WO2015135345A1 - 一种电动汽车的无线充电电路 - Google Patents

一种电动汽车的无线充电电路 Download PDF

Info

Publication number
WO2015135345A1
WO2015135345A1 PCT/CN2014/092972 CN2014092972W WO2015135345A1 WO 2015135345 A1 WO2015135345 A1 WO 2015135345A1 CN 2014092972 W CN2014092972 W CN 2014092972W WO 2015135345 A1 WO2015135345 A1 WO 2015135345A1
Authority
WO
WIPO (PCT)
Prior art keywords
igbt
circuit
capacitor
switch tube
pwm
Prior art date
Application number
PCT/CN2014/092972
Other languages
English (en)
French (fr)
Inventor
康龙云
陈凌宇
黄志臻
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410098703.2A external-priority patent/CN103904884B/zh
Priority claimed from CN201410610211.7A external-priority patent/CN104333102B/zh
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2015135345A1 publication Critical patent/WO2015135345A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/05Circuit arrangements or systems for wireless supply or distribution of electric power using capacitive coupling
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2310/00The network for supplying or distributing electric power characterised by its spatial reach or by the load
    • H02J2310/40The network being an on-board power network, i.e. within a vehicle
    • H02J2310/48The network being an on-board power network, i.e. within a vehicle for electric vehicles [EV] or hybrid vehicles [HEV]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/345Parallel operation in networks using both storage and other dc sources, e.g. providing buffering using capacitors as storage or buffering devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M5/00Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases
    • H02M5/02Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc
    • H02M5/04Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters
    • H02M5/22Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M5/275Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M5/297Conversion of ac power input into ac power output, e.g. for change of voltage, for change of frequency, for change of number of phases without intermediate conversion into dc by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal for conversion of frequency
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/4807Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode having a high frequency intermediate AC stage

Definitions

  • the present invention relates to the field of electric vehicle charging technology, and in particular to a wireless charging circuit for an electric vehicle.
  • Capacitors are the component that holds and releases the charge. Capacitors are mainly used in the following important applications. Power circuit: the role of bypass, decoupling, filtering and energy storage; signal processing circuit: the role of coupling and oscillation.
  • the capacitive reactance of the capacitor in the AC circuit is inversely proportional to the magnitude of the frequency, that is, the smaller the frequency, the larger the capacitive reactance; conversely, the higher the frequency, the smaller the blocking effect of the capacitor itself on the current.
  • Electric vehicle refers to the vehicle power supply
  • EV Electric vehicle
  • One of the problems that need to be solved urgently is the charging problem of electric vehicles.
  • the charging piles of electric vehicles are mainly charged in the form of wires. In order to make the electric vehicle more convenient to charge, not only wireless charging, but also through reasonable arrangement, can achieve mobile charging, that is, it is not necessary to stop driving when charging.
  • the present invention enables the electric vehicle to wirelessly charge through a clever capacitor structure and circuit design.
  • the electronic capacitor circuit can dynamically change its equivalent capacitance value according to the control program, smoothly change the charging voltage at both ends of the battery, and realize the segmentation charging of the battery.
  • the object of the present invention is to overcome at least one of the deficiencies of the prior art, and to provide a wireless charging circuit for an electric vehicle to charge an on-vehicle battery or a vehicle-mounted capacitor battery.
  • the present invention is achieved by the following technical solutions.
  • a wireless charging circuit for an electric vehicle comprising: an onboard circuit and an underground circuit of an electric vehicle, wherein the underground circuit comprises a generation circuit of a high frequency alternating current power source, a lower plate of the first capacitor, a lower plate of the second capacitor, and An electronic capacitor circuit; a lower plate of the first capacitor, a generating circuit of the high frequency alternating current power source, and a lower plate of the second capacitor are sequentially connected; the two ends of the electronic capacitor circuit are respectively opposite to the lower plate and the second capacitor of the first capacitor The lower pole plate is connected in parallel; the onboard circuit of the electric vehicle includes an upper plate of the first capacitor, an upper plate of the second capacitor, a third capacitor, a second bridge diode rectifier circuit, an LC filter circuit, a vehicle battery, and a battery power feedback a wireless communication module; an upper plate of the first capacitor, a second bridge diode rectifier circuit, and an upper plate of the second capacitor are sequentially connected; two ends of the electronic capacitor circuit are respectively connected to the upper plate and the second capacitor of
  • the generating circuit of the high frequency alternating current power source comprises a first bridge diode rectifier circuit, a fourth capacitor, a full bridge controllable high frequency inverter circuit, a PWM control circuit and an eight-way PWM driving circuit; the mains passes through the first bridge diode After the rectifier circuit, DC power is obtained through the two ends of the fourth capacitor, and the voltage across the fourth capacitor is the voltage between the terminals AB; the DC current passes through the four IGBT switching tubes, that is, the first IGBT, the second IGBT, the third IGBT, and A full-bridge controllable high-frequency inverter circuit composed of a fourth IGBT obtains a high-frequency AC power source; wherein the first IGBT, the second IGBT, the third IGBT, and the fourth IGBT in the full-bridge controllable high-frequency inverter circuit The gate level is respectively connected to the four output PWM1, PWM2, PWM3 and PWM4 of the PWM drive circuit.
  • the PWM control circuit is composed of a TMS320F2812 chip and a peripheral circuit, and the eight-way PWM drive circuit is composed of discrete components.
  • the PWM waveform outputted by the TMS320F2812 chip is connected in series with an eight-way PWM drive circuit, and the output of the eight-way PWM drive circuit is PWM1, PWM2, PWM3 and
  • the PWM4 is connected to the gate stages of the first IGBT to the fourth IGBT, respectively;
  • PWM5, PWM6, PWM7, and PWM8 are connected to the gate electrodes of the fifth IGBT, the sixth IGBT, the seventh IGBT, and the eighth IGBT, respectively.
  • the gate electrodes of the first IGBT, the second IGBT, the third IGBT, and the fourth IGBT of the full-bridge controllable high-frequency inverter circuit are each connected with a PWM waveform, and the waveforms of the four PWMs are the same.
  • the PWM waveforms of the first IGBT and the fourth IGBT gate are the same, and the PWM waveforms of the second IGBT and the third IGBT gate are the same; the collector of the first IGBT, the collector of the third IGBT, and The positive terminal of the fourth capacitor is connected; the emitter of the first IGBT, the collector of the second IGBT; the collector of the third IGBT, the collector of the fourth IGBT; the emitter of the second IGBT, and the emission of the fourth IGBT
  • the negative terminal of the pole and the fourth capacitor are connected; a line is drawn from the collector of the second IGBT and the collector of the fourth IGBT as a high-frequency alternating current power generating circuit; wherein one end is connected to the lower plate of the first capacitor The other end is connected to the lower plate of the second capacitor.
  • the electronic capacitor circuit includes a fifth IGBT switch tube, a sixth IGBT switch tube, a seventh IGBT switch tube, an eighth IGBT switch tube, a fifth diode, a sixth diode, a seventh diode, and a Eight diodes and a fifth capacitor; four of the eight-way PWM drive circuit PWM5, PWM6, PWM7 and PWM8 are respectively connected to the fifth IGBT switch tube, the sixth IGBT switch tube, the seventh IGBT switch tube and the eighth IGBT switch The gated pole of the tube, the four PWM output waveforms are the same, the PWM waveforms of the fifth IGBT switch tube and the eighth IGBT switch tube are connected, the sixth IGBT switch tube and the seventh IGBT switch tube The PWM waveforms connected to the gated poles are the same, the PWM waveforms connected to the gate electrodes of the fifth IGBT and the seventh IGBT are complementary, and the PWM waveforms of the gate electrodes of the sixth IGBT
  • the battery power feedback wireless communication module is connected to the vehicle battery, and receives the voltage signal and transmits it to the underground DSP.
  • the control chip is used for real-time feedback of the vehicle battery voltage to achieve closed-loop control.
  • the AD conversion module circuit is a two summing circuit composed of an operational amplifier, and converts the voltage between the terminals AB to 0-3.3V for sampling by the DSP control circuit.
  • the DSP control circuit converts the voltage between the terminals AB converted by the AD conversion module circuit, and combines the battery power signal to generate eight PWM waveforms with different duty ratios.
  • the present invention has the following advantages and technical effects:
  • the invention is based on the principle of capacitor pass high frequency and the equivalent principle of the electronic capacitor circuit.
  • the charging system of the vehicle battery is skillfully divided into two parts by utilizing the characteristics of capacitive blocking, high frequency and low frequency.
  • the energy is transmitted through the electric field between the two capacitor plates.
  • the power electronic device is used to generate an inverter circuit, and the closed-loop control is used to smoothly adjust the equivalent capacitance value of the electronic capacitor, so that the vehicle battery or the vehicle-mounted capacitor battery can be charged stably, efficiently, and quickly; and has many advantages such as high charging safety and easy maintenance. With good market prospects.
  • Figure 1 is a schematic diagram of an underground circuit (including a high-frequency AC power generation circuit and an electronic capacitor circuit).
  • FIG. 2 is a schematic diagram of a vehicle-mounted circuit (including a full-bridge diode rectifier circuit and an LC filter circuit).
  • Figure 3 is a connection diagram of a wireless charging circuit of an electric vehicle.
  • Figure 4 is a simulated charging waveform of a wireless charging circuit of an electric vehicle.
  • Figure 5 is the voltage across the electronic capacitor circuit and the PWM trigger signal waveform of the IGBT ( Figure T Represents a control cycle).
  • a wireless charging circuit of an electric vehicle includes: an on-board circuit and an underground circuit of an electric vehicle, wherein the underground circuit includes a generation circuit of a high-frequency AC power source Us, and a lower plate of the first capacitor C1.
  • the onboard circuit of the electric vehicle includes an upper plate M of the first capacitor, an upper plate P of the second capacitor, a third capacitor C3, and a second bridge Diode rectifier circuit, LC filter circuit, vehicle battery and battery power feedback wireless communication module; upper plate of the first capacitor, second bridge diode rectifier circuit, upper plate of the second capacitor are connected in turn; two of the electronic capacitor circuit
  • the terminals are respectively connected in parallel with the upper plate of the first capacitor and the upper plate of the second capacitor; the third capacitor, the LC filter circuit and the vehicle battery are connected in sequence, and the two ends of the third capacitor are connected in parallel in the second bridge Tube ends rectifier circuit, a feedback battery power in a wireless communication module connected to the vehicle battery.
  • the high-frequency AC power generation circuit includes a first bridge diode rectifier circuit, a fourth capacitor, a full-bridge controllable high-frequency inverter circuit, a PWM control circuit, and an eight-way PWM drive circuit; after the mains passes through the first bridge diode rectifier circuit DC is obtained at both ends of the fourth capacitor C4, and the voltage across the fourth capacitor is the voltage between the terminals AB; the voltage passes through the first IGBT of the four IGBT switching tubes VT1, second IGBT VT2, third IGBT VT3, and fourth IGBT
  • a full-bridge controllable high-frequency inverter circuit composed of VT4 obtains a high-frequency AC power source Us; wherein the gates of the first IGBT, the second IGBT, the third IGBT, and the fourth IGBT in the full-bridge controllable high-frequency inverter circuit The control levels are respectively connected to the output of the eight-way PWM drive circuit.
  • the electronic capacitor circuit includes a fifth IGBT switch tube VT5, a sixth IGBT switch tube VT6, a seventh IGBT switch tube VT7, an eighth IGBT switch tube VT8, a fifth diode VD5, a sixth diode VD6, and a seventh diode Tube VD7, eighth diode VD8 and fifth capacitor C5; four of the eight-way PWM drive circuit PWM5, PWM6, PWM7 and PWM8 are respectively connected to the fifth IGBT switch tube, the sixth IGBT switch tube, the seventh IGBT switch The gate and the gate of the eighth IGBT switch tube, the four PWM output waveforms are the same, the PWM waveforms of the fifth IGBT switch tube and the eighth IGBT switch tube are connected, and the sixth IGBT switch tube The PWM waveform connected to the gate electrode of the seventh IGBT switch tube is the same, the PWM waveforms of the gate electrodes of the fifth IGBT and the seventh IGBT are complementary, and the gate electrodes of
  • the input PWM waveform is complementary; the collector of the fifth IGBT switch tube, the collector of the sixth IGBT switch tube and the positive terminal of the fifth capacitor are connected; the emitter of the fifth IGBT switch tube and the collector pole of the seventh IGBT switch tube Connected; the emitter of the seventh IGBT switch, the emitter of the eighth IGBT switch, and the negative of the fifth capacitor Connecting; the collector of the eighth IGBT switch tube and the emitter of the sixth IGBT switch tube are connected; the fifth diode, the sixth diode, the seventh diode, and the eighth diode are all anti-parallel in the fifth Two ends of the IGBT switch tube, the sixth IGBT switch tube, the seventh IGBT switch tube and the eighth IGBT switch tube; a line is drawn from the emitter of the fifth IGBT switch tube and the emitter of the sixth IGBT switch tube as an electron Both ends of the capacitor circuit.
  • the PWM control circuit is composed of DSP chip and peripheral circuit.
  • the eight-way PWM drive circuit is composed of discrete components.
  • the PWM waveform output from the DSP chip is connected in series with the eight-way PWM drive circuit.
  • the outputs of the eight-way PWM drive circuit are connected by PWM1, PWM2, PWM3 and PWM4 respectively.
  • the gate level of the first IGBT to the fourth IGBT is connected by PWM1, PWM2, PWM3 and PWM4 respectively.
  • the electronic capacitor circuit is connected in parallel with the lower plate of the first capacitor and the lower plate of the second capacitor, and the basic working principle is that the PWM waveforms of the fifth IGBT and the eighth IGBT are connected in the same manner, the sixth IGBT and The PWM waveforms of the gate electrodes of the seventh IGBT are the same, the PWM waveforms of the gates of the fifth IGBT and the seventh IGBT are complementary, and the PWMs of the sixth IGBT and the eighth IGBT are connected to the PWM.
  • the waveforms are complementary; it is assumed that the gated poles of the sixth IGBT and the seventh IGBT first have a trigger signal, the voltage across the second capacitor is zero, and the fifth diode is electrically connected to the sixth IGBT, the seventh IGBT, and the eighth diode.
  • the electronic capacitor circuit operates in the parallel bypass mode; after a phase shift angle, the gates of the fifth IGBT and the eighth IGBT are connected to the trigger signal, and the fifth diode and the eighth diode are turned on, and the electronic capacitor circuit Running in the charging mode; when the voltage across the second capacitor reaches a maximum, the current flow direction changes, the fifth IGBT and the eighth IGBT are turned on, the electronic capacitor circuit operates in the discharging mode; when the voltage across the second capacitor returns to 0,
  • the sixth diode is electrically connected to the fifth IGBT, the eighth IGBT, and the seventh diode
  • the electronic capacitor circuit runs again in the parallel bypass mode; after the same phase shift angle, the voltage direction of the electronic capacitor circuit changes, and the electronic capacitor circuit circulates the above-mentioned bypass-charge-discharge-bypass operation process by adjusting the phase shift
  • the size of the corner achieves the purpose of making the electronic capacitor circuit equivalent to a variable capacitor and changing the input voltage of the second full bridge diode rectifier circuit
  • the AD conversion module circuit is a two summing circuit composed of operational amplifiers, which converts the voltage between terminals AB to 0-3.3V for sampling by the DSP control circuit.
  • the DSP control circuit converts the voltage between the terminals AB converted by the AD conversion module circuit to generate PWM1, PWM2, PWM3 and PWM4 four-way PWM waveforms required for the full-bridge controllable high-frequency inverter circuit; the DSP control circuit also According to the battery voltage signal, the PWM waveforms of PWM5, PWM6, PWM7 and PWM8 are all 50% duty cycles, and the phase shift angle is changed by adjusting the triggering on-time of the fifth to eighth IGBTs, thereby changing the two ends of the electronic capacitor circuit. Voltage.
  • the upper plate M of the first capacitor, the upper plate P of the second capacitor, and a full bridge diode rectifier circuit (VD1 to VD4) are sequentially connected; the third capacitor C3, the LC filter circuit, and the vehicle
  • the batteries are connected in sequence, and both ends of the third capacitor are connected in parallel at both ends of the second bridge diode rectifier circuit.
  • the output of the second full bridge diode rectifier circuit is connected to both ends of the vehicle battery through the LC filter circuit.
  • the battery power feedback wireless communication module is connected to the vehicle battery for real-time feedback of the vehicle battery voltage to achieve closed-loop control.
  • Figure 3 is a system connection diagram of wireless charging.
  • the high-frequency AC power source charges the electric vehicle charging circuit through the first capacitor and the second capacitor.
  • the subtlety of the design is that the first capacitor C1 and the second capacitor C2 are close to each other, and the upper capacitor M and the second capacitor of the first capacitor
  • the upper plate P belongs to the on-board circuit of the electric vehicle, and the lower plate N of the first capacitor and the lower plate Q of the second capacitor belong to the underground circuit;
  • the battery power feedback wireless communication module detects the voltage of the electric vehicle battery in real time, and The voltage signal is transmitted to the underground DSP control chip, and the control program in the chip can determine which charging phase the battery is in according to the voltage signal.
  • the control program reduces the phase shift angle of the electronic capacitor circuit.
  • the phase shift angle ranges from 0 to 40°.
  • the equivalent capacitive reactance is minimum.
  • the equivalent capacitive reactance increases, causing the battery terminal voltage to rise.
  • the equivalent capacitive reactance is equal to the capacitive reactance of the fifth capacitor.
  • FIG. 4 is a voltage and current waveform diagram of a battery charged at room temperature (a broken line is a current waveform).
  • constant current charging is used to increase the charging speed; after a certain amount of power is reached, the battery life is extended by using constant voltage charging; and the equivalent capacitance value of the electronic capacitor circuit is adjusted by closed-loop control to realize the charging process.
  • Fig. 5 is a waveform diagram of PWM trigger signals of the fifth and eighth IGBTs, sixth and seventh IGBTs, and voltage waveforms across the electronic capacitor circuit from top to bottom, respectively.
  • the two phase shifting square waves are completely complementary, and each half cycle is controlled.
  • the voltage across the electronic capacitor circuit is maintained within a stable voltage range, and the internal fifth capacitor is continuously charged and discharged.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

一种电动汽车的无线充电电路,包括电动汽车的车载电路与地下电路。地下电路包括高频交流电源的产生电路、第一电容的下极板(N)、第二电容的下极板(Q)和电子电容电路。电动汽车的车载电路包括第一电容的上极板(M)、第二电容的上极板(P)、第三电容(C3)、第二桥式二极管整流电路、LC滤波电路、车载蓄电池和蓄电池电量反馈无线通信模块。该电动汽车的无线充电电路使得车载蓄电池或车载电容能够稳定、高效、快速地充电。

Description

一种电动汽车的无线充电电路
技术领域
本发明涉及电动汽车充电技术领域,具体涉及一种电动汽车的无线充电电路。
背景技术
所谓电容,就是容纳和释放电荷的元件。电容主要应用在以下几种重要的场合中。电源电路:旁路、去耦、滤波和储能的作用;信号处理电路:耦合和震荡的作用。
电容在交流电路中的容抗与频率的大小成反比,即频率越小,容抗越大;反之,频率越高,电容本身对电流的阻碍作用也就越小。
电动汽车 (EV) 是指以 车载电源 为动力,用电机驱动车轮行驶,符合道路交通、安全法规各项要求的车辆。由于对环境影响相对传统汽车较小,其前景被广泛看好,但当前技术尚不成熟,其中急需解决的问题之一是电动汽车的充电问题,目前电动汽车的充电桩也主要以有线形式进行充电,为了使电动汽车充电更加方便,不仅实现无线充电,甚至通过合理的布置,可以实现运动式充电,即充电时不一定要停止行驶。
因此,本发明通过巧妙的电容结构和电路设计,使电动汽车实现无线充电。
为了在保证电动汽车蓄电池快速充电的同时延长蓄电池的使用寿命,需要根据蓄电池的充电阶段进行充电电路的设计。电子电容电路可以根据控制程序动态改变其等效电容值,平滑改变蓄电池两端的充电电压,实现蓄电池的分段充电。
发明内容
本发明的目的在于至少克服现有技术存在的不足之一,提供一种电动汽车的无线充电电路,对车载蓄电池或车载电容电池进行充电。
本发明通过如下技术方案实现。
一种电动汽车的无线充电电路,其包括:电动汽车的车载电路与地下电路,其中,地下电路包括高频交流电源的产生电路、第一电容的下极板、第二电容的下极板和电子电容电路;第一电容的下极板、高频交流电源的产生电路和第二电容的下极板依次连接;电子电容电路的两端分别于与第一电容的下极板和第二电容的下极板并联;电动汽车的车载电路包括第一电容的上极板、第二电容的上极板、第三电容、第二桥式二极管整流电路、LC滤波电路、车载蓄电池和蓄电池电量反馈无线通信模块;第一电容的上极板、第二桥式二极管整流电路、第二电容的上极板依次连接;电子电容电路的两端分别与第一电容的上极板和第二电容的上极板并联;第三电容,LC滤波电路以及车载蓄电池顺次连接,第三电容的两端并联在第二桥式二极管整流电路两端,蓄电池电量反馈无线通信模块连接在车载蓄电池上。
进一步地,高频交流电源的产生电路包括第一桥式二极管整流电路、第四电容、全桥可控高频逆变电路、PWM控制电路及八路PWM驱动电路;市电经过第一桥式二极管整流电路后,再经第四电容的两端得到直流电,第四电容两端的电压为端子AB间的电压;该直流电经过由四个IGBT开关管即第一IGBT、第二IGBT、第三IGBT和第四IGBT组成的全桥可控高频逆变电路,得到高频的交流电源;其中全桥可控高频逆变电路中的第一IGBT、第二IGBT、第三IGBT和第四IGBT的门控级,分别接入到PWM驱动电路的四路输出PWM1、PWM2、PWM3和PWM4。
进一步地,PWM控制电路采用TMS320F2812芯片及外围电路构成,八路PWM驱动电路采用分立元件来组成,TMS320F2812芯片输出的PWM波形串接八路PWM驱动电路,该八路PWM驱动电路的输出PWM1、PWM2、PWM3和PWM4分别连接第一IGBT至第四IGBT的门控级;PWM5、PWM6、PWM7和PWM8分别连接第五IGBT、第六IGBT、第七IGBT和第八IGBT的门控极。
进一步地,全桥可控高频逆变电路的第一IGBT、第二IGBT、第三IGBT和第四IGBT的门控极,均接有一路PWM波形,这四路PWM的波形两两相同,第一IGBT和第四IGBT门控极所接入的PWM波形相同,第二IGBT和第三IGBT门控极所接入的PWM波形相同;第一IGBT的集电极、第三IGBT的集电极和第四电容的正端连接;第一IGBT的发射极、第二IGBT的集电极连接;第三IGBT的集电极、第四IGBT的集电极连接;第二IGBT的发射极、第四IGBT的发射极、第四电容的负端连接;从第二IGBT的集电极和第四IGBT的集电极各引出一根线作为的高频交流电源产生电路两端;其中一端接第一电容的下极板,另一端接第二电容的下极板。
进一步地,电子电容电路包括第五IGBT开关管、第六IGBT开关管、第七IGBT开关管、第八IGBT开关管、第五二极管、第六二极管、第七二极管、第八二极管和第五电容;八路PWM驱动电路的其中四路输出PWM5、PWM6、PWM7和PWM8分别接入第五IGBT开关管、第六IGBT开关管、第七IGBT开关管和第八IGBT开关管的门控极,这四路PWM输出波形两两相同,第五IGBT开关管和第八IGBT开关管的门控极所接入的PWM波形相同,第六IGBT开关管和第七IGBT开关管的门控极所接入的PWM波形相同,第五IGBT和第七IGBT的门控极所接入的PWM波形互补,第六IGBT和第八IGBT的门控极所接入的PWM波形互补;第五IGBT开关管的集电极、第六IGBT开关管的集电极和第五电容的正端连接;第五IGBT开关管的发射极和第七IGBT开关管的集电极极接;第七IGBT开关管的发射极、第八IGBT开关管的发射极和第五电容的负端连接;第八IGBT开关管的集电极和第六IGBT开关管的发射极连接;第五二极管、第六二极管、第七二极管和第八二极管均反并联在第五IGBT开关管、第六IGBT开关管、第七IGBT开关管和第八IGBT开关管的两端;从第五IGBT开关管的发射极和第六IGBT开关管的发射极各引出一根线作为电子电容电路的两端。
进一步地,第二全桥式二极管整流电路的输出经LC滤波电路后,连接至车载蓄电池的两端,蓄电池电量反馈无线通信模块连接在车载蓄电池上,接收电压信号并将其传输至地下的DSP控制芯片,用于车载蓄电池电压的实时反馈,实现闭环控制。
进一步地,AD转换模块电路是由运算放大器组成的两个求和电路,将端子AB间电压转换到0—3.3V,供DSP控制电路的采样。
进一步地,DSP控制电路对经AD转换模块电路转换后的端子AB间电压进行比例换算后,结合蓄电池电量信号产生八路不同占空比的PWM波形。
与现有技术相比,本发明具有如下优点和技术效果:
本发明基于电容通高频原理和电子电容电路的等效原理,在该电路中,利用电容隔直通交、通高频和阻低频的特性,巧妙地将车载蓄电池的充电系统分割为两个部分,通过两个电容极板之间的电场,实现能量的传输。利用功率电子器件产生一个变频电路,利用闭环控制,平滑调整电子电容的等效电容值,使得车载蓄电池或车载电容电池能够稳定、高效、快速地充电;具有充电安全性高、便于维护等诸多优点,具有良好的市场前景。
附图说明
图 1 是地下电路(包括高频交流电源产生电路和电子电容电路 ) 的原理图。
图 2 是车载电路(包括全桥式二极管整流电路及 LC 滤波电路)的原理图。
图 3 是一种电动汽车的无线充电电路的连接图。
图 4 是一种电动汽车的无线充电电路的仿真充电波形。
图 5 是电子电容电路两端的电压及其中 IGBT 的 PWM 触发信号波形图(图中 T 表示一个控制周期)。
具体实施方式
下面结合附图和实例对本发明的具体实施方式作详细说明,但本发明的实施和保护不限于此,需指出的是,以下若有未特别详细说明的内容,均是本领域技术人员可参照现有技术实现的。
如图1,作为实例,一种电动汽车的无线充电电路,其包括:电动汽车的车载电路与地下电路,其中,地下电路包括高频交流电源Us的产生电路、第一电容C1的下极板N、第二电容C2的下极板Q和电子电容电路;第一电容的下极板、高频交流电源的产生电路和第二电容的下极板依次连接;电子电容电路的两端分别于与第一电容的下极板和第二电容的下极板并联;电动汽车的车载电路包括第一电容的上极板M、第二电容的上极板P、第三电容C3、第二桥式二极管整流电路、LC滤波电路、车载蓄电池和蓄电池电量反馈无线通信模块;第一电容的上极板、第二桥式二极管整流电路、第二电容的上极板依次连接;电子电容电路的两端分别与第一电容的上极板和第二电容的上极板并联;第三电容,LC滤波电路以及车载蓄电池顺次连接,第三电容的两端并联在第二桥式二极管整流电路两端,蓄电池电量反馈无线通信模块连接在车载蓄电池上。
高频交流电源的产生电路包括第一桥式二极管整流电路、第四电容、全桥可控高频逆变电路、PWM控制电路及八路PWM驱动电路;市电经过第一桥式二极管整流电路后,在第四电容C4的两端得到直流电,第四电容两端的电压为端子AB间的电压;该电压经过由四个IGBT开关管第一IGBT VT1、第二IGBT VT2、第三IGBT VT3和第四IGBT VT4组成的全桥可控高频逆变电路,得到高频的交流电源Us;其中全桥可控高频逆变电路中的第一IGBT、第二IGBT、第三IGBT和第四IGBT的门控级,均分别接入到八路PWM驱动电路的输出端。
电子电容电路包括第五IGBT开关管VT5、第六IGBT开关管VT6、第七IGBT开关管VT7、第八IGBT开关管VT8、第五二极管VD5、第六二极管VD6、第七二极管VD7、第八二极管VD8和第五电容C5;八路PWM驱动电路的其中四路输出PWM5、PWM6、PWM7和PWM8分别接入第五IGBT开关管、第六IGBT开关管、第七IGBT开关管和第八IGBT开关管的门控极,这四路PWM输出波形两两相同,第五IGBT开关管和第八IGBT开关管的门控极所接入的PWM波形相同,第六IGBT开关管和第七IGBT开关管的门控极所接入的PWM波形相同,第五IGBT和第七IGBT的门控极所接入的PWM波形互补,第六IGBT和第八IGBT的门控极所接入的PWM波形互补;第五IGBT开关管的集电极、第六IGBT开关管的集电极和第五电容的正端连接;第五IGBT开关管的发射极和第七IGBT开关管的集电极极接;第七IGBT开关管的发射极、第八IGBT开关管的发射极和第五电容的负端连接;第八IGBT开关管的集电极和第六IGBT开关管的发射极连接;第五二极管、第六二极管、第七二极管和第八二极管均反并联在第五IGBT开关管、第六IGBT开关管、第七IGBT开关管和第八IGBT开关管的两端;从第五IGBT开关管的发射极和第六IGBT开关管的发射极各引出一根线作为电子电容电路的两端。
PWM控制电路采用DSP芯片及外围电路构成,八路PWM驱动电路采用分立元件来组成,DSP芯片输出的PWM波形串接八路PWM驱动电路,该八路PWM驱动电路的输出PWM1、PWM2、PWM3和PWM4分别连接第一IGBT至第四IGBT的门控级。
全桥可控高频逆变电路的第一IGBT的集电极、第三IGBT的集电极和第四电容的正端连接;第一IGBT的发射极、第二IGBT的集电极连接;第三IGBT的集电极、第四IGBT的集电极连接;第二IGBT的发射极、第四IGBT的发射极、第四电容的负端连接;从第二IGBT的集电极和第四IGBT的集电极各引出一根线作为的高频交流电源产生电路两端;其中一端接第一电容的下极板N,另一端接第二电容的下极板Q。
电子电容电路与第一电容的下极板和第二电容的下极板并联,其基本工作原理为:第五IGBT和第八IGBT的门控极所接入的PWM波形相同,第六IGBT和第七IGBT的门控极所接入的PWM波形相同,第五IGBT和第七IGBT的门控极所接入的PWM波形互补,第六IGBT和第八IGBT的门控极所接入的PWM波形互补;假设首先第六IGBT与第七IGBT的门控极有触发信号,第二电容两端的电压为0,第五二极管与第六IGBT、第七IGBT与第八二极管导通,电子电容电路运行于并行旁路模式;经过一个移相角后第五IGBT与第八IGBT的门控极接入触发信号,第五二极管与第八二极管导通,电子电容电路运行于充电模式;当第二电容两端的电压达到最大时,电流流向改变,第五IGBT与第八IGBT导通,电子电容电路运行于放电模式;当第二电容两端电压恢复为0时,第六二极管与第五IGBT、第八IGBT与第七二极管导通,电子电容电路再次运行于并行旁路模式;经过相同的移相角后,电子电容电路两端电压方向改变,电子电容电路循环上述旁路—充电—放电—旁路的工作过程,通过调整移相角的大小,达到使电子电容电路等效为可变电容并改变第二全桥式二极管整流电路的输入电压的目的。等效电容值与第二电容以及移相角均成正相关。
AD转换模块电路是由运算放大器组成的两个求和电路,将端子AB间电压转换到0—3.3V,供DSP控制电路的采样。DSP控制电路对经AD转换模块电路转换后的端子AB间电压进行比例换算后,产生全桥可控高频逆变电路所需的PWM1、PWM2、PWM3和PWM4四路PWM波形;DSP控制电路还根据蓄电池电压信号产生PWM5、PWM6、PWM7和PWM8四路占空比均为50%的PWM波形,通过调整第五至第八IGBT的触发导通时刻改变移相角,从而改变电子电容电路两端的电压。
如图2,作为实例,第一电容的上极板M、第二电容的上极板P,一个全桥式二极管整流电路(VD1至VD4)依次连接;第三电容C3,LC滤波电路以及车载蓄电池顺次连接,第三电容的两端并联在第二桥式二极管整流电路两端。第二全桥式二极管整流电路的输出经LC滤波电路后,连接至车载蓄电池的两端。蓄电池电量反馈无线通信模块连接在车载蓄电池上,用于车载蓄电池电压的实时反馈,实现闭环控制。
图3是无线充电的系统连接图。高频交流电源经过第一电容和第二电容对电动汽车充电电路进行充电,设计的精妙之处在于第一电容C1和第二电容C2貌合神离,第一电容的上极板M和第二电容的上极板P属于电动汽车的车载电路,第一电容的下极板N和第二电容的下极板Q属于地下电路;蓄电池电量反馈无线通信模块对电动汽车车载蓄电池的电压进行实时检测,并将电压信号传递至地下DSP控制芯片,芯片中的控制程序可根据电压信号判断蓄电池处于哪个充电阶段,当蓄电池电压小于最大值的90%左右时,蓄电池处于恒流充电阶段,端电压需要平滑上升,控制程序减小电子电容电路的移相角。移相角的范围是0—40°,当移相角为40°时,等效容抗最小;随着移相角的减小,等效容抗增大,使得蓄电池端电压上升;当移相角为0时,等效容抗与第五电容的容抗值相等。当蓄电池电压超过最大值的90%时,蓄电池处于恒压充电阶段,蓄电池两端电压基本保持不变。
图4是蓄电池室温下充电的电压电流波形图(虚线为电流波形)。在低电量阶段采用恒流充电提高充电速度;在达到一定电量后采用恒压充电延长电池寿命;通过闭环控制调整电子电容电路的等效电容值以实现此充电过程。
图5从上至下分别是第五和第八IGBT、第六和第七IGBT的PWM触发信号波形图以及电子电容电路两端的电压波形图。两路移相方波完全互补,分别控制半个周期,电子电容电路两端的电压维持在一个稳定的电压范围内,不断地对内部的第五电容进行充放电。

Claims (8)

  1. 一种电动汽车的无线充电电路,其特征在于包括电动汽车的车载电路与地下电路;其中地下电路包括高频交流电源(Us)的产生电路、第一电容(C1)的下极板(N)、第二电容(C2)的下极板(Q)和电子电容电路;第一电容的下极板、高频交流电源的产生电路和第二电容的下极板依次连接;电子电容电路的两端分别与第一电容的下极板和第二电容的下极板并联;电动汽车的车载电路包括第一电容的上极板(M)、第二电容的上极板(P)、第三电容(C3)、第二桥式二极管整流电路、LC滤波电路、车载蓄电池和蓄电池电量反馈无线通信模块;第一电容的上极板、第二桥式二极管整流电路、第二电容的上极板依次连接;第三电容,LC滤波电路以及车载蓄电池顺次连接,第三电容的两端并联在第二桥式二极管整流电路两端,蓄电池电量反馈无线通信模块连接在车载蓄电池上。
  2. 根据权利要求1所述的一种电动汽车的无线充电电路,其特征在于,高频交流电源的产生电路包括第一桥式二极管整流电路、第四电容(C4)、全桥可控高频逆变电路、PWM控制电路及四路PWM驱动电路;市电经过第一桥式二极管整流电路后,再经第四电容的两端得到直流电,第四电容两端的电压为端子AB间的电压;该直流电经过由四个IGBT开关管即第一IGBT、第二IGBT、第三IGBT和第四IGBT组成的全桥可控高频逆变电路,得到高频的交流电源(Us);其中全桥可控高频逆变电路中的第一IGBT、第二IGBT、第三IGBT和第四IGBT的门控级,均分别接入到四路PWM驱动电路的输出端。
  3. 根据权利要求2所述的一种电动汽车的无线充电电路,其特征在于,PWM控制电路采用TMS320F2812芯片及外围电路构成,八路PWM驱动电路采用分立元件来组成,TMS320F2812芯片输出的PWM波形串接八路PWM驱动电路,该八路PWM驱动电路的其中四路输出PWM1、PWM2、PWM3和PWM4分别连接第一IGBT至第四IGBT的门控级。
  4. 根据权利要求1所述的一种电动汽车的无线充电电路,其特征在于,全桥可控高频逆变电路的第一IGBT、第二IGBT、第三IGBT和第四IGBT的门控极,均接有一路PWM波形,这四路PWM的波形两两相同,第一IGBT和第四IGBT门控极所接入的PWM波形相同,第二IGBT和第三IGBT门控极所接入的PWM波形相同;第一IGBT的集电极、第三IGBT的集电极和第四电容的正端连接;第一IGBT的发射极、第二IGBT的集电极连接;第三IGBT的集电极、第四IGBT的集电极连接;第二IGBT的发射极、第四IGBT的发射极、第四电容的负端连接;从第二IGBT的集电极和第四IGBT的集电极各引出一根线作为的高频交流电源产生电路两端;其中一端接第一电容的下极板,另一端接第二电容的下极板。
  5. 根据权利要求1所述的一种高效的电动汽车充电电路,其特征在于,第二全桥式二极管整流电路的输出经LC滤波电路后,连接至车载蓄电池的两端,蓄电池电量反馈无线通信模块连接在车载蓄电池上,接收电压信号并将其传输至地下的DSP控制芯片,用于车载蓄电池电压的实时反馈,实现闭环控制。
  6. 根据权利要求1所述的一种电动汽车的无线充电电路,其特征在于,AD转换模块电路是由运算放大器组成的两个求和电路,将端子AB间电压转换到0—3.3V,供DSP控制电路的采样。
  7. 根据权利要求1所述的一种电动汽车的无线充电电路,其特征在于,DSP控制电路对经AD转换模块电路转换后的端子AB间电压进行比例换算后,得到的数值来产生八路不同占空比的PWM波形。
  8. 根据权利要求1所述的一种电动汽车的无线充电电路,其特征在于,电子电容电路包括第五IGBT开关管(VT5)、第六IGBT开关管(VT6)、第七IGBT开关管(VT7)、第八IGBT开关管(VT8)、第五二极管(VD5)、第六二极管(VD6)、第七二极管(VD7)、第八二极管(VD8)和第六电容(C6);八路PWM驱动电路的其中四路输出PWM5、PWM6、PWM7和PWM8分别接入第五IGBT开关管、第六IGBT开关管、第七IGBT开关管和第八IGBT开关管的门控极,这四路PWM输出波形两两相同,第五IGBT开关管和第八IGBT开关管的门控极所接入的PWM波形相同,第六IGBT开关管和第七IGBT开关管的门控极所接入的PWM波形相同,第五IGBT和第七IGBT的门控极所接入的PWM波形互补,第六IGBT和第八IGBT的门控极所接入的PWM波形互补;第五IGBT开关管的集电极、第六IGBT开关管的集电极和第六电容的正端连接;第五IGBT开关管的发射极和第七IGBT开关管的集电极极接;第七IGBT开关管的发射极、第八IGBT开关管的发射极和第六电容的负端连接;第八IGBT开关管的集电极和第六IGBT开关管的发射极连接;第五二极管、第六二极管、第七二极管和第八二极管均反并联在第五IGBT开关管、第六IGBT开关管、第七IGBT开关管和第八IGBT开关管的两端;从第五IGBT开关管的发射极和第六IGBT开关管的发射极各引出一根线作为电子电容电路的两端。
PCT/CN2014/092972 2014-03-14 2014-12-03 一种电动汽车的无线充电电路 WO2015135345A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410098703.2 2014-03-14
CN201410098703.2A CN103904884B (zh) 2014-03-14 2014-03-14 一种电子电容电路及其控制方法
CN201410610211.7A CN104333102B (zh) 2014-10-31 2014-10-31 一种电动汽车的无线充电电路
CN201410610211.7 2014-10-31

Publications (1)

Publication Number Publication Date
WO2015135345A1 true WO2015135345A1 (zh) 2015-09-17

Family

ID=54070890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092972 WO2015135345A1 (zh) 2014-03-14 2014-12-03 一种电动汽车的无线充电电路

Country Status (1)

Country Link
WO (1) WO2015135345A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107294173A (zh) * 2017-07-24 2017-10-24 北方民族大学 一种智能快速充电仪及其控制方法
DE102017205229A1 (de) 2017-03-28 2018-10-04 Audi Ag Energieübertragungsvorrichtung zur kapazitiven Energieübertragung, Kraftfahrzeug mit einem fahrzeugseitigen Übertragungsteil, Ladestation mit einem stationären Übertragungsteil sowie ein Verfahren zum Betreiben der Energieübertragungsvorrichtung
CN109677283A (zh) * 2018-12-26 2019-04-26 张治国 小功率道路行驶充电方法及系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005805A (zh) * 2010-11-23 2011-04-06 鸿富锦精密工业(深圳)有限公司 无线充电系统
CN202424548U (zh) * 2011-12-12 2012-09-05 中国电力科学研究院 一种取能单元及无源高压在线监测装置
CN103904884A (zh) * 2014-03-14 2014-07-02 华南理工大学 一种电子电容电路及其控制方法
CN103956803A (zh) * 2014-04-15 2014-07-30 华南理工大学 一种高效的电动汽车的无线充电电路
CN203827038U (zh) * 2014-04-15 2014-09-10 华南理工大学 一种高效的电动汽车的无线充电电路
WO2014143764A1 (en) * 2013-03-15 2014-09-18 Ambient Corporation Wireless power transfer via variable coupling capacitance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102005805A (zh) * 2010-11-23 2011-04-06 鸿富锦精密工业(深圳)有限公司 无线充电系统
CN202424548U (zh) * 2011-12-12 2012-09-05 中国电力科学研究院 一种取能单元及无源高压在线监测装置
WO2014143764A1 (en) * 2013-03-15 2014-09-18 Ambient Corporation Wireless power transfer via variable coupling capacitance
CN103904884A (zh) * 2014-03-14 2014-07-02 华南理工大学 一种电子电容电路及其控制方法
CN103956803A (zh) * 2014-04-15 2014-07-30 华南理工大学 一种高效的电动汽车的无线充电电路
CN203827038U (zh) * 2014-04-15 2014-09-10 华南理工大学 一种高效的电动汽车的无线充电电路

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017205229A1 (de) 2017-03-28 2018-10-04 Audi Ag Energieübertragungsvorrichtung zur kapazitiven Energieübertragung, Kraftfahrzeug mit einem fahrzeugseitigen Übertragungsteil, Ladestation mit einem stationären Übertragungsteil sowie ein Verfahren zum Betreiben der Energieübertragungsvorrichtung
DE102017205229B4 (de) 2017-03-28 2023-11-02 Audi Ag Energieübertragungsvorrichtung zur kapazitiven Energieübertragung, Kraftfahrzeug mit einem fahrzeugseitigen Übertragungsteil, Ladestation mit einem stationären Übertragungsteil sowie ein Verfahren zum Betreiben der Energieübertragungsvorrichtung
CN107294173A (zh) * 2017-07-24 2017-10-24 北方民族大学 一种智能快速充电仪及其控制方法
CN107294173B (zh) * 2017-07-24 2023-07-14 北方民族大学 一种智能快速充电仪及其控制方法
CN109677283A (zh) * 2018-12-26 2019-04-26 张治国 小功率道路行驶充电方法及系统

Similar Documents

Publication Publication Date Title
CN207705877U (zh) 一种高效率电动汽车车载充电机
CN110890842B (zh) 宽电压增益低电流纹波双向谐振变换器及控制方法
CN105471238A (zh) 一种直流母线电压纹波补偿方法和光伏逆变器
CN103956803B (zh) 一种高效的电动汽车的无线充电电路
WO2023226317A1 (zh) 维也纳整流器的控制方法及系统
CN109301866A (zh) 一种适用于电动汽车换电站的光伏发电接入系统
WO2015135345A1 (zh) 一种电动汽车的无线充电电路
CN206259854U (zh) 一种车载dcdc变换器
CN204205648U (zh) 一种无线充电电路
CN106026728A (zh) 一种光伏微型逆变器
CN105515415A (zh) 一种功率转换电路、方法及空调器
CN103401465A (zh) 一种电压宽范围可调式升降压单级逆变电路装置
Ahmed et al. Empirical Investigation of a Single-Phase New Topology Hybrid AC-DC Boost Converter with Low THD and High-Power Factor
CN203827038U (zh) 一种高效的电动汽车的无线充电电路
CN203104294U (zh) 模块化高效dc/dc变换器
CN205725456U (zh) 集成式多功能电源转换装置
CN208752488U (zh) 一种纹波电流产生电路
CN204290454U (zh) 一种电动汽车的无线充电电路
CN114825663B (zh) 一种sp型双输出单独可调无线电能传输系统及其控制方法
CN116317499A (zh) 基于飞跨电容型三电平boost的单相逆变器及控制方法
CN114665727A (zh) 一种三单相兼容misn变换器
CN104333102B (zh) 一种电动汽车的无线充电电路
CN115001284A (zh) 一种隔离单级双向多用途拓扑电路及其控制策略
CN204068356U (zh) 一种电动汽车的无线充电电路
CN113726147A (zh) 一种输入并联输出串联无桥降压pfc变换器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885142

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885142

Country of ref document: EP

Kind code of ref document: A1