WO2015133671A1 - 산업용 다관절 로봇 및 그 이용방법 - Google Patents
산업용 다관절 로봇 및 그 이용방법 Download PDFInfo
- Publication number
- WO2015133671A1 WO2015133671A1 PCT/KR2014/002120 KR2014002120W WO2015133671A1 WO 2015133671 A1 WO2015133671 A1 WO 2015133671A1 KR 2014002120 W KR2014002120 W KR 2014002120W WO 2015133671 A1 WO2015133671 A1 WO 2015133671A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- arm
- shaft
- fixed
- joint
- articulated robot
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/06—Programme-controlled manipulators characterised by multi-articulated arms
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
- B25J5/02—Manipulators mounted on wheels or on carriages travelling along a guideway
- B25J5/04—Manipulators mounted on wheels or on carriages travelling along a guideway wherein the guideway is also moved, e.g. travelling crane bridge type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/02—Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
- B25J9/04—Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D—WORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21D43/00—Feeding, positioning or storing devices combined with, or arranged in, or specially adapted for use in connection with, apparatus for working or processing sheet metal, metal tubes or metal profiles; Associations therewith of cutting devices
- B21D43/02—Advancing work in relation to the stroke of the die or tool
- B21D43/04—Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work
- B21D43/10—Advancing work in relation to the stroke of the die or tool by means in mechanical engagement with the work by grippers
- B21D43/105—Manipulators, i.e. mechanical arms carrying a gripper element having several degrees of freedom
Definitions
- the present invention relates to an industrial articulated robot and a method of using the same, and in particular, a reciprocating motion in the X, Y, and Z axis directions by an X, Y, and Z axis motion mechanism installed on a base, and a plurality of arms and articulated joints.
- a reciprocating motion in the X, Y, and Z axis directions by an X, Y, and Z axis motion mechanism installed on a base, and a plurality of arms and articulated joints.
- industrial robot is a kind of robot that performs various tasks in the industrial field on behalf of human beings, and it is mainly used in simple repetitive work or in a bad place and dangerous place of work environment.
- Industrial robots which are currently used in various industries, such as automobile assembly and material transfer, occupy a lot of installation space due to their complex configuration and large operating radius. In addition, they are not only productive but also expensive due to long copper wires. There are several problems, such as high maintenance costs.
- Another object of the present invention is to provide an industrial articulated robot that is precisely controlled by using a servo mechanism.
- Another object of the present invention is to provide an industrial articulated robot capable of multilateral induction using a plurality of servo mechanisms.
- Another object of the present invention is to provide an industrial articulated robot capable of various movements.
- Another object of the present invention relates to a method of using an industrial articulated robot.
- the industrial articulated robot (1) of the present invention is installed on the base (2) and moves freely to the front / rear / left / right / up / down /, and depending on the situation, the material (object) is rotated forward / backward or at a predetermined inclination. It is configured to achieve a variety of functions and purposes, such as conveying or gripping or gripping the material.
- a main body 27 installed on the base 2 and moving in the X, Y, and Z axes by the X, Y, and Z axis motion mechanisms;
- a main arm (30) installed on the main body (27) and horizontally moving by a rotating mechanism;
- a first arm (32) installed at the tip of the main arm (30) and rotating in a predetermined angle by a first joint (31);
- a second arm (34) installed at the tip of the first arm (32) and vertically arcuated by a second joint (33);
- a third arm (36) installed at the tip of the second arm (34) and horizontally arcing by a third joint (35);
- a gripper (37) installed at the tip of the third arm (36);
- a plurality of suction / detachment means (38) installed on the gripper (37); It may include.
- the industrial articulated robot (1) of the present invention is the home position of each of the main body (27), the main arm (30), the first arm (32), the second arm (34), and the third arm (36).
- the present invention may further include a balance 39 installed on one side of the main body 27.
- the exercise device of the present invention may include a servo motor as a driving means, a rack gear and a pinion as a power transmission means, and an LM guide as a guide means.
- the exercise device of the present invention includes an X-axis exercise mechanism for reciprocating the main body 27 and the main arm 30 on the X axis, and a Y-axis exercise mechanism for reciprocating the main body 27 and the main arm 30 on the Y axis. And the Z-axis movement mechanism for reciprocating the main body 27 and the main arm 30 in the Z-axis.
- the base 2 is supported by a plurality of legs 3, and the lower leg 3 may be provided with auxiliary legs 6 which can adjust the height by the fastening member 5, respectively.
- the X-axis exercise mechanism of the present invention includes a pair of vertical members (7) (8) fixed in parallel to both sides of the upper surface of the horizontal plate (4); LM rails 9 and 10 fixed to upper surfaces of the vertical members 7 and 8, respectively; A rack gear 11 fixed to the inner side of one vertical member 7 and parallel to the LM rail 9; A plurality of LM blocks 13 and 14 which are slidably coupled to the upper surfaces of the LM rails 9 and 10; A moving plate 12 having an edge portion fixed to an upper surface of the LM blocks 13 and 14; A servo motor 15 installed on one side of the moving plate 12; A rotating shaft of the servomotor 15 which protrudes below the moving plate 12 through a through hole formed at one side of the moving plate 12; A pinion 16 fixed to the rotation shaft of the servomotor 15 and engaged with the rack gear 11; It may include.
- the Y-axis exercise device of the present invention includes a pair of vertical members 17 and 18 fixed in parallel to both sides of the upper surface in the longitudinal direction of the moving plate 12; LM rails 19 and 20 fixed to upper surfaces of the vertical members 17 and 18, respectively; A rack gear 21 fixed to the side of one vertical member 20 and parallel to the LM rail 20; A plurality of LM blocks 22 and 23 slidably coupled to the upper surfaces of the LM rails 19 and 20 to reciprocate; A support plate 24 fixed to the upper surface of the LM blocks 22 and 23; A servo motor 25 installed on one side of the support plate 24; A rotation shaft of the servo motor 25 protruding from the support plate 24 through a through hole formed at one side of the support plate 24; A pinion 26 fixed to the rotating shaft of the servomotor 25 and engaged with the rack gear 21; It may include.
- the through-hole 40 formed in the central portion of the support plate 24;
- a main body 27 which is loosely inserted perpendicularly to the through hole 40 and lifts without contact;
- a plurality of LM rails 42 fixed to the outer surface of the body 27 in the longitudinal direction at predetermined intervals;
- a plurality of support members 43 fixed perpendicularly to an upper surface of the support plate 24 close to the through hole 40;
- An LM block 44 fixed to the upper and lower inner surfaces of the support member 43 and slidably coupled to the LM rail 42;
- a bracket 45 installed on one side of the support plate 24;
- a servo motor 47 installed horizontally on the bracket 45;
- a rack gear 45 installed parallel to one side LM rail 42;
- a pinion 48 fixed to the rotary shaft of the servomotor 47 and engaged with the rack gear 45; It may include.
- the rotary mechanism of the present invention, the cylindrical ring 49 and the bottom plate 291 is fastened to the upper surface (27a) of the main body (27); A ring gear 53 fixed to the upper outer circumferential surface of the cylindrical ring 49; A shaft member 292 inserted into the hollow portion 49a of the cylindrical ring 49; A locking jaw 293 protruding below the outer circumferential surface of the shaft member 292; Shaft bearings 294 and 295 provided on the upper and lower portions of the outer circumferential surface of the shaft member 292 and the hollow portion 49a to support the shaft member 292; A spacing ring 296 provided between the shaft bearings 294 and 295; A bearing protection plate 297 installed on the upper surface of the shaft bearing 295; A support plate 50 fastened to the upper surface of the shaft member 293; A support plate 298 fastened to an upper surface of the support plate 50; A case 57 of the main arm 30 fastened to the upper surface of the support plate 298; A servo motor 55 installed perpendicularly to the case 57
- the balance 39 of the present invention the lower portion is fixed to the support plate 24, the bracket 52 is fixed to one side of the outer surface of the cylindrical ring 49 is fastened to the upper portion of the buffer shaft bar 51 provided on the upper side. .
- the main arm 30 of the present invention includes: servo motors 64 and 65 installed up and down on one side of the case 57; A first joint 31 installed at the other side of the case 57 and driven by the servo motor 64 and the universal joint 60; A joint shaft 58 that penetrates the first joint 31 and drives the second joint 33 while being forward and backward rotated by the servomotor 65; It may include.
- the first joint 31 of the present invention, the servo motor 64 is fixed to one side of the case 57; A tip shaft portion 59 of the universal joint 60 connected to the rotation shaft of the servo motor 64; A pair of shaft brackets 311 fixed to the case 57 and supporting the rear end shaft portion 61 of the universal joint 60; A spur gear 312 fixed to the rear end shaft 61 of the universal joint 60 supported by the shaft bracket 311; A metal bearing 313 coupled to the outer circumferential surface of the joint shaft 58; A shaft member 66 coupled to the outer circumferential surface of the metal bearing 313; A shaft bearing 314 installed between the rear end of the shaft member 66 and the joint shaft 58 so that the shaft member 66 can be supported; A spur gear 315 fixed to the front end surface of the shaft member 66 and engaged with the spur gear 312; A bearing case 316 fixed to the rear end of the case 57; Shaft bearings 317 and 318 installed on an outer circumferential surface of the bearing case 316 and the shaft member 66; A spacing ring
- In the present invention may further include a long hole 41 formed in the longitudinal direction of the moving plate (12).
- the second joint (33) of the present invention includes a helical gear (67) which is axially installed in a shaft hole (32b) formed in the longitudinal end portion of the body (32a) of the first arm (32); An end portion of the shaft member 58 that is keyed and coupled to the central shaft of the helical gear 67; A shaft rod (69) axially installed as a bearing (32d) in the shaft hole (32c) formed in the center portion of the body (32a); A helical gear 68 that is keyed to one side of the shaft bar 69 and meshes with the helical gear 67; A spur gear 70 configured at one side of the shaft bar 69; A joint shaft 73 axially installed as a bearing 32f in the shaft hole 32e formed at the tip end of the body 32a; A bearing 32d stopper 32h through which the joint shaft 73 penetrates and is fixed to the stepped portion 32g of the shaft hole 32e; A shaft portion 34a of the second arm 34 whose inner surface is fixed to the
- the third joint 35 of the present invention includes: a fixing plate 74b fixed to the rear end surface of the case 34d; A servo motor 74 fixed to the fixed plate 74b and positioned inside the case 34d; A rotation shaft 74a of the servomotor 74 protruding to the rear end of the case 34d; A block 34e fixed to the case 34d; A helical gear 75 axially installed in the shaft hole 34f formed at the tip end of the block 34e; A rotation shaft 74a of the servomotor 74 that is keyed to the central axis of the helical gear 75; A joint shaft 78 axially installed with a metal bearing 77 in the shaft hole 34g formed at the center of the block 34e; A head portion 78a of the joint shaft 78 which is engaged on one side of the metal bearing 77; A metal bearing 76a slidingly coupled to the stepped groove 34h formed at the side of the block 34e and through which the joint shaft 78 passes; A helical gear 76 fitted to the
- Block 34e of the present invention Located in the space portion 36c between the shaft portion 36a and the shaft portion 36b of the third arm 36, the shaft portion 36a of the joint shaft 73, the helical gear 76, and the third arm 36 is located. Is fixed with one key 76b, the shaft portion 36b of the third arm 36 is coupled to the head portion 78a of the articulation shaft 78, and then fixed with a pin 36h, and the second A pin hole 36g is formed in the shaft portion 34b of the arm 34 to which the pin 36h is forcibly coupled. A pin hole 78c is formed in the head portion 78a of the joint shaft 78, and the pin hole 78c is formed. ), The pin 36h can be forcibly coupled.
- Flange (79a) is provided at the end of the connection arm 79 of the gripper 37 of the present invention, the flange (79a) is fastened to the rear end surface (36f) of the third arm (36) and the third arm (36)
- the gripper 37 and the plurality of suction / detachment means 38 may be configured to interlock with each other.
- the gripper 37 of the present invention is provided with a plurality of horizontal joint spheres 81, which are installed at predetermined intervals in the longitudinal direction, and the support rods 82 and support rods 82 which are tilted and fixed at predetermined angles.
- Joint housing (83) installed at the end, vertical joints (85) installed in the center of the joint housing (83), tangy rod (84), installed in the vertical joints (85), and tilted and fixed at a predetermined angle, the tangy rod (84) It may include a proximity sensor 87 is installed as a bracket 86 to the suction / detachment means 38, the joint housing 83 is installed on the lower end portion to detect the adsorption or detachment of the material.
- the adsorption / desorption means 38 of the present invention is an electromagnet that adsorbs and desorbs a material by an electromagnetic force, a vacuum suction port that adsorbs and desorbs a material by vacuum, or a mixed form of an electromagnet and a vacuum suction port. Can be.
- the position sensor of the present invention includes an X-axis position sensor, a Y-axis position sensor, a Z-axis position sensor, a main arm 30 position sensor, a first arm 32 position sensor, and a second arm 34 position. Sensor and a third arm 36 position sensor.
- the X-axis position sensor of the present invention includes a plurality of proximity sensors sensed by the proximity of the operation piece XA and the operation piece XA fixed to the moving plate 12, and the proximity sensor includes a support member 7. Installed on the outer side of the limit sensor (XL) for detecting the movement limit in the -X axis direction, the limit sensor (XR) for detecting the movement limit in the + X axis direction, and the origin sensor (XO) for detecting the home position of the X axis. It may include.
- the Y-axis position sensor of the present invention includes an operating piece YA fixed to the supporting plate 24 so as to move along the supporting plate 24, and a plurality of proximity sensors sensed by the proximity of the operating piece YA.
- Proximity sensor is installed on the support member 17 to detect the limit sensor (YL) for detecting the movement limit in the -Y axis direction and the limit sensor (YR) for detecting the movement limit in the + Y axis direction and the home position of the Y axis It may include a home sensor (YO).
- the Z-axis position sensor of the present invention includes an operating piece ZA fixed to the main body 27 and a plurality of proximity sensors sensed by the proximity of the operating piece ZA, wherein the proximity sensor is a vertical frame ZF. It is installed in the limit sensor (ZL) for detecting the movement limit in the -Z axis direction and the limit sensor (ZR) for detecting the movement limit in the + Z axis direction and the origin sensor (ZO) for detecting the home position of the Z axis. Can be.
- the main arm 30 position sensor includes an operation piece 30A fixed to a ring gear 53 case 54 under the main arm 30 so as to move along the main arm 30, the operation piece ( 30A) includes a plurality of proximity sensors sensed by the proximity, the proximity sensor is installed on the outer peripheral surface of the main body 27, the limit sensor (30L) and the main arm (30) for detecting the movement direction of the main arm (30)
- a direction 30 may include a limit sensor 30R for detecting a B-direction motion limit and an origin sensor 30O for detecting the home position of the main arm 30.
- the first arm 32 position sensor of the present invention includes an operating piece 32A fixed to an outer surface of the first arm 32 so as to rotate in the C direction and the D direction along the first arm 32, the operating piece ( And a plurality of proximity sensors sensed by the proximity of 32A), the proximity sensor being installed on the outer circumferential surface of the bearing case 316 to detect the limit of rotation in the D direction of the first arm 32; It may include a limit sensor 32R for detecting the C direction rotation limit of the first arm 32 and the home sensor 3300 for detecting the home position of the first arm 32.
- the second arm 34 position sensor of the present invention is an operating piece 34A fixed to an outer surface of the second arm 34 so that the second arm 34 can rotate in the E direction and the F direction along the second arm 34, the operating piece ( And a plurality of proximity sensors sensed by the proximity of 34A, each of which is installed on a frame 34F fixed to an outer surface of the first arm 32 to rotate in the E direction of the second arm 34. It may include a limit sensor 34L for detecting the limit sensor 34R for detecting the F direction rotation limit of the second arm 34 and a home sensor 34O for detecting the home position of the second arm 34. have.
- the third arm 36 position sensor of the present invention includes an operating piece 36A fixed to an outer surface of the second arm 34 so as to rotate in the G direction and the H direction along the third arm 34, the operating piece. And a plurality of proximity sensors sensed by the proximity of the 36A, the proximity sensors being installed in the long holes 36G of the frame 36F fixed to the outer surface of the third arm 36, the third arm 34 having a proximity sensor 36G.
- Limit sensor 36L for detecting the H-direction rotation limit of the sensor and limit sensor 36R for detecting the G-direction rotation limit of the third arm 34 and origin sensor 36O for detecting the home position of the third arm 36. ) May be included.
- one industrial articulated robot can be installed between a pre-process press and a post-process press to achieve import and export of materials.
- two industrial articulated robots are installed so as to be adjacent between the pre-process press and the post-process press, and then the industrial articulated joint installed near the pre-process press.
- the robot exports the punched material and delivers it to the industrial articulated robot installed near the post-process press, and the industrial articulated robot installed near the post-process press presses the received material to the post-process press.
- the industrial articulated robot 1 of the present invention reciprocates in the X, Y, and Z axis directions by the X, Y, and Z axis motion mechanisms installed on the base, and is formed by a plurality of arms and multiple joints (articulated arms). While implementing various motions such as forward / reverse rotation, tilting, and twisting, the material (object) can be quickly and simply transferred (transferred) to a predetermined position.
- the industrial articulated robot 1 of the present invention includes an X axis motion, a Y axis motion, a Z axis motion, a rotation motion of the main arm 30, a joint motion of the first arm 32, and a second arm ( 34), by the joint control of the third arm 36 by the complex control by 7-way guidance (6DOF) as shown in Figs.
- 6DOF 7-way guidance
- the position and limit positions of the X, Y, and Z axes, the main arm 30, the first arm 32, the second arm 34, and the third arm 36 are changed by the plurality of position sensors. There is an effect that the movement and lifting limits are sensed and the misaligned origin is corrected by feedback to achieve precise control.
- the present invention has the effect of enabling high-speed production by quickly moving the material to the next process in a variety of motion using X, Y, Z-axis movement and multi-joint and a plurality of arms precisely controlled by the servo mechanism.
- the present invention has the effect that the configuration is simple, low production cost, easy maintenance, small operation radius does not occupy much installation space, easy installation.
- the present invention for example, there is an effect that can be easily installed without additional equipment investment, such as the use of existing presses and existing molds.
- the present invention has the effect of minimizing the vibration of the articulated arm during material absorption / desorption and transport by the balance and smooth operation.
- the present invention for example, the corresponding installation according to the press or mold height difference between the left and right processes can be easily solved, and can be easily installed between the press or the mold, there is an effect that can easily and conveniently achieve the process expansion or change.
- the present invention can easily overcome the difference in the installation height or the transfer height of the material by the height adjustment means installed on the Z-axis lifting structure and the leg portion of the main body, and also can easily overcome the height difference between the neighboring presses or the height difference between the molds It works.
- the present invention when installed in the existing shuttle, is required to maintain the interval and alignment of the press and the height of the mold, which is necessarily required under the conditions, and free rotation and rapid movement (transfer) without speed reduction in the case of a reversal process or a predetermined tilt process. And return is possible, there is an effect that the productivity is greatly improved.
- the arm can be freely moved by the articulated structure, and thus, it is possible to quickly respond to various material feed (feed) positions and angles.
- the present invention has a plurality of height adjustment means are configured in the lower base to reduce the mold height difference between the process and the process to minimize the movement of the arm movement, the productivity is maximized, it is possible to reduce the equipment cost and installation space.
- the method of using the industrial articulated robot according to the present invention has the effect of achieving the import and export of materials by installing one industrial articulated robot between the pre-process press and the post-process press.
- two industrial articulated robots are installed so as to be adjacent between the pre-process press and the post-process press, and then the industrial articulated joint installed near the pre-process press.
- the robot exports the punched material and delivers it to the industrial articulated robot installed near the post-process press, and the industrial articulated robot installed near the post-process press presses the received material to the post-process press.
- FIG. 1 is a perspective view showing an example of the present invention.
- FIG. 2 is a perspective view showing another example of the present invention.
- FIG. 3 is a side view showing an example of the present invention.
- FIG. 4 is a front view showing an example of the present invention.
- FIG. 5 is a plan view showing an example of the present invention.
- FIG. 6 is a partial perspective view of the main body and the main arm shown as an example of the present invention.
- FIG. 7 is a front view of the present invention.
- FIG. 8 is a side view of the present invention.
- FIG. 9 is a cross-sectional view of FIG. 6 as an example of the present invention.
- FIG. 10 is an exploded perspective view of a rotating part shown as an example of the present invention.
- FIG. 11 is a front view of a rotating part shown as an example of the present invention.
- FIG. 12 is a cross-sectional view of the main body portion shown as an example of the present invention.
- FIG. 13 is a cross-sectional view of the main arm and the first joint and the rotating part illustrated as an example of the present invention.
- FIG. 14 is a perspective view of a first joint and a servo shown as an example of the present invention.
- FIG. 15 is an exploded perspective view of a first joint part illustrated as an example of the present invention.
- 16 is a partial side view of the first and second arms shown as an example of the present invention.
- 17 is a partial perspective view of the first and second arms shown as an example of the present invention.
- 19 is a cross-sectional view of a second joint part shown as an example of the present invention.
- 20 is a perspective view of a third joint part shown as an example of the present invention.
- 21 is an exploded perspective view of a third joint part shown as an example of the present invention.
- FIG. 22 is a third cross-sectional view showing a part of the present invention as an example.
- Figure 23 side view of the third joint part shown as an example of the present invention.
- 24 is a plan view of a third joint part shown as an example of the present invention.
- 25 is a plan view of the main arms, the first, second and third arms shown as an example of the present invention.
- Fig. 26 is a plan view of the second and third arms shown in one embodiment of the present invention.
- FIG. 27 is a partial perspective view of the gripper and the adsorption / desorption means shown as an example of the present invention.
- FIG. 28 is a side view showing a position sensor installation state as an example of the present invention.
- 29 is a plan view of the position sensor installation state shown as an example of the present invention.
- FIG. 30 is a control circuit block diagram showing an example of the present invention.
- the industrial articulated robot 1 of the present invention reciprocates a predetermined section (distance) in the X, Y, and Z-axis directions by the X, Y, and Z-axis movement mechanisms installed on the base 2, and the articulated arm (multiple)
- the object (object) is absorbed (or pressed or gripped) and then transferred to a predetermined position while implementing various motions (motions) such as forward / reverse rotation, inclination or twisting at a predetermined angle by the arm and joint of the It is configured to be able to carry out, transport (deliver) and then return or drive repeatedly.
- the industrial articulated robot 1 of the present invention includes a base 2 provided with X, Y, and Z-axis exercise mechanisms, a main body 27 installed on the base 2, and an upper part of the main body 27. And the main arm 30 and the main arm 30 which are horizontally arcuated in the clockwise direction (A direction) and the counterclockwise direction (B direction) by the rotating mechanism 29, and are provided on the first joint 31.
- the first arm 32 which rotates at a predetermined angle (the C direction and the D direction), and is installed at the tip of the first arm 32, and the vertical arc motion (the E direction and the F direction) is provided by the second joint 33.
- the second arm 34 to be installed, the third arm 36 installed at the tip of the second arm 34 and having a horizontal arc motion (G direction and H direction) by the third joint 35; It comprises a gripper 37 provided at the tip of the three arms 36 and a plurality of suction / detachment means 38 provided at the gripper 37.
- the present invention a plurality of position sensors for detecting the home position and the movement limit of the main body 27, the main arm 30, the first arm 32, the second arm 34, the third arm 36 and It further comprises a controller (M).
- the balance 39 prevents the deflection of the main arm 30 in consideration of the weight deflection of the horizontally arcuate main arm 30 and provides a smooth turning movement.
- the exercise device is composed of a servo motor as a driving means, a rack gear and a pinion as a power transmission means, and an LM guide as a guiding means, and the main body 27 and the main arm 30 have an X axis (+ X axis and -X axis).
- X-axis exercise mechanism for reciprocating with the Y Y-axis exercise mechanism for reciprocating the main body 27 and the main arm 30 to the Y axis (+ Y axis and -Y axis), the main body 27 and the main arm It is divided into the Z-axis movement mechanism 28 which reciprocates 30 along Z-axis (+ Z-axis and -Z-axis).
- the base 2 is supported by a horizontal plate (4) by a plurality of legs (3), the auxiliary legs (6) for adjusting the height by the fastening member (5) is installed at the lower part of the leg (3), respectively At the top of the horizontal plate 4, an X-axis movement mechanism is provided.
- the X-axis exercise mechanism is a pair of vertical members 7 and 8 fixed in parallel to both sides of the upper surface of the horizontal plate 4, and LM fixed to the upper surfaces of the vertical members 7 and 8, respectively. Slidingly coupled to the rails 9 and 10, the rack gear 11 fixed to the inner surface of one side vertical member 7 and parallel to the LM rail 9, and the upper surface of the LM rails 9 and 10. And a plurality of LM blocks 13 and 14 to reciprocate, a moving plate 12 having an edge portion fixed to an upper surface of the LM blocks 13 and 14, and one side of the moving plate 12.
- the rack gear is fixed to the rotation shaft of the servo motor 15 and the servo motor 15 which protrudes below the moving plate 12 through the through hole formed at one side of the moving plate 12, and the rotating shaft of the servo motor 15.
- a pinion (16) meshed with (11) and the moving plate (12) reciprocates in the longitudinal direction (X axis) of the LM rails (9) and (10) in accordance with the forward / reverse rotation of the servomotor (15). (+ X-axis direction and -X-axis direction).
- the upper portion of the moving plate 12 is provided with a Y-axis exercise mechanism.
- the Y-axis exercise mechanism is fixed to a pair of vertical members 17 and 18 and upper surfaces of the vertical members 17 and 18 fixed in parallel to both sides of the upper surface in the longitudinal direction of the moving plate 12, respectively.
- LM rails 19 and 20 which are fixed to side surfaces of one side vertical member 20 and parallel to the LM rails 20, are slid to the upper surfaces of the LM rails 19 and 20.
- the rotary shaft of the servo motor 25 protruding downward from the support plate 24 through the motor 25 and the through hole formed on one side of the support plate 24 and the rotation shaft of the servo motor 25 are fixed to the rack gear 21. It consists of a pinion 26 to be engaged, the support plate 24 reciprocating in the longitudinal direction (Y axis) of the LM rails 19, 20 in accordance with the forward / reverse rotation of the servo motor 25 (+ Y axis direction) And -Y axis direction).
- the main body 27 which is lifted and lowered by the Z-axis exercise mechanism 28 is installed on the upper portion of the movable plate 12.
- the Z-axis exercise mechanism 28 includes a through hole 40 formed in the center portion of the support plate 24, a main body 27 that is loosely inserted perpendicularly to the through hole 40, and elevates without contact, and the main body 27.
- a plurality of LM rails 42 fixed to the longitudinal outer surface of the substrate at predetermined intervals, a plurality of support members 43 fixed perpendicularly to the upper surface of the support plate 24 close to the through hole 40, and a support member 43.
- LM block 44 is fixed to the inner side of the upper / lower side and is slid to the LM rail 42, the bracket 45 is installed on one side of the support plate 24, and is installed horizontally on the bracket 45
- a servo motor 47 With a servo motor 47, a rack gear 45 installed to be parallel to the one side LM rail 42, and a pinion 48 fitted to the rotating shaft of the servo motor 47 and meshed with the rack gear 45.
- the main body 27 moves up or down in the Z-axis direction (+ Z-axis direction and -Z-axis direction) as the servomotor 47 rotates forward / reverse.
- the moving plate 12 is formed with a long hole 41 is formed so that the main body 27 can be lifted, the long hole 41 is formed in the longitudinal direction of the moving plate 12 to the main hole 41 Even if it descends, the main body 27 is comprised so that it may move to a Y-axis direction.
- the main body 27 is preferably a cylindrical, rectangular cylinder, or polygonal cylinder of light and excellent structure.
- the rotating mechanism 29 is installed above the main body 27, and the main arm 30 is installed above the rotating mechanism 29 to perform horizontal arc motion (or swing movement) for a predetermined section (A direction and B direction).
- the rotating mechanism 29 includes a cylindrical ring 49 and a bottom plate 291 fixed to the upper surface 27a of the main body 27 by a fastening member, and a ring gear 53 fixed to the outer peripheral surface of the upper portion of the cylindrical ring 49. ), A shaft member 292 inserted into the hollow portion 49a of the cylindrical ring 49, a locking jaw 293 protruding outwardly below the outer circumferential surface of the shaft member 292, and upper and lower outer surfaces of the shaft member 292.
- a shaft bearing 294 and 295 coupled to and installed in the hollow portion 49a to support the shaft member 292, a gap retaining ring 296 provided between the shaft bearings 294 and 295, and a shaft Bearing protection plate 297 provided on the upper surface of the bearing 295, support plate 50 fastened to the upper surface of the shaft member 292, support plate 298 fastened to the upper surface of the support plate 50, and support plate 298
- the case 57 of the main arm 30 fastened to the upper surface, the servo motor 55 installed perpendicular to the case 57 and the rotation shaft of the servo motor 55 are fixed to the ring gear 53. Consists of a spur gear 56 to be engaged, the main Arm 30 is axially supported by shaft member 292.
- the ring gear 53 is fixed to the upper portion of the main body 27 and the main arm 30 is axially supported to rotate horizontally by the shaft member 292, the servomotor 55 and the spur gear 56 are provided. Is rotated clockwise (A direction) or counterclockwise (B direction) by the shaft member 292.
- the shaft member 292 is axially supported by shaft bearings 294 and 295 provided at upper and lower portions thereof, and the locking jaw 293 formed at the lower portion of the shaft member 292 has a lower shaft bearing 294 having a portion in surface contact. The rise or the flow is suppressed by), and the ring gear 53 is protected by the case 54.
- a balance 39 is formed, which is composed of a suspension device such as a shock-up server and a pneumatic cylinder so as to maintain the balance.
- the lower portion of the balance 39 is axially fixed to the support plate 24, the bracket 52 is fixed to one side of the outer surface of the cylindrical ring 49 on the upper portion of the buffer shaft bar 51 provided on the upper portion of the balance 39 Is fastened. Therefore, the balance is maintained even if the weight (load) bias of the main arm 30 transmitted to the main body 27 is deepened, thereby preventing sagging of the main arm 30 and providing smooth turning motion.
- FIG. 13 and 14 are partial perspective and exploded perspective views of the main arm 30 and the first joint 31, and FIG. 15 is a cross-sectional view thereof.
- the main arm 30 is installed on the outer surface of one side of the case 57 up and down, the servo motor 64 and 65, and the other side of the case 57 is installed on the servo motor 64 and the universal joint 60. It consists of a first joint 31 to be driven by, and a joint shaft 58 for driving the second joint 33 through the first joint 31 and reversely rotated by the servomotor 65.
- the rotary shaft of the servomotor 64 and the universal joint 60 are axially connected to the shaft coupler 64a, and the rotary shaft and the joint shaft 58 of the servomotor 65 are axially connected to the shaft coupler 65a.
- the forward and reverse rotational force is transmitted to the first joint 31 and the second joint 33 to achieve joint motion.
- the first joint 31 may include a servo motor 64 fixed to one side of the case 57, a tip shaft portion 59 of the universal joint 60 connected to a rotation shaft of the servo motor 64, and a case (
- a pair of shaft brackets 311 fixed to 57 and supporting the rear end shaft portion 61 of the universal joint 60 and a rear end shaft portion of the universal joint 60 supported by the shaft bracket 311 ( 61 and the spur gear 312 is fixed to the fixed, the metal bearing 313 coupled to the outer peripheral surface of the joint shaft 58, the shaft member 66 coupled to the outer peripheral surface of the metal bearing 313 and
- a shaft bearing 314 installed between the rear end of the shaft member 66 and the joint shaft 58 so that the shaft member 66 can be supported, and then loosely coupled to the joint shaft 58, and then the shaft member 66.
- It consists of a shaft bearing 317, 318 is installed on the shaft bearing 317 is installed between the shaft bearing 317 and the shaft bearing 318, the rear end of the shaft member 66 is a flange 66a It is fixed, the upper and lower fixing pieces that the front end face of the first arm 32 is in contact with the rear end face of the flange 66a and is coupled to a groove formed in the upper and lower portions of the flange 66a and the first arm 32 and then fastened or welded.
- the shaft member 66 and the first arm 32 are connected to each other by 62. Therefore, when the servo motor 64 operates, the universal joint 60, the spur gears 312, 315 and the shaft member ( The rotation of 66 causes the first arm 32 to articulate in the C and / or D direction.
- a flange 316a is fastened or fixed to the front end of the bearing case 316, and the flange 316a is fastened to a flange 57a portion fixed to the rear end of the case 57 to joint the entire first joint 31 with the joint.
- the shaft 58 is supported, the first arm 32 rotates in the C direction or the D direction while the first joint 31 is operated by the operation of the servo motor 64, and the operation of the servo motor 65 is performed.
- the joint axis 58 rotates by the second joint 33, the second arm 34 operates in the E direction or the F direction.
- 16 to 19 are partial views of the first and second arms 32 and 34 and the second joint 33, and the shaft holes 32b formed at the longitudinal ends of the body 32a of the first arm 32 are shown.
- the helical gear 67 is installed axially, the end of the shaft member 58 which is key-coupled to the central axis of the helical gear 67 and connected axially, and the shaft hole 32c formed in the orthogonal direction at the center of the body 32a. It is configured (formed) on the shaft bar 69 which is axially installed by the bearing 32d, the helical gear 68 keyed to one side of the shaft bar 69 and meshed with the helical gear 67, and the shaft bar 69 side.
- On the outer circumferential surface of the shaft portion 34a A spur gear 71 meshed with the spur gear 70 and another shaft portion 34b of the second arm 34 fastened to the joint shaft 73 end with a bolt 73b.
- the joint shaft 58 rotates by the operation of 65
- the helical gears 67, 68, the shaft 69, and the spur gears 70, 71 rotate, and are fixed to the spur gear 71.
- the second arm 34 which is fastened to the shaft portion 34a of the second arm 34 and the end of the joint shaft 73 by the bolt 73b, rotates about the joint shaft 73, so that the second arm 34 ) Operates in the E direction or the F direction.
- the rear end of the first arm 32 is located in the space portion 34c between the shaft portion 34a and the shaft portion 34b of the second arm 34 and the shaft portion 34a of the second arm 34.
- the shaft portion 34b are fixed to both ends of the joint shaft 73 to achieve joint motion of the second arm 34.
- the shaft member 68c, the C ring 68b, and the stopper 68a are sequentially installed to prevent the helical gear 68 from being separated.
- the bearing 32d is provided in one or a plurality, and bearing stoppers 69a and 69b are respectively provided on the outer side of the bearing 32d, and the case 34d of the servomotor 74 is provided at the rear end of the second arm 34. ) Are integrally connected (fastened).
- 20 to 24 are partial views of the second and third arms 34 and 36 and the third joint 35, and are fixed to the fixing plate 74b fixed to the rear end face of the case 34d and to the fixing plate 74b.
- the servomotor 74 located inside the case 34d, the rotary shaft 74a of the servomotor 74 projecting to the rear end of the case 34d, the block 34e fixed to the case 34d, and the block ( Helical gear 75 which is axially installed in the shaft hole 34f formed at the tip end of 34e), rotational shaft 74a of servomotor 74 keyed to the central axis of helical gear 75, and block 34e
- the head of the joint shaft 78 which is axially installed by the metal bearing 77 in the shaft hole 34g formed in the orthogonal direction at the center portion, and the joint shaft 78 which is engaged in surface contact with one side of the metal bearing 77.
- a metal bearing 76a slidingly coupled to the stepped groove 34h formed on the side of the block 34e and penetrated by the joint shaft 78, and a stepped groove 34h to which the metal bearing 76a is coupled.
- the through hole 36d is coupled to the shaft portion 34b of the third arm 36 fixed to the pin 36h and then to the joint shaft 78 protruding to the other side of the block 34e.
- the next key 76b is coupled, and accordingly, the helical gears 75 and 76 and the joint shaft 78 are rotated by the operation of the servomotor 74, and thus fixed to both ends of the joint shaft 78.
- the third arm 36 is operated in the G direction or the H direction about the articulation axis 78.
- the block 34e is located in the space portion 36c between the shaft portion 36a and the shaft portion 36b of the third arm 36, and has a joint shaft 73, a helical gear 76, and a third arm 36.
- the shaft portion 36a of the) is fixed with one key 76b for interlocking motion, and the shaft portion 36b of the third arm 36 is coupled to the head 78a of the articulation shaft 78, and then the pin ( 36h) and thus peristaltic movement along the articulation axis 78, so that articulation of the third arm 36 is achieved.
- a pin hole 36g is formed in the shaft portion 34b of the second arm 34 to which the pin 36h is forcibly coupled, and a pin hole 78c is also formed in the head portion 78a of the joint shaft 78. 36h) is forcibly combined.
- 25 is a plan view of a state in which the main arm 30 provided on the main body 27 is horizontally arcuated in the clockwise direction (A direction) and the counterclockwise direction (B direction) by the rotating mechanism 29.
- FIG. 26 shows a plurality of suction / detachable means provided on the gripper 37 and the gripper 37 provided on the third arm 36 and the third arm 36 by the servomotor 74 and the third joint 35.
- 38 is a plan view of the horizontal circular motion in the clockwise direction (G direction) and counterclockwise direction (H direction).
- FIG. 27 is a perspective view of the suction / detachment means 38 provided in a plurality of grippers 37.
- a flange 79a is provided at the end of the connection arm 79 of the gripper 37, and the flange 79a is made of a second one.
- the third arm 36 and the gripper 37 and the plurality of suction / detachment means 38 are interlocked with each other by being fastened and fixed to the rear end face 36f of the three arms 36.
- a plurality of horizontal joints 81 are installed at predetermined intervals in the longitudinal direction of the gripper 37, and a supporting rod 82 is tilted and fixed at a predetermined angle in the horizontal joints 81, and a supporting rod 82 is provided.
- a joint housing 83 is installed at the end of the joint housing, and a vertical joint sphere 85 is installed at the center of the joint housing 83, and a tangent rod 84 is installed at the vertical joint sphere 85 to be tilted and fixed at a predetermined angle.
- adsorption / desorption means 38 are installed, respectively, and the brackets 86 installed on some joint housings 83 are provided with a proximity sensor 87 for detecting adsorption or desorption of materials. do.
- the adsorption / desorption means 38 may be an electromagnet that adsorbs and desorbs a material by an electromagnetic force, a vacuum suction port that adsorbs and desorbs a material by vacuum, or a mixture of an electromagnet and a vacuum suction port.
- the gripper 37 and the connecting arm 79 have a male and female coupling structure that can be easily attached / detached so that the suction / detachable means 38 can be easily replaced, and are firmly fixed by the fastening means 80.
- the fastening means 80 may be a fastening member having a round handle as shown in FIGS. 25 to 27, or a plurality of fastening members (bolts) as shown in FIGS. 1 and 2.
- a plurality of position sensors for detecting the origin position and the limit position of the X, Y, Z axis and the main arm 30, the first arm 32, the second arm 34, and the third arm 36, respectively. Is installed. The position and movement limits are controlled by the position sensor, and the twisted origin is corrected by the feedback to achieve precise control.
- the X-axis position sensor is adjacent to the operating piece XA fixed to the moving plate 12 so as to move along the moving plate 12 and the operating piece XA. It is composed of a plurality of proximity sensors sensed by.
- the proximity sensor is installed on the outer side of one support member (7) of the limit sensor (XL) for detecting the movement limit in the -X axis direction and the limit sensor (XR) for detecting the movement limit in the + X axis direction and the X axis
- the Y-axis position sensor senses by an operation piece YA fixed to the support plate 24 so as to move along the support plate 24, and the proximity of the operation piece YA. It consists of a plurality of proximity sensors.
- the proximity sensor is installed on the outer side of one support member 17, the limit sensor (YL) for detecting the movement limit in the -Y axis direction and the limit sensor (YR) for detecting the movement limit in the + Y axis direction and the Y axis It is composed of home sensor (YO) for detecting home position. Therefore, the Y axis movement is precisely controlled based on the origin of the Y axis, and the movement limit of the Y axis is controlled.
- the Z-axis position sensor includes a working piece ZA fixed to the main body 27 to move up and down along the main body 27, and a plurality of sensors sensed by the proximity of the operating piece ZA. It consists of a proximity sensor.
- the proximity sensor is installed in the vertical frame (ZF) to detect the limit sensor (ZL) for detecting the movement limit in the -Z axis direction and the limit sensor (ZR) for detecting the movement limit in the + Z axis direction and the home position of the Z axis It is composed of the origin sensor (ZO). Therefore, the rising and falling in the Z-axis direction is precisely controlled based on the origin of the Z-axis, and the lifting limit of the Z-axis is controlled.
- the main arm 30 position sensor 30A is fixed to the ring gear 53 casing 54 below the main arm 30 so as to move along the main arm 30.
- a plurality of proximity sensors sensed by the proximity of the operation piece 30A.
- the proximity sensor is installed on the outer circumferential surface of the main body 27 to detect the clockwise (A direction) motion limit of the main arm 30 and the counterclockwise (B direction) motion limit of the main arm 30. It consists of a limit sensor (30R) for detecting the home position sensor (30O) for detecting the home position of the main arm (30). Accordingly, the horizontal arc motion (or swing motion) of the predetermined section of the main arm 30 is precisely controlled based on the origin of the main arm 30, and the motion limit of the main arm 30 is controlled.
- the first arm 32 position sensor is actuated to an outer surface of the first arm 32 so that it can rotate in the C direction and the D direction along the first arm 32. It consists of a piece 32A and a plurality of proximity sensors sensed by the proximity of the operation piece 32A.
- the proximity sensor is installed on the outer circumferential surface of the bearing case 316 and the limit sensor 32L for detecting the D direction rotation limit of the first arm 32 and the limit sensor for detecting the C direction rotation limit of the first arm 32.
- 32R and the origin sensor 3210 which detects the origin position of the 1st arm 32. As shown in FIG. Therefore, the joint motion of the first arm 32 is precisely controlled based on the origin.
- the second arm 34 position sensor is disposed on the outer surface of the second arm 34 so as to be able to perform vertical arc motion (E direction and F direction) along the second arm 34. It comprises a working piece 34A fixed and a plurality of proximity sensors sensed by the proximity of the working piece 34A.
- the proximity sensors are respectively mounted on the frame 34F fixed to the outer surface of the first arm 32 to detect the limit of rotation of the second arm 34 in the E direction of the limit sensor 34L and the second arm 34.
- It consists of a limit sensor 34R for detecting the F direction rotation limit and a home sensor 3410 for detecting the home position of the second arm 34. Therefore, the joint motion of the second arm 34 is precisely controlled based on the origin of the second arm 34.
- the third arm 36 position sensor is disposed on the outer surface of the second arm 34 so as to be able to perform horizontal arc motion (G direction and H direction) along the third arm 34. It consists of a working piece 36A fixed, and a plurality of proximity sensors sensed by the proximity of the working piece 36A.
- the proximity sensor is installed in the long hole 36G of the frame 36F fixed to the outer surface of the third arm 36, respectively, the limit sensor 36L and the third detecting the H direction rotation limit of the third arm 34.
- It consists of a limit sensor 36R for detecting the G-direction rotational limit of the arm 34 and an origin sensor 36O for detecting the home position of the third arm 36.
- the joint motion of the third arm 36 is precisely controlled based on the origin of the third arm 36.
- FIG. 30 is a circuit block diagram showing an example of the present invention, the input of the controller (M) for controlling the industrial articulated robot (1) ON / OFF (OFF), operating conditions, operation mode setting of the articulated robot , A setting unit for initialization and the like, a proximity sensor 87 installed on the suction / detachment means 38 to detect the absorption / desorption of the material, the X, Y, Z-axis and the main arm 30, and the first arm. (32), a plurality of position sensors for detecting the origin position and the limit position of the second arm (34), the third arm (36), respectively, and the servomotors (15) (25) (47) (55) (64).
- Encoder (E) for sensing the operation state of the (65) (74), respectively, and the synchronization signal unit (S) for transmitting and receiving a synchronization signal to interlock with the associated device, respectively, connected to the output of the controller (M),
- the servomotors 15, 25, 47, 55, 64, 65 and 74, the balance 39 and the suction / desorption means 37 are connected, respectively.
- 31 to 39 illustrate an example of a method of using the industrial articulated robot 1 according to the present invention, wherein an industrial articulated robot 1 is mounted between a pre-process press and a post-process press. It is designed to achieve the import and export of materials.
- FIG. 31 is a front view before the articulated arm enters the press machine for carrying out the material punched out by the preprocess press
- FIG. 32 is a front view of the articulated arm enters the preprocess press
- FIG. 33 Is a front view of a state in which the articulated arm descends and absorbs the punched material by adsorption / desorption means
- FIG. 34 is a front view of a state in which the articulated arm that has adsorbed the material is raised
- FIGS. 35 and 36 adsorb the material.
- 38 is a front view of the state in which the articulated arm is horizontally arced (orbited) and exited from the preprocess press
- Fig. 39 is a front view of a state in which the articulated arm descends onto the mold of the post-process press and detaches the material.
- the punching of the material is performed, and the loading and unloading of the material is achieved by repeating the process of FIGS. 31 to 39.
- FIG 40 is a front view showing a state of use of another industrial articulated robot 1 of the present invention, wherein two industrial articulated robots are installed adjacent to each other between the pre-process press and the post-process press.
- the former articulated robot installed near the process press is responsible for taking out the punched material
- the industrial articulated robot installed near the post process press is responsible for the import of the punched material. It is possible to maximize the productivity by the ultra-fast transfer of the jersey material.
- the industrial articulated robot that has taken out the above-mentioned material is transferred to the industrial articulated robot near the post-process press machine, and the industrial articulated robot near the post-process press machine receives the received material.
- the above-described industrial articulated robot 1 of the present invention is installed as one or two between the pre-process press and the post-process press, it can be installed between the press and the press, and of course, Transfer between uninformed and uninformed materials installed between the material supply device located at the front end and the press machine, or between the press device located at the rear end of the press process and the material discharge device (material discharge conveyor, etc.). And / or are responsible for the delivery.
- the method of using the industrial articulated robot 1 of the present invention is illustrated as transferring and / or transferring a press material in a press process, but of course, in various industries, it is used for transferring and / or delivering various parts or articles ( Use) can be applied.
- 41 to 57 illustrate various operations (motions) of the articulated arm including the main arm 30, the first arm 32, the second arm 34, and the third arm 36.
- the material to be transported and a mold located under the material to be transported are shown.
- the industrial articulated robot 1 of the present invention includes an X axis motion, a Y axis motion, a Z axis motion, a rotation motion of the main arm 30, a joint motion of the first arm 32, and a second arm 34.
- the present invention is a free movement of the front / rear / left / right / up / down / and, depending on the situation to transfer the material (object) at a forward / reverse rotation or a predetermined inclination, or press or grip the material Motion and purpose are achieved, compared to the conventional articulated robot, the configuration is simple, the production cost is low, easy to maintain, the operation radius is small and does not occupy a lot of installation space.
- the present invention is capable of high-speed production by quickly moving the material to the next process in a variety of motion using a multi-joint and a plurality of arms precisely controlled by a plurality of servo mechanisms, multi-joint at the time of conveying the material by the balance 39 There is an effect that the vibration of the arm is minimized.
- the corresponding installation according to the press or mold height difference between the left and right processes is easily solved, and can be easily installed between the presses or the molds, thereby easily and conveniently achieving the process extension or change.
- the present invention can easily overcome the transfer height difference of the material by the height adjustment means installed on the Z-axis lifting structure and the leg portion of the main body, and also can easily overcome the height difference between the neighboring presses or the height difference between the molds.
- the present invention is capable of freely moving the arm by the articulated structure to quickly respond to a variety of material feed (feeding) position and angle, a plurality of height adjustment means is configured in the lower base is easy to adjust the installation height, It minimizes the movement of copper, maximizes productivity, reduces equipment costs and reduces installation space.
Landscapes
- Engineering & Computer Science (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- Manipulator (AREA)
Abstract
본 발명은 기대에 설치되는 X, Y, Z축 운동기구에 의해 X, Y, Z축 방향으로 왕복 운동하고, 복수의 아암과 다관절에 의해 정/역회전하거나 기울어지거나 비틀어지는 등의 다양한 모션을 구현하면서 소재(물체)를 소정 위치로 신속하게 전달(이송)할 수 있도록 한 산업용 다관절 로봇 및 그 이용방법에 관한 것으로, 기대(2)에 설치되고 X, Y, Z축 운동기구에 의해 X, Y, Z축으로 운동하는 본체(27)와, 본체(27) 상부에 설치되고 회전기구(29)에 의해 수평 원호운동하는 메인 아암(30)과, 메인 아암(30) 선단에 설치되고 제1 관절(31)에 의해 소정 각도로 회전운동하는 제1 아암(32)과, 제1 아암(32) 선단에 설치되고 제2 관절(33)에 의해 수직 원호운동하는 제2 아암(34)과, 제2 아암(34) 선단에 설치되고 제3 관절(35)에 의해 수평 원호운동하는 제3 아암(36)과, 제3 아암(36) 선단에 설치되는 그립퍼(37)와, 그립퍼(37)에 설치되는 복수의 흡/탈착수단(38)을 포함하며, 본체(27)와 메인 아암과 제1~제3 아암 초기 위치를 감지하는 복수의 포지션 센서 및 제어기(M)와, 본체(27) 일측에 설치되는 밸런스를 더 포함할 수 있다.
Description
본 발명은 산업용 다관절 로봇 및 그 이용방법에 관한 것으로, 상세하게는 기대에 설치되는 X, Y, Z축 운동기구에 의해 X, Y, Z축 방향으로 왕복 운동하고, 복수의 아암과 다관절에 의해 정/역회전하거나 기울어지거나 비틀어지는 등의 다양한 모션의 관절운동을 구현하면서 소재(물체)를 소정 위치로 신속하게 전달(이송)할 수 있도록 한 것이다.
일반적으로 산업용 로봇은 인간을 대신하여 산업현장에서 여러 작업을 행하는 로봇의 한 종류로, 단순 반복적인 일이나, 작업환경이 나쁜 현장과 위험한 곳 등에서 주로 사용되고 있으며, 인공지능이 결합되어 인간이 하던 시험, 검사 등의 영역까지 확장되는 등, 생산과정의 보다 높은 자동화 및 무인화가 이루어지고 있다.
현재 자동차 조립이나 소재(물체) 이송 등, 여러 산업분야에 사용되고 있는 산업용 로봇은 그 구성이 복잡하고 동작반경이 커서 설치공간을 많이 점유하고 있으며, 또한 동선이 길어서 생산성이 떨어질 뿐 아니라 가격이 고가이고, 유지보수 비용이 높은 등의 여러 문제점이 있었다.
본 발명은 크기가 작고 구조가 간단하면서 다양한 운동이 가능한 산업용 다관절 로봇을 제공함에 목적이 있다.
본 발명의 다른 목적은 서보기구를 이용하여 정밀 제어되는 산업용 다관절 로봇을 제공함에 특징으로 한다.
본 발명의 또 다른 목적은 복수의 서보기구를 이용하여 다자 유도가 가능한 산업용 다관절 로봇을 제공함에 특징이 있다.
본 발명의 또 다른 목적은 다양한 운동이 가능한 산업용 다관절 로봇을 제공함에 특징이 있다.
본 발명의 또 다른 목적은 산업용 다관절 로봇의 이용방법에 관한 것이다.
본 발명 산업용 다관절 로봇(1)은, 기대(2) 위에 설치되어 전/후/좌/우/상/하/로 자유로이 이동하고, 상황에 따라 정/역회전 또는 소정 기울기로 소재(물체)를 이송하거나 소재를 압지 또는 파지(把持)하는 등의 다양한 기능과 목적을 달성할 수 있도록 구성된다.
본 발명 산업용 다관절 로봇(1)은, X, Y, Z축 운동기구가 설치되는 기대(2);
상기 기대(2)에 설치되고 X, Y, Z축 운동기구에 의해 X, Y, Z축으로 운동하는 본체(27); 상기 본체(27) 상부에 설치되고 회전기구에 의해 수평 원호운동하는 메인 아암(30); 상기 메인 아암(30) 선단에 설치되고 제1 관절(31)에 의해 소정 각도로 회전운동하는 제1 아암(32); 상기 제1 아암(32) 선단에 설치되고 제2 관절(33)에 의해 수직 원호운동하는 제2 아암(34); 상기 제2 아암(34) 선단에 설치되고 제3 관절(35)에 의해 수평 원호운동하는 제3 아암(36); 상기 제3 아암(36) 선단에 설치되는 그립퍼(37); 상기 그립퍼(37)에 설치되는 복수의 흡/탈착수단(38); 을 포함할 수 있다.
본 발명 산업용 다관절 로봇(1)은, 본체(27)와, 메인 아암(30)과, 제1 아암(32)과, 제2 아암(34)과, 제3 아암(36) 각각의 원점위치와 운동한계를 감지하는 복수의 포지션 센서 및 제어기(M); 를 더 포함할 수 있다.
본 발명은 본체(27) 일측에 설치되는 밸런스(39)를 더 포함할 수 있다.
본 발명 운동기구는, 구동수단인 서보모터와 동력전달수단인 랙기어 및 피니언과 안내수단인 LM가이드로 구성될 수 있다.
본 발명 운동기구는, 본체(27)와 메인 아암(30)을 X축으로 왕복 운동시키는 X축 운동기구와, 본체(27)와 메인 아암(30)을 Y축으로 왕복 운동시키는 Y축 운동기구와, 본체(27)와 메인 아암(30)을 Z축으로 왕복 운동시키는 Z축 운동기구로 구성될 수 있다.
본 발명에서 기대(2)는 복수의 다리(3)에 의해 지지되고, 상기 다리(3) 하부에는 체결부재(5)에 의해 높낮이를 조절할 수 있는 보조 다리(6)가 각각 설치될 수 있다.
본 발명 X축 운동기구는, 수평판(4)의 상부면 양측에 평행으로 고정되는 한 쌍의 수직부재(7)(8); 수직부재(7)(8)의 상부면에 각각 고정되는 LM레일(9)(10); 일측 수직부재(7)의 내측면에 고정되고 LM레일(9)과 평행하는 랙기어(11); LM레일(9)(10)의 상부면에 미끄럼 결합되어 왕복 운동하는 복수의 LM블럭(13)(14); LM블럭(13)(14)의 상부면에 가장자리 부분이 고정되는 이동판(12); 이동판(12) 일측에 설치되는 서보모터(15); 이동판(12) 일측에 형성된 통공을 지나서 이동판(12) 하부로 돌출되는 서보모터(15)의 회전축; 서보모터(15)의 회전축에 고정되고 랙기어(11)에 치합되는 피니언(16); 을 포함할 수 있다.
본 발명 Y축 운동기구는, 이동판(12)의 길이방향 상부면 양측에 평행 고정되는 한 쌍의 수직부재(17)(18); 수직부재(17)(18)의 상부면에 각각 고정되는 LM레일(19)(20); 일측 수직부재(20)의 측면에 고정되고 LM레일(20)과 평행하는 랙기어(21); LM레일(19)(20)의 상부면에 미끄럼 결합되어 왕복 운동하는 복수의 LM블럭(22)(23); LM블럭(22)(23)의 상부면에 고정되는 지지판(24); 지지판(24) 일측에 설치되는 서보모터(25); 지지판(24) 일측에 형성된 통공을 지나 지지판(24) 하부로 돌출되는 서보모터(25)의 회전축; 서보모터(25)의 회전축에 고정되고 랙기어(21)에 치합되는 피니언(26); 을 포함할 수 있다.
본 발명 Z축 운동기구(28)는, 지지판(24)의 중앙부에 형성되는 통공(40); 상기 통공(40)에 수직으로 헐겁게 삽입되어 접촉없이 승강하는 본체(27); 상기 본체(27)의 길이방향 외면에 소정 간격으로 고정되는 복수의 LM레일(42); 상기 통공(40)에 가까운 지지판(24) 상부면에 수직으로 고정되는 복수의 지지부재(43); 지지부재(43)의 내측면 상/하부에 고정되고 상기 LM레일(42)에 미끄럼 결합되는 LM블럭(44); 지지판(24) 일측에 설치되는 브라켓(45); 브라켓(45)에 수평으로 설치되는 서보모터(47); 일측 LM레일(42)에 평행 설치되는 랙기어(45); 서보모터(47)의 회전축에 고정되고 랙기어(45)에 치합되는 피니언(48); 을 포함할 수 있다.
본 발명 회전기구는, 본체(27) 상부면(27a)에 체결되는 원통링(49) 및 바닥판(291); 원통링(49) 상부 외주면에 고정되는 링기어(53); 원통링(49)의 중공부(49a)에 삽입되는 축부재(292); 축부재(292) 외주면 하부로 돌출되는 걸림턱(293); 축부재(292)의 외주면 상하부와 중공부(49a)에 설치되어 축부재(292)를 지지하는 축 베어링(294)(295); 축 베어링(294)(295) 사이에 설치되는 간격유지링(296); 축 베어링(295) 상부면에 설치되는 베어링 보호판(297); 축부재(293) 상부면에 체결되는 지지판(50); 지지판(50) 상부면에 체결되는 지지판(298); 지지판(298) 상부면에 체결되는 메인 아암(30)의 케이스(57); 케이스(57)에 수직으로 설치되는 서보모터(55); 서보모터(55)의 회전축에 고정되고 링기어(53)에 치합되는 스퍼어 기어(56); 를 포함할 수 있다.
본 발명 밸런스(39)는, 하부가 지지판(24)에 축 고정되고, 상부에 구비되는 완충 축봉(51) 상부에는 원통링(49)의 외면 일측에 고정되는 브라켓(52)이 체결될 수 있다.
본 발명 메인 아암(30)은, 케이스(57) 일측 외면에 상하로 설치되는 서보모터(64)(65); 케이스(57) 타측에 설치되고 서보모터(64) 및 유니버셜죠인터(60)에 의해 구동하는 제1 관절(31); 제1 관절(31)을 관통하고 서보모터(65)에 의해 정역 회전하면서 제2 관절(33)을 구동시키는 관절축(58); 을 포함할 수 있다.
본 발명 제1 관절(31)은, 케이스(57) 일측에 고정되는 서보모터(64); 서보모터(64)의 회전축에 연결되는 유니버셜죠인터(60)의 선단축부(59); 케이스(57)에 고정되고 유니버셜죠인터(60)의 후단축부(61)를 지지하는 한 쌍의 축 브라켓(311); 축 브라켓(311)으로 지지되는 유니버셜죠인터(60)의 후단축부(61)에 고정되는 스퍼어 기어(312); 관절축(58) 외주면에 결합되는 메탈베어링(313); 메탈베어링(313) 외주면에 결합되는 축부재(66); 축부재(66)가 지지될 수 있도록 축부재(66)의 후단과 관절축(58) 사이에 설치되는 축 베어링(314); 축부재(66)의 선단면에 고정되고 스퍼어 기어(312)에 치합되는 스퍼어 기어(315); 케이스(57) 후단에 고정되는 베어링 케이스(316); 베어링 케이스(316)와 축부재(66) 외주면에 설치되는 축 베어링(317)(318); 축 베어링(317)과 축 베어링(318) 사이에 설치되는 간격유지링(319); 을 포함할 수 있다.
본 발명에서 이동판(12)의 길이방향으로 형성되는 장공(41)을 더 포함할 수 있다.
본 발명 제2 관절(33)은, 제1 아암(32)의 몸체(32a) 길이방향 선단부에 형성되는 축공(32b)에 축 설치되는 헬리컬 기어(67); 헬리컬 기어(67)의 중심축에 키 결합되어 축 연결되는 축부재(58)의 단부; 몸체(32a) 중앙부에 형성되는 축공(32c)에 베어링(32d)으로 축 설치되는 축봉(69); 축봉(69) 일측에 키 결합되고 상기 헬리컬 기어(67)와 치합되는 헬리컬 기어(68); 축봉(69) 일측에 구성되는 스퍼어 기어(70); 몸체(32a) 선단부에 형성되는 축공(32e)에 베어링(32f)으로 축 설치되는 관절축(73); 관절축(73)이 관통하고 축공(32e) 단턱부(32g)에 고정되는 베어링(32d) 마개(32h); 관절축(73) 단부에 형성되는 플랜지(73a)에 내측면이 고정되는 제2 아암(34)의 축부(34a); 축부(34a) 외주면에 형성되고 상기 스퍼어 기어(70)에 치합되는 스퍼어 기어(71); 관절축(73) 단부에 볼트(73b)로 체결되는 제2 아암(34)의 축부(34b); 를 포함할 수 있다.
본 발명 제3 관절(35)은, 케이스(34d) 후단면에 고정되는 고정판(74b); 고정판(74b)에 고정되고 케이스(34d) 내부에 위치하는 서보모터(74); 케이스(34d) 후단으로 돌출되는 서보모터(74)의 회전축(74a); 케이스(34d)에 고정되는 블럭(34e); 블럭(34e)의 선단부에 형성되는 축공(34f)에 축 설치되는 헬리컬 기어(75); 헬리컬 기어(75)의 중심축에 키 결합되는 서보모터(74)의 회전축(74a); 블럭(34e) 중앙부에 형성되는 축공(34g)에 메탈베어링(77)으로 축 설치되는 관절축(78); 메탈베어링(77)의 일측면에 걸림되는 관절축(78)의 머리부(78a); 블럭(34e)의 측면에 형성된 단턱홈(34h)에 미끄럼 결합되고 관절축(78)이 관통하는 메탈베어링(76a); 관절축(78)에 끼워진 다음 키(76b) 결합되고 상기 헬리컬기어(75)에 치합되는 헬리컬기어(76); 블럭(34e)의 타측면으로 돌출되는 관절축(78) 머리부(78a)에 핀(36h)으로 고정되는 제3 아암(36)의 축부(34b); 블럭(34e)의 타측면으로 돌출된 관절축(78)에 통공(36d)이 결합된 다음 키 결합되는 키(76b); 를 포함할 수 있다.
본 발명 블럭(34e)은. 제3 아암(36)의 축부(36a)와 축부(36b) 사이의 공간부(36c)에 위치하며, 관절축(73)과 헬리컬기어(76)와 제3 아암(36)의 축부(36a)는 하나의 키(76b)로 고정되어 연동하고, 제3 아암(36)의 축부(36b)는 관절축(78)의 머리부(78a)에 결합된 다음 핀(36h)으로 고정되고, 제2 아암(34)의 축부(34b)에는 핀(36h)이 억지 결합되는 핀공(36g)이 형성되고, 관절축(78)의 머리부(78a)에 핀공(78c)이 형성되고, 상기 핀공(78c)에 핀(36h)이 억지 결합될 수 있다.
본 발명 그립퍼(37)의 연결 아암(79) 단부에 플랜지(79a)가 설치되고, 상기 플랜지(79a)는 제3 아암(36)의 후단면(36f)에 체결되어 제3 아암(36)과 그립퍼(37) 및 복수의 흡/탈착수단(38)이 연동 운동되게 구성할 수 있다.
본 발명 그립퍼(37)는, 길이방향 소정 간격으로 설치되는 복수의 수평 관절구(81), 수평 관절구(81)에 설치되어 소정 각도로 틸팅 및 고정되는 지지봉(82), 지지봉(82)의 단부에 설치되는 관절 하우징(83), 관절 하우징(83) 중앙에 설치되는 수직 관절구(85), 수직 관절구(85)에 설치되고 소정 각도로 틸팅 및 고정되는 탄지봉(84), 탄지봉(84) 하단부에 설치되는 흡/탈착수단(38), 관절 하우징(83)에 브라켓(86)으로 설치되고 소재의 흡착이나 탈착을 감지하는 근접센서(87)를 포함할 수 있다.
본 발명 흡/탈착수단(38)은, 전자력(電磁力)으로 소재를 흡착 및 탈착하는 전자석이거나, 진공으로 소재를 흡착 및 탈착하는 진공흡착구이거나, 전자석과 진공흡착구의 혼용 형태 중 어느 하나 일 수 있다.
본 발명 포지션 센서는, X축 포지션 센서와, Y축 포지션 센서와, Z축 포지션 센서와, 메인 아암(30) 포지션 센서와, 제1 아암(32) 포지션 센서와, 제2 아암(34) 포지션 센서와 제3 아암(36) 포지션 센서를 포함할 수 있다.
본 발명 X축 포지션 센서는, 이동판(12)에 고정되는 작동편(XA), 작동편(XA)의 근접에 의해 센싱되는 복수의 근접센서를 포함하고, 상기 근접센서는 지지부재(7)의 바깥측면에 설치되어 -X축 방향의 이동 한계를 감지하는 한계센서(XL) 및 +X축 방향의 이동 한계를 감지하는 한계센서(XR) 및 X축의 원점위치를 감지하는 원점센서(XO)를 포함할 수 있다.
본 발명 Y축 포지션 센서는, 지지판(24)을 따라 이동할 수 있도록 지지판(24)에 고정되는 작동편(YA), 작동편(YA)의 근접에 의해 센싱되는 복수의 근접센서를 포함하고, 상기 근접센서는 지지부재(17)에 설치되어 -Y축 방향의 이동 한계를 감지하는 한계센서(YL) 및 +Y축 방향의 이동 한계를 감지하는 한계센서(YR) 및 Y축의 원점위치를 감지하는 원점센서(YO)를 포함할 수 있다.
본 발명 Z축 포지션 센서는, 본체(27)에 고정되는 작동편(ZA), 상기 작동편(ZA)의 근접에 의해 센싱되는 복수의 근접센서를 포함하고, 상기 근접센서는 수직 프레임(ZF)에 설치되어 -Z축 방향의 이동한계를 감지하는 한계센서(ZL) 및 +Z축 방향의 이동한계를 감지하는 한계센서(ZR) 및 Z축의 원점위치를 감지하는 원점센서(ZO)를 포함할 수 있다.
본 발명 메인 아암(30) 포지션 센서는, 메인 아암(30)을 따라 이동할 수 있도록 메인 아암(30) 하부의 링기어(53) 케이스(54)에 고정되는 작동편(30A), 상기 작동편(30A)의 근접에 의해 센싱되는 복수의 근접센서를 포함하고, 상기 근접센서는 본체(27) 외주면에 설치되어 메인 아암(30)의 A 방향 운동한계를 감지하는 한계센서(30L) 및 메인 아암(30)의 B 방향 운동한계를 감지하는 한계센서(30R) 및 메인 아암(30)의 원점위치를 감지하는 원점센서(30O)를 포함할 수 있다.
본 발명 제1 아암(32) 포지션 센서는, 제1 아암(32)을 따라 C 방향 및 D 방향으로 회전할 수 있도록 제1 아암(32) 외면에 고정되는 작동편(32A), 상기 작동편(32A)의 근접에 의해 센싱되는 복수의 근접센서를 포함하고, 상기 근접센서는 베어링 케이스(316)의 외주면에 설치되어 제1 아암(32)의 D 방향 회전한계를 감지하는 한계센서(32L) 및 제1 아암(32)의 C 방향 회전한계를 감지하는 한계센서(32R) 및 제1 아암(32)의 원점위치를 감지하는 원점센서(32O)를 포함할 수 있다.
본 발명 제2 아암(34) 포지션 센서는, 제2 아암(34)을 따라 E 방향 및 F 방향으로 회전할 수 있도록 제2 아암(34) 외면에 고정되는 작동편(34A), 상기 작동편(34A)의 근접에 의해 센싱되는 복수의 근접센서를 포함하고, 상기 근접센서는 제1 아암(32)의 외면에 고정된 프레임(34F)에 각각 설치되어 제2 아암(34)의 E 방향 회전한계를 감지하는 한계센서(34L) 및 제2 아암(34)의 F 방향 회전한계를 감지하는 한계센서(34R) 및 제2 아암(34)의 원점위치를 감지하는 원점센서(34O)를 포함할 수 있다.
본 발명 제3 아암(36) 포지션 센서는, 제3 아암(34)을 따라 G 방향 및 H 방향으로 회전할 수 있도록 제2 아암(34)의 외면에 고정되는 작동편(36A), 상기 작동편(36A)의 근접에 의해 센싱되는 복수의 근접센서를 포함하고, 상기 근접센서는 제3 아암(36)의 외면에 고정된 프레임(36F)의 장공(36G)에 설치되어 제3 아암(34)의 H 방향 회전한계를 감지하는 한계센서(36L) 및 제3 아암(34)의 G 방향 회전한계를 감지하는 한계센서(36R) 및 제3 아암(36)의 원점 위치를 감지하는 원점센서(36O)를 포함할 수 있다.
본 발명 산업용 다관절 로봇의 이용방법은, 전(前)공정 프레스기와 후(後)공정 프레스기 사이에 하나의 산업용 다관절 로봇 설치하여 소재의 반입과 반출을 달성하도록 할 수 있다.
본 발명 산업용 다관절 로봇의 이용방법은, 2대의 산업용 다관절 로봇을 전(前)공정 프레스기와 후(後)공정 프레스기 사이에 이웃하도록 설치한 다음, 전(前) 공정 프레스기 가까이 설치된 산업용 다관절 로봇은 타발된 소재를 반출시켜 후(後) 공정 프레스기 가까이 설치된 산업용 다관절 로봇으로 전달하고, 후(後) 공정 프레스기 가까이 설치된 산업용 다관절 로봇은 전달받은 소재를 후(後) 공정 프레스기로 반입하도록 분담함으로써 소재의 초고속 이송 및/또는 전달과 생산성 극대화를 달성할 수 있다.
본 발명 산업용 다관절 로봇(1)은, 기대에 설치되는 X, Y, Z축 운동기구에 의해 X, Y, Z축 방향으로 왕복 운동하고, 복수의 아암과 다관절(다관절 아암)에 의해 정/역회전하거나 기울어지거나 비틀어지는 등의 다양한 모션을 구현하면서 소재(물체)를 소정 위치로 신속 간편하게 전달(이송)할 수 있는 효과가 있다.
본 발명 산업용 다관절 로봇(1)은, X축 운동과, Y축 운동과, Z축 운동과, 메인 아암(30)의 회전운동과, 제1 아암(32)의 관절운동, 제2 아암(34)의 관절운동, 제3 아암(36)의 관절운동에 의해 7자 유도(6DOF)에 의한 복합 제어에 의해 도 31 ~ 도 56에 예시한 것처럼 다양한 모션의 운동을 구현하면서 압지 또는 파지(把持)된 소재(물체)를 소정 위치로 신속 정확하게 이송 및/또는 전달하는 효과가 있다.
본 발명은 복수의 포지션 센서에 의해 X, Y, Z축과 메인 아암(30), 제1 아암(32), 제2 아암(34), 제3 아암(36) 각각의 원점위치와 한계위치가 감지되어 이동 및 승강 한계가 제어되고, 피드백에 의해 틀어진 원점이 교정되어 정밀 제어가 달성되는 효과가 있다.
본 발명은 서보기구에 의해 정밀 제어되는 X, Y, Z축 운동과 다관절 및 복수의 아암을 이용한 다양한 모션으로 소재를 다음 공정으로 신속하게 이동시켜 고속 생산이 가능한 효과가 있다.
본 발명은 그 구성이 간단하여 생산원가가 저렴하고, 유지보수가 용이하고, 동작반경이 작아 설치공간을 많이 점유하지 않아 설치가 용이한 효과가 있다.
본 발명은, 예컨대 기존 프레스 및 기존 금형 사용 등 추가 설비투자 없이 간편하게 설치할 수 있는 효과가 있다.
본 발명은 밸런스에 의해 소재 흡/탈착 및 이송시 다관절 아암의 진동이 최소화되고 원활한 동작이 구현되는 효과가 있다.
본 발명은 예컨대, 좌/우 공정간 프레스 또는 금형높이 차이에 따른 대응 설치가 쉽게 해결되고, 프레스 또는 금형 사이에 간편하게 설치할 수 있어서 공정 증설이나 변경을 쉽고 편리하게 달성할 수 있는 효과가 있다.
본 발명은 본체의 Z축 승강구조 및 다리 부분에 설치되는 높이조절수단에 의해 설치 높이나 소재의 이송 높이 차이를 쉽게 극복할 수 있으며, 이웃하는 프레스 간의 높이 차이나 금형 간의 높이 차이 또한 쉽게 극복할 수 있는 효과가 있다.
본 발명은 기존 셔틀에서 설치하는 경우, 조건상 반드시 요구되는 프레스의 간격유지와 정렬 및 금형높이의 정렬이 불필요하고, 반전 공정이나 소정 기울기의 공정이 있는 경우 속도 저하없이 자유로운 회전과 신속한 이동(이송) 및 복귀가 가능하여 생산성이 크게 향상되는 효과가 있다.
본 발명은 다관절 구조에 의해 아암의 자유로운 모션이 가능하여 다양한 소재 이송(공급) 위치와 각도에 신속히 대응할 수 있는 효과가 있다.
본 발명은 기대 하부에 복수의 높이조절수단이 구성되어 공정과 공정간 금형 높이 차를 감소시켜 아암의 이동 동선이 최소화되고 생산성은 극대화되며, 설비비 감소와 설치공간 축소가 가능한 등의 효과가 있다.
본 발명 산업용 다관절 로봇의 이용방법은, 전(前)공정 프레스기와 후(後)공정 프레스기 사이에 하나의 산업용 다관절 로봇 설치하여 소재의 반입과 반출을 달성할 수 있는 효과가 있다.
본 발명 산업용 다관절 로봇의 이용방법은, 2대의 산업용 다관절 로봇을 전(前)공정 프레스기와 후(後)공정 프레스기 사이에 이웃하도록 설치한 다음, 전(前) 공정 프레스기 가까이 설치된 산업용 다관절 로봇은 타발된 소재를 반출시켜 후(後) 공정 프레스기 가까이 설치된 산업용 다관절 로봇으로 전달하고, 후(後) 공정 프레스기 가까이 설치된 산업용 다관절 로봇은 전달받은 소재를 후(後) 공정 프레스기로 반입하도록 분담함으로써 소재의 초고속 이송 및/또는 전달과 생산성 극대화를 달성할 수 있는 등의 효과가 있는 매우 유용한 발명이다.
도 1 : 본 발명 일 예로 도시한 사시도.
도 2 : 본 발명 다른 예로 도시한 사시도.
도 3 : 본 발명 일 예로 도시한 측면도.
도 4 : 본 발명 일 예로 도시한 정면도.
도 5 : 본 발명 일 예로 도시한 평면도.
도 6 : 본 발명 일 예로 도시한 본체 및 메인 아암 부분 사시도.
도 7 : 본 발명 도 6의 정면도.
도 8 : 본 발명 도 6의 측면도.
도 9 : 본 발명 일 예로 도시한 도 6의 단면도.
도 10 : 본 발명 일 예로 도시한 회전부의 분해 사시도.
도 11 : 본 발명 일 예로 도시한 회전부 정면도.
도 12 : 본 발명 일 예로 도시한 본체 부분 평단면도.
도 13 : 본 발명 일 예로 도시한 메인 아암 및 제1 관절 및 회전부 단면도.
도 14 : 본 발명 일 예로 도시한 제1 관절 및 서보 사시도.
도 15 : 본 발명 일 예로 도시한 제1 관절 부분 분해 사시도.
도 16 : 본 발명 일 예로 도시한 제1, 2 아암 부분 측면도.
도 17 : 본 발명 일 예로 도시한 제1, 2 아암 부분 사시도.
도 18 : 본 발명 일 예로 도시한 제1, 2 아암 및 제2 관절 부분 분해 사시도.
도 19 : 본 발명 일 예로 도시한 제2 관절 부분 단면도.
도 20 : 본 발명 일 예로 도시한 제3 관절 부분 사시도.
도 21 : 본 발명 일 예로 도시한 제3 관절 부분 분해 사시도.
도 22 : 본 발명 일 예로 도시한 제3 관절 부분 단면도.
도 23 : 본 발명 일 예로 도시한 제3 관절 부분 측면도.
도 24 : 본 발명 일 예로 도시한 제3 관절 부분 평면도.
도 25 : 본 발명 일 예로 도시한 메인 아암, 제1, 2, 3 아암 평면도.
도 26 : 본 발명 일 예로 도시한 제2, 3 아암 부분 평면도.
도 27 : 본 발명 일 예로 도시한 그립퍼 및 흡/탈착수단 부분 사시도.
도 28 : 본 발명 일 예로 도시한 포지션 센서 설치 상태 측면도.
도 29 : 본 발명 일 예로 도시한 포지션 센서 설치 상태 평면도.
도 30 : 본 발명 일 예로 도시한 제어 회로 블럭도.
도 31 ~ 도 39 : 본 발명 일 예로 도시한 산업용 다관절 로봇의 이용방법 정면도 및 사시도.
도 40 : 본 발명 다른 예로 도시한 산업용 다관절 로봇의 이용방법 정면도.
도 41 ~ 도 57 : 본 발명 일 예로 도시한 다관절 아암의 다양한 동작 상태 도면.
<부호의 설명>
(1)--산업용 다관절 로봇 (2)--기대
(3)--다리 (4)--수평판
(5)--체결부재 (6)--보조 다리
(7)(8)(17)(18)--수직부재 (9)(10)(19)(20)(42)--LM레일
(11)(21)(45)--랙기어 (12)--이동판
(13)(14)(22)(23)(44)--LM블럭
(15)(25)(47)(55)(64)(65)(74)--서보모터
(16)(26)(48)--피니언 (24)--지지판
(27)--본체 (27a)--본체 상부면
(28)--Z축 운동기구 (29)--회전기구
(30)--메인 아암
(30A)(32A)(34A)(36A)(XA)(YA)(ZA)--작동편
(30L)(30R)(32L)(32R)(34L)(34R)(36L)(36R)(XL)(XR)(YL)(YR)(ZL)(ZR)--한계센서
(30O)(32O)(34O)(36O)(XO)(YO)(ZO)--원점센서
(34F)(36F)--프레임 (31)--제1 관절
(32)--제1 아암 (32a)(33a)--몸체
(32b)(32c)(32e)(34f)(34g)--축공 (32d)(32f)--베어링
(32g)--단턱부 (32h)(68a)(69a)(69b)(70b)--마개
(33)--제2 관절 (34)--제2 아암
(34a)(34b)(36a)(36b)--축부 (34c)(36c)--공간부
(34d)(54)(57)--케이스 (34e)--블럭
(34h)--단턱홈 (35)--제3 관절
(36)--제3 아암 (36d)(36e)(40)--통공
(36g)(78c)--핀공 (36h)--핀
(37)--그립퍼 (38)--흡/탈착수단
(39)--밸런스 (43)--지지부재
(45)(52)(86)--브라켓 (49)--원통링
(49a)--중공부 (50)(298)--지지판
(51)--완충 축봉 (53)--링기어
(56)(70)(71)(312)(315)--스퍼어 기어 (57a)(73a)(66a)(316a)--플랜지
(58)(73)(78)--관절축 (59)--선단축부
(60)--유니버셜죠인터 (61)--후단축부
(64a)(65a)--축 커플러 (66)(68c)(292)--축부재
(67)(68)(75)(76)--헬리컬 기어 (68b)--C링
(69)--축봉 (70a)--스페이스
(73b)--볼트 (74a)--회전축
(74b)--고정판 (76a)(77)(313)--메탈베어링
(76b)--키 (78a)--머리부
(79)--연결 아암 (80)--체결수단
(81)--수평 관절구 (82)--지지봉
(83)--관절 하우징 (84)--탄지봉
(85)--수직 관절구 (87)--근접센서
(291)--바닥판 (293)--걸림턱
(294)(295)(314)(317)(318)--축 베어링
(296)(319)--간격유지링 (297)--베어링 보호판
(311)--축 브라켓 (316)--베어링 케이스
(E)--서보모터의 엔코더 (M)--제어기
(ZF)--수직 프레임
이하, 본 발명의 바람직한 실시 예들을 첨부한 도면에 따라 상세히 설명하고자 한다. 본 발명의 실시 예들을 설명함에 있어 도면들 중 동일한 구성 요소들은 가능한 한 동일 부호로 기재하고, 관련된 공지구성이나 기능에 대한 구체적인 설명은 본 발명의 요지가 모호해지지 않도록 생략하며, 또한, 첨부된 도면에 표현된 사항들은 본 발명의 실시 예들을 쉽게 설명하기 위해 도식화된 도면으로 실제로 구현되는 형태와 상이할 수 있다.
본 발명 산업용 다관절 로봇(1)은, 기대(2)에 설치되는 X, Y, Z축 운동기구에 의해 X, Y, Z축 방향으로 소정 구간(거리) 왕복 운동하고, 다관절 아암(복수의 아암과 관절)에 의해 소정 각도로 정/역회전하거나 소정 각도로 기울어지거나 비틀어지는 등의 다양한 동작(모션)을 구현하면서 소재(물체)를 흡착(또는 압지 또는 파지)한 다음 소정 위치로 이송하거나 운반(전달)한 다음 복귀하거나 반복 구동할 수 있도록 구성된다.
본 발명 산업용 다관절 로봇(1)은 X, Y, Z축 운동기구가 구비된 기대(2)와, 상기 기대(2) 상부에 설치되는 본체(27)와, 상기 본체(27) 상부에 설치되고 회전기구(29)에 의해 시계방향(A 방향) 및 반시계방향(B 방향)으로 수평 원호운동하는 메인 아암(30)과, 메인 아암(30) 선단에 설치되고 제1 관절(31)에 의해 소정 각도로 회전운동(C 방향 및 D 방향)하는 제1 아암(32)과, 상기 제1 아암(32) 선단에 설치되고 제2 관절(33)에 의해 수직원호운동(E 방향 및 F 방향)하는 제2 아암(34)과, 상기 제2 아암(34) 선단에 설치되고 제3 관절(35)에 의해 수평원호운동(G 방향 및 H 방향)하는 제3 아암(36)과, 상기 제3 아암(36) 선단에 설치되는 그립퍼(37)와, 상기 그립퍼(37)에 설치되는 복수의 흡/탈착수단(38)을 포함하여 구성된다.
본 발명은, 상기 본체(27)와 메인 아암(30)과 제1 아암(32), 제2 아암(34), 제3 아암(36)의 원점위치와 이동한계를 감지하는 복수의 포지션 센서 및 제어기(M)를 더 포함한다.
상기 메인 아암(30)의 중량을 균형있게 유지하는 밸런스(39)를 더 포함한다. 상기 밸런스(39)는 수평으로 원호운동하는 메인 아암(30)의 중량 편중을 고려하여 메인 아암(30)의 처짐을 방지하고 원활한 선회 운동을 제공한다.
상기 운동기구는, 구동수단인 서보모터와 동력전달수단인 랙기어 및 피니언과 안내수단인 LM가이드로 구성되며, 본체(27)와 메인 아암(30)을 X축(+X축 및 -X축)으로 왕복 운동시키는 X축 운동기구와, 본체(27)와 메인 아암(30)을 Y축(+Y축 및 -Y축)으로 왕복 운동시키는 Y축 운동기구와, 본체(27)와 메인 아암(30)을 Z축(+Z축 및 -Z축)으로 왕복 운동시키는 Z축 운동기구(28)로 구분된다.
상기 기대(2)는 복수의 다리(3)에 의해 수평판(4)이 지지되며, 다리(3)의 하부에는 체결부재(5)에 의해 높낮이를 조절할 수 있는 보조 다리(6)가 각각 설치되고, 수평판(4)의 상부에는 X축 운동기구가 설치된다.
상기 X축 운동기구는, 수평판(4)의 상부면 양측에 평행으로 고정되는 한 쌍의 수직부재(7)(8)와, 수직부재(7)(8)의 상부면에 각각 고정되는 LM레일(9)(10)과, 일측 수직부재(7)의 내측면에 고정되고 LM레일(9)과 평행하는 랙기어(11)와, LM레일(9)(10)의 상부면에 미끄럼 결합되어 왕복 운동하는 복수의 LM블럭(13)(14)과, LM블럭(13)(14)의 상부면에 가장자리 부분이 고정되는 이동판(12)과, 이동판(12)의 일측에는 설치되는 서보모터(15)와, 이동판(12) 일측에 형성된 통공을 지나서 이동판(12) 하부로 돌출되는 서보모터(15)의 회전축과, 서보모터(15)의 회전축에는 끼어져 고정되고 랙기어(11)에 치합되는 피니언(16)으로 구성되며, 서보모터(15)의 정/역회전에 따라 이동판(12)이 LM레일(9)(10)의 길이방향(X축)으로 왕복 운동(+X축 방향 및 -X축 방향)하게 된다.
상기 이동판(12)의 상부에는 Y축 운동기구가 설치된다.
상기 Y축 운동기구는, 이동판(12)의 길이방향 상부면 양측에 평행하여 고정되는 한 쌍의 수직부재(17)(18)와, 수직부재(17)(18)의 상부면에 각각 고정되는 LM레일(19)(20)과, 일측 수직부재(20)의 측면에 고정되고 LM레일(20)과 평행하는 랙기어(21)와, LM레일(19)(20)의 상부면에 미끄럼 결합되어 왕복 운동하는 복수의 LM블럭(22)(23)과, LM블럭(22)(23)의 상부면에 가장자리 부분이 고정되는 지지판(24)과, 지지판(24)의 일측에 설치되는 서보모터(25)와, 지지판(24) 일측에 형성된 통공을 지나서 지지판(24) 하부로 돌출되는 서보모터(25)의 회전축과, 서보모터(25)의 회전축에 끼워져 고정되고 랙기어(21)에 치합되는 피니언(26)으로 구성되며, 서보모터(25)의 정/역회전에 따라 지지판(24)이 LM레일(19)(20)의 길이방향(Y축)으로 왕복운동(+Y축 방향 및 -Y축 방향)하게 된다.
상기 이동판(12)의 상부에는 Z축 운동기구(28)에 의해 승강하는 본체(27)가 설치된다. 상기 Z축 운동기구(28)는, 지지판(24)의 중앙부에 형성되는 통공(40)과, 상기 통공(40)에 수직으로 헐겁게 삽입되어 접촉없이 승강하는 본체(27)와, 본체(27)의 길이방향 외면에 소정 간격으로 고정되는 복수의 LM레일(42)과, 상기 통공(40)에 가까운 지지판(24) 상부면에 수직으로 고정되는 복수의 지지부재(43)와, 지지부재(43)의 내측면 상/하부에는 고정되고 상기 LM레일(42)에 미끄럼 결합되는 LM블럭(44)과, 지지판(24) 일측에 설치되는 브라켓(45)과, 브라켓(45)에 수평으로 설치되는 서보모터(47)와, 일측 LM레일(42)에 평행하도록 설치되는 랙기어(45)와, 서보모터(47)의 회전축에 끼워져 고정되고 상기 랙기어(45)에 치합되는 피니언(48)으로 구성되며, 서보모터(47)가 정/역회전에 따라 본체(27)가 Z축 방향(+Z축 방향 및 -Z축 방향) 상승 또는 하강하게 된다.
상기 이동판(12)에는 장공(41)이 형성되어 본체(27)가 승강할 수 있도록 구성되며, 상기 장공(41)은 이동판(12)의 길이방향으로 형성되어 본체가 장공(41) 까지 하강하더라도 본체(27)가 Y축 방향으로 이동할 수 있도록 구성된다.
상기 본체(27)는 가벼우면서 강도가 우수한 구조의 원통형이나 사각통형, 또는 다각통형이 바람직하다.
상기 본체(27) 상부에는 회전기구(29)가 설치되고, 회전기구(29) 상부에는 메인 아암(30)이 설치되어 소정 구간 수평 원호운동(또는 선회운동)하게 된다(도 6의 A 방향 및 B 방향).
상기 회전기구(29)는, 본체(27) 상부면(27a)에 체결부재로 고정되는 원통링(49) 및 바닥판(291)과, 원통링(49) 상부 외주면에 고정되는 링기어(53)와, 원통링(49)의 중공부(49a)에 삽입되는 축부재(292)와, 축부재(292) 외주면 하부에 외향 돌출되는 걸림턱(293)과, 축부재(292)의 외주면 상하부와 중공부(49a)에 결합 및 설치되어 축부재(292)를 지지하는 축 베어링(294)(295)과, 축 베어링(294)(295) 사이에 설치되는 간격유지링(296)과, 축 베어링(295) 상부면에 설치되는 베어링 보호판(297)과, 축부재(292) 상부면에 체결되는 지지판(50)과, 지지판(50) 상부면에 체결되는 지지판(298)과, 지지판(298) 상부면에 체결되는 메인 아암(30)의 케이스(57)와, 케이스(57)에 수직으로 설치되는 서보모터(55)와, 서보모터(55)의 회전축에 고정되고 링기어(53)에 치합되는 스퍼어 기어(56)로 구성되며, 메인 아암(30)은 축부재(292)에 의해 축지지 된다.
상기 링기어(53)는 본체(27) 상부에 고정되어 있고 메인 아암(30)은 축부재(292)에 의해 수평 회전할 수 있도록 축지지 되므로, 서보모터(55)와 스퍼어 기어(56)가 정회전 또는 역회전하면 축부재(292)에 의해 축지지되고 있는 메인 아암(30)이 시계방향(A 방향) 또는 반시계방향(B 방향)으로 회전하게 된다.
상기 축부재(292)는 상하부에 설치되는 축 베어링(294)(295)에 의해 축지지되며, 축부재(292) 하부에 형성되는 걸림턱(293)은 일부분이 면접촉하는 하부 축 베어링(294)에 의해 상승이나 유동이 억제되며, 링기어(53)는 케이스(54)로 보호된다.
상기 메인 아암(30)은 일측으로 길게 연장되는 구성과 소재를 잡고 회전하는 구성이므로 본체(27)로 전달되는 무게(하중) 중심 편중이 심화 된다. 따라서 본 발명에서는 밸런스를 유지할 수 있도록 쇽업서버, 공압실린더와 같은 현가장치로 구성되는 밸런스(39)가 설치된다.
상기 밸런스(39)의 하부는 지지판(24)에 축 고정되고, 밸런스(39)의 상부에 구비되는 완충 축봉(51)의 상부에는 원통링(49)의 외면 일측에 고정되는 브라켓(52)이 체결된다. 따라서 본체(27)로 전달되는 메인 아암(30)의 무게(하중) 편중이 심화되더라도 밸런스가 유지되므로 메인 아암(30)의 처짐이 방지되고 원활한 선회 운동이 제공된다.
도 13, 도 14는 메인 아암(30) 및 제1 관절(31) 부분 사시도 및 분해 사시도이고, 도 15는 그 단면도이다.
상기 메인 아암(30)은, 케이스(57) 일측 외면에 상하로 설치되는 서보모터(64)(65)와, 케이스(57) 타측에 설치되고 서보모터(64) 및 유니버셜죠인터(60)에 의해 구동하는 제1 관절(31)과, 제1 관절(31)을 관통하고 서보모터(65)에 의해 정역회전하면서 제2 관절(33)을 구동시키는 관절축(58)으로 구성된다.
상기 서보모터(64)의 회전축과 유니버셜죠인터(60)는 축 커플러(64a)로 축연결되고, 서보모터(65)의 회전축과 관절축(58)은 축 커플러(65a)로 축 연결되어 제1 관절(31)과 제2 관절(33)로 정역 회전력이 전달되어 관절운동이 달성된다.
상기 제1 관절(31)은, 케이스(57) 일측에 고정되는 서보모터(64)와, 서보모터(64)의 회전축에 연결되는 유니버셜죠인터(60)의 선단축부(59)와, 케이스(57)에 고정되고 유니버셜죠인터(60)의 후단축부(61)를 지지하는 한 쌍의 축 브라켓(311)과, 축 브라켓(311)으로 지지되는 유니버셜죠인터(60)의 후단축부(61)에 끼워져 고정되는 스퍼어 기어(312)와, 관절축(58) 외주면에 미끄럼 운동할 수 있게 결합되는 메탈베어링(313)과, 메탈베어링(313) 외주면에 결합되는 축부재(66)와, 축부재(66)가 지지될 수 있도록 축부재(66)의 후단과 관절축(58) 사이에 설치되는 축 베어링(314)과, 관절축(58)에 헐겁게 결합된 다음 축부재(66)의 선단면에 고정되고 스퍼어 기어(312)에 치합되는 스퍼어 기어(315)와, 케이스(57) 후단에 고정되는 베어링 케이스(316)과, 베어링 케이스(316)와 축부재(66) 외주면에 설치되는 축 베어링(317)(318)과, 축 베어링(317)과 축 베어링(318) 사이에 설치되는 간격유지링(319)으로 구성되며, 축부재(66) 후단에는 플랜지(66a)가 고정되고, 플랜지(66a)의 후단면에는 제1 아암(32)의 선단면이 접촉되고 플랜지(66a)와 제1 아암(32)의 상하부에 형성된 홈에 결합된 다음 체결 또는 용접되는 상하 고정편(62)에 의해 축부재(66)와 제1 아암(32)이 연결되며, 따라서 서보모터(64)가 동작하면 유니버셜죠인터(60)와 스퍼어 기어(312)(315)와 축부재(66)가 회전하게 되므로 상기 제1 아암(32)이 C 방향 및(또는) D 방향으로 관절 운동하게 된다.
상기 베어링 케이스(316)의 선단에는 플랜지(316a)가 체결되거나 고정되고, 상기 플랜지(316a)는 케이스(57) 후단에 고정되는 플랜지(57a) 부분에 체결되어 제1 관절(31) 전체와 관절축(58)이 지지되며, 서보모터(64)의 동작에 의해 제1 관절(31)이 동작하면서 제1 아암(32)이 C 방향 또는 D 방향으로 회전하게 되고, 서보모터(65)의 동작에 의해 관절축(58)이 회전하면 제2 관절(33)이 동작하면서 제2 아암(34)이 E 방향 또는 F 방향으로 동작하게 된다.
도 16 ~ 도 19는 제1, 2 아암(32)(34) 및 제2 관절(33) 부분 도면으로, 제1 아암(32)의 몸체(32a) 길이방향 선단부에 형성되는 축공(32b)에 축 설치되는 헬리컬 기어(67)와, 헬리컬 기어(67)의 중심축에 키 결합되어 축 연결되는 축부재(58)의 단부와, 몸체(32a) 중앙부에 직교 방향으로 형성되는 축공(32c)에 베어링(32d)으로 축 설치되는 축봉(69)과, 축봉(69) 일측에 키 결합되고 상기 헬리컬 기어(67)와 치합되는 헬리컬 기어(68)와, 축봉(69) 일측에 구성(형성)되는 스퍼어 기어(70)와, 몸체(32a) 선단부에 직교 방향으로 형성되는 축공(32e)에 베어링(32f)으로 축 설치되는 관절축(73)과, 관절축(73)이 관통하고 축공(32e) 단턱부(32g)에 고정되는 베어링(32d) 마개(32h)와, 관절축(73) 단부에 형성되는 플랜지(73a)에 내측면이 고정되는 제2 아암(34)의 축부(34a)와, 축부(34a) 외주면에 형성되고 상기 스퍼어 기어(70)에 치합되는 스퍼어 기어(71)와, 관절축(73) 단부에 볼트(73b)로 체결되는 제2 아암(34)의 다른 축부(34b)로 구성되며, 따라서 서보모터(65)의 동작에 의해 관절축(58)이 회전하면 헬리컬 기어(67)(68)와 축봉(69)과 스퍼어 기어(70)(71)가 회전하고, 스퍼어 기어(71)에 고정된 제2 아암(34)의 축부(34a)와 관절축(73) 단부에 볼트(73b)로 체결된 제2 아암(34)이 관절축(73)을 중심으로 회전하게 되므로 제2 아암(34)이 E 방향 또는 F 방향으로 동작하게 된다.
즉, 상기 제1 아암(32)의 후단부는 제2 아암(34)의 축부(34a)와 축부(34b) 사이의 공간부(34c)에 위치하며, 제2 아암(34)의 축부(34a)와 축부(34b)는 관절축(73) 양단에 고정되어 제2 아암(34)의 관절운동이 달성된다.
상기에서 스퍼어 기어(70)가 내설된 몸체(33a) 외면에는 호형의 스페이스(70a)와 마개(70b)가 설치되어 스퍼어 기어(70)의 이탈이 방지되고, 헬리컬 기어(68)가 내설된 몸체(33a) 외면에는 축부재(68c)와 C링(68b)과 마개(68a)가 차례로 설치되어 헬리컬 기어(68)의 이탈이 방지된다.
상기 베어링(32d)은 하나 또는 복수로 설치되며, 베어링(32d) 바깥측에는 베어링 마개(69a)(69b)가 각각 설치되고, 제2 아암(34)의 후단에는 서보모터(74)의 케이스(34d)가 일체형으로 연결(체결)된다.
도 20 ~ 도 24는 제2, 3 아암(34)(36) 및 제3 관절(35) 부분 도면으로, 케이스(34d) 후단면에 고정되는 고정판(74b)과, 고정판(74b)에 고정되고 케이스(34d) 내부에 위치하는 서보모터(74)와, 케이스(34d) 후단으로 돌출되는 서보모터(74)의 회전축(74a)과, 케이스(34d)에 고정되는 블럭(34e)과, 블럭(34e)의 선단부에 형성되는 축공(34f)에 축 설치되는 헬리컬 기어(75)와, 헬리컬 기어(75)의 중심축에 키 결합되는 서보모터(74)의 회전축(74a)과, 블럭(34e) 중앙부에 직교 방향으로 형성되는 축공(34g)에 메탈베어링(77)으로 축 설치되는 관절축(78)과, 메탈베어링(77)의 일측면에 면접촉으로 걸림되는 관절축(78)의 머리부(78a)와, 블럭(34e)의 측면에 형성된 단턱홈(34h)에 미끄럼 결합되고 관절축(78)이 관통하는 메탈베어링(76a)과, 메탈베어링(76a)이 결합된 단턱홈(34h)에 비접촉식으로 결합되고 관절축(78)에 끼워진 다음 키(76b) 결합되고 상기 헬리컬기어(75)에 치합되는 헬리컬기어(76)와, 블럭(34e)의 타측면으로 돌출되는 관절축(78) 머리부(78a)에 통공(36e)이 결합된 다음 핀(36h)으로 고정되는 제3 아암(36)의 축부(34b)와, 블럭(34e)의 타측면으로 돌출된 관절축(78)에 통공(36d)이 결합된 다음 키(76b)이 결합되며, 따라서 서보모터(74)의 동작에 의해 헬리컬 기어(75)(76)와 관절축(78)이 회전하게 되므로, 상기 관절축(78) 양단에 고정된 제3 아암(36)이 관절축(78)을 중심으로 G 방향 또는 H 방향으로 동작하게 된다.
상기 블럭(34e)은 제3 아암(36)의 축부(36a)와 축부(36b) 사이의 공간부(36c)에 위치하며, 관절축(73)과 헬리컬기어(76)와 제3 아암(36)의 축부(36a)는 하나의 키(76b)로 고정되어 연동 운동하게 되며, 제3 아암(36)의 축부(36b)는 관절축(78)의 머리부(78a)에 결합된 다음 핀(36h)으로 고정되어 관절축(78)을 따라 연동 운동하게 되므로 제3 아암(36)의 관절 운동이 달성된다.
상기 제2 아암(34)의 축부(34b)에는 핀(36h)이 억지 결합되는 핀공(36g)이 형성되고, 관절축(78)의 머리부(78a)에도 핀공(78c)이 형성되어 핀(36h)이 억지 결합된다.
도 25는 본체(27) 상부에 설치된 메인 아암(30)이 회전기구(29)에 의해 시계방향(A 방향) 및 반시계방향(B 방향)으로 수평 원호운동하는 상태의 평면도이다.
도 26은 서보모터(74)와 제3 관절(35)에 의해 제3 아암(36) 및 제3 아암(36)에 설치된 그립퍼(37) 및 그립퍼(37)에 설치되는 복수의 흡/탈착수단(38)이 시계방향(G 방향) 및 반시계방향(H 방향)으로 수평 원호운동하는 상태의 평면도이다.
도 27은 그립퍼(37)에 복수로 설치되는 흡/탈착수단(38)의 사시도로, 그립퍼(37)의 연결 아암(79) 단부에는 플랜지(79a)가 설치되고, 상기 플랜지(79a)는 제3 아암(36)의 후단면(36f)에 체결 및 고정되어 제3 아암(36)과 그립퍼(37) 및 복수의 흡/탈착수단(38)이 연동 운동하게 된다.
상기 그립퍼(37)의 길이방향으로 복수의 수평 관절구(81)가 소정 간격으로 설치되고, 수평 관절구(81)에는 소정 각도로 틸팅 및 고정되는 지지봉(82)이 설치되고, 지지봉(82)의 단부에는 관절 하우징(83)이 설치되고, 관절 하우징(83) 중앙에는 수직 관절구(85)가 설치되고, 수직 관절구(85)에는 소정 각도로 틸팅 및 고정되는 탄지봉(84)이 설치되고, 탄지봉(84) 하단부에는 흡/탈착수단(38)이 각각 설치되고, 일부 관절 하우징(83)에 설치되는 브라켓(86)에는 소재의 흡착이나 탈착을 감지하는 근접센서(87)가 설치된다.
상기 흡/탈착수단(38)은 전자력(電磁力)으로 소재를 흡착 및 탈착하는 전자석이거나, 진공으로 소재를 흡착 및 탈착하는 진공흡착구이거나, 전자석과 진공흡착구의 혼용일 수 있다.
상기 그립퍼(37)와 연결 아암(79)은 쉽게 탈/부착할 수 있는 암수 결합구조여서 흡/탈착수단(38)을 쉽게 교체할 수 있으며, 체결수단(80)에 의해 견고하게 고정된다. 상기 체결수단(80)은 도 25 ~ 도 27과 같이 둥근 손잡이가 구비된 체결부재이거나, 도 1, 도 2와 같이 복수의 체결부재(볼트)일 수 있다.
본 발명에서 X, Y, Z축과 메인 아암(30), 제1 아암(32), 제2 아암(34), 제3 아암(36)의 원점 위치와 한계 위치를 각각 감지하는 복수의 포지션 센서가 설치된다. 상기 포지션 센서에 의해 이동 및 승강 한계가 제어되고, 피드백에 의해 틀어진 원점이 교정되어 정밀 제어가 달성된다.
X축 포지션 센서는, 도 3 ~ 도 5에 예시한 것처럼, 이동판(12)을 따라 이동할 수 있도록 이동판(12)에 고정되는 작동편(XA)과, 상기 작동편(XA)의 근접에 의해 센싱되는 복수의 근접센서로 구성된다. 상기 근접센서는 일측 지지부재(7)의 바깥측면에 설치되어 -X축 방향의 이동 한계를 감지하는 한계센서(XL) 및 +X축 방향의 이동 한계를 감지하는 한계센서(XR) 및 X축의 원점위치를 감지하는 원점센서(XO)로 구성된다. 따라서, X축의 원점을 기준으로 X축 이동이 정밀 제어되며, 또한 X축의 이동 한계가 제어된다.
Y축 포지션 센서는, 도 3 ~ 도 5에 예시한 것처럼, 지지판(24)을 따라 이동할 수 있도록 지지판(24)에 고정되는 작동편(YA)과, 상기 작동편(YA)의 근접에 의해 센싱되는 복수의 근접센서로 구성된다. 상기 근접센서는 일측 지지부재(17)의 바깥측면에 설치되어 -Y축 방향의 이동 한계를 감지하는 한계센서(YL) 및 +Y축 방향의 이동 한계를 감지하는 한계센서(YR) 및 Y축의 원점위치를 감지하는 원점센서(YO)로 구성된다. 따라서, Y축의 원점을 기준으로 Y축 이동이 정밀 제어되며, 또한 Y축의 이동한계가 제어된다.
Z축 포지션 센서는, 도 9에 예시한 것처럼, 본체(27)를 따라 승강할 수 있도록 본체(27)에 고정되는 작동편(ZA)과, 상기 작동편(ZA)의 근접에 의해 센싱되는 복수의 근접센서로 구성된다. 상기 근접센서는 수직 프레임(ZF)에 설치되어 -Z축 방향의 이동한계를 감지하는 한계센서(ZL) 및 +Z축 방향의 이동한계를 감지하는 한계센서(ZR) 및 Z축의 원점위치를 감지하는 원점센서(ZO)로 구성된다. 따라서, Z축의 원점을 기준으로 Z축 방향으로의 상승 및 하강이 정밀 제어되며, 또한 Z축의 승강 한계가 제어된다.
메인 아암(30) 포지션 센서는, 도 4에 예시한 것처럼, 메인 아암(30)을 따라 이동할 수 있도록 메인 아암(30) 하부의 링기어(53) 케이스(54)에 고정되는 작동편(30A)과, 상기 작동편(30A)의 근접에 의해 센싱되는 복수의 근접센서로 구성된다. 상기 근접센서는 본체(27) 외주면에 설치되어 메인 아암(30)의 시계방향(A 방향) 운동한계를 감지하는 한계센서(30L) 및 메인 아암(30)의 반시계방향(B 방향) 운동한계를 감지하는 한계센서(30R) 및 메인 아암(30)의 원점위치를 감지하는 원점센서(30O)로 구성된다. 따라서, 메인 아암(30)의 원점을 기준으로 메인 아암(30)의 소정 구간 수평 원호운동(또는 선회운동)이 정밀 제어되며, 또한 메인 아암(30)의 운동한계가 제어된다.
제1 아암(32) 포지션 센서는, 도 28, 도 29에 예시한 것처럼, 제1 아암(32)을 따라 C 방향 및 D 방향으로 회전할 수 있도록 제1 아암(32)의 외면에 고정되는 작동편(32A)과, 상기 작동편(32A)의 근접에 의해 센싱되는 복수의 근접센서로 구성된다. 상기 근접센서는 베어링 케이스(316)의 외주면에 설치되어 제1 아암(32)의 D 방향 회전한계를 감지하는 한계센서(32L) 및 제1 아암(32)의 C 방향 회전한계를 감지하는 한계센서(32R) 및 제1 아암(32)의 원점위치를 감지하는 원점센서(32O)로 구성된다. 따라서 원점을 기준으로 제1 아암(32)의 관절운동이 정밀 제어된다.
제2 아암(34) 포지션 센서는, 도 28, 도 29에 예시한 것처럼, 제2 아암(34)을 따라 수직원호운동(E 방향 및 F 방향)할 수 있도록 제2 아암(34)의 외면에 고정되는 작동편(34A)과, 상기 작동편(34A)의 근접에 의해 센싱되는 복수의 근접센서로 구성된다. 상기 근접센서는 제1 아암(32)의 외면에 고정된 프레임(34F)에 각각 설치되어 제2 아암(34)의 E 방향 회전한계를 감지하는 한계센서(34L) 및 제2 아암(34)의 F 방향 회전한계를 감지하는 한계센서(34R) 및 제2 아암(34)의 원점위치를 감지하는 원점센서(34O)로 구성된다. 따라서, 제2 아암(34)의 원점을 기준으로 제2 아암(34)의 관절운동이 정밀 제어된다.
제3 아암(36) 포지션 센서는, 도 28, 도 29에 예시한 것처럼, 제3 아암(34)을 따라 수평원호운동(G 방향 및 H 방향)할 수 있도록 제2 아암(34)의 외면에 고정되는 작동편(36A)과, 상기 작동편(36A)의 근접에 의해 센싱되는 복수의 근접센서로 구성된다. 상기 근접센서는 제3 아암(36)의 외면에 고정된 프레임(36F)의 장공(36G)에 각각 설치되어 제3 아암(34)의 H 방향 회전한계를 감지하는 한계센서(36L) 및 제3 아암(34)의 G 방향 회전한계를 감지하는 한계센서(36R) 및 제3 아암(36)의 원점 위치를 감지하는 원점센서(36O)로 구성된다. 따라서, 제3 아암(36)의 원점을 기준으로 제3 아암(36)의 관절 운동이 정밀 제어된다.
도 30은 본 발명 일 예로 도시한 회로 블럭도로, 산업용 다관절 로봇(1)을 제어하는 제어기(M)의 입력에는 다관절 로봇의 온(ON)/오프(OFF), 동작조건, 동작모드 설정, 초기화 등을 위한 설정부와, 흡/탈착수단(38)에 설치되어 소재의 흡/탈착을 감지하는 근접센서(87)와, X, Y, Z축과 메인 아암(30), 제1 아암(32), 제2 아암(34), 제3 아암(36)의 원점 위치와 한계 위치를 각각 감지하는 복수의 포지션 센서와, 서보모터(15)(25)(47)(55)(64)(65)(74)의 동작상태를 각각 감지하는 엔코더(E)와, 연관 기기와 연동하도록 동기신호를 주고 받는 동기신호부(S)가 각각 접속되고, 제어기(M)의 출력에는 표시부와, 서보모터(15)(25)(47)(55)(64)(65)(74)와, 밸런스(39)와, 흡/탈착수단(37)이 각각 접속된다.
도 31 ~ 도 39는 본 발명 산업용 다관절 로봇(1)의 이용방법을 일 예로 도시한 것으로, 전(前)공정 프레스기와 후(後)공정 프레스기 사이에 하나의 산업용 다관절 로봇(1)을 설치하여 소재의 반입과 반출을 달성할 수 있도록 한 것이다.
도 31은 전(前)공정 프레스기에 의해 타발된 소재를 반출하기 위하여 다관절 아암이 프레스기로 진입하기 전의 정면도이고, 도 32는 다관절 아암이 전공정 프레스기로 진입한 상태의 정면도이고, 도 33은 다관절 아암이 하강하여 타발된 소재를 흡/탈착수단으로 흡착한 상태의 정면도이고, 도 34는 소재를 흡착한 다관절 아암이 상승한 상태의 정면도이고, 도 35, 도 36은 소재를 흡착한 다관절 아암이 수평으로 원호운동(선회운동)하여 전공정 프레스기로 부터 빠져나온 상태의 정면도이며, 도 37, 도 38은 소재를 흡착한 다관절 아암이 회전하여 후(後)공정 프레스기로 진입한 상태의 정면도이고, 도 39는 다관절 아암이 후공정 프레스기의 금형 위로 하강하여 소재를 탈착하는 상태의 정면도이다. 다관절 아암이 소재를 탈착시킨 후 프레스기와 프레스기 사이로 대피한 사이에 소재의 타발이 이루어지면 도 31 ~ 도 39의 과정의 반복으로 소재의 반입과 반출이 달성된다.
도 40은 본 발명 산업용 다관절 로봇(1)의 다른 예로 도시한 사용 상태 정면도로, 전(前) 공정 프레스기와 후(後) 공정 프레스기 사이에 2대의 산업용 다관절 로봇을 이웃하도록 설치하되 전(前) 공정 프레스기 가까이 설치된 산업용 다관절 로봇은 타발된 소재의 반출을 담당하고, 후(後) 공정 프레스기 가까이 설치된 산업용 다관절 로봇은 타발된 소재의 반입을 담당하도록 함으로써 역할이 분담되고 동선이 매우 짧아져 소재의 초고속 이송(전달)이 가능하여 생산성을 극대화할 수 있도록 한 것이다.
상기에서 타발된 소재를 반출한 산업용 다관절 로봇은 대기하고 있는 후(後) 공정 프레스기 가까이의 산업용 다관절 로봇으로 반출 소재를 전달하면, 후(後) 공정 프레스기 가까이의 산업용 다관절 로봇은 전달받은 소재를 후(後) 공정 프레스기의 금형으로 반입시킨 후 복귀하는 과정의 반복으로 소재의 초고속 이송 및/또는 전달이 달성되어 생산성이 극대화된다.
상기에서 본 발명 산업용 다관절 로봇(1)을 전(前) 공정 프레스기와 후(後) 공정 프레스기 사이에 하나 또는 2대 설치하는 것으로 예시하였으나, 물론 프레스기와 프레스기 사이에 설치할 수 있으며, 프레스 공정의 선단(초단)에 위치하는 소재공급장치와 프레스기 사이에 설치되거나, 프레스 공정의 후단(말단)에 위치하는 프레스기와 소재배출장치(소재 배출컨베어 등) 사이에 설치되어 타발되거나 타발되지 않은 소재의 이송 및/또는 전달을 담당하게 된다.
상기에서 본 발명 산업용 다관절 로봇(1)의 이용방법으로 프레스 공정에서 프레스 소재를 이송 및/또는 전달하는 것으로 예시하였으나, 물론 여러 산업분야에서 각종 부품이나 물품 등의 이송 및/또는 전달에 이용(사용) 적용될 수 있다.
도 41 ~ 도 57은 메인 아암(30), 제1 아암(32), 제2 아암(34), 제3 아암(36)으로 구성되는 다관절 아암의 다양한 동작(모션)을 보여주는 도면으로, 일부 도면에는 운반 대상 소재와, 운반 대상 소재 하부에 위치하는 금형이 도시된다.
본 발명 산업용 다관절 로봇(1)은 X축 운동과, Y축 운동과, Z축 운동과, 메인 아암(30)의 회전운동과, 제1 아암(32)의 관절운동, 제2 아암(34)의 관절운동, 제3 아암(36)의 관절운동에 의해 7자 유도(6DOF)에 의한 복합 제어에 의해 도 31 ~ 도 56에 예시한 것처럼 다양한 모션의 운동을 구현하면서 소재(물체)를 소정 위치로 신속 간편하게 이송 및/또는 전달하게 된다.
본 발명은 전/후/좌/우/상/하/로의 자유 운동과, 상황에 따라 정/역회전 또는 소정 기울기로 소재(물체)를 이송하거나 소재를 압지 또는 파지(把持)하는 등의 다양한 모션과 목적이 달성되며, 종래 다관절 로봇에 비하여 구성이 간단하여 생산원가가 저렴하고, 유지보수가 용이하며, 동작반경이 작고 설치공간을 많이 점유하지 않는 장점이 있다.
본 발명은 복수의 서보기구에 의해 정밀 제어되는 다관절 및 복수의 아암을 이용한 다양한 모션으로 소재를 다음 공정으로 신속하게 이동시켜 고속 생산이 가능하며, 밸런스(39)에 의해 소재를 이송시 다관절 아암의 진동이 최소화되는 효과가 있다.
본 발명은 좌/우 공정간 프레스 또는 금형높이 차이에 따른 대응 설치가 쉽게 해결되고, 프레스 또는 금형 사이에 간편하게 설치할 수 있어서 공정 증설이나 변경을 쉽고 편리하게 달성할 수 있다.
본 발명은 본체의 Z축 승강구조 및 다리 부분에 설치되는 높이조절수단에 의해 소재의 이송 높이 차이를 쉽게 극복할 수 있으며, 이웃하는 프레스 간의 높이 차이나 금형 간의 높이 차이 또한 쉽게 극복할 수 있다.
본 발명은 다관절 구조에 의해 아암의 자유로운 모션이 가능하여 다양한 소재 이송(공급) 위치와 각도에 신속히 대응할 수 있으며, 기대 하부에 복수의 높이조절수단이 구성되어 설치 높이 조절이 간편하며, 아암의 이동 동선이 최소화되고 생산성은 극대화되며, 설비비 감소와 설치공간 축소가 가능하다.
이상과 같이 설명한 본 발명은 본 실시 예 및 첨부된 도면에 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 여러 가지 치환, 변형 및 변경이 가능하며, 이는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어 자명한 것이다.
Claims (30)
- X, Y, Z축 운동기구가 설치되는 기대(2);상기 기대(2)에 설치되고 X, Y, Z축 운동기구에 의해 X, Y, Z축으로 운동하는 본체(27);상기 본체(27) 상부에 설치되고 회전기구에 의해 수평 원호운동하는 메인 아암(30);상기 메인 아암(30) 선단에 설치되고 제1 관절(31)에 의해 소정 각도로 회전운동하는 제1 아암(32);상기 제1 아암(32) 선단에 설치되고 제2 관절(33)에 의해 수직 원호운동하는 제2 아암(34);상기 제2 아암(34) 선단에 설치되고 제3 관절(35)에 의해 수평 원호운동하는 제3 아암(36);상기 제3 아암(36) 선단에 설치되는 그립퍼(37);상기 그립퍼(37)에 설치되는 복수의 흡/탈착수단(38);을 포함하는 산업용 다관절 로봇.
- 청구항 1에 있어서:본체(27)와, 메인 아암(30)과, 제1 아암(32)과, 제2 아암(34)과, 제3 아암(36)의 각각의 원점위치와 운동한계를 감지하는 복수의 포지션 센서 및 제어기(M);를 더 포함하는 산업용 다관절 로봇.
- 청구항 1 또는 청구항 2에 있어서:본체(27) 일측에 설치되는 밸런스(39);를 더 포함하는 산업용 다관절 로봇.
- 청구항 1 또는 청구항 2에 있어서:운동기구는,구동수단인 서보모터와 동력전달수단인 랙기어 및 피니언과 안내수단인 LM가이드로 구성됨을 특징으로 하는 산업용 다관절 로봇.
- 청구항 1 또는 청구항 2에 있어서:운동기구는,본체(27)와 메인 아암(30)을 X축으로 왕복 운동시키는 X축 운동기구와,본체(27)와 메인 아암(30)을 Y축으로 왕복 운동시키는 Y축 운동기구와,본체(27)와 메인 아암(30)을 Z축으로 왕복 운동시키는 Z축 운동기구를 포함하는 산업용 다관절 로봇.
- 청구항 1 또는 청구항 2에 있어서:기대(2)는 복수의 다리(3)에 의해 지지되고,상기 다리(3) 하부에는 체결부재(5)에 의해 높낮이를 조절할 수 있는 보조 다리(6)가 각각 설치됨을 특징으로 하는 산업용 다관절 로봇.
- 청구항 5에 있어서:X축 운동기구는,수평판(4)의 상부면 양측에 평행으로 고정되는 한 쌍의 수직부재(7)(8);수직부재(7)(8)의 상부면에 각각 고정되는 LM레일(9)(10);일측 수직부재(7)의 내측면에 고정되고 LM레일(9)과 평행하는 랙기어(11);LM레일(9)(10)의 상부면에 미끄럼 결합되어 왕복 운동하는 복수의 LM블럭(13)(14);LM블럭(13)(14)의 상부면에 가장자리 부분이 고정되는 이동판(12);이동판(12) 일측에 설치되는 서보모터(15);이동판(12) 일측에 형성된 통공을 지나서 이동판(12) 하부로 돌출되는 서보모터(15)의 회전축;서보모터(15)의 회전축에 고정되고 랙기어(11)에 치합되는 피니언(16);을 포함하는 산업용 다관절 로봇.
- 청구항 5에 있어서:Y축 운동기구는,이동판(12)의 길이방향 상부면 양측에 평행 고정되는 한 쌍의 수직부재(17)(18);수직부재(17)(18)의 상부면에 각각 고정되는 LM레일(19)(20);일측 수직부재(20)의 측면에 고정되고 LM레일(20)과 평행하는 랙기어(21);LM레일(19)(20)의 상부면에 미끄럼 결합되어 왕복 운동하는 복수의 LM블럭(22)(23);LM블럭(22)(23)의 상부면에 고정되는 지지판(24);지지판(24) 일측에 설치되는 서보모터(25);지지판(24) 일측에 형성된 통공을 지나 지지판(24) 하부로 돌출되는 서보모터(25)의 회전축;서보모터(25)의 회전축에 고정되고 랙기어(21)에 치합되는 피니언(26);을 포함하는 산업용 다관절 로봇.
- 청구항 5에 있어서:Z축 운동기구(28)는,지지판(24)의 중앙부에 형성되는 통공(40);상기 통공(40)에 수직으로 헐겁게 삽입되어 접촉없이 승강하는 본체(27);상기 본체(27)의 길이방향 외면에 소정 간격으로 고정되는 복수의 LM레일(42);상기 통공(40)에 가까운 지지판(24) 상부면에 수직으로 고정되는 복수의 지지부재(43);지지부재(43)의 내측면 상/하부에 고정되고 상기 LM레일(42)에 미끄럼 결합되는 LM블럭(44);지지판(24) 일측에 설치되는 브라켓(45);브라켓(45)에 수평으로 설치되는 서보모터(47);일측 LM레일(42)에 평행 설치되는 랙기어(45);서보모터(47)의 회전축에 고정되고 랙기어(45)에 치합되는 피니언(48);을 포함하는 산업용 다관절 로봇.
- 청구항 1 또는 청구항 2에 있어서:회전기구는,본체(27) 상부면(27a)에 체결되는 원통링(49) 및 바닥판(291);원통링(49) 상부 외주면에 고정되는 링기어(53);원통링(49)의 중공부(49a)에 삽입되는 축부재(292);축부재(292) 외주면 하부로 돌출되는 걸림턱(293);축부재(292)의 외주면 상하부와 중공부(49a)에 설치되어 축부재(292)를 지지하는 축 베어링(294)(295);축 베어링(294)(295) 사이에 설치되는 간격유지링(296);축 베어링(295) 상부면에 설치되는 베어링 보호판(297);축부재(293) 상부면에 체결되는 지지판(50);지지판(50) 상부면에 체결되는 지지판(298);지지판(298) 상부면에 체결되는 메인 아암(30)의 케이스(57);케이스(57)에 수직으로 설치되는 서보모터(55);서보모터(55)의 회전축에 고정되고 링기어(53)에 치합되는 스퍼어 기어(56);를 포함하는 산업용 다관절 로봇.
- 청구항 3에 있어서:밸런스(39)는,하부가 지지판(24)에 축 고정되고,상부에 구비되는 완충 축봉(51) 상부에는 원통링(49)의 외면 일측에 고정되는 브라켓(52)이 체결됨을 특징으로 하는 산업용 다관절 로봇.
- 청구항 1 또는 청구항 2에 있어서:메인 아암(30)은,케이스(57) 일측 외면에 상하로 설치되는 서보모터(64)(65);케이스(57) 타측에 설치되고 서보모터(64) 및 유니버셜죠인터(60)에 의해 구동하는 제1 관절(31);제1 관절(31)을 관통하고 서보모터(65)에 의해 정역 회전하면서 제2 관절(33)을 구동시키는 관절축(58);을 포함하는 산업용 다관절 로봇.
- 청구항 1 또는 청구항 2에 있어서:제1 관절(31)은,케이스(57) 일측에 고정되는 서보모터(64);서보모터(64)의 회전축에 연결되는 유니버셜죠인터(60)의 선단축부(59);케이스(57)에 고정되고 유니버셜죠인터(60)의 후단축부(61)를 지지하는 한 쌍의 축 브라켓(311);축 브라켓(311)으로 지지되는 유니버셜죠인터(60)의 후단축부(61)에 고정되는 스퍼어 기어(312);관절축(58) 외주면에 결합되는 메탈베어링(313);메탈베어링(313) 외주면에 결합되는 축부재(66);축부재(66)가 지지될 수 있도록 축부재(66)의 후단과 관절축(58) 사이에 설치되는 축 베어링(314);축부재(66)의 선단면에 고정되고 스퍼어 기어(312)에 치합되는 스퍼어 기어(315);케이스(57) 후단에 고정되는 베어링 케이스(316);베어링 케이스(316)와 축부재(66) 외주면에 설치되는 축 베어링(317)(318);축 베어링(317)과 축 베어링(318) 사이에 설치되는 간격유지링(319);을 포함하는 산업용 다관절 로봇.
- 청구항 7에 있어서:이동판(12)의 길이방향으로 형성되는 장공(41);을 더 포함하는 산업용 다관절 로봇.
- 청구항 1 또는 청구항 2에 있어서:제2 관절(33)은,제1 아암(32)의 몸체(32a) 길이방향 선단부에 형성되는 축공(32b)에 축 설치되는 헬리컬 기어(67);헬리컬 기어(67)의 중심축에 키 결합되어 축 연결되는 축부재(58)의 단부;몸체(32a) 중앙부에 형성되는 축공(32c)에 베어링(32d)으로 축 설치되는 축봉(69);축봉(69) 일측에 키 결합되고 상기 헬리컬 기어(67)와 치합되는 헬리컬 기어(68);축봉(69) 일측에 구성되는 스퍼어 기어(70);몸체(32a) 선단부에 형성되는 축공(32e)에 베어링(32f)으로 축 설치되는 관절축(73);관절축(73)이 관통하고 축공(32e) 단턱부(32g)에 고정되는 베어링(32d) 마개(32h);관절축(73) 단부에 형성되는 플랜지(73a)에 내측면이 고정되는 제2 아암(34)의 축부(34a);축부(34a) 외주면에 형성되고 상기 스퍼어 기어(70)에 치합되는 스퍼어 기어(71);관절축(73) 단부에 볼트(73b)로 체결되는 제2 아암(34)의 축부(34b);를 포함하는 산업용 다관절 로봇.
- 청구항 1 또는 청구항 2에 있어서:제3 관절(35)은,케이스(34d) 후단면에 고정되는 고정판(74b);고정판(74b)에 고정되고 케이스(34d) 내부에 위치하는 서보모터(74);케이스(34d) 후단으로 돌출되는 서보모터(74)의 회전축(74a);케이스(34d)에 고정되는 블럭(34e);블럭(34e)의 선단부에 형성되는 축공(34f)에 축 설치되는 헬리컬 기어(75);헬리컬 기어(75)의 중심축에 키 결합되는 서보모터(74)의 회전축(74a);블럭(34e) 중앙부에 형성되는 축공(34g)에 메탈베어링(77)으로 축 설치되는 관절축(78);메탈베어링(77)의 일측면에 걸림되는 관절축(78)의 머리부(78a);블럭(34e)의 측면에 형성된 단턱홈(34h)에 미끄럼 결합되고 관절축(78)이 관통하는 메탈베어링(76a);관절축(78)에 끼워진 다음 키(76b) 결합되고 상기 헬리컬기어(75)에 치합되는 헬리컬기어(76);블럭(34e)의 타측면으로 돌출되는 관절축(78) 머리부(78a)에 핀(36h)으로 고정되는 제3 아암(36)의 축부(34b);블럭(34e)의 타측면으로 돌출된 관절축(78)에 통공(36d)이 결합된 다음 키 결합되는 키(76b);를 포함하는 산업용 다관절 로봇.
- 청구항 16에 있어서:블럭(34e)은.제3 아암(36)의 축부(36a)와 축부(36b) 사이의 공간부(36c)에 위치하며, 관절축(73)과 헬리컬기어(76)와 제3 아암(36)의 축부(36a)는 하나의 키(76b)로 고정되어 연동하고, 제3 아암(36)의 축부(36b)는 관절축(78)의 머리부(78a)에 결합된 다음 핀(36h)으로 고정되고, 제2 아암(34)의 축부(34b)에는 핀(36h)이 억지 결합되는 핀공(36g)이 형성되고, 관절축(78)의 머리부(78a)에 핀공(78c)이 형성되고, 상기 핀공(78c)에 핀(36h)이 억지 결합 됨을 특징으로 하는 산업용 다관절 로봇.
- 청구항 1 또는 청구항 2에 있어서:그립퍼(37)의 연결 아암(79) 단부에 플랜지(79a)가 설치되고,상기 플랜지(79a)는 제3 아암(36)의 후단면(36f)에 체결되어 제3 아암(36)과 그립퍼(37) 및 복수의 흡/탈착수단(38)이 연동 운동함을 특징으로 하는 산업용 다관절 로봇.
- 청구항 1 또는 청구항 2에 있어서:그립퍼(37)는,길이방향 소정 간격으로 설치되는 복수의 수평 관절구(81);수평 관절구(81)에 설치되어 소정 각도로 틸팅 및 고정되는 지지봉(82);지지봉(82)의 단부에 설치되는 관절 하우징(83);관절 하우징(83) 중앙에 설치되는 수직 관절구(85);수직 관절구(85)에 설치되고 소정 각도로 틸팅 및 고정되는 탄지봉(84);탄지봉(84) 하단부에 설치되는 흡/탈착수단(38);관절 하우징(83)에 브라켓(86)으로 설치되고 소재의 흡착이나 탈착을 감지하는 근접센서(87);를 포함하는 산업용 다관절 로봇.
- 청구항 1 또는 청구항 2에 있어서:흡/탈착수단(38)은,전자력(電磁力)으로 소재를 흡착 및 탈착하는 전자석이거나, 진공으로 소재를 흡착 및 탈착하는 진공흡착구이거나, 전자석과 진공흡착구의 혼용 형태 중 어느 하나 임을 특징으로 하는 산업용 다관절 로봇.
- 청구항 2에 있어서:포지션 센서는,X축 포지션 센서와, Y축 포지션 센서와, Z축 포지션 센서와, 메인 아암(30) 포지션 센서와, 제1 아암(32) 포지션 센서와, 제2 아암(34) 포지션 센서와, 제3 아암(36) 포지션 센서를 포함하는 산업용 다관절 로봇.
- 청구항 21에 있어서:X축 포지션 센서는,이동판(12)에 고정되는 작동편(XA);작동편(XA)의 근접에 의해 센싱되는 복수의 근접센서; 를 포함하고,상기 근접센서는 지지부재(7)의 바깥측면에 설치되어 -X축 방향의 이동 한계를 감지하는 한계센서(XL) 및 +X축 방향의 이동 한계를 감지하는 한계센서(XR) 및 X축의 원점위치를 감지하는 원점센서(XO);를 포함하는 산업용 다관절 로봇.
- 청구항 21에 있어서:Y축 포지션 센서는,지지판(24)을 따라 이동할 수 있도록 지지판(24)에 고정되는 작동편(YA);작동편(YA)의 근접에 의해 센싱되는 복수의 근접센서; 를 포함하고,상기 근접센서는 지지부재(17)에 설치되어 -Y축 방향의 이동 한계를 감지하는 한계센서(YL) 및 +Y축 방향의 이동 한계를 감지하는 한계센서(YR) 및 Y축의 원점위치를 감지하는 원점센서(YO);를 포함하는 산업용 다관절 로봇.
- 청구항 21에 있어서:Z축 포지션 센서는,본체(27)에 고정되는 작동편(ZA);상기 작동편(ZA)의 근접에 의해 센싱되는 복수의 근접센서; 를 포함하고,상기 근접센서는 수직 프레임(ZF)에 설치되어 -Z축 방향의 이동한계를 감지하는 한계센서(ZL) 및 +Z축 방향의 이동한계를 감지하는 한계센서(ZR) 및 Z축의 원점위치를 감지하는 원점센서(ZO);를 포함하는 산업용 다관절 로봇.
- 청구항 21에 있어서:메인 아암(30) 포지션 센서는,메인 아암(30)을 따라 이동할 수 있도록 메인 아암(30) 하부의 링기어(53) 케이스(54)에 고정되는 작동편(30A);상기 작동편(30A)의 근접에 의해 센싱되는 복수의 근접센서; 를 포함하고,상기 근접센서는 본체(27) 외주면에 설치되어 메인 아암(30)의 A 방향 운동한계를 감지하는 한계센서(30L) 및 메인 아암(30)의 B 방향 운동한계를 감지하는 한계센서(30R) 및 메인 아암(30)의 원점위치를 감지하는 원점센서(30O);를 포함하는 산업용 다관절 로봇.
- 청구항 21에 있어서:제1 아암(32) 포지션 센서는,제1 아암(32)을 따라 C 방향 및 D 방향으로 회전할 수 있도록 제1 아암(32) 외면에 고정되는 작동편(32A);상기 작동편(32A)의 근접에 의해 센싱되는 복수의 근접센서; 를 포함하고,상기 근접센서는 베어링 케이스(316)의 외주면에 설치되어 제1 아암(32)의 D 방향 회전한계를 감지하는 한계센서(32L) 및 제1 아암(32)의 C 방향 회전한계를 감지하는 한계센서(32R) 및 제1 아암(32)의 원점위치를 감지하는 원점센서(32O);를 포함하는 산업용 다관절 로봇.
- 청구항 21에 있어서:제2 아암(34) 포지션 센서는,제2 아암(34)을 따라 E 방향 및 F 방향으로 회전할 수 있도록 제2 아암(34) 외면에 고정되는 작동편(34A);상기 작동편(34A)의 근접에 의해 센싱되는 복수의 근접센서; 를 포함하고,상기 근접센서는 제1 아암(32)의 외면에 고정된 프레임(34F)에 각각 설치되어 제2 아암(34)의 E 방향 회전한계를 감지하는 한계센서(34L) 및 제2 아암(34)의 F 방향 회전한계를 감지하는 한계센서(34R) 및 제2 아암(34)의 원점위치를 감지하는 원점센서(34O);를 포함하는 산업용 다관절 로봇.
- 청구항 21에 있어서:제3 아암(36) 포지션 센서는,제3 아암(34)을 따라 G 방향 및 H 방향으로 회전할 수 있도록 제2 아암(34)의 외면에 고정되는 작동편(36A);상기 작동편(36A)의 근접에 의해 센싱되는 복수의 근접센서; 를 포함하고,상기 근접센서는 제3 아암(36)의 외면에 고정된 프레임(36F)의 장공(36G)에 설치되어 제3 아암(34)의 H 방향 회전한계를 감지하는 한계센서(36L) 및 제3 아암(34)의 G 방향 회전한계를 감지하는 한계센서(36R) 및 제3 아암(36)의 원점 위치를 감지하는 원점센서(36O);를 포함하는 산업용 다관절 로봇.
- 청구항 1 내지 청구항 28 중 어느 하나의 구성에 의한 하나의 산업용 다관절 로봇을 전(前)공정 프레스기와 후(後)공정 프레스기 사이에 설치하여 소재의 반입과 반출을 달성하도록 함을 특징으로 하는 산업용 다관절 로봇의 이용방법.
- 청구항 1 내지 청구항 28 중 어느 하나의 구성에 의한 2대의 산업용 다관절 로봇을 전(前)공정 프레스기와 후(後)공정 프레스기 사이에 이웃하도록 설치한 다음, 전(前)공정 프레스기 가까이 설치된 산업용 다관절 로봇은 타발된 소재를 반출시켜 후(後)공정 프레스기 가까이 설치된 산업용 다관절 로봇으로 전달하고, 후(後)공정 프레스기 가까이 설치된 산업용 다관절 로봇은 전달받은 소재를 후(後)공정 프레스기로 반입하도록 함을 특징으로 하는 산업용 다관절 로봇의 이용방법.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0027101 | 2014-03-07 | ||
KR20140027101A KR101485862B1 (ko) | 2014-03-07 | 2014-03-07 | 산업용 다관절 로봇 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015133671A1 true WO2015133671A1 (ko) | 2015-09-11 |
Family
ID=52592472
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/002120 WO2015133671A1 (ko) | 2014-03-07 | 2014-03-14 | 산업용 다관절 로봇 및 그 이용방법 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101485862B1 (ko) |
WO (1) | WO2015133671A1 (ko) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107186027A (zh) * | 2017-06-23 | 2017-09-22 | 广东技术师范学院天河学院 | 一种工业机器人及冲压系统 |
WO2017182990A1 (en) | 2016-04-21 | 2017-10-26 | Hughen Gerrard Thomas | A robotic system for carrying out an operation |
CN108144775A (zh) * | 2018-02-23 | 2018-06-12 | 广西科技大学 | 一种汽车顶棚海绵块的自动喷胶装置 |
CN108406806A (zh) * | 2018-05-09 | 2018-08-17 | 清研同创机器人(天津)有限公司 | 一种用于喷涂大尺寸工件的喷涂机器人 |
CN109119710A (zh) * | 2018-07-04 | 2019-01-01 | 南京环务资源再生科技有限公司 | 一种单体废旧电池的正负电极端壳剥离方法及装置 |
CN112091947A (zh) * | 2020-09-22 | 2020-12-18 | 威海海洋职业学院 | 一种可以跟踪抓取动态目标的机器人 |
CN112936296A (zh) * | 2021-01-22 | 2021-06-11 | 广东电网有限责任公司广州供电局 | 一种用于开关柜母线表面材质自动检测的机器人系统 |
WO2022090236A1 (de) * | 2020-10-27 | 2022-05-05 | Sms Group Gmbh | Wartungseinrichtung zur automatisierten reinigung und wartung von walzgerüsten oder teilen davon sowie verfahren zur automatischen reinigung von walzgerüsten unter verwendung der wartungseinrichtung sowie weitere verwendung der wartungseinrichtung |
CN115839857A (zh) * | 2023-03-01 | 2023-03-24 | 广州艾视维智能科技有限公司 | 车辆骨架结构检测装置及车辆骨架结构检测方法 |
CN116021498A (zh) * | 2023-03-30 | 2023-04-28 | 西安畅榜电子科技有限公司 | 一种带有运动基座的智能机器人 |
CN116277105A (zh) * | 2023-05-23 | 2023-06-23 | 爱合发工业传动科技(广东)有限公司 | 一种精密齿轮转移用机械手 |
CN117347051A (zh) * | 2023-11-10 | 2024-01-05 | 保定市隆昌泰兴机械制造有限公司 | 一种智能关键机械零部件监测传感装置 |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101727118B1 (ko) * | 2015-09-23 | 2017-04-14 | 한재형 | 소재 반송 시스템 |
CN107309868B (zh) * | 2017-08-25 | 2023-06-16 | 上海珂明注塑系统科技有限公司 | 一种刀叉勺的侧取装置 |
KR102161713B1 (ko) * | 2018-07-26 | 2020-10-06 | 주식회사 세계로시스템 | 다관절 암을 갖는 식품 자동 포장 장치 |
CN113748499A (zh) | 2019-03-01 | 2021-12-03 | 朗姆研究公司 | 集成式工具升降机 |
CN110605610B (zh) * | 2019-08-22 | 2021-05-11 | 南京康尼精密机械有限公司 | 零件的逐一上料的双臂机械手机构 |
KR102337268B1 (ko) * | 2020-09-23 | 2021-12-08 | (주)삼성텍 | 오토 로봇을 이용한 금속판의 프레스 공정 자동화 시스템 |
KR102409342B1 (ko) * | 2020-11-12 | 2022-06-15 | 한재형 | 다축로봇을 이용한 다공정 프레스 자동화시스템 및 그 방법 |
KR102482868B1 (ko) * | 2021-07-20 | 2022-12-30 | 보경테크(주) | 다관절 로봇 연결용 그립장치 |
KR102671526B1 (ko) * | 2022-02-15 | 2024-06-03 | 쓰리피로봇 주식회사 | 아암 관절의 백래시 방지장치 |
CN115056209B (zh) * | 2022-06-23 | 2024-07-16 | 中核核电运行管理有限公司 | 一种核电厂主泵轴密封检修多关节机械手臂 |
KR20240016717A (ko) | 2022-07-29 | 2024-02-06 | 주식회사 유일로보틱스 | 수직 다관절 로봇의 손목축 체결 구조 |
KR102685843B1 (ko) | 2022-08-24 | 2024-07-19 | 주식회사 유일로보틱스 | 엔드 이펙터의 속도 및 토크 가변이 가능한 수직 다관절 로봇 |
CN115351526B (zh) * | 2022-09-06 | 2024-02-23 | 合肥中宝机械制造有限公司 | 一种叠合墙板构件用改进型布模机械手及其使用方法 |
CN117621005B (zh) * | 2024-01-25 | 2024-04-09 | 北京东方昊为工业装备有限公司 | 一种基于自动化高空作业机器人的机械臂 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06328140A (ja) * | 1993-05-25 | 1994-11-29 | Nisshinbo Ind Inc | 板材折曲げ加工機用の板材取扱ロボット |
KR20060070686A (ko) * | 2004-12-21 | 2006-06-26 | 삼성전자주식회사 | 화상형성장치의 구동 모터에 대한 에러발생 검출방법 |
KR20110065281A (ko) * | 2010-07-08 | 2011-06-15 | 한재형 | 프레스 소재 이송장치 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100809912B1 (ko) * | 2006-07-27 | 2008-03-04 | 한재형 | 3차원 프레스 로봇시스템 및 3차원 프레스 로봇시스템을이용한 프레스 소재 운반방법 |
-
2014
- 2014-03-07 KR KR20140027101A patent/KR101485862B1/ko active IP Right Grant
- 2014-03-14 WO PCT/KR2014/002120 patent/WO2015133671A1/ko active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06328140A (ja) * | 1993-05-25 | 1994-11-29 | Nisshinbo Ind Inc | 板材折曲げ加工機用の板材取扱ロボット |
KR20060070686A (ko) * | 2004-12-21 | 2006-06-26 | 삼성전자주식회사 | 화상형성장치의 구동 모터에 대한 에러발생 검출방법 |
KR20110065281A (ko) * | 2010-07-08 | 2011-06-15 | 한재형 | 프레스 소재 이송장치 |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017182990A1 (en) | 2016-04-21 | 2017-10-26 | Hughen Gerrard Thomas | A robotic system for carrying out an operation |
CN109328124A (zh) * | 2016-04-21 | 2019-02-12 | 休恩登·杰拉德·托马斯 | 执行操作的机器人系统 |
EP3481600A4 (en) * | 2016-04-21 | 2020-04-29 | Hughen Gerrard Thomas | ROBOTIC SYSTEM FOR PERFORMING AN OPERATION |
CN107186027A (zh) * | 2017-06-23 | 2017-09-22 | 广东技术师范学院天河学院 | 一种工业机器人及冲压系统 |
CN108144775A (zh) * | 2018-02-23 | 2018-06-12 | 广西科技大学 | 一种汽车顶棚海绵块的自动喷胶装置 |
CN108406806A (zh) * | 2018-05-09 | 2018-08-17 | 清研同创机器人(天津)有限公司 | 一种用于喷涂大尺寸工件的喷涂机器人 |
CN109119710A (zh) * | 2018-07-04 | 2019-01-01 | 南京环务资源再生科技有限公司 | 一种单体废旧电池的正负电极端壳剥离方法及装置 |
CN109119710B (zh) * | 2018-07-04 | 2024-05-24 | 南京环务资源再生科技有限公司 | 一种单体废旧电池的正负电极端壳剥离方法及装置 |
CN112091947B (zh) * | 2020-09-22 | 2023-04-14 | 威海海洋职业学院 | 一种可以跟踪抓取动态目标的机器人 |
CN112091947A (zh) * | 2020-09-22 | 2020-12-18 | 威海海洋职业学院 | 一种可以跟踪抓取动态目标的机器人 |
WO2022090236A1 (de) * | 2020-10-27 | 2022-05-05 | Sms Group Gmbh | Wartungseinrichtung zur automatisierten reinigung und wartung von walzgerüsten oder teilen davon sowie verfahren zur automatischen reinigung von walzgerüsten unter verwendung der wartungseinrichtung sowie weitere verwendung der wartungseinrichtung |
CN112936296A (zh) * | 2021-01-22 | 2021-06-11 | 广东电网有限责任公司广州供电局 | 一种用于开关柜母线表面材质自动检测的机器人系统 |
CN115839857A (zh) * | 2023-03-01 | 2023-03-24 | 广州艾视维智能科技有限公司 | 车辆骨架结构检测装置及车辆骨架结构检测方法 |
CN116021498A (zh) * | 2023-03-30 | 2023-04-28 | 西安畅榜电子科技有限公司 | 一种带有运动基座的智能机器人 |
CN116021498B (zh) * | 2023-03-30 | 2023-10-13 | 西安畅榜电子科技有限公司 | 一种带有运动基座的智能机器人 |
CN116277105A (zh) * | 2023-05-23 | 2023-06-23 | 爱合发工业传动科技(广东)有限公司 | 一种精密齿轮转移用机械手 |
CN116277105B (zh) * | 2023-05-23 | 2023-07-18 | 爱合发工业传动科技(广东)有限公司 | 一种精密齿轮转移用机械手 |
CN117347051A (zh) * | 2023-11-10 | 2024-01-05 | 保定市隆昌泰兴机械制造有限公司 | 一种智能关键机械零部件监测传感装置 |
Also Published As
Publication number | Publication date |
---|---|
KR101485862B1 (ko) | 2015-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015133671A1 (ko) | 산업용 다관절 로봇 및 그 이용방법 | |
WO2021080259A1 (ko) | 턴테이블이 구비되는 프레스 소재 이송시스템 | |
WO2012005450A2 (ko) | 프레스 소재 이송장치 | |
WO2017052209A1 (ko) | 대형프레스의 소재 이송시스템 | |
WO2017052217A1 (ko) | 소재 반송 시스템 | |
WO2020222570A1 (ko) | 적층형 모듈로봇 | |
WO2016060420A1 (ko) | 회전속도비를 이용하여 회전체내 복수개의 절삭툴을 자유롭고 선택적으로 제어할 수 있는 오비탈식 절삭장치 | |
WO2010101406A2 (ko) | 프레스 소재 이송 자동화시스템 | |
WO2014171665A1 (ko) | 시험관 그리퍼, 시험관 라벨링 유닛 및 이를 포함하는 시험관 준비 장치 | |
JP4168410B2 (ja) | 多関節ロボット | |
WO2019221585A1 (ko) | 원전 원격 해체 시스템 및 이를 구비한 원전 | |
WO2014137115A1 (ko) | 바아형 부재 지지장치 및 이를 이용한 바아형 부재 가공용 레이저 가공기 | |
WO2020050664A1 (ko) | 슬래그 제거 장치 | |
WO2018038334A1 (ko) | 틸팅 스테이지 시스템 | |
WO2010038969A2 (ko) | 플랜지면 자동 가공장치 | |
WO2011155726A2 (ko) | 대형 프레스의 소재 이송장치 | |
WO2016144057A1 (ko) | 공간 순응 손가락 모듈 및 이를 구비한 그리퍼 | |
WO2020166934A1 (ko) | 공작기계 및 이의 작동방법 | |
WO2020184945A1 (ko) | 자동공구교환장치와 이의 제어방법 및 이를 포함하는 공작기계 | |
WO2015156469A1 (en) | Three-dimensional (3d) emitting apparatus | |
EP3340850A1 (en) | Vacuum cleaner | |
WO2022114441A1 (ko) | 케미컬 필터 교체장치 | |
WO2012005404A1 (ko) | 자동 청소기 | |
WO2023128583A1 (ko) | 로봇 핸드 | |
WO2016175527A1 (ko) | 프레스 소재 이송시스템 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14884282 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/01/2017) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14884282 Country of ref document: EP Kind code of ref document: A1 |