WO2015133304A1 - Polarizing film - Google Patents

Polarizing film Download PDF

Info

Publication number
WO2015133304A1
WO2015133304A1 PCT/JP2015/054931 JP2015054931W WO2015133304A1 WO 2015133304 A1 WO2015133304 A1 WO 2015133304A1 JP 2015054931 W JP2015054931 W JP 2015054931W WO 2015133304 A1 WO2015133304 A1 WO 2015133304A1
Authority
WO
WIPO (PCT)
Prior art keywords
polarizing film
int
film
less
pva
Prior art date
Application number
PCT/JP2015/054931
Other languages
French (fr)
Japanese (ja)
Inventor
達也 大園
修 風藤
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to CN201580011559.7A priority Critical patent/CN106062596B/en
Priority to KR1020167022569A priority patent/KR102411225B1/en
Priority to CN201910090674.8A priority patent/CN109917506B/en
Priority to JP2016506426A priority patent/JP6618890B2/en
Publication of WO2015133304A1 publication Critical patent/WO2015133304A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to a polarizing film with little leakage of blue light in a crossed Nicol state and a method for producing the same.
  • a polarizing plate having a light transmission and shielding function is a basic component of a liquid crystal display (LCD) together with a liquid crystal that changes a polarization state of light.
  • LCD liquid crystal display
  • Many polarizing plates have a structure in which a protective film such as a cellulose triacetate (TAC) film is bonded to the surface of a polarizing film.
  • TAC cellulose triacetate
  • a polarizing film constituting the polarizing plate a polyvinyl alcohol film (hereinafter referred to as “polyvinyl alcohol”).
  • a polarizing film can be obtained by uniaxially stretching a PVA film preliminarily containing an iodine pigment, adsorbing an iodine pigment simultaneously with uniaxial stretching of a PVA film, or adsorbing an iodine pigment after uniaxially stretching a PVA film. Or manufactured.
  • LCDs are used in a wide range of devices such as small devices such as calculators and wrist watches, notebook computers, liquid crystal monitors, liquid crystal color projectors, liquid crystal televisions, in-vehicle navigation systems, mobile phones, and measuring devices used indoors and outdoors.
  • small devices such as calculators and wrist watches
  • notebook computers liquid crystal monitors, liquid crystal color projectors, liquid crystal televisions, in-vehicle navigation systems, mobile phones, and measuring devices used indoors and outdoors.
  • LCDs liquid crystal monitors
  • liquid crystal color projectors liquid crystal televisions
  • in-vehicle navigation systems mobile phones
  • mobile phones and measuring devices used indoors and outdoors.
  • thinner polarizing plates such as small notebook personal computers and mobile phones.
  • thermoplastic resin film is stretched, dyed and dried after being stretched, dyed and dried on a thermoplastic resin film, and then stretched as necessary.
  • a method of peeling and removing a film layer is known (see Patent Documents 1 and 2, etc.).
  • an object of this invention is to provide the polarizing film with little leakage of the blue light in a crossed Nicol state, and its manufacturing method.
  • the present inventors are used when producing a polarizing film by dyeing and stretching a laminate having a PVA layer and a thermoplastic resin film layer.
  • the temperature of the dyeing bath containing iodine dye and the immersion time in the dyeing bath to a specific range, each measurement result in the vicinity of the film surface obtained by Raman spectroscopic measurement of the cross section satisfies a specific relationship.
  • the present inventors have found that an unprecedented polarizing film with less blue light leakage in the Nicol state can be easily obtained, and further studied based on the knowledge to complete the present invention.
  • the present invention [1] A polarizing film in which an iodine pigment is adsorbed on a matrix containing PVA, which is obtained by Raman spectroscopic measurement of a cross section of the polarizing film.
  • signal intensity at 310 cm -1 in the 10% penetration portion Te ratio of the signal intensity at (Int 310) and 210cm -1 (Int 210) to (Int 310 / Int 210) is M, from the other surface of the film
  • the ratio (Int 310 / Int 210 ) of the signal intensity (Int 310 ) at 310 cm ⁇ 1 and the signal intensity (Int 210 ) at 210 cm ⁇ 1 in the portion that has entered 10% of the thickness in the thickness direction is N
  • a polarizing film with less leakage of blue light in the crossed Nicol state is provided. Moreover, according to this invention, the manufacturing method of the polarizing film which can manufacture the said polarizing film easily is provided.
  • the ratio (Int 310 / Int 210 ) to the signal intensity at ⁇ 1 (Int 210 / Int 210 ) is M, and the portion at a depth of 310 cm ⁇ 1 in the portion entering the thickness direction from the other side of the film to the inside by 10%
  • the ratio (Int 310 / Int 210 ) between the signal intensity (Int 310 ) and the signal intensity (Int 210 ) at 210 cm ⁇ 1 is N (where M ⁇ N)
  • the M / N is 0. 91 or less.
  • Raman spectrophotometry may be performed with a Raman spectrophotometer using a sample obtained by slicing the target polarizing film in the thickness direction.
  • a laser Raman spectrometer such as a microscopic laser Raman spectrometer “LabRAM ARAMIS VIS”
  • the measurement target portion of the sample may be irradiated with laser light having a wavelength of 532 nm to perform Raman spectroscopy.
  • the ratio (Int 310 / Int 210 ) is calculated.
  • specific measurement methods or conditions for obtaining the ratio (Int 310 / Int 210 ) in each part of the film those described later in the examples can be employed.
  • the portion corresponds to each surface of the polarizing film.
  • the ratio (Int 310 / Int 210 ) in each part of the film is considered to depend on the ratio of the amount of I 5 ⁇ to the amount of I 3 ⁇ in that part. It is done.
  • the polarizing film of the present invention has an M / N of 0.91 or less.
  • M / N is 0.91 or less, a polarizing film with little leakage of blue light in the crossed Nicols state is obtained.
  • M / N is preferably 0.85 or less, more preferably 0.76 or less, and 0.72 or less. More preferably.
  • M / N is preferably 0.01 or more, more preferably 0.1 or more, and 0.5 or more. Further preferred.
  • a polarizing film in which iodine-based dye is adsorbed on a matrix is obtained by stretching a PVA film containing iodine-based dye in advance, adsorbing iodine-based dye simultaneously with stretching of the PVA film, or stretching PVA film to form a matrix.
  • adsorbing an iodine dye more specifically, a PVA layer (corresponding to a PVA film) preliminarily containing an iodine dye, a thermoplastic resin film layer, A laminate having a PVA layer and a thermoplastic resin film layer, or a PVA layer and a thermoplastic resin film layer adsorbing iodine pigments simultaneously with the stretching of the laminate having a PVA layer and a thermoplastic resin film layer After stretching the film, it can be produced by, for example, adsorbing an iodine dye to a matrix formed from the PVA layer.
  • vinyl esters such as vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl versatate, vinyl laurate, vinyl stearate, vinyl benzoate, isopropenyl acetate Or what is obtained by saponifying the polyvinyl ester obtained by superposing
  • vinyl esters vinyl acetate is preferable from the viewpoints of ease of production of PVA, availability, cost, and the like.
  • the above-mentioned polyvinyl ester may be obtained using only one or two or more kinds of vinyl esters as a monomer. It may be a copolymer of two or more kinds of vinyl esters and other monomers copolymerizable therewith.
  • Examples of the other monomer copolymerizable with the vinyl ester include ⁇ -olefins having 2 to 30 carbon atoms such as ethylene, propylene, 1-butene, and isobutene; (meth) acrylic acid or a salt thereof; (Meth) methyl acrylate, (meth) ethyl acrylate, (meth) acrylate n-propyl, (meth) acrylate i-propyl, (meth) acrylate n-butyl, (meth) acrylate i-butyl, ( (Meth) acrylic acid esters such as t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate; (meth) acrylamide, N-methyl ( (Meth) acrylamide, N-ethyl (meth) acrylamide, N,
  • Vinyl ether vinyl cyanide such as (meth) acrylonitrile
  • vinyl halide such as vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride
  • Allyl compounds such as allyl acetate and allyl chloride; maleic acid or its salts, esters or acid anhydrides; itaconic acid or its salts, esters or acid anhydrides
  • vinylsilyl compounds such as vinyltrimethoxysilane; unsaturated sulfonic acids be able to.
  • Said polyvinyl ester can have a structural unit derived from 1 type, or 2 or more types of an above described other monomer.
  • the proportion of structural units derived from the other monomers described above in the polyvinyl ester is preferably 15 mol% or less based on the number of moles of all structural units constituting the polyvinyl ester, and is preferably 10 mol%. Hereinafter, it may be 5 mol% or less.
  • the other monomer described above is a monomer that may promote the water solubility of the obtained PVA, such as (meth) acrylic acid or unsaturated sulfonic acid
  • the proportion of structural units derived from these monomers in the polyvinyl ester is 5 mol% or less based on the number of moles of all structural units constituting the polyvinyl ester. It is preferable that it is 3 mol% or less.
  • the above PVA may be modified with one or two or more types of graft copolymerizable monomers as long as the effects of the present invention are not impaired.
  • the graft copolymerizable monomer include unsaturated carboxylic acids or derivatives thereof; unsaturated sulfonic acids or derivatives thereof; ⁇ -olefins having 2 to 30 carbon atoms, and the like.
  • the proportion of structural units derived from the graft copolymerizable monomer in PVA (structural units in the graft modified portion) is preferably 5 mol% or less based on the number of moles of all structural units constituting PVA. .
  • the above PVA may have a part of its hydroxyl group cross-linked or not cross-linked. Moreover, said PVA may react with aldehyde compounds, such as acetaldehyde and a butyraldehyde, etc. to form an acetal structure, and the said PVA does not react with these compounds and does not form an acetal structure. May be.
  • aldehyde compounds such as acetaldehyde and a butyraldehyde, etc.
  • the average degree of polymerization of the PVA is preferably in the range of 1,000 to 9,500.
  • the average degree of polymerization is more preferably 1,500 or more, and further preferably 2,000 or more. Moreover, it is more preferable that it is 9,200 or less, and it is further more preferable that it is 6,000 or less.
  • the average degree of polymerization is 1,000 or more, the polarizing performance of the polarizing film is improved.
  • the productivity of PVA is improved.
  • the average degree of polymerization of PVA can be measured according to the description of JIS K6726-1994.
  • the degree of saponification of the PVA is preferably 98 mol% or more, more preferably 98.5 mol% or more, and more preferably 99 mol% or more from the viewpoint of the polarizing performance of the polarizing film. preferable.
  • the degree of saponification is less than 98 mol%, PVA tends to be eluted during the production process of the polarizing film, and the eluted PVA may adhere to the film and reduce the polarizing performance of the polarizing film.
  • the degree of saponification of PVA refers to the total number of moles of structural units (typically vinyl ester units) that can be converted into vinyl alcohol units by saponification and the vinyl alcohol units of PVA. The proportion (mol%) occupied by the number of moles of vinyl alcohol units.
  • the degree of saponification can be measured according to the description of JIS K6726-1994.
  • the iodine-based dye As the iodine-based dye, I 3 -, and the like - and I 5, examples of these counter cations include alkali metals such as potassium.
  • the iodine dye can be obtained, for example, by bringing iodine (I 2 ) into contact with potassium iodide.
  • the thickness of the polarizing film of the present invention is preferably 15 ⁇ m or less, more preferably 12 ⁇ m or less, and even more preferably 8 ⁇ m or less because a thin polarizing plate required in recent years can be easily obtained. Particularly preferably, it is 5 ⁇ m or less.
  • the thickness of the polarizing film is, for example, 0.5 ⁇ m or more (in one example, 2.5 ⁇ m or more), and 4 ⁇ m or more from the viewpoint of manufacturing. It may be 5 ⁇ m or more, further 6 ⁇ m or more.
  • the polarizing film of the present invention has a ratio (A / B) of the absorbance (A) at a wavelength of 480 nm and the absorbance (B) at a wavelength of 700 nm in a crossed Nicol state of 1.40.
  • it is 1.41 or more, more preferably 1.42 or more, particularly preferably 1.45 or more, 1.50 or more, and further 1.55. It may be the above.
  • the ratio (A / B) is preferably 2 or less, and is 1.8 or less. More preferably, it is more preferably 1.6 or less.
  • said light absorbency (A) and light absorbency (B) can be calculated
  • the single transmittance of the polarizing film of the present invention is preferably in the range of 40 to 45% from the viewpoint of polarization performance, and the single transmittance is more preferably 41% or more, and 42% or more. More preferably, it is more preferably 44% or less.
  • the single transmittance of the polarizing film can be measured by the method described later in Examples.
  • the method for producing the polarizing film of the present invention is not particularly limited, and can be produced by dyeing and stretching a PVA film as a raw film, for example, used as a raw film. Disperse the dyeing liquid containing iodine dye on one side of the PVA film in a specific amount and concentration; one side of the PVA film used as a raw film on a roll coated with the dyeing liquid containing iodine dye Contacting one side of a PVA film used as a raw film with an impregnated body in which a porous material such as sponge is impregnated with a dyeing solution containing an iodine-based dye; It can be easily manufactured by making a difference in the ratio of the amount of I 5 ⁇ to the amount of I 3 ⁇ in the vicinity of each surface.
  • the following production method of the present invention is preferable because the polarizing film of the present invention can be more easily produced.
  • the production method of the present invention includes a step of dyeing and stretching a laminate having a PVA layer and a thermoplastic resin film layer, and the dyeing is performed by immersing the laminate in a dyeing bath containing an iodine-based pigment.
  • the temperature of the dyeing bath is 25 ° C. or less, and the immersion time is 2.5 minutes or less.
  • thermoplastic resin constituting the thermoplastic resin film layer examples include various thermoplastic resins such as polyethylene, polypropylene, polymethylpentene, polystyrene, polycarbonate, polyvinyl chloride, methacrylic resin, nylon, polyethylene terephthalate, and their heat. Examples thereof include a copolymer having a plurality of types of monomer units constituting the plastic resin. In the thermoplastic resin film layer, only one kind of thermoplastic resin may be contained, or two or more kinds of thermoplastic resins may be contained. Among these, polyethylene terephthalate is preferable and amorphous polyethylene terephthalate is more preferable because it has high heat resistance and stretchability.
  • the thickness of the thermoplastic resin film layer is preferably within the range of 20 to 250 ⁇ m, more preferably within the range of 30 to 230 ⁇ m, and even more preferably within the range of 50 to 200 ⁇ m.
  • the thickness of the thermoplastic resin film layer is 20 ⁇ m or more, wrinkles can be effectively prevented when forming the PVA layer.
  • the thickness of the thermoplastic resin film layer is 250 ⁇ m or less, it is possible to suppress an excessive increase in tension when the laminate is stretched.
  • the PVA constituting the PVA layer can be the same as that described above in the description of the polarizing film of the present invention, redundant description is omitted here.
  • the PVA layer preferably contains a plasticizer from the viewpoint of improving stretchability when stretched.
  • the plasticizer may include polyhydric alcohols such as ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, and trimethylolpropane.
  • One or more of the agents can be included. Among these, glycerin is preferable from the viewpoint of the effect of improving stretchability.
  • the content of the plasticizer in the PVA layer is preferably in the range of 1 to 20 parts by mass with respect to 100 parts by mass of PVA contained therein. When the content is 1 part by mass or more, the stretchability of the PVA layer and thus the laminate can be further improved. On the other hand, when the content is 20 parts by mass or less, it is possible to prevent the PVA layer from becoming too flexible and handleability from being lowered.
  • the content of the plasticizer in the PVA layer is more preferably 2 parts by mass or more with respect to 100 parts by mass of PVA, further preferably 4 parts by mass or more, and particularly preferably 5 parts by mass or more.
  • the amount is more preferably 15 parts by mass or less, and further preferably 12 parts by mass or less.
  • the PVA layer may further contain components such as an antioxidant, an antifreezing agent, a pH adjuster, a hiding agent, a coloring inhibitor, an oil agent, and a surfactant as necessary.
  • the content of PVA in the PVA layer is preferably in the range of 50 to 99% by mass in view of ease of preparation of the desired polarizing film, and the content is preferably 75% by mass or more. More preferably, it is more preferably 80% by mass or more, particularly preferably 85% by mass or more, more preferably 98% by mass or less, further preferably 96% by mass or less, 95 It is particularly preferable that the content is not more than mass%.
  • the thickness of the PVA layer is preferably 30 ⁇ m or less, more preferably 25 ⁇ m or less, further preferably 15 ⁇ m or less, and more preferably 10 ⁇ m or less because a thin polarizing film can be easily obtained. Particularly preferred.
  • the thickness of the PVA layer is, for example, 1 ⁇ m or more (in an example, 5 ⁇ m or more), and from the viewpoint of manufacturing, 8 ⁇ m or more. It may be 10 ⁇ m or more, and further 12 ⁇ m or more.
  • the polarizing film of this invention is a two-layer structure of one PVA layer and one thermoplastic resin film layer. .
  • the shape of the laminate is not particularly limited, but is preferably a long laminate because it can be used continuously when producing a polarizing film.
  • the length of the long laminate (length in the long direction) is not particularly limited, and can be set as appropriate according to the application of the polarizing film to be produced. For example, the length is in the range of 5 to 20,000 m. It can be.
  • the width of the laminate is not particularly limited and can be appropriately set according to the application of the polarizing film to be produced.
  • the laminate has been increasing in screen size for liquid crystal televisions and liquid crystal monitors. If the width is set to 0.5 m or more, more preferably 1.0 m or more, it is suitable for these applications.
  • the width of the laminated body is too wide, it tends to be difficult to uniformly stretch the polarizing film when the polarizing film is produced by a device that has been put to practical use. Therefore, the width of the laminated body is 7 m or less. Is preferred.
  • Examples of the method for producing a laminate include a method of forming a PVA layer on a thermoplastic resin film. Specifically, other components other than PVA such as PVA and, if necessary, the above-described plasticizer. A method in which a stock solution dissolved in a liquid medium is coated on a thermoplastic resin film and dried; a stock solution obtained by melting and kneading PVA, the liquid medium and other components as required is applied onto the thermoplastic resin film. Examples include a method of extruding and further drying as required; a method of producing a PVA film containing PVA and, if necessary, further other components by a known method, and laminating it with a thermoplastic resin film.
  • thermoplastic resin film a stock solution in which PVA and, if necessary, further other components are dissolved in a liquid medium is used as a thermoplastic resin film. A method of coating and drying is preferred.
  • liquid medium examples include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, trimethylolpropane, ethylenediamine, diethylenetriamine. Of these, one or more of these can be used. Among these, water is preferable from the viewpoint of environmental load and recoverability.
  • the volatile content rate of the stock solution (the content ratio in the stock solution of volatile components such as a liquid medium that is removed by volatilization or drying during the formation of the PVA layer) varies depending on the formation method and formation conditions of the PVA layer, It is preferably in the range of 50% by mass to 98% by mass, and more preferably in the range of 55% by mass to 95% by mass.
  • the volatile content of the stock solution is 50% by mass or more, its viscosity does not become too high, and filtration and defoaming during the preparation of the stock solution are smoothly performed, and formation of a PVA layer with less foreign matter and defects is facilitated. At the same time, the coatability is also improved.
  • the volatile content of the stock solution is 98% by mass or less, the concentration of the stock solution does not become too low, and industrial production of the laminate is facilitated.
  • Examples of the coating method for coating the stock solution on the thermoplastic resin film include a die coating method, a comma coating method, and a dip coating method.
  • the die coating method is preferable from the viewpoint of the uniformity of the thickness of the obtained PVA layer.
  • thermoplastic resin film used for the production of the laminate is hydrophilized.
  • the adhesion between the thermoplastic resin film layer and the PVA layer is improved.
  • the hydrophilic treatment include corona treatment, plasma treatment, anchor coat treatment, and the like. Among these, corona treatment is preferable from the viewpoint of easy adjustment of hydrophilicity.
  • the contact angle of the surface of the thermoplastic resin film is preferable to adjust to 55 to 70 ° by the above-described hydrophilic treatment, more preferably to adjust the contact angle to 57 ° or more, and to adjust to 59 ° or more. More preferably, it is more preferably adjusted to 69 ° or less, and further preferably adjusted to 68 ° or less.
  • the contact angle is lower than 55 °, the adhesive strength between the thermoplastic resin film layer and the PVA layer tends to be too strong, and it is difficult to peel off the stretched thermoplastic resin film layer after stretching the laminate. May be.
  • the contact angle of the surface of the thermoplastic resin film is the angle formed by the water surface and the surface of the thermoplastic resin film where the free surface of water is in contact with the thermoplastic resin film (takes an angle inside the water) It can measure by the method mentioned later in an Example.
  • the discharge amount represented by the following formula (1) is preferably in the range of 180 to 350 W ⁇ min / m 2 , more preferably in the range of 190 to 320 W ⁇ min / m 2 , More preferably, it is within the range of 200 to 300 W ⁇ min / m 2 .
  • Discharge amount (W ⁇ min / m 2 ) Output (W / m) / Processing speed (m / min) (1)
  • the glass transition temperature is below the glass transition temperature of the thermoplastic resin film. Drying at a temperature is preferred.
  • the production method of the present invention includes a step of dyeing the laminate (dyeing step) and a step of drawing (stretching step).
  • the production method includes an insolubilization step, a swelling step, and a crosslinking step in addition to the dyeing step and the drawing step. Further, a fixing process, a washing process, a drying process and the like may be further included as necessary. The order of each process may be changed as needed, each process may be performed twice or more, and different processes may be performed simultaneously.
  • the polarizing film formed on the stretched thermoplastic resin film layer is obtained, the process of peeling the said stretched thermoplastic resin film as needed is included. Also good.
  • the laminate is first subjected to an insolubilization process, further subjected to a swelling process as necessary, then subjected to a dyeing process, and further subjected to a crosslinking process as necessary, and then to a stretching process. Then, if necessary, it is further subjected to a fixing treatment step and / or a washing step, and is then subjected to a drying step.
  • a polarizing film formed on the stretched thermoplastic resin film layer is obtained, The method of peeling the said stretched thermoplastic resin film layer further as needed is mentioned.
  • the insolubilization treatment is mainly performed to prevent elution of PVA contained in the PVA layer into water.
  • the insolubilization treatment for example, a method of performing a heat treatment on the laminate, or an aqueous solution containing one or more of boron compounds such as borate such as boric acid and borax using the laminate as an insolubilizing bath.
  • the method of immersing is mentioned.
  • a method of using an aqueous solution containing a boron compound is preferable because if the laminate is subjected to a heat treatment, wrinkles may occur with the dimensional change of the thermoplastic resin film layer.
  • the heat treatment can be performed at a temperature in the range of 80 to 200 ° C., for example.
  • the heat treatment is preferably performed while applying tension to the laminate.
  • the temperature of the aqueous solution is preferably within the range of 20 to 40 ° C., more preferably within the range of 22 to 38 ° C., and within the range of 25 to 35 ° C. More preferably.
  • the time for immersion in the aqueous solution containing the boron compound is, for example, in the range of 0.1 to 5 minutes. By in the range of 0.1 to 5 minutes, it can be insolubilized efficiently.
  • the concentration of the boron compound in the aqueous solution containing the boron compound is preferably in the range of 0.5 to 6.0% by mass, more preferably in the range of 1.0 to 5.0% by mass. More preferably, it is in the range of 0.5 to 4.0% by mass.
  • the insolubilization treatment is preferably performed before the dyeing step and further before the swelling step.
  • the swelling step can be performed by immersing the laminate in water.
  • the temperature of the water when immersed in water is preferably within a range of 20 to 40 ° C., more preferably 22 ° C. or higher, further preferably 25 ° C. or higher.
  • the temperature is more preferably 38 ° C. or lower, and further preferably 35 ° C. or lower.
  • the time for immersion in water is preferably within a range of 0.1 to 5 minutes, and more preferably within a range of 0.5 to 3 minutes. By making it within the range of 0.1 to 5 minutes, the PVA layer can be efficiently swollen.
  • the water at the time of immersing in water is not limited to pure water, The aqueous solution in which various components melt
  • the dyeing is performed by immersing the laminate in a dyeing bath containing an iodine-based dye, wherein the temperature of the dyeing bath is 25 ° C. or less and the immersion time is 2.5 minutes or less. It is necessary to be.
  • the temperature of the dyeing bath is preferably 23 ° C. or less, more preferably 21 ° C. or less, further preferably 18 ° C. or less, 15 ° C. or less, and further 10 ° C. or less.
  • the temperature of the dyeing bath is preferably 3 ° C. or higher, and more preferably 5 ° C. or higher.
  • the immersion time is preferably 2.0 minutes or less, more preferably 1.5 minutes or less, 0.8 minutes or less, 0.3 minutes or less, and further 0.2 minutes.
  • the following may be sufficient, and when using the laminated body which has a thinner PVA layer especially, the target polarizing film can be obtained more efficiently by making immersion time shorter.
  • the soaking time is preferably 0.01 minutes or more, and more preferably 0.05 minutes or more.
  • a representative example of the dyeing bath is that obtained by mixing iodine (I 2 ) and potassium iodide with water. By mixing the iodine and potassium iodide and water, I 3 - and I 5 - such can generate iodine dye.
  • the concentration of iodine and potassium iodide in the dyeing bath is not particularly limited, but the iodine concentration is within a range of 0.01 to 2% by mass as a ratio of the mass of iodine used to the mass of the resulting dyeing bath.
  • the concentration of potassium iodide is preferably in the range of 0.02 to 1% by mass, and the concentration of potassium iodide is the mass of potassium iodide used relative to the mass of iodine used.
  • the ratio is preferably in the range of 10 to 300 times by mass, and more preferably in the range of 15 to 150 times by mass.
  • the dyeing bath may contain a boron compound such as borate such as boric acid and borax.
  • the crosslinking step is preferably performed after the dyeing step and before the stretching step.
  • the crosslinking step can be performed by immersing the laminate in an aqueous solution containing a crosslinking agent as a crosslinking bath.
  • a crosslinking agent one or more of boron compounds such as boric acid and borate such as borax can be used.
  • the concentration of the crosslinking agent in the crosslinking bath is preferably in the range of 1 to 15% by mass, more preferably 2% by mass or more, more preferably 7% by mass or less, and 6% by mass or less.
  • the crosslinking bath may contain an auxiliary agent such as potassium iodide.
  • the temperature of the crosslinking bath is preferably in the range of 20 to 50 ° C., particularly preferably in the range of 25 to 40 ° C. By setting the temperature within the range of 20 to 50 ° C., crosslinking can be performed efficiently.
  • the wet stretching method is preferable from the viewpoint of the uniformity of the thickness in the width direction of the obtained polarizing film, and it is more preferable to stretch in a boric acid aqueous solution.
  • the concentration of boric acid in the boric acid aqueous solution is preferably in the range of 0.5 to 6.0 mass%, more preferably 1.0 mass% or more, and 1.5 mass% More preferably, it is more preferably 5.0% by mass or less, and further preferably 4.0% by mass or less.
  • the boric acid concentration is in the range of 0.5 to 6.0% by mass, a polarizing film having excellent thickness uniformity in the width direction can be obtained.
  • the aqueous solution containing the boron compound may contain potassium iodide, and its concentration is preferably in the range of 0.01 to 10% by mass.
  • concentration of potassium iodide is in the range of 0.01 to 10% by mass, a polarizing film with better polarizing performance can be obtained.
  • the temperature at which the laminate is stretched is preferably in the range of 5 to 90 ° C., more preferably 10 ° C. or more, and more preferably 85 ° C. or less. More preferably, it is not higher than ° C.
  • a polarizing film having excellent thickness uniformity in the width direction can be obtained.
  • the stretching ratio when stretching the laminate is preferably 4 times or more, more preferably 5 times or more, and further preferably 6 times or more.
  • a polarizing film that is more excellent in polarizing performance can be obtained.
  • the upper limit of the draw ratio of the laminate is not particularly limited, it is preferably 8 times or less.
  • the stretching of the laminate may be performed at once or may be performed in multiple times, but when performed in multiple times, the total stretch ratio multiplied by the stretch ratio of each stretch is within the above range. I just need it.
  • the draw ratio in this specification is based on the length of the laminated body before extending
  • the stretching of the laminate is preferably uniaxial stretching from the viewpoint of the performance of the obtained polarizing film.
  • Uniaxial stretching in the longitudinal direction is preferred. Uniaxial stretching in the longitudinal direction can be performed by changing the peripheral speed between the rolls using a stretching apparatus including a plurality of rolls parallel to each other. On the other hand, lateral uniaxial stretching can be performed using a tenter type stretching machine.
  • the fixing treatment step is mainly performed in order to strengthen the adsorption of the iodine-based dye to the PVA layer.
  • the fixing treatment step can be performed by immersing the laminate before stretching, during stretching or after stretching in a fixing treatment bath.
  • a fixing treatment bath an aqueous solution containing one or more of boron compounds such as boric acid such as boric acid and borax can be used.
  • the concentration of the boron compound in the aqueous solution containing the boron compound used as the fixing treatment bath is generally within the range of 0.1 to 15% by mass, and particularly preferably within the range of 1 to 10% by mass.
  • the concentration of the iodine-based dye can be further strengthened.
  • the temperature of the fixing treatment bath is preferably in the range of 10 to 60 ° C, particularly preferably in the range of 15 to 40 ° C. By setting the temperature within the range of 10 to 60 ° C., it is possible to further strengthen the adsorption of the iodine dye.
  • the cleaning process is often performed to remove unnecessary chemicals and foreign matters on the film surface and to adjust the optical performance of the finally obtained polarizing film.
  • the cleaning step can be performed by immersing the laminate in a cleaning bath or by spraying a cleaning liquid on the laminate. Water can be used as the washing bath or the washing liquid, and potassium iodide may be contained therein.
  • the drying conditions in the drying step are not particularly limited, but it is preferable to perform the drying at a temperature within the range of 30 to 150 ° C, particularly within the range of 50 to 130 ° C.
  • a polarizing film excellent in dimensional stability can be easily obtained by drying at a temperature in the range of 30 to 150 ° C.
  • the stretched thermoplastic resin film layer is not peeled off, but is used as it is or optically transparent to the polarizing film side as desired. It is good also as a polarizing plate by laminating
  • a cellulose triacetate (TAC) film, an acetic acid / cellulose butyrate (CAB) film, an acrylic film, a polyester film, or the like can be used.
  • the adhesive for bonding include a PVA adhesive and a urethane adhesive, and a PVA adhesive is preferable.
  • thermoplastic resin film surface [Contact angle of thermoplastic resin film surface] Using a “DropMaster 500” manufactured by Kyowa Interface Science Co., Ltd., in an environment of 20 ° C. and 65% RH, 2 ⁇ L of pure water was extruded from the needle with an inner diameter of 0.4 mm onto the surface of the thermoplastic resin film, and the contact angle was measured. .
  • the visibility correction of the visible light region of the C light source and 2 ° field of view is performed, and the sample is measured in the length direction.
  • the light transmittance when tilted by 45 ° and the light transmittance when tilted by ⁇ 45 ° were measured, and the average value (%) was taken as the single transmittance of the polarizing film.
  • MD width direction
  • MD length direction
  • the sample to be measured is irradiated with a laser beam having a wavelength of 532 nm on the cross-section to be measured on the cross section produced by the microtome. performed, among the signals observed at that time, because the intensity of the signal at 310cm intensity of the signal at -1 (Int 310) and 210cm -1 (Int 210), the ratio in that portion (Int 310 / Int 210 ) was calculated.
  • said measurement object part shall be a part which penetrated 10% with respect to thickness to the inside in the thickness direction of the film from each surface of the polarizing film, and about the obtained two ratios (Int 310 / Int 210 ), M ⁇ N
  • M ⁇ N Each value was set to M or N so as to satisfy, and M / N was calculated using these M and N.
  • thermoplastic resin film Amorphous polyethylene terephthalate film (A-PET sheet FR thickness 150 ⁇ m, manufactured by Teijin Chemicals Ltd.) is used as the thermoplastic resin film, and the amount of discharge on one side of the thermoplastic resin film. Corona treatment was performed at 280 W ⁇ min / m 2 (output 280 W / m, treatment speed 1.0 m / min). The contact angle of the surface of the thermoplastic resin film after the corona treatment was 60 ° (the contact angle before the corona treatment was 79 °).
  • a two-layer laminate (a long laminate having a width of 0.5 m) composed of an amorphous polyethylene terephthalate film layer and a PVA layer having a thickness of 15 ⁇ m was produced.
  • (4) Production of Polarizing Film A polarizing film was produced by performing an insolubilization process, a dyeing process, a crosslinking process, a stretching process, a fixing process process, and a drying process on the laminate prepared in (3). That is, while the laminate is immersed in an insolubilization bath containing boric acid at a concentration of 3% by mass at a temperature of 32 ° C. for 1 minute, it is uniaxial in the length direction (MD) up to twice the original length.
  • MD length direction
  • the amount used is 0.035% by mass of iodine and potassium iodide is mixed with water at a concentration of 0.8% by mass in water at a temperature of 20 ° C. for 0.5 minutes. While immersed, the film is uniaxially stretched in the length direction (MD) up to 3 times the original length (second-stage stretching), and then crosslinked at a temperature of 32 ° C. containing boric acid at a concentration of 2.5% by mass. While immersed in the bath for 2 minutes, it was uniaxially stretched in the length direction (MD) up to 3.6 times the original length (stretched in the third stage), and further 2.8% by mass of boric acid and potassium iodide.
  • Example 1 The thickness shown in Table 1 was the same as in Example 1 except that the thickness of the PVA layer in the laminate, the temperature of the dyeing bath, the immersion time in the dyeing bath, and the composition of the dyeing bath were changed as shown in Table 1.
  • the polarizing film which has was manufactured. With respect to the obtained polarizing film (after the stretched amorphous polyethylene terephthalate film layer was peeled), the absorbance, single transmittance and M / N were measured or calculated by the methods described above. The results are shown in Table 1.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

 [Problem] To provide a polarizing film having negligible leakage of blue light in the crossed nicols state. [Solution] Provided is a polarizing film in which an iodine-based pigment is adsorbed onto a matrix that includes PVA, wherein the polarizing film satisfies the relationship M/N ≦ 0.91, where M denotes the ratio (Int310/Int210 of the signal intensity at 310 cm-1 ((Int310) and the signal intensity at 210 cm-1 (Int210) in a section corresponding to ingress by the equivalent of 10% of thickness, into the interior of the film from one surface thereof in the thickness direction, and N denotes the ratio (Int310/Int210 of the signal intensity at 310 cm-1 (Int310) and the signal intensity at 210 cm-1 (Int210) in a section corresponding to ingress by the equivalent of 10% of the thickness, into the interior of the film from the other surface thereof in the thickness direction (M ≦ N), obtained through Raman spectrometry of a cross section of the polarizing film.

Description

偏光フィルムPolarized film
 本発明は、クロスニコル状態における青色光の漏れの少ない偏光フィルムおよびその製造方法に関する。 The present invention relates to a polarizing film with little leakage of blue light in a crossed Nicol state and a method for producing the same.
 光の透過および遮蔽機能を有する偏光板は、光の偏光状態を変化させる液晶と共に液晶ディスプレイ(LCD)の基本的な構成要素である。多くの偏光板は偏光フィルムの表面に三酢酸セルロース(TAC)フィルムなどの保護膜が貼り合わされた構造を有しており、偏光板を構成する偏光フィルムとしてはポリビニルアルコールフィルム(以下、「ポリビニルアルコール」を「PVA」と略記することがある)を一軸延伸してなるマトリックス(一軸延伸して配向させた延伸フィルム)にヨウ素系色素(I やI 等)が吸着しているものが主流となっている。このような偏光フィルムは、ヨウ素系色素を予め含有させたPVAフィルムを一軸延伸したり、PVAフィルムの一軸延伸と同時にヨウ素系色素を吸着させたり、PVAフィルムを一軸延伸した後にヨウ素系色素を吸着させたりするなどして製造される。 A polarizing plate having a light transmission and shielding function is a basic component of a liquid crystal display (LCD) together with a liquid crystal that changes a polarization state of light. Many polarizing plates have a structure in which a protective film such as a cellulose triacetate (TAC) film is bonded to the surface of a polarizing film. As a polarizing film constituting the polarizing plate, a polyvinyl alcohol film (hereinafter referred to as “polyvinyl alcohol”). iodine based dye "to the sometimes abbreviated as" PVA ") in a matrix formed by uniaxially stretched (oriented film was oriented by uniaxial stretching) (I 3 - and I 5 -, etc.) those adsorbed Has become the mainstream. Such a polarizing film can be obtained by uniaxially stretching a PVA film preliminarily containing an iodine pigment, adsorbing an iodine pigment simultaneously with uniaxial stretching of a PVA film, or adsorbing an iodine pigment after uniaxially stretching a PVA film. Or manufactured.
 LCDは、電卓および腕時計などの小型機器、ノートパソコン、液晶モニター、液晶カラープロジェクター、液晶テレビ、車載用ナビゲーションシステム、携帯電話、屋内外で用いられる計測機器などの広範囲において用いられるようになっているが、近年、特に小型のノートパソコンや携帯電話などのモバイル用途へ用いられることが多くなっており、偏光板への薄型化の要求が強くなっている。 LCDs are used in a wide range of devices such as small devices such as calculators and wrist watches, notebook computers, liquid crystal monitors, liquid crystal color projectors, liquid crystal televisions, in-vehicle navigation systems, mobile phones, and measuring devices used indoors and outdoors. However, in recent years, it is often used for mobile applications such as small notebook personal computers and mobile phones, and there is an increasing demand for thinner polarizing plates.
 偏光板を構成する偏光フィルムを薄型化する方法として、熱可塑性樹脂フィルムの片面にPVA層を形成してなる積層体を延伸、染色、乾燥してから、必要に応じて延伸された熱可塑性樹脂フィルムの層を剥離除去する方法が知られている(特許文献1および2などを参照)。 As a method of thinning a polarizing film constituting a polarizing plate, a thermoplastic resin film is stretched, dyed and dried after being stretched, dyed and dried on a thermoplastic resin film, and then stretched as necessary. A method of peeling and removing a film layer is known (see Patent Documents 1 and 2, etc.).
国際公開第2010/100917号International Publication No. 2010/100917 特許第4691205号明細書Japanese Patent No. 4691205
 しかしながら、従来公知の方法に従って薄型の偏光フィルムを製造した場合には、クロスニコル状態における青色光の漏れが多いという問題があった。そこで本発明は、クロスニコル状態における青色光の漏れの少ない偏光フィルムおよびその製造方法を提供することを目的とする。 However, when a thin polarizing film is produced according to a conventionally known method, there is a problem that blue light leaks in a crossed Nicol state. Then, an object of this invention is to provide the polarizing film with little leakage of the blue light in a crossed Nicol state, and its manufacturing method.
 本発明者らは、上記の目的を達成すべく鋭意検討を重ねた結果、PVA層と熱可塑性樹脂フィルム層とを有する積層体を染色および延伸して偏光フィルムを製造する際に、使用されるヨウ素系色素を含む染色浴の温度および染色浴への浸漬時間を特定の範囲とすることにより、断面をラマン分光測定して得られるフィルムの表面近傍における各測定結果が特定の関係を満たす、クロスニコル状態における青色光の漏れの少ない従来にない偏光フィルムが容易に得られることを見出し、当該知見に基づいて更に検討を重ねて本発明を完成させた。 As a result of intensive studies to achieve the above object, the present inventors are used when producing a polarizing film by dyeing and stretching a laminate having a PVA layer and a thermoplastic resin film layer. By setting the temperature of the dyeing bath containing iodine dye and the immersion time in the dyeing bath to a specific range, each measurement result in the vicinity of the film surface obtained by Raman spectroscopic measurement of the cross section satisfies a specific relationship. The present inventors have found that an unprecedented polarizing film with less blue light leakage in the Nicol state can be easily obtained, and further studied based on the knowledge to complete the present invention.
 すなわち本発明は、
[1]PVAを含むマトリックスにヨウ素系色素が吸着している偏光フィルムであって、当該偏光フィルムの断面をラマン分光測定して得られる、フィルムの一方の面から厚み方向に内部に厚みに対して10%進入した部分における310cm-1でのシグナル強度(Int310)と210cm-1でのシグナル強度(Int210)との比率(Int310/Int210)をMとし、フィルムの他方の面から厚み方向に内部に厚みに対して10%進入した部分における310cm-1でのシグナル強度(Int310)と210cm-1でのシグナル強度(Int210)との比率(Int310/Int210)をNとした際に(但し、M≦Nである)、M/Nが0.91以下である、偏光フィルム;
[2]クロスニコル状態における波長480nmでの吸光度(A)と波長700nmでの吸光度(B)との比率(A/B)が1.40以上である、上記[1]の偏光フィルム;
[3]厚みが15μm以下である、上記[1]または[2]の偏光フィルム;
[4]単体透過率が40~45%である、上記[1]~[3]のいずれか1つの偏光フィルム;
[5]PVA層と熱可塑性樹脂フィルム層とを有する積層体を染色および延伸する工程を含む、偏光フィルムの製造方法であって、染色はヨウ素系色素を含む染色浴に積層体を浸漬することにより行われ、染色浴の温度が25℃以下であり、浸漬時間が2.5分以下である、製造方法;
[6]PVA層の厚みが30μm以下である、上記[5]の製造方法;
に関する。
That is, the present invention
[1] A polarizing film in which an iodine pigment is adsorbed on a matrix containing PVA, which is obtained by Raman spectroscopic measurement of a cross section of the polarizing film. signal intensity at 310 cm -1 in the 10% penetration portion Te ratio of the signal intensity at (Int 310) and 210cm -1 (Int 210) to (Int 310 / Int 210) is M, from the other surface of the film The ratio (Int 310 / Int 210 ) of the signal intensity (Int 310 ) at 310 cm −1 and the signal intensity (Int 210 ) at 210 cm −1 in the portion that has entered 10% of the thickness in the thickness direction is N A polarizing film in which M / N is 0.91 or less (provided that M ≦ N);
[2] The polarizing film according to the above [1], wherein the ratio (A / B) of the absorbance (A) at a wavelength of 480 nm and the absorbance (B) at a wavelength of 700 nm in the crossed Nicol state is 1.40 or more;
[3] The polarizing film of the above [1] or [2], having a thickness of 15 μm or less;
[4] The polarizing film according to any one of [1] to [3], wherein the single transmittance is 40 to 45%;
[5] A method for producing a polarizing film, including a step of dyeing and stretching a laminate having a PVA layer and a thermoplastic resin film layer, wherein the dyeing is performed by immersing the laminate in a dyeing bath containing an iodine-based pigment. A production method in which the temperature of the dyeing bath is 25 ° C. or less and the immersion time is 2.5 minutes or less;
[6] The method according to [5] above, wherein the PVA layer has a thickness of 30 μm or less;
About.
 本発明によれば、クロスニコル状態における青色光の漏れの少ない偏光フィルムが提供される。また、本発明によれば、当該偏光フィルムを容易に製造することのできる偏光フィルムの製造方法が提供される。 According to the present invention, a polarizing film with less leakage of blue light in the crossed Nicol state is provided. Moreover, according to this invention, the manufacturing method of the polarizing film which can manufacture the said polarizing film easily is provided.
 以下、本発明について詳細に説明する。
(偏光フィルム)
 本発明の偏光フィルムは、PVAを含むマトリックスにヨウ素系色素が吸着している。そして、当該偏光フィルムの断面をラマン分光測定して得られる、フィルムの一方の面から厚み方向に内部に厚みに対して10%進入した部分における310cm-1でのシグナル強度(Int310)と210cm-1でのシグナル強度(Int210)との比率(Int310/Int210)をMとし、フィルムの他方の面から厚み方向に内部に厚みに対して10%進入した部分における310cm-1でのシグナル強度(Int310)と210cm-1でのシグナル強度(Int210)との比率(Int310/Int210)をNとした際に(但し、M≦Nである)、M/Nが0.91以下である。
Hereinafter, the present invention will be described in detail.
(Polarizing film)
In the polarizing film of the present invention, an iodine dye is adsorbed on a matrix containing PVA. Then, a signal intensity (Int 310 ) at 310 cm −1 and 210 cm at a portion where 10% of the thickness entered from the one surface of the film in the thickness direction from one surface of the film obtained by Raman spectroscopy measurement of the cross section of the polarizing film. The ratio (Int 310 / Int 210 ) to the signal intensity at −1 (Int 210 / Int 210 ) is M, and the portion at a depth of 310 cm −1 in the portion entering the thickness direction from the other side of the film to the inside by 10% When the ratio (Int 310 / Int 210 ) between the signal intensity (Int 310 ) and the signal intensity (Int 210 ) at 210 cm −1 is N (where M ≦ N), the M / N is 0. 91 or less.
 偏光フィルムの断面をラマン分光測定するにあたっては、例えば、対象となる偏光フィルムをその厚み方向にスライスした試料を用いてラマン分光光度計によりラマン分光測定すればよく、具体的には、堀場製作所製 顕微レーザラマン分光測定装置「LabRAM ARAMIS VIS」等のレーザラマン分光測定装置を用いて、上記試料の測定対象部分に波長532nmのレーザー光を照射してラマン分光測定を行えばよい。そして、このようにして得られた、各測定対象部分それぞれにおける310cm-1でのシグナル強度(Int310)と210cm-1でのシグナル強度(Int210)とから、その部分における比率(Int310/Int210)が算出される。フィルムの各部分における比率(Int310/Int210)を求める際のより具体的な各測定手法ないし条件としては、実施例において後述するものをそれぞれ採用することができる。なお、本発明において規定されるフィルムの各面から厚み方向に内部に厚みに対して10%進入した部分について、例えば、厚みが10μmの偏光フィルムの場合には、当該部分は偏光フィルムの各面から厚み方向に内部に1μm(10μm×10%=1μm)進入した部分に該当する。本発明を何ら限定するものではないが、フィルムの各部分における比率(Int310/Int210)は、その部分におけるI の存在量に対するI の存在量の割合に依存するものと考えられる。 When performing Raman spectroscopic measurement of the cross section of the polarizing film, for example, Raman spectrophotometry may be performed with a Raman spectrophotometer using a sample obtained by slicing the target polarizing film in the thickness direction. Using a laser Raman spectrometer such as a microscopic laser Raman spectrometer “LabRAM ARAMIS VIS”, the measurement target portion of the sample may be irradiated with laser light having a wavelength of 532 nm to perform Raman spectroscopy. Then, from the signal intensity (Int 310 ) at 310 cm −1 and the signal intensity (Int 210 ) at 210 cm −1 in each measurement target part obtained in this way, the ratio (Int 310 / Int 210 ) is calculated. As specific measurement methods or conditions for obtaining the ratio (Int 310 / Int 210 ) in each part of the film, those described later in the examples can be employed. In addition, in the case of a polarizing film having a thickness of 10 μm, for example, with respect to a portion that has entered 10% of the thickness in the thickness direction from each surface of the film defined in the present invention, the portion corresponds to each surface of the polarizing film. Corresponds to a portion that has entered 1 μm (10 μm × 10% = 1 μm) in the thickness direction. Without limiting the invention in any way, the ratio (Int 310 / Int 210 ) in each part of the film is considered to depend on the ratio of the amount of I 5 − to the amount of I 3 in that part. It is done.
 本発明の偏光フィルムは、上記したM/Nが0.91以下である。M/Nが0.91以下であることにより、クロスニコル状態における青色光の漏れの少ない偏光フィルムとなる。クロスニコル状態における青色光の漏れのより少ない偏光フィルムが得られることから、M/Nは0.85以下であることが好ましく、0.76以下であることがより好ましく、0.72以下であることがさらに好ましい。なお、クロスニコル状態における赤色光の漏れを低減するという観点において、M/Nは0.01以上であることが好ましく、0.1以上であることがより好ましく、0.5以上であることがさらに好ましい。 The polarizing film of the present invention has an M / N of 0.91 or less. When M / N is 0.91 or less, a polarizing film with little leakage of blue light in the crossed Nicols state is obtained. Since a polarizing film with less leakage of blue light in the crossed Nicols state is obtained, M / N is preferably 0.85 or less, more preferably 0.76 or less, and 0.72 or less. More preferably. In view of reducing the leakage of red light in the crossed Nicols state, M / N is preferably 0.01 or more, more preferably 0.1 or more, and 0.5 or more. Further preferred.
 マトリックスにヨウ素系色素が吸着している偏光フィルムは、ヨウ素系色素を予め含有させたPVAフィルムを延伸したり、PVAフィルムの延伸と同時にヨウ素系色素を吸着させたり、PVAフィルムを延伸してマトリックスを形成した後にヨウ素系色素を吸着させたりするなどして製造することができ、より具体的には、ヨウ素系色素を予め含有させたPVA層(PVAフィルムに相当)と熱可塑性樹脂フィルム層とを有する積層体を延伸したり、PVA層と熱可塑性樹脂フィルム層とを有する積層体の延伸と同時にPVA層にヨウ素系色素を吸着させたり、PVA層と熱可塑性樹脂フィルム層とを有する積層体を延伸した後にPVA層から形成されたマトリックスにヨウ素系色素を吸着させたりするなどして製造することができる。 A polarizing film in which iodine-based dye is adsorbed on a matrix is obtained by stretching a PVA film containing iodine-based dye in advance, adsorbing iodine-based dye simultaneously with stretching of the PVA film, or stretching PVA film to form a matrix. And then, for example, by adsorbing an iodine dye, more specifically, a PVA layer (corresponding to a PVA film) preliminarily containing an iodine dye, a thermoplastic resin film layer, A laminate having a PVA layer and a thermoplastic resin film layer, or a PVA layer and a thermoplastic resin film layer adsorbing iodine pigments simultaneously with the stretching of the laminate having a PVA layer and a thermoplastic resin film layer After stretching the film, it can be produced by, for example, adsorbing an iodine dye to a matrix formed from the PVA layer.
 上記のPVAとしては、酢酸ビニル、ギ酸ビニル、プロピオン酸ビニル、酪酸ビニル、ピバリン酸ビニル、バーサティック酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、酢酸イソプロペニル等のビニルエステルの1種または2種以上を重合して得られるポリビニルエステルをけん化することにより得られるものを使用することができる。上記のビニルエステルの中でも、PVAの製造の容易性、入手容易性、コスト等の点から、酢酸ビニルが好ましい。 As said PVA, 1 type of vinyl esters, such as vinyl acetate, vinyl formate, vinyl propionate, vinyl butyrate, vinyl pivalate, vinyl versatate, vinyl laurate, vinyl stearate, vinyl benzoate, isopropenyl acetate Or what is obtained by saponifying the polyvinyl ester obtained by superposing | polymerizing 2 or more types can be used. Among the above vinyl esters, vinyl acetate is preferable from the viewpoints of ease of production of PVA, availability, cost, and the like.
 上記のポリビニルエステルは、単量体として1種または2種以上のビニルエステルのみを用いて得られたものであってもよいが、本発明の効果を損なわない範囲内であれば、1種または2種以上のビニルエステルと、これと共重合可能な他の単量体との共重合体であってもよい。 The above-mentioned polyvinyl ester may be obtained using only one or two or more kinds of vinyl esters as a monomer. It may be a copolymer of two or more kinds of vinyl esters and other monomers copolymerizable therewith.
 上記のビニルエステルと共重合可能な他の単量体としては、例えば、エチレン、プロピレン、1-ブテン、イソブテン等の炭素数2~30のα-オレフィン;(メタ)アクリル酸またはその塩;(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-プロピル、(メタ)アクリル酸i-プロピル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸i-ブチル、(メタ)アクリル酸t-ブチル、(メタ)アクリル酸2-エチルへキシル、(メタ)アクリル酸ドデシル、(メタ)アクリル酸オクタデシル等の(メタ)アクリル酸エステル;(メタ)アクリルアミド、N-メチル(メタ)アクリルアミド、N-エチル(メタ)アクリルアミド、N,N-ジメチル(メタ)アクリルアミド、ジアセトン(メタ)アクリルアミド、(メタ)アクリルアミドプロパンスルホン酸またはその塩、(メタ)アクリルアミドプロピルジメチルアミンまたはその塩、N-メチロール(メタ)アクリルアミドまたはその誘導体等の(メタ)アクリルアミド誘導体;N-ビニルホルムアミド、N-ビニルアセトアミド、N-ビニルピロリドン等のN-ビニルアミド;メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、i-プロピルビニルエーテル、n-ブチルビニルエーテル、i-ブチルビニルエーテル、t-ブチルビニルエーテル、ドデシルビニルエーテル、ステアリルビニルエーテル等のビニルエーテル;(メタ)アクリロニトリル等のシアン化ビニル;塩化ビニル、塩化ビニリデン、フッ化ビニル、フッ化ビニリデン等のハロゲン化ビニル;酢酸アリル、塩化アリル等のアリル化合物;マレイン酸またはその塩、エステルもしくは酸無水物;イタコン酸またはその塩、エステルもしくは酸無水物;ビニルトリメトキシシラン等のビニルシリル化合物;不飽和スルホン酸などを挙げることができる。上記のポリビニルエステルは、前記した他の単量体の1種または2種以上に由来する構造単位を有することができる。 Examples of the other monomer copolymerizable with the vinyl ester include α-olefins having 2 to 30 carbon atoms such as ethylene, propylene, 1-butene, and isobutene; (meth) acrylic acid or a salt thereof; (Meth) methyl acrylate, (meth) ethyl acrylate, (meth) acrylate n-propyl, (meth) acrylate i-propyl, (meth) acrylate n-butyl, (meth) acrylate i-butyl, ( (Meth) acrylic acid esters such as t-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, dodecyl (meth) acrylate, octadecyl (meth) acrylate; (meth) acrylamide, N-methyl ( (Meth) acrylamide, N-ethyl (meth) acrylamide, N, N-dimethyl (meth) acrylamide, diacetone (meth) acryl (Meth) acrylamide derivatives such as amides, (meth) acrylamide propanesulfonic acid or salts thereof, (meth) acrylamide propyldimethylamine or salts thereof, N-methylol (meth) acrylamide or derivatives thereof; N-vinylformamide, N-vinyl N-vinylamides such as acetamide and N-vinylpyrrolidone; methyl vinyl ether, ethyl vinyl ether, n-propyl vinyl ether, i-propyl vinyl ether, n-butyl vinyl ether, i-butyl vinyl ether, t-butyl vinyl ether, dodecyl vinyl ether, stearyl vinyl ether, etc. Vinyl ether; vinyl cyanide such as (meth) acrylonitrile; vinyl halide such as vinyl chloride, vinylidene chloride, vinyl fluoride, vinylidene fluoride; Allyl compounds such as allyl acetate and allyl chloride; maleic acid or its salts, esters or acid anhydrides; itaconic acid or its salts, esters or acid anhydrides; vinylsilyl compounds such as vinyltrimethoxysilane; unsaturated sulfonic acids be able to. Said polyvinyl ester can have a structural unit derived from 1 type, or 2 or more types of an above described other monomer.
 上記のポリビニルエステルに占める前記した他の単量体に由来する構造単位の割合は、ポリビニルエステルを構成する全構造単位のモル数に基づいて、15モル%以下であることが好ましく、10モル%以下、さらには5モル%以下であってもよい。
 特に前記した他の単量体が、(メタ)アクリル酸、不飽和スルホン酸などのように、得られるPVAの水溶性を促進する可能性のある単量体である場合には、偏光フィルムの製造過程においてPVAが溶解するのを防止するために、ポリビニルエステルにおけるこれらの単量体に由来する構造単位の割合は、ポリビニルエステルを構成する全構造単位のモル数に基づいて、5モル%以下であることが好ましく、3モル%以下であることがより好ましい。
The proportion of structural units derived from the other monomers described above in the polyvinyl ester is preferably 15 mol% or less based on the number of moles of all structural units constituting the polyvinyl ester, and is preferably 10 mol%. Hereinafter, it may be 5 mol% or less.
In particular, when the other monomer described above is a monomer that may promote the water solubility of the obtained PVA, such as (meth) acrylic acid or unsaturated sulfonic acid, In order to prevent PVA from being dissolved in the production process, the proportion of structural units derived from these monomers in the polyvinyl ester is 5 mol% or less based on the number of moles of all structural units constituting the polyvinyl ester. It is preferable that it is 3 mol% or less.
 上記のPVAは、本発明の効果を損なわない範囲内であれば、1種または2種以上のグラフト共重合可能な単量体によって変性されたものであってもよい。当該グラフト共重合可能な単量体としては、例えば、不飽和カルボン酸またはその誘導体;不飽和スルホン酸またはその誘導体;炭素数2~30のα-オレフィンなどが挙げられる。PVAにおけるグラフト共重合可能な単量体に由来する構造単位(グラフト変性部分における構造単位)の割合は、PVAを構成する全構造単位のモル数に基づいて、5モル%以下であることが好ましい。 The above PVA may be modified with one or two or more types of graft copolymerizable monomers as long as the effects of the present invention are not impaired. Examples of the graft copolymerizable monomer include unsaturated carboxylic acids or derivatives thereof; unsaturated sulfonic acids or derivatives thereof; α-olefins having 2 to 30 carbon atoms, and the like. The proportion of structural units derived from the graft copolymerizable monomer in PVA (structural units in the graft modified portion) is preferably 5 mol% or less based on the number of moles of all structural units constituting PVA. .
 上記のPVAは、その水酸基の一部が架橋されていてもよいし架橋されていなくてもよい。また上記のPVAは、その水酸基の一部がアセトアルデヒド、ブチルアルデヒド等のアルデヒド化合物などと反応してアセタール構造を形成していてもよいし、これらの化合物と反応せずアセタール構造を形成していなくてもよい。 The above PVA may have a part of its hydroxyl group cross-linked or not cross-linked. Moreover, said PVA may react with aldehyde compounds, such as acetaldehyde and a butyraldehyde, etc. to form an acetal structure, and the said PVA does not react with these compounds and does not form an acetal structure. May be.
 上記のPVAの平均重合度は1,000~9,500の範囲内であることが好ましく、当該平均重合度は、1,500以上であることがより好ましく、2,000以上であることがさらに好ましく、また、9,200以下であることがより好ましく、6,000以下であることがさらに好ましい。平均重合度が1,000以上であることにより、偏光フィルムの偏光性能が向上する。一方、平均重合度が9,500以下であることにより、PVAの生産性が向上する。なお、PVAの平均重合度は、JIS K6726-1994の記載に準じて測定することができる。 The average degree of polymerization of the PVA is preferably in the range of 1,000 to 9,500. The average degree of polymerization is more preferably 1,500 or more, and further preferably 2,000 or more. Moreover, it is more preferable that it is 9,200 or less, and it is further more preferable that it is 6,000 or less. When the average degree of polymerization is 1,000 or more, the polarizing performance of the polarizing film is improved. On the other hand, when the average degree of polymerization is 9,500 or less, the productivity of PVA is improved. The average degree of polymerization of PVA can be measured according to the description of JIS K6726-1994.
 上記のPVAのけん化度は、偏光フィルムの偏光性能などの観点から、98モル%以上であることが好ましく、98.5モル%以上であることがより好ましく、99モル%以上であることがさらに好ましい。けん化度が98モル%未満であると、偏光フィルムの製造過程でPVAが溶出しやすくなり、溶出したPVAがフィルムに付着して偏光フィルムの偏光性能を低下させる場合がある。なお、本明細書におけるPVAのけん化度とは、PVAが有する、けん化によってビニルアルコール単位に変換され得る構造単位(典型的にはビニルエステル単位)とビニルアルコール単位との合計モル数に対して当該ビニルアルコール単位のモル数が占める割合(モル%)をいう。けん化度はJIS K6726-1994の記載に準じて測定することができる。 The degree of saponification of the PVA is preferably 98 mol% or more, more preferably 98.5 mol% or more, and more preferably 99 mol% or more from the viewpoint of the polarizing performance of the polarizing film. preferable. When the degree of saponification is less than 98 mol%, PVA tends to be eluted during the production process of the polarizing film, and the eluted PVA may adhere to the film and reduce the polarizing performance of the polarizing film. In this specification, the degree of saponification of PVA refers to the total number of moles of structural units (typically vinyl ester units) that can be converted into vinyl alcohol units by saponification and the vinyl alcohol units of PVA. The proportion (mol%) occupied by the number of moles of vinyl alcohol units. The degree of saponification can be measured according to the description of JIS K6726-1994.
 上記のヨウ素系色素としては、I やI 等が挙げられる。これらのカウンターカチオンとしては、例えば、カリウム等のアルカリ金属が挙げられる。ヨウ素系色素は、例えば、ヨウ素(I)とヨウ化カリウムとを接触させることにより得ることができる。 As the iodine-based dye, I 3 -, and the like - and I 5. Examples of these counter cations include alkali metals such as potassium. The iodine dye can be obtained, for example, by bringing iodine (I 2 ) into contact with potassium iodide.
 本発明の偏光フィルムの厚みは、近年要求される薄型の偏光板が容易に得られることから、15μm以下であることが好ましく、12μm以下であることがより好ましく、8μm以下であることがさらに好ましく、5μm以下であることが特に好ましい。なお、厚みがあまりに薄い偏光フィルムは、その製造が困難であることから、偏光フィルムの厚みは、例えば0.5μm以上(一例では2.5μm以上)であり、当該製造上の観点からは4μm以上、5μm以上、さらには6μm以上であってもよい。 The thickness of the polarizing film of the present invention is preferably 15 μm or less, more preferably 12 μm or less, and even more preferably 8 μm or less because a thin polarizing plate required in recent years can be easily obtained. Particularly preferably, it is 5 μm or less. In addition, since it is difficult to manufacture a polarizing film that is too thin, the thickness of the polarizing film is, for example, 0.5 μm or more (in one example, 2.5 μm or more), and 4 μm or more from the viewpoint of manufacturing. It may be 5 μm or more, further 6 μm or more.
 本発明の偏光フィルムは、青色光の漏れを低減する観点から、クロスニコル状態における波長480nmでの吸光度(A)と波長700nmでの吸光度(B)との比率(A/B)が1.40以上であることが好ましく、1.41以上であることがより好ましく、1.42以上であることがさらに好ましく、1.45以上であることが特に好ましく、1.50以上、さらには1.55以上であってもよい。一方、当該比率(A/B)があまりに高すぎると、赤色光の漏れが多くなる傾向があることから、当該比率(A/B)は2以下であることが好ましく、1.8以下であることがより好ましく、1.6以下であることがさらに好ましい。なお、上記の吸光度(A)および吸光度(B)は分光光度計を用いて求めることができ、具体的には実施例において後述する方法により求めることができる。 From the viewpoint of reducing leakage of blue light, the polarizing film of the present invention has a ratio (A / B) of the absorbance (A) at a wavelength of 480 nm and the absorbance (B) at a wavelength of 700 nm in a crossed Nicol state of 1.40. Preferably, it is 1.41 or more, more preferably 1.42 or more, particularly preferably 1.45 or more, 1.50 or more, and further 1.55. It may be the above. On the other hand, if the ratio (A / B) is too high, red light leakage tends to increase. Therefore, the ratio (A / B) is preferably 2 or less, and is 1.8 or less. More preferably, it is more preferably 1.6 or less. In addition, said light absorbency (A) and light absorbency (B) can be calculated | required using a spectrophotometer, and can be specifically calculated | required by the method mentioned later in an Example.
 本発明の偏光フィルムの単体透過率は、偏光性能の観点から、40~45%の範囲内であることが好ましく、当該単体透過率は、41%以上であることがより好ましく、42%以上であることがさらに好ましく、また、44%以下であることがより好ましい。偏光フィルムの単体透過率は、実施例において後述する方法により測定することができる。 The single transmittance of the polarizing film of the present invention is preferably in the range of 40 to 45% from the viewpoint of polarization performance, and the single transmittance is more preferably 41% or more, and 42% or more. More preferably, it is more preferably 44% or less. The single transmittance of the polarizing film can be measured by the method described later in Examples.
(偏光フィルムの製造方法)
 本発明の偏光フィルムを製造するための方法は特に制限されず、PVAフィルムを原反フィルムとして用いて、これを染色および延伸することにより製造することができ、例えば、原反フィルムとして使用されるPVAフィルムの一方の面にヨウ素系色素を含む染色液を特定の量および濃度で散布する;ヨウ素系色素を含む染色液を塗布したロールに原反フィルムとして使用されるPVAフィルムの一方の面を接触させる;ヨウ素系色素を含む染色液をスポンジ等の多孔質体に含浸させた含浸体に原反フィルムとして使用されるPVAフィルムの一方の面を接触させる;などして、得られる偏光フィルムのそれぞれの表面近傍におけるI の存在量に対するI の存在量の割合に差をつけることによって容易に製造することができるが、以下の本発明の製造方法によれば、本発明の偏光フィルムをより容易に製造することができることから好ましい。
(Production method of polarizing film)
The method for producing the polarizing film of the present invention is not particularly limited, and can be produced by dyeing and stretching a PVA film as a raw film, for example, used as a raw film. Disperse the dyeing liquid containing iodine dye on one side of the PVA film in a specific amount and concentration; one side of the PVA film used as a raw film on a roll coated with the dyeing liquid containing iodine dye Contacting one side of a PVA film used as a raw film with an impregnated body in which a porous material such as sponge is impregnated with a dyeing solution containing an iodine-based dye; It can be easily manufactured by making a difference in the ratio of the amount of I 5 − to the amount of I 3 − in the vicinity of each surface. The following production method of the present invention is preferable because the polarizing film of the present invention can be more easily produced.
 すなわち、本発明の製造方法は、PVA層と熱可塑性樹脂フィルム層とを有する積層体を染色および延伸する工程を含み、染色はヨウ素系色素を含む染色浴に積層体を浸漬することにより行われ、染色浴の温度が25℃以下であり、浸漬時間が2.5分以下である。 That is, the production method of the present invention includes a step of dyeing and stretching a laminate having a PVA layer and a thermoplastic resin film layer, and the dyeing is performed by immersing the laminate in a dyeing bath containing an iodine-based pigment. The temperature of the dyeing bath is 25 ° C. or less, and the immersion time is 2.5 minutes or less.
 熱可塑性樹脂フィルム層を構成する熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリスチレン、ポリカーボネート、ポリ塩化ビニル、メタクリル樹脂、ナイロン、ポリエチレンテレフタレート等の各種熱可塑性樹脂、およびこれらの熱可塑性樹脂を構成する単量体単位を複数種有する共重合体などが挙げられる。熱可塑性樹脂フィルム層において、熱可塑性樹脂は1種のみ含まれていても、2種以上含まれていてもどちらでもよい。これらの中でも、高い耐熱性と延伸性を備える点で、ポリエチレンテレフタレートが好ましく、非晶性ポリエチレンテレフタレートがより好ましい。 Examples of the thermoplastic resin constituting the thermoplastic resin film layer include various thermoplastic resins such as polyethylene, polypropylene, polymethylpentene, polystyrene, polycarbonate, polyvinyl chloride, methacrylic resin, nylon, polyethylene terephthalate, and their heat. Examples thereof include a copolymer having a plurality of types of monomer units constituting the plastic resin. In the thermoplastic resin film layer, only one kind of thermoplastic resin may be contained, or two or more kinds of thermoplastic resins may be contained. Among these, polyethylene terephthalate is preferable and amorphous polyethylene terephthalate is more preferable because it has high heat resistance and stretchability.
 熱可塑性樹脂フィルム層の厚みは、20~250μmの範囲内であることが好ましく、30~230μmの範囲内であることがより好ましく、50~200μmの範囲内であることがさらに好ましい。熱可塑性樹脂フィルム層の厚みが20μm以上であることにより、PVA層を形成する際に皺が入るのを効果的に防止することができる。一方、熱可塑性樹脂フィルム層の厚みが250μm以下であることにより、積層体を延伸する際の張力が過度に高くなるのを抑制することができる。 The thickness of the thermoplastic resin film layer is preferably within the range of 20 to 250 μm, more preferably within the range of 30 to 230 μm, and even more preferably within the range of 50 to 200 μm. When the thickness of the thermoplastic resin film layer is 20 μm or more, wrinkles can be effectively prevented when forming the PVA layer. On the other hand, when the thickness of the thermoplastic resin film layer is 250 μm or less, it is possible to suppress an excessive increase in tension when the laminate is stretched.
 PVA層を構成するPVAとしては、本発明の偏光フィルムの説明において、上記したのと同様のものとすることができるため、ここでは重複する記載を省略する。 Since the PVA constituting the PVA layer can be the same as that described above in the description of the polarizing film of the present invention, redundant description is omitted here.
 PVA層は、延伸する際の延伸性向上の観点から可塑剤を含むことが好ましい。当該可塑剤としては、例えば、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、ジグリセリン、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン等の多価アルコールなどを挙げることができ、PVA層はこれらの可塑剤の1種または2種以上を含むことができる。これらの中でも、延伸性の向上効果の観点からグリセリンが好ましい。 The PVA layer preferably contains a plasticizer from the viewpoint of improving stretchability when stretched. Examples of the plasticizer may include polyhydric alcohols such as ethylene glycol, glycerin, propylene glycol, diethylene glycol, diglycerin, triethylene glycol, tetraethylene glycol, and trimethylolpropane. One or more of the agents can be included. Among these, glycerin is preferable from the viewpoint of the effect of improving stretchability.
 PVA層における可塑剤の含有量は、それに含まれるPVA100質量部に対して、1~20質量部の範囲内であることが好ましい。当該含有量が1質量部以上であることにより、PVA層ひいては積層体の延伸性をより向上させることができる。一方、当該含有量が20質量部以下であることにより、PVA層が柔軟になり過ぎて取り扱い性が低下するのを防止することができる。PVA層における可塑剤の含有量はPVA100質量部に対して2質量部以上であることがより好ましく、4質量部以上であることがさらに好ましく、5質量部以上であることが特に好ましく、また、15質量部以下であることがより好ましく、12質量部以下であることがさらに好ましい。
 なお、偏光フィルムの製造条件などにもよるが、PVA層に含まれる可塑剤は偏光フィルムを製造する際に溶出するなどするため、その全量が偏光フィルムに残存するとは限らない。
The content of the plasticizer in the PVA layer is preferably in the range of 1 to 20 parts by mass with respect to 100 parts by mass of PVA contained therein. When the content is 1 part by mass or more, the stretchability of the PVA layer and thus the laminate can be further improved. On the other hand, when the content is 20 parts by mass or less, it is possible to prevent the PVA layer from becoming too flexible and handleability from being lowered. The content of the plasticizer in the PVA layer is more preferably 2 parts by mass or more with respect to 100 parts by mass of PVA, further preferably 4 parts by mass or more, and particularly preferably 5 parts by mass or more. The amount is more preferably 15 parts by mass or less, and further preferably 12 parts by mass or less.
Although depending on the manufacturing conditions of the polarizing film, the plasticizer contained in the PVA layer is eluted when the polarizing film is manufactured, so that the total amount does not always remain in the polarizing film.
 PVA層は、必要に応じて、酸化防止剤、凍結防止剤、pH調整剤、隠蔽剤、着色防止剤、油剤、界面活性剤などの成分をさらに含んでいてもよい。 The PVA layer may further contain components such as an antioxidant, an antifreezing agent, a pH adjuster, a hiding agent, a coloring inhibitor, an oil agent, and a surfactant as necessary.
 PVA層におけるPVAの含有率は、所望とする偏光フィルムの調製のしやすさなどから、50~99質量%の範囲内であることが好ましく、当該含有率は、75質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、85質量%以上であることが特に好ましく、また、98質量%以下であることがより好ましく、96質量%以下であることがさらに好ましく、95質量%以下であることが特に好ましい。 The content of PVA in the PVA layer is preferably in the range of 50 to 99% by mass in view of ease of preparation of the desired polarizing film, and the content is preferably 75% by mass or more. More preferably, it is more preferably 80% by mass or more, particularly preferably 85% by mass or more, more preferably 98% by mass or less, further preferably 96% by mass or less, 95 It is particularly preferable that the content is not more than mass%.
 PVA層の厚みは、薄型の偏光フィルムが容易に得られることから、30μm以下であることが好ましく、25μm以下であることがより好ましく、15μm以下であることがさらに好ましく、10μm以下であることが特に好ましい。なお、厚みがあまりに薄いPVA層を有する積層体は、その製造が困難であることから、PVA層の厚みは、例えば1μm以上(一例では5μm以上)であり、当該製造上の観点からは8μm以上、10μm以上、さらには12μm以上であってもよい。 The thickness of the PVA layer is preferably 30 μm or less, more preferably 25 μm or less, further preferably 15 μm or less, and more preferably 10 μm or less because a thin polarizing film can be easily obtained. Particularly preferred. In addition, since it is difficult to manufacture a laminate having a PVA layer that is too thin, the thickness of the PVA layer is, for example, 1 μm or more (in an example, 5 μm or more), and from the viewpoint of manufacturing, 8 μm or more. It may be 10 μm or more, and further 12 μm or more.
 積層体の層構成に特に制限はないが、本発明の偏光フィルムをより容易に製造することができることなどから、PVA層1層と熱可塑性樹脂フィルム層1層の2層構造であることが好ましい。 Although there is no restriction | limiting in particular in the layer structure of a laminated body, Since the polarizing film of this invention can be manufactured more easily etc., it is preferable that it is a two-layer structure of one PVA layer and one thermoplastic resin film layer. .
 積層体の形状は特に制限されないが、偏光フィルムを製造する際に連続して使用することができることから長尺の積層体であることが好ましい。長尺の積層体の長さ(長尺方向の長さ)は特に制限されず、製造される偏光フィルムの用途などに応じて適宜設定することができ、例えば、5~20,000mの範囲内とすることができる。 The shape of the laminate is not particularly limited, but is preferably a long laminate because it can be used continuously when producing a polarizing film. The length of the long laminate (length in the long direction) is not particularly limited, and can be set as appropriate according to the application of the polarizing film to be produced. For example, the length is in the range of 5 to 20,000 m. It can be.
 積層体の幅は特に制限されず、製造される偏光フィルムの用途などに応じて適宜設定することができるが、近年、液晶テレビや液晶モニターの大画面化が進行している点から、積層体の幅を0.5m以上、より好ましくは1.0m以上にしておくと、これらの用途に好適である。一方、積層体の幅があまりに広すぎると実用化されている装置で偏光フィルムを製造する場合に均一に延伸することが困難になる傾向があることから、積層体の幅は7m以下であることが好ましい。 The width of the laminate is not particularly limited and can be appropriately set according to the application of the polarizing film to be produced. However, in recent years, the laminate has been increasing in screen size for liquid crystal televisions and liquid crystal monitors. If the width is set to 0.5 m or more, more preferably 1.0 m or more, it is suitable for these applications. On the other hand, if the width of the laminated body is too wide, it tends to be difficult to uniformly stretch the polarizing film when the polarizing film is produced by a device that has been put to practical use. Therefore, the width of the laminated body is 7 m or less. Is preferred.
 積層体を製造する方法としては、例えば、熱可塑性樹脂フィルム上にPVA層を形成する方法が挙げられ、具体的には、PVAおよび必要に応じてさらに上記した可塑剤などPVA以外の他の成分が液体媒体中に溶解した原液を熱可塑性樹脂フィルム上に塗工して乾燥する方法;PVA、液体媒体および必要に応じてさらに他の成分を溶融混練してなる原液を熱可塑性樹脂フィルム上に押し出し、必要に応じてさらに乾燥する方法;PVAおよび必要に応じてさらに他の成分を含むPVAフィルムを公知の方法で作製してから、熱可塑性樹脂フィルムと貼り合わせる方法などが挙げられる。これらの中でも、薄いPVA層を容易に調製できる点および得られるPVA層の厚みの均一性の点から、PVAおよび必要に応じてさらに他の成分が液体媒体中に溶解した原液を熱可塑性樹脂フィルム上に塗工して乾燥する方法が好ましい。 Examples of the method for producing a laminate include a method of forming a PVA layer on a thermoplastic resin film. Specifically, other components other than PVA such as PVA and, if necessary, the above-described plasticizer. A method in which a stock solution dissolved in a liquid medium is coated on a thermoplastic resin film and dried; a stock solution obtained by melting and kneading PVA, the liquid medium and other components as required is applied onto the thermoplastic resin film. Examples include a method of extruding and further drying as required; a method of producing a PVA film containing PVA and, if necessary, further other components by a known method, and laminating it with a thermoplastic resin film. Among these, from the point that a thin PVA layer can be easily prepared and the uniformity of the thickness of the resulting PVA layer, a stock solution in which PVA and, if necessary, further other components are dissolved in a liquid medium is used as a thermoplastic resin film. A method of coating and drying is preferred.
 上記の液体媒体としては、例えば、水、ジメチルスルホキシド、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、エチレングリコール、グリセリン、プロピレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、トリメチロールプロパン、エチレンジアミン、ジエチレントリアミンなどを挙げることができ、これらのうちの1種または2種以上を使用することができる。そのうちでも、環境に与える負荷や回収性の点から水が好ましい。 Examples of the liquid medium include water, dimethyl sulfoxide, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, ethylene glycol, glycerin, propylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, trimethylolpropane, ethylenediamine, diethylenetriamine. Of these, one or more of these can be used. Among these, water is preferable from the viewpoint of environmental load and recoverability.
 原液の揮発分率(PVA層の形成時に揮発や乾燥などによって除去される液体媒体などの揮発性成分の、原液中における含有割合)は、PVA層の形成方法や形成条件などによっても異なるが、50質量%以上98質量%以下の範囲内であることが好ましく、55質量%以上95質量%以下の範囲内であることがより好ましい。原液の揮発分率が50質量%以上であることにより、その粘度が高くなり過ぎず、原液調製時の濾過や脱泡が円滑に行われて異物や欠点の少ないPVA層の形成が容易になると共に、塗工性も向上する。一方、原液の揮発分率が98質量%以下であることにより、原液の濃度が低くなり過ぎず、積層体の工業的な製造が容易になる。 Although the volatile content rate of the stock solution (the content ratio in the stock solution of volatile components such as a liquid medium that is removed by volatilization or drying during the formation of the PVA layer) varies depending on the formation method and formation conditions of the PVA layer, It is preferably in the range of 50% by mass to 98% by mass, and more preferably in the range of 55% by mass to 95% by mass. When the volatile content of the stock solution is 50% by mass or more, its viscosity does not become too high, and filtration and defoaming during the preparation of the stock solution are smoothly performed, and formation of a PVA layer with less foreign matter and defects is facilitated. At the same time, the coatability is also improved. On the other hand, when the volatile content of the stock solution is 98% by mass or less, the concentration of the stock solution does not become too low, and industrial production of the laminate is facilitated.
 原液を熱可塑性樹脂フィルム上に塗工する際の塗工方法としては、例えば、ダイコート法、コンマコート法、ディップコート法などが挙げられる。これらの中でも、得られるPVA層の厚みの均一性の点からダイコート法が好ましい。 Examples of the coating method for coating the stock solution on the thermoplastic resin film include a die coating method, a comma coating method, and a dip coating method. Among these, the die coating method is preferable from the viewpoint of the uniformity of the thickness of the obtained PVA layer.
 積層体の製造に使用される熱可塑性樹脂フィルムは、少なくとも一方の表面を親水化処理しておくことが好ましい。このような親水化処理された表面と接するようにPVA層を形成することにより、熱可塑性樹脂フィルム層とPVA層との接着性が向上する。親水化処理としては、例えば、コロナ処理、プラズマ処理、アンカーコート処理等が挙げられる。これらの中でも、親水性を調整しやすい点からコロナ処理が好ましい。 It is preferable that at least one surface of the thermoplastic resin film used for the production of the laminate is hydrophilized. By forming the PVA layer so as to be in contact with the hydrophilically treated surface, the adhesion between the thermoplastic resin film layer and the PVA layer is improved. Examples of the hydrophilic treatment include corona treatment, plasma treatment, anchor coat treatment, and the like. Among these, corona treatment is preferable from the viewpoint of easy adjustment of hydrophilicity.
 上記の親水化処理によって熱可塑性樹脂フィルムの表面の接触角を55~70°に調整することが好ましく、当該接触角を57°以上に調整することがより好ましく、59°以上に調整することがさらに好ましく、また、69°以下に調整することがより好ましく、68°以下に調整することがさらに好ましい。当該接触角が55°より低いと熱可塑性樹脂フィルム層とPVA層との接着強度が強くなり過ぎる傾向があり、積層体の延伸後に延伸された熱可塑性樹脂フィルム層を剥離する場合に剥離が困難になることがある。一方、当該接触角が70°より高いと、積層体の延伸中に熱可塑性樹脂フィルム層からPVA層が剥離したり裂けたりしやすくなって、高い延伸倍率で延伸するのが困難になる傾向がある。なお、熱可塑性樹脂フィルムの表面の接触角とは、水の自由表面が熱可塑性樹脂フィルムに接する場所での水面と熱可塑性樹脂フィルムの表面とのなす角(水の内部にある角をとる)をいい、実施例において後述する方法によって測定することができる。 It is preferable to adjust the contact angle of the surface of the thermoplastic resin film to 55 to 70 ° by the above-described hydrophilic treatment, more preferably to adjust the contact angle to 57 ° or more, and to adjust to 59 ° or more. More preferably, it is more preferably adjusted to 69 ° or less, and further preferably adjusted to 68 ° or less. When the contact angle is lower than 55 °, the adhesive strength between the thermoplastic resin film layer and the PVA layer tends to be too strong, and it is difficult to peel off the stretched thermoplastic resin film layer after stretching the laminate. May be. On the other hand, if the contact angle is higher than 70 °, the PVA layer tends to peel or tear from the thermoplastic resin film layer during stretching of the laminate, and it tends to be difficult to stretch at a high stretch ratio. is there. The contact angle of the surface of the thermoplastic resin film is the angle formed by the water surface and the surface of the thermoplastic resin film where the free surface of water is in contact with the thermoplastic resin film (takes an angle inside the water) It can measure by the method mentioned later in an Example.
 コロナ処理によって熱可塑性樹脂フィルムの表面の接触角を上記範囲に調整する場合におけるコロナ処理の条件に特に制限はないが、熱可塑性樹脂フィルムの表面の接触角を容易に上記範囲に調整することができることから、下記式(1)で表される放電量が180~350W・分/mの範囲内であることが好ましく、190~320W・分/mの範囲内であることがより好ましく、200~300W・分/mの範囲内であることがさらに好ましい。
   放電量(W・分/m) = 出力(W/m)/処理速度(m/分)   (1)
There is no particular restriction on the corona treatment conditions when the surface contact angle of the thermoplastic resin film is adjusted to the above range by corona treatment, but the surface contact angle of the thermoplastic resin film can be easily adjusted to the above range. Therefore, the discharge amount represented by the following formula (1) is preferably in the range of 180 to 350 W · min / m 2 , more preferably in the range of 190 to 320 W · min / m 2 , More preferably, it is within the range of 200 to 300 W · min / m 2 .
Discharge amount (W · min / m 2 ) = Output (W / m) / Processing speed (m / min) (1)
 原液を熱可塑性樹脂フィルム上に塗工したり押し出したりした後の乾燥の条件に特に制限はないが、熱可塑性樹脂フィルムに皺が入ることを防ぐため、熱可塑性樹脂フィルムのガラス転移温度以下の温度で乾燥するのが好ましい。 There are no particular restrictions on the drying conditions after the stock solution is coated or extruded on the thermoplastic resin film, but in order to prevent wrinkles from entering the thermoplastic resin film, the glass transition temperature is below the glass transition temperature of the thermoplastic resin film. Drying at a temperature is preferred.
 本発明の製造方法は上記の積層体を染色する工程(染色工程)および延伸する工程(延伸工程)を含み、当該製造方法は染色工程および延伸工程の他に、不溶化工程、膨潤工程、架橋工程、固定処理工程、洗浄工程、乾燥工程などを必要に応じてさらに含むことができる。各工程の順番は必要に応じて適宜変更してもよく、各工程を2回以上実施してもよく、異なる工程を同時に実施してもよい。また、上記の製造方法によれば、延伸された熱可塑性樹脂フィルム層上に形成された偏光フィルムが得られるが、当該延伸された熱可塑性樹脂フィルムを必要に応じて剥離する工程を含んでいてもよい。 The production method of the present invention includes a step of dyeing the laminate (dyeing step) and a step of drawing (stretching step). The production method includes an insolubilization step, a swelling step, and a crosslinking step in addition to the dyeing step and the drawing step. Further, a fixing process, a washing process, a drying process and the like may be further included as necessary. The order of each process may be changed as needed, each process may be performed twice or more, and different processes may be performed simultaneously. Moreover, according to said manufacturing method, although the polarizing film formed on the stretched thermoplastic resin film layer is obtained, the process of peeling the said stretched thermoplastic resin film as needed is included. Also good.
 本発明の製造方法の一例としては、まず積層体を、不溶化工程に供し、必要に応じてさらに膨潤工程に供し、次いで染色工程に供し、必要に応じてさらに架橋工程に供し、その後延伸工程に供し、必要に応じてさらに固定処理工程および/または洗浄工程に供し、そして乾燥工程に供し、これらの一連の工程によって、延伸された熱可塑性樹脂フィルム層上に形成された偏光フィルムを得て、必要に応じてさらに当該延伸された熱可塑性樹脂フィルム層を剥離する方法が挙げられる。 As an example of the production method of the present invention, the laminate is first subjected to an insolubilization process, further subjected to a swelling process as necessary, then subjected to a dyeing process, and further subjected to a crosslinking process as necessary, and then to a stretching process. Then, if necessary, it is further subjected to a fixing treatment step and / or a washing step, and is then subjected to a drying step. By these series of steps, a polarizing film formed on the stretched thermoplastic resin film layer is obtained, The method of peeling the said stretched thermoplastic resin film layer further as needed is mentioned.
 不溶化処理は、主として、PVA層に含まれるPVAの水への溶出を防止するために行われる。当該不溶化処理としては、例えば、積層体に対して熱処理を施す方法や、積層体を不溶化浴としてホウ酸、ホウ砂等のホウ酸塩などのホウ素化合物の1種または2種以上を含む水溶液に浸漬する方法が挙げられる。これらのうち、積層体に対して熱処理を施すと熱可塑性樹脂フィルム層の寸法変化に伴い皺が入る場合があることから、ホウ素化合物を含む水溶液を用いる方法が好ましい。上記熱処理は、例えば80~200℃の範囲内の温度で行うことができる。皺を防止する観点から熱処理は積層体に張力をかけながら行うのが好ましい。またホウ素化合物を含む水溶液を用いる方法においてその水溶液の温度は、20~40℃の範囲内であることが好ましく、22~38℃の範囲内であることがより好ましく、25~35℃の範囲内であることがさらに好ましい。当該温度を20~40℃の範囲内にすることでPVAの溶解を防止して効率良く不溶化することができる。ホウ素化合物を含む水溶液に浸漬する時間としては、例えば、0.1~5分間の範囲内である。0.1~5分間の範囲内にすることで効率良く不溶化することができる。ホウ素化合物を含む水溶液中におけるホウ素化合物の濃度は0.5~6.0質量%の範囲内であることが好ましく、1.0~5.0質量%の範囲内であることがより好ましく、1.5~4.0質量%の範囲内であることがさらに好ましい。当該濃度を0.5~6.0質量%の範囲内にすることでPVAの溶解を防止して効率良く不溶化することができる。
 不溶化処理は染色工程の前、さらには膨潤工程の前に行うのが好ましい。
The insolubilization treatment is mainly performed to prevent elution of PVA contained in the PVA layer into water. As the insolubilization treatment, for example, a method of performing a heat treatment on the laminate, or an aqueous solution containing one or more of boron compounds such as borate such as boric acid and borax using the laminate as an insolubilizing bath. The method of immersing is mentioned. Among these, a method of using an aqueous solution containing a boron compound is preferable because if the laminate is subjected to a heat treatment, wrinkles may occur with the dimensional change of the thermoplastic resin film layer. The heat treatment can be performed at a temperature in the range of 80 to 200 ° C., for example. From the viewpoint of preventing wrinkles, the heat treatment is preferably performed while applying tension to the laminate. In the method using an aqueous solution containing a boron compound, the temperature of the aqueous solution is preferably within the range of 20 to 40 ° C., more preferably within the range of 22 to 38 ° C., and within the range of 25 to 35 ° C. More preferably. By setting the temperature within the range of 20 to 40 ° C., the PVA can be prevented from dissolving and efficiently insolubilized. The time for immersion in the aqueous solution containing the boron compound is, for example, in the range of 0.1 to 5 minutes. By in the range of 0.1 to 5 minutes, it can be insolubilized efficiently. The concentration of the boron compound in the aqueous solution containing the boron compound is preferably in the range of 0.5 to 6.0% by mass, more preferably in the range of 1.0 to 5.0% by mass. More preferably, it is in the range of 0.5 to 4.0% by mass. By setting the concentration within the range of 0.5 to 6.0% by mass, the PVA can be prevented from dissolving and efficiently insolubilized.
The insolubilization treatment is preferably performed before the dyeing step and further before the swelling step.
 膨潤工程は、積層体を水に浸漬することにより行うことができる。水に浸漬する際の水の温度としては、20~40℃の範囲内であることが好ましく、当該温度は、22℃以上であることがより好ましく、25℃以上であることがさらに好ましく、また、38℃以下であることがより好ましく、35℃以下であることがさらに好ましい。当該温度を20~40℃の範囲内にすることでPVA層を効率良く膨潤させることができる。また、水に浸漬する時間としては、0.1~5分間の範囲内であることが好ましく、0.5~3分間の範囲内であることがより好ましい。0.1~5分間の範囲内にすることでPVA層を効率良く膨潤させることができる。なお、水に浸漬する際の水は純水に限定されず、各種成分が溶解した水溶液であってもよいし、水と水性媒体との混合物であってもよい。 The swelling step can be performed by immersing the laminate in water. The temperature of the water when immersed in water is preferably within a range of 20 to 40 ° C., more preferably 22 ° C. or higher, further preferably 25 ° C. or higher. The temperature is more preferably 38 ° C. or lower, and further preferably 35 ° C. or lower. By setting the temperature within the range of 20 to 40 ° C., the PVA layer can be efficiently swollen. Further, the time for immersion in water is preferably within a range of 0.1 to 5 minutes, and more preferably within a range of 0.5 to 3 minutes. By making it within the range of 0.1 to 5 minutes, the PVA layer can be efficiently swollen. In addition, the water at the time of immersing in water is not limited to pure water, The aqueous solution in which various components melt | dissolved may be sufficient, and the mixture of water and an aqueous medium may be sufficient.
 本発明の製造方法において、染色はヨウ素系色素を含む染色浴に積層体を浸漬することにより行われ、ここで、染色浴の温度は25℃以下であり、浸漬時間は2.5分以下であることが必要である。 In the production method of the present invention, the dyeing is performed by immersing the laminate in a dyeing bath containing an iodine-based dye, wherein the temperature of the dyeing bath is 25 ° C. or less and the immersion time is 2.5 minutes or less. It is necessary to be.
 染色浴の温度が25℃を超えると、得られる偏光フィルムは、クロスニコル状態における青色光の漏れが多くなる。このような観点から、染色浴の温度は、23℃以下であることが好ましく、21℃以下であることがより好ましく、18℃以下であることがさらに好ましく、15℃以下、さらには10℃以下であってもよく、特により薄いPVA層を有する積層体を用いる場合には染色浴の温度をより低くすることにより目的とする偏光フィルムをより効率的に得ることができる。一方、染色浴の温度があまりに低すぎると、得られる偏光フィルムにおいて斑が生じる場合があることから、染色浴の温度は3℃以上であることが好ましく、5℃以上であることがより好ましい。 When the temperature of the dyeing bath exceeds 25 ° C., the resulting polarizing film has more blue light leakage in the crossed Nicol state. From such a viewpoint, the temperature of the dyeing bath is preferably 23 ° C. or less, more preferably 21 ° C. or less, further preferably 18 ° C. or less, 15 ° C. or less, and further 10 ° C. or less. In particular, when a laminate having a thinner PVA layer is used, the target polarizing film can be obtained more efficiently by lowering the temperature of the dyeing bath. On the other hand, if the temperature of the dyeing bath is too low, spots may occur in the obtained polarizing film. Therefore, the temperature of the dyeing bath is preferably 3 ° C. or higher, and more preferably 5 ° C. or higher.
 染色浴に積層体を浸漬する際の浸漬時間が2.5分を超える場合においても、得られる偏光フィルムは、クロスニコル状態における青色光の漏れが多くなる。このような観点から、浸漬時間は2.0分以下であることが好ましく、1.5分以下であることがより好ましく、0.8分以下、0.3分以下、さらには0.2分以下であってもよく、特により薄いPVA層を有する積層体を用いる場合には浸漬時間をより短くすることにより目的とする偏光フィルムをより効率的に得ることができる。一方、浸漬時間があまりに短すぎると、得られる偏光フィルムにおいて斑が生じる場合があることから、浸漬時間は0.01分以上であることが好ましく、0.05分以上であることがより好ましい。 Even when the immersion time when the laminate is immersed in the dyeing bath exceeds 2.5 minutes, the obtained polarizing film has a large amount of leakage of blue light in a crossed Nicol state. From such a viewpoint, the immersion time is preferably 2.0 minutes or less, more preferably 1.5 minutes or less, 0.8 minutes or less, 0.3 minutes or less, and further 0.2 minutes. The following may be sufficient, and when using the laminated body which has a thinner PVA layer especially, the target polarizing film can be obtained more efficiently by making immersion time shorter. On the other hand, if the soaking time is too short, spots may occur in the resulting polarizing film. Therefore, the soaking time is preferably 0.01 minutes or more, and more preferably 0.05 minutes or more.
 染色浴の代表例としては、ヨウ素(I)およびヨウ化カリウムを水と混合することにより得られるものが挙げられる。ヨウ素およびヨウ化カリウムを水と混合することで、I およびI といったヨウ素系色素を発生させることができる。染色浴におけるヨウ素およびヨウ化カリウムの濃度に特に制限はないが、ヨウ素の濃度としては、得られる染色浴の質量に対する使用されるヨウ素の質量の割合として、0.01~2質量%の範囲内であることが好ましく、0.02~1質量%の範囲内であることがより好ましく、また、ヨウ化カリウムの濃度としては、上記使用されるヨウ素の質量に対する使用されるヨウ化カリウムの質量の割合として、10~300質量倍の範囲内であることが好ましく、15~150質量倍の範囲内であることがより好ましい。染色浴には、ホウ酸、ホウ砂等のホウ酸塩などのホウ素化合物を含んでいてもよい。 A representative example of the dyeing bath is that obtained by mixing iodine (I 2 ) and potassium iodide with water. By mixing the iodine and potassium iodide and water, I 3 - and I 5 - such can generate iodine dye. The concentration of iodine and potassium iodide in the dyeing bath is not particularly limited, but the iodine concentration is within a range of 0.01 to 2% by mass as a ratio of the mass of iodine used to the mass of the resulting dyeing bath. The concentration of potassium iodide is preferably in the range of 0.02 to 1% by mass, and the concentration of potassium iodide is the mass of potassium iodide used relative to the mass of iodine used. The ratio is preferably in the range of 10 to 300 times by mass, and more preferably in the range of 15 to 150 times by mass. The dyeing bath may contain a boron compound such as borate such as boric acid and borax.
 積層体に対して架橋工程を行うことで、比較的高い温度で湿式延伸する際にPVAが水へ溶出するのをより効果的に防止することができる。この観点から架橋工程は染色工程の後であって延伸工程の前に行うのが好ましい。架橋工程は、架橋浴として架橋剤を含む水溶液に積層体を浸漬することにより行うことができる。当該架橋剤としては、ホウ酸、ホウ砂等のホウ酸塩などのホウ素化合物の1種または2種以上を使用することができる。架橋浴における架橋剤の濃度は1~15質量%の範囲内であることが好ましく、2質量%以上であることがより好ましく、また、7質量%以下であることがより好ましく、6質量%以下であることがさらに好ましい。架橋剤の濃度が1~15質量%の範囲内にあることで十分な延伸性を維持することができる。架橋浴はヨウ化カリウム等の助剤を含有してもよい。架橋浴の温度は、20~50℃の範囲内、特に25~40℃の範囲内とすることが好ましい。当該温度を20~50℃の範囲内にすることで効率良く架橋することができる。 By performing a crosslinking step on the laminate, it is possible to more effectively prevent PVA from eluting into water when wet-stretching at a relatively high temperature. From this viewpoint, the crosslinking step is preferably performed after the dyeing step and before the stretching step. The crosslinking step can be performed by immersing the laminate in an aqueous solution containing a crosslinking agent as a crosslinking bath. As the crosslinking agent, one or more of boron compounds such as boric acid and borate such as borax can be used. The concentration of the crosslinking agent in the crosslinking bath is preferably in the range of 1 to 15% by mass, more preferably 2% by mass or more, more preferably 7% by mass or less, and 6% by mass or less. More preferably. Sufficient stretchability can be maintained when the concentration of the crosslinking agent is in the range of 1 to 15% by mass. The crosslinking bath may contain an auxiliary agent such as potassium iodide. The temperature of the crosslinking bath is preferably in the range of 20 to 50 ° C., particularly preferably in the range of 25 to 40 ° C. By setting the temperature within the range of 20 to 50 ° C., crosslinking can be performed efficiently.
 積層体を延伸する際の延伸方法に特に制限はなく、湿式延伸法および乾式延伸法のうちのいずれで行ってもよい。湿式延伸法の場合は、ホウ酸、ホウ砂等のホウ酸塩などのホウ素化合物の1種または2種以上を含む水溶液中で行うこともできるし、上記した染色浴中や後述する固定処理浴中で行うこともできる。また乾式延伸法の場合は、室温のまま延伸を行ってもよいし、熱をかけながら延伸してもよいし、吸水後に延伸してもよい。これらの中でも、得られる偏光フィルムにおける幅方向の厚みの均一性の点から湿式延伸法が好ましく、ホウ酸水溶液中で延伸することがより好ましい。ホウ酸水溶液中におけるホウ酸の濃度は0.5~6.0質量%の範囲内であることが好ましく、当該濃度は、1.0質量%以上であることがより好ましく、1.5質量%以上であることがさらに好ましく、また、5.0質量%以下であることがより好ましく、4.0質量%以下であることがさらに好ましい。ホウ酸の濃度が0.5~6.0質量%の範囲内にあることで幅方向の厚みの均一性に優れる偏光フィルムが得られる。上記したホウ素化合物を含む水溶液はヨウ化カリウムを含有してもよく、その濃度は0.01~10質量%の範囲内であることが好ましい。ヨウ化カリウムの濃度が0.01~10質量%の範囲内にあることで偏光性能がより良好な偏光フィルムが得られる。 There is no restriction | limiting in particular in the extending | stretching method at the time of extending | stretching a laminated body, You may carry out by any of a wet extending | stretching method and a dry-type extending | stretching method. In the case of the wet stretching method, it can be carried out in an aqueous solution containing one or more boron compounds such as boric acid such as boric acid and borax, or in the above-described dyeing bath or a fixing treatment bath described later. It can also be done inside. In the case of the dry stretching method, stretching may be performed at room temperature, stretching may be performed while applying heat, or stretching may be performed after water absorption. Among these, the wet stretching method is preferable from the viewpoint of the uniformity of the thickness in the width direction of the obtained polarizing film, and it is more preferable to stretch in a boric acid aqueous solution. The concentration of boric acid in the boric acid aqueous solution is preferably in the range of 0.5 to 6.0 mass%, more preferably 1.0 mass% or more, and 1.5 mass% More preferably, it is more preferably 5.0% by mass or less, and further preferably 4.0% by mass or less. When the boric acid concentration is in the range of 0.5 to 6.0% by mass, a polarizing film having excellent thickness uniformity in the width direction can be obtained. The aqueous solution containing the boron compound may contain potassium iodide, and its concentration is preferably in the range of 0.01 to 10% by mass. When the concentration of potassium iodide is in the range of 0.01 to 10% by mass, a polarizing film with better polarizing performance can be obtained.
 積層体を延伸する際の温度は、5~90℃の範囲内であることが好ましく、当該温度は、10℃以上であることがより好ましく、また、85℃以下であることがより好ましく、80℃以下であることがさらに好ましい。当該温度が5~90℃の範囲内であることで幅方向の厚みの均一性に優れる偏光フィルムが得られる。 The temperature at which the laminate is stretched is preferably in the range of 5 to 90 ° C., more preferably 10 ° C. or more, and more preferably 85 ° C. or less. More preferably, it is not higher than ° C. When the temperature is in the range of 5 to 90 ° C., a polarizing film having excellent thickness uniformity in the width direction can be obtained.
 積層体を延伸する際の延伸倍率は4倍以上であることが好ましく、5倍以上であることがより好ましく、6倍以上であることがさらに好ましい。積層体の延伸倍率を上記の範囲内にすることで、偏光性能により優れる偏光フィルムが得られる。積層体の延伸倍率の上限は特に制限されないが、8倍以下であることが好ましい。積層体の延伸は一度に行っても、複数回に分けて行ってもどちらでもよいが、複数回に分けて行う場合には各延伸の延伸倍率を掛け合わせた総延伸倍率が上記範囲内にあればよい。なお、本明細書における延伸倍率は延伸前の積層体の長さに基づくものであり、延伸をしていない状態が延伸倍率1倍に相当する。 The stretching ratio when stretching the laminate is preferably 4 times or more, more preferably 5 times or more, and further preferably 6 times or more. By making the draw ratio of the laminate within the above range, a polarizing film that is more excellent in polarizing performance can be obtained. Although the upper limit of the draw ratio of the laminate is not particularly limited, it is preferably 8 times or less. The stretching of the laminate may be performed at once or may be performed in multiple times, but when performed in multiple times, the total stretch ratio multiplied by the stretch ratio of each stretch is within the above range. I just need it. In addition, the draw ratio in this specification is based on the length of the laminated body before extending | stretching, and the state which is not extending | stretched corresponds to 1 time of draw ratios.
 積層体の延伸は、得られる偏光フィルムの性能の観点から一軸延伸が好ましい。長尺の積層体を延伸する場合における一軸延伸の方向に特に制限はなく、長尺方向への一軸延伸や横一軸延伸を採用することができるが、偏光性能により優れる偏光フィルムが得られることから長尺方向への一軸延伸が好ましい。長尺方向への一軸延伸は、互いに平行な複数のロールを備える延伸装置を使用して、各ロール間の周速を変えることにより行うことができる。一方、横一軸延伸はテンター型延伸機を用いて行うことができる。 The stretching of the laminate is preferably uniaxial stretching from the viewpoint of the performance of the obtained polarizing film. There is no particular limitation on the direction of uniaxial stretching in stretching a long laminate, and uniaxial stretching or lateral uniaxial stretching in the longitudinal direction can be adopted, but a polarizing film that is superior in polarization performance can be obtained. Uniaxial stretching in the longitudinal direction is preferred. Uniaxial stretching in the longitudinal direction can be performed by changing the peripheral speed between the rolls using a stretching apparatus including a plurality of rolls parallel to each other. On the other hand, lateral uniaxial stretching can be performed using a tenter type stretching machine.
 固定処理工程は、主として、PVA層へのヨウ素系色素の吸着を強固にするために行われる。固定処理工程は、延伸前、延伸中または延伸後の積層体を固定処理浴に浸漬することにより行うことができる。固定処理浴としては、ホウ酸、ホウ砂等のホウ酸塩などのホウ素化合物の1種または2種以上を含む水溶液を使用することができる。また、必要に応じて、固定処理浴中にヨウ素化合物や金属化合物を添加してもよい。固定処理浴として使用されるホウ素化合物を含む水溶液中におけるホウ素化合物の濃度は、一般に0.1~15質量%の範囲内、特に1~10質量%の範囲内であることが好ましい。当該濃度を0.1~15質量%の範囲内にすることでヨウ素系色素の吸着をより強固にすることができる。固定処理浴の温度は、10~60℃の範囲内、特に15~40℃の範囲内であることが好ましい。当該温度を10~60℃の範囲内にすることでヨウ素系色素の吸着をより強固にすることができる。 The fixing treatment step is mainly performed in order to strengthen the adsorption of the iodine-based dye to the PVA layer. The fixing treatment step can be performed by immersing the laminate before stretching, during stretching or after stretching in a fixing treatment bath. As the fixing treatment bath, an aqueous solution containing one or more of boron compounds such as boric acid such as boric acid and borax can be used. Moreover, you may add an iodine compound and a metal compound in a fixed treatment bath as needed. The concentration of the boron compound in the aqueous solution containing the boron compound used as the fixing treatment bath is generally within the range of 0.1 to 15% by mass, and particularly preferably within the range of 1 to 10% by mass. By setting the concentration within the range of 0.1 to 15% by mass, the adsorption of the iodine-based dye can be further strengthened. The temperature of the fixing treatment bath is preferably in the range of 10 to 60 ° C, particularly preferably in the range of 15 to 40 ° C. By setting the temperature within the range of 10 to 60 ° C., it is possible to further strengthen the adsorption of the iodine dye.
 洗浄工程は、フィルム表面の不要な薬品類や異物を除去したり、最終的に得られる偏光フィルムの光学的性能を調節したりするために行われることが多い。洗浄工程は、積層体を洗浄浴に浸漬させたり、積層体に洗浄液を散布したりすることによって行うことができる。洗浄浴や洗浄液としては水を使用することができ、これらにヨウ化カリウムを含有させてもよい。 The cleaning process is often performed to remove unnecessary chemicals and foreign matters on the film surface and to adjust the optical performance of the finally obtained polarizing film. The cleaning step can be performed by immersing the laminate in a cleaning bath or by spraying a cleaning liquid on the laminate. Water can be used as the washing bath or the washing liquid, and potassium iodide may be contained therein.
 乾燥工程における乾燥の条件は特に制限されないが、30~150℃の範囲内、特に50~130℃の範囲内の温度で乾燥を行うのが好ましい。30~150℃の範囲内の温度で乾燥することで寸法安定性に優れる偏光フィルムが得られやすい。 The drying conditions in the drying step are not particularly limited, but it is preferable to perform the drying at a temperature within the range of 30 to 150 ° C, particularly within the range of 50 to 130 ° C. A polarizing film excellent in dimensional stability can be easily obtained by drying at a temperature in the range of 30 to 150 ° C.
 以上のようにすることで、延伸された熱可塑性樹脂フィルム層上に形成された偏光フィルムが得られる。このような形態の偏光フィルムの使用方法は特に制限されず、例えば、延伸された熱可塑性樹脂フィルム層を剥離せずに、それをそのまま、または所望により偏光フィルム側に光学的に透明で且つ機械的強度を有する保護膜を貼り合わせて偏光板としてもよいし、延伸された熱可塑性樹脂フィルム層が位置する側とは反対側に保護膜を貼り合わせた後で、当該延伸された熱可塑性樹脂フィルム層を剥離し、それをそのまま、または所望により剥離面に別の保護膜を貼り合わせて偏光板としてもよい。保護膜としては、三酢酸セルロース(TAC)フィルム、酢酸・酪酸セルロース(CAB)フィルム、アクリル系フィルム、ポリエステル系フィルムなどを使用することができる。また、貼り合わせのための接着剤としては、PVA系接着剤やウレタン系接着剤などを挙げることができるが、PVA系接着剤が好適である。 By doing so, a polarizing film formed on the stretched thermoplastic resin film layer can be obtained. The method of using the polarizing film in such a form is not particularly limited. For example, the stretched thermoplastic resin film layer is not peeled off, but is used as it is or optically transparent to the polarizing film side as desired. It is good also as a polarizing plate by laminating | stacking the protective film which has sufficient strength, and after bonding a protective film on the opposite side to the side where the stretched thermoplastic resin film layer is located, the said stretched thermoplastic resin It is good also as a polarizing plate by peeling a film layer and sticking another protective film on the peeling surface as it is, if desired. As the protective film, a cellulose triacetate (TAC) film, an acetic acid / cellulose butyrate (CAB) film, an acrylic film, a polyester film, or the like can be used. In addition, examples of the adhesive for bonding include a PVA adhesive and a urethane adhesive, and a PVA adhesive is preferable.
 以下に本発明を実施例により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
 なお、以下の実施例および比較例において採用された、熱可塑性樹脂フィルムの表面の接触角の測定方法、ならびに、偏光フィルムの吸光度、単体透過率およびM/Nの各測定ないし算出方法を以下に示す。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.
In addition, the measurement method of the contact angle of the surface of the thermoplastic resin film and the measurement, calculation methods of absorbance, unit transmittance and M / N of the polarizing film employed in the following examples and comparative examples are as follows. Show.
[熱可塑性樹脂フィルムの表面の接触角]
 協和界面科学株式会社製「DropMaster500」を使用し、20℃、65%RHの環境下で、内径0.4mmの針から2μLの純水を熱可塑性樹脂フィルムの表面に押し出して接触角を測定した。
[Contact angle of thermoplastic resin film surface]
Using a “DropMaster 500” manufactured by Kyowa Interface Science Co., Ltd., in an environment of 20 ° C. and 65% RH, 2 μL of pure water was extruded from the needle with an inner diameter of 0.4 mm onto the surface of the thermoplastic resin film, and the contact angle was measured. .
[偏光フィルムの吸光度および単体透過率]
 以下の実施例または比較例で得られた偏光フィルムの幅方向(TD)の中央部から、偏光フィルムの長さ方向(MD)に2cmの長方形のサンプルを採取し、積分球付き分光光度計(日本分光株式会社製「V7100」)を用いて、このサンプルを当該分光光度計の偏光板に対してクロスニコル状態に設置し、波長480nmでの吸光度(A)および700nmでの吸光度(B)を測定した。次いで、同じサンプルおよび分光光度計を用いてJIS Z 8722(物体色の測定方法)に準拠し、C光源、2°視野の可視光領域の視感度補正を行い、当該サンプルについて、長さ方向に対して45°傾けた場合の光の透過率と-45°傾けた場合の光の透過率を測定して、それらの平均値(%)をその偏光フィルムの単体透過率とした。
[Absorbance and single transmittance of polarizing film]
From a central part in the width direction (TD) of the polarizing film obtained in the following Examples or Comparative Examples, a rectangular sample of 2 cm was taken in the length direction (MD) of the polarizing film, and a spectrophotometer with an integrating sphere ( Using “V7100” manufactured by JASCO Corporation, this sample was placed in a crossed Nicol state with respect to the polarizing plate of the spectrophotometer, and the absorbance (A) at a wavelength of 480 nm and the absorbance (B) at 700 nm were measured. It was measured. Next, using the same sample and spectrophotometer, in accordance with JIS Z 8722 (object color measurement method), the visibility correction of the visible light region of the C light source and 2 ° field of view is performed, and the sample is measured in the length direction. The light transmittance when tilted by 45 ° and the light transmittance when tilted by −45 ° were measured, and the average value (%) was taken as the single transmittance of the polarizing film.
[偏光フィルムのM/N]
 以下の実施例または比較例で得られた偏光フィルムについて、その長さ方向(MD)の任意の位置で、幅方向(TD)における中央部からMD×TD=2mm×10mmの大きさの細片を切り出し、その細片の両面を厚さ100μmのポリエチレンテレフタレートフィルム2枚で挟んでミクロトームに取り付けた。当該細片をポリエチレンテレフタレートフィルムの上から、MDと平行に20μm間隔でスライスし、サイズがMD×TD=2mm×20μmである試料を採取した。
 当該試料について、堀場製作所製 顕微レーザラマン分光測定装置「LabRAM ARAMIS VIS」を用いて、ミクロトームによるスライスで生じた断面上の測定対象部分に対して、波長532nmのレーザー光を照射してラマン分光測定を行い、そのときに観測されたシグナルのうち、310cm-1でのシグナルの強度(Int310)と210cm-1でのシグナルの強度(Int210)とから、その部分における比率(Int310/Int210)を算出した。なお上記の測定対象部分は、偏光フィルムの各面からフィルムの厚み方向に内部に厚みに対して10%進入した部分とし、得られた2つの比率(Int310/Int210)について、M≦Nを満たすようにそれぞれの値をMまたはNとし、これらのMおよびNを用いてM/Nを算出した。
[M / N of polarizing film]
About the polarizing film obtained by the following example or the comparative example, it is a strip with a size of MD × TD = 2 mm × 10 mm from the central portion in the width direction (TD) at an arbitrary position in the length direction (MD). Was cut out and attached to a microtome with both sides of the strip sandwiched between two 100 μm-thick polyethylene terephthalate films. The strip was sliced from above the polyethylene terephthalate film at intervals of 20 μm parallel to the MD, and a sample having a size of MD × TD = 2 mm × 20 μm was collected.
Using the microscopic laser Raman spectrometer “LabRAM ARAMIS VIS” manufactured by HORIBA, Ltd., the sample to be measured is irradiated with a laser beam having a wavelength of 532 nm on the cross-section to be measured on the cross section produced by the microtome. performed, among the signals observed at that time, because the intensity of the signal at 310cm intensity of the signal at -1 (Int 310) and 210cm -1 (Int 210), the ratio in that portion (Int 310 / Int 210 ) Was calculated. In addition, said measurement object part shall be a part which penetrated 10% with respect to thickness to the inside in the thickness direction of the film from each surface of the polarizing film, and about the obtained two ratios (Int 310 / Int 210 ), M ≦ N Each value was set to M or N so as to satisfy, and M / N was calculated using these M and N.
[実施例1]
(1)熱可塑性樹脂フィルムの親水化処理
 熱可塑性樹脂フィルムとして、非晶性ポリエチレンテレフタレートフィルム(帝人化成株式会社製 A-PETシート FR 厚み150μm)を用いて、熱可塑性樹脂フィルムの片面に放電量280W・分/m(出力280W/m、処理速度1.0m/分)でコロナ処理を行った。コロナ処理後の熱可塑性樹脂フィルムの表面の接触角は60°であった(コロナ処理前の接触角は79°)。
(2)原液の調製
 PVA(酢酸ビニルとエチレンとの共重合体のけん化物、平均重合度2,400、けん化度99.4モル%、エチレン単位の含有率2.5モル%)100質量部、可塑剤としてグリセリン10質量部、界面活性剤としてポリオキシエチレンラウリルエーテル硫酸ナトリウム0.1質量部および水からなる水溶液を調製してPVA層を形成するための原液とした。
(3)積層体の作製
 (1)で親水化処理を行った熱可塑性樹脂フィルムのコロナ処理面に(2)で調製した原液をダイコーターを用いて塗工した後、80℃で240秒間乾燥することにより、非晶性ポリエチレンテレフタレートフィルム層と厚みが15μmのPVA層とからなる2層構造の積層体(幅0.5mの長尺の積層体)を作製した。
(4)偏光フィルムの製造
 (3)で作製した積層体に対して、不溶化工程、染色工程、架橋工程、延伸工程、固定処理工程および乾燥工程を行うことにより偏光フィルムを製造した。すなわち、上記の積層体を、ホウ酸を3質量%の濃度で含有する温度32℃の不溶化浴に1分間浸漬している間に元の長さの2倍まで長さ方向(MD)に一軸延伸(1段目延伸)した後、使用量としてヨウ素を0.035質量%およびヨウ化カリウムを0.8質量%の濃度で水に混合してなる温度20℃の染色浴に0.5分間浸漬している間に元の長さの3倍まで長さ方向(MD)に一軸延伸(2段目延伸)し、次いでホウ酸を2.5質量%の濃度で含有する温度32℃の架橋浴に2分間浸漬している間に元の長さの3.6倍まで長さ方向(MD)に一軸延伸(3段目延伸)し、さらにホウ酸を2.8質量%およびヨウ化カリウムを5質量%の濃度で含有する温度60℃のホウ酸/ヨウ化カリウム水溶液中に浸漬している間に元の長さの6倍まで長さ方向(MD)に一軸延伸(4段目延伸)し、その後、ホウ酸を1.5質量%およびヨウ化カリウムを5質量%の濃度で含有する温度22℃のヨウ化カリウム水溶液中に5秒間浸漬することによりフィルムを洗浄し、続いて60℃の乾燥機で240秒間乾燥することにより、延伸された非晶性ポリエチレンテレフタレートフィルム層上に形成された厚み8μmの偏光フィルムを得た。
 得られた偏光フィルム(延伸された非晶性ポリエチレンテレフタレートフィルム層を剥離した後のもの)について、上記した方法により、吸光度、単体透過率およびM/Nを測定ないし算出した。結果を表1に示した。
[Example 1]
(1) Hydrophilization treatment of thermoplastic resin film Amorphous polyethylene terephthalate film (A-PET sheet FR thickness 150 μm, manufactured by Teijin Chemicals Ltd.) is used as the thermoplastic resin film, and the amount of discharge on one side of the thermoplastic resin film. Corona treatment was performed at 280 W · min / m 2 (output 280 W / m, treatment speed 1.0 m / min). The contact angle of the surface of the thermoplastic resin film after the corona treatment was 60 ° (the contact angle before the corona treatment was 79 °).
(2) Preparation of stock solution PVA (saponified copolymer of vinyl acetate and ethylene, average polymerization degree 2,400, saponification degree 99.4 mol%, ethylene unit content 2.5 mol%) 100 parts by mass An aqueous solution consisting of 10 parts by mass of glycerin as a plasticizer and 0.1 part by mass of sodium polyoxyethylene lauryl ether sulfate as a surfactant and water was prepared as a stock solution for forming a PVA layer.
(3) Production of laminate After coating the stock solution prepared in (2) on the corona-treated surface of the thermoplastic resin film subjected to hydrophilic treatment in (1) using a die coater, it is dried at 80 ° C. for 240 seconds. As a result, a two-layer laminate (a long laminate having a width of 0.5 m) composed of an amorphous polyethylene terephthalate film layer and a PVA layer having a thickness of 15 μm was produced.
(4) Production of Polarizing Film A polarizing film was produced by performing an insolubilization process, a dyeing process, a crosslinking process, a stretching process, a fixing process process, and a drying process on the laminate prepared in (3). That is, while the laminate is immersed in an insolubilization bath containing boric acid at a concentration of 3% by mass at a temperature of 32 ° C. for 1 minute, it is uniaxial in the length direction (MD) up to twice the original length. After stretching (first-stage stretching), the amount used is 0.035% by mass of iodine and potassium iodide is mixed with water at a concentration of 0.8% by mass in water at a temperature of 20 ° C. for 0.5 minutes. While immersed, the film is uniaxially stretched in the length direction (MD) up to 3 times the original length (second-stage stretching), and then crosslinked at a temperature of 32 ° C. containing boric acid at a concentration of 2.5% by mass. While immersed in the bath for 2 minutes, it was uniaxially stretched in the length direction (MD) up to 3.6 times the original length (stretched in the third stage), and further 2.8% by mass of boric acid and potassium iodide. 6 times the original length while immersed in an aqueous solution of boric acid / potassium iodide at a temperature of 60 ° C. containing 5% by mass In a potassium iodide aqueous solution at a temperature of 22 ° C. containing 1.5% by mass of boric acid and 5% by mass of potassium iodide. The film was washed by immersing it in 5 seconds, followed by drying at 60 ° C. for 240 seconds to obtain a polarizing film having a thickness of 8 μm formed on the stretched amorphous polyethylene terephthalate film layer. .
With respect to the obtained polarizing film (after the stretched amorphous polyethylene terephthalate film layer was peeled), the absorbance, single transmittance and M / N were measured or calculated by the methods described above. The results are shown in Table 1.
[実施例2~5および比較例1~3]
 積層体におけるPVA層の厚み、染色浴の温度、染色浴への浸漬時間および染色浴の組成を表1に示すように変更したこと以外は、実施例1と同様にして表1に示す厚みを有する偏光フィルムを製造した。
 得られた偏光フィルム(延伸された非晶性ポリエチレンテレフタレートフィルム層を剥離した後のもの)について、上記した方法により、吸光度、単体透過率およびM/Nを測定ないし算出した。結果を表1に示した。
[Examples 2 to 5 and Comparative Examples 1 to 3]
The thickness shown in Table 1 was the same as in Example 1 except that the thickness of the PVA layer in the laminate, the temperature of the dyeing bath, the immersion time in the dyeing bath, and the composition of the dyeing bath were changed as shown in Table 1. The polarizing film which has was manufactured.
With respect to the obtained polarizing film (after the stretched amorphous polyethylene terephthalate film layer was peeled), the absorbance, single transmittance and M / N were measured or calculated by the methods described above. The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001

Claims (6)

  1.  ポリビニルアルコールを含むマトリックスにヨウ素系色素が吸着している偏光フィルムであって、当該偏光フィルムの断面をラマン分光測定して得られる、フィルムの一方の面から厚み方向に内部に厚みに対して10%進入した部分における310cm-1でのシグナル強度(Int310)と210cm-1でのシグナル強度(Int210)との比率(Int310/Int210)をMとし、フィルムの他方の面から厚み方向に内部に厚みに対して10%進入した部分における310cm-1でのシグナル強度(Int310)と210cm-1でのシグナル強度(Int210)との比率(Int310/Int210)をNとした際に(但し、M≦Nである)、M/Nが0.91以下である、偏光フィルム。 A polarizing film in which an iodine-based dye is adsorbed on a matrix containing polyvinyl alcohol, and obtained by Raman spectroscopic measurement of the cross section of the polarizing film. % ratio of the signal intensity at 310 cm -1 in the entrance portion signal intensity at (Int 310) and 210cm -1 (Int 210) to (Int 310 / Int 210) is M, the thickness direction from the other surface of the film internal the ratio of the signal intensity at 310 cm -1 in the 10% penetration portion relative to the thickness signal intensity at (Int 310) and 210cm -1 (Int 210) (Int 310 / Int 210) is N in the On the occasion (however, M ≦ N), M / N is 0.91 or less.
  2.  クロスニコル状態における波長480nmでの吸光度(A)と波長700nmでの吸光度(B)との比率(A/B)が1.40以上である、請求項1に記載の偏光フィルム。 The polarizing film according to claim 1, wherein a ratio (A / B) of absorbance (A) at a wavelength of 480 nm and absorbance (B) at a wavelength of 700 nm in a crossed Nicol state is 1.40 or more.
  3.  厚みが15μm以下である、請求項1または2に記載の偏光フィルム。 The polarizing film according to claim 1, wherein the thickness is 15 μm or less.
  4.  単体透過率が40~45%である、請求項1~3のいずれか1項に記載の偏光フィルム。 The polarizing film according to any one of claims 1 to 3, wherein the single transmittance is 40 to 45%.
  5.  ポリビニルアルコール層と熱可塑性樹脂フィルム層とを有する積層体を染色および延伸する工程を含む、偏光フィルムの製造方法であって、染色はヨウ素系色素を含む染色浴に積層体を浸漬することにより行われ、染色浴の温度が25℃以下であり、浸漬時間が2.5分以下である、製造方法。 A method for producing a polarizing film, comprising a step of dyeing and stretching a laminate having a polyvinyl alcohol layer and a thermoplastic resin film layer, wherein the dyeing is performed by immersing the laminate in a dyeing bath containing an iodine pigment. The manufacturing method in which the temperature of the dyeing bath is 25 ° C. or less and the immersion time is 2.5 minutes or less.
  6.  ポリビニルアルコール層の厚みが30μm以下である、請求項5に記載の製造方法。 The manufacturing method of Claim 5 whose thickness of a polyvinyl alcohol layer is 30 micrometers or less.
PCT/JP2015/054931 2014-03-04 2015-02-23 Polarizing film WO2015133304A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580011559.7A CN106062596B (en) 2014-03-04 2015-02-23 Polarizing coating
KR1020167022569A KR102411225B1 (en) 2014-03-04 2015-02-23 Polarizing film
CN201910090674.8A CN109917506B (en) 2014-03-04 2015-02-23 Polarizing film
JP2016506426A JP6618890B2 (en) 2014-03-04 2015-02-23 Polarized film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-041481 2014-03-04
JP2014041481 2014-03-04

Publications (1)

Publication Number Publication Date
WO2015133304A1 true WO2015133304A1 (en) 2015-09-11

Family

ID=54055114

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054931 WO2015133304A1 (en) 2014-03-04 2015-02-23 Polarizing film

Country Status (5)

Country Link
JP (1) JP6618890B2 (en)
KR (1) KR102411225B1 (en)
CN (2) CN109917506B (en)
TW (1) TWI668472B (en)
WO (1) WO2015133304A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110687627A (en) * 2018-09-28 2020-01-14 住华科技股份有限公司 Floating body, system for manufacturing polarizing film by using same and method for manufacturing polarizing film by using same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240715A (en) * 1995-03-03 1996-09-17 Sumitomo Chem Co Ltd Production of polarizing film
JP2005037862A (en) * 2002-10-08 2005-02-10 Nitto Denko Corp Polarizer, optical film and image display apparatus
JP2008040251A (en) * 2006-08-08 2008-02-21 Nitto Denko Corp Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device
JP2008298871A (en) * 2007-05-29 2008-12-11 Nitto Denko Corp Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device
JP2010271703A (en) * 2009-04-21 2010-12-02 Nitto Denko Corp Polarizing thin film, polarizing plate, and liquid crystal display device
JP2010276815A (en) * 2009-05-28 2010-12-09 Nitto Denko Corp Method for producing polarizer, polarizer produced thereby, polarizing plate and image display apparatus
JP2013182162A (en) * 2012-03-02 2013-09-12 Sumitomo Chemical Co Ltd Manufacturing method of polarizing plate
JP2015505071A (en) * 2012-11-16 2015-02-16 エルジー・ケム・リミテッド Thin polarizer manufacturing method, thin polarizer manufactured using the same, and polarizing plate
WO2015037553A1 (en) * 2013-09-13 2015-03-19 株式会社クラレ Polarizing film

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010026498A (en) * 2008-06-17 2010-02-04 Nitto Denko Corp Polarizing plate and method of manufacturing the same
WO2010100917A1 (en) 2009-03-05 2010-09-10 日東電工株式会社 Highly functional thin polarizing film and process for producing same
JP4691205B1 (en) 2010-09-03 2011-06-01 日東電工株式会社 Method for producing optical film laminate including thin high-performance polarizing film
KR101833579B1 (en) * 2010-12-02 2018-02-28 닛토덴코 가부시키가이샤 Method of manufacturing polarizing plate
KR101811489B1 (en) * 2012-01-30 2018-01-25 스미또모 가가꾸 가부시키가이샤 A process for producing a polarizer
KR101757035B1 (en) * 2012-03-29 2017-07-11 스미또모 가가꾸 가부시키가이샤 Laminate film, method for producing polarizing laminate film, and method for producing polarizing plate
JP6054054B2 (en) * 2012-05-11 2016-12-27 日東電工株式会社 Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device
JP5685222B2 (en) * 2012-06-06 2015-03-18 日東電工株式会社 Polarizing film containing modified PVA and optical laminate having the polarizing film
CN104602912B (en) * 2012-08-06 2018-11-16 株式会社可乐丽 The manufacturing method of laminated body, polarizing coating and polarizing coating

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240715A (en) * 1995-03-03 1996-09-17 Sumitomo Chem Co Ltd Production of polarizing film
JP2005037862A (en) * 2002-10-08 2005-02-10 Nitto Denko Corp Polarizer, optical film and image display apparatus
JP2008040251A (en) * 2006-08-08 2008-02-21 Nitto Denko Corp Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device
JP2008298871A (en) * 2007-05-29 2008-12-11 Nitto Denko Corp Manufacturing method of polarizer, polarizer, polarizing plate, optical film, and image display device
JP2010271703A (en) * 2009-04-21 2010-12-02 Nitto Denko Corp Polarizing thin film, polarizing plate, and liquid crystal display device
JP2010276815A (en) * 2009-05-28 2010-12-09 Nitto Denko Corp Method for producing polarizer, polarizer produced thereby, polarizing plate and image display apparatus
JP2013182162A (en) * 2012-03-02 2013-09-12 Sumitomo Chemical Co Ltd Manufacturing method of polarizing plate
JP2015505071A (en) * 2012-11-16 2015-02-16 エルジー・ケム・リミテッド Thin polarizer manufacturing method, thin polarizer manufactured using the same, and polarizing plate
WO2015037553A1 (en) * 2013-09-13 2015-03-19 株式会社クラレ Polarizing film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110687627A (en) * 2018-09-28 2020-01-14 住华科技股份有限公司 Floating body, system for manufacturing polarizing film by using same and method for manufacturing polarizing film by using same

Also Published As

Publication number Publication date
CN109917506A (en) 2019-06-21
TW201539064A (en) 2015-10-16
KR102411225B1 (en) 2022-06-20
TWI668472B (en) 2019-08-11
JP6618890B2 (en) 2019-12-11
CN106062596B (en) 2019-02-26
KR20160129004A (en) 2016-11-08
JPWO2015133304A1 (en) 2017-04-06
CN109917506B (en) 2022-05-24
CN106062596A (en) 2016-10-26

Similar Documents

Publication Publication Date Title
JP6434309B2 (en) Laminated body, polarizing film, and manufacturing method of polarizing film
KR101420584B1 (en) Method for producing polarizing laminated film and double-sided polarizing laminated film
JP2017142347A (en) Polarizing film with small contraction stress and production method of the same
JP6472381B2 (en) Raw film for optical film production
JP6655544B2 (en) Polarizing film
JP6685661B2 (en) Polarizing film manufacturing method
WO2018016542A1 (en) Method for producing polarizing film
JP6564702B2 (en) Polarized film
JP6444732B2 (en) Laminated film
JP6618890B2 (en) Polarized film
KR20160094983A (en) Polarizer with few air bubble defects
JP6667989B2 (en) Manufacturing method of polarizing film
JP5956276B2 (en) Manufacturing method of polarizing film
JP2017015415A (en) Method for evaluating optical unevenness of polyvinyl alcohol film
WO2022071372A1 (en) Production method for polarizing film
JP6571955B2 (en) Polyvinyl alcohol film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758774

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016506426

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20167022569

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15758774

Country of ref document: EP

Kind code of ref document: A1