WO2015133452A1 - Rigid core for tire formation and tire production method using same - Google Patents

Rigid core for tire formation and tire production method using same Download PDF

Info

Publication number
WO2015133452A1
WO2015133452A1 PCT/JP2015/056151 JP2015056151W WO2015133452A1 WO 2015133452 A1 WO2015133452 A1 WO 2015133452A1 JP 2015056151 W JP2015056151 W JP 2015056151W WO 2015133452 A1 WO2015133452 A1 WO 2015133452A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
tire
young
modulus
circumferential
Prior art date
Application number
PCT/JP2015/056151
Other languages
French (fr)
Japanese (ja)
Inventor
圭 小原
Original Assignee
住友ゴム工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友ゴム工業株式会社 filed Critical 住友ゴム工業株式会社
Priority to EP15758152.1A priority Critical patent/EP3115167B1/en
Priority to US15/119,993 priority patent/US9731463B2/en
Priority to CN201580009542.8A priority patent/CN106029321B/en
Publication of WO2015133452A1 publication Critical patent/WO2015133452A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/0601Vulcanising tyres; Vulcanising presses for tyres
    • B29D30/0661Rigid cores therefor, e.g. annular or substantially toroidal cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D30/00Producing pneumatic or solid tyres or parts thereof
    • B29D30/06Pneumatic tyres or parts thereof (e.g. produced by casting, moulding, compression moulding, injection moulding, centrifugal casting)
    • B29D30/08Building tyres
    • B29D30/10Building tyres on round cores, i.e. the shape of the core is approximately identical with the shape of the completed tyre
    • B29D30/12Cores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/24Condition, form or state of moulded material or of the material to be shaped crosslinked or vulcanised
    • B29K2105/246Uncured, e.g. green
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2905/00Use of metals, their alloys or their compounds, as mould material

Definitions

  • the present invention provides a rigid core for forming a tire capable of suppressing the occurrence of a radial step between core segments caused by thermal expansion while suppressing rubber biting between the core segments, and
  • the present invention relates to a tire manufacturing method using the same.
  • This rigid core has a core body having an outer shape that matches the shape of the tire lumen surface of the vulcanized tire, and a tire component is sequentially pasted on the core body to form a raw tire. Is done.
  • the raw tire is inserted into the vulcanization mold together with the rigid core, so that the raw tire is vulcanized and molded between the inner core body and the outer vulcanization mold. Is done.
  • the core body a is divided into a plurality of core segments c in the circumferential direction in order to take out the core body a from the vulcanized tire. Has been.
  • the core segment c includes a first core segment c1 having a small circumferential width with both circumferential end faces as the first mating face sc1, and a circumferential direction with the circumferential end faces as the second mating face sc2.
  • the second core segment c2 has a large width.
  • the core body a is formed in an annular shape by abutting the first and second mating surfaces sc1 and sc2 adjacent in the circumferential direction.
  • the first mating surface sc1 is formed as an outer inclined surface that is inclined in the direction in which the circumferential width increases inward in the radial direction, and the second mating surface sc2 is in the circumferential width inward in the radial direction. It is formed as an inner inclined surface that is inclined in a direction in which the angle decreases. Accordingly, the first core segment c1 can be moved and removed one by one radially inward. That is, the core body a can be disassembled and taken out from the tire.
  • the temperature rises from a normal temperature state (about 15 to 50 ° C.) at the time of raw tire formation to a high temperature state (100 ° C. or more) at the time of vulcanization molding. Therefore, during vulcanization molding, a pressing pressure is generated between the core segments c1 and c2 adjacent in the circumferential direction due to thermal expansion.
  • the first core segment c1 having the mating surface sc1 as the outer inclined surface is pushed radially inward, and the mating surface sc2 is the second inner surface as the inner inclined surface.
  • the core segment c2 is pushed outward in the radial direction.
  • a step d in the radial direction is generated between the outer peripheral surfaces of the first and second core segments c1 and c2, and there is a problem that the uniformity of the tire is lowered.
  • the present invention provides a rigid core for forming a tire that can suppress the occurrence of a step in the radial direction between the first and second core segments while suppressing rubber biting, and can improve the uniformity of the tire. It is an object of the present invention to provide a method for manufacturing the tire used.
  • the present invention includes an annular core body having an outer surface having a tire molding surface for forming a green tire, and the green tire and the core body are inserted into the vulcanization mold together with the green tire.
  • a rigid core for vulcanizing the green tire with The core body includes a plurality of first core segments whose both end faces in the circumferential direction are inclined in a direction in which the circumferential width increases toward the inner side in the radial direction, and both end faces in the circumferential direction are directed toward the inner side in the radial direction.
  • a second core segment that is inclined in a direction in which the width of the direction is reduced and is alternately arranged in the circumferential direction with the first core segment, and a butt disposed between the first and second core segments Divided into parts,
  • the abutting member is fixed to the circumferential end surface of one of the adjacent first and second core segments, and
  • the butting member is characterized in that the Young's modulus Ea is smaller than the Young's modulus Eb of the first and second core segments.
  • a butt member is interposed between the first and second core segments.
  • the Young's modulus Ea of the abutting member is set to be smaller than the Young's modulus Eb of the first and second core segments. Therefore, the pressing force between the core segments generated by thermal expansion during vulcanization can be absorbed and relaxed by compressing and deforming the butt member. Therefore, the radial step generated between the first and second core segments can be reduced, and the tire uniformity can be improved.
  • the butting member is fixed to one core segment of the first and second core segments. Therefore, the disassembly workability of the core main body can be maintained at the same level as before. Further, since it is not necessary to widen the gap between the butting member and the other core segment, the occurrence of rubber biting can be suppressed.
  • FIG. 1 It is sectional drawing which shows the vulcanization
  • (A), (B) is the perspective view of a core main body, and the partial side view which expanded the part.
  • (A), (B) is the perspective view and side view which show the fixed state of a butting member and one core segment. It is a side view explaining decomposition
  • (A) is a side view which shows the other example of fixation of a butting member
  • (B) is a side view which shows the other example of a core segment.
  • (A) is a side view of a conventional core body
  • (B) is an enlarged side view showing a state of occurrence of a step.
  • the rigid core 1 for forming a tire includes an annular core body 2 having a tire molding surface S on the outer surface.
  • tire constituent members such as a carcass ply, a belt ply, a sidewall rubber, and a tread rubber are sequentially attached to form a green tire T having substantially the same shape as the finished tire.
  • the raw tire T is interposed between the core body 2 which is the inner mold and the vulcanizing mold B which is the outer mold. Is vulcanized.
  • the tire molding surface S is formed in substantially the same shape as the inner surface shape of the finished tire.
  • the rigid core 1 includes an annular core body 2 and a cylindrical core 3 inserted into the center hole 2H.
  • a conventional well-known structure can be adopted. Therefore, in this specification, only the said core main body 2 is demonstrated below.
  • the core body 2 of the present example has a hollow shape including a lumen portion 4 extending continuously in the circumferential direction, for example, and the raw tire T is heated inside the lumen portion 4.
  • a heating means such as an electric heater is arranged.
  • the core body 2 is disposed between a plurality of first and second core segments 5A and 5B that are alternately arranged in the circumferential direction.
  • the butt member 6 is divided.
  • both circumferential end surfaces 5As are inclined in a direction in which the circumferential width increases inward in the radial direction (sometimes referred to as “outside inclination”).
  • the circumferential end faces 5Bs are inclined in the direction in which the circumferential width decreases toward the inner side in the radial direction (sometimes referred to as “inner inclination”).
  • the butting member 6 has a plate shape in which both circumferential end surfaces 6s are parallel to each other, that is, the circumferential thickness t is substantially constant.
  • the abutting member 6 is fixed to a circumferential end surface of one core segment of the adjacent first and second core segments 5A and 5B.
  • each butting member 6 is fixed to the circumferential end surface 5As of the first core segment 5A in a replaceable manner using, for example, screws 8 or the like. That is, in this example, the first core segment 5 ⁇ / b> A is formed as a composite core segment 9 that is integrally joined to the butting members 6 and 6.
  • the core body 2 is annularly formed by abutting the circumferential end surface 9s of the composite core segment 9 and the circumferential end surface 5Bs of the second core segment 5B. Can be combined. Further, the combined core body 2 can move radially inward from the composite core segment 9 in order. That is, after vulcanization molding, the composite core segments 9 can be taken out one by one from the bead holes of the vulcanized tire in order.
  • the core 3 prevents the core segments 5A and 5B from moving inward in the radial direction, and holds the combined core body 2 in an annular shape.
  • the Young's modulus Ea of the butting member 6 is set to be smaller than the Young's modulus Eb of the first and second core segments 5A, 5B.
  • the radial step d (shown in FIG. 8B) between the first and second core segments 5A and 5B due to thermal expansion occurs as follows. Due to the heat of vulcanization at the time of vulcanization molding, the core body 2 undergoes thermal expansion not only in the radial direction but also in the circumferential direction. Due to the thermal expansion in the circumferential direction, a circumferential pressing force acts on the circumferential end faces 5As and 5Bs of the first and second core segments 5A and 5B. At this time, the circumferential end faces 5As and 5Bs are inclined outward and inward, respectively.
  • the step d is caused by this positional shift.
  • the step d becomes larger as the circumferential pressing force is higher.
  • a butting member 6 having a small Young's modulus Ea is interposed between the first and second core segments 5A and 5B. Accordingly, the pressing force applied to the core segments 5A and 5B generated by the thermal expansion in the circumferential direction can be absorbed and relaxed by the butt member 6 being compressed and deformed.
  • the core body 2 is formed in substantially the same shape as the inner surface shape of the finished tire, it thermally expands in a complicated manner. That is, when the core segments 5A and 5B are produced, even when the circumferential end surfaces 5As and 5Bs are processed into a flat surface at room temperature, the circumferential end surfaces 5As and 5Bs are deformed into a curved surface in the vulcanization temperature state. As a result, the pressure distribution is non-uniform.
  • FIG. 5 shows an example of the distribution of the pressing force when the butting member 6 is not provided.
  • the figure shows an aluminum core body 2 (lumen portion 4) in which the circumferential end faces 5As and 5Bs are flat and the distance between the end faces 5As and 5Bs is 0.07 mm (constant) in a normal temperature state (20 ° C.). Is a distribution of the pressing pressure between the end faces 5As and 5Bs when the temperature is raised to the vulcanization temperature (150 ° C.). As the color becomes darker, the pressure increases.
  • the thickness t is preferably 1.0 mm or more, and more preferably 4.0 mm or more. If the thickness t of the butting member 6 is too thick, the radially outer end surface of the butting member 6 is pressed by the pressure of the rubber G during vulcanization, as shown in FIG. It will be dented inward in the radial direction.
  • the thickness t is preferably 10.0 mm or less, and more preferably 6.0 mm or less.
  • the Young's modulus Ea of the butting member 6 is preferably 10% or less of the Young's modulus Eb of the first and second core segments 5A and 5B. If the Young's modulus Ea exceeds 10% of the Young's modulus Eb, the effect of absorbing the pressing force by the butt member 6 becomes small, and the step d between the first and second core segments 5A and 5B is reduced. It becomes difficult to suppress sufficiently.
  • the Young's modulus Ea itself is too small, the butt member 6 is pressed by the pressure of the rubber G during vulcanization and is recessed in a concave shape, and the convex trace 20 tends to be caused on the inner surface of the vulcanized tire T. Become.
  • the Young's modulus Ea itself is too large, it becomes difficult to compressively deform and the effect of suppressing the level difference d decreases.
  • the lower limit of Young's modulus Ea is preferably 0.1 GPa or more, more preferably 0.4 GPa or more, and the upper limit is preferably 2.0 GPa or less, more preferably 1.0 GPa or less.
  • a lightweight metal material such as aluminum or an alloy thereof (aluminum alloy) is generally used from the viewpoint of durability, handleability, and energy efficiency.
  • a lightweight metal material such as aluminum or an alloy thereof (aluminum alloy) is preferably employed as the material of the first and second core segments 5A and 5B. sell.
  • a heat-resistant synthetic resin material is suitable, for example, silicon resin (silicon rubber), allyl resin, polyamideimide resin, fluorine resin, polyphenylene sulfide resin (PPS), polyethylene terephthalate resin. (PET).
  • silicon resin silicon rubber
  • allyl resin polyamideimide resin
  • fluorine resin polyphenylene sulfide resin
  • PPS polyphenylene sulfide resin
  • PET polyethylene terephthalate resin.
  • Table 1 shows an example of the Young's modulus. As shown in the table, examples of those having a Young's modulus Ea in the range of 0.1 to 2.0 GPa include fluororesins and allyl resins.
  • the butting member 6 is fixed to the circumferential end surfaces 5As of the first core segment 5A.
  • the butting member 6 can also be fixed to the circumferential end surfaces 5Bs of the second core segment 5B.
  • the abutting member 6 is connected to the end surface 5As on the one side in the circumferential direction of the first core segment 5A (right side in the figure) and the one side in the circumferential direction of the second core segment 5A. It can also be fixed to the end face 5Bs (right side in the figure).
  • the inner cavity portion 4 is not continuous in the circumferential direction, and as shown in FIG. 7B as a representative of the first core segment 5A,
  • the lumen 4 can be formed without opening at the circumferential end faces 5As and 5Bs and the inner circumferential surface.
  • a heating fluid such as steam can be adopted as the heating means, and this heating fluid flows into each lumen 4.
  • the tire manufacturing method includes a green tire forming step and a vulcanizing step.
  • a green tire T is formed by sequentially affixing tire components such as carcass ply, belt ply, sidewall rubber, and tread rubber on the tire molding surface S of the rigid core 1.
  • the raw tire T obtained in the raw tire formation step is put into the vulcanization mold B together with the rigid core 1 as shown in FIG.
  • a core body 2 for forming a pneumatic tire having a tire size of 195 / 65R15 was prototyped with the structure shown in FIG. Then, when a pneumatic tire is formed using the core body 2, the generation state of the radial step d (shown in FIG. 8B) between the core segments 5 ⁇ / b> A and 5 ⁇ / b> B, the convex trace at the butt position 20 (shown in FIG. 6), the occurrence of rubber biting at the butting position, and maintainability were evaluated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Tyre Moulding (AREA)

Abstract

Provided is a rigid core for tire formation that limits the biting of rubber between core segments in a core production method while minimizing the occurrence of unevenness in the radial direction between core segments that is caused by thermal expansion. A core main body (2) is divided into: a first core segment (5A) in which both circumferential end surfaces (5As) are inclined radially inward in a direction in which the circumferential width increases; a second core segment (5B) that is arranged in an alternating manner with the core segment (5A) and in which both circumferential end surfaces (5Bs) are inclined radially inward in a direction in which the circumferential width decreases; and a butting member (6) that is arranged between the first core segment (5A) and the second core segment (5B). The Young's modulus (Ea) of the butting member (6) is smaller than the Young's modulus (Eb) of the first and second core segments (5A, 5B).

Description

タイヤ形成用の剛性中子、及びそれを用いたタイヤの製造方法Rigid core for forming tire and method of manufacturing tire using the same
 本発明は、中子工法において、中子セグメント間でのゴム噛みを抑えながら、熱膨張に起因する中子セグメント間の半径方向の段差の発生を抑制しうるタイヤ形成用の剛性中子、及びそれを用いたタイヤの製造方法に関する。 In the core method, the present invention provides a rigid core for forming a tire capable of suppressing the occurrence of a radial step between core segments caused by thermal expansion while suppressing rubber biting between the core segments, and The present invention relates to a tire manufacturing method using the same.
 近年、タイヤの形成精度を高めるため、剛性中子を用いたタイヤの製造方法(以下「中子工法」という場合がある。)が提案されている(例えば特許文献1、2参照。)。この剛性中子は、加硫済みタイヤのタイヤ内腔面の形状に合った外形形状を有する中子本体を具え、この中子本体上でタイヤ構成部材を順次貼り付けることにより、生タイヤが形成される。そしてこの生タイヤを剛性中子ごと加硫金型内に投入することにより、内型である中子本体と外型である加硫金型との間に挟まれて、生タイヤが加硫成形される。 In recent years, a method for manufacturing a tire using a rigid core (hereinafter sometimes referred to as “core method”) has been proposed in order to increase the accuracy of tire formation (see, for example, Patent Documents 1 and 2). This rigid core has a core body having an outer shape that matches the shape of the tire lumen surface of the vulcanized tire, and a tire component is sequentially pasted on the core body to form a raw tire. Is done. The raw tire is inserted into the vulcanization mold together with the rigid core, so that the raw tire is vulcanized and molded between the inner core body and the outer vulcanization mold. Is done.
図8(A)に示すように、前記中子工法では、加硫成形後のタイヤから中子本体aを取り出すために、前記中子本体aは、周方向の複数の中子セグメントcに分割されている。 As shown in FIG. 8A, in the core method, the core body a is divided into a plurality of core segments c in the circumferential direction in order to take out the core body a from the vulcanized tire. Has been.
 前記中子セグメントcは、周方向両端面を第1の合わせ面sc1とした周方向巾が小な第1の中子セグメントc1と、周方向両端面を第2の合わせ面sc2とした周方向巾が大な第2の中子セグメントc2とから構成される。そして周方向で隣り合う第1、第2の合わせ面sc1、sc2同士を互いに突き合わすことにより前記中子本体aが環状に形成される。 The core segment c includes a first core segment c1 having a small circumferential width with both circumferential end faces as the first mating face sc1, and a circumferential direction with the circumferential end faces as the second mating face sc2. The second core segment c2 has a large width. The core body a is formed in an annular shape by abutting the first and second mating surfaces sc1 and sc2 adjacent in the circumferential direction.
 前記第1の合わせ面sc1は、半径方向内方に向かって周方向巾が増す向きに傾斜する外傾斜面として形成され、第2の合わせ面sc2は、半径方向内方に向かって周方向巾が減じる向きに傾斜する内傾斜面として形成される。これにより、第1の中子セグメントc1から半径方向内方に一つずつ移動させて取り外すことができる。即ち、中子本体aを分解してタイヤから取り出すことが可能となる。 The first mating surface sc1 is formed as an outer inclined surface that is inclined in the direction in which the circumferential width increases inward in the radial direction, and the second mating surface sc2 is in the circumferential width inward in the radial direction. It is formed as an inner inclined surface that is inclined in a direction in which the angle decreases. Accordingly, the first core segment c1 can be moved and removed one by one radially inward. That is, the core body a can be disassembled and taken out from the tire.
 しかし前記中子本体aでは、生タイヤ形成時の常温状態(15~50℃程度)から加硫成形時の高温状態(100℃以上)まで温度上昇する。そのため、加硫成形時には、熱膨張によって周方向で隣り合う中子セグメントc1、c2間に押し圧力が発生する。このとき図8(B)に示すように、合わせ面sc1が外傾斜面となる第1の中子セグメントc1では、半径方向内側に押し出され、又合わせ面sc2が内傾斜面となる第2の中子セグメントc2では、半径方向外側に押し出される。その結果、第1、第2の中子セグメントc1、c2の外周面間に半径方向の段差dが発生し、タイヤのユニフォーミティを低下させるという問題が生じる。 However, in the core body a, the temperature rises from a normal temperature state (about 15 to 50 ° C.) at the time of raw tire formation to a high temperature state (100 ° C. or more) at the time of vulcanization molding. Therefore, during vulcanization molding, a pressing pressure is generated between the core segments c1 and c2 adjacent in the circumferential direction due to thermal expansion. At this time, as shown in FIG. 8B, the first core segment c1 having the mating surface sc1 as the outer inclined surface is pushed radially inward, and the mating surface sc2 is the second inner surface as the inner inclined surface. The core segment c2 is pushed outward in the radial direction. As a result, a step d in the radial direction is generated between the outer peripheral surfaces of the first and second core segments c1 and c2, and there is a problem that the uniformity of the tire is lowered.
 前記段差dを減じるために、常温状態における合わせ面sc1、sc2間の隙間量を増加して加硫成形時の押し圧力を減じることが提案される。しかしこの場合、加硫中に前記隙間内にゴムが流入してゴム噛みを発生させるなど、タイヤ品質の低下を招く。 In order to reduce the level difference d, it is proposed to reduce the pressing force at the time of vulcanization molding by increasing the gap amount between the mating surfaces sc1 and sc2 at room temperature. In this case, however, the rubber flows into the gap during the vulcanization and causes rubber biting, resulting in a decrease in tire quality.
特開2011-161896号公報JP 2011-161896 A 特開2011-167979号公報JP 2011-167799 A
 本発明は、ゴム噛みを抑えながら、第1、第2の中子セグメント間の半径方向の段差の発生を抑制でき、タイヤのユニフォーミティを向上させうるタイヤ形成用の剛性中子、及びそれを用いたタイヤの製造方法を提供することを課題としている。 The present invention provides a rigid core for forming a tire that can suppress the occurrence of a step in the radial direction between the first and second core segments while suppressing rubber biting, and can improve the uniformity of the tire. It is an object of the present invention to provide a method for manufacturing the tire used.
 本発明は、生タイヤを形成するタイヤ成形面を外表面に有する環状の中子本体を具え、かつ生タイヤごと加硫金型内に投入されることにより、該加硫金型と中子本体との間で前記生タイヤを加硫成形する剛性中子であって、
 前記中子本体は、周方向両端面が半径方向内方に向かって周方向巾が増す向きに傾斜する複数の第1の中子セグメントと、周方向両端面が半径方向内方に向かって周方向巾が減じる向きに傾斜しかつ前記第1の中子セグメントとは周方向に交互に配される第2の中子セグメントと、前記第1、第2の中子セグメント間に配される突き合わせ部材とに分割され、
 かつ前記突き合わせ部材は、隣り合う第1、第2の中子セグメントのうちの一方の中子セグメントの周方向端面に固定されるとともに、
 前記突き合わせ部材は、そのヤング率Eaが、前記第1、第2の中子セグメントのヤング率Ebよりも小としたことを特徴としている。
The present invention includes an annular core body having an outer surface having a tire molding surface for forming a green tire, and the green tire and the core body are inserted into the vulcanization mold together with the green tire. A rigid core for vulcanizing the green tire with
The core body includes a plurality of first core segments whose both end faces in the circumferential direction are inclined in a direction in which the circumferential width increases toward the inner side in the radial direction, and both end faces in the circumferential direction are directed toward the inner side in the radial direction. A second core segment that is inclined in a direction in which the width of the direction is reduced and is alternately arranged in the circumferential direction with the first core segment, and a butt disposed between the first and second core segments Divided into parts,
The abutting member is fixed to the circumferential end surface of one of the adjacent first and second core segments, and
The butting member is characterized in that the Young's modulus Ea is smaller than the Young's modulus Eb of the first and second core segments.
 本発明では叙上の如く、第1、第2の中子セグメント間に、突き合わせ部材を介在させている。この突き合わせ部材のヤング率Eaは、第1、第2の中子セグメントのヤング率Ebよりも小に設定されている。従って、加硫時の熱膨張によって発生する中子セグメント間の押し圧力を、前記突き合わせ部材が圧縮変形することで吸収緩和させることができる。従って、第1、第2の中子セグメント間に生じる半径方向の段差を低減でき、タイヤのユニフォーミティを向上させうる。 In the present invention, as described above, a butt member is interposed between the first and second core segments. The Young's modulus Ea of the abutting member is set to be smaller than the Young's modulus Eb of the first and second core segments. Therefore, the pressing force between the core segments generated by thermal expansion during vulcanization can be absorbed and relaxed by compressing and deforming the butt member. Therefore, the radial step generated between the first and second core segments can be reduced, and the tire uniformity can be improved.
 又前記突き合わせ部材は、第1、第2の中子セグメントのうちの一方の中子セグメントに固定される。そのため、中子本体の分解作業性を従来と同レベルに維持することができる。又突き合わせ部材と他方の中子セグメントとの間の隙間を広げる必要がないため、ゴム噛みの発生を抑えることもできる。 The butting member is fixed to one core segment of the first and second core segments. Therefore, the disassembly workability of the core main body can be maintained at the same level as before. Further, since it is not necessary to widen the gap between the butting member and the other core segment, the occurrence of rubber biting can be suppressed.
本発明のタイヤの製造方法における加硫工程を示す断面図である。It is sectional drawing which shows the vulcanization | cure process in the manufacturing method of the tire of this invention. (A)、(B)は中子本体の斜視図、及びその一部を拡大した部分側面図である。(A), (B) is the perspective view of a core main body, and the partial side view which expanded the part. (A)、(B)は突き合わせ部材と一方の中子セグメントとの固定状態を示す斜視図及び側面図である。(A), (B) is the perspective view and side view which show the fixed state of a butting member and one core segment. 中子本体の分解を説明する側面図である。It is a side view explaining decomposition | disassembly of a core main body. 中子セグメントの周方向端面における押し圧力の分布図である。It is a distribution map of the pressing force in the circumferential direction end surface of the core segment. 突き合わせ部材に起因して加硫タイヤの内表面に発生する凸状痕を説明する断面図である。It is sectional drawing explaining the convex-shaped trace which originates in a butting member and generate | occur | produces on the inner surface of a vulcanized tire. (A)は突き合わせ部材の固定の他の例を示す側面図、(B)は中子セグメントの他の例を示す側面図である。(A) is a side view which shows the other example of fixation of a butting member, (B) is a side view which shows the other example of a core segment. (A)は従来の中子本体の側面図、(B)は段差の発生状態を拡大して示す側面図である。(A) is a side view of a conventional core body, and (B) is an enlarged side view showing a state of occurrence of a step.
 以下、本発明の実施の形態について、詳細に説明する。
 図1に示すように、本実施形態のタイヤ形成用の剛性中子1は、外表面にタイヤ成形面Sを有する環状の中子本体2を具える。このタイヤ成形面S上に、カーカスプライ、ベルトプライ、サイドウォールゴム、トレッドゴム等のタイヤ構成部材を順次貼り付けることにより、仕上がりタイヤとほぼ同形状の生タイヤTが形成される。又前記生タイヤTを、剛性中子1ごと加硫金型B内に投入することにより、内型である中子本体2と外型である加硫金型Bとの間で前記生タイヤTを加硫成形する。前記タイヤ成形面Sは、仕上がりタイヤの内面形状とほぼ同形状に形成されている。
Hereinafter, embodiments of the present invention will be described in detail.
As shown in FIG. 1, the rigid core 1 for forming a tire according to the present embodiment includes an annular core body 2 having a tire molding surface S on the outer surface. On the tire molding surface S, tire constituent members such as a carcass ply, a belt ply, a sidewall rubber, and a tread rubber are sequentially attached to form a green tire T having substantially the same shape as the finished tire. Further, by putting the raw tire T together with the rigid core 1 into the vulcanizing mold B, the raw tire T is interposed between the core body 2 which is the inner mold and the vulcanizing mold B which is the outer mold. Is vulcanized. The tire molding surface S is formed in substantially the same shape as the inner surface shape of the finished tire.
 前記剛性中子1は、環状の前記中子本体2と、その中心孔2Hに内挿される円筒状のコア3とを含んで構成される。前記中子本体2以外は、従来的な周知構造を採用できる。従って、本明細書では、以下に前記中子本体2のみ説明する。 The rigid core 1 includes an annular core body 2 and a cylindrical core 3 inserted into the center hole 2H. Other than the core body 2, a conventional well-known structure can be adopted. Therefore, in this specification, only the said core main body 2 is demonstrated below.
 本例の中子本体2は、その内部に例えば周方向に連続してのびる内腔部4を具えた中空状をなし、前記内腔部4内には、前記生タイヤTを内側加熱する例えば電気ヒータなどの加熱手段(図示しない。)が配される。 The core body 2 of the present example has a hollow shape including a lumen portion 4 extending continuously in the circumferential direction, for example, and the raw tire T is heated inside the lumen portion 4. A heating means (not shown) such as an electric heater is arranged.
 前記中子本体2は、図2(A)、(B)に示すように、周方向に交互に配される複数の第1、第2の中子セグメント5A、5Bと、その間に配される突き合わせ部材6とに分割される。前記第1の中子セグメント5Aは、周方向両端面5Asが、半径方向内方に向かって周方向巾が増加する向きに傾斜(「外傾斜」という場合がある。)している。これに対し第2の中子セグメント5Bは、周方向両端面5Bsが、半径方向内方に向かって周方向巾が減じる向きに傾斜(「内傾斜」という場合がある。)している。又前記突き合わせ部材6は、周方向両端面6sが互いに平行、即ち周方向の厚さtが略一定な板状をなす。 As shown in FIGS. 2A and 2B, the core body 2 is disposed between a plurality of first and second core segments 5A and 5B that are alternately arranged in the circumferential direction. The butt member 6 is divided. In the first core segment 5A, both circumferential end surfaces 5As are inclined in a direction in which the circumferential width increases inward in the radial direction (sometimes referred to as “outside inclination”). On the other hand, in the second core segment 5B, the circumferential end faces 5Bs are inclined in the direction in which the circumferential width decreases toward the inner side in the radial direction (sometimes referred to as “inner inclination”). The butting member 6 has a plate shape in which both circumferential end surfaces 6s are parallel to each other, that is, the circumferential thickness t is substantially constant.
 前記突き合わせ部材6は、隣り合う第1、第2の中子セグメント5A、5Bのうちの一方の中子セグメントの周方向端面に固定される。本例では図3(A)、(B)に示すように、各突き合わせ部材6が第1の中子セグメント5Aの周方向端面5Asに、例えばビス8などを用いて交換可能に固定される。即ち本例では、第1の中子セグメント5Aは、突き合わせ部材6、6と一体接合された複合中子セグメント9として形成される。 The abutting member 6 is fixed to a circumferential end surface of one core segment of the adjacent first and second core segments 5A and 5B. In this example, as shown in FIGS. 3A and 3B, each butting member 6 is fixed to the circumferential end surface 5As of the first core segment 5A in a replaceable manner using, for example, screws 8 or the like. That is, in this example, the first core segment 5 </ b> A is formed as a composite core segment 9 that is integrally joined to the butting members 6 and 6.
 従って図4に示すように、本例では、複合中子セグメント9の周方向端面9sと、第2の中子セグメント5Bの周方向端面5Bsとを互いに突き合わすことにより、中子本体2を環状に組み合わすことができる。又組み合わされた中子本体2において、前記複合中子セグメント9から順に半径方向内側に移動できる。即ち、加硫成形後、複合中子セグメント9から順に加硫タイヤのビード孔から1つづつ分解して取り出すことができる。なお前記コア3は、各中子セグメント5A、5Bの半径方向内方への移動を阻止し、組み合わされた中子本体2を環状に保持する。 Therefore, as shown in FIG. 4, in this example, the core body 2 is annularly formed by abutting the circumferential end surface 9s of the composite core segment 9 and the circumferential end surface 5Bs of the second core segment 5B. Can be combined. Further, the combined core body 2 can move radially inward from the composite core segment 9 in order. That is, after vulcanization molding, the composite core segments 9 can be taken out one by one from the bead holes of the vulcanized tire in order. The core 3 prevents the core segments 5A and 5B from moving inward in the radial direction, and holds the combined core body 2 in an annular shape.
 次に、前記突き合わせ部材6のヤング率Eaは、前記第1、第2の中子セグメント5A、5Bのヤング率Ebよりも小に設定される。 Next, the Young's modulus Ea of the butting member 6 is set to be smaller than the Young's modulus Eb of the first and second core segments 5A, 5B.
 ここで、熱膨張による第1、第2の中子セグメント5A、5B間の半径方向の段差d(図8(B)に示す。)は、以下のように発生する。加硫成形時の加硫熱によって、中子本体2には、半径方向だけでなく周方向にも熱膨張が発生する。そしてこの周方向の熱膨張により、第1、第2の中子セグメント5A、5Bの周方向端面5As、5Bsには、周方向の押し圧力が作用する。このとき、周方向端面5As、5Bsがそれぞれ外傾斜及び内傾斜している。その結果、外傾斜する第1の中子セグメント5Aは、半径方向内側へ押し出されて位置ずれし、内傾斜する第2の中子セグメント5Bは、半径方向外側に押し出されて位置ずれする。この位置ずれによって前記段差dが発生する。又前記段差dは、周方向の押し圧力が高い程、大となる。 Here, the radial step d (shown in FIG. 8B) between the first and second core segments 5A and 5B due to thermal expansion occurs as follows. Due to the heat of vulcanization at the time of vulcanization molding, the core body 2 undergoes thermal expansion not only in the radial direction but also in the circumferential direction. Due to the thermal expansion in the circumferential direction, a circumferential pressing force acts on the circumferential end faces 5As and 5Bs of the first and second core segments 5A and 5B. At this time, the circumferential end faces 5As and 5Bs are inclined outward and inward, respectively. As a result, the first core segment 5A inclined outward is pushed out in the radial direction and displaced, and the second core segment 5B inclined inward is pushed out in the radial direction and displaced. The step d is caused by this positional shift. The step d becomes larger as the circumferential pressing force is higher.
 本発明では、第1、第2の中子セグメント5A、5B間に、ヤング率Eaが小な突き合わせ部材6が介在する。従って、周方向の熱膨張によって発生する中子セグメント5A、5Bへの押し圧力を、前記突き合わせ部材6が圧縮変形することで吸収緩和させることができる。 In the present invention, a butting member 6 having a small Young's modulus Ea is interposed between the first and second core segments 5A and 5B. Accordingly, the pressing force applied to the core segments 5A and 5B generated by the thermal expansion in the circumferential direction can be absorbed and relaxed by the butt member 6 being compressed and deformed.
 他方、前記中子本体2は、仕上がりタイヤの内面形状とほぼ同形状に形成されているため、複雑に熱膨張する。即ち、中子セグメント5A、5Bの制作時、常温状態にて各周方向端面5As、5Bsを平面に加工した場合にも、加硫温度状態では、周方向端面5As、5Bsは曲面状に変形してしまい、押し圧力の分布が不均一となる。図5は、突き合わせ部材6を設けない場合の、押し圧力の分布の一例が示される。同図は、常温状態(20℃)時において、周方向端面5As、5Bsが平面、かつ端面5As、5Bsの間隔が0.07mm(一定)としたアルミ製の中子本体2(内腔部4は形成していない。)を、加硫温度(150℃)まで上昇させたときの端面5As、5Bs間の押し圧力の分布である。色が濃くなるにつれて圧力が大きいことを示す。 On the other hand, since the core body 2 is formed in substantially the same shape as the inner surface shape of the finished tire, it thermally expands in a complicated manner. That is, when the core segments 5A and 5B are produced, even when the circumferential end surfaces 5As and 5Bs are processed into a flat surface at room temperature, the circumferential end surfaces 5As and 5Bs are deformed into a curved surface in the vulcanization temperature state. As a result, the pressure distribution is non-uniform. FIG. 5 shows an example of the distribution of the pressing force when the butting member 6 is not provided. The figure shows an aluminum core body 2 (lumen portion 4) in which the circumferential end faces 5As and 5Bs are flat and the distance between the end faces 5As and 5Bs is 0.07 mm (constant) in a normal temperature state (20 ° C.). Is a distribution of the pressing pressure between the end faces 5As and 5Bs when the temperature is raised to the vulcanization temperature (150 ° C.). As the color becomes darker, the pressure increases.
 このように押し圧力の分布が不均一となるため、突き合わせ部材6が介在する場合には、その圧縮変形の分布も不均一になる。従って、突き合わせ部材6の周方向の厚さtが薄過ぎる場合には、厚さtに対する圧縮歪みの割合が過大となり、突き合わせ部材6に損傷を招く傾向となる。このような観点から、前記厚さtは、1.0mm以上、さらには4.0mm以上が好ましい。又突き合わせ部材6の厚さtが厚過ぎる場合には、図6に示すように、突き合わせ部材6の半径方向外端面が、加硫中のゴムGの圧力に押されてタイヤ成形面Sよりも半径方向内側に凹んでしまう。その結果、加硫タイヤTの内表面に、凸状痕20が発生し、タイヤ品質を低下させる傾向を招く。このような観点から、前記厚さtは、10.0mm以下、さらには6.0mm以下が好ましい。 As described above, since the distribution of the pressing force is non-uniform, when the butt member 6 is interposed, the distribution of the compressive deformation is also non-uniform. Therefore, when the thickness t in the circumferential direction of the butt member 6 is too thin, the ratio of the compressive strain to the thickness t becomes excessive, and the butt member 6 tends to be damaged. From such a viewpoint, the thickness t is preferably 1.0 mm or more, and more preferably 4.0 mm or more. If the thickness t of the butting member 6 is too thick, the radially outer end surface of the butting member 6 is pressed by the pressure of the rubber G during vulcanization, as shown in FIG. It will be dented inward in the radial direction. As a result, convex marks 20 are generated on the inner surface of the vulcanized tire T, which tends to deteriorate the tire quality. From such a viewpoint, the thickness t is preferably 10.0 mm or less, and more preferably 6.0 mm or less.
 又前記突き合わせ部材6のヤング率Eaは、前記第1、第2の中子セグメント5A、5Bのヤング率Ebの10%以下であるのが好ましい。もし前記ヤング率Eaがヤング率Ebの10%を越えると、突き合わせ部材6による押し圧力の吸収緩和効果が小となってしまい、第1、第2の中子セグメント5A、5B間の段差dを十分に抑制することが難しくなる。 The Young's modulus Ea of the butting member 6 is preferably 10% or less of the Young's modulus Eb of the first and second core segments 5A and 5B. If the Young's modulus Ea exceeds 10% of the Young's modulus Eb, the effect of absorbing the pressing force by the butt member 6 becomes small, and the step d between the first and second core segments 5A and 5B is reduced. It becomes difficult to suppress sufficiently.
 ヤング率Eaとヤング率Ebとの比Ea/Ebは、小さい程、段差dの抑制効果の観点から好ましい。しかしヤング率Ea自体が小さすぎると、突き合わせ部材6が加硫中のゴムGの圧力に押されて凹状に凹んでしまい、加硫タイヤTの内表面に、前記凸状痕20を招く傾向となる。逆にヤング率Ea自体が大きすぎても、圧縮変形し難くなって、段差dの抑制効果が低下する。このような観点から、ヤング率Eaの下限は0.1GPa以上、さらには0.4GPa以上が好ましく、上限は2.0GPa以下、さらには1.0GPa以下が好ましい。 The smaller the ratio Ea / Eb between the Young's modulus Ea and the Young's modulus Eb, the more preferable from the viewpoint of the effect of suppressing the level difference d. However, if the Young's modulus Ea itself is too small, the butt member 6 is pressed by the pressure of the rubber G during vulcanization and is recessed in a concave shape, and the convex trace 20 tends to be caused on the inner surface of the vulcanized tire T. Become. On the other hand, even if the Young's modulus Ea itself is too large, it becomes difficult to compressively deform and the effect of suppressing the level difference d decreases. From such a viewpoint, the lower limit of Young's modulus Ea is preferably 0.1 GPa or more, more preferably 0.4 GPa or more, and the upper limit is preferably 2.0 GPa or less, more preferably 1.0 GPa or less.
 従来の中子本体の材料としては、耐久強度、取り扱い性、エネルギー効率などの観点から、例えばアルミニウムやその合金(アルミニウム合金)などの軽量金属材料が一般に使用されている。本発明の中子本体2においても、同様の観点から、第1、第2の中子セグメント5A、5Bの材料として、例えばアルミニウムやその合金(アルミニウム合金)などの軽量金属材料が好適に採用しうる。 As a conventional core body material, for example, a lightweight metal material such as aluminum or an alloy thereof (aluminum alloy) is generally used from the viewpoint of durability, handleability, and energy efficiency. In the core body 2 of the present invention, from the same viewpoint, a lightweight metal material such as aluminum or an alloy thereof (aluminum alloy) is preferably employed as the material of the first and second core segments 5A and 5B. sell.
 これに対して突き合わせ部材6としては、耐熱性の合成樹脂材が好適であり、例えば、シリコン樹脂(シリコンゴム)、アリル樹脂、ポリアミドイミド樹脂、フッ素樹脂、ポリフェニレンサルファイド樹脂(PPS)、ポリエチレンテレフタレート樹脂(PET)などが挙げられる。表1に、そのヤング率の一例を示す。表に示すように、ヤング率Eaが0.1~2.0GPaの範囲のものとしては、フッ素樹脂、アリル樹脂が挙げられる。 On the other hand, as the butting member 6, a heat-resistant synthetic resin material is suitable, for example, silicon resin (silicon rubber), allyl resin, polyamideimide resin, fluorine resin, polyphenylene sulfide resin (PPS), polyethylene terephthalate resin. (PET). Table 1 shows an example of the Young's modulus. As shown in the table, examples of those having a Young's modulus Ea in the range of 0.1 to 2.0 GPa include fluororesins and allyl resins.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本例では、突き合わせ部材6を、第1の中子セグメント5Aの周方向両端面5Asに固定した場合を例示した。しかし突き合わせ部材6を、第2の中子セグメント5Bの周方向両端面5Bsに固定することもできる。又図7(A)に示すように、突き合わせ部材6を、第1の中子セグメント5Aの周方向一方側(図では右側)の端面5As、及び第2の中子セグメント5Aの周方向一方側(図では右側)の端面5Bsにそれぞれ固定することもできる。 In this example, the case where the butting member 6 is fixed to the circumferential end surfaces 5As of the first core segment 5A is illustrated. However, the butting member 6 can also be fixed to the circumferential end surfaces 5Bs of the second core segment 5B. Further, as shown in FIG. 7A, the abutting member 6 is connected to the end surface 5As on the one side in the circumferential direction of the first core segment 5A (right side in the figure) and the one side in the circumferential direction of the second core segment 5A. It can also be fixed to the end face 5Bs (right side in the figure).
 又前記中子本体2では、前記内腔部4を周方向に連続させず、図7(B)に第1の中子セグメント5Aを代表して示すように、中子セグメント5A、5Bの内部に閉ざして、即ち内腔部4を周方向端面5As、5Bs及び内周面で開口させずに形成することもできる。この場合、前記加熱手段として、スチームなどの加熱流体を採用でき、この加熱流体を各内腔部4内に流入する。 Further, in the core body 2, the inner cavity portion 4 is not continuous in the circumferential direction, and as shown in FIG. 7B as a representative of the first core segment 5A, In other words, the lumen 4 can be formed without opening at the circumferential end faces 5As and 5Bs and the inner circumferential surface. In this case, a heating fluid such as steam can be adopted as the heating means, and this heating fluid flows into each lumen 4.
次に、タイヤの製造方法は、生タイヤ形成工程と、加硫工程とを具える。生タイヤ形成工程では、前記剛性中子1のタイヤ成形面S上に、例えばカーカスプライ、ベルトプライ、サイドウォールゴム、トレッドゴム等のタイヤ構成部材を順次貼り付けることにより、生タイヤTを形成する。また加硫工程では、前記生タイヤ形成工程によって得られた生タイヤTを、図1に示すように、剛性中子1ごと加硫金型B内に投入して加硫成形を行う。 Next, the tire manufacturing method includes a green tire forming step and a vulcanizing step. In the green tire forming step, a green tire T is formed by sequentially affixing tire components such as carcass ply, belt ply, sidewall rubber, and tread rubber on the tire molding surface S of the rigid core 1. . In the vulcanization step, the raw tire T obtained in the raw tire formation step is put into the vulcanization mold B together with the rigid core 1 as shown in FIG.
 以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。 As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.
 本発明の効果を確認するため、タイヤサイズ195/65R15の空気入りタイヤ形成用の中子本体2を、図2の構造かつ表2の仕様にて試作した。そしてこの中子本体2を用いて空気入りタイヤを形成した時の、中子セグメント5A、5B間の半径方向の段差d(図8(B)に示す)の発生状況、突き合わせ位置における凸状痕20(図6に示す)の発生状況、突き合わせ位置におけるゴム噛みの発生状況、及びメンテナンス性について評価した。 In order to confirm the effect of the present invention, a core body 2 for forming a pneumatic tire having a tire size of 195 / 65R15 was prototyped with the structure shown in FIG. Then, when a pneumatic tire is formed using the core body 2, the generation state of the radial step d (shown in FIG. 8B) between the core segments 5 </ b> A and 5 </ b> B, the convex trace at the butt position 20 (shown in FIG. 6), the occurrence of rubber biting at the butting position, and maintainability were evaluated.
 第1、第2の中子セグメント5A、5Bとして、アルミニウム(ヤング率Ea=71GPa、熱膨張率=2.38×10-5/度)が使用される。又突き合わせ部材6として、表1に記載の耐熱性の合成樹脂材が使用される。生タイヤ形成時の中子本体2の温度は20℃であり、加硫時の中子本体2の温度は150℃である。又20℃における突き合わせ面間の隙間は0.15mmとしている。又表2に記載以外は、実質的に同仕様としている。 Aluminum (Young's modulus Ea = 71 GPa, thermal expansion coefficient = 2.38 × 10 −5 / degree) is used as the first and second core segments 5A, 5B. Further, as the butting member 6, a heat-resistant synthetic resin material described in Table 1 is used. The temperature of the core body 2 at the time of green tire formation is 20 ° C., and the temperature of the core body 2 at the time of vulcanization is 150 ° C. The gap between the butted surfaces at 20 ° C. is 0.15 mm. The specifications are substantially the same except for those listed in Table 2.
(1)段差の発生状況:
 中子本体を150℃に加熱した時の、タイヤ赤道面上における第1、第2の中子セグメント間の半径方向の段差をダイヤルゲージで測定するとともに、測定値を指数にて評価した。数値が小なほど段差が小さく良好である。
(1) Leveling situation:
When the core body was heated to 150 ° C., the radial step between the first and second core segments on the tire equatorial plane was measured with a dial gauge, and the measured value was evaluated by an index. The smaller the value, the smaller the step and the better.
(2)凸状痕の発生状況:
 加硫成形後のタイヤの内面を観察し、突き合わせ位置における凸状痕の巾及び高さの積を数値化し、指数にて評価した。数値が小なほど凸状痕小さく良好である。なお評価は、初期(タイヤ1本目)において行った。
(2) Occurrence of convex marks:
The inner surface of the tire after vulcanization molding was observed, and the product of the width and height of the convex marks at the butting position was quantified and evaluated by an index. The smaller the numerical value, the smaller the convex mark and the better. Evaluation was performed in the initial stage (first tire).
(3)ゴム噛みの発生状況:
 加硫成形後のタイヤの内面を観察し、突き合わせ位置におけるゴム噛みの量を数値化し、指数にて評価した。数値が小なほどゴム噛みが少なく良好である。なお評価は、初期(タイヤ1本目)において行った。
(3) Status of rubber biting:
The inner surface of the tire after vulcanization molding was observed, the amount of rubber biting at the butt position was quantified and evaluated by an index. The smaller the value, the less the rubber bite and the better. Evaluation was performed in the initial stage (first tire).
(4)メンテナンス性:
 各中子本体を用いてタイヤを、1日150本のペースで100日間(15000本)形成した。その時の、突き合わせ部材の損傷による交換回数を数値化し、指数にて評価した。数値が小なほど交換回数が少なく良好である。
(4) Maintainability:
Using each core body, tires were formed at a pace of 150 per day for 100 days (15000). The number of exchanges due to damage of the butt member at that time was quantified and evaluated by an index. The smaller the number, the fewer the number of replacements and the better.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表のように、実施例において、ゴム噛みを抑えながら、第1、第2の中子セグメント間の半径方向の段差の発生を抑制できるのが確認できる。 As shown in the table, in the examples, it can be confirmed that the occurrence of a step in the radial direction between the first and second core segments can be suppressed while suppressing the rubber biting.
1     剛性中子
2     中子本体
5A   第1の中子セグメント
5B   第2の中子セグメント
6     突き合わせ部材
B     加硫金型
S     タイヤ成形面
T     生タイヤ
DESCRIPTION OF SYMBOLS 1 Rigid core 2 Core body 5A 1st core segment 5B 2nd core segment 6 Butting member B Vulcanization mold S Tire molding surface T Raw tire

Claims (5)

  1.  生タイヤを形成するタイヤ成形面を外表面に有する環状の中子本体を具え、かつ生タイヤごと加硫金型内に投入されることにより、該加硫金型と中子本体との間で前記生タイヤを加硫成形する剛性中子であって、
     前記中子本体は、周方向両端面が半径方向内方に向かって周方向巾が増す向きに傾斜する複数の第1の中子セグメントと、周方向両端面が半径方向内方に向かって周方向巾が減じる向きに傾斜しかつ前記第1の中子セグメントとは周方向に交互に配される第2の中子セグメントと、前記第1、第2の中子セグメント間に配される突き合わせ部材とに分割され、
     かつ前記突き合わせ部材は、隣り合う第1、第2の中子セグメントのうちの一方の中子セグメントの周方向端面に固定されるとともに、
     前記突き合わせ部材は、そのヤング率Eaが、前記第1、第2の中子セグメントのヤング率Ebよりも小としたことを特徴とするタイヤ形成用の剛性中子。
    An annular core body having a tire molding surface for forming a green tire is provided on the outer surface, and the raw tire is inserted into the vulcanization mold so that the vulcanization mold and the core body A rigid core for vulcanizing the green tire,
    The core body includes a plurality of first core segments whose both end faces in the circumferential direction are inclined in a direction in which the circumferential width increases toward the inner side in the radial direction, and both end faces in the circumferential direction are directed toward the inner side in the radial direction. A second core segment that is inclined in a direction in which the width of the direction is reduced and is alternately arranged in the circumferential direction with the first core segment, and a butt disposed between the first and second core segments Divided into parts,
    The abutting member is fixed to the circumferential end surface of one of the adjacent first and second core segments, and
    A rigid core for tire formation, wherein the butting member has a Young's modulus Ea smaller than a Young's modulus Eb of the first and second core segments.
  2.  前記突き合わせ部材は、周方向の厚さtが1.0~10.0mmの範囲であることを特徴とする請求項1記載のタイヤ形成用の剛性中子。 The tire-forming rigid core according to claim 1, wherein the abutting member has a thickness t in the circumferential direction in the range of 1.0 to 10.0 mm.
  3.  前記突き合わせ部材のヤング率Eaは、前記第1、第2の中子セグメントのヤング率Ebの10%以下であることを特徴とする請求項1又は2記載のタイヤ形成用の剛性中子。 3. The rigid core for forming a tire according to claim 1, wherein a Young's modulus Ea of the butting member is 10% or less of a Young's modulus Eb of the first and second core segments.
  4.  前記突き合わせ部材のヤング率Eaは、0.1~2.0GPaの範囲であることを特徴とする請求項1~3の何れかに記載のタイヤ形成用の剛性中子。 4. The rigid core for forming a tire according to claim 1, wherein the butting member has a Young's modulus Ea in a range of 0.1 to 2.0 GPa.
  5. 請求項1~4の何れかに記載の剛性中子のタイヤ成形面上にタイヤ構成部材を順次貼り付けることにより生タイヤを形成する生タイヤ形成工程と、
    前記生タイヤ形成工程によって得られた生タイヤを、前記剛性中子ごと加硫金型内に投入して加硫成形する加硫工程とを具えたことを特徴とするタイヤの製造方法。
    A green tire forming step of forming a green tire by sequentially sticking tire constituent members on the tire molding surface of the rigid core according to any one of claims 1 to 4,
    A tire manufacturing method, comprising: a vulcanizing step in which a green tire obtained by the green tire forming step is placed in a vulcanizing mold together with the rigid core and vulcanized.
PCT/JP2015/056151 2014-03-07 2015-03-03 Rigid core for tire formation and tire production method using same WO2015133452A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15758152.1A EP3115167B1 (en) 2014-03-07 2015-03-03 Rigid core for tire formation and tire production method using the same
US15/119,993 US9731463B2 (en) 2014-03-07 2015-03-03 Rigid inner mold for forming tire, and method of manufacturing tire using the same
CN201580009542.8A CN106029321B (en) 2014-03-07 2015-03-03 The rigid core of tire formation and the tire manufacturing method for using the rigid core

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014045399A JP6212413B2 (en) 2014-03-07 2014-03-07 Rigid core for tire formation
JP2014-045399 2014-03-07

Publications (1)

Publication Number Publication Date
WO2015133452A1 true WO2015133452A1 (en) 2015-09-11

Family

ID=54055258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/056151 WO2015133452A1 (en) 2014-03-07 2015-03-03 Rigid core for tire formation and tire production method using same

Country Status (5)

Country Link
US (1) US9731463B2 (en)
EP (1) EP3115167B1 (en)
JP (1) JP6212413B2 (en)
CN (1) CN106029321B (en)
WO (1) WO2015133452A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7115078B2 (en) * 2018-07-05 2022-08-09 横浜ゴム株式会社 Rigid core for tire manufacturing and method of manufacturing tire
FR3113473B1 (en) * 2020-08-19 2022-07-29 Michelin & Cie Curing mold for a tire comprising a sealing element

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134062A (en) * 1997-07-22 1999-02-09 Bridgestone Corp Inner mold for producing tire
JP2006264018A (en) * 2005-03-23 2006-10-05 Yokohama Rubber Co Ltd:The Rigid core for vulcanizing tire and manufacturing method of pneumatic tire
JP2006341438A (en) * 2005-06-08 2006-12-21 Bridgestone Corp Tire vulcanizing mold and tire vulcanizing and molding method
US20100116439A1 (en) * 2008-11-12 2010-05-13 Dennis Alan Lundell Tire building core
JP2013184368A (en) * 2012-03-07 2013-09-19 Sumitomo Rubber Ind Ltd Rigid core for forming tire
JP2014024306A (en) * 2012-07-30 2014-02-06 Sumitomo Rubber Ind Ltd Rigid core for forming tire

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1245090A (en) * 1967-11-18 1971-09-02 Dunlop Holdings Ltd Improvements in or relating to moulding apparatus
FR2678862B1 (en) * 1991-07-10 1993-10-08 Michelin & Cie TIRE MOLD AND TIRE MOLDING METHOD USING SUCH A MOLD.
US6113833A (en) 1997-07-22 2000-09-05 Bridgestone Corporation Segmented toroidal core for manufacturing pneumatic tires
JP2003039435A (en) * 2001-07-31 2003-02-13 Bridgestone Corp Tire vulcanizing mold
JP2003311741A (en) * 2002-04-23 2003-11-05 Bridgestone Corp Tire manufacturing core
JP5113861B2 (en) 2010-02-15 2013-01-09 住友ゴム工業株式会社 Pneumatic tire manufacturing method and rigid core used therefor
JP5438545B2 (en) 2010-02-19 2014-03-12 住友ゴム工業株式会社 Pneumatic tire manufacturing method
JP5492149B2 (en) * 2011-06-27 2014-05-14 住友ゴム工業株式会社 Rigid core and tire manufacturing method using the same
JP5444385B2 (en) * 2012-01-18 2014-03-19 住友ゴム工業株式会社 Rigid core for tire formation

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1134062A (en) * 1997-07-22 1999-02-09 Bridgestone Corp Inner mold for producing tire
JP2006264018A (en) * 2005-03-23 2006-10-05 Yokohama Rubber Co Ltd:The Rigid core for vulcanizing tire and manufacturing method of pneumatic tire
JP2006341438A (en) * 2005-06-08 2006-12-21 Bridgestone Corp Tire vulcanizing mold and tire vulcanizing and molding method
US20100116439A1 (en) * 2008-11-12 2010-05-13 Dennis Alan Lundell Tire building core
JP2013184368A (en) * 2012-03-07 2013-09-19 Sumitomo Rubber Ind Ltd Rigid core for forming tire
JP2014024306A (en) * 2012-07-30 2014-02-06 Sumitomo Rubber Ind Ltd Rigid core for forming tire

Also Published As

Publication number Publication date
CN106029321B (en) 2019-01-04
EP3115167A4 (en) 2017-11-15
US20170057188A1 (en) 2017-03-02
CN106029321A (en) 2016-10-12
US9731463B2 (en) 2017-08-15
EP3115167A1 (en) 2017-01-11
EP3115167B1 (en) 2021-01-06
JP6212413B2 (en) 2017-10-11
JP2015168173A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
JP5579292B1 (en) Tire vulcanization mold manufacturing method and tire vulcanization mold
EP1629963B1 (en) Tire curing bladder
JP5698694B2 (en) Rigid core for tire formation
KR20140042799A (en) Tire vulcanization molding die and method for manufacturing tires using same
WO2015133452A1 (en) Rigid core for tire formation and tire production method using same
JP5787732B2 (en) Tire vulcanizing bladder
JP5681685B2 (en) Rigid core and method for manufacturing pneumatic tire using the same
WO2013001964A1 (en) Rigid core and manufacturing method for tire using same
JP5486622B2 (en) Rigid core for tire formation
WO2014020991A1 (en) Rigid core for forming tire
JP4604783B2 (en) Manufacturing method of rigid core for tire vulcanization and pneumatic tire
JP6235915B2 (en) Tire vulcanization mold
JP6641799B2 (en) Tire mold
US10500803B2 (en) Rigid inner mold for forming tire, and method of manufacturing tire using the same
JP6454082B2 (en) Rigid core for forming tire and method of manufacturing tire using the same
KR101312907B1 (en) Bladder for vulcanizing a tire
JP2009178909A (en) Method of manufacturing pneumatic tire
KR20170141506A (en) The structure of tire tread mold for reducing thermal strain
JP2011037190A (en) Mold for tire
JP2016101882A (en) Pneumatic tire and method for production thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758152

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15119993

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015758152

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015758152

Country of ref document: EP