system installed as an uninterruptible power supply (backup power supply) such as a data center server system or communication equipment.
  • backup power supply uninterruptible power supply
  • the configuration of the embodiment described below is a stationary device that is installed in a consumer, stores nighttime power, and releases the stored power in the daytime to level the power load. It can also be applied to power storage systems.
  • the configuration of the embodiment described below is electrically connected in the middle of the transmission / distribution system, and is used as a countermeasure for fluctuations in power transmitted / distributed in the transmission / distribution system, a countermeasure for surplus power, a countermeasure for frequency, a countermeasure for reverse power flow, etc. It can also be applied to a stationary power storage system.
  • the configuration of the embodiment described below is also applied to a mobile power storage system that is installed in a mobile body and used as a drive power source for driving the mobile body or a drive power source for driving a load mounted on the mobile body.
  • moving objects include automobiles such as hybrid electric vehicles that use an engine and a motor as the drive source of the vehicle and pure electric vehicles that use the motor as the sole drive source of the vehicle, that is, land-based vehicles (cars such as passenger cars and trucks).
  • Automobiles, buses and other shared vehicles electric vehicles powered by diesel engines, railway vehicles such as hybrid trains using motors driven by the power generated by this power generation, industries such as construction machinery and forklift trucks There are vehicles.
  • FIG. 1 is a schematic diagram of an overall configuration of a power supply device 1 according to the present embodiment.
  • the power supply device 1 includes an AC side connection terminal 2, power conversion devices 10, 20, 30, 40, 50, 60, power storage devices E1, E2, E3, E4, E5, E6, a central control device 3, a current measurement device 4, A voltage measuring device 5 is provided.
  • the power converters 10 to 60 are converters having a function of converting DC power into AC power or, conversely, converting AC power into DC power.
  • Power storage devices E1 to E6 are connected correspondingly to DC side connection terminals 10d to 60d of power conversion devices 10 to 60, respectively.
  • Each power conversion device 10 to 60 converts the DC power output from the corresponding power storage device E1 to E6 into AC power, and generates this AC power at the AC side connection terminals 10a to 60a of each power conversion device. Conversely, the AC power supplied from the AC side connection terminals 10a to 60a of each power conversion device is converted into DC power and output to the corresponding power storage device.
  • AC side connection terminals 10a to 60a of the power conversion devices 10 to 60 are electrically connected in series as shown in the figure, and one end of the AC side connection terminal 10a of the power conversion device 10 and the AC side connection terminal of the power conversion device 60 are connected. One end of 60a is connected to AC side connection terminal 2 of power supply device 1, respectively.
  • the power storage device E1 constitutes a capacitor module (not shown) in which a plurality of capacitors are mounted as power storage elements and a plurality of capacitor cells are connected in series.
  • a capacitor cell for example, an electric double layer capacitor or a lithium ion capacitor can be used.
  • Each of the power storage devices E2 to E6 has a secondary battery mounted therein as a power storage element.
  • each of the power storage devices E2 to E6 is configured as a cell group in which a plurality of secondary battery cells are connected in series and a secondary battery module formed by connecting a plurality of these cell groups in parallel.
  • a secondary battery cell for example, a lithium ion secondary battery, a lead storage battery, or a nickel metal hydride battery can be used.
  • an AC power supply system such as a power generation system is electrically connected to the outside of the AC side connection terminal 2 of the power supply device 1, and between the power storage devices E1 to E6 and the AC power supply system. It is possible to send and receive electrical energy.
  • the power supply device 1 discharges the electric energy stored in the power storage devices E1 to E6 as DC power, converts the discharged DC power into AC power by the power conversion devices 10 to 60, and converts the AC power to the AC power source. It is possible to output to the system side. Further, the power supply device 1 inputs AC power supplied from the AC power supply system side or the power generation system from the AC side connection terminal 2, and converts the input AC power into DC power by the power converters 10 to 60, This DC power can be stored in each of the power storage devices E1 to E6 as electric energy.
  • connection pairs of the power conversion device and the power storage device are connected in series, but any number of series may be used as long as the connection pairs are two or more in series.
  • one power storage device (E1) among the six power storage devices is mounted on the capacitor cell, but the system may be configured with two or more power storage devices mounted on the capacitor cell.
  • the role of the central control device 3 is to control the operation of the connected pair of the power conversion devices 10 to 60 and the power storage devices E1 to E6 so that the power supply device 1 and the AC power supply system can be linked to exchange power. It is.
  • the central control device 3 calculates a command value for controlling the operation of the connected pair of the power conversion devices 10 to 60 and the power storage devices E1 to E6 based on various information and control programs. At the time of this calculation, the central control device 3 includes information on the AC voltage of the AC power supply system, information on the AC current flowing between the AC power supply system and the AC side connection terminal 2 of the power supply device 1, and further the power conversion device 10. The input / output voltage information of each power storage device connected to ⁇ 60 is used.
  • the central control device 3 transmits the calculated command value to each of the power conversion devices 10 to 60 using wireless or wired communication.
  • the operation of each internal switching circuit of power conversion devices 10 to 60 (details will be described later using FIG. 2) is controlled.
  • the electrical connection between the switching circuit and the plurality of storage batteries is controlled, and the electric power exchanged between the two is controlled so that the power supply device 1 and the AC power supply system are linked. Detailed operations performed by the central controller 3 will be described later.
  • FIG. 2 is a diagram illustrating a configuration of the power conversion device 10 in the power supply device 1.
  • the power supply device 1 in the present embodiment also includes power conversion devices 20 to 60, but since these power conversion devices all have the same configuration, only the power conversion device 10 will be described below as a representative.
  • the power conversion device 10 includes a switching circuit 11, a smoothing capacitor 12, a control device 13, a voltage measuring device 14 that detects an input / output voltage of the power storage device E ⁇ b> 1, and an AC-side connection terminal 10 a that is electrically connected to the switching circuit 11. And a DC side connection terminal 10d connected to the power storage device E1.
  • the control device 13 controls the operation of the switching circuit 11 based on information from the central control device 3. The control device 13 and the switching circuit 11 will be described later.
  • the DC side connection terminal 10d is connected to the power storage device E1 as shown in FIG. 1, and the voltage appearing at both ends of this terminal is referred to as V E1 .
  • V E1 the voltage appearing at the DC side connection terminals of the power converters 20 to 60
  • V E2 the voltage appearing at the DC side connection terminals of the power converters 20 to 60
  • V E3 the voltage appearing at the DC side connection terminals of the power converters 20 to 60
  • V E5 the voltage appearing at the DC side connection terminals of the power converters 20 to 60
  • V 10 in the following a voltage appearing across the AC-side connection terminal 10a.
  • each voltage of the AC side connection terminals of the power conversion devices 20 to 60 will be referred to as V 20 , V 30 , V 40 , V 50 and V 60 , respectively.
  • the switching circuit 11 includes N-channel MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) 111, 112, 113, and 114 that are semiconductor switching elements, and a single-phase full-bridge inverter circuit is configured by these four switching elements. . Specifically, the drain sides of MOSFETs 111 and 113 and the source sides of MOSFETs 112 and 114 are connected to the DC side connection terminal 10d, and the source side of MOSFET 111 (the drain side of 112) and the source side of MOSFET 113 (the drain side of 114) are AC. It is connected to the side connection terminal 10a.
  • MOSFETs Metal Oxide Semiconductor Field Effect Transistors
  • N-channel MOSFET has a diode structure between its source and drain due to the structure of the element. Therefore, as shown in FIG. 2, D111, D112, D113, and D114 are parasitic in the MOSFETs 111, 112, 113, and 114 as body diodes, respectively.
  • the body diodes D111 to D114 built in the N-channel MOSFET function as the feedback diodes, so that it is not necessary to provide a separate diode.
  • FIG. 3 is a timing showing a relationship of the four switching elements (MOSFET 111 ⁇ 114) on-off operation and the AC side connection terminals 10a terminal voltage V 10 of the power conversion apparatus 10 of the switching circuit 11 shown in FIG. 2 It is a chart.
  • each switching circuit incorporated in the power converters 20 to 60 also operates on the same principle as the switching circuit 11 of the power converter 10 described below.
  • the four MOSFETs of the switching circuit 11 are controlled so that the MOSFETs 111 and 112 are paired and the MOSFETs 113 and 114 are paired, and in principle, the ON and OFF are in a reverse relationship within the same pair. If a potential is applied to the DC side connection terminal 10d, if two switches in the same pair are turned on at the same time, an electrical short circuit may occur, and a large current that may cause a failure of the switching element may flow. . Therefore, in any case, control is not performed so that two switches in the same pair are simultaneously turned on. When two switches in the same pair are controlled to be turned off at the same time, the DC side connection terminal 10d and the AC side connection terminal 10a are electrically disconnected and no current flows.
  • the switching circuit is configured such that the insides of both terminals are electrically connected when viewed from the outside of the AC side connection terminal 10a. 11 functions, the potential difference between the terminals becomes zero. Further, when each switch is controlled as in the period ⁇ 2> of the timing chart, a potential difference applied to the DC side connection terminal 10d, that is, the input / output voltage V E1 of the power storage device E1 appears at the AC side connection terminal 10a. On the contrary, when each switch is controlled as in the period ⁇ 4>, the polarity is reversed, and -V E1 appears at the AC side connection terminal 10a.
  • the control device 13 includes a communication unit 131, a data holding unit 132, a switch control / drive unit 133, and a voltage determination unit 134.
  • the communication unit 131 has a role of receiving a command signal transmitted from the central control device 3 corresponding to the host, and transmitting and outputting voltage information of the power storage device E1 to the central control device 3.
  • a communication function between the communication unit 131 and the host any function that satisfies the necessary functions such as CAN (Controller Area Network), I 2 C (Inter-Integrated Circuit), and SPI (System Packet Interface) can be used. It doesn't matter.
  • the data holding unit 132 stores the control command and control data transmitted from the central control device 3, and further the voltage information of the power storage device E1.
  • the stored data is read when the switch control / drive unit 133 described later is operated.
  • the voltage information of the power storage device E1 is transmitted to the central control device 3 via the communication unit 131.
  • the switch control / drive unit 133 controls the on / off state of each switch of the MOSFETs 111 to 114 in the switching circuit 11 based on the control information stored in the data holding unit.
  • the switch control / drive unit 133 is provided with a gate drive circuit (not shown) for generating the gate voltage of these switches for each switch in order to turn on and off the MOSFETs 111 to 114.
  • Voltage determination unit 134 receives input / output voltage V E1 of power storage device E1 detected by voltage measurement device 14, and determines whether the voltage value falls within an assumed value range. If there is no abnormality, the voltage information is passed to the data holding unit. If it is determined that the voltage value is abnormal, an abnormal signal is sent to the data holding unit, and the abnormal signal is transmitted to the central control device 3 via the communication unit 131.
  • FIG. 5 is a block diagram showing an outline of functions of the central controller 3 shown in FIG.
  • the central control device 3 includes a command voltage calculation unit 31, a carrier calculation unit 32, an ON / OFF pattern calculation unit 33, a power amount correction calculation unit 34, an ON / OFF pattern update calculation unit 35, and a communication unit 36 therein.
  • the command voltage calculation unit 31 shown in FIG. 5 calculates a voltage waveform input / output by the power supply device 1 based on the current and voltage information of the AC system obtained from the current measurement device 4 and the voltage measurement device 5 shown in FIG. .
  • the carrier calculation unit 32 shown in FIG. 5 is for each power conversion device based on the input / output voltage values V E1 to V E6 of the power storage devices E1 to E6 and the command voltage information calculated by the command voltage calculation unit 31. Are calculated, and the position of the voltage level in charge of each power converter is determined.
  • the input / output voltage value information of the power storage devices E1 to E6 is output from each control device in each power conversion device in addition to the control device 13 in the power conversion device 10 shown in FIG. It is sent to the carrier calculation unit 32 via the unit 36.
  • the ON / OFF pattern calculation unit 33 shown in FIG. 5 is based on the command voltage output from the command voltage calculation unit 31 and the carrier information of each power conversion device output from the carrier calculation unit 32.
  • the operation pattern of the switching circuit 11 shown, that is, the ON / OFF pattern of the AC output of each power converter is calculated.
  • FIG. 6 shows an example of a timing chart of the command voltage for one cycle, the carrier of each power converter, and the ON / OFF pattern of the AC side output of each power converter.
  • the command voltage 1 indicated by the solid line sine waveform at the lower side of FIG. 6 is a voltage waveform to be input / output when the power supply device 1 exchanges power with the AC power supply system.
  • the command voltage 2 shown by the broken line sine waveform is a voltage waveform having a phase opposite to that of the command voltage 1.
  • broken triangle waves C1 to C6 are carriers for the power converters 10 to 60, respectively.
  • the assigned voltage levels are assigned as power conversion devices 60, 50, 40, 30, 20, and 10 in order from the bottom, but this order is appropriately determined according to the output voltage and the state of charge of the power storage device. You can change it.
  • the ON / OFF pattern of the AC side output of each power converter shown in the upper part of FIG. 6 will be described.
  • the command voltage 1 and the command voltage 2 are compared in magnitude relationship with each of the carriers C1 to C6.
  • the carrier is smaller than the command voltage 1
  • the AC output of the power converter corresponding to the carrier is turned on in the positive direction (indicated as “ON (+)” in FIG. 6). This is an operation corresponding to the period ⁇ 2> of the timing chart shown in FIG.
  • the AC side output of the corresponding power converter is turned off. This corresponds to the period ⁇ 1> or the period ⁇ 3> in the timing chart shown in FIG. 3, and the inter-terminal voltage of the AC side connection terminal of the corresponding power converter is 0 volt.
  • the ON / OFF pattern of each AC side input / output of the power converters 10 to 60 is determined by comparing the command voltage with the carrier.
  • FIG. 7 shows a composite voltage appearing at the AC side connection terminal 2 of the power supply device 1 when the operation pattern of each power conversion device calculated by the ON / OFF pattern calculation unit 33 shown in FIG. 5 is directly output to the power conversion device.
  • V waveform pattern is shown.
  • the solid line waveform is the command voltage 1
  • the solid line rectangular waveform is the combined voltage.
  • the power amount correction calculation unit 34 performs a power amount correction calculation for keeping the power storage capacity of the power storage device E1 having a smaller power storage capacity in comparison with the other power storage devices E1 to E6. Since the power storage device E1 is equipped with a capacitor, it has a smaller storage capacity than the other power storage devices E2 to E6 equipped with secondary batteries, and the input / output voltage V E1 of the power storage device is likely to fluctuate. For this reason, it is necessary to arrange the charge amount and discharge amount of the power storage device E1 within a certain period and to keep the voltage VE1 within a certain range as much as possible.
  • the power amount correction calculation unit 34 based on each AC side input / output pattern information of the power conversion devices 10 to 60 output from the ON / OFF pattern calculation unit 33, corresponds to a half cycle (or one cycle) of each power storage device. Min)).
  • FIG. 8 is a bar graph showing a comparison of power consumption amounts (Q E1 to Q E6 ) of the power storage devices E1 to E6 when discharging for a half cycle is performed without performing the power amount correction calculation.
  • the discharge period of the power storage device E1 is the shortest, and conversely, the discharge period of the power storage device E6 is the longest. For this reason, as shown in the bar graph of FIG. 8, the power consumption of each power storage device increases in the order of Q E1 , Q E2 ,.
  • FIGS. 9 and 10 show a case in which the power storage device E2 has all of the energy Q E1 for a half cycle that the power storage device E1 should originally bear.
  • FIG. 9 shows a comparison of power consumption for a half cycle in this case.
  • the power consumption Q E1 of the power storage device E1 is added to the power consumption Q E2 of the power storage device E2 .
  • the total power consumption of the power storage device E1 is zero.
  • FIG. 10 is a specific waveform pattern of the inter-terminal voltage control of each AC side connection terminal of the power conversion devices 10 and 20 for performing the above-described power amount correction.
  • FIG. 10A is an AC side input / output pattern of the power converters 10 and 20 before the power amount correction is performed
  • FIG. 10B is a waveform pattern after the power amount correction.
  • the power storage device E1 performs the discharging operation in the period indicated by the shaded area A3 in FIG. The amount of power consumed during this period is the power consumption amount Q E1 of the power storage device E1 shown in FIG.
  • the ON / OFF pattern update calculation unit 35 stores the same power amount based on the power consumption Q E1 of the power storage device E1 in the period A3.
  • the period required for the device E1 to charge is calculated, and a new waveform pattern is generated.
  • ON / OFF so that the AC side output of the power converter 10 is turned on in the negative direction ( ⁇ V E1 ) during the periods indicated by the oblique lines A1, A2, A4 and A5 in FIG. Change the OFF pattern.
  • the ON / OFF pattern is changed so that the AC-side output of the power converter 20 is turned on in the positive direction (+ V E2 ) during the periods indicated by the oblique lines in FIGS. B1, B2, B4, and B5.
  • the power storage device E2 By doing so, it is controlled so that the power storage device E2 apparently supplements the amount of power that the power storage device E1 has discharged, and the total power consumption of the power storage device E1 can be reduced to zero. .
  • FIG. 11 shows the AC side output patterns of the power converters 10 to 60 finally generated by the ON / OFF pattern update calculation unit 35 shown in FIG.
  • each AC side input / output pattern of the power converters 10 and 20 is changed, the voltage pattern that is synthesized and output is not changed, so that power exchange with the AC power supply system is not affected.
  • the synthesized voltage waveform is not smooth compared to the command voltage 1, the current flowing between the power supply device 1 and the AC power supply system is smooth because power is transferred to and from the AC power supply system through a filter circuit in an actual system.
  • a sinusoidal waveform is not smooth compared to the command voltage 1
  • the power storage devices E3 to E6 can also be added to the power amount adjustment.
  • Figure 12 shows the power consumption Q E1 of the power storage device E1 Q E1a, Q E1b, Q E1c, the power consumption Comparison of power storage device when each is shared storage device E2 ⁇ E5 divided into Q E 1 d .
  • FIG. 13 is a timing chart showing an AC output pattern of each power converter when the power amount correction shown in FIG. 12 is performed. Although all AC side output patterns other than the power converter 60 have been changed, the combined voltage appearing at the AC side connection terminal 2 after being combined is not different from the combined voltage pattern obtained before the power amount correction.
  • the above is an overview of a control method for operating a power storage device equipped with a capacitor and a power storage device equipped with a secondary battery in the same power supply device.
  • a power storage device equipped with a capacitor does not need as much capacity as a power storage device equipped with a secondary battery as long as the input / output characteristics are comparable to those of other power storage devices, and there is no need to parallelize a large number of capacitor cells. For this reason, the power storage device in which the capacitor is mounted can lower the capacity cost of the power storage element than the power storage device in which another secondary battery is mounted. Furthermore, the charge / discharge cycle life of the capacitor is longer than that of the secondary battery, and the replacement frequency of the power storage device mounted with the capacitor is lower than that of the power storage device mounted with the secondary battery, and the running cost can be reduced.
  • a part of the configuration of the embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of the embodiment. Further, it is possible to add / delete / replace other configurations for a part of the configuration of each embodiment.
  • each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
  • each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
  • Power supply device 2 AC side connection terminal 3: Central control device 31: Command voltage calculation unit, 32: Carrier calculation unit, 33: ON / OFF pattern calculation unit, 34: Electric energy correction calculation unit, 35: ON / OFF Pattern update calculation unit 36: Communication unit 4: Current measurement device 5: Voltage detection device 10-60: Power conversion device, 10d-60d: DC side connection terminal, 10a-60a: AC side connection terminals E1-E6: Power storage device 11: switching circuit, 111 to 114: MOSFET, D111 to D114: body diode 12: smoothing capacitor 13: control device, 131: communication unit, 132: data holding unit, 133: switch control / drive unit, 134: voltage determination Part, 14: Voltage measuring device, C1 to C6: Carrier

Abstract

Provided is a power source device that, as a power source device using a series multiple power conversion device and an electricity storage device, can reduce the storage battery cost compared to when all the same type of storage battery is used. The power source device has an AC-side connection terminal and a DC-side connection terminal to which the electricity storage device, which is capable of being charged with and discharging electrical power, is connected, is provided with a plurality of the power conversion devices, and can interconnect with an AC power supply system by electrically connecting, in series, each of the AC-side connection terminals of the plurality of power conversion devices. The power source device is characterized in that the plurality of power conversion devices are classified into at least two groups, the combination of cathode active material and anode active material in the electricity storage element embedded in the electricity storage device connected to the DC-side connection terminal of the power conversion devices configuring the groups is the same within the groups, and the combination of cathode active material and anode active material of the electricity storage element embedded in the electricity storage device differs between the groups.

Description

電源装置Power supply
 本発明は、電源装置に関する。 The present invention relates to a power supply device.
 地球温暖化の一要因と考えられている二酸化炭素の排出量増大と、化石燃料の枯渇が懸念されている。化石燃料への依存度を低下させる手段の一つとして、風力や太陽光などといった自然から得られる再生可能エネルギーの導入が進んでいる。再生可能エネルギーのメリットとして、枯渇の心配がないことが挙げられるが、気象条件に依存するために、利用可能エネルギー量の変動が大きいといったデメリットを併せ持つ。今後、再生可能エネルギーを利用した電力発電装置や施設の導入が拡大すると見込まれており、上記デメリットに起因する電力変動を低減する技術が必須である。 増 大 There are concerns about an increase in carbon dioxide emissions, which is considered to be a cause of global warming, and the depletion of fossil fuels. As one of the means to reduce the dependence on fossil fuels, the introduction of renewable energy obtained from nature such as wind power and sunlight is progressing. One of the advantages of renewable energy is that there is no fear of depletion, but it also has the disadvantage of large fluctuations in the amount of available energy because it depends on weather conditions. In the future, the introduction of power generators and facilities using renewable energy is expected to expand, and technology to reduce power fluctuations due to the above disadvantages is essential.
 上記電力変動を抑制する手段の一つとして、蓄電池搭載の電源システムが注目されている。この電源システムは、電力を放出したり貯蔵したりする電力貯蔵装置(蓄電装置)と、電力をユーザが利用しやすい形態へと変換する電力変換システムにより構成され、電力量の余剰時に電力を貯蔵し、不足時に不足分の電力を放出することで、再生可能エネルギーから供給する電力量をほぼ一定に保つ。 As one of the means for suppressing the above power fluctuation, a power supply system equipped with a storage battery is attracting attention. This power supply system is composed of a power storage device (power storage device) that discharges and stores power and a power conversion system that converts the power into a form that is easy for the user to use, and stores power when the amount of power is surplus In addition, the amount of power supplied from renewable energy is kept almost constant by releasing the shortage of power when there is a shortage.
 電力変換システムは、上記電力貯蔵装置に出入りする電力を交流電源系統と連系可能とする重要な役割を担う。したがって、得られた電力を有効利用するためには、蓄電システムにおける電力変換システムの高効率化が望まれる。また、電力貯蔵装置の例としては、二次電池を搭載したものやキャパシタを搭載したものなどがあり、こちらは蓄電池コストの削減や蓄電池の長寿命化運用によるランニングコスト削減等が望まれる。 The power conversion system plays an important role in enabling the power entering and exiting the power storage device to be linked to the AC power supply system. Therefore, in order to effectively use the obtained power, it is desired to increase the efficiency of the power conversion system in the power storage system. Examples of the power storage device include those equipped with a secondary battery and those equipped with a capacitor, which are desired to reduce the storage battery cost and the running cost by extending the life of the storage battery.
 上記のような蓄電池搭載電源システムにおいて、その高効率化運用を実現するものとして、例えば、特開2006-320103号公報(特許文献1)がある。 For example, Japanese Patent Application Laid-Open No. 2006-320103 (Patent Document 1) discloses a power supply system equipped with a storage battery as described above, which realizes high-efficiency operation.
 特許文献1には、高調波の抑制効果を損なわずに複数の単相電力変換器の消費電力を均等化し、安全かつ安定した動作を確保するために、直流電源回路に接続されたn(nは2以上の整数)台の単相電力変換器の交流出力端子を直列に接続して最大で2n+1個の電位、または、最大で4n+ 1個の電位を出力可能な直列多重電力変換装置において、この直列多重電力変換装置に対する電圧指令に同期したPWM信号を演算する手段と、前記PWM信号が変化するタイミングを前記n台の単相電力変換器の間で入れ替えてこれらの単相電力変換器の電圧出力期間を均等化する手段を備えた直列多重電力変換装置の制御装置が記載されている。 In Patent Document 1, n (n) connected to a DC power supply circuit is provided in order to equalize the power consumption of a plurality of single-phase power converters without impairing the harmonic suppression effect and to ensure safe and stable operation. Is a series multiple power converter capable of outputting a maximum of 2n + 1 potentials or a maximum of 4n + 1 potentials by connecting AC output terminals of a single-phase power converter in series. The means for calculating the PWM signal synchronized with the voltage command for the serial multiple power converter, and the timing at which the PWM signal changes are interchanged between the n single-phase power converters, and the single-phase power converters A control device for a serial multiple power conversion device including means for equalizing voltage output periods is described.
 また、特許文献1には、電圧指令の半周期ごとにPWM信号を入れ替える方法も開示されている。 Also, Patent Document 1 discloses a method of replacing the PWM signal every half cycle of the voltage command.
特開2006-320103号公報JP 2006-320103 A
 しかし、特許文献1に記載の直列多重電力変換装置では、その直流電源としてつなげられる電池は、全て同種類の蓄電池で構成する同種類の電池モジュール(蓄電装置)にてシステムを構成することを前提としている。この場合、複数ある電池モジュールの中には、実際に必要な充電容量を越えるオーバースペックな電池モジュールが含まれる可能性があり、実際に必要な電池容量を越えるために電池コストが抑えられない課題がある。 However, in the serial multiple power conversion device described in Patent Document 1, it is assumed that the battery connected as the DC power source is configured as a system with the same type of battery module (power storage device) configured by the same type of storage battery. It is said. In this case, there is a possibility that an over-spec battery module exceeding the actually required charging capacity may be included in the plurality of battery modules, and the battery cost cannot be suppressed because it exceeds the actually required battery capacity. There is.
 そこで、本発明では、直列多重電力変換装置および蓄電装置を用いる電源装置について、すべて同種類の蓄電池を適用するよりも蓄電池コストを削減可能な電源装置を提供する。 Therefore, the present invention provides a power supply device that can reduce the storage battery cost for a power supply device that uses a series multiple power conversion device and a power storage device, as compared with the case where all of the same type of storage battery is applied.
 電力を充電および放電可能な蓄電装置が電気的に接続された直流側接続端子と、交流側接続端子とを有する電力変換装置を複数備え、複数の前記電力変換装置の、各々の前記交流側接続端子を電気的に直列接続することで、交流電源系統と連系可能な電源装置であって、複数の前記電力変換装置は、少なくとも2つのグル―プに分類され、前記グループを構成する前記電力変換装置の前記直流側接続端子に接続する前記蓄電装置に内蔵する蓄電素子の正極活物質材料と負極活物質材料の組み合わせが、前記グループ内で同じであり、前記蓄電装置に内蔵する前記蓄電素子の前記正極活物質材料と前記負極活物質材料の組み合わせが、前記グループ間で異なることを特徴とする。 A plurality of power conversion devices each having a DC side connection terminal to which a power storage device capable of charging and discharging electric power is electrically connected, and an AC side connection terminal, each of the plurality of power conversion devices being connected to each AC side A power supply device that can be connected to an AC power supply system by electrically connecting terminals in series, wherein the plurality of power conversion devices are classified into at least two groups, and the power constituting the group The combination of the positive electrode active material and the negative electrode active material of the power storage element built in the power storage device connected to the DC side connection terminal of the conversion device is the same within the group, and the power storage element built in the power storage device A combination of the positive electrode active material and the negative electrode active material is different between the groups.
 本発明によれば、直列多重電力変換装置および蓄電装置を用いる電源装置について、すべて同種類の蓄電池を適用するよりも蓄電池コストを削減可能な電源装置を提供することができる。 According to the present invention, it is possible to provide a power supply device that can reduce the storage battery cost for a power supply device that uses a serial multiple power conversion device and a power storage device, as compared to the case where the same type of storage battery is applied.
本発明の一実施例に係る電源装置の概略構成図である。It is a schematic block diagram of the power supply device which concerns on one Example of this invention. 図1に記載の電力変換装置の概略構成を示す構成図である。It is a block diagram which shows schematic structure of the power converter device of FIG. 図2に記載のスイッチング回路内のスイッチ動作および交流側接続端子の端子間電圧の関係を模式的に示したタイミングチャートである。3 is a timing chart schematically showing the relationship between the switch operation in the switching circuit shown in FIG. 2 and the voltage between the terminals of the AC side connection terminals. 図2に記載の制御装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the control apparatus described in FIG. 図1に記載の中央制御装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of the central control apparatus described in FIG. 本発明の一実施例に係る電源装置の指令電圧波形例および電力変換装置交流側接続端子のオン・オフ動作パターンを示すタイミングチャートである。It is a timing chart which shows the example of the command voltage waveform of the power unit concerning one example of the present invention, and the ON / OFF operation pattern of the power converter AC side connection terminal. 各電力変換装置の交流側出力電圧を合成した電圧波形である。It is the voltage waveform which synthesize | combined the alternating current side output voltage of each power converter device. 電力量補正をする前の各蓄電装置の消費電力量の比較を示す棒グラフである。It is a bar graph which shows the comparison of the power consumption of each electrical storage apparatus before performing electric energy correction | amendment. 電力量補正をした後の各蓄電装置の消費電力量の比較を示す棒グラフである。It is a bar graph which shows the comparison of the electric energy consumption of each electrical storage apparatus after carrying out electric energy correction | amendment. 電力量補正の前後の電力変換装置10、20の交流側出力パターンを示すタイミングチャートの例である。It is an example of the timing chart which shows the alternating current side output pattern of the power converters 10 and 20 before and after electric energy correction | amendment. 電力量補正後の各電力変換装置の交流側出力パターンのタイミングチャートとその合成電圧の模式図である。It is a schematic diagram of the timing chart of the alternating current side output pattern of each power converter device after electric energy amendment, and its synthetic voltage. 図9に示した方式とは別の方法で電力量補正をした後の各蓄電装置の消費電力量の比較を示す棒グラフである。FIG. 10 is a bar graph showing a comparison of power consumption of each power storage device after power amount correction by a method different from the method shown in FIG. 9. FIG. 図12に示した電力量分配にて電力量補正を行った場合の、各電力変換装置の交流側出力パターンのタイミングチャートとその合成電圧の模式図である。FIG. 13 is a timing chart of an AC side output pattern of each power conversion device and a schematic diagram of the combined voltage when power amount correction is performed in the power amount distribution illustrated in FIG. 12.
 本発明の実施形態を説明する。 Embodiments of the present invention will be described.
 以下に説明する実施形態では、本願の発明を、再生可能エネルギーを利用した発電システム、例えば太陽光発電システム或いは風力発電システムと共に発電ファームに、電力貯蔵システムとして設置された定置用蓄電システムに適用した場合を例に挙げて説明する。 In the embodiments described below, the invention of the present application is applied to a stationary power storage system installed as a power storage system in a power generation farm using a renewable energy, for example, a solar power generation system or a wind power generation system. A case will be described as an example.
 再生可能エネルギーを利用した発電システムは、自然環境に及ぼす負荷が少ないという利点がある反面、天候などの自然環境に発電能力が左右され、電力系統に対する出力が変動する。定置用蓄電システムは、発電システムの上記出力変動の抑制(緩和)を図るために設けられている。発電システムから電力系統に出力される電力が所定の出力電力に対して不足状態にある場合には、定置用蓄電システムは放電し、発電システムの不足分の電力を補う。発電システムから電力系統に出力される電力が所定の電力に対して余剰状態にある場合には、定置用蓄電システムは、発電システムの余剰分の電力を受けて充電する。 ∙ Power generation systems using renewable energy have the advantage of less impact on the natural environment, but the power generation capacity depends on the natural environment such as the weather, and the output to the power system fluctuates. The stationary power storage system is provided for suppressing (relaxing) the output fluctuation of the power generation system. When the power output from the power generation system to the power system is in a shortage state with respect to the predetermined output power, the stationary power storage system is discharged to compensate for the power shortage of the power generation system. When the power output from the power generation system to the power system is in a surplus state with respect to the predetermined power, the stationary power storage system receives and charges the surplus power of the power generation system.
 以下に説明する実施形態の構成は、例えば、データセンタのサーバーシステムや通信設備などの無停電用電源(バックアップ用電源)として設置される定置用蓄電システムにも適用できる。また、以下に説明する実施形態の構成は、需要家に配置され、夜間電力を貯蔵し、この貯蔵された電力を昼間に放出して電力負荷の平準化を図る電力貯蔵システムとして設置される定置用蓄電システムにも適用できる。 The configuration of the embodiment described below can also be applied to a stationary power storage system installed as an uninterruptible power supply (backup power supply) such as a data center server system or communication equipment. In addition, the configuration of the embodiment described below is a stationary device that is installed in a consumer, stores nighttime power, and releases the stored power in the daytime to level the power load. It can also be applied to power storage systems.
 さらに、以下に説明する実施形態の構成は、送配電系統の途中に電気的に接続され、送配電系統において送配電される電力の変動対策、余剰電力対策、周波数対策、逆潮流対策などとして用いられる定置用蓄電システムにも適用できる。 Further, the configuration of the embodiment described below is electrically connected in the middle of the transmission / distribution system, and is used as a countermeasure for fluctuations in power transmitted / distributed in the transmission / distribution system, a countermeasure for surplus power, a countermeasure for frequency, a countermeasure for reverse power flow, etc. It can also be applied to a stationary power storage system.
 さらにまた、以下に説明する実施形態の構成は、移動体に設置され、移動体の駆動用電源や、移動体に搭載された負荷を駆動する駆動用電源などとして用いられる移動用蓄電システムにも適用できる。移動体の例としては、エンジン及びモータを車両の駆動源とするハイブリッド電気自動車やモータを車両の唯一の駆動源とする純粋な電気自動車などの自動車、すなわち陸上走行車両(乗用車、トラックなどの貨物自動車、バスなどの乗合自動車など)、ディーゼルエンジンの動力で発電し、この発電によって得られた電力により駆動されるモータを駆動源とするハイブリッド電車などの鉄道車両、建設機械やフォークリフトトラックなどの産業用車両などがある。 Furthermore, the configuration of the embodiment described below is also applied to a mobile power storage system that is installed in a mobile body and used as a drive power source for driving the mobile body or a drive power source for driving a load mounted on the mobile body. Applicable. Examples of moving objects include automobiles such as hybrid electric vehicles that use an engine and a motor as the drive source of the vehicle and pure electric vehicles that use the motor as the sole drive source of the vehicle, that is, land-based vehicles (cars such as passenger cars and trucks). Automobiles, buses and other shared vehicles), electric vehicles powered by diesel engines, railway vehicles such as hybrid trains using motors driven by the power generated by this power generation, industries such as construction machinery and forklift trucks There are vehicles.
[実施例]
 以下、実施例を、図面を用いて説明する。
[Example]
Hereinafter, examples will be described with reference to the drawings.
 本実施例では、キャパシタを用いた蓄電装置と二次電池を用いた蓄電装置とを電力変換装置を介して複数直列接続した電源装置1の例を説明する。
<全体構成>
 図1は、本実施例における電源装置1の全体構成の概略図である。電源装置1は、交流側接続端子2、電力変換装置10、20、30、40、50、60、蓄電装置E1、E2、E3、E4、E5、E6、中央制御装置3、電流計測装置4、電圧計測装置5を備えている。
<電力変換装置10~60の概要説明>
 電力変換装置10~60は、直流電力を交流電力へと変換、または反対に、交流電力を直流電力へと変換する機能を有する変換装置である。電力変換装置10~60の直流側接続端子10d~60dには蓄電装置E1~E6がそれぞれ対応して接続される。
In this embodiment, an example of a power supply device 1 in which a plurality of power storage devices using capacitors and a power storage device using secondary batteries are connected in series via a power conversion device will be described.
<Overall configuration>
FIG. 1 is a schematic diagram of an overall configuration of a power supply device 1 according to the present embodiment. The power supply device 1 includes an AC side connection terminal 2, power conversion devices 10, 20, 30, 40, 50, 60, power storage devices E1, E2, E3, E4, E5, E6, a central control device 3, a current measurement device 4, A voltage measuring device 5 is provided.
<Overview of power converters 10 to 60>
The power converters 10 to 60 are converters having a function of converting DC power into AC power or, conversely, converting AC power into DC power. Power storage devices E1 to E6 are connected correspondingly to DC side connection terminals 10d to 60d of power conversion devices 10 to 60, respectively.
 各電力変換装置10~60は各々対応する蓄電装置E1~E6から出力された直流電力を交流電力に変換し、この交流電力を各電力変換装置の交流側接続端子10a~60aに生成する。反対に、各電力変換装置の交流側接続端子10a~60aから供給される交流電力を直流電力へ変換して、それぞれ対応する蓄電装置に出力する。 Each power conversion device 10 to 60 converts the DC power output from the corresponding power storage device E1 to E6 into AC power, and generates this AC power at the AC side connection terminals 10a to 60a of each power conversion device. Conversely, the AC power supplied from the AC side connection terminals 10a to 60a of each power conversion device is converted into DC power and output to the corresponding power storage device.
 さらに、電力変換装置10~60の交流側接続端子10a~60aは図示の通り互いに電気的に直列接続され、電力変換装置10の交流側接続端子10aの一端と電力変換装置60の交流側接続端子60aの一端が、各々電源装置1の交流側接続端子2に接続される。 Further, the AC side connection terminals 10a to 60a of the power conversion devices 10 to 60 are electrically connected in series as shown in the figure, and one end of the AC side connection terminal 10a of the power conversion device 10 and the AC side connection terminal of the power conversion device 60 are connected. One end of 60a is connected to AC side connection terminal 2 of power supply device 1, respectively.
 このように各電力変換装置の交流側接続端子10a~60aを直列に接続することで、電力変換装置10~60の各交流側接続端子の入出力電圧の合成電圧が電源装置1の全体の入出力電圧として交流側接続端子2に現れることとなる。
<蓄電装置の説明>
 蓄電装置E1は、蓄電素子としてキャパシタを複数搭載し、複数のキャパシタセルを直列に接続したキャパシタモジュール(図示せず)を構成している。このようなキャパシタセルとして、例えば電気二重層キャパシタやリチウムイオンキャパシタ等を用いることができる。
In this way, by connecting the AC side connection terminals 10a to 60a of each power conversion device in series, the combined voltage of the input and output voltages of each AC side connection terminal of the power conversion devices 10 to 60 becomes the input of the entire power supply device 1. It appears at the AC side connection terminal 2 as an output voltage.
<Description of power storage device>
The power storage device E1 constitutes a capacitor module (not shown) in which a plurality of capacitors are mounted as power storage elements and a plurality of capacitor cells are connected in series. As such a capacitor cell, for example, an electric double layer capacitor or a lithium ion capacitor can be used.
 蓄電装置E2~E6の各蓄電装置は、その内部に蓄電素子として二次電池を搭載している。詳細は図示しないが、蓄電装置E2~E6の各蓄電装置は、複数の二次電池セルが直列に接続されたセル群と、これらセル群を複数並列に接続して成る二次電池モジュールとして構成されている。このような二次電池セルとして、例えばリチウムイオン二次電池、鉛蓄電池、またはニッケル水素電池等を用いることができる。 Each of the power storage devices E2 to E6 has a secondary battery mounted therein as a power storage element. Although not shown in detail, each of the power storage devices E2 to E6 is configured as a cell group in which a plurality of secondary battery cells are connected in series and a secondary battery module formed by connecting a plurality of these cell groups in parallel. Has been. As such a secondary battery cell, for example, a lithium ion secondary battery, a lead storage battery, or a nickel metal hydride battery can be used.
 図1には図示していないが、電源装置1の交流側接続端子2より外側には発電システム等の交流電源系統が電気的に接続され、蓄電装置E1~E6と交流電源系統との間で電気エネルギーの送受することが可能である。 Although not shown in FIG. 1, an AC power supply system such as a power generation system is electrically connected to the outside of the AC side connection terminal 2 of the power supply device 1, and between the power storage devices E1 to E6 and the AC power supply system. It is possible to send and receive electrical energy.
 すなわち電源装置1は、蓄電装置E1~E6に蓄電された電気エネルギーを直流電力として放電し、この放電した直流電力を電力変換装置10~60によって交流電力へと変換し、この交流電力を交流電源系統側に出力することが可能である。さらに電源装置1は、交流電源系統側或いは発電システムから供給された交流電力を交流側接続端子2より入力し、この入力した交流電力を電力変換装置10~60によって直流電力へと変換して、この直流電力を電気エネルギーとして各蓄電装置E1~E6へ蓄電することが可能である。 That is, the power supply device 1 discharges the electric energy stored in the power storage devices E1 to E6 as DC power, converts the discharged DC power into AC power by the power conversion devices 10 to 60, and converts the AC power to the AC power source. It is possible to output to the system side. Further, the power supply device 1 inputs AC power supplied from the AC power supply system side or the power generation system from the AC side connection terminal 2, and converts the input AC power into DC power by the power converters 10 to 60, This DC power can be stored in each of the power storage devices E1 to E6 as electric energy.
 本実施例において、電力変換装置と蓄電装置との接続対を6台直列接続する構成を示しているが、同接続対が2直列以上であればどのような直列数であっても構わない。また、本実施例では6台の蓄電装置のうち1台の蓄電装置(E1)をキャパシタセル搭載としているが、2台以上の蓄電装置をキャパシタセル搭載としてシステムを構成しても構わない。
<中央制御装置3の説明>
 次に、図1に示した中央制御装置3の概要を説明する。中央制御装置3の役割は、電源装置1と交流電源系統とが連系して電力の授受ができるように電力変換装置10~60と蓄電装置E1~E6との接続対の作動を制御することである。
In the present embodiment, a configuration in which six connection pairs of the power conversion device and the power storage device are connected in series is shown, but any number of series may be used as long as the connection pairs are two or more in series. In the present embodiment, one power storage device (E1) among the six power storage devices is mounted on the capacitor cell, but the system may be configured with two or more power storage devices mounted on the capacitor cell.
<Description of Central Controller 3>
Next, an overview of the central control device 3 shown in FIG. 1 will be described. The role of the central control device 3 is to control the operation of the connected pair of the power conversion devices 10 to 60 and the power storage devices E1 to E6 so that the power supply device 1 and the AC power supply system can be linked to exchange power. It is.
 中央制御装置3は、各種情報や制御プログラムに基づいて電力変換装置10~60と蓄電装置E1~E6との接続対の作動を制御するための指令値を演算する。この演算の際、中央制御装置3は、交流電源系統の交流電圧に関する情報と、交流電源系統と電源装置1の交流側接続端子2との間において流れる交流電流に関する情報、さらには電力変換装置10~60に接続される各蓄電装置の入出力電圧情報等を利用する。 The central control device 3 calculates a command value for controlling the operation of the connected pair of the power conversion devices 10 to 60 and the power storage devices E1 to E6 based on various information and control programs. At the time of this calculation, the central control device 3 includes information on the AC voltage of the AC power supply system, information on the AC current flowing between the AC power supply system and the AC side connection terminal 2 of the power supply device 1, and further the power conversion device 10. The input / output voltage information of each power storage device connected to ˜60 is used.
 そして、中央制御装置3は、演算された指令値を無線或いは有線による通信を用いて電力変換装置10~60それぞれに信号伝送する。これにより、電力変換装置10~60と蓄電装置E1~E6との接続対のそれぞれにおいて、電力変換装置10~60の各内部のスイッチング回路(詳細は図2を用いて後述)の作動が制御されると共に、スイッチング回路と複数の蓄電池との電気的な接続が制御され、電源装置1と交流電源系統とが連系するように、両者間において授受される電力が制御される。中央制御装置3が行う詳細な動作については後述する。 The central control device 3 transmits the calculated command value to each of the power conversion devices 10 to 60 using wireless or wired communication. As a result, in each of the connection pairs of power conversion devices 10 to 60 and power storage devices E1 to E6, the operation of each internal switching circuit of power conversion devices 10 to 60 (details will be described later using FIG. 2) is controlled. In addition, the electrical connection between the switching circuit and the plurality of storage batteries is controlled, and the electric power exchanged between the two is controlled so that the power supply device 1 and the AC power supply system are linked. Detailed operations performed by the central controller 3 will be described later.
 電圧計測装置5は交流電源系統の交流電圧を計測し、この計測した交流電圧に関する信号を中央制御装置3に出力する。電流計測装置4は、電源装置1の交流側接続端子2に流れる交流電流を計測し、この計測した交流電流に関する信号を中央制御装置3に出力する。
<電力変換装置の内部構成説明>
 図2は、電源装置1内の電力変換装置10の構成を示した図である。本実施例における電源装置1は、ほかに電力変換装置20~60も搭載しているが、これら電力変換装置はすべて同一の構成であるため、以下では電力変換装置10のみ代表して説明する。
The voltage measuring device 5 measures the AC voltage of the AC power supply system and outputs a signal related to the measured AC voltage to the central control device 3. The current measuring device 4 measures an alternating current flowing through the alternating current side connection terminal 2 of the power supply device 1 and outputs a signal related to the measured alternating current to the central control device 3.
<Description of internal configuration of power converter>
FIG. 2 is a diagram illustrating a configuration of the power conversion device 10 in the power supply device 1. The power supply device 1 in the present embodiment also includes power conversion devices 20 to 60, but since these power conversion devices all have the same configuration, only the power conversion device 10 will be described below as a representative.
 電力変換装置10は、スイッチング回路11、平滑化コンデンサ12、制御装置13、蓄電装置E1の入出力電圧を検出する電圧計測装置14、さらにスイッチング回路11と電気的に接続された交流側接続端子10aおよび蓄電装置E1に接続される直流側接続端子10dを備えている。制御装置13は、中央制御装置3からの情報に基づいてスイッチング回路11の作動を制御する。制御装置13およびスイッチング回路11については後述する。 The power conversion device 10 includes a switching circuit 11, a smoothing capacitor 12, a control device 13, a voltage measuring device 14 that detects an input / output voltage of the power storage device E <b> 1, and an AC-side connection terminal 10 a that is electrically connected to the switching circuit 11. And a DC side connection terminal 10d connected to the power storage device E1. The control device 13 controls the operation of the switching circuit 11 based on information from the central control device 3. The control device 13 and the switching circuit 11 will be described later.
 直流側接続端子10dは図1に示した通り蓄電装置E1に接続され、この端子の両端に現れる電圧をVE1と呼ぶこととする。図示はしないが、電力変換装置20~60の各直流側接続端子に現れる電圧を同様にそれぞれVE2、VE3、VE4、VE5およびVE6と呼ぶこととする。また、交流側接続端子10aの両端に現れる電圧を以下ではV10と呼ぶこととする。同様に、電力変換装置20~60の交流側接続端子の各電圧をそれぞれV20、V30、V40、V50およびV60と呼ぶこととする。
<スイッチング回路の説明>
 図2のスイッチング回路11を説明する。スイッチング回路11は、半導体スイッチング素子であるNチャネルMOSFET(Metal Oxide Semiconductor Field Effect Transistor)111、112、113および114を備えており、これら4つのスイッチング素子によって単相フルブリッジインバータ回路を構成している。具体的には、MOSFET111と113のドレイン側およびMOSFET112と114のソース側が直流側接続端子10dと接続され、MOSFET111のソース側(112のドレイン側)とMOSFET113のソース側(114のドレイン側)が交流側接続端子10aに接続される。
The DC side connection terminal 10d is connected to the power storage device E1 as shown in FIG. 1, and the voltage appearing at both ends of this terminal is referred to as V E1 . Although not shown, the voltages appearing at the DC side connection terminals of the power converters 20 to 60 are also referred to as V E2 , V E3 , V E4 , V E5, and V E6 , respectively. Also, will be referred to as V 10 in the following a voltage appearing across the AC-side connection terminal 10a. Similarly, each voltage of the AC side connection terminals of the power conversion devices 20 to 60 will be referred to as V 20 , V 30 , V 40 , V 50 and V 60 , respectively.
<Description of switching circuit>
The switching circuit 11 of FIG. 2 will be described. The switching circuit 11 includes N-channel MOSFETs (Metal Oxide Semiconductor Field Effect Transistors) 111, 112, 113, and 114 that are semiconductor switching elements, and a single-phase full-bridge inverter circuit is configured by these four switching elements. . Specifically, the drain sides of MOSFETs 111 and 113 and the source sides of MOSFETs 112 and 114 are connected to the DC side connection terminal 10d, and the source side of MOSFET 111 (the drain side of 112) and the source side of MOSFET 113 (the drain side of 114) are AC. It is connected to the side connection terminal 10a.
 NチャネルMOSFETは素子の構造から、そのソース・ドレイン間にはダイオードが形成される。よって、図2に示すとおり、MOSFET111、112、113および114には、ボディダイオードとしてD111、D112、D113およびD114がそれぞれ寄生する。 N-channel MOSFET has a diode structure between its source and drain due to the structure of the element. Therefore, as shown in FIG. 2, D111, D112, D113, and D114 are parasitic in the MOSFETs 111, 112, 113, and 114 as body diodes, respectively.
 通常、スイッチング素子でインバータ回路を構成する場合、電流が流れているスイッチング素子をオフしたときに誘導性負荷のエネルギーを電源側へバイパスさせる経路として帰還ダイオードをスイッチング素子と並列に設ける必要がある。しかし、本実施例ではNチャネルMOSFETに内蔵するボディダイオードD111~114が、この帰還ダイオードとして機能するため、別途、ダイオードを設ける必要がない。 Normally, when an inverter circuit is configured with a switching element, it is necessary to provide a feedback diode in parallel with the switching element as a path for bypassing the energy of the inductive load to the power supply side when the switching element through which the current flows is turned off. However, in this embodiment, the body diodes D111 to D114 built in the N-channel MOSFET function as the feedback diodes, so that it is not necessary to provide a separate diode.
 尚、本実施例ではスイッチング素子としてNチャネルMOSFETを用いた場合を例に挙げて説明しているが、IGBT(Insulated Gate Bipolar Transistor)など、他のスイッチング素子を用いても構わない。ただし、IGBTには上述したボディダイオードは内蔵されないため、スイッチング素子としてIGBTを適用する場合、別途、帰還ダイオードを設ける必要がある。
<スイッチング回路の動作>
 図3は、図2に示したスイッチング回路11内の4つのスイッチング素子(MOSFET111~114)のオン・オフ動作と電力変換装置10の交流側接続端子10aの端子間電圧V10の関係を示すタイミングチャートである。なお、本実施例を説明するためのVE1とV10の電位の向きは、図2の直流側接続端子10dおよび交流側接続端子10a付近にそれぞれ示した矢印の向きの通りとする。また、ここでは説明を省略するが、電力変換装置20~60内に内蔵される各々のスイッチング回路もまた以下で説明する電力変換装置10のスイッチング回路11と同様の原理で動作する。
In this embodiment, the case where an N-channel MOSFET is used as the switching element has been described as an example. However, other switching elements such as an IGBT (Insulated Gate Bipolar Transistor) may be used. However, since the body diode described above is not built in the IGBT, when the IGBT is applied as the switching element, it is necessary to provide a feedback diode separately.
<Operation of switching circuit>
Figure 3 is a timing showing a relationship of the four switching elements (MOSFET 111 ~ 114) on-off operation and the AC side connection terminals 10a terminal voltage V 10 of the power conversion apparatus 10 of the switching circuit 11 shown in FIG. 2 It is a chart. Note that the directions of the potentials V E1 and V 10 for explaining the present embodiment are the directions of the arrows shown in the vicinity of the DC side connection terminal 10d and the AC side connection terminal 10a in FIG. Although not described here, each switching circuit incorporated in the power converters 20 to 60 also operates on the same principle as the switching circuit 11 of the power converter 10 described below.
 スイッチング回路11の4つのMOSFETは、MOSFET111と112がペア、そしてMOSFET113と114とがペアとなり、同一ペア内では原則としてオンとオフが互いに逆の関係となるよう制御される。仮に、直流側接続端子10dに電位がかかっているときに、同一ペア内の2つのスイッチが同時にオンされると電気的に短絡状態となり、スイッチング素子が故障する程の大きな電流が流れる恐れがある。したがって、如何なる場合も、同一ペア内の二つのスイッチが同時にオンされる制御はしない。なお、同一ペア内の二つのスイッチが同時にオフに制御されると、直流側接続端子10dと交流側接続端子10aとの間は電気的に遮断状態となり、電流は流れない。 The four MOSFETs of the switching circuit 11 are controlled so that the MOSFETs 111 and 112 are paired and the MOSFETs 113 and 114 are paired, and in principle, the ON and OFF are in a reverse relationship within the same pair. If a potential is applied to the DC side connection terminal 10d, if two switches in the same pair are turned on at the same time, an electrical short circuit may occur, and a large current that may cause a failure of the switching element may flow. . Therefore, in any case, control is not performed so that two switches in the same pair are simultaneously turned on. When two switches in the same pair are controlled to be turned off at the same time, the DC side connection terminal 10d and the AC side connection terminal 10a are electrically disconnected and no current flows.
 図3のタイミングチャートに示す期間<1>および期間<3>のように各スイッチが制御されると、交流側接続端子10aの外側からみて両端子の内側が電気的に導通するようにスイッチング回路11が機能するため、同端子間電位差は0となる。また、同タイミングチャートの期間<2>のように各スイッチが制御されると、交流側接続端子10aには直流側接続端子10dにかかる電位差、すなわち蓄電装置E1の入出力電圧VE1が現れる。反対に、期間<4>のように各スイッチが制御されると、極性が反対となり、交流側接続端子10aには-VE1が現れる。 When each switch is controlled as in the period <1> and the period <3> shown in the timing chart of FIG. 3, the switching circuit is configured such that the insides of both terminals are electrically connected when viewed from the outside of the AC side connection terminal 10a. 11 functions, the potential difference between the terminals becomes zero. Further, when each switch is controlled as in the period <2> of the timing chart, a potential difference applied to the DC side connection terminal 10d, that is, the input / output voltage V E1 of the power storage device E1 appears at the AC side connection terminal 10a. On the contrary, when each switch is controlled as in the period <4>, the polarity is reversed, and -V E1 appears at the AC side connection terminal 10a.
 なお、実際にはMOSFETのオン抵抗等の影響で、各スイッチに電流が流れているときにはスイッチ素子部で電位差が生じる。このため、図3タイミングチャートに示した期間<2>および期間<4>のようなスイッチ制御をしても、交流側接続端子10aの端子間電圧V10の値と直流側接続端子10dの端子間電圧VE1の値の大きさは必ずしも等しくはならない。しかし、本実施例では簡略化のため、図3を含めて以下ではMOSFETのオン抵抗の影響は十分無視できるレベルとみなし、タイミングチャートの期間<2>のようにスイッチ制御されればV10=VE1、また期間<4>のようにスイッチ制御されればV10=-VE1となるものとする。他の電力変換装置20~60に関しても同一である。
<制御装置13の説明>
 次に、図4を用いて制御装置13を説明する。制御装置13は、通信部131、データ保持部132、スイッチ制御・駆動部133、電圧判定部134を備える。
Actually, a potential difference is generated in the switch element portion when a current flows through each switch due to the on-resistance of the MOSFET. Therefore, even if the switch control as time <2> and duration <4> shown in FIG. 3 a timing chart, the terminal value and the DC-side connecting terminal 10d of the terminal voltage V 10 of the AC-side connection terminals 10a The magnitude of the value of the inter-voltage V E1 is not necessarily equal. However, in this embodiment, for simplification, in the following including FIG. 3, it is assumed that the influence of the on-resistance of the MOSFET is sufficiently negligible, and if the switch control is performed as in the period <2> of the timing chart, V 10 = If switch control is performed as in V E1 and period <4>, V 10 = −V E1 . The same applies to the other power conversion devices 20-60.
<Description of Control Device 13>
Next, the control device 13 will be described with reference to FIG. The control device 13 includes a communication unit 131, a data holding unit 132, a switch control / drive unit 133, and a voltage determination unit 134.
 通信部131は、上位に当る中央制御装置3より送信された指令信号を受信したり、蓄電装置E1の電圧情報等を中央制御装置3へと送信出力したりする役割を持つ。通信部131と上位との通信機能としては、CAN(Controller Area Network)、I2C(Inter-Integrated Circuit)、SPI(System Packet Interface)など、必要な機能を満たすものであればどのようなものでも構わない。 The communication unit 131 has a role of receiving a command signal transmitted from the central control device 3 corresponding to the host, and transmitting and outputting voltage information of the power storage device E1 to the central control device 3. As a communication function between the communication unit 131 and the host, any function that satisfies the necessary functions such as CAN (Controller Area Network), I 2 C (Inter-Integrated Circuit), and SPI (System Packet Interface) can be used. It doesn't matter.
 データ保持部132は、中央制御装置3から送信された制御指令や制御データ、さらには蓄電装置E1の電圧情報を格納する。格納されたデータは後述するスイッチ制御・駆動部133の作動の際に読み出される。また、蓄電装置E1の電圧情報は通信部131を介して中央制御装置3へと送信される。 The data holding unit 132 stores the control command and control data transmitted from the central control device 3, and further the voltage information of the power storage device E1. The stored data is read when the switch control / drive unit 133 described later is operated. The voltage information of the power storage device E1 is transmitted to the central control device 3 via the communication unit 131.
 スイッチ制御・駆動部133は、データ保持部に格納された制御情報に基づいてスイッチング回路11内のMOSFET111~114の各スイッチのオンまたはオフ状態を制御する。スイッチ制御・駆動部133には、MOSFET111~114をオン・オフ制御するために、これらスイッチのゲート電圧を発生するゲート駆動回路(図示せず)をスイッチ毎に設けている。 The switch control / drive unit 133 controls the on / off state of each switch of the MOSFETs 111 to 114 in the switching circuit 11 based on the control information stored in the data holding unit. The switch control / drive unit 133 is provided with a gate drive circuit (not shown) for generating the gate voltage of these switches for each switch in order to turn on and off the MOSFETs 111 to 114.
 電圧判定部134は、電圧測定装置14によって検出された蓄電装置E1の入出力電圧VE1を受け、その電圧値が想定された値の範囲内に入っているかを判定する。そして、異常がなければその電圧情報をデータ保持部へと渡す。仮に電圧値が異常と判定されれば、異常信号をデータ保持部へと送り、通信部131を経由して中央制御装置3へと異常信号が送信される。
<動作全般とキャパシタ容量調整の詳細説明>
 図5は図1に示した中央制御装置3の機能の概略を示すブロック図である。中央制御装置3は、その内部に指令電圧演算部31、キャリア演算部32、ON/OFFパターン演算部33、電力量補正演算部34、ON/OFFパターン更新演算部35および通信部36を備える。
Voltage determination unit 134 receives input / output voltage V E1 of power storage device E1 detected by voltage measurement device 14, and determines whether the voltage value falls within an assumed value range. If there is no abnormality, the voltage information is passed to the data holding unit. If it is determined that the voltage value is abnormal, an abnormal signal is sent to the data holding unit, and the abnormal signal is transmitted to the central control device 3 via the communication unit 131.
<Detailed explanation of overall operation and capacitor capacity adjustment>
FIG. 5 is a block diagram showing an outline of functions of the central controller 3 shown in FIG. The central control device 3 includes a command voltage calculation unit 31, a carrier calculation unit 32, an ON / OFF pattern calculation unit 33, a power amount correction calculation unit 34, an ON / OFF pattern update calculation unit 35, and a communication unit 36 therein.
 図5に示す指令電圧演算部31は、図1に示した電流計測装置4および電圧計測装置5から得られる交流系統の電流および電圧情報に基づいて電源装置1が入出力する電圧波形を演算する。 The command voltage calculation unit 31 shown in FIG. 5 calculates a voltage waveform input / output by the power supply device 1 based on the current and voltage information of the AC system obtained from the current measurement device 4 and the voltage measurement device 5 shown in FIG. .
 図5に示すキャリア演算部32は、各蓄電装置E1~E6の入出力電圧値VE1~VE6の値および指令電圧演算部31にて演算された指令電圧情報に基づいて各電力変換装置用のキャリア(搬送波)を演算し、また各電力変換装置の担当する電圧レベルの位置を決定する。蓄電装置E1~E6の入出力電圧値情報は、図2に示した電力変換装置10内の制御装置13の他、各電力変換装置内の各制御装置よりそれぞれ出力され、中央制御装置3の通信部36を介してキャリア演算部32に送られる。 The carrier calculation unit 32 shown in FIG. 5 is for each power conversion device based on the input / output voltage values V E1 to V E6 of the power storage devices E1 to E6 and the command voltage information calculated by the command voltage calculation unit 31. Are calculated, and the position of the voltage level in charge of each power converter is determined. The input / output voltage value information of the power storage devices E1 to E6 is output from each control device in each power conversion device in addition to the control device 13 in the power conversion device 10 shown in FIG. It is sent to the carrier calculation unit 32 via the unit 36.
 図5に示すON/OFFパターン演算部33は、指令電圧演算部31から出力される指令電圧と、キャリア演算部32から出力される各電力変換装置のキャリアの各情報に基づいて、図2に示したスイッチング回路11の動作パターンすなわち各電力変換装置の交流側出力のON/OFFパターンを演算する。 The ON / OFF pattern calculation unit 33 shown in FIG. 5 is based on the command voltage output from the command voltage calculation unit 31 and the carrier information of each power conversion device output from the carrier calculation unit 32. The operation pattern of the switching circuit 11 shown, that is, the ON / OFF pattern of the AC output of each power converter is calculated.
 図5のON/OFFパターン演算部33の動作を、図6を用いて説明する。図6に、1周期分の指令電圧、各電力変換装置のキャリア、さらに各電力変換装置の交流側出力のON/OFFパターンのタイミングチャート例を示す。図6下側の実線正弦波形で示した指令電圧1は、電源装置1が交流電源系統と電力授受する際に入出力すべき電圧波形である。また、破線正弦波形で示した指令電圧2は、指令電圧1と逆位相の電圧波形である。さらに、破線の三角波C1~C6はそれぞれ、電力変換装置10~60の各装置用のキャリア(搬送波)である。 The operation of the ON / OFF pattern calculation unit 33 in FIG. 5 will be described with reference to FIG. FIG. 6 shows an example of a timing chart of the command voltage for one cycle, the carrier of each power converter, and the ON / OFF pattern of the AC side output of each power converter. The command voltage 1 indicated by the solid line sine waveform at the lower side of FIG. 6 is a voltage waveform to be input / output when the power supply device 1 exchanges power with the AC power supply system. Moreover, the command voltage 2 shown by the broken line sine waveform is a voltage waveform having a phase opposite to that of the command voltage 1. Further, broken triangle waves C1 to C6 are carriers for the power converters 10 to 60, respectively.
 図6に示した例では、担当電圧レベルを下から順に電力変換装置60、50、40、30、20、10として割り当てているが、この順番は蓄電装置の出力電圧や充電状態に応じて適宜入れ替え変更しても構わない。 In the example shown in FIG. 6, the assigned voltage levels are assigned as power conversion devices 60, 50, 40, 30, 20, and 10 in order from the bottom, but this order is appropriately determined according to the output voltage and the state of charge of the power storage device. You can change it.
 図6の上方に示した各電力変換装置の交流側出力のON/OFFパターンについて説明する。指令電圧1および指令電圧2は、各キャリアC1~C6のそれぞれと大小関係を比較される。指令電圧1よりもキャリアの方が小さい時、そのキャリアに対応する電力変換装置の交流側出力が正の方向にONされる(図6では「ON(+)」と表記)。これは、図3に示したタイミングチャートの期間<2>に相当する動作である。 The ON / OFF pattern of the AC side output of each power converter shown in the upper part of FIG. 6 will be described. The command voltage 1 and the command voltage 2 are compared in magnitude relationship with each of the carriers C1 to C6. When the carrier is smaller than the command voltage 1, the AC output of the power converter corresponding to the carrier is turned on in the positive direction (indicated as “ON (+)” in FIG. 6). This is an operation corresponding to the period <2> of the timing chart shown in FIG.
 また、指令電圧2よりもキャリアの方が小さい時、そのキャリアに対応する電力変換装置の交流側出力は負の方向にONされる(図6では「ON(-)」と表記)。これは、図3に示したタイミングチャートの期間<4>に相当する動作である。 In addition, when the carrier is smaller than the command voltage 2, the AC side output of the power converter corresponding to the carrier is turned ON in the negative direction (indicated as “ON (−)” in FIG. 6). This is an operation corresponding to the period <4> of the timing chart shown in FIG.
 指令電圧1および指令電圧2よりもキャリアの方が大きい時は、対応する電力変換装置の交流側出力はそれぞれOFF制御される。これは、図3に示したタイミングチャートの期間<1>または期間<3>に相当し、対応する電力変換装置の交流側接続端子の端子間電圧は0ボルトとなる。 When the carrier voltage is larger than the command voltage 1 and the command voltage 2, the AC side output of the corresponding power converter is turned off. This corresponds to the period <1> or the period <3> in the timing chart shown in FIG. 3, and the inter-terminal voltage of the AC side connection terminal of the corresponding power converter is 0 volt.
 上記のように、指令電圧とキャリアとの比較により電力変換装置10~60の各交流側入出力のON/OFFパターンが決定される。 As described above, the ON / OFF pattern of each AC side input / output of the power converters 10 to 60 is determined by comparing the command voltage with the carrier.
 図7に、図5に示したON/OFFパターン演算部33で演算した各電力変換装置の動作パターンをそのまま電力変換装置に出力させた場合の電源装置1の交流側接続端子2に現れる合成電圧Vの波形パターンを示す。実線の波形が指令電圧1、実線の矩形状波形が合成電圧である。 FIG. 7 shows a composite voltage appearing at the AC side connection terminal 2 of the power supply device 1 when the operation pattern of each power conversion device calculated by the ON / OFF pattern calculation unit 33 shown in FIG. 5 is directly output to the power conversion device. V waveform pattern is shown. The solid line waveform is the command voltage 1, and the solid line rectangular waveform is the combined voltage.
 次に、図5に示した電力量補正演算部34の機能を説明する。電力量補正演算部34は、蓄電装置E1~E6の中で蓄電容量が他と比べて少ない蓄電装置E1の蓄電容量を一定に保つための電力量補正演算を行う。蓄電装置E1はキャパシタを搭載しているため、二次電池を搭載している他の蓄電装置E2~E6に比べて蓄電容量が少なく、また蓄電装置の入出力電圧VE1が変動しやすい。このため、蓄電装置E1の充電量と放電量を一定期間内で揃え、極力、電圧VE1を一定範囲内に収めることが必要となる。 Next, the function of the power amount correction calculation unit 34 shown in FIG. 5 will be described. The power amount correction calculation unit 34 performs a power amount correction calculation for keeping the power storage capacity of the power storage device E1 having a smaller power storage capacity in comparison with the other power storage devices E1 to E6. Since the power storage device E1 is equipped with a capacitor, it has a smaller storage capacity than the other power storage devices E2 to E6 equipped with secondary batteries, and the input / output voltage V E1 of the power storage device is likely to fluctuate. For this reason, it is necessary to arrange the charge amount and discharge amount of the power storage device E1 within a certain period and to keep the voltage VE1 within a certain range as much as possible.
 電力量補正演算部34は、まず、ON/OFFパターン演算部33より出力された電力変換装置10~60の各交流側入出力パターン情報を元に、各蓄電装置の半周期分(または1周期分)の消費電力量を計算する。 First, the power amount correction calculation unit 34, based on each AC side input / output pattern information of the power conversion devices 10 to 60 output from the ON / OFF pattern calculation unit 33, corresponds to a half cycle (or one cycle) of each power storage device. Min)).
 図8に電力量補正演算を実施せずに半周期分の放電を実施した場合の蓄電装置E1~E6の各消費電力量(QE1~QE6)の比較を棒グラフにて示す。図6や図7から明らかなように、蓄電装置E1の放電期間が最も短く、反対に蓄電装置E6の放電期間が最も長い。このため、図8の棒グラフに示すように、各蓄電装置の消費電力量はQE1、QE2、・・・、QE6の順に大きくなる。 FIG. 8 is a bar graph showing a comparison of power consumption amounts (Q E1 to Q E6 ) of the power storage devices E1 to E6 when discharging for a half cycle is performed without performing the power amount correction calculation. As is apparent from FIGS. 6 and 7, the discharge period of the power storage device E1 is the shortest, and conversely, the discharge period of the power storage device E6 is the longest. For this reason, as shown in the bar graph of FIG. 8, the power consumption of each power storage device increases in the order of Q E1 , Q E2 ,.
 次に、図9および図10を用いて電力量補正演算部34およびON/OFFパターン更新演算部35が実施する電力量補正および電力変換装置の出力パターン変更の一例を説明する。ここでは、蓄電装置E1が本来負担すべき半周期分の電力量QE1を、蓄電装置E2にすべて受け持たせるケースを示す。このケースにおける半周期分の消費電力量比較を図9に示す。図9の通り、蓄電装置E2の消費電力量QE2に蓄電装置E1の消費電力量QE1が加算される。そして蓄電装置E1の半周期通算の消費電力量はゼロとなる。 Next, an example of power amount correction performed by the power amount correction calculation unit 34 and the ON / OFF pattern update calculation unit 35 and change of the output pattern of the power conversion device will be described with reference to FIGS. 9 and 10. Here, a case is shown in which the power storage device E2 has all of the energy Q E1 for a half cycle that the power storage device E1 should originally bear. FIG. 9 shows a comparison of power consumption for a half cycle in this case. As shown in FIG. 9, the power consumption Q E1 of the power storage device E1 is added to the power consumption Q E2 of the power storage device E2 . Then, the total power consumption of the power storage device E1 is zero.
 図10は、上記の電力量補正を実施するための電力変換装置10および20の各交流側接続端子の端子間電圧制御の具体的な波形パターンである。図10(a)が電力量補正を実施する前の電力変換装置10と20の交流側入出力パターンであり、同図(b)が電力量補正後の波形パターンである。補正前のパターンでは、蓄電装置E1は図10(a)のA3の斜線部に示す期間にて放電動作をする。この期間に消費される電力量が図8に示した蓄電装置E1の消費電力量QE1である。 FIG. 10 is a specific waveform pattern of the inter-terminal voltage control of each AC side connection terminal of the power conversion devices 10 and 20 for performing the above-described power amount correction. FIG. 10A is an AC side input / output pattern of the power converters 10 and 20 before the power amount correction is performed, and FIG. 10B is a waveform pattern after the power amount correction. In the pattern before correction, the power storage device E1 performs the discharging operation in the period indicated by the shaded area A3 in FIG. The amount of power consumed during this period is the power consumption amount Q E1 of the power storage device E1 shown in FIG.
 蓄電装置E1の半周期の通算消費電力量をゼロとするため、ON/OFFパターン更新演算部35は、期間A3における蓄電装置E1の消費電力量QE1を基に、これと同じ電力量を蓄電装置E1が充電するのに必要な期間を演算し、新しい波形パターンを生成する。具体的には、図10(b)のA1、A2、A4およびA5の斜線で示した期間において電力変換装置10の交流側出力が負の方向にオン(-VE1)となるようにON/OFFパターンを変更する。また、その代わりに同図B1、B2、B4およびB5の斜線で示した期間において電力変換装置20の交流側出力が正の方向にオン(+VE2)するようにON/OFFパターンを変更する。 In order to make the total power consumption of the half cycle of the power storage device E1 zero, the ON / OFF pattern update calculation unit 35 stores the same power amount based on the power consumption Q E1 of the power storage device E1 in the period A3. The period required for the device E1 to charge is calculated, and a new waveform pattern is generated. Specifically, ON / OFF so that the AC side output of the power converter 10 is turned on in the negative direction (−V E1 ) during the periods indicated by the oblique lines A1, A2, A4 and A5 in FIG. Change the OFF pattern. Instead, the ON / OFF pattern is changed so that the AC-side output of the power converter 20 is turned on in the positive direction (+ V E2 ) during the periods indicated by the oblique lines in FIGS. B1, B2, B4, and B5.
 このようにすることで、蓄電装置E1が放電した分の電力量を、見掛け上、蓄電装置E2が補うように制御され、蓄電装置E1の半周期通算の消費電力量をゼロにすることができる。 By doing so, it is controlled so that the power storage device E2 apparently supplements the amount of power that the power storage device E1 has discharged, and the total power consumption of the power storage device E1 can be reduced to zero. .
 図11に、図5に示したON/OFFパターン更新演算部35が最終的に生成する電力変換装置10~60の各交流側出力パターンを示す。電力変換装置10と20の各交流側入出力パターンはそれぞれ変更されるが、合成されて出力される電圧パターンは変更されないため、交流電源系統との電力授受には影響しない。なお、指令電圧1に比べて合成電圧波形は滑らかではないが、実際のシステムではフィルタ回路を介して交流電源系統と電力授受するため、電源装置1と交流電源系統との間で流れる電流は滑らかな正弦波形となる。 FIG. 11 shows the AC side output patterns of the power converters 10 to 60 finally generated by the ON / OFF pattern update calculation unit 35 shown in FIG. Although each AC side input / output pattern of the power converters 10 and 20 is changed, the voltage pattern that is synthesized and output is not changed, so that power exchange with the AC power supply system is not affected. Although the synthesized voltage waveform is not smooth compared to the command voltage 1, the current flowing between the power supply device 1 and the AC power supply system is smooth because power is transferred to and from the AC power supply system through a filter circuit in an actual system. A sinusoidal waveform.
 図9~図11に示した電力量補正演算部34およびON/OFFパターン更新演算部35が実施する電力量補正とON/OFFパターン変更の例では、蓄電装置E1とE2の間だけで電力量を融通したが、蓄電装置E3~E6も電力量調整に加えることもできる。 In the example of the power amount correction and the ON / OFF pattern change performed by the power amount correction calculation unit 34 and the ON / OFF pattern update calculation unit 35 shown in FIGS. 9 to 11, the power amount only between the power storage devices E1 and E2. However, the power storage devices E3 to E6 can also be added to the power amount adjustment.
 図12は、蓄電装置E1の消費電力量QE1をQE1a、QE1b、QE1c、QE1dに分割して蓄電装置E2~E5にそれぞれ分担させる場合の各蓄電装置の消費電力量比較を示す。 Figure 12 shows the power consumption Q E1 of the power storage device E1 Q E1a, Q E1b, Q E1c, the power consumption Comparison of power storage device when each is shared storage device E2 ~ E5 divided into Q E 1 d .
 図13は、図12に示した電力量補正を実施した場合の各電力変換装置の交流側出力パターンを示したタイミングチャートである。電力変換装置60以外のすべての交流側出力パターンが変更されているが、これらが合成されて交流側接続端子2に現れる合成電圧は、電力量補正前に求めた合成電圧パターンと変わらない。 FIG. 13 is a timing chart showing an AC output pattern of each power converter when the power amount correction shown in FIG. 12 is performed. Although all AC side output patterns other than the power converter 60 have been changed, the combined voltage appearing at the AC side connection terminal 2 after being combined is not different from the combined voltage pattern obtained before the power amount correction.
 以上がキャパシタを搭載した蓄電装置と二次電池を搭載した蓄電装置を同一の電源装置内にて運用するための制御方法の概要である。 The above is an overview of a control method for operating a power storage device equipped with a capacitor and a power storage device equipped with a secondary battery in the same power supply device.
 キャパシタを搭載する蓄電装置は、入出力特性が他の蓄電装置程度あれば二次電池を搭載する蓄電装置ほど容量は必要なく、搭載するキャパシタセルを多数並列化する必要が無い。このため、キャパシタを搭載する蓄電装置は、他の二次電池を搭載する蓄電装置よりも蓄電素子の容量コストを下げることができる。さらに、キャパシタは充放電サイクル寿命が二次電池よりも長く、二次電池搭載の蓄電装置よりもキャパシタ搭載の蓄電装置の方が交換頻度を下げられ、ランニングコスト削減も可能である。 A power storage device equipped with a capacitor does not need as much capacity as a power storage device equipped with a secondary battery as long as the input / output characteristics are comparable to those of other power storage devices, and there is no need to parallelize a large number of capacitor cells. For this reason, the power storage device in which the capacitor is mounted can lower the capacity cost of the power storage element than the power storage device in which another secondary battery is mounted. Furthermore, the charge / discharge cycle life of the capacitor is longer than that of the secondary battery, and the replacement frequency of the power storage device mounted with the capacitor is lower than that of the power storage device mounted with the secondary battery, and the running cost can be reduced.
 尚、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。 In addition, this invention is not limited to the above-mentioned Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
 また、実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加/削除/置換をすることが可能である。 Further, a part of the configuration of the embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of the embodiment. Further, it is possible to add / delete / replace other configurations for a part of the configuration of each embodiment.
 また、上記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウェアで実現してもよい。 In addition, each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit.
 また、上記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウェアで実現してもよい。 Further, each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor.
1:電源装置
2:交流側接続端子
3:中央制御装置
31:指令電圧演算部、32:キャリア演算部、33:ON/OFFパターン演算部、34:電力量補正演算部、35:ON/OFFパターン更新演算部、36:通信部
4:電流計測装置
5:電圧検出装置
10~60:電力変換装置、10d~60d:直流側接続端子、10a~60a:交流側接続端子
E1~E6:蓄電装置
11:スイッチング回路、111~114:MOSFET、D111~D114:ボディダイオード
12:平滑化コンデンサ
13:制御装置、131:通信部、132:データ保持部、133:スイッチ制御・駆動部、134:電圧判定部、
14:電圧計測装置、
C1~C6:キャリア
1: Power supply device 2: AC side connection terminal 3: Central control device 31: Command voltage calculation unit, 32: Carrier calculation unit, 33: ON / OFF pattern calculation unit, 34: Electric energy correction calculation unit, 35: ON / OFF Pattern update calculation unit 36: Communication unit 4: Current measurement device 5: Voltage detection device 10-60: Power conversion device, 10d-60d: DC side connection terminal, 10a-60a: AC side connection terminals E1-E6: Power storage device 11: switching circuit, 111 to 114: MOSFET, D111 to D114: body diode 12: smoothing capacitor 13: control device, 131: communication unit, 132: data holding unit, 133: switch control / drive unit, 134: voltage determination Part,
14: Voltage measuring device,
C1 to C6: Carrier

Claims (5)

  1.  電力を充電および放電可能な蓄電装置が電気的に接続された直流側接続端子と、交流側接続端子とを有する電力変換装置を複数備え、複数の前記電力変換装置の、各々の前記交流側接続端子を電気的に直列接続することで、交流電源系統と連系可能な電源装置であって、
     複数の前記電力変換装置は、少なくとも2つのグル―プに分類され、
     前記グループを構成する前記電力変換装置の前記直流側接続端子に接続する前記蓄電装置に内蔵する蓄電素子の正極活物質材料と負極活物質材料の組み合わせが、前記グループ内で同じであり、
     前記蓄電装置に内蔵する前記蓄電素子の前記正極活物質材料と前記負極活物質材料の組み合わせが、前記グループ間で異なることを特徴とする電源装置。
    A plurality of power conversion devices each having a DC side connection terminal to which a power storage device capable of charging and discharging electric power is electrically connected, and an AC side connection terminal, each of the plurality of power conversion devices being connected to each AC side A power supply device that can be connected to an AC power supply system by electrically connecting terminals in series,
    The plurality of power conversion devices are classified into at least two groups,
    The combination of the positive electrode active material and negative electrode active material of the power storage element built in the power storage device connected to the DC side connection terminal of the power conversion device constituting the group is the same in the group,
    The power supply device, wherein a combination of the positive electrode active material and the negative electrode active material of the power storage element incorporated in the power storage device is different between the groups.
  2.  請求項1に記載の電源装置であって、
     前記複数の電力変換装置と無線または有線にて通信して前記複数の電力変換装置の各々の前記交流側接続端子の電圧出力を制御する中央制御装置を、さらに備えたことを特徴とする電源装置。
    The power supply device according to claim 1,
    A power supply device further comprising a central control device that communicates with the plurality of power conversion devices wirelessly or by wire to control voltage output of the AC side connection terminals of each of the plurality of power conversion devices. .
  3.  請求項1また2に記載の電源装置であって、
     前記グループには、第一グループと第二のグループと、が含まれ、
     前記第一のグループを構成する前記電力変換装置の前記直流側接続端子に接続された前記蓄電装置は、その蓄電素子としてキャパシタを搭載し、
     前記第二のグループを構成する前記電力変換装置の前記直流側接続端子に接続された前記蓄電装置は、その蓄電素子として二次電池を搭載することを特徴とする電源装置。
    The power supply device according to claim 1 or 2,
    The group includes a first group and a second group,
    The power storage device connected to the DC side connection terminal of the power conversion device constituting the first group is equipped with a capacitor as the power storage element,
    The power storage device connected to the DC side connection terminal of the power conversion device constituting the second group includes a secondary battery as the power storage element.
  4.  請求項3に記載の電源装置であって、
     前記中央制御装置は、前記交流電源系統との連系時、前記キャパシタを搭載する蓄電装置の入出力電圧を一定に保つように、前記複数の電力変換装置を制御することを特徴とする電源装置。
    The power supply device according to claim 3,
    The central control device controls the plurality of power conversion devices so as to keep an input / output voltage of a power storage device mounted with the capacitor constant when connected to the AC power supply system. .
  5.  請求項3または4に記載の電源装置であって、
     前記キャパシタは、電気二重層キャパシタまたはリチウムイオンキャパシタであり、前記二次電池は、鉛蓄電池またはリチウムイオン二次電池であることを特徴とする電源装置。
    The power supply device according to claim 3 or 4,
    The capacitor is an electric double layer capacitor or a lithium ion capacitor, and the secondary battery is a lead storage battery or a lithium ion secondary battery.
PCT/JP2013/056894 2013-03-13 2013-03-13 Power source device WO2014141396A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/056894 WO2014141396A1 (en) 2013-03-13 2013-03-13 Power source device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/056894 WO2014141396A1 (en) 2013-03-13 2013-03-13 Power source device

Publications (1)

Publication Number Publication Date
WO2014141396A1 true WO2014141396A1 (en) 2014-09-18

Family

ID=51536098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/056894 WO2014141396A1 (en) 2013-03-13 2013-03-13 Power source device

Country Status (1)

Country Link
WO (1) WO2014141396A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7397111B2 (en) 2021-03-05 2023-12-12 バイドゥ ユーエスエイ エルエルシー How to tune liquid cooling equipment, data centers and electronic equipment

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198857A (en) * 1997-09-16 1999-04-09 Yaskawa Electric Corp Power conversion device using multiplex pulse width modulation
JP2006238628A (en) * 2005-02-25 2006-09-07 Mitsubishi Electric Corp Power converting device
WO2008041755A1 (en) * 2006-10-04 2008-04-10 The Tokyo Electric Power Company, Incorporated Ac-dc conversion device
JP2009165265A (en) * 2008-01-07 2009-07-23 Mitsubishi Electric Corp Power converter
JP2011136665A (en) * 2009-12-29 2011-07-14 Toyota Central R&D Labs Inc Vehicular power supply control system
JP2012253862A (en) * 2011-06-01 2012-12-20 Hitachi Ltd Power storage system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1198857A (en) * 1997-09-16 1999-04-09 Yaskawa Electric Corp Power conversion device using multiplex pulse width modulation
JP2006238628A (en) * 2005-02-25 2006-09-07 Mitsubishi Electric Corp Power converting device
WO2008041755A1 (en) * 2006-10-04 2008-04-10 The Tokyo Electric Power Company, Incorporated Ac-dc conversion device
JP2009165265A (en) * 2008-01-07 2009-07-23 Mitsubishi Electric Corp Power converter
JP2011136665A (en) * 2009-12-29 2011-07-14 Toyota Central R&D Labs Inc Vehicular power supply control system
JP2012253862A (en) * 2011-06-01 2012-12-20 Hitachi Ltd Power storage system

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7397111B2 (en) 2021-03-05 2023-12-12 バイドゥ ユーエスエイ エルエルシー How to tune liquid cooling equipment, data centers and electronic equipment

Similar Documents

Publication Publication Date Title
JP5798887B2 (en) Power storage system
WO2014132321A1 (en) Power source device
Maroti et al. The state-of-the-art of power electronics converters configurations in electric vehicle technologies
US20220239136A1 (en) Advanced battery charging on modular levels of energy storage systems
US8193761B1 (en) Hybrid power source
US20140077595A1 (en) Battery energy storage system
JP5843624B2 (en) Power conversion system for grid connection
CN112793472A (en) Battery with battery cells and method for operating the same
JP2015015863A (en) Power system
US11897347B2 (en) Systems, devices, and methods for charging and discharging module-based cascaded energy systems
JP2021048759A (en) Power supply device
JP6636905B2 (en) Power converter
Helling et al. Low voltage power supply in modular multilevel converter based split battery systems for electrical vehicles
JP5853094B2 (en) Power supply
JP5659816B2 (en) Power supply device, power supply system, and power supply system control method
CN112477641A (en) Power supply device
KR20120011363A (en) Apparatus and method for charging balance and grid connected type battery charging and discharging system thereof
US20210379997A1 (en) Multi-phase inverter and related high voltage topology
JP6966871B2 (en) Battery system
CN115916581A (en) Systems, devices, and methods for rail-based and other electric vehicles with modular cascade energy systems
JP5931366B2 (en) Power converter
JP2016067131A (en) Charger system
US20230336007A1 (en) Pulsed charging for energy sources of connected modules
WO2015136682A1 (en) Electricity storage system
WO2014141396A1 (en) Power source device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13877609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13877609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP