WO2015135391A1 - 一种无源感温传感元件 - Google Patents

一种无源感温传感元件 Download PDF

Info

Publication number
WO2015135391A1
WO2015135391A1 PCT/CN2015/070661 CN2015070661W WO2015135391A1 WO 2015135391 A1 WO2015135391 A1 WO 2015135391A1 CN 2015070661 W CN2015070661 W CN 2015070661W WO 2015135391 A1 WO2015135391 A1 WO 2015135391A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensing element
temperature sensing
passive temperature
electrolyte
positive electrode
Prior art date
Application number
PCT/CN2015/070661
Other languages
English (en)
French (fr)
Inventor
曾学义
邹志武
Original Assignee
青岛中阳消防科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛中阳消防科技有限公司 filed Critical 青岛中阳消防科技有限公司
Publication of WO2015135391A1 publication Critical patent/WO2015135391A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B17/00Fire alarms; Alarms responsive to explosion
    • G08B17/06Electric actuation of the alarm, e.g. using a thermally-operated switch
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/30Deferred-action cells
    • H01M6/36Deferred-action cells containing electrolyte and made operational by physical means, e.g. thermal cells
    • AHUMAN NECESSITIES
    • A62LIFE-SAVING; FIRE-FIGHTING
    • A62CFIRE-FIGHTING
    • A62C37/00Control of fire-fighting equipment
    • A62C37/36Control of fire-fighting equipment an actuating signal being generated by a sensor separate from an outlet device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means

Definitions

  • the invention belongs to the technical field of fire protection, and in particular relates to a passive temperature sensing element.
  • a heat-sensitive wire ie, a fuse
  • a heat-sensitive wire ie, a fuse
  • the heat-sensitive wire located in the protected area is When it reaches a certain temperature, it will spontaneously ignite, and use the heat generated by spontaneous combustion to start the fire extinguishing device.
  • the disadvantage of this type of starting method is that the thermal wire is easily broken when it is wet or subjected to an external force, and a fire cannot be detected.
  • the thermal wire is actually a kind of fuse, which is a flammable and explosive dangerous goods. It requires special permission from the public security department in terms of storage, transportation and use, so the safety hazard is relatively large.
  • the other is to start by electric heating, such as the electric initiator (ie, electric ignition head and ignition pack) in the public safety industry standard GA499.1-2004 "Aerosol Fire Extinguishing System", which is to pass electric energy.
  • the fire extinguishing device is activated by converting it into heat energy, causing the fire extinguishing agent or the burning agent to burn, thereby generating expansion and spraying the fire extinguishing agent outward.
  • This type of starting method is usually powered by fire power or battery.
  • the disadvantage is that the electrical connection between the fire power supply and the battery and the fire extinguishing device is long. Once the power cable is disconnected or the battery is dead, there is no power supply, so it will appear. The problem that the fire extinguishing device could not be started.
  • Thermal Battery proposed a heat-activated reserve battery with molten salt as electrolyte.
  • the molten salt electrolyte is a non-conductive solid state salt when stored at room temperature.
  • the electrolyte when in use, ignites the heating agent inside thereof by a power source or an impact, thereby heating and melting the solid molten salt electrolyte into a conductive ionic conductor to enter an operating state, when the heating is stopped and the temperature is lowered to the freezing point of the molten salt electrolyte, It returns to a non-conductive solid state.
  • the book also proposes a heating to form an electrolyte heat battery, and heating to form an electrolyte heat battery is a kind of heat battery.
  • the biggest feature of the battery is the electrolyte layer between the positive and negative electrodes.
  • the heat battery is completely different.
  • the electrolyte layer is a non-conducting body prior to use of the battery, and when thermally activated, it will chemically react to form a solvent and a salt (solute) to form an electrolyte capable of ion-conducting. Once the ion-conducting electrolyte is formed, the positive and negative electrodes of the battery can undergo an oxidation-reduction reaction to output electrical energy to the external circuit.
  • the electrolyte formed by the chemical reaction during thermal activation does not undergo a reverse reaction after cooling, the ion conduction can occur even when the temperature is lowered to room temperature, so the heat battery is not limited by the temperature drop. Long working life, this feature is unmatched by other thermal batteries.
  • this heating to form an electrolyte heat battery is mainly composed of the following parts:
  • Positive electrode mainly a sheet-like structure composed of a positive electrode active material and a substrate.
  • positive electrode active materials are: iron disulfide, tungsten trioxide, vanadium pentoxide, lead chromate, potassium dichromate and the like.
  • Negative electrode mainly a sheet-like structure composed of a negative electrode active material and a substrate. Commonly used negative electrode active materials are: magnesium, calcium, lithium aluminum alloy, lithium silicon alloy, and the like.
  • the sheet-like structure as an electrolyte in the battery is mainly composed of a salt electrolyte and a binder, and in addition to ion conduction, it can also prevent electron conduction between the positive electrode and the negative electrode.
  • Heating system a set of components that accepts the ignition signal and ignites the internal temperature of the thermal battery to the operating temperature, mainly by the electric ignition head (when activated) or the fire cap (when mechanically activated), igniting paper and heating Piece composition.
  • Battery case a container that encloses and houses the above structural members.
  • FIG. 1 is a schematic view showing the structure of a heat-activated reserve battery which is heated to form an electrolyte heat battery and a molten salt as an electrolyte; as shown in FIG. 1, the heat battery includes a positive electrode 11, a heating forming electrolyte or a molten salt electrolyte 12, and a negative electrode 13 , the heating sheet 14, the output terminal 15, the housing cover 16, the housing 17 and the activation block 18; wherein the housing 17 is provided with a heating sheet 14, a negative electrode 13, a heating forming electrolyte 12 or a molten salt electrolyte in order from bottom to top.
  • a positive electrode 11 a housing cover 16 covering the upper port of the housing 17, and having two output terminals 15 disposed thereon, the lower ends of the two output terminals 15 being electrically connected to the positive electrode 11 and the negative electrode 13, respectively; It is disposed outside the bottom surface of the casing 17.
  • the working principle of heating to form an electrolyte heat battery is that under normal circumstances, since the heating forming electrolyte 12 is an insulator at normal temperature, the output terminal 15 has no voltage. When an external force strikes the activation block 18, the activation block 18 releases heat which will be transferred to the heater chip through the housing 17. 14.
  • the heating sheet 14 is thereby activated, and the heat released from the heating sheet 14 causes a chemical reaction between the heating forming electrolyte 12 to form a solvent and a salt (solute), thereby forming an electrolyte capable of ion conduction, and the anode 13 will be
  • the formation of the electrolyte 12 by the heating causes an oxidation reaction to lose electrons; the positive electrode 11 undergoes a reduction reaction with the heating forming electrolyte 12 to obtain electrons, thereby outputting a voltage across the output terminal 15.
  • the working principle of the heat-activated reserve battery in which molten salt is used as an electrolyte is that, under normal conditions, since the molten salt electrolyte 12 is in a solid state at normal temperature, the output terminal 15 has no voltage.
  • the activation block 18 releases heat which is transferred to the heater chip 14 through the housing 17, thereby activating the heater chip 14, and the heat released by the heater chip 14 causes the molten salt electrolyte 12 to melt.
  • thermal battery is favored by the military because of its high specific energy and specific power, wide operating environment temperature, long storage time, continuous use after activation, compact structure, simple process, low cost, and no maintenance. It has become an ideal power source for modern weapons such as missiles, nuclear weapons and artillery, and it has an important position in the military field. However, it has not yet been applied to the fire protection industry.
  • an object of the present invention is to provide a passive temperature sensing element based on the principle of a heat-forming electrolyte-based thermal battery that is resistant to moisture, has a simple structure, is safe and reliable, is self-heating, and does not require a power source.
  • the passive temperature sensing element comprises a positive electrode, a negative electrode and a heating forming electrolyte or a molten salt electrolyte; a heating forming electrolyte or a molten salt electrolyte is disposed between the positive electrode and the negative electrode.
  • the passive temperature sensing element further includes a housing disposed outside.
  • At least one of the positive electrode or the negative electrode is connected with a normally open type thermal switch.
  • the passive temperature sensing element is a point or line passive temperature sensing element.
  • the positive electrode and/or the negative electrode in the linear passive temperature sensing element is an isometric linear conductor in the form of a hollow structure, a solid structure, a multi-core structure or a woven structure, and the two are intertwined Winding, stranding, equidistant parallel or coaxial setting.
  • the positive electrode or the negative electrode in the linear passive temperature sensing element is an isometric linear conductor in the form of a hollow structure, a solid structure, a multi-core structure or a woven structure, an insulating material is woven or wound on the outer surface thereof.
  • the gap of the insulating material is filled with heating to form an electrolyte or a molten salt electrolyte, and the other negative electrode or the positive electrode is intertwined, stranded, equidistantly parallel or coaxially disposed.
  • the positive electrode is made of iron disulfide, tungsten trioxide, vanadium pentoxide, lead chromate or potassium dichromate, or a conductor, a semiconductor or a polymer to which the above or equivalent substance is attached; the negative electrode is made of magnesium.
  • the heating forming electrolyte uses a mixture of lead tetraacetate and hydrogenated benzene, benzoic acid monoterpene a diterpene nitrile salt or an alkali metal salt LiCl having a reaction temperature in the range of 60 ° C to 500 ° C;
  • the molten salt electrolyte is 40% LiCl-AICl 3 , 40% NaCl-AlCl 3 , LiAlBr4-NaAlCl 4 -KAlCl 4 K, silver iodide or cuprous iodide, melting point in the range of 60 ° C -500 ° C.
  • a binder is also added to the molten salt electrolyte.
  • the linear passive temperature sensing element further includes two conductors in which a plurality of the point passive temperature sensing elements are connected in parallel, wherein one conductor simultaneously and a plurality of said points are The positive electrode of the source temperature sensing element is connected, and the other conductor is simultaneously connected to the negative electrode of the plurality of point passive temperature sensing elements.
  • a normally open type thermal switch is inserted in at least one of the two conductors.
  • the normally open type thermal switch is a passive switching quantity output thermal switch.
  • the conductor is a hollow conductor, a solid conductor or a braided conductor, and the two are intertwined, stranded, equidistantly parallel or coaxially arranged; the connection between the positive electrode or the negative electrode and the conductor is welded and mechanically crimped. Or conductive adhesive bonding.
  • the passive temperature sensing element provided by the invention can start normally after no power or power failure, and has the advantages of low temperature resistance, moisture resistance, simple structure, reliable operation, high sensitivity, no false alarm, and the like, and thus can be applied to Various fire extinguishing systems that are activated by electricity. It can also be used as a fire detector after connecting an alarm device or a conversion device.
  • FIG. 1 is a schematic view showing the structure of a heat activated reserve battery which is formed by heating to form an electrolyte heat battery or a molten salt as an electrolyte;
  • FIG. 2 is a schematic structural diagram of a passive temperature sensing element according to Embodiment 1 of the present invention.
  • FIG. 3 is a schematic structural view of a passive temperature sensing element provided with a positive and negative pole in a twisted manner according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic structural diagram of a passive temperature sensing element provided with a coaxial method in a positive and negative electrode according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic structural view of a passive temperature sensing element on which an insulating material is wound according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic structural diagram of a passive temperature sensing element according to Embodiment 2 of the present invention.
  • FIG. 7 is a schematic structural diagram of a passive temperature sensing element according to Embodiment 3 of the present invention.
  • FIG. 8 is a schematic structural diagram of a passive temperature sensing element according to Embodiment 4 of the present invention.
  • FIG. 9 is a schematic structural diagram of a passive temperature sensing element according to Embodiment 5 of the present invention.
  • the passive temperature sensing element includes a positive electrode 1, a negative electrode 2, and a heating forming electrolyte or molten salt electrolyte 3; one end of the positive electrode 1 and the negative electrode 2 and a fire extinguishing device or an alarm device Connected; a heating forming electrolyte or a molten salt electrolyte 3 is disposed between the positive electrode 1 and the negative electrode 2.
  • a housing 4 is also provided on the outside, and the housing 4 may be made of a metal, plastic or rubber material.
  • the positive electrode 1 is made of iron disulfide, tungsten trioxide, vanadium pentoxide, lead chromate or potassium dichromate, or a conductor, a semiconductor or a polymer having the above-mentioned or equivalent substance attached thereto, and the attachment method is winding. Packing, winding, smoothing, painting, etc.
  • the negative electrode 2 is made of magnesium, calcium, lithium aluminum alloy or lithium silicon alloy, or a conductor, a semiconductor or a polymer having the above-mentioned or equivalent substance attached to the surface, and the attachment method is wrapping, winding, aligning, painting, etc. .
  • the heating forming electrolyte 3 is a mixture of lead tetraacetate and hydrogenated benzene, a benzil monofluorene, a dinitrile salt or an alkali metal salt LiCl, and the reaction temperature is 60 ° C to 500 ° C.
  • a binder may also be added to the heating forming electrolyte 3.
  • the molten salt electrolyte 3 may be 40% LiCl-AlCl 3 , 40% NaCl-AlCl 3 or LiAlBr4-NaAlCl 4 -KAlCl 4 K, or may be a solid phase change conductive electrolyte such as silver iodide or cuprous iodide. Etc., the melting temperature is from 60 ° C to 500 ° C. Further, a binder may be added to the molten salt electrolyte 3.
  • the passive temperature sensing element may be a point type passive temperature sensing element of various shapes, such as a button type, a square shape or a sheet shape.
  • the passive temperature sensing element may also be a linear passive temperature sensing element of various structures, wherein the positive electrode 1 and the negative electrode 2 are arranged in parallel, coaxial, and stranded manner.
  • the positive electrode 1 and/or the negative electrode 2 are isometric conductors of a hollow structure, a solid structure, a multi-core structure or a woven structure, and are used between the two. Intertwined, stranded, equidistant parallel or coaxial.
  • the insulating material 6 may be woven or wound on the outer surface thereof.
  • the gap of the insulating material 6 is filled with heating to form the electrolyte 3 or the molten salt electrolyte 3, and the other negative electrode 2 or the positive electrode 1 is intertwined, stranded, equidistantly parallel or coaxially disposed.
  • the electrolyte 3 formed by the heating in the passive temperature sensing element disposed at the fire monitoring site is not thermally activated, or the molten salt electrolyte 3 is in a solid state in a low temperature environment, and thus is an insulator, so the positive electrode There is no voltage output between 1 and negative electrode 2.
  • the ambient temperature around the passive temperature sensing element will rise.
  • the ambient temperature at this point reaches the heat activation temperature of the heating forming electrolyte 3
  • heating to form the electrolyte 3 will cause a chemical reaction to generate a solvent and a salt (solute), thereby forming an electrolyte capable of ion conduction, in which case the negative electrode 2 will undergo an oxidation reaction with the heating forming electrolyte 3 to lose electrons, and the positive electrode 1 undergoes a reduction reaction with the heating forming electrolyte 3 to obtain electrons;
  • the ambient temperature reaches the melting temperature of the molten salt electrolyte 3
  • the molten salt electrolyte 3 will change from a solid state to a liquid state which can be ionically conductive.
  • the negative electrode 2 will undergo oxidation reaction with the molten salt electrolyte 3 to lose electrons, and the positive electrode 1 will be The molten salt electrolyte 3 undergoes a reduction reaction to obtain electrons, thereby outputting a voltage across the positive electrode 1 and the negative electrode 2, thereby driving the fire extinguishing device to perform a fire extinguishing or alarm device to issue a fire alarm letter. number.
  • a passive temperature sensing element having an internal heating forming electrolyte 3 once it is activated to generate electricity, it will continue to generate electricity without being affected by the ambient temperature, and is irreversible.
  • a passive temperature sensing element having a molten salt electrolyte 3 therein once it is activated to generate electricity, if the heating temperature of the molten salt electrolyte 3 is lower than its melting temperature, power generation will not continue. reversible.
  • the passive temperature sensing element provided in this embodiment includes two conductors 7 and a plurality of point passive temperature sensing electrodes provided in parallel between the two conductors 7 provided in Embodiment 1.
  • each point type passive temperature sensing element comprises a positive electrode 1, a negative electrode 2, a heating forming electrolyte or a molten salt electrolyte 3, and a casing 4; a heating forming electrolyte or a molten salt electrolyte 3 is disposed between the positive electrode 1 and the negative electrode 2 a peripheral housing 4; one of the conductors 7 is simultaneously connected to the positive pole 1 of the plurality of point type temperature sensing elements, and the other conductor 7 is simultaneously connected to the negative poles 2 of the plurality of point type temperature sensing elements, two One end of the conductor 7 is connected to a fire extinguishing device or an alarm device.
  • the conductor 7 is a hollow conductor, a solid conductor or a braided conductor, and the two conductors 7 are intertwined, stranded, equidistantly parallel or coaxially disposed.
  • the connection between the positive electrode 1 or the negative electrode 2 and the conductor 7 may be by soldering, mechanically bonding or conductive bonding.
  • the electrolyte 3 formed by the heating in the passive temperature sensing element disposed at the fire monitoring site is not thermally activated, or the molten salt electrolyte 3 is in a solid state in a low temperature environment, and therefore is an insulator, so both There is no voltage output between the strip conductors 7.
  • the ambient temperature around the passive temperature sensing element will rise.
  • the ambient temperature at that point reaches the heat activation temperature of the electrolyte 3, it will chemically react to form a solvent and a salt (solute).
  • an electrolyte capable of ion conduction is formed, in which case the negative electrode 2 will undergo an oxidation reaction with the heating forming electrolyte 3 to lose electrons, and the positive electrode 1 undergoes a reduction reaction with the heating forming electrolyte 3 to obtain electrons; or when the environment is there
  • the temperature reaches the melting temperature of the molten salt electrolyte 3
  • the molten salt electrolyte 3 changes from a solid state to a liquid state which can be ion-conducting, and at this time, the negative electrode 2 will undergo an oxidation reaction with the molten salt electrolyte 3 to lose electrons, and the positive electrode 1 and the molten salt electrolyte 3 a reduction reaction occurs to obtain electrons, thereby connecting a conductor 7
  • a passive temperature sensing element having an internal heating forming electrolyte 3 once it is activated to generate electricity, it will continue to generate electricity without being affected by the ambient temperature, and is irreversible.
  • a passive temperature sensing element having a molten salt electrolyte 3 therein once it is activated to generate electricity, if the heating temperature of the molten salt electrolyte 3 is lower than its melting temperature, power generation will not continue. reversible.
  • the passive temperature sensing element provided in this embodiment is the passive temperature sensing provided in the above embodiment 1.
  • the normally open type thermal switch 8 is a switch quantity output heat sensitive element, such as a bimetal, a reed switch, a memory alloy wire, a switch temperature sensing cable, and the like.
  • the electrolyte 3 formed by the heating in the passive temperature sensing element disposed at the fire monitoring site is not thermally activated, or the molten salt electrolyte 3 is in a solid state in a low temperature environment, and thus is an insulator and is hot.
  • the sensitive switch 8 is of a normally open type, so there is no voltage output between the positive electrode 1 and the thermal switch 8, or the negative electrode 2 and the thermal switch 8, or the two thermal switches 8.
  • the ambient temperature around the passive temperature sensing element will rise.
  • the ambient temperature at that point reaches the heat activation temperature of the electrolyte 3, it will chemically react to form a solvent and a salt (solute).
  • an electrolyte capable of ion conduction is formed, in which case the negative electrode 2 will undergo an oxidation reaction with the heating forming electrolyte 3 to lose electrons, and the positive electrode 1 undergoes a reduction reaction with the heating forming electrolyte 3 to obtain electrons; or when the environment is there Temperature reaches molten salt
  • the molten salt electrolyte 3 changes from a solid state to a liquid state which can be ion-conducting.
  • the negative electrode 2 will undergo an oxidation reaction with the molten salt electrolyte 3 to lose electrons, and the positive electrode 1 will be reduced with the molten salt electrolyte 3.
  • the reaction generates electrons, thereby forming a voltage across the positive electrode 1 and the negative electrode 2.
  • the thermal switch 8 will be closed, that is, from a normally open state to a constant state. In the closed state, a voltage is output between the positive electrode 1 and the thermal switch 8, or the negative electrode 2 and the thermal switch 8, or the two thermal switches 8, thereby driving the fire extinguishing device to perform a fire extinguishing or alarm device to issue a fire alarm signal. .
  • a passive temperature sensing element having an internal heating forming electrolyte 3 once it is activated to generate electricity, it will continue to generate electricity without being affected by the ambient temperature, and is irreversible.
  • a passive temperature sensing element having a molten salt electrolyte 3 therein once it is activated to generate electricity, if the heating temperature of the molten salt electrolyte 3 is lower than its melting temperature, power generation will not continue. reversible.
  • the passive temperature sensing element provided in this embodiment is based on the passive temperature sensing element provided in the first embodiment, and an electric initiator 5, an electric initiator 5 and a positive electrode 1 are added.
  • One end of the negative electrode 2 is connected, and is connected to a fire extinguishing device or an alarm device, and is disposed at a fire monitoring site.
  • the electric initiator 5 is an electronic detonator, an electric squib, a solenoid valve, a relay or an electric motor.
  • the electrolyte 3 formed by the heating in the passive temperature sensing element disposed at the fire monitoring site is not thermally activated, or the molten salt electrolyte 3 is in a solid state in a low temperature environment, and thus is an insulator, so the positive electrode There is no voltage output between 1 and the negative electrode 2, so the electric initiator 5 cannot be started.
  • the passive temperature sensing element provided in this embodiment is based on the passive temperature sensing element provided in the above embodiment 2, and an electric initiator 5, an electric initiator 5 and two conductors are added.
  • One end of the 7 is connected, and is connected to the fire extinguishing equipment or the alarm device, and is set at the fire monitoring site.
  • the electric initiator 5 is an electronic detonator, an electric squib, a solenoid valve, a relay or an electric motor.
  • the electrolyte 3 formed by the heating in the passive temperature sensing element disposed at the fire monitoring site is not thermally activated, or the molten salt electrolyte 3 is in a solid state in a low temperature environment, and therefore is an insulator, so both There is no voltage output between the strip conductors 7, so the electric initiator 5 cannot be started.
  • the ambient temperature around the passive temperature sensing element will rise.
  • the ambient temperature at this point reaches the heat activation temperature of the heating forming electrolyte 3
  • heating to form the electrolyte 3 will cause a chemical reaction to generate a solvent and a salt (solute), thereby forming an electrolyte capable of ion conduction, in which case the negative electrode 2 will undergo an oxidation reaction with the heating forming electrolyte 3 to lose electrons, and the positive electrode 1 undergoes a reduction reaction with the heating forming electrolyte 3 to obtain electrons;
  • the ambient temperature reaches the melting temperature of the molten salt electrolyte 3
  • the molten salt electrolyte 3 will change from a solid state to a liquid state which can be ionically conductive.
  • the negative electrode 2 will undergo oxidation reaction with the molten salt electrolyte 3 to lose electrons, and the positive electrode 1 will be The molten salt electrolyte 3 undergoes a reduction reaction to obtain electrons, thereby outputting a voltage across one conductor 7 connected to the positive electrode 1 and the other conductor 7 connected to the negative electrode 2, and current will flow from one conductor 7 through the electric initiator 5 Another conductor 7.
  • the electric initiator 5 generates heat under the action of this current, thereby starting the fire extinguishing device in the fire extinguishing system to carry out the fire extinguishing.

Abstract

一种无源感温传感元件。其包括正极、负极、加热形成电解质或熔盐电解质以及外部壳体;所述的正极与负极的一端与灭火设备或报警装置相连;加热形成电解质设置在正极和负极之间,外设壳体。本发明提供的无源感温传感元件可在无电源或断电后仍然能正常启动,具有耐低温、耐潮湿、结构简单、动作可靠、灵敏度高、不误报警等优点,因此可适用于各种用电启动的灭火系统。并且在连接报警装置或转换装置后也可作为火灾探测器使用。

Description

一种无源感温传感元件 技术领域
本发明属于消防技术领域,特别是涉及一种无源感温传感元件。
背景技术
随着人们对消防安全认识的提高,灭火装置使用的数量越来越多,因此对灭火装置的安全、可靠性也越来越受到人们的关注,在现有的气溶胶和贮压、非贮压超细干粉灭火装置中,这些灭火装置的启动方式主要有以下两种:
一种是用热敏线(即导火索)启动,热敏线为由感温自燃材料制成且与灭火装置相连的线型结构,在发生火灾时,位于保护区内的热敏线在达到一定温度时将自燃,利用自燃产生的热量启动灭火装置。这种启动方式的缺点是热敏线受潮以后或受到外力的作用时易断,这时将无法探测到火灾。另一方面,热敏线实际上就是一种导火索,属于易燃易爆危险品,在储存、运输和使用方面需要公安部门的特业许可,因此安全隐患比较大。
另一种是用电热方式启动,如中华人民共和国公共安全行业标准GA499.1-2004《气溶胶灭火系统》中的电引发器(即电点火头和引燃药包),其是通过将电能转化为热能,使灭火剂或燃烧药剂燃烧,进而产生膨胀而向外喷洒灭火剂的方式来启动灭火装置。这种启动方式通常使用消防电源或电池供电,缺点是消防电源和电池与灭火装置之间的电连接线路较长,一旦电源线出现断路故障或电池无电的情况,由于没有电源,因此会出现灭火装置无法启动的问题。
陆瑞生、刘效疆编著的ISBN 7-118-03740-0《热电池》一书中提出过一种以熔盐作为电解质的热激活储备电池,常温储存时熔盐电解质为不导电的固体状态盐类电解质,使用时通过电源或撞击引燃其内部的加热药剂,由此使固体熔盐电解质加热熔融成为导电的离子型导体而进入工作状态,当停止加热且温度降低到熔盐电解质的凝固点时,其又恢复成不导电的固体状态。
该书中还提出过一种加热形成电解质热电池,加热形成电解质热电池是热电池的一种,该电池最大的特点是正、负极之间的电解质层与传 统热电池完全不同。该电解质层在电池使用之前是不导电体,当受到热激活时,其将发生化学反应,生成溶剂及盐(溶质),从而形成能够发生离子导电的电解质。一旦形成离子导电的电解质,电池的正、负极就能够发生氧化—还原反应,向外电路输出电能。由于这种在热激活时依靠化学反应形成的电解质在冷却后也不会发生逆向反应,因此即使在温度下降到室温时仍能发生离子导电,所以这种热电池不受温度下降的限制,具有很长的工作寿命,这个特点是其他热电池无法比拟的。
目前这种加热形成电解质热电池主要由以下几部分组成:
1、正极:主要是由正极活性物质及基片组成的片状结构体。常用的正极活性物质有:二硫化铁、三氧化钨、五氧化二钒、铬酸铅、重铬酸钾等。
2、负极:主要是由负极活性物质及基片组成的片状结构体。常用的负极活性物质有:镁、钙、锂铝合金、锂硅合金等。
3、加热形成电解质(或隔膜):电池中作为电解质的片状结构体,主要由盐类电解质和粘合剂组成,除起离子导电作用外,还可阻止正极和负极之间的电子导电。
4、加热系统:为接受点火信号并引燃使热电池内部温度上升到工作温度的一套部件,主要由电点火头(电激活时)或火帽(机械激活时)、引燃纸和加热片组成。
5、电池壳:封闭并容纳上述结构件的容器。
图1为一种现有加热形成电解质热电池和熔盐作为电解质的热激活储备电池结构示意图;如图1所示,这种热电池包括正极11、加热形成电解质或熔盐电解质12、负极13、加热片14、输出接线柱15、壳体盖16、壳体17和激活块18;其中壳体17内从下至上依次设有加热片14、负极13、加热形成电解质12或熔盐电解质和正极11;壳体盖16覆盖在壳体17的上端口处,并且其上设有两个输出接线柱15,两个输出接线柱15的下端分别与正极11和负极13电连接;激活块18设置在壳体17的底面外部。
加热形成电解质热电池的工作原理为:在正常情况下,因为加热形成电解质12在常温下为绝缘体,所以输出接线柱15没有电压。当有外力撞击激活块18时,激活块18释放热量,该热量将通过壳体17传给加热片 14,由此将加热片14启动,加热片14释放出的热量使加热形成电解质12发生化学反应,生成溶剂及盐(溶质),由此形成能够发生离子导电的电解质,这时负极13将与加热形成电解质12发生氧化反应而失去电子;正极11则与加热形成电解质12发生还原反应而得到电子,从而在输出接线柱15两端输出电压。
熔盐作为电解质的热激活储备电池的工作原理为:在正常情况下,因为熔盐电解质12在常温下为固体状态,所以输出接线柱15没有电压。当有外力撞击激活块18时,激活块18释放热量,该热量将通过壳体17传给加热片14,由此将加热片14启动,加热片14释放出的热量使熔盐电解质12熔融,从而使其由固态转变成可以离子导电的液态,这时负极13将与熔盐电解质12发生氧化反应而失去电子;正极11则与熔盐电解质12发生还原反应而得到电子,从而在输出接线柱15两端输出电压。
由于上述热电池具有很高的比能量和比功率、使用环境温度宽、贮存时间长、激活后就可连续使用、结构紧凑、工艺简便、造价低廉、不需要维护等优点,受到军界的青睐,发展成为导弹、核武器、火炮等现代化武器的理想电源,在军事领域占有重要位置。但目前尚未应用至消防行业。
发明内容
为了解决上述问题,本发明的目的在于提供一种耐潮湿、结构简单、安全可靠、感温自发电、无需电源的基于加热形成电解质的热电池原理的无源感温传感元件。
为了达到上述目的,本发明提供的无源感温传感元件包括正极、负极以及加热形成电解质或熔盐电解质;加热形成电解质或熔盐电解质设置在正极和负极之间。
所述的无源感温传感元件还包括设置在外部的壳体。
所述的无源感温传感元件中正极或负极中至少一个上串入有常开型热敏开关。
所述的无源感温传感元件是点式或线型无源感温传感元件。
所述的线型无源感温传感元件中的正极和/或负极为空心结构、实心结构、多芯结构或编织结构形式的等长线状导体,两者之间采用互相缠 绕、绞合、等距并行或同轴方式设置。
所述的线型无源感温传感元件中的正极或负极为空心结构、实心结构、多芯结构或编织结构形式的等长线状导体时,在其外表面编织或缠绕有绝缘材料,在绝缘材料的空隙处填充加热形成电解质或熔盐电解质,与另一负极或正极之间采用互相缠绕、绞合、等距并行或同轴方式设置。
所述的正极采用二硫化铁、三氧化钨、五氧化二钒、铬酸铅或者重铬酸钾,或采用表面附着有上述或等同物质的导体、半导体或聚合物;所述的负极采用镁、钙、锂铝合金或者锂硅合金,或采用表面附着有上述或等同物质的导体、半导体或聚合物;所述的加热形成电解质采用四醋酸铅和氢化苯偶烟的混合物、苯偶酰单肟、二肼腈盐或碱金属盐LiCl,其反应温度点在60℃-500℃范围;所述的熔盐电解质采用40%LiCl-AICl3、40%NaCl-AlCl3、LiAlBr4-NaAlCl4-KAlCl4K、碘化银或碘汞酸亚铜,熔融温度点在60℃-500℃范围。
所述的熔盐电解质中还添加有粘合剂。
所述的线型无源感温传感元件还包括将多个所述的点式无源感温传感元件并联在一起的两条导体,其中一条导体同时与多个所述的点式无源感温传感元件中的正极相连,另一条导体同时与多个所述的点式无源感温传感元件中的负极相接。
所述的两条导体中的至少一条上串入有常开型热敏开关。
所述的常开型热敏开关是无源开关量输出热敏开关。
所述的导体为空心导体、实心导体或编织导体,两者之间采用互相缠绕、绞合、等距并行或同轴方式设置;正极或负极与导体之间的连接采用焊接、机械配合压接或导电胶粘接方式。
本发明提供的无源感温传感元件可在无电源或断电后仍然能正常启动,具有耐低温、耐潮湿、结构简单、动作可靠、灵敏度高、不误报警等优点,因此可适用于各种用电启动的灭火系统。并且在连接报警装置或转换装置后也可作为火灾探测器使用。
附图说明
图1为现有加热形成电解质热电池或熔盐作为电解质的热激活储备电池结构示意图;
图2为本发明实施例1提供的无源感温传感元件结构示意图;
图3为本发明实施例1提供的正负极采用绞合方式设置的无源感温传感元件结构示意图;
图4为本发明实施例1提供的正负极采用同轴方式设置的无源感温传感元件结构示意图;
图5为本发明实施例1提供的其上缠绕绝缘材料的无源感温传感元件结构示意图;
图6为本发明实施例2提供的无源感温传感元件结构示意图。
图7为本发明实施例3提供的无源感温传感元件结构示意图。
图8为本发明实施例4提供的无源感温传感元件结构示意图。
图9为本发明实施例5提供的无源感温传感元件结构示意图。
具体实施方式
下面结合附图和具体实施例对本发明提供的无源感温传感元件进行详细说明。
实施例1:
如图2所示,本实施例提供的无源感温传感元件包括正极1、负极2以及加热形成电解质或熔盐电解质3;所述的正极1与负极2的一端与灭火设备或报警装置相连;加热形成电解质或熔盐电解质3设置在正极1和负极2之间。
为了防止无源感温传感元件因受潮或受热而导致加热形成电解质或熔盐电解质3外流,在其外部还设有壳体4,壳体4可以采用金属、塑料或橡胶材料制成。
所述的正极1采用二硫化铁、三氧化钨、五氧化二钒、铬酸铅或者重铬酸钾等,或采用表面附着有上述或等同物质的导体、半导体或聚合物,附着方式为绕包、缠绕、顺放、涂刷等。
所述的负极2采用镁、钙、锂铝合金或者锂硅合金等,或采用表面附着有上述或等同物质的导体、半导体或聚合物,附着方式为绕包、缠绕、顺放、涂刷等。
所述的加热形成电解质3采用四醋酸铅和氢化苯偶烟的混合物、苯偶酰单肟、二肼腈盐或碱金属盐LiCl等,其反应温度为60℃-500℃。另外, 加热形成电解质3中还可以添加粘合剂。
所述的熔盐电解质3可以是40%LiCl-AlCl3、40%NaCl-AlCl3或者LiAlBr4-NaAlCl4-KAlCl4K等,也可以是固体相变导电电解质,如碘化银、碘汞酸亚铜等,熔融温度为60℃-500℃。另外,熔盐电解质3中还可以添加粘合剂。
所述的无源感温传感元件可以是各种不同形状的点式无源感温传感元件,如纽扣式、方块形或片状等。
所述的无源感温传感元件还可以是各种不同结构的线型无源感温传感元件,其上正极1和负极2采用平行、同轴、绞合方式设置。在这种情况下,如图3、图4所示,所述的正极1和/或负极2为空心结构、实心结构、多芯结构或编织结构形式的等长线状导体,两者之间采用互相缠绕、绞合、等距并行或同轴方式设置。
另外,如图5所示,所述的正极1或负极2为空心结构、实心结构、多芯结构或编织结构形式的等长线状导体时,可在其外表面编织或缠绕绝缘材料6,在绝缘材料6的空隙处填充加热形成电解质3或者熔盐电解质3,与另一负极2或正极1之间采用互相缠绕、绞合、等距并行或同轴方式设置。
现将本实施例提供的无源感温传感元件工作原理阐述如下:
在正常情况下,因设置在火灾监测现场的无源感温传感元件中的加热形成电解质3没有被热激活,或者熔盐电解质3在低温环境下为固体状态,因此均为绝缘体,所以正极1与负极2之间无电压输出。
当发生火灾时,无源感温传感元件周围的环境温度将会升高,当该处的环境温度达到加热形成电解质3的热激活温度时,加热形成电解质3将发生化学反应,生成溶剂及盐(溶质),由此形成能够发生离子导电的电解质,这时负极2将与加热形成电解质3发生氧化反应而失去电子,正极1则与加热形成电解质3发生还原反应而得到电子;或当该处的环境温度达到熔盐电解质3的熔融温度时,熔盐电解质3将从固态变成可以离子导电的液态,这时负极2将与熔盐电解质3发生氧化反应而失去电子,正极1则与熔盐电解质3发生还原反应而得到电子,由此在正极1与负极2两端输出电压,从而驱动灭火设备进行灭火或报警装置发出火灾报警信 号。
另外,对于内部设有加热形成电解质3的无源感温传感元件来说,一旦其被激活发电后,不受环境温度的影响将持续发电,是不可逆的。而对于内部设有熔盐电解质3的无源感温传感元件来说,一旦其被激活发电后,若熔盐电解质3的受热温度低于其熔化温度点时就不会再继续发电,是可逆的。
实施例2:
如图6所示,本实施例提供的无源感温传感元件包括两条导体7和多个实施例1中提供的并联设置在两条导体7之间的点式无源感温传感元件;每个点式无源感温传感元件包括正极1、负极2、加热形成电解质或熔盐电解质3以及壳体4;加热形成电解质或熔盐电解质3设置在正极1和负极2之间,外设壳体4;其中一条导体7同时与多个点式感温传感元件的正极1相连,另一条导体7同时与多个点式感温传感元件的负极2相接,两条导体7的一端与灭火设备或报警装置相连。
在本实施例中,所述的导体7为空心导体、实心导体或编织导体,两根导体7之间采用互相缠绕、绞合、等距并行或同轴方式设置。正极1或负极2与导体7之间的连接可以采用焊接、机械配合压接或导电胶粘接方式。
现将本实施例提供的无源感温传感元件工作原理阐述如下:
在正常情况下,因设置在火灾监测现场的无源感温传感元件中的加热形成电解质3没有被热激活,或者熔盐电解质3在低温环境下为固体状态,因此均为绝缘体,所以两条导体7之间无电压输出。
当发生火灾时,无源感温传感元件周围的环境温度将会升高,当该处的环境温度达到加热形成电解质3的热激活温度时,其将发生化学反应,生成溶剂及盐(溶质),由此形成能够发生离子导电的电解质,这时负极2将与加热形成电解质3发生氧化反应而失去电子,正极1则与加热形成电解质3发生还原反应而得到电子;或当该处的环境温度达到熔盐电解质3的熔融温度时,熔盐电解质3将从固态变成可以离子导电的液态,这时负极2将与熔盐电解质3发生氧化反应而失去电子,正极1则与熔盐电解质3发生还原反应而得到电子,从而在与正极1相连接的一条导体7以及 与负极2相连接的另一条导体7的两端输出电压,由此驱动灭火设备进行灭火或报警装置发出火灾报警信号。
另外,对于内部设有加热形成电解质3的无源感温传感元件来说,一旦其被激活发电后,不受环境温度的影响将持续发电,是不可逆的。而对于内部设有熔盐电解质3的无源感温传感元件来说,一旦其被激活发电后,若熔盐电解质3的受热温度低于其熔化温度点时就不会再继续发电,是可逆的。
实施例3:
为了防止强电磁干扰或雷电感应或无源感温传感元件感温异常,如图7所示,本实施例提供的无源感温传感元件是在上述实施例1提供的无源感温传感元件基础上增加至少一个常开型热敏开关8;正极1或负极2的一端连接一个热敏开关8,或正极1和负极2的一端分别连接一个热敏开关8,并且正极1和负极2的一端直接或通过热敏开关8与灭火设备或报警装置相连。
所述的常开型热敏开关8为开关量输出热敏元件,如双金属片、干簧管、记忆合金丝、开关量感温电缆等。
现将本实施例提供的无源感温传感元件工作原理阐述如下:
在正常情况下,因设置在火灾监测现场的无源感温传感元件中的加热形成电解质3没有被热激活,或者熔盐电解质3在低温环境下为固体状态,因此均为绝缘体,而且热敏开关8为常开型,所以正极1与热敏开关8、或者负极2与热敏开关8、或者两个热敏开关8之间无电压输出。
在强电磁干扰或是感应雷或是无源感温传感元件感温异常的影响下,正极1与负极2间将形成瞬时电压,但由于热敏开关8为常开型,所以正极1与热敏开关8、或者负极2与热敏开关8、或者两个热敏开关8之间无电压输出。
当发生火灾时,无源感温传感元件周围的环境温度将会升高,当该处的环境温度达到加热形成电解质3的热激活温度时,其将发生化学反应,生成溶剂及盐(溶质),由此形成能够发生离子导电的电解质,这时负极2将与加热形成电解质3发生氧化反应而失去电子,正极1则与加热形成电解质3发生还原反应而得到电子;或当该处的环境温度达到熔盐电 解质3的熔融温度时,熔盐电解质3将从固态变成可以离子导电的液态,这时负极2将与熔盐电解质3发生氧化反应而失去电子,正极1则与熔盐电解质3发生还原反应而得到电子,由此在正极1与负极2两端形成电压,当温度继续升高并达到热敏开关8的动作温度时,热敏开关8将产生闭合,即从常开状态变为常闭状态,这时将在正极1与热敏开关8、或者负极2与热敏开关8、或者两个热敏开关8之间输出电压,由此驱动灭火设备进行灭火或报警装置发出火灾报警信号。
另外,对于内部设有加热形成电解质3的无源感温传感元件来说,一旦其被激活发电后,不受环境温度的影响将持续发电,是不可逆的。而对于内部设有熔盐电解质3的无源感温传感元件来说,一旦其被激活发电后,若熔盐电解质3的受热温度低于其熔化温度点时就不会再继续发电,是可逆的。
此外,为了防止强电磁干扰或雷电感应或无源感温传感元件感温异常,也可在实施例2提供的线型无源感温传感元件的两条导体7中的至少一条上串入常开型热敏开关8。
实施例4:
如图8所示,本实施例提供的无源感温传感元件是在上述实施例1提供的无源感温传感元件基础上增加一个电引发器5,电引发器5与正极1和负极2的一端相连,同时与灭火设备或报警装置相接,设置在火灾监测现场。
所述的电引发器5为电子引爆器、电爆管、电磁阀、继电器或电动机。
在正常情况下,因设置在火灾监测现场的无源感温传感元件中的加热形成电解质3没有被热激活,或者熔盐电解质3在低温环境下为固体状态,因此均为绝缘体,所以正极1和负极2之间无电压输出,因此电引发器5无法启动。
当发生火灾时,无源感温传感元件周围的环境温度将会升高,当该处的环境温度达到加热形成电解质3的热激活温度时,加热形成电解质3将发生化学反应,生成溶剂及盐(溶质),由此形成能够发生离子导电的电解质,这时负极2将与加热形成电解质3发生氧化反应而失去电子,正极1则与加热形成电解质3发生还原反应而得到电子;或当该处的环境 温度达到熔盐电解质3的熔融温度时,熔盐电解质3将从固态变成可以离子导电的液态,这时负极2将与熔盐电解质3发生氧化反应而失去电子,正极1则与熔盐电解质3发生还原反应而得到电子,电流将由正极1经电引发器5流向负极2。电引发器5在此电流的作用下将会产生热量,由此启动灭火系统中的灭火装置而实施灭火。
实施例5:
如图9所示,本实施例提供的无源感温传感元件是在上述实施例2提供的无源感温传感元件基础上增加一个电引发器5,电引发器5与两条导体7的一端相连,同时与灭火设备或报警装置相接,设置在火灾监测现场。
所述的电引发器5为电子引爆器、电爆管、电磁阀、继电器或电动机。
在正常情况下,因设置在火灾监测现场的无源感温传感元件中的加热形成电解质3没有被热激活,或者熔盐电解质3在低温环境下为固体状态,因此均为绝缘体,所以两条导体7之间无电压输出,因此电引发器5无法启动。
当发生火灾时,无源感温传感元件周围的环境温度将会升高,当该处的环境温度达到加热形成电解质3的热激活温度时,加热形成电解质3将发生化学反应,生成溶剂及盐(溶质),由此形成能够发生离子导电的电解质,这时负极2将与加热形成电解质3发生氧化反应而失去电子,正极1则与加热形成电解质3发生还原反应而得到电子;或当该处的环境温度达到熔盐电解质3的熔融温度时,熔盐电解质3将从固态变成可以离子导电的液态,这时负极2将与熔盐电解质3发生氧化反应而失去电子,正极1则与熔盐电解质3发生还原反应而得到电子,从而在与正极1相连接的一条导体7以及与负极2相连接的另一条导体7的两端输出电压,电流将由一条导体7经电引发器5流向另一条导体7。电引发器5在此电流的作用下将会产生热量,由此启动灭火系统中的灭火装置而实施灭火。

Claims (12)

  1. 一种无源感温传感元件,其特征在于:其包括正极(1)、负极(2)以及加热形成电解质或熔盐电解质(3);加热形成电解质或熔盐电解质(3)设置在正极(1)和负极(2)之间。
  2. 根据权利要求1所述的无源感温传感元件,其特征在于:所述的无源感温传感元件还包括设置在外部的壳体(4)。
  3. 根据权利要求1所述的无源感温传感元件,其特征在于:所述的无源感温传感元件中正极(1)或负极(2)中至少一个上串入有常开型热敏开关(8)。
  4. 根据权利要求1所述的无源感温传感元件,其特征在于:所述的无源感温传感元件是点式或线型无源感温传感元件。
  5. 根据权利要求4所述的无源感温传感元件,其特征在于:所述的线型无源感温传感元件中的正极(1)和/或负极(2)为空心结构、实心结构、多芯结构或编织结构形式的等长线状导体,两者之间采用互相缠绕、绞合、等距并行或同轴方式设置。
  6. 根据权利要求5所述的无源感温传感元件,其特征在于:所述的线型无源感温传感元件中的正极(1)或负极(2)为空心结构、实心结构、多芯结构或编织结构形式的等长线状导体时,在其外表面编织或缠绕有绝缘材料(6),在绝缘材料(6)的空隙处填充加热形成电解质或熔盐电解质(3),与另一负极(2)或正极(1)之间采用互相缠绕、绞合、等距并行或同轴方式设置。
  7. 根据权利要求1所述的无源感温传感元件,其特征在于:所述的正极(1)采用二硫化铁、三氧化钨、五氧化二钒、铬酸铅或者重铬酸钾,或采用表面附着有上述或等同物质的导体、半导体或聚合物;所述的负极(2)采用镁、钙、锂铝合金或者锂硅合金,或采用表面附着有上述或等同物质的导体、半导体或聚合物;所述的加热形成电解质(3)采用四醋酸铅和氢化苯偶烟的混合物、苯偶酰单肟、二肼腈盐或碱金属盐LiCl,其反应温度点在60℃-500℃范围;所述的熔盐电解质(3)采用40%LiCl-AICl3、40%NaCl-AlCl3、LiAlBr4-NaAlCl4-KAlCl4K、碘化银或碘 汞酸亚铜,熔融温度点在60℃-500℃范围。
  8. 根据权利要求7所述的无源感温传感元件,其特征在于:所述的熔盐电解质(3)中还添加有粘合剂。
  9. 根据权利要求4所述的无源感温传感元件,其特征在于:所述的线型无源感温传感元件还包括将多个所述的点式无源感温传感元件并联在一起的两条导体(7),其中一条导体(7)同时与多个所述的点式无源感温传感元件中的正极(1)相连,另一条导体(7)同时与多个所述的点式无源感温传感元件中的负极(2)相接。
  10. 根据权利要求9所述的无源感温传感元件,其特征在于:所述的两条导体(7)中的至少一条上串入有常开型热敏开关(8)。
  11. 根据权利要求10所述的无源感温传感元件,其特征在于:所述的常开型热敏开关(8)是无源开关量输出热敏开关。
  12. 根据权利要求9所述的无源感温传感元件,其特征在于:所述的导体(7)为空心导体、实心导体或编织导体,两者之间采用互相缠绕、绞合、等距并行或同轴方式设置;正极(1)或负极(2)与导体(7)之间的连接采用焊接、机械配合压接或导电胶粘接方式。
PCT/CN2015/070661 2014-03-10 2015-01-14 一种无源感温传感元件 WO2015135391A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410085354.0A CN103877688A (zh) 2014-03-10 2014-03-10 一种受热发电自启动装置
CN201410085354.0 2014-03-10
CN201410524388.5A CN104269568B (zh) 2014-03-10 2014-10-08 一种无源感温传感元件
CN201410524388.5 2014-10-08

Publications (1)

Publication Number Publication Date
WO2015135391A1 true WO2015135391A1 (zh) 2015-09-17

Family

ID=50947016

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070661 WO2015135391A1 (zh) 2014-03-10 2015-01-14 一种无源感温传感元件

Country Status (2)

Country Link
CN (2) CN103877688A (zh)
WO (1) WO2015135391A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107596596A (zh) * 2017-08-24 2018-01-19 江西清华实业有限公司 非贮压式灭火器及灭火系统

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103877688A (zh) * 2014-03-10 2014-06-25 青岛中阳消防科技有限公司 一种受热发电自启动装置
CN104318704A (zh) * 2014-10-11 2015-01-28 青岛中阳消防科技有限公司 一种开关量线型无源感温传感元件
CN112018404B (zh) * 2020-08-31 2022-02-11 中国人民大学 一种火灾响应的温控电池及其制备方法与应用
CN113945107B (zh) * 2021-11-30 2022-09-16 北京工大环能科技有限公司 一种高压高热流熔盐能量储存调节利用系统
CN114639882B (zh) * 2022-03-07 2024-04-16 广州鹏辉能源科技股份有限公司 电池包热失控保护系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101021963A (zh) * 2007-03-15 2007-08-22 张卫社 一种线型感温火灾探测器
CN101021964A (zh) * 2007-03-15 2007-08-22 张卫社 一种能够提高响应速度的线型感温火灾探测器及其报警方法
CN103877688A (zh) * 2014-03-10 2014-06-25 青岛中阳消防科技有限公司 一种受热发电自启动装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5006429A (en) * 1989-08-24 1991-04-09 The United States Of America As Represented By The Secretary Of The Navy Externally heated thermal battery
CN2824170Y (zh) * 2005-09-16 2006-10-04 张卫社 分立热敏电阻并联式模拟量线型感温火灾探测线缆
CN1941013A (zh) * 2005-09-29 2007-04-04 张卫社 基于记忆合金丝的开关量线型感温火灾探测线缆

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101021963A (zh) * 2007-03-15 2007-08-22 张卫社 一种线型感温火灾探测器
CN101021964A (zh) * 2007-03-15 2007-08-22 张卫社 一种能够提高响应速度的线型感温火灾探测器及其报警方法
CN103877688A (zh) * 2014-03-10 2014-06-25 青岛中阳消防科技有限公司 一种受热发电自启动装置
CN104269568A (zh) * 2014-03-10 2015-01-07 青岛中阳消防科技有限公司 一种无源感温传感元件

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107596596A (zh) * 2017-08-24 2018-01-19 江西清华实业有限公司 非贮压式灭火器及灭火系统

Also Published As

Publication number Publication date
CN103877688A (zh) 2014-06-25
CN104269568A (zh) 2015-01-07
CN104269568B (zh) 2017-08-25

Similar Documents

Publication Publication Date Title
WO2015135391A1 (zh) 一种无源感温传感元件
JP5859149B2 (ja) リチウムイオン二次電池
CN103262288B (zh) 具有带有热保险装置的绕组电极的纽扣电池
KR100720282B1 (ko) 안전성이 향상된 이차전지
JP2000182598A (ja) 非水電解液二次電池およびその熱動継電器
JP2008507248A (ja) 2次電池の過充電防止のための安全素子及びその安全素子が結合された2次電池
CN104603987A (zh) 具有热控开关的电池
JPH1140203A (ja) 二次電池
CN205127247U (zh) 一种感温自启动式气溶胶灭火装置
CN106920909B (zh) 电池安全阀致动结构
CN207116559U (zh) 单体电池及电源设备
Beletskii et al. Variable-resistance materials for lithium-ion batteries
US20140266563A1 (en) Medium voltage controllable fuse
CN104318704A (zh) 一种开关量线型无源感温传感元件
JP2005129442A (ja) 二次電池および電池パック
CN106207252B (zh) 锂离子电池用圆盘形、圆柱形保险装置
US11631565B2 (en) Thermal fuse
CN204229579U (zh) 一种开关量线型无源感温传感元件
JP3111276B2 (ja) 二次電池暴爆防止装置
JPH05151971A (ja) リチウム電池
JP3078058B2 (ja) リチウム電池
JP2000208132A (ja) 非水電解液二次電池および電池用熱動継電器
CN205583049U (zh) 一种安全电源结构
KR20070033853A (ko) 이차전지의 과충전 방지를 위한 안전 소자 및 그 안전소자가 결합된 이차전지
US3759749A (en) Readily manufacturable thermal cell unit for explosive projectiles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15762407

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15762407

Country of ref document: EP

Kind code of ref document: A1