WO2015133596A1 - 細胞培養用組成物 - Google Patents

細胞培養用組成物 Download PDF

Info

Publication number
WO2015133596A1
WO2015133596A1 PCT/JP2015/056605 JP2015056605W WO2015133596A1 WO 2015133596 A1 WO2015133596 A1 WO 2015133596A1 JP 2015056605 W JP2015056605 W JP 2015056605W WO 2015133596 A1 WO2015133596 A1 WO 2015133596A1
Authority
WO
WIPO (PCT)
Prior art keywords
cells
pluripotent stem
hydrogen atom
culture
carbon atoms
Prior art date
Application number
PCT/JP2015/056605
Other languages
English (en)
French (fr)
Inventor
中川誠人
Original Assignee
国立大学法人京都大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学 filed Critical 国立大学法人京都大学
Priority to JP2016506564A priority Critical patent/JP6501413B2/ja
Publication of WO2015133596A1 publication Critical patent/WO2015133596A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/06Animal cells or tissues; Human cells or tissues
    • C12N5/0602Vertebrate cells
    • C12N5/0696Artificially induced pluripotent stem cells, e.g. iPS
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N1/00Preservation of bodies of humans or animals, or parts thereof
    • A01N1/02Preservation of living parts
    • A01N1/0205Chemical aspects
    • A01N1/021Preservation or perfusion media, liquids, solids or gases used in the preservation of cells, tissue, organs or bodily fluids
    • A01N1/0226Physiologically active agents, i.e. substances affecting physiological processes of cells and tissue to be preserved, e.g. anti-oxidants or nutrients
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/115Basic fibroblast growth factor (bFGF, FGF-2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2501/00Active agents used in cell culture processes, e.g. differentation
    • C12N2501/10Growth factors
    • C12N2501/15Transforming growth factor beta (TGF-β)

Definitions

  • the present invention relates to a cell culture composition, particularly a composition suitable for culturing pluripotent stem cells, a medium containing the composition, and a method for culturing pluripotent stem cells.
  • a pluripotent stem cell is a stem cell having the ability to differentiate into cells of any tissue (pluripotency) and the ability to proliferate almost infinitely, such as embryonic stem cells (ES cells), artificial pluripotency Examples include sex stem cells (iPS cells), embryonic germ cells (EG cells), pluripotent germ stem cells (mGS cells), and fusion cells of human ES cells and somatic cells. Since pluripotent stem cells can be induced into various tissue cells, they are expected to be applied to various fields such as regenerative medicine, its materials, and drug discovery screening. Actually, tissue cells obtained by differentiating pluripotent stem cells are also administered to humans (see Non-Patent Document 1).
  • pluripotent stem cells When using pluripotent stem cells for the production of research materials or regenerative medicine products, it is essential to culture and maintain the pluripotency of the cells. On the other hand, it is known that pluripotent stem cells such as ES cells and iPS cells may lose pluripotency, which is one of the properties of these cells, by passage.
  • feeder-free (feederless) culture method that does not use feeder cells has been proposed.
  • feederless media such as ReproFF (feederless medium for primate ES / iPS cells, manufactured by Reprocell) and mTeSR (registered trademark) (serum-free medium for maintaining human ES / iPS cells, manufactured by StemCell Technology) are commercially available.
  • ReproFF feederless medium for primate ES / iPS cells, manufactured by Reprocell
  • mTeSR registered trademark
  • a feederless culture technique using a culture substrate coated with an E8 fragment of human laminin ⁇ 5 ⁇ 1 ⁇ 1 or an E8 fragment of human laminin ⁇ 3 ⁇ 3 ⁇ 2 is disclosed (see Patent Document 1).
  • bFGF basic fibroblast growth factor
  • transforming growth factor- ⁇ also referred to as transforming growth factor- ⁇
  • the main object of the present invention is to provide a composition that can be used for cell culture and the like, particularly a new medium capable of maintaining and culturing pluripotent stem cells while maintaining an undifferentiated state.
  • compound A in a medium for maintaining and culturing pluripotent stem cells:
  • R 1 represents a hydrogen atom or alkyl having 1 to 5 carbon atoms
  • R 2 represents a hydrogen atom or a hydroxyl group
  • R 3 represents a hydrogen atom or a hydroxyl group
  • R 4 and R 5 are the same or different and each represents a hydrogen atom or alkyl having 1 to 5 carbon atoms
  • R 6 represents a hydrogen atom or alkyl having 1 to 15 carbon atoms
  • R 7 represents a hydrogen atom or —O—CO—R 9
  • R 9 represents a hydrogen atom, alkyl having 1 to 5 carbon atoms, or alkenyl having 2 to 5 carbon atoms
  • R 8 represents a hydrogen atom or alkyl having 1 to 5 carbon atoms
  • —X—Y— represents —CR 10 ⁇ CH— (wherein R 10 represents a hydrogen atom or a hydroxyalkyl having 1 to 5 carbon atoms), or —CR 11 R 12 —CHR 13 — (wherein R 11 represents a hydrogen
  • compound 3 a compound represented by the following structural formula (3) (hereinafter referred to as “compound 3”):
  • Examples of the present invention include the following.
  • a cell culture composition comprising at least one compound selected from the group consisting of Compound A, Compound 1, Compound 2, and Compound 3, or a salt thereof.
  • a pluripotent stem cell maintenance culture medium comprising the cell culture composition of [1] above.
  • At least one selected from the group consisting of Compound A, Compound 1, Compound 2, and Compound 3 for proliferating the pluripotent stem cell while maintaining the undifferentiated state of the pluripotent stem cell Use of a compound or salt thereof.
  • a method for producing iPS cells from somatic cells, wherein the somatic cells into which the reprogramming factor has been introduced are at least one compound selected from the group consisting of Compound A, Compound 1, Compound 2, and Compound 3. Or culturing in the presence of a salt thereof.
  • pluripotent stem cells such as iPS cells are stably and efficiently cultured in an xeno-free condition that does not use feeder cells and does not contain animal-derived components. be able to. Therefore, according to the present invention, pluripotent stem cells such as iPS cells can be stably propagated or established while maintaining their undifferentiated state under feeder-free and xeno-free conditions. Furthermore, according to the present invention, pluripotent stem cells can be maintained and cultured using low molecular weight compounds instead of bFGF and TGF- ⁇ under feeder-free and xeno-free conditions. For this reason, the maintenance culture of a pluripotent stem cell can be performed more simply and stably. Furthermore, the cost for maintenance culture of pluripotent stem cells can be reduced.
  • Fluorescence microscopic image (upper) of iPS cells cultured in the presence of TGF ⁇ 1 and bFGF (positive control) or in the presence of TGF ⁇ 1 (control) and immunostained using anti-Oct3 / 4 antibody (Lower) is shown.
  • “bFGF +” is a positive control
  • “bFGF ⁇ ” is a control.
  • cultivation using each test compound with Hoechst33342 and the anti- Oct3 / 4 antibody are shown.
  • cultivation using each test compound with Hoechst33342 and the anti- Oct3 / 4 antibody are shown.
  • cultivation using each test compound with Hoechst33342 and the anti- Oct3 / 4 antibody are shown.
  • FIG. 5A shows a fluorescence microscope image (upper row) of iPS cells stained with Hoechst 33342 and a fluorescence microscope image of immunostaining with an anti-Oct3 / 4 antibody after 1 week of culturing Compound 1 with 100 nM or 10 nM (FIG. 5A).
  • TGF ⁇ 1 + indicates a positive control
  • TGF ⁇ 1- indicates a control.
  • FIG. 5B shows a fluorescence microscope image (upper row) of iPS cells stained with Hoechst 33342 and immunostained with an anti-Oct3 / 4 antibody after 1 week of culturing Compound 2 with 1 ⁇ M, 100 nM or 10 nM.
  • R 1 , R 4 , R 5 , and R 8 include linear or branched alkyl having 1 to 5 carbon atoms, specifically, for example, Methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, 1-methylbutyl, 2-methylbutyl, n-pentyl, isopentyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, Examples include 2,2-dimethylpropyl and 1-ethylpropyl.
  • R 1 , R 4 , R 5 , and R 8 are preferably alkyl having 1 to 5 carbon atoms, more preferably alkyl having 1 to 3 carbon atoms, and still more preferably methyl.
  • alkyl examples include linear or branched alkyl having 1 to 15 carbon atoms, preferably linear or branched alkyl having 1 to 12 carbon atoms.
  • alkyl Specifically, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, n-pentyl, isopentyl, 1,1-dimethylpropyl, 1,2-dimethylpropyl, 2,2-dimethylpropyl, 1-ethylpropyl, n-hexyl, 1-ethyl-2-methylpropyl, 1,1,2-trimethylpropyl, 1-methylbutyl, 2-methylbutyl, 1,1-dimethylbutyl, 1 , 2-dimethylbutyl, 2,2-dimethylbutyl, 1,3-dimethylbutyl, 2,3-dimethylbutyl, 1-ethyl,
  • alkyl examples include linear or branched alkyl having 1 to 5 carbon atoms. Specifically, for example, methyl, ethyl, propyl, isopropyl, n-butyl, isobutyl, sec-butyl, tert-butyl, 1-methylbutyl, 2-methylbutyl, n-pentyl, isopentyl, 1,1-dimethylpropyl, 1 , 2-dimethylpropyl, 2,2-dimethylpropyl and 1-ethylpropyl. Of these, methyl, ethyl, propyl and isopropyl are preferable.
  • alkenyl relating to R 9 is, for example, linear or branched alkenyl having 2 to 5 carbon atoms, such as ethenyl, 1-methylethenyl, 1-propenyl, 2-propenyl, 1-butenyl, 2 Examples include -butenyl, 3-butenyl, 1-methyl-1-propenyl, 2-methyl-1-propenyl, 1-methyl-2-propenyl, 2-methyl-2-propenyl, and 1-pentenyl. Among these, alkenyl having 4 carbon atoms is preferable, and 1-methyl-1-propenyl is more preferable.
  • alkyl in “hydroxyalkyl” according to R 10 and R 11 include the same alkyl groups as those described above for 1-5. Specific examples of “hydroxyalkyl” include hydroxymethyl and hydroxyethyl, with hydroxymethyl being preferred.
  • R 10 is preferably hydroxyalkyl having 1 to 3 carbon atoms, more preferably hydroxymethyl.
  • R 11 is preferably hydroxyalkyl having 1 to 3 carbon atoms, more preferably hydroxymethyl.
  • R 11 has the same meaning as described above.
  • Examples of compound A include compounds represented by the following structural formulas (4) to (10) (hereinafter referred to as “compound 4” to “compound 10”, respectively).
  • compounds 1 to 10 are preferable, and these stereoisomers are also included. More preferred are compounds 2, 5 and 10. As an example of a preferred embodiment of the compounds 2, 5 and 10, stereoisomers having structures represented by the following structural formula (2-1), structural formula (5-1) and structural formula (10-1), respectively, Although illustrated, it is not limited to these.
  • the compounds 1 to 10 are all known and are commercially available. These compounds can be purchased, for example, from AnalytiCon Discovery GmbH. Among compounds A, compounds other than compounds 4 to 10 can be appropriately produced according to the synthesis method of compounds 1 to 10.
  • salt of the compound according to the present invention when the compound is acidic, for example, a salt of an inorganic base such as sodium salt, potassium salt, calcium salt, magnesium salt, ammonium salt, or methylamine, Mention may be made of salts of organic bases such as ethylamine, ethanolamine, lysine and arginine.
  • a salt of an inorganic acid such as hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, hydrofluoric acid, hydrobromic acid, or acetic acid, tartaric acid, lactic acid, citric acid, fumaric acid.
  • organic acid salts such as acid, maleic acid, succinic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, camphorsulfonic acid.
  • organic acid salts such as acid, maleic acid, succinic acid, methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalenesulfonic acid, camphorsulfonic acid.
  • Such a salt can be obtained by a method known per se.
  • the compound according to the present invention or a salt thereof may be a solvate (including a hydrate).
  • a solvate can be usually obtained by recrystallizing a solvate from a corresponding solvent or a suitable mixed solvent containing the corresponding solvent.
  • a hydrate can be obtained by recrystallizing the compound according to the present invention from a hydrous alcohol.
  • the compounds and salts thereof according to the present invention are suitably used for culturing cells, and particularly suitably used for culturing the cells while maintaining the undifferentiated state of pluripotent stem cells. .
  • the undifferentiated state of pluripotent stem cells it can be suitably used to proliferate or establish the pluripotent stem cells, and in particular, the undifferentiated state of pluripotent stem cells.
  • the pluripotent stem cells can be suitably used for growing while maintaining the above. For this reason, it is suitably used for maintenance culture of pluripotent stem cells.
  • the cell culture composition according to the present invention is selected from the group consisting of Compound A, Compound 1, Compound 2, and Compound 3. Containing at least one compound or a salt thereof.
  • the composition can be used as it is as a medium for cell culture, but it can also be used as a medium supplement or medium additive.
  • composition for cell culture of the present invention may comprise at least one compound selected from the group consisting of Compound A, Compound 1, Compound 2, and Compound 3, or a salt thereof.
  • Other components for example, medium basic components, antioxidants, serum substitutes described later
  • the content of the compound according to the present invention and the salt thereof in the composition for cell culture according to the present invention is not particularly limited.
  • the total concentration of the compound according to the present invention and the salt thereof is The content is in the range of 1 nM to 10 ⁇ M, preferably the content is in the range of 10 nM to 1 ⁇ M.
  • the cells to be cultured are not particularly limited, but pluripotent stem cells are preferable.
  • the pluripotent stem cell is not particularly limited as long as it is a stem cell having pluripotency that can be differentiated into all cells existing in a living body and also having proliferation ability.
  • pluripotent stem cells include embryonic stem cells (ES cells), embryonic stem cells derived from cloned embryos obtained by nuclear transfer (ntES cells), sperm stem cells (GS cells), embryonic germ cells (EG cells), artificial Pluripotent stem cells (iPS cells), cultured fibroblasts or bone marrow stem cell-derived pluripotent cells (Muse cells), pluripotent germ stem cells (mGS cells), fusion cells of human ES cells and somatic cells, stimulation induction Mentioned sexual pluripotent cells (STAP cells) (WO2013 / 163296). Of these, ES cells or iPS cells are preferred.
  • Pluripotent stem cells are cells derived from mammals such as humans, monkeys, mice, rats, hamsters, rabbits, guinea pigs, cattle, pigs, dogs, horses, cats, goats, sheep, etc .; birds-derived cells; reptile-derived cells
  • mammals such as humans, monkeys, mice, rats, hamsters, rabbits, guinea pigs, cattle, pigs, dogs, horses, cats, goats, sheep, etc .
  • birds-derived cells reptile-derived cells
  • the thing derived from various animals, such as, can be used.
  • those derived from mammals are used, and those derived from humans are particularly preferably used.
  • Particularly preferred pluripotent stem cells are human-derived ES cells or iPS cells.
  • the composition for cell culture of the present invention is suitably used for pluripotent stem cell culture.
  • it can be used to grow or establish undifferentiated pluripotent stem cells.
  • the pluripotent stem cell is preferably used for growing the pluripotent stem cell while maintaining the undifferentiated state of the pluripotent stem cell.
  • the pluripotent stem cell being in an “undifferentiated state” means that the pluripotent stem cell is in a state having pluripotency and proliferation ability.
  • Pluripotency means having differentiation ability as described above.
  • the fact that pluripotent stem cells maintain an undifferentiated state can be confirmed, for example, using at least Oct-3 / 4 expression as an indicator.
  • the expression of one or more marker genes selected from the group consisting of Nanog, Sox2, SSEA-1, SSEA-3, SSEA-4, TRA-1-60 and TRA-1-81 is used as an indicator As can be confirmed.
  • the measurement of these marker genes can be appropriately performed using a commercially available kit (for example, ES / iPS Cell, Human, Characterization Kit (System Biosciences, LLC)).
  • the method for using the composition for cell culture of the present invention is not particularly limited.
  • the composition for cell culture when used for culturing pluripotent stem cells, can be added to the medium.
  • the composition for cell culture can also be used as it is as a culture medium for pluripotent stem cell maintenance culture.
  • a pluripotent stem cell maintenance culture medium containing the cell culture composition is one of the preferred embodiments of the present invention.
  • Such a pluripotent stem cell maintenance culture medium contains at least one compound selected from the group consisting of Compound A, Compound 1, Compound 2, and Compound 3, or a salt thereof.
  • “Medium for maintenance of pluripotent stem cells” refers to a culture medium or composition suitable for culturing pluripotent stem cells, which can proliferate while maintaining the undifferentiated state of pluripotent stem cells. To do.
  • composition for cell culture or the culture medium for maintaining pluripotent stem cells of the present invention can be used in a pluripotent and proliferative undifferentiated state under feeder-free and xeno-free conditions that do not contain animal-derived components. Capable stem cells can be maintained and cultured.
  • composition for cell culture and the culture medium for maintaining pluripotent stem cells of the present invention can also be suitably used in culture for establishing pluripotent stem cells.
  • a pluripotent and proliferative undifferentiated state in a feeder-free and xeno-free condition containing no animal-derived components Pluripotent stem cells can be established.
  • the content of the cell culture composition in the pluripotent stem cell maintenance culture medium is not particularly limited.
  • the total concentration of Compound A or a salt thereof, Compound 1, Compound 2, and Compound 3 and their salts can be usually 1 nM to 10 ⁇ M, and preferably 10 nM to 1 ⁇ M.
  • the total concentration is the concentration of the compound or salt thereof when only one type of compound or salt thereof according to the present invention is used.
  • the medium for pluripotent stem cell maintenance culture usually contains medium basic components.
  • the medium basic component is not particularly limited as long as it allows proliferation while maintaining the undifferentiated state of the pluripotent stem cells when the above-described cell culture composition is contained therein.
  • Such medium basic components usually contain a carbon source, a nitrogen source and an inorganic salt that can be assimilated by cells. Specifically, saccharides such as glucose, essential amino acids, inorganic salts (such as zinc, iron, magnesium, calcium, and potassium), and vitamins are included. If necessary, a buffer component can be added to the medium basic component.
  • the medium basic component a basic medium known to those skilled in the art can be used.
  • the basal medium include, for example, Dulbecco's Modified Eagle's Medium (DMEM), Minimal Essential Medium (MEM), Basal Medium Eagle (BME), RPMI 1640, F-10, F-12, ⁇ Minum ⁇ MEM), Glasgow's Minimal Essential Medium (GMEM), Iscove's Modified Dulbecco's Medium (IMDM), and the like, and commercially available ones can be used.
  • DMEM Dulbecco's Modified Eagle's Medium
  • MEM Minimal Essential Medium
  • BME Basal Medium Eagle
  • RPMI 1640 F-10, F-12, ⁇ Minum ⁇ MEM
  • GMEM Glasgow's Minimal Essential Medium
  • IMDM Iscove's Modified Dulbecco's Medium
  • components such as a non-essential amino acid and sodium pyruvate can be added to the medium basic component.
  • antioxidants and serum replacement additives to the pluripotent stem cell maintenance culture medium.
  • the antioxidant is not particularly limited, and for example, 2-mercaptoethanol, dithiothreitol, ascorbic acid or an ester thereof can be used. Ascorbic acid or its ester may form a salt. Among these, ascorbic acid or an ester thereof is preferable.
  • the addition amount of the antioxidant is not particularly limited, and can be appropriately selected according to the kind of the antioxidant. For example, the antioxidant can be added so that the concentration of the antioxidant is usually 10 to 100 mg / L, preferably 50 to 75 mg / L in the medium.
  • Serum replacement additive is an artificial liquid composition that is usually configured to contain components similar to serum, and the addition of it allows cells to grow without the presence of serum It will be.
  • serum replacement additives for example, amino acids, inorganic salts, vitamins, albumin, insulin, transferrin, and antioxidant components can be used.
  • amino acids examples include glycine, L-alanine, L-asparagine, L-cysteine, L-aspartic acid, L-glutamic acid, L-phenylalanine, L-histidine, L-isoleucine, L-lysine, L-leucine, L- Examples include glutamine, L-arginine, L-methionine, L-proline, L-hydroxyproline, L-serine, L-threonine, L-tryptophan, L-tyrosine, and L-valine.
  • Inorganic salts include, for example, AgNO 3 , AlCl 3 .6H 2 O, Ba (C 2 H 3 O 2 ) 2 , CdSO 4 .8H 2 O, CoCl 2 .6H 2 O, Cr 2 (SO 4) 3 .1H 2 O, GeO 2 , Na 2 SeO 3 , H 2 SeO 3 , KBr, KI, MnCl 2 .4H 2 O, NaF, Na 2 SiO 3 .9H 2 O, NaVO 3 , (NH 4 ) 6Mo 7 O 24. 4H 2 O, NiSO 4 .6H 2 O, RbCl, SnCl 2 , ZrOCl 2 .8H 2 O, sodium selenite.
  • vitamins examples include thiamine and ascorbic acid.
  • antioxidant component examples include reduced glutathione. These may be used alone or in combination of two or more.
  • a commercially available serum replacement additive for ES cells for example, Knockout® serum replacement additive (KSR) (Invitrogen) can also be used.
  • the addition amount of the serum replacement additive is not particularly limited, and can be appropriately selected according to the type of the serum replacement additive. For example, it can be added in the medium so that the concentration of the serum replacement additive is usually 5 to 30 v / v%, preferably 10 to 20 v / v%.
  • the composition for cell culture and the culture medium for pluripotent stem cell maintenance culture according to the present invention can also contain animal-derived components such as feeder cells and serum used for maintenance culture of pluripotent stem cells, for example. Preferably, it does not contain feeder cells and / or serum, and more preferably does not contain feeder cells and serum. Particularly preferred is a xeno-free product containing no animal-derived components.
  • the composition for cell culture and the culture medium for pluripotent stem cell maintenance culture according to the present invention can also contain bFGF and / or TGF ⁇ used for culturing pluripotent stem cells without feeder. However, it preferably does not contain bFGF and / or TGF ⁇ , and more preferably does not contain bFGF and TGF ⁇ . Particularly preferred are those which do not contain animal-derived components such as feeder cells and serum, bFGF and TGF ⁇ .
  • optional components such as a pH adjuster, a humectant, a preservative, and a viscosity adjuster can be used as necessary.
  • the amount of such optional components added is not particularly limited as long as the effects of the present invention are not impaired, and can be appropriately selected.
  • composition for cell culture according to the present invention and each of the above-mentioned components may be added to the medium in an amount so as to obtain a desired concentration from the beginning, and may be added in two or more times, You may add in the quantity which finally becomes the target density
  • the pH of the pluripotent stem cell maintenance culture medium is usually adjusted to 6.5 to 7.5, preferably 6.8 to 7.2.
  • the cell culture composition and pluripotent stem cell maintenance culture medium according to the present invention can be prepared in a solution form or a dry form, respectively.
  • a solution form it may be provided as a concentrated composition (for example, 1 to 1000 times), and may be appropriately diluted upon use.
  • the liquid used to dilute or dissolve the composition or medium in solution form or dry form is not particularly limited, but usually water, buffer solution, and physiological saline can be used, and is appropriately selected as necessary. be able to.
  • the cell culture composition and the pluripotent stem cell maintenance culture medium are sterilized to prevent contamination.
  • the sterilization method is not particularly limited, and a normal method can be employed.
  • sterilization can be performed by ultraviolet irradiation, heat sterilization, radiation irradiation, or filtration.
  • the present invention also includes a pluripotent stem cell culture method for proliferating or establishing the pluripotent stem cell while maintaining the undifferentiated state of the pluripotent stem cell.
  • pluripotent stem cells are cultured in the presence of at least one compound selected from the group consisting of Compound A, Compound 1, Compound 2, and Compound 3, or a salt thereof.
  • the culture method of the present invention is preferably a pluripotent stem cell culture method for growing the pluripotent stem cells while maintaining the undifferentiated state of the pluripotent stem cells.
  • pluripotent stem cells By culturing pluripotent stem cells in the presence of at least one compound selected from the group consisting of Compound A, Compound 1, Compound 2, and Compound 3, or a salt thereof, undifferentiation of pluripotent stem cells
  • the pluripotent stem cells can be grown or established while maintaining the state.
  • pluripotent stem cells for growing the pluripotent stem cells while maintaining the undifferentiated state of the pluripotent stem cells
  • the method of the present invention is preferably used when pluripotent stem cells (preferably human iPS cells or ES cells described above) are maintained and cultured under feeder-free and xeno-free culture conditions.
  • the culture of pluripotent stem cells in the method of the present invention is preferably performed using the above-mentioned medium for pluripotent stem cell maintenance culture.
  • the components of the pluripotent stem cell maintenance culture medium and preferred embodiments thereof are the same as those described above.
  • a solution culture solution
  • pluripotent stem cell maintenance culture medium as a culture medium, culturing under the conditions normally used for pluripotent stem cell maintenance culture, the undifferentiated state of the pluripotent stem cells is maintained. Meanwhile, pluripotent stem cells can be grown.
  • Each component of the pluripotent stem cell maintenance culture medium may be added to the medium in an amount so as to achieve the desired concentration from the beginning, and is added in two or more times during the culture, You may add in the quantity which finally becomes the target density
  • the pH of the pluripotent stem cell maintenance culture medium is usually adjusted to 6.5 to 7.5, preferably 6.8 to 7.2.
  • the total concentration of Compound A, Compound 1, Compound 2, and Compound 3 and their salts in the medium can be preferably 1 nM to 10 ⁇ M, more preferably Culture is performed under conditions of 10 nM to 1 ⁇ M.
  • concentration of the compound according to the present invention and the salt thereof is within such a range, the pluripotent stem cells can be efficiently proliferated while maintaining the undifferentiated state of the pluripotent stem cells.
  • the compound according to the present invention or a salt thereof may be added to the medium in an amount so as to obtain a desired concentration from the beginning, and is added twice or more times during the culture, and finally. You may add in the quantity which becomes the target density
  • pluripotent stem cells are preferably cultured under conditions that do not contain feeder cells. Moreover, it is preferable to culture pluripotent stem cells in the absence of serum. More preferably, the multifunctional cells are cultured in the absence of feeder cells and serum. Furthermore, it is preferable to culture pluripotent stem cells under feeder-free and xeno-free conditions. Moreover, in the culture method of the present invention, it is preferable to culture polyfunctional cells in the absence of bFGF and / or TGF ⁇ , and more preferably in the absence of bFGF and TGF ⁇ .
  • a method of culturing using a culture vessel coated with an extracellular matrix is exemplified.
  • the coating treatment can be performed by placing a solution containing an extracellular matrix in a culture container and then removing the solution as appropriate.
  • the extracellular matrix is a supramolecular structure that exists outside the cell, and may be naturally derived or artificial (recombinant). Examples thereof include substances such as collagen, proteoglycan, fibronectin, hyaluronic acid, tenascin, entactin, elastin, fibrillin, laminin, or fragments thereof. These extracellular substrates may be used in combination, for example, a preparation from cells such as BD Matrigel (registered trademark). Examples of the artifact include laminin fragments. In the present invention, laminin is a protein having a heterotrimeric structure having one ⁇ chain, one ⁇ chain, and one ⁇ chain, and is not particularly limited.
  • the ⁇ chain includes ⁇ 1, ⁇ 2, ⁇ 3, It is ⁇ 4 or ⁇ 5, the ⁇ chain is ⁇ 1, ⁇ 2 or ⁇ 3, and the ⁇ chain is exemplified by ⁇ 1, ⁇ 2 or ⁇ 3.
  • the laminin fragment is not particularly limited as long as it is a laminin fragment having integrin-binding activity, and examples thereof include an E8 fragment which is a fragment obtained by digestion with elastase.
  • the number of pluripotent stem cells to be cultured is not particularly limited.
  • pluripotent stem cells are usually 50 to 50000 cells / cm 2 , preferably 100 to 5000 in a medium in a solution state (culture solution). it is possible to start the culture as a number / cm 2.
  • the culture method of the present invention makes it possible to form a clonal cell population because, for example, one pluripotent stem cell can be cultured and proliferated.
  • the pluripotent stem cell to be cultured is the same as described above. Pluripotent stem cells to be cultured are in an undifferentiated state.
  • the method for preparing pluripotent stem cells to be cultured is not particularly limited. For example, pluripotent stem cells established under feeder-less conditions and pluripotent stem cells established in a co-culture system with feeder cells should be used. Can do. Specifically, for example, pluripotent stem cells established or subcultured by a known method can be used. Moreover, the pluripotent stem cell established by culturing by the method of the present invention described later can be used.
  • pluripotent stem cells can be recovered from a co-culture system with feeder cells, and the recovered pluripotent stem cells can be directly used for culturing. It can also be used for culture. In this case, the subculture is preferably performed under feeder-free conditions.
  • the pluripotent stem cells to be subjected to culture may be made into a single cell state by being substantially separated (or dissociated) by any method, or the cells adhere to each other. It may be in the state of a cell cluster. Specifically, for example, before being subjected to culture, a treatment for separating pluripotent stem cells may be performed as necessary, and transferred to a new culture vessel and cultured in a single cell state or a cell mass state.
  • a separation solution having mechanical separation, protease activity, and collagenase activity for example, as solutions containing trypsin and collagenase, Accutase (registered trademark) and Accumax (registered trademark (Innovative Cell Technologies)). , Inc)
  • a separation solution having only collagenase activity for example, as solutions containing trypsin and collagenase, Accutase (registered trademark) and Accumax (registered trademark (Innovative Cell Technologies)). , Inc)
  • separation using a separation solution having only collagenase activity for example, as solutions containing trypsin and collagenase, Accutase (registered trademark) and Accumax (registered trademark (Innovative Cell Technologies)).
  • the medium contains a ROCK inhibitor.
  • the ROCK inhibitor is not particularly limited as long as it can suppress the function of Rho-kinase (ROCK).
  • ROCK Rho-kinase
  • Y-27632 (Cas No .: 146986-50-7) (eg, Ishizaki) et al., Mol. Pharmacol. 57, 976-983 (2000); Narumiya et al., Methods Enzymol. 325, 273-284 (2000)), Faudil / HA1077 (eg, Uenata et al .: 38 990-994 (1997)), H-1152 (eg, Sasaki et al., Pharmacol. Ther.
  • ROCK antisense nucleic acids for example, US Patent Application Publication Nos. 2005/0209261, 2005/0192304, 2004/0014755, and 2004/0002508,. No. 2004/0002507, No. 2003/0125344, No. 2003/0087919, and International Publication Nos. 2003/062227, 2003/059913, No.
  • ROCK inhibitors may be used.
  • a preferred ROCK inhibitor used in the present invention includes Y-27632.
  • the concentration of the ROCK inhibitor in the pluripotent stem cell maintenance culture medium can be appropriately selected by those skilled in the art depending on the ROCK inhibitor used.
  • Y-27632 is used as the ROCK inhibitor. In this case, it is usually 0.1 ⁇ M to 100 ⁇ M, preferably 1 ⁇ M to 50 ⁇ M, and more preferably 5 ⁇ M to 20 ⁇ M.
  • the culture temperature is not particularly limited, but is usually about 30 to 40 ° C., preferably about 37 ° C.
  • the culture is performed in an atmosphere of CO 2 -containing air, and the CO 2 concentration is preferably about 2 to 5%. It is preferable to change the medium usually every 1 to 2 days, preferably every day.
  • Pluripotent stem cells can be passaged as appropriate. For example, in the case of ES cells, it is usually preferable to subculture every 3 to 4 days. Passaging can be performed by a known method.
  • the culture method of the present invention can be used for culture for establishing undifferentiated pluripotent stem cells.
  • the culture for establishing an undifferentiated pluripotent stem cell the presence of at least one compound selected from the group consisting of Compound A, Compound 1, Compound 2, and Compound 3 or a salt thereof in the culture
  • pluripotent stem cells can be established.
  • the method of the present invention is suitably used, for example, when pluripotent stem cells are established under feeder-free and xeno-free culture conditions.
  • the pluripotent stem cell is the same as described above, and is preferably an iPS cell or an ES cell.
  • the pluripotent stem cells are preferably derived from mammals, and the pluripotent stem cells are preferably derived from humans. Among these, human-derived iPS cells are particularly preferable.
  • pluripotent stem cells when pluripotent stem cells are established, the above-described cell culture composition or pluripotent stem cell maintenance culture medium is used as a medium, and pluripotency is performed under the conditions normally used for establishment of pluripotent stem cells.
  • pluripotency By culturing sex stem cells, undifferentiated pluripotent stem cells can be established.
  • Preferred embodiments of the medium are as described above.
  • the culture conditions for establishing undifferentiated pluripotent stem cells vary depending on the type of pluripotent stem cells and can be appropriately selected.
  • the concentration of the compound according to the present invention or a salt thereof in the medium can be the same as that in the maintenance culture described above, and in the medium of Compound A, Compound 1, Compound 2, and Compound 3, and salts thereof.
  • Culturing is performed under the condition that the total concentration of is preferably 1 nM to 10 ⁇ M, more preferably 10 nM to 1 ⁇ M.
  • the culture temperature is not particularly limited, but is usually about 30 to 40 ° C, preferably about 37 ° C.
  • the culture is performed in an atmosphere of CO 2 -containing air, and the CO 2 concentration is preferably about 2 to 5%.
  • the medium is exchanged usually every 1 to 2 days, preferably every day.
  • human ES cells can be established by culturing a cell mass isolated from human blastocysts in the presence of the compound according to the present invention or a salt thereof.
  • the above-mentioned cell culture composition or pluripotent stem cell maintenance culture medium is used as a medium (culture medium) for ES cell production.
  • the maintenance of ES cells by subculture can be performed, for example, by the culture method of the present invention described above.
  • ES cells can be selected by Real-Time PCR method using the expression of gene markers such as alkaline phosphatase, Oct-3 / 4, Nanog as an index.
  • gene markers such as alkaline phosphatase, Oct-3 / 4, Nanog
  • OCT-3 / 4, NANOG, and ECAD can be used as an index (E. Kroon et al. (2008), Nat. Biotechnol., 26: 443). -452).
  • iPS cells in the culture for establishing iPS cells, can be established by bringing somatic cells and reprogramming factors into contact with each other in the presence of the compound according to the present invention or a salt thereof and culturing. .
  • iPS cells can be established by culturing somatic cells into which the reprogramming factor has been introduced in the presence of the compound of the present invention or a salt thereof.
  • the above-mentioned cell culture composition or culture medium for pluripotent stem cell maintenance culture is used as the medium (culture solution) for inducing iPS cells.
  • Examples of culture methods for establishing iPS cells include, for example, usually conditions under which the culture temperature is about 30 to 40 ° C. and the CO 2 concentration is about 2 to 5%, preferably the culture temperature is about 37 ° C. and about 5%.
  • somatic cells and reprogramming factor are brought into contact, transferred to a dish coated with extracellular matrix, and then cultured in a pluripotent stem cell maintenance culture medium. IPS-like colonies can be generated after a day or more.
  • the cells may be cultured in a medium suitable for somatic cells.
  • feeder cells eg, mitomycin C-treated STO cells
  • feeder cells are usually cultured under conditions of about 30 to 40 ° C. and about 2 to 5% CO 2 concentration, preferably about 37 ° C. and about 5% CO 2.
  • SNL cells, etc. can be cultured in a pluripotent stem cell maintenance culture medium to generate ES-like colonies after about 25 to about 30 days or more.
  • a method using a somatic cell to be initialized itself (Takahashi K, et al. (2009), PLoS One. 4: e8067 or WO2010 / 137746) is exemplified instead of feeder cells.
  • iPS cells may be established under low oxygen conditions (oxygen concentration of 0.1% or more and 15% or less) (Yoshida Y, et al. (2009), Cell Stem Cell. 5). : 237-241 or WO2010 / 013845).
  • the number of somatic cells used for nuclear reprogramming is not limited, but is preferably in the range of about 5 ⁇ 10 3 to about 5 ⁇ 10 6 cells per 100 cm 2 of culture dish.
  • IPS cells can be selected according to the shape of the formed colonies.
  • a drug resistance gene expressed in conjunction with a gene expressed when somatic cells are initialized for example, Oct3 / 4, Nanog
  • a culture solution containing the corresponding drug selection The established iPS cells can be selected by culturing with the culture medium.
  • the marker gene is a fluorescent protein gene
  • iPS cells are selected by observing with a fluorescence microscope, in the case of a luminescent enzyme gene, by adding a luminescent substrate, and in the case of a chromogenic enzyme gene, by adding a chromogenic substrate. can do.
  • the somatic cells used for the production of iPS cells include any animal cells (preferably mammalian cells including humans) excluding germ line cells such as oocytes, oocytes, ES cells, or totipotent cells. Can be used. Somatic cells include, but are not limited to, fetal (pup) somatic cells, newborn (pup) somatic cells, and mature healthy or diseased somatic cells. , Passage cells, and established cell lines are all included.
  • the somatic cells are, for example, (1) tissue stem cells (somatic stem cells) such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, dental pulp stem cells, (2) tissue precursor cells, (3) lymphocytes, epithelium Cells, endothelial cells, muscle cells, fibroblasts (skin cells, etc.), hair cells, hepatocytes, gastric mucosal cells, enterocytes, spleen cells, pancreatic cells (exocrine pancreas cells, etc.), brain cells, lung cells, kidney cells Examples thereof include differentiated cells such as fat cells.
  • tissue stem cells such as neural stem cells, hematopoietic stem cells, mesenchymal stem cells, dental pulp stem cells
  • tissue precursor cells such as lymphocytes, epithelium Cells, endothelial cells, muscle cells, fibroblasts (skin cells, etc.), hair cells, hepatocytes, gastric mucosal cells, enterocytes, spleen cells, pancre
  • reprogramming factor a known one can be used, a gene specifically expressed in ES cells, its gene product or non-coding RNA, or a gene that plays an important role in maintaining undifferentiation of ES cells, The gene product or non-coding RNA, or a low molecular weight compound may be used.
  • genes included in the reprogramming factor include Oct3 / 4, Sox2, Sox1, Sox3, Sox15, Sox17, Klf4, Klf2, c-Myc, N-Myc, L-Myc, Nanog, Lin28, Fbx15, Eras, and ECAT15.
  • Combinations of reprogramming factors include WO2007 / 069666, WO2008 / 118820, WO2009 / 007852, WO2009 / 032194, WO2009 / 058413, WO2009 / 057831, WO2009 / 0775119, WO2009 / 079007, WO2009 / 091659, WO2009 / 101084, WO2009 / 101407, WO2009 / 102983, WO2009 / 114949, WO2009 / 117439, WO2009 / 126250, WO2009 / 126251, WO2009 / 126655, WO2009 / 157593, WO2010 / 009015, WO2010 / 033906, WO2010 / 033920
  • the reprogramming factor includes histone deacetylase (HDAC) inhibitors [for example, small molecule inhibitors such as valproic acid (VPA), trichostatin A, sodium butyrate, MC 1293, M344, siRNA and shRNA against HDAC (eg, Nucleic acid expression inhibitors such as HDAC1 siRNA Smartpool (registered trademark) (Millipore), HuSH 29mer shRNA Constructs aganst HDAC1 (OriGene), etc.], MEK inhibitors (eg, PD1843271, PD9805901, PD9803901, PD98059U, PD98059U) Glycogen synthase kinase-3 inhibitors (eg, Bio and CHIR99021), DNA methyltransferase inhibition (For example, 5-azacytidine), histone methyltransferase inhibitors (for example, small molecule inhibitors such as BIX-01294, inhibitors of nucleic acid expression such as siRNA and
  • the reprogramming factor may be introduced into somatic cells by techniques such as lipofection, fusion with a cell membrane permeable peptide (eg, HIV-derived TAT and polyarginine), and microinjection.
  • a cell membrane permeable peptide eg, HIV-derived TAT and polyarginine
  • DNA it can be introduced into somatic cells by techniques such as vectors such as viruses, plasmids, artificial chromosomes, lipofection, liposomes, and microinjection.
  • viral vectors include retroviral vectors, lentiviral vectors (cell, 126, pp. 663-676, 2006; Cell, 131, pp. 861-872, 2007; Science, 318, pp. 1917-1920, 2007. ), Adenovirus vectors (Science, 322, 945-949, 2008), adeno-associated virus vectors, Sendai virus vectors (WO 2010/008054), and the like.
  • the artificial chromosome vector examples include human artificial chromosome (HAC), yeast artificial chromosome (YAC), and bacterial artificial chromosome (BAC, PAC).
  • HAC human artificial chromosome
  • YAC yeast artificial chromosome
  • BAC bacterial artificial chromosome
  • a plasmid a plasmid for mammalian cells can be used (Science, 322: 949-953, 2008).
  • the vector can contain regulatory sequences such as a promoter, an enhancer, a ribosome binding sequence, a terminator, a polyadenylation site, etc., so that a nuclear reprogramming substance can be expressed.
  • selectable marker sequences such as kanamycin resistance gene, ampicillin resistance gene, puromycin resistance gene), thymidine kinase gene, diphtheria toxin gene, reporter gene sequences such as green fluorescent protein (GFP), ⁇ -glucuronidase (GUS), FLAG, etc.
  • GFP green fluorescent protein
  • GUS ⁇ -glucuronidase
  • FLAG FLAG
  • the above vector has a LoxP sequence before and after the introduction of the gene into a somatic cell in order to excise the gene or promoter encoding the reprogramming factor and the gene encoding the reprogramming factor binding thereto. May be.
  • RNA it may be introduced into somatic cells by, for example, lipofection, microinjection, etc., and in order to suppress degradation, RNA incorporating 5-methylcytidine and pseudouridine (TriLink Biotechnology) is used. (Warren L, (2010) Cell Stem Cell. 7: 618-630).
  • Embryonic germ cells are established by culturing embryonic primordial germ cells in the presence of the compound of the present invention or a salt thereof, preferably using a medium for maintaining pluripotent stem cells.
  • a combination of nuclear transfer technology JB Cibelli et al. (1998), Nature Biotechnol., 16: 642-646) and ES cell production technology is usually used. Used (Kiyaka Wakayama et al. (2008), Experimental Medicine, Vol. 26, No. 5 (extra number), pages 47-52).
  • somatic cell nuclei are injected into an enucleated unfertilized egg of a mammal, and in the presence of the compound of the present invention or a salt thereof, preferably using a pluripotent stem cell maintenance culture medium. It can be initialized by culturing for a long time.
  • pluripotent stem cells can be established even in the culture in the absence of feeder cells, so use culture conditions in the absence of feeder cells. Can do.
  • the pluripotent stem cells cultured by the culture method of the present invention are usually pluripotent, undifferentiated pluripotent stem cells. Such pluripotent stem cells can be used as they are, or differentiated into desired cells and used for the production of research materials or regenerative medical products.
  • the cell culture composition, pluripotent stem cell maintenance culture medium, and culture method of the present invention are a composition for proliferating or establishing the pluripotent stem cells while maintaining the undifferentiated state of the pluripotent stem cells.
  • the medium and the method are also preferably used.
  • Cells Human iPS cells use the four factors (OCT3 / 4, SOX2, KLF4 and c-MYC) using a retrovirus, an 201B7 strain produced by introducing into human fibroblasts after culturing by: (Takahashi K, et al, Cell. 131: 861-872, 2007.).
  • 201B7 strain was seeded on a dish coated with 0.5 ⁇ g / cm 2 laminin 511E8 fragment (trade name “iMatrix-511”, Nippi), 64 mg / L L-ascorbic acid-2-magnesium phosphate, 14 ⁇ g / Cultured in DMEM / F12 supplemented with L sodium selenite, 19.4 mg / L insulin, 543 mg / L NaHCO 3 , 10.7 mg / L transferrin, 100 ⁇ g / L bFGF and 2 ⁇ g / L TGF ⁇ 1 Subculture was continued using a culture method that does not use feeder cells.
  • laminin 511E8 fragment trade name “iMatrix-511”, Nippi
  • 64 mg / L L-ascorbic acid-2-magnesium phosphate 14 ⁇ g / Cultured in DMEM / F12 supplemented with L sodium selenite, 19.4 mg / L insulin, 543 mg / L NaH
  • Example 1 Examination of alternative compounds for bFGF The human iPS cells were seeded at 1,300 cells / well on a 96-well plate coated with 0.5 ⁇ g / cm 2 of laminin 511E8 fragment (trade name “iMatrix-511”, Nippi). . Added 64 mg / L L-ascorbic acid-2-magnesium phosphate, 14 ⁇ g / L sodium selenite, 19.4 mg / L insulin, 543 mg / L NaHCO 3 , 10.7 mg / L transferrin, and 2 ⁇ g / L TGF ⁇ 1 DMEM / F12 was used as a control medium for bFGF.
  • FIG. 1 is a fluorescence microscopic image of human iPS cells cultured in a positive control (indicated by “bFGF +” in the figure) and a control medium (indicated by “bFGF ⁇ ” in the figure).
  • 2 and 3 are fluorescence microscopic images of human iPS cells cultured using a medium supplemented with each test compound.
  • the nuclear-stained cells expressed Oct3 / 4.
  • the test compounds compounds 1, 2, 4, 5, 6, 7, 8, 9 and 10
  • bFGF + pluripotent stem cells. It was confirmed that differentiation maintenance culture was possible.
  • Example 2 Examination of alternative compounds of TGF ⁇ 1
  • the human iPS cells were seeded at 1,300 cells / well on a 96-well plate coated with 0.5 ⁇ g / cm 2 laminin 511E8 fragment (trade name “iMatrix-511”, Nippi). .
  • FIG. 4 shows a fluorescence microscope image of human iPS cells cultured using a medium supplemented with each test compound. Regardless of which compound was used, the nuclear-stained cells expressed Oct3 / 4. From the above, it is confirmed that each compound (compounds 1, 2, 4 and 5) enables undifferentiated maintenance culture of pluripotent stem cells, similarly to the case of using TGF ⁇ 1 (“bFGF +” in FIG. 1). It was done.
  • Example 3 Subsequently, using the control medium (control medium for TGF ⁇ 1) used in Example 2, effective concentrations of compounds 1 and 2 were examined.
  • a positive control a medium in which 2 ⁇ g / L of TGF ⁇ 1 was added to the control medium used in Example 2 (“TGF ⁇ 1 +” in FIG. 5A) was used, and the control medium used in Example 2 was used as a control. (“TGF ⁇ 1-” in FIG. 5A).
  • TGF ⁇ 1- in FIG. 5A
  • the compound 1 was cultured at a concentration of 100 nM or 10 nM under the same conditions as in Example 2, it was confirmed that the same effect as that obtained when TGF ⁇ 1 was added (positive control) was obtained.
  • Example 4 Examination of alternative compounds of bFGF and TGF ⁇ 1
  • the human iPS cells were applied at 1,300 cells / well to a 96-well plate coated with 0.5 ⁇ g / cm 2 of laminin 511E8 fragment (trade name “iMatrix-511”, Nippi). Sowing. DMEM / F12 supplemented with 64 mg / L L-ascorbic acid-2-magnesium phosphate, 14 ⁇ g / L sodium selenite, 19.4 mg / L insulin, 543 mg / L NaHCO 3 and 10.7 mg / L transferrin, bFGF And TGF ⁇ 1 control medium.
  • each compound (compounds 3, 6, 7, 8, 9, and 10) can enable undifferentiated maintenance culture of pluripotent stem cells, similarly to the case of using two components of bFGF and TGF ⁇ 1. confirmed.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Cell Biology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Transplantation (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biophysics (AREA)
  • Physiology (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

 本発明は、細胞培養などに使用できる組成物、特に未分化状態を保持したまま多能性幹細胞を維持培養可能な新たな培地を提供することを主な課題とする。 本発明として、例えば、一般式(A)で表される化合物、構造式(1)で表される化合物、構造式(2)で表される化合物、構造式(3)で表される化合物からなる群より選択される少なくとも1種の化合物又はその塩を含有する細胞培養用組成物を挙げることができる。 (A) 式中、各符号は明細書に記載の通りである。

Description

細胞培養用組成物
 本発明は、細胞培養用組成物、特に多能性幹細胞の培養に適した組成物、該組成物を含む培地、及び多能性幹細胞の培養方法に関するものである。
 多能性幹細胞は、あらゆる組織の細胞へと分化する能力(多能性(pluripotency))と、ほぼ無限に増殖する能力を有する幹細胞であり、例えば、胚性幹細胞(ES細胞)、人工多能性幹細胞(iPS細胞)、胚性生殖細胞(EG細胞)、多能性生殖幹細胞(mGS細胞)、ヒトES細胞と体細胞との融合細胞などがある。多能性幹細胞は、様々な組織細胞へと誘導できることから、再生医療ないしその材料、創薬スクリーニングなど様々な分野への応用が期待されている。実際に、多能性幹細胞を分化させた組織細胞のヒトへの投与も行われている(非特許文献1参照)。
 多能性幹細胞を研究材料又は再生医療製品の作製のために使用する場合、当該細胞の多能性を保持したまま培養及び維持することが不可欠である。一方、ES細胞やiPS細胞のような多能性幹細胞では、継代を行うことによってそれら細胞の有する性状の一つである多能性を失う場合があることが知られている。
 そこで、多能性を保持したまま多能性幹細胞を培養及び維持するために、血清やマウス由来の線維芽細胞をフィーダー細胞と称される支持細胞層として用いて培養が行われていた(非特許文献2及び3参照)。しかしながら、フィーダー細胞の調製が煩雑であるという問題や、またかようなフィーダー細胞の調製には、ロットごとの未分化維持能が異なるため再現性が悪いという問題がある。また、多能性幹細胞を再生医療に応用するためには、培養系から異種由来の成分を排除するゼノフリー(Xeno-Free)条件を満たす培養環境も求められるが、マウス由来のフィーダー細胞を用いると異種由来のタンパク質が混在する可能性があることから、臨床応用に障害がある。
 このため、フィーダー細胞を用いないフィーダーフリー(フィーダーレス)の培養方法が提案されている。例えば、ReproFF(霊長類ES/iPS細胞用フィーダーレス培地、リプロセル社製)やmTeSR(登録商標)(ヒトES/iPS細胞維持用無血清培地、ステムセルテクノロジー社製)といったフィーダーレス培地が市販されている。また、ヒトラミニンα5β1γ1のE8フラグメント又はヒトラミニンα3β3γ2のE8フラグメントをコーティングした培養基材を用いたフィーダーレス培養技術が開示されている(特許文献1参照)。
 上記のようにフィーダーフリーの条件で多能性幹細胞を維持培養するためには、通常、塩基性線維芽細胞増殖因子(bFGF)又はトランスフォーミング増殖因子-β(トランスフォーミング成長因子-βともいう)(TGF-β)を添加して培養することが必要である(特許文献2及び3、並びに非特許文献4及び5参照)。
 しかしながら、タンパク質であるbFGF及びTGF-βは高価であるため、培養液のコストが高くなるという問題があり、再生医療などで多能性幹細胞が大量に必要となる場合において、コスト面で実用化の障害となっている。さらに、bFGF及びTGF-βはロット間で品質に差がある場合があり、安定したヒト多能性幹細胞の培養・供給が困難であるという問題もある。
 したがって、多能性幹細胞の実用化に向け、多能性幹細胞の未分化状態を保持したまま、簡便にかつ安定的に細胞を培養・維持することができる培地ないし方法が求められている。
国際公開第2011/043405号 国際公開第1999/020741号 国際公開第2004/055155号
Schwartz, S. D.et al, Lancet 379:713-720, 2012 Takahashi, K.et al, Cell 131:861-872, 2007 Thomson, J. A. et al, Science 282:1145-1147, 1998 Chen G, et al, Nat Methods. 8:424-429, 2011 Nakagawa M, et al. Sci Rep. 4:3594, 2014
 本発明は、細胞培養などに使用できる組成物、特に未分化状態を保持したまま多能性幹細胞を維持培養可能な新たな培地を提供することを主な課題とする。
 本発明者は、鋭意研究を重ねた結果、多能性幹細胞を維持培養するための培地に、次の一般式(A)で表される化合物(以下「化合物A」という):
Figure JPOXMLDOC01-appb-C000015
(式中、
は、水素原子又は炭素数1~5のアルキルを表し、
は、水素原子又は水酸基を表し、
は、水素原子又は水酸基を表し、
及びRは、同一又は異なって、水素原子又は炭素数1~5のアルキルを表し、
は、水素原子又は炭素数1~15のアルキルを表し、
は、水素原子又は-O-CO-R(式中、Rは、水素原子、炭素数1~5のアルキル、又は炭素数2~5のアルケニルを表す)を表し、
は、水素原子又は炭素数1~5のアルキルを表し、
-X-Y-は、-CR10=CH-(式中、R10は、水素原子又は炭素数1~5のヒドロキシアルキルを表す)、又は-CR1112-CHR13-(式中、R11は、水素原子又は炭素数1~5のヒドロキシアルキルを表し、R12及びR13は、一緒になって隣接する炭素原子と共にエポキシ基を形成している)を表す)、
 次の構造式(1)で表される化合物(以下「化合物1」という):
Figure JPOXMLDOC01-appb-C000016

 次の構造式(2)で表される化合物(以下「化合物2」という):
Figure JPOXMLDOC01-appb-C000017
、及び
次の構造式(3)で表される化合物(以下「化合物3」という):
Figure JPOXMLDOC01-appb-C000018
からなる群より選択される少なくとも1種の化合物又はその塩を添加することにより、上記課題を解決することができることを見出し、本発明を完成した。
 本発明として、例えば、下記のものを挙げることができる。
[1]化合物A、化合物1、化合物2、及び化合物3からなる群より選択される少なくとも1種の化合物又はその塩を含有することを特徴とする細胞培養用組成物。
[2]上記[1]記載の細胞培養用組成物を含むことを特徴とする多能性幹細胞維持培養用培地。
[3]多能性幹細胞の未分化状態を維持させつつ、該多能性幹細胞を増殖させるための多能性幹細胞の培養方法であって、かかる培養を、化合物A、化合物1、化合物2、及び化合物3からなる群より選択される少なくとも1種の化合物又はその塩の存在下で行うことを特徴とする、培養方法。
[4]多能性幹細胞の未分化状態を維持させつつ、該多能性幹細胞を増殖させるための、化合物A、化合物1、化合物2、及び化合物3からなる群より選択される少なくとも1種の化合物又はその塩の使用。
[5]体細胞からiPS細胞を製造する方法であって、初期化因子を導入した体細胞を、化合物A、化合物1、化合物2、及び化合物3からなる群より選択される少なくとも1種の化合物又はその塩の存在下で培養することを特徴とする、方法。
 本発明によれば、フィーダー細胞を使わず、かつ動物由来の成分を含まないゼノフリーの条件で、iPS細胞等の多能性幹細胞を、未分化状態を維持したまま、安定的に効率よく培養することができる。従って、本発明によれば、フィーダーフリーかつゼノフリーの条件で、iPS細胞等の多能性幹細胞を、その未分化状態を維持したまま安定的に増殖又は樹立させることができる。また、本発明によれば、フィーダーフリーかつゼノフリーの条件で、bFGF及びTGF-βの代わりに低分子化合物を用いて多能性幹細胞の維持培養を行うことができる。このため、多能性幹細胞の維持培養をより簡便にかつ安定的に行うことができる。さらに、多能性幹細胞の維持培養のためのコストを低減することが可能となる。
TGFβ1及びbFGFの存在下(陽性対照)、又はTGFβ1存在下(対照)で培養したiPS細胞を、Hoechst33342で染色した蛍光顕微鏡像(上段)及び抗Oct3/4抗体を用いて免疫染色した蛍光顕微鏡像(下段)を示す。図中、「bFGF+」は、陽性対照であり、「bFGF-」は、対照である。 各被験化合物を用いて培養した1週間後のiPS細胞を、Hoechst33342で染色した蛍光顕微鏡像(上段)及び抗Oct3/4抗体を用いて免疫染色した蛍光顕微鏡像(下段)を示す。 各被験化合物を用いて培養した1週間後のiPS細胞を、Hoechst33342で染色した蛍光顕微鏡像(上段)及び抗Oct3/4抗体を用いて免疫染色した蛍光顕微鏡像(下段)を示す。 各被験化合物を用いて培養した1週間後のiPS細胞を、Hoechst33342で染色した蛍光顕微鏡像(上段)及び抗Oct3/4抗体を用いて免疫染色した蛍光顕微鏡像(下段)を示す。 図5のAは、化合物1を100nM又は10nM用いて培養した1週間後のiPS細胞を、Hoechst33342で染色した蛍光顕微鏡像(上段)及び抗Oct3/4抗体を用いて免疫染色した蛍光顕微鏡像(下段)を示す。図中、TGFβ1+は、陽性対照を示し、TGFβ1-は、対照を示す。図5のBは、化合物2を1μM、100nM又は10nM用いて培養した1週間後のiPS細胞を、Hoechst33342で染色した蛍光顕微鏡像(上段)及び抗Oct3/4抗体を用いて免疫染色した蛍光顕微鏡像(下段)を示す。 各被験化合物を用いて培養した1週間後のiPS細胞を、Hoechst33342で染色した蛍光顕微鏡像(上段)及び抗Oct3/4抗体を用いて免疫染色した蛍光顕微鏡像(下段)を示す。図中「bFGF+ TGFβ1+」は、陽性対照を示し、「bFGF- TGFβ1-」は、対照を示す。
 以下、本発明を詳述する。
(I)本発明に係る化合物について
 化合物A中の各用語の意義は下記の通りである。
 R、R、R、及びRに係る「アルキル」としては、例えば、直鎖状又は分枝鎖状の炭素数1~5のアルキルを挙げることができ、具体的には例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、1-メチルブチル、2-メチルブチル、n-ペンチル、イソペンチル、1,1-ジメチルプロピル、1,2-ジメチルプロピル、2,2-ジメチルプロピル、1-エチルプロピルを挙げることができる。
 R、R、R、及びRは、好ましくは炭素数1~5のアルキルであり、より好ましくは炭素数1~3のアルキルであり、更に好ましくはメチルである。
 Rに係る「アルキル」としては、例えば、直鎖状又は分枝鎖状の炭素数1~15のアルキルを挙げることができ、好ましくは直鎖状又は分枝鎖状の炭素数1~12のアルキルである。具体的には例えば、メチル、エチル、n-プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、n-ペンチル、イソペンチル、1,1-ジメチルプロピル、1,2-ジメチルプロピル、2,2-ジメチルプロピル、1-エチルプロピル、n-ヘキシル、1-エチル-2-メチルプロピル、1,1,2-トリメチルプロピル、1-メチルブチル、2-メチルブチル、1,1-ジメチルブチル、1,2-ジメチルブチル、2,2-ジメチルブチル、1,3-ジメチルブチル、2,3-ジメチルブチル、1-エチルブチル、2-エチルブチル、2-メチルペンチル、3-メチルペンチル、n-ヘプチル、n-オクチル、n-ノニル、n-デシル、n-ウンデシル、n-ドデシル、n-トリデシル、n-テトラデシル、n-ペンタデシルを挙げることができる。
 Rに係る「アルキル」としては、例えば、直鎖状又は分枝鎖状の炭素数1~5のアルキルを挙げることができる。具体的には例えば、メチル、エチル、プロピル、イソプロピル、n-ブチル、イソブチル、sec-ブチル、tert-ブチル、1-メチルブチル、2-メチルブチル、n-ペンチル、イソペンチル、1,1-ジメチルプロピル、1,2-ジメチルプロピル、2,2-ジメチルプロピル、1-エチルプロピルを挙げることができる。中でも、メチル、エチル、プロピル、イソプロピルが好ましい。
 Rに係る「アルケニル」としては、例えば、直鎖状又は分枝鎖状の炭素数2~5のアルケニル、例えば、エテニル、1-メチルエテニル、1-プロペニル、2-プロペニル、1-ブテニル、2-ブテニル、3-ブテニル、1-メチル-1-プロペニル、2-メチル-1-プロペニル、1-メチル-2-プロペニル、2-メチル-2-プロペニル、1-ペンテニルを挙げることができる。中でも、炭素数4のアルケニルが好ましく、1-メチル-1-プロペニルがより好ましい。
 R10、及びR11に係る「ヒドロキシアルキル」の「アルキル」としては、例えば、前記1~5のアルキルと同じものを挙げることができる。「ヒドロキシアルキル」として具体的には例えば、ヒドロキシメチル、ヒドロキシエチルが挙げられ、好ましくはヒドロキシメチルである。
 R10は、好ましくは炭素数1~3のヒドロキシアルキルであり、より好ましくはヒドロキシメチルである。R11は、好ましくは炭素数1~3のヒドロキシアルキルであり、より好ましくはヒドロキシメチルである。
 -CR1112-CHR13-(式中、R11は、水素原子又は炭素数1~5のヒドロキシアルキルを表し、R12及びR13は、一緒になって隣接する炭素原子と共にエポキシ基を形成している)で表される構造は、具体的には、以下に示される構造を挙げることができる。
Figure JPOXMLDOC01-appb-C000019
 上記式中、R11は前記と同義である。
 より具体的には、化合物Aとして、次の構造式(4)~(10)で表される各化合物(以下、それぞれ「化合物4」~「化合物10」という)を挙げることができる。
Figure JPOXMLDOC01-appb-C000020
 本発明に係る化合物の中で、化合物1~10が好ましく、これらの立体異性体をも包含する。さらに好ましくは、化合物2、5及び10である。化合物2、5及び10の好ましい態様の一例として、それぞれ次の構造式(2-1)、構造式(5-1)及び構造式(10-1)で表される構造を有する立体異性体が例示されるが、これらに限定されない。
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
 前記化合物1~10はいずれも公知であり、市販されている。これらの化合物は、例えば、AnalytiCon Discovery GmbH社から購入することができる。
 化合物Aの中、化合物4~10以外の化合物についても、化合物1~10の合成方法に準じて適宜製造することができる。
 本発明に係る化合物の「塩」としては、該化合物が酸性を示す場合には、例えば、ナトリウム塩、カリウム塩、カルシウム塩、マグネシウム塩、アンモニウム塩などの無機塩基の塩、又は、メチルアミン、エチルアミン、エタノールアミン、リジン、アルギニンなどの有機塩基の塩を挙げることができる。該化合物が塩基性を示す場合には、例えば、塩酸、硫酸、硝酸、リン酸、フッ化水素酸、臭化水素酸などの無機酸の塩、又は、酢酸、酒石酸、乳酸、クエン酸、フマル酸、マレイン酸、コハク酸、メタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、ナフタレンスルホン酸、カンファースルホン酸などの有機酸の塩を挙げることができる。このような塩は、自体公知の方法により得ることができる。
 本発明に係る化合物又はその塩は、溶媒和物(水和物も含む)であってもよい。かかる溶媒和物は、通常、対応する溶媒又は対応する溶媒を含む適当な混合溶媒から被溶媒和物を再結晶することにより得ることができる。例えば、水和物は、本発明に係る化合物を含水アルコールから再結晶することにより得ることができる。
 本発明に係る化合物及びその塩は、細胞を培養する際に好適に用いられるものであり、特に、多能性幹細胞の未分化状態を維持させつつ、該細胞を培養するために好適に用いられる。具体的には、例えば、多能性幹細胞の未分化状態を維持させつつ、該多能性幹細胞を増殖又は樹立させるために好適に使用することができ、特に、多能性幹細胞の未分化状態を維持させつつ、該多能性幹細胞を増殖させるために好適に使用することができる。このため多能性幹細胞の維持培養等に好適に使用される。
(II)本発明に係る細胞培養用組成物及び多能性幹細胞維持培養用培地
 本発明に係る細胞培養用組成物は、化合物A、化合物1、化合物2、及び化合物3からなる群より選択される少なくとも1種の化合物又はその塩を含有するものである。当該組成物は、そのまま細胞培養用の培地として使用することもできるが、培地補充物又は培地用添加物として使用することもできる。
 本発明の細胞培養用組成物は、前記化合物A、化合物1、化合物2、及び化合物3からなる群より選択される少なくとも1種の化合物又はその塩からなるものであってもよく、本発明の効果を奏することになる限り、他の成分(例えば、後述する培地基礎成分、抗酸化剤、血清代替物)を含んでもよい。
 本発明に係る細胞培養用組成物中におけるこれら本発明に係る化合物及びその塩の含有量は、特に限定されないが、例えば、培地へ添加した場合に本発明に係る化合物及びその塩の合計濃度が、1nM~10μMの範囲内になる含有量であり、好ましくは、10nM~1μMの範囲内になる含有量とすることができる。
 培養対象の細胞は特に限定されないが、多能性幹細胞が好ましい。多能性幹細胞としては、生体に存在する全ての細胞に分化可能である多能性を有し、かつ、増殖能をも併せもつ幹細胞であれば特に限定されない。多能性幹細胞として、例えば、胚性幹細胞(ES細胞)、核移植により得られるクローン胚由来の胚性幹細胞(ntES細胞)、精子幹細胞(GS細胞)、胚性生殖細胞(EG細胞)、人工多能性幹細胞(iPS細胞)、培養線維芽細胞又は骨髄幹細胞由来の多能性細胞(Muse細胞)、多能性生殖幹細胞(mGS細胞)、ヒトES細胞と体細胞との融合細胞、刺激惹起性多能性獲得細胞(STAP細胞)(WO2013/163296)を挙げることができる。中でも、ES細胞又はiPS細胞が好ましい。
 多能性幹細胞は、ヒト、サル、マウス、ラット、ハムスター、ウサギ、モルモット、ウシ、ブタ、イヌ、ウマ、ネコ、ヤギ、ヒツジ等の哺乳動物由来の細胞;鳥類由来の細胞;爬虫類由来の細胞などの様々な動物に由来するものを用いることができる。好ましくは、哺乳動物に由来するものを用い、特に好ましくはヒト由来のものを用いる。
 特に好ましい多能性幹細胞は、ヒト由来のES細胞又はiPS細胞である。
 本発明の細胞培養用組成物は、多能性幹細胞培養のために好適に用いられるものである。例えば、未分化状態の多能性幹細胞を増殖又は樹立させるために用いることができる。特に、多能性幹細胞の未分化状態を維持させつつ、該多能性幹細胞を増殖させるために好適に使用される。本明細書中、多能性幹細胞が「未分化状態」であるとは、多能性幹細胞が多能性及び増殖能を有している状態であることを意味する。多能性とは、上述したように分化能力を有していることである。多能性幹細胞が未分化状態を維持していることは、例えば、少なくともOct-3/4の発現を指標として確認することができる。この他にも、Nanog、Sox2、SSEA-1、SSEA-3、SSEA-4、TRA-1-60及びTRA-1-81から成る群より選択される1又は2以上のマーカー遺伝子の発現を指標として確認することができる。なお、これらのマーカー遺伝子の測定は、市販のキット(例えば、ES/iPS Cell, Human, Characterization Kit(System Biosciences, LLC))を用いて適宜実施し得る。
 本発明の細胞培養用組成物の使用方法は特に限定されず、例えば、多能性幹細胞の培養のために用いる場合には、培地に細胞培養用組成物を添加することができる。また、細胞培養用組成物をそのまま多能性幹細胞維持培養用培地として使用することもできる。
 前記細胞培養用組成物を含む多能性幹細胞維持培養用培地は、本発明の好ましい実施態様の1つである。かかる多能性幹細胞維持培養用培地は、化合物A、化合物1、化合物2、及び化合物3からなる群より選択される少なくとも1種の化合物又はその塩を含有するものである。
 「多能性幹細胞維持培養用培地」とは、多能性幹細胞の培養に適した培養用培地又はその組成物をいい、多能性幹細胞の未分化状態を維持しつつ、その増殖を可能とするものである。
 本発明の細胞培養用組成物又は多能性幹細胞維持培養用培地を用いることにより、フィーダーフリーで、かつ動物由来成分を含まないゼノフリーの条件で、多能性かつ増殖性の未分化状態で多能性幹細胞を維持培養することができる。
 また、本発明の細胞培養用組成物及び多能性幹細胞維持培養用培地は、多能性幹細胞を樹立するための培養においても好適に使用され得る。例えば、本発明の細胞培養用組成物又は多能性幹細胞維持培養用培地を用いることにより、フィーダーフリーで、かつ動物由来成分を含まないゼノフリーの条件で、多能性かつ増殖性の未分化状態の多能性幹細胞を樹立することができる。
 多能性幹細胞維持培養用培地中の細胞培養用組成物の含有量は特に限定されない。例えば、化合物A又はその塩、化合物1、化合物2、及び化合物3、並びにこれらの塩の合計濃度を、通常1nM~10μMとすることができ、好ましくは、10nM~1μMとすることができる。前記の合計濃度とは、本発明に係る化合物又はその塩を1種のみ使用する場合には、該化合物又はその塩の濃度である。
 多能性幹細胞維持培養用培地は、通常、培地基礎成分を含むものである。培地基礎成分は、これに上記の細胞培養用組成物を含有させた場合に、多能性幹細胞の未分化状態を維持しつつ、増殖を可能にするものであればよく、特に限定されない。このような培地基礎成分は、通常細胞が同化し得る炭素源、窒素源及び無機塩を含むものである。具体的には、グルコース等の糖類、必須アミノ酸、無機塩類(亜鉛、鉄、マグネシウム、カルシウム、カリウムなど)、及びビタミン類を含む。培地基礎成分には、必要に応じて緩衝剤成分を添加することもできる。
 培地基礎成分としては、当業者に公知の基礎培地を使用することができる。基礎培地の具体例としては、例えば、Dulbecco’s Modified Eagle’s Medium(DMEM)、Minimal essential Medium(MEM)、Basal Medium Eagle(BME)、RPMI1640、F-10、F-12、αMinimal essential Medium(αMEM)、Glasgow’s Minimal essential Medium(GMEM)、Iscove’s Modified Dulbecco’s Medium(IMDM)などが挙げられ、市販のものを使用することができる。
 また、培地基礎成分には、非必須アミノ酸、ピルビン酸ナトリウム等の成分を加えることもできる。
 多能性幹細胞維持培養用培地には、培地基礎成分に加えて、抗酸化剤、血清代替添加物を添加することが好ましい。
 抗酸化剤は特に限定されず、例えば、2-メルカプトエタノール、ジチオスレイトール、アスコルビン酸又はそのエステルを用いることができる。アスコルビン酸又はそのエステルは、塩を形成していてもよい。中でも、アスコルビン酸又はそのエステルが好ましい。抗酸化剤の添加量は特に限定されず、抗酸化剤の種類に応じて適宜選択することができる。例えば、培地中において、抗酸化剤の濃度が通常10~100mg/L、好ましくは50~75mg/Lとなるように添加することができる。
 血清代替添加物とは、通常、血清と類似した成分を含むように構成された人工的な液体組成物であって、それを添加することにより、血清が存在しなくても細胞の増殖が可能となるものである。血清代替添加物として、例えば、アミノ酸、無機塩類、ビタミン、アルブミン、インスリン、トランスフェリン、抗酸化成分を使用することができる。アミノ酸として、例えば、グリシン、L-アラニン、L-アスパラギン、L-システイン、L-アスパラギン酸、L-グルタミン酸、L-フェニルアラニン、L-ヒスチジン、L-イソロイシン、L-リジン、L-ロイシン、L-グルタミン、L-アルギニン、L-メチオニン、L-プロリン、L-ヒドロキシプロリン、L-セリン、L-スレオニン、L-トリプトファン、L-チロシン、L-バリンが挙げられる。無機塩類として、例えば、AgNO、AlCl・6HO、Ba(C、CdSO・8HO、CoCl・6HO、Cr(SO4)3・1HO、GeO、NaSeO、HSeO、KBr、KI、MnCl・4HO、NaF、NaSiO・9HO、NaVO、(NH)6Mo24・4HO、NiSO・6HO、RbCl、SnCl、ZrOCl・8HO、亜セレン酸ナトリウムが挙げられる。ビタミンとして、例えばチアミン、アスコルビン酸が挙げられる。抗酸化成分として、例えば還元型グルタチオンが挙げられる。これらは、1種のみ使用しもよく、2種以上を組み合わせて使用してもよい。
 市販されているES細胞用の血清代替添加物、例えば、ノックアウト(登録商標)血清代替添加物(KSR)(Invitrogen社)を使用することもできる。
 血清代替添加物の添加量は特に限定されず、血清代替添加物の種類に応じて適宜選択することができる。例えば、培地中において、血清代替添加物の濃度が通常5~30v/v%、好ましくは10~20v/v%となるように添加することができる。
 本発明に係る細胞培養用組成物及び多能性幹細胞維持培養用培地は、例えば、多能性幹細胞の維持培養に使用されているフィーダー細胞、血清などの動物由来の成分を含むこともできるが、好ましくは、フィーダー細胞及び/又は血清を含まないものであり、より好ましくは、フィーダー細胞及び血清を含まないものである。また、特に好ましくは、動物由来の成分を含まないゼノフリーのものである。本発明に係る細胞培養用組成物及び多能性幹細胞維持培養用培地は、フィーダーフリーで多能性幹細胞を維持培養する際などに使用されているbFGF及び/又はTGFβを含むこともできる。但し、好ましくは、bFGF及び/又はTGFβを含まないものであり、より好ましくはbFGF及びTGFβを含まないものである。特に好ましくは、フィーダー細胞、血清などの動物由来の成分、bFGF及びTGFβを含まないものである。
 本発明に係る細胞培養用組成物及び多能性幹細胞維持培養用培地には、必要に応じて、pH調整剤、保湿剤、防腐剤、粘度調整剤等の任意成分を使用することもできる。このような任意成分の添加量は、本発明の効果を損なわない限り特に限定されず、適宜選択することができる。
 本発明に係る細胞培養用組成物及び上述の各成分は、培地に対して最初から目的の濃度となるような量で添加されてもよく、2回又はそれ以上の回数に分けて添加し、最終的に目的の濃度となるような量で添加されてもよい。好ましくは、最初から目的の濃度となるような量で添加する。多能性幹細胞維持培養用培地のpHは、通常、6.5~7.5に調整し、好ましくは6.8~7.2に調整する。
 本発明に係る細胞培養用組成物及び多能性幹細胞維持培養用培地は、それぞれ溶液形態又は乾燥形態で調製されうる。溶液形態の場合、濃縮組成物(例えば、1~1000倍)として提供されてもよく、使用に際して、適宜に希釈されてもよい。溶液形態又は乾燥形態の組成物又は培地を希釈又は溶解するのに用いられる液体は特に限定されないが、通常、水、緩衝液、生理食塩水を使用することができ、必要に応じて適宜選択することができる。
 本発明の好ましい態様においては、細胞培養用組成物及び多能性幹細胞維持培養用培地は滅菌され、コンタミネーションが防止されたものである。滅菌方法は特に限定されず、通常の方法を採用することができ、例えば、紫外線照射、加熱滅菌、放射線照射、又は濾過により滅菌することができる。
(III)培養方法
 本発明は、多能性幹細胞の未分化状態を維持させつつ、該多能性幹細胞を増殖又は樹立させるための多能性幹細胞の培養方法も包含する。本発明の培養方法においては、多能性幹細胞の培養を、化合物A、化合物1、化合物2、及び化合物3からなる群より選択される少なくとも1種の化合物又はその塩の存在下で行う。
 本発明の培養方法は、好ましくは、多能性幹細胞の未分化状態を維持させつつ、該多能性幹細胞を増殖させるための多能性幹細胞の培養方法である。
 多能性幹細胞の培養を、化合物A、化合物1、化合物2、及び化合物3からなる群より選択される少なくとも1種の化合物又はその塩の存在下で行うことにより、多能性幹細胞の未分化状態を維持させつつ、該多能性幹細胞を増殖又は樹立させることができる。
 以下、多能性幹細胞の未分化状態を維持させつつ、該多能性幹細胞を増殖させるための多能性幹細胞の培養方法について説明する。
 本発明の方法は、フィーダーフリーかつゼノフリーの培養条件で多能性幹細胞(好ましくは、上述したヒトiPS細胞又はES細胞)を維持培養する場合に使用することが好ましい。
 本発明の方法における多能性幹細胞の培養は、上記の多能性幹細胞維持培養用培地を用いて行うことが好ましい。多能性幹細胞維持培養用培地の成分及びその好ましい態様は、上述したものと同様である。また、多能性幹細胞維持培養用培地は、溶液(培養液)の形態で用いることが好ましい。
 例えば、上記多能性幹細胞維持培養用培地を培地として使用して、多能性幹細胞の維持培養に通常使用されている条件で培養を行うことにより、多能性幹細胞の未分化状態を維持させつつ、多能性幹細胞を増殖させることができる。
 多能性幹細胞維持培養用培地の各成分は、培地に対して最初から目的の濃度となるような量で添加されてもよく、培養中に2回又はそれ以上の回数に分けて添加し、最終的に目的の濃度となるような量で添加されてもよい。好ましくは、最初から目的の濃度となるような量で添加する。多能性幹細胞維持培養用培地のpHは、通常、6.5~7.5に調整し、好ましくは6.8~7.2に調整する。
 本発明の方法においては、例えば、化合物A、化合物1、化合物2、及び化合物3、並びにこれらの塩の培地中での合計濃度が、好ましくは1nM~10μMとすることができ、より好ましくは、10nM~1μMの条件で培養を行う。本発明に係る化合物及びその塩の濃度がこのような範囲であると、多能性幹細胞の未分化状態を維持させつつ、多能性幹細胞を効率よく増殖させることができる。本発明に係る化合物又はその塩は、培地に対して最初から目的の濃度となるような量で添加されてもよく、培養中に2回又はそれ以上の回数に分けて添加し、最終的に目的の濃度となるような量で添加されてもよい。
 本発明の培養方法においては、多能性幹細胞をフィーダー細胞を含まない条件で培養することが好ましい。また、多能性幹細胞を血清の非存在下で培養することが好ましい。より好ましくは、フィーダー細胞及び血清の非存在下で多官能細胞の培養を行う。さらに、フィーダーフリーかつゼノフリーの条件で多能性幹細胞の培養を行うことが好ましい。また、本発明の培養方法においては、bFGF及び/又はTGFβの非存在下で多官能細胞の培養を行うことが好ましく、より好ましくはbFGF及びTGFβの非存在下で培養を行う。
 本発明において、フィーダーフリーの条件での培養方法の好ましい実施態様として、例えば、細胞外基質によりコーティング処理された培養容器を用いて培養する方法が例示される。コーティング処理は、細胞外基質を含有する溶液を培養容器に入れた後、当該溶液を適宜除くことによって行い得る。本発明においては、このように細胞外基質によりコーティング処理された培養容器中で多能性幹細胞の培養を行うことが好ましい。
 本発明において、細胞外基質とは、細胞の外に存在する超分子構造体であり、天然由来であっても、人工物(組換え体)であってもよい。例えば、コラーゲン、プロテオグリカン、フィブロネクチン、ヒアルロン酸、テネイシン、エンタクチン、エラスチン、フィブリリン、ラミニンといった物質又はこれらの断片が挙げられる。これらの細胞外基質は、組み合わせて用いられてもよく、例えば、BD Matrigel(登録商標)などの細胞からの調製物であってもよい。人工物としては、ラミニンの断片が例示される。本発明において、ラミニンとは、α鎖、β鎖、γ鎖をそれぞれ1本ずつ持つヘテロ三量体構造を有するタンパク質であり、特に限定されないが、例えば、α鎖は、α1、α2、α3、α4又はα5であり、β鎖は、β1、β2又はβ3であり、ならびにγ鎖は、γ1、γ2又はγ3が例示される。本発明において、ラミニンの断片とは、インテグリン結合活性を有しているラミニンの断片であれば、特に限定されないが、例えば、エラスターゼにて消化して得られる断片であるE8フラグメントが例示される。
 本発明において、培養する多能性幹細胞の数は特に限定されないが、例えば、溶液状態の培地(培養液)に、多能性幹細胞を通常50~50000個/cm2、好ましくは、100~5000個/cm2として培養を始めることができる。
 また、本発明の培養方法は、例えば1個の多能性幹細胞を培養して増殖させることができるため、クローン細胞集団を形成させることを可能とするものである。
 培養対象の多能性幹細胞は、上述したものと同様である。
 培養に供する多能性幹細胞は、未分化状態のものである。培養する多能性幹細胞の調製方法は特に限定されず、例えば、フィーダーレスの条件で樹立された多能性幹細胞、フィーダー細胞との共培養系で樹立された多能性幹細胞のいずれも用いることができる。具体的には、例えば、公知の方法で樹立又は継代培養された多能性幹細胞を用いることができる。また、後述する本発明の方法により培養を行って樹立された多能性幹細胞を用いることができる。また、フィーダー細胞との共培養系から多能性幹細胞を回収し、回収した多能性幹細胞をそのまま培養に供することができるが、回収した多能性幹細胞を数次にわたって継代培養したものを培養に供することもできる。この場合の継代培養は、フィーダーフリーの条件で行うことが好ましい。
 本発明の方法において、培養に供する多能性幹細胞は、任意の方法で実質的に分離(又は解離)することで単一細胞の状態としたものであってもよく、又は、細胞同士が接着した細胞塊の状態のものであってもよい。具体的には例えば、培養に供する前に、必要に応じて多能性幹細胞を分離させる処理を行い、単一細胞の状態又は細胞塊の状態で、新しい培養容器に移して培養を行い得る。ここで、分離の方法としては、例えば、力学的分離、プロテアーゼ活性及びコラゲナーゼ活性を有する分離溶液(例えば、トリプシン及びコラゲナーゼを含有する溶液として、Accutase(登録商標)及びAccumax(登録商標(Innovative Cell Technologies, Inc)が挙げられる)またはコラゲナーゼ活性のみを有する分離溶液を用いた分離が挙げられる。
 多能性幹細胞を単一細胞へ分散させる場合には、培地にROCK阻害剤が含まれていることが好ましい。
 本発明において、ROCK阻害剤とは、Rho-キナーゼ(ROCK)の機能を抑制できるものである限り特に限定されず、例えば、Y-27632(Cas No.:146986-50-7)(例、Ishizaki et al., Mol. Pharmacol. 57, 976-983 (2000);Narumiya et al., Methods Enzymol. 325,273-284 (2000)参照)、Fasudil/HA1077(例、Uenata et al., Nature 389: 990-994 (1997)参照)、H-1152(例、Sasaki et al., Pharmacol. Ther. 93: 225-232 (2002)参照)、Wf-536(例、Nakajima et al., Cancer Chemother Pharmacol. 52(4): 319-324 (2003)参照)及びそれらの誘導体、並びにROCKに対するアンチセンス核酸、RNA干渉誘導性核酸(例、siRNA)、ドミナントネガティブ変異体、及びそれらの発現ベクターが挙げられる。また、ROCK阻害剤としては他の公知の低分子化合物も使用できる(例えば、米国特許出願公開第2005/0209261号、同第2005/0192304号、同第2004/0014755号、同第2004/0002508号、同第2004/0002507号、同第2003/0125344号、同第2003/0087919号、及び国際公開第2003/062227号、同第2003/059913号、同第2003/062225号、同第2002/076976号、同第2004/039796号参照)。本発明では、1種又は2種以上のROCK阻害剤が使用され得る。本発明において用いられる好ましいROCK阻害剤としては、Y-27632が挙げられる。本発明において、多能性幹細胞維持培養用培地中のROCK阻害剤の濃度は、使用するROCK阻害剤に応じて当業者が適宜選択可能であるが、例えば、ROCK阻害剤としてY-27632を用いる場合、通常0.1μM~100μM、好ましくは、1μM~50μM、さらに好ましくは、5μM~20μMである。
 本発明の多能性幹細胞の培養方法において、培養温度は、特に限定されないが、通常約30~40℃、好ましくは約37℃である。通常、CO含有空気の雰囲気下で培養が行われ、CO濃度は、好ましくは約2~5%である。
 培地の交換は、通常1日~2日ごと、好ましくは毎日行うことが好ましい。
 また、多能性幹細胞は適宜継代することできる。例えばES細胞であれば、通常3~4日おきに継代することが好ましい。継代は、公知の方法により行うことができる。
 本発明の培養方法は、未分化状態の多能性幹細胞を樹立するための培養に使用され得る。例えば、未分化状態の多能性幹細胞を樹立するための培養において、該培養を化合物A、化合物1、化合物2、及び化合物3からなる群より選択される少なくとも1種の化合物又はその塩の存在下で行うことにより、多能性幹細胞を樹立することができる。本発明の方法は、例えば、フィーダーフリーかつゼノフリーの培養条件で多能性幹細胞を樹立する場合に好適に使用される。
 多能性幹細胞は、上述したものと同様であり、iPS細胞又はES細胞であることが好ましい。また、多能性幹細胞は哺乳動物由来のものであることが好ましく、さらに、多能性幹細胞はヒト由来のものであることが好ましい。中でも、ヒト由来のiPS細胞が特に好ましい。
 例えば、多能性幹細胞を樹立する際に、上記細胞培養用組成物又は多能性幹細胞維持培養用培地を培地として使用して、多能性幹細胞の樹立に通常使用されている条件で多能性幹細胞の培養を行うことにより、未分化状態の多能性幹細胞を樹立させることができる。培地の好ましい態様等は、上述した通りである。未分化状態の多能性幹細胞を樹立するための培養条件等は、多能性幹細胞の種類により異なり、適宜選択することができる。
 培地中の本発明にかかる化合物又はその塩の濃度は、上述した維持培養の場合と同様とすることができ、化合物A、化合物1、化合物2、及び化合物3、並びにこれらの塩の培地中での合計濃度が、好ましくは1nM~10μM、より好ましくは、10nM~1μMの条件で培養を行う。培養温度は、特に限定されないが、通常約30~40℃、好ましくは約37℃である。通常、CO含有空気の雰囲気下で培養が行われ、CO濃度は、好ましくは約2~5%である。
 培地の交換は、通常1日~2日ごと、好ましくは毎日行う。
 例えばES細胞であれば、ヒト胚盤胞から単離された細胞塊を、本発明に係る化合物又はその塩の存在下で培養することにより、ヒトES細胞を樹立することができる。好ましくは、ES細胞作製のための培地(培養液)として上記細胞培養用組成物又は多能性幹細胞維持培養用培地を使用する。継代培養によるES細胞の維持は、例えば、上述した本発明の培養方法により行うことができる。
 ES細胞の選択は、一般に、アルカリホスファターゼ、Oct-3/4、Nanogなどの遺伝子マーカーの発現を指標にしてReal-Time PCR法で行うことができる。特に、ヒトES細胞の選択では、OCT-3/4、NANOG、ECADなどの遺伝子マーカーの発現を指標とすることができる(E. Kroon et al.(2008), Nat. Biotechnol., 26:443-452)。
 また、例えばiPS細胞を樹立させるための培養においては、本発明にかかる化合物又はその塩の存在下で体細胞と初期化因子とを接触させ、培養を行うことによりiPS細胞を樹立することができる。また、初期化因子が導入された体細胞を本発明に係る化合物又はその塩の存在下で培養することにより、iPS細胞を樹立することができる。
 好ましくは、iPS細胞誘導のための培地(培養液)として、上記細胞培養用組成物又は多能性幹細胞維持培養用培地を用いる。
 iPS細胞樹立のための培養方法の例としては、例えば、通常、培養温度が約30~40℃、CO濃度が約2~5%の条件、好ましくは培養温度が約37℃、約5%CO存在下にて、体細胞と初期化因子とを接触させ、細胞外基質をコーティングしたディッシュに移し、その後、多能性幹細胞維持培養用培地で培養し、該接触から約20~約30日又はそれ以上ののちにiPS様コロニーを生じさせることができる。初期化因子を接触させた直後は、体細胞に適した培地で培養しても良い。
 あるいは、通常培養温度が約30~40℃、CO濃度が約2~5%の条件、好ましくは約37℃、約5%CO存在下にて、フィーダー細胞(例えば、マイトマイシンC処理STO細胞、SNL細胞等)上で多能性幹細胞維持培養用培地で培養し、約25~約30日又はそれ以上ののちにES様コロニーを生じさせることができる。好ましくは、フィーダー細胞の代わりに、初期化される体細胞そのものを用いる(Takahashi K, et al.(2009), PLoS One. 4:e8067またはWO2010/137746)を用いる方法が例示される。
 さらに、樹立効率を上げるため、低酸素条件(0.1%以上、15%以下の酸素濃度)によりiPS細胞を樹立しても良い(Yoshida Y, et al. (2009), Cell Stem Cell. 5:237-241またはWO2010/013845)。
 上記培養の間には、培養開始2日目以降から毎日1回新鮮な培養液と培養液交換を行うことが好ましい。また、核初期化に使用する体細胞の細胞数は、限定されないが、培養ディッシュ100cmあたり約5×10~約5×10細胞の範囲とすることが好ましい。
 iPS細胞は、形成したコロニーの形状により選択することが可能である。一方、体細胞が初期化された場合に発現する遺伝子(例えば、Oct3/4、Nanog)と連動して発現する薬剤耐性遺伝子をマーカー遺伝子として導入した場合は、対応する薬剤を含む培養液(選択培養液)で培養を行うことにより樹立したiPS細胞を選択することができる。また、マーカー遺伝子が蛍光タンパク質遺伝子の場合は蛍光顕微鏡で観察することによって、発光酵素遺伝子の場合は発光基質を加えることによって、また発色酵素遺伝子の場合は発色基質を加えることによって、iPS細胞を選択することができる。
 なお、iPS細胞の作製に使用される体細胞には、卵子、卵母細胞、ES細胞などの生殖系列細胞または分化全能性細胞を除くあらゆる動物細胞(好ましくは、ヒトを含む哺乳動物細胞)を使用し得る。体細胞には、非限定的に、胎児(仔)の体細胞、新生児(仔)の体細胞、及び成熟した健全なもしくは疾患性の体細胞のいずれも包含されるし、また、初代培養細胞、継代細胞、及び株化細胞のいずれも包含される。具体的には、体細胞は、例えば(1)神経幹細胞、造血幹細胞、間葉系幹細胞、歯髄幹細胞等の組織幹細胞(体性幹細胞)、(2)組織前駆細胞、(3)リンパ球、上皮細胞、内皮細胞、筋肉細胞、線維芽細胞(皮膚細胞等)、毛細胞、肝細胞、胃粘膜細胞、腸細胞、脾細胞、膵細胞(膵外分泌細胞等)、脳細胞、肺細胞、腎細胞及び脂肪細胞等の分化した細胞などが例示される。
 初期化因子は、公知のものを使用することができ、ES細胞に特異的に発現している遺伝子、その遺伝子産物もしくはnon-cording RNAまたはES細胞の未分化維持に重要な役割を果たす遺伝子、その遺伝子産物もしくはnon-coding RNA、あるいは低分子化合物によって構成されてもよい。初期化因子に含まれる遺伝子として、例えば、Oct3/4、Sox2、Sox1、Sox3、Sox15、Sox17、Klf4、Klf2、c-Myc、N-Myc、L-Myc、Nanog、Lin28、Fbx15、ERas、ECAT15-2、Tcl1、beta-catenin、Lin28b、Sall1、Sall4、Esrrb、Nr5a2、Tbx3またはGlis1等が例示され、これらの初期化因子は、単独で用いても良く、組み合わせて用いても良い。初期化因子の組み合わせとしては、WO2007/069666、WO2008/118820、WO2009/007852、WO2009/032194、WO2009/058413、WO2009/057831、WO2009/075119、WO2009/079007、WO2009/091659、WO2009/101084、WO2009/101407、WO2009/102983、WO2009/114949、WO2009/117439、WO2009/126250、WO2009/126251、WO2009/126655、WO2009/157593、WO2010/009015、WO2010/033906、WO2010/033920、WO2010/042800、WO2010/050626、WO2010/056831、WO2010/068955、WO2010/098419、WO2010/102267、WO2010/111409、WO2010/111422、WO2010/115050、WO2010/124290、WO2010/147395、WO2010/147612、Huangfu D, et al. (2008), Nat. Biotechnol., 26: 795-797、Shi Y, et al. (2008), Cell Stem Cell, 2: 525-528、Eminli S, et al. (2008), Stem Cells. 26:2467-2474、Huangfu D, et al. (2008), Nat Biotechnol. 26:1269-1275、Shi Y, et al. (2008), Cell Stem Cell, 3, 568-574、Zhao Y, et al. (2008), Cell Stem Cell, 3:475-479、Marson A, (2008), Cell Stem Cell, 3, 132-135、Feng B, et al. (2009), Nat Cell Biol. 11:197-203、R.L. Judson et al., (2009), Nat. Biotech., 27:459-461、Lyssiotis CA, et al. (2009), Proc Natl Acad Sci U S A. 106:8912-8917、Kim JB, et al. (2009), Nature. 461:649-643、Ichida JK, et al. (2009), Cell Stem Cell. 5:491-503、Heng JC, et al. (2010), Cell Stem Cell. 6:167-74、Han J, et al. (2010), Nature. 463:1096-100、Mali P, et al. (2010), Stem Cells. 28:713-720、Maekawa M, et al. (2011), Nature. 474:225-9.に記載の組み合わせが例示される。
 上記初期化因子には、ヒストンデアセチラーゼ(HDAC)阻害剤[例えば、バルプロ酸 (VPA)、トリコスタチンA、酪酸ナトリウム、MC 1293、M344等の低分子阻害剤、HDACに対するsiRNA及びshRNA(例、HDAC1 siRNA Smartpool(登録商標)(Millipore)、HuSH 29mer shRNA Constructs against HDAC1(OriGene)等)等の核酸性発現阻害剤など]、MEK阻害剤(例えば、PD184352、PD98059、U0126、SL327及びPD0325901)、Glycogen synthase kinase-3阻害剤(例えば、Bio及びCHIR99021)、DNAメチルトランスフェラーゼ阻害剤(例えば、5-azacytidine)、ヒストンメチルトランスフェラーゼ阻害剤(例えば、BIX-01294等の低分子阻害剤、Suv39hl、Suv39h2、SetDBl及びG9aに対するsiRNA及びshRNA等の核酸性発現阻害剤など)、L-channel calcium agonist (例えばBayk8644)、酪酸、TGFβ阻害剤またはALK5阻害剤(例えば、LY364947、SB431542、616453及びA-83-01)、p53阻害剤(例えばp53に対するsiRNA及びshRNA)、ARID3A阻害剤(例えば、ARID3Aに対するsiRNA及びshRNA)、miR-291-3p、miR-294、miR-295及びmir-302などのmiRNA、Wnt Signaling(例えばsoluble Wnt3a)、神経ペプチドY、プロスタグランジン類(例えば、プロスタグランジンE2及びプロスタグランジンJ2)、hTERT、SV40LT、UTF1、IRX6、GLISl、PITX2、DMRTBl等の樹立効率を高めることを目的として用いられる因子も含まれており、本明細書においては、これらの樹立効率の改善目的にて用いられた因子についても初期化因子と別段の区別をしないものとする。
 初期化因子は、タンパク質の形態の場合、例えばリポフェクション、細胞膜透過性ペプチド(例えば、HIV由来のTAT及びポリアルギニン)との融合、マイクロインジェクションなどの手法によって体細胞内に導入してもよい。
 一方、DNAの形態の場合、例えば、ウィルス、プラスミド、人工染色体などのベクター、リポフェクション、リポソーム、マイクロインジェクションなどの手法によって体細胞内に導入することができる。ウィルスベクターとしては、レトロウィルスベクター、レンチウィルスベクター(以上、Cell, 126, pp.663-676, 2006; Cell, 131, pp.861-872, 2007; Science, 318, pp.1917-1920, 2007)、アデノウィルスベクター(Science, 322, 945-949, 2008)、アデノ随伴ウィルスベクター、センダイウィルスベクター(WO 2010/008054)などが例示される。また、人工染色体ベクターとしては、例えばヒト人工染色体(HAC)、酵母人工染色体(YAC)、細菌人工染色体(BAC、PAC)などが含まれる。プラスミドとしては、哺乳動物細胞用プラスミドを使用しうる(Science, 322:949-953, 2008)。ベクターには、核初期化物質が発現可能なように、プロモーター、エンハンサー、リボゾーム結合配列、ターミネーター、ポリアデニル化サイトなどの制御配列を含むことができるし、さらに、必要に応じて、薬剤耐性遺伝子(例えばカナマイシン耐性遺伝子、アンピシリン耐性遺伝子、ピューロマイシン耐性遺伝子など)、チミジンキナーゼ遺伝子、ジフテリアトキシン遺伝子などの選択マーカー配列、緑色蛍光タンパク質(GFP)、βグルクロニダーゼ(GUS)、FLAGなどのレポーター遺伝子配列などを含むことができる。また、上記ベクターには、体細胞への導入後、初期化因子をコードする遺伝子もしくはプロモーターとそれに結合する初期化因子をコードする遺伝子を共に切除するために、それらの前後にLoxP配列を有してもよい。
 また、RNAの形態の場合、例えばリポフェクション、マイクロインジェクションなどの手法によって体細胞内に導入しても良く、分解を抑制するため、5-メチルシチジン及びpseudouridine (TriLink Biotechnologies)を取り込ませたRNAを用いても良い(Warren L, (2010) Cell Stem Cell. 7:618-630)。
 また、胚性生殖細胞は、胎生期の始原生殖細胞を、本発明に係る化合物又はその塩の存在下、好ましくは多能性幹細胞維持培養用培地を用いて培養することにより、樹立される。
 また、例えばnt ES細胞の作製のためには、通常、核移植技術(J.B. Cibelli et al. (1998), Nature Biotechnol., 16:642-646)とES細胞作製技術との組み合わせが利用される(若山清香ら(2008),実験医学,26巻,5号(増刊), 47~52頁)。核移植においては、哺乳動物の除核した未受精卵に、体細胞の核を注入し、本発明に係る化合物又はその塩の存在下、好ましくは多能性幹細胞維持培養用培地を用いて数時間培養することで初期化することができる。
 なお、本発明に係る化合物又はその塩を用いた場合は、フィーダー細胞非存在下での培養においても、多能性幹細胞を樹立することができるため、フィーダー細胞非存在下の培養条件を用いることができる。
 本発明の培養方法により培養された多能性幹細胞は、通常、多能性を有する未分化状態の多能性幹細胞である。このような多能性幹細胞は、そのまま、又は所望の細胞に分化させて、研究材料又は再生医療製品の作製のためなどに使用することができる。本発明の細胞培養用組成物、多能性幹細胞維持培養用培地、及び培養方法は、多能性幹細胞の未分化状態を維持させつつ、該多能性幹細胞を増殖又は樹立させるための組成物、培地及び方法としても好適に使用される。
 以下、実施例により本発明を更に詳しく説明するが、本発明は以下の実施例に何ら限定されるものではない。
1.細胞
 ヒトiPS細胞は、4因子(OCT3/4、SOX2、KLF4及びc-MYC)をレトロウィルスを用いて、ヒト線維芽細胞へ導入することで作製した201B7株を次の条件で培養した後に用いた(Takahashi K, et al, Cell. 131:861-872, 2007.)。201B7株を、0.5μg/cmのラミニン511E8フラグメント(商品名「iMatrix-511」、ニッピ社)をコーティングしたディッシュに播種し、64mg/L L-アスコルビン酸-2-リン酸マグネシウム、14μg/L 亜セレン酸ナトリウム(sodium selenium)、19.4mg/L インスリン、543mg/L NaHCO、10.7mg/L トランスフェリン、100μg/L bFGF及び2μg/L TGFβ1を添加したDMEM/F12中で培養し、フィーダー細胞を用いない培養方法にて継代を続けた。
2.化合物
 本実施例で用いた化合物1~10の化学構造を表1~表3に示す。化合物1~10は、AnalytiCon Discovery GmbHから購入した。
Figure JPOXMLDOC01-appb-T000024
 
Figure JPOXMLDOC01-appb-T000025
Figure JPOXMLDOC01-appb-T000026
3.評価
 iPS細胞が未分化状態である(多能性を有している)ことの確認は、Oct-3/4の発現を確認することにより行った。
 以下の実施例において、抗Oct3/4抗体を用いる免疫染色及びHoechst33342を用いての核染色は、Nakagawa M, et al. Sci Rep. 4:3594, 2014に記載の方法で行った。
<実施例1>
bFGFの代替化合物の検討
 0.5μg/cmのラミニン511E8フラグメント(商品名「iMatrix-511」、ニッピ社)をコーティングした96wellプレートへ、1,300細胞/wellにて前記ヒトiPS細胞を播種した。64mg/L L-アスコルビン酸-2-リン酸マグネシウム、14μg/L 亜セレン酸ナトリウム、19.4mg/L インスリン、543mg/L NaHCO、10.7mg/L トランスフェリン、及び2μg/L TGFβ1を添加したDMEM/F12を、bFGFの対照培地とした。この対照培地へ表1~3に示す各被験化合物(化合物1、2、4、5、6、7、8、9及び10)を1μM添加し、培地を調製した。得られた各培地を、播種したヒトiPS細胞に添加して37℃で培養を行った。陽性対照には、対照培地に100μg/LのbFGFを添加した培地を用いた。1週間後、細胞を固定し、抗Oct3/4抗体による免疫染色及び核染色を行った。
 結果を図1~3に示す。図1は、陽性対照(図中、「bFGF+」で示す)及び対照培地(図中、「bFGF-」で示す)で培養したヒトiPS細胞の蛍光顕微鏡像である。
 図2及び図3は、各被験化合物を添加した培地を用いて培養したヒトiPS細胞の蛍光顕微鏡像である。
 その結果、いずれの化合物を用いた場合においても、核染色された細胞は、Oct3/4を発現していた。以上より、被験化合物(化合物1、2、4、5、6、7、8、9及び10)は、bFGFを用いた場合(図1の「bFGF+」)と同様に、多能性幹細胞の未分化維持培養を可能とすることが確認された。
<実施例2>
TGFβ1の代替化合物の検討
 0.5μg/cmのラミニン511E8フラグメント(商品名「iMatrix-511」、ニッピ社)をコーティングした96wellプレートへ、1,300細胞/wellにて前記ヒトiPS細胞を播種した。64mg/L L-アスコルビン酸-2-リン酸マグネシウム、14μg/L 亜セレン酸ナトリウム、19.4mg/L インスリン、543mg/L NaHCO、10.7mg/L トランスフェリン、及び100μg/L bFGFを添加したDMEM/F12を、TGFβ1の対照培地とした。この対照培地へ、表1~3に示す各被験化合物(1、2、4及び5)を1μM添加し、培地を調製した。得られた各培地を、播種したヒトiPS細胞に添加して37℃で培養を行った。陽性対照として、対照培地に2μg/L TGFβ1を添加した培地(実施例1で陽性対照として用いた培地と同じもの)を用いた。1週間後、細胞を固定し、抗Oct3/4抗体による免疫染色及び核染色を行った。
 図4に、各被験化合物を添加した培地を用いて培養したヒトiPS細胞の蛍光顕微鏡像を示す。いずれの化合物を用いた場合においても、核染色された細胞は、Oct3/4を発現していた。以上より、各化合物(化合物1、2、4及び5)は、TGFβ1を用いた場合(図1の「bFGF+」)と同様に、多能性幹細胞の未分化維持培養を可能とすることが確認された。
<実施例3>
 続いて、実施例2で用いた対照培地(TGFβ1の対照培地)を用いて、化合物1及び2について、有効な濃度を検討した。陽性対照として、実施例2で用いた対照培地にTGFβ1を2μg/L添加した培地を使用し(図5のAの「TGFβ1+」)、対照には、実施例2で用いた対照培地を使用した(図5のAの「TGFβ1-」)。
 実施例2と同条件にて、化合物1を100nM又は10nMの濃度にして培養を行ったところ、TGFβ1を添加した場合(陽性対照)と同等の効果が得られることが確認された。これらの結果を、図5のAに示す。
 同様に、実施例2において化合物2を100nM又は10nMの濃度にして培養を行ったところ、TGFβ1を添加した場合(陽性対照)と同等の効果が得られることが確認された。これらの結果を、図5のBに示す。
 以上より、化合物1及び化合物2については、培地中に10nMの濃度で添加すれば、多能性幹細胞を未分化状態で培養することができることが確認された。
<実施例4>
bFGF及びTGFβ1の代替化合物の検討
 0.5μg/cmのラミニン511E8フラグメント(商品名「iMatrix-511」、ニッピ社)をコーティングした96wellプレートへ、1,300細胞/wellにて前記ヒトiPS細胞を播種した。64mg/L L-アスコルビン酸-2-リン酸マグネシウム、14μg/L 亜セレン酸ナトリウム、19.4mg/L インスリン、543mg/L NaHCO及び10.7mg/L トランスフェリンを添加したDMEM/F12を、bFGF及びTGFβ1の対照培地とした。この対照培地へ各被験化合物(化合物3、6、7、8、9及び10)1μMを添加し、培地を調製した。得られた各培地を、播種したヒトiPS細胞に添加して37℃で培養を行った。1週間後、細胞を固定し、抗Oct3/4抗体による免疫染色及び核染色を行った。なお、陽性対照として、対照培地にbFGFを100μg/L及びTGFβ1を2μg/Lを添加した培地を使用した(図6中の「bFGF+ TGFβ1+」)。対照には、上記のbFGF及びTGFβ1の対照培地(bFGF、TGFβ1及び各化合物を添加しない培地)を使用した(図6中の「bFGF- TGFβ1-」)。
 その結果を図6に示す。図6から、いずれの化合物を用いた場合においても、核染色された細胞は、Oct3/4を発現していた。以上より、各化合物(化合物3、6、7、8、9及び10)は、bFGF及びTGFβ1の2成分を用いた場合と同様に、多能性幹細胞の未分化維持培養を可能とすることが確認された。

Claims (17)

  1.  次の一般式(A)で表される化合物:
    Figure JPOXMLDOC01-appb-C000001
    は、水素原子又は炭素数1~5のアルキルを表し、
    は、水素原子又は水酸基を表し、
    は、水素原子又は水酸基を表し、
    及びRは、同一又は異なって、水素原子又は炭素数1~5のアルキルを表し、
    は、水素原子又は炭素数1~15のアルキルを表し、
    は、水素原子又は-O-CO-R(式中、Rは、水素原子、炭素数1~5のアルキル、又は炭素数2~5のアルケニルを表す)を表し、
    は、水素原子又は炭素数1~5のアルキルを表し、
    -X-Y-は、-CR10=CH-(式中、R10は、水素原子又は炭素数1~5のヒドロキシアルキルを表す)、又は-CR1112-CHR13-(式中、R11は、水素原子又は炭素数1~5のヒドロキシアルキルを表し、R12及びR13は、一緒になって隣接する炭素原子と共にエポキシ基を形成している)を表す)、
     次の構造式(1)で表される化合物:
    Figure JPOXMLDOC01-appb-C000002

     次の構造式(2)で表される化合物:
    Figure JPOXMLDOC01-appb-C000003
    、及び
    次の構造式(3)で表される化合物:
    Figure JPOXMLDOC01-appb-C000004
    からなる群より選択される少なくとも1種の化合物又はその塩を含有することを特徴とする、細胞培養用組成物。
  2.  一般式(A)で表される化合物が、次の構造式(4)~(10)のいずれかで表される化合物である、請求項1に記載の細胞培養用組成物。
    Figure JPOXMLDOC01-appb-C000005
  3.  細胞が多能性幹細胞である、請求項1又は2に記載の細胞培養用組成物。
  4.  多能性幹細胞の未分化状態を維持させつつ、該多能性幹細胞を増殖させるために使用されるものである、請求項3に記載の細胞培養用組成物。
  5.  多能性幹細胞がヒト由来の細胞である、請求項3又は4に記載の細胞培養用組成物。
  6.  多能性幹細胞がES細胞又はiPS細胞である、請求項3~5のいずれか一項に記載の細胞培養用組成物。
  7.  請求項1~6のいずれか一項に記載の細胞培養用組成物を含むことを特徴とする多能性幹細胞維持培養用培地。
  8.  血清を含まない、請求項7に記載の多能性幹細胞維持培養用培地。
  9.  一般式(A)で表される化合物、構造式(1)で表される化合物、構造式(2)で表される化合物、及び構造式(3)で表される化合物、並びにこれらの塩の合計濃度が、10nM~1μMである請求項7又は8に記載の多能性幹細胞維持培養用培地。
  10.  多能性幹細胞の未分化状態を維持させつつ、該多能性幹細胞を増殖させるための多能性幹細胞の培養方法であって、かかる培養を、次の一般式(A)で表される化合物:
    Figure JPOXMLDOC01-appb-C000006
    (式中、
    は、水素原子又は炭素数1~5のアルキルを表し、
    は、水素原子又は水酸基を表し、
    は、水素原子又は水酸基を表し、
    及びRは、同一又は異なって、水素原子又は炭素数1~5のアルキルを表し、
    は、水素原子又は炭素数1~15のアルキルを表し、
    は、水素原子又は-O-CO-R(式中、Rは、水素原子、炭素数1~5のアルキル、又は炭素数2~5のアルケニルを表す)を表し、
    は、水素原子又は炭素数1~5のアルキルを表し、
    -X-Y-は、-CR10=CH-(式中、R10は、水素原子又は炭素数1~5のヒドロキシアルキルを表す)、又は-CR1112-CHR13-(式中、R11は、水素原子又は炭素数1~5のヒドロキシアルキルを表し、R12及びR13は、一緒になって隣接する炭素原子と共にエポキシ基を形成している)を表す)、
     次の構造式(1)で表される化合物:
    Figure JPOXMLDOC01-appb-C000007

     次の構造式(2)で表される化合物:
    Figure JPOXMLDOC01-appb-C000008
    、及び
    次の構造式(3)で表される化合物:
    Figure JPOXMLDOC01-appb-C000009
    からなる群より選択される少なくとも1種の化合物又はその塩の存在下で行うことを特徴とする、培養方法。
  11.  一般式(A)で表される化合物が、次の構造式(4)~(10)のいずれかで表される化合物である、請求項10に記載の培養方法。
    Figure JPOXMLDOC01-appb-C000010
  12.  多能性幹細胞がヒト由来の細胞である、請求項10又は11に記載の培養方法。
  13.  多能性幹細胞がES細胞又はiPS細胞である、請求項10~12のいずれか一項に記載の培養方法。
  14.  多能性幹細胞をフィーダー細胞を含まない条件で培養する、請求項10~13のいずれか一項に記載の培養方法。
  15.  多能性幹細胞を血清の非存在下で培養する、請求項10~14のいずれか一項に記載の培養方法。
  16.  一般式(A)で表される化合物、構造式(1)で表される化合物、構造式(2)で表される化合物、及び構造式(3)で表される化合物、並びにこれらの塩の合計濃度が10nM~1μMの条件で培養を行う、請求項10~15のいずれか一項に記載の培養方法。
  17.  多能性幹細胞の未分化状態を維持させつつ、該多能性幹細胞を増殖させるための、次の一般式(A)で表される化合物:
    Figure JPOXMLDOC01-appb-C000011
    (式中、
    は、水素原子又は炭素数1~5のアルキルを表し、
    は、水素原子又は水酸基を表し、
    は、水素原子又は水酸基を表し、
    及びRは、同一又は異なって、水素原子又は炭素数1~5のアルキルを表し、
    は、水素原子又は炭素数1~15のアルキルを表し、
    は、水素原子又は-O-CO-R(式中、Rは、水素原子、炭素数1~5のアルキル、又は炭素数2~5のアルケニルを表す)を表し、
    は、水素原子又は炭素数1~5のアルキルを表し、
    -X-Y-は、-CR10=CH-(式中、R10は、水素原子又は炭素数1~5のヒドロキシアルキルを表す)、又は-CR1112-CHR13-(式中、R11は、水素原子又は炭素数1~5のヒドロキシアルキルを表し、R12及びR13は、一緒になって隣接する炭素原子と共にエポキシ基を形成している)を表す)、
     次の構造式(1)で表される化合物:
    Figure JPOXMLDOC01-appb-C000012

     次の構造式(2)で表される化合物:
    Figure JPOXMLDOC01-appb-C000013
    、及び
    次の構造式(3)で表される化合物:
    Figure JPOXMLDOC01-appb-C000014
    からなる群より選択される少なくとも1種の化合物又はその塩の使用。
     
     
     
PCT/JP2015/056605 2014-03-07 2015-03-06 細胞培養用組成物 WO2015133596A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016506564A JP6501413B2 (ja) 2014-03-07 2015-03-06 細胞培養用組成物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-044926 2014-03-07
JP2014044926 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015133596A1 true WO2015133596A1 (ja) 2015-09-11

Family

ID=54055396

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056605 WO2015133596A1 (ja) 2014-03-07 2015-03-06 細胞培養用組成物

Country Status (2)

Country Link
JP (1) JP6501413B2 (ja)
WO (1) WO2015133596A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461324A (zh) * 2017-03-23 2019-11-15 Q生物股份有限公司 用于治疗或预防肿瘤的联合疗法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110014699A1 (en) * 2009-07-20 2011-01-20 Wender Paul A Prostratin analogs, bryostatin analogs, prodrugs, synthetic methods, and methods of use
WO2011043405A1 (ja) * 2009-10-08 2011-04-14 国立大学法人大阪大学 ヒト多能性幹細胞用培養基材およびその利用
WO2011088020A2 (en) * 2010-01-12 2011-07-21 The General Hospital Corporation Modified saponins for the treatment of fungal infections

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110014699A1 (en) * 2009-07-20 2011-01-20 Wender Paul A Prostratin analogs, bryostatin analogs, prodrugs, synthetic methods, and methods of use
WO2011043405A1 (ja) * 2009-10-08 2011-04-14 国立大学法人大阪大学 ヒト多能性幹細胞用培養基材およびその利用
WO2011088020A2 (en) * 2010-01-12 2011-07-21 The General Hospital Corporation Modified saponins for the treatment of fungal infections

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
MARASTONI, M. ET AL.: "Synthesis and Activity of New Linear and Cyclic Peptide T Derivatives", ARZNEIM.-FORSCH./DRUG RES., vol. 44, no. 9, 1994, pages 1073 - 1076 *
ROENGSUMRAN, S. ET AL.: "New Halimane Diterpenoids from Croton oblongifolius", PLANTA MEDICA, vol. 70, 2004, pages 87 - 89, XP055222936 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461324A (zh) * 2017-03-23 2019-11-15 Q生物股份有限公司 用于治疗或预防肿瘤的联合疗法

Also Published As

Publication number Publication date
JP6501413B2 (ja) 2019-04-17
JPWO2015133596A1 (ja) 2017-04-06

Similar Documents

Publication Publication Date Title
JP7356658B2 (ja) ドーパミン産生神経前駆細胞の製造方法
JP6143268B2 (ja) ヒト多能性幹細胞から中間中胚葉細胞への分化誘導方法
JP7166631B2 (ja) 新規軟骨細胞誘導方法
JP5846558B2 (ja) 多能性幹細胞から骨格筋前駆細胞への分化誘導方法
KR101861171B1 (ko) 투석된 혈청이 있는 심근세포 배지
US10072242B2 (en) Cell sorting method
JP6452249B2 (ja) ファイバー・オン・ファイバーを用いた細胞の3次元培養方法及びそのための基材
US20210139854A1 (en) Methods for Generating Skeletal Muscle Progenitor Cells
JP6694215B2 (ja) 新規軟骨細胞誘導方法
JP5892661B2 (ja) 多能性幹細胞から生殖細胞への分化誘導方法
JP7079017B2 (ja) 多能性幹細胞から生殖系列幹細胞様細胞への分化誘導方法
JP6501413B2 (ja) 細胞培養用組成物
JP7328688B2 (ja) 副甲状腺細胞の作製方法
JP2014143954A (ja) 多能性幹細胞を効率的に作製する方法
JP7274216B2 (ja) 細胞興奮毒性評価方法
Xu et al. Road to future: iPSC clinical application in Parkinson’s disease treatment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15757850

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506564

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15757850

Country of ref document: EP

Kind code of ref document: A1