WO2015133068A1 - Device for determining battery type and method for determining battery type - Google Patents
Device for determining battery type and method for determining battery type Download PDFInfo
- Publication number
- WO2015133068A1 WO2015133068A1 PCT/JP2015/000652 JP2015000652W WO2015133068A1 WO 2015133068 A1 WO2015133068 A1 WO 2015133068A1 JP 2015000652 W JP2015000652 W JP 2015000652W WO 2015133068 A1 WO2015133068 A1 WO 2015133068A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- battery
- internal resistance
- type determination
- charge
- discharging
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/48—Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/389—Measuring internal impedance, internal conductance or related variables
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/42—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
- H01M10/4221—Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells with battery type recognition
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00032—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
- H02J7/00038—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors
- H02J7/00041—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange using passive battery identification means, e.g. resistors or capacitors in response to measured battery parameters, e.g. voltage, current or temperature profile
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/00047—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with provisions for charging different types of batteries
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/367—Software therefor, e.g. for battery testing using modelling or look-up tables
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
- G01R31/382—Arrangements for monitoring battery or accumulator variables, e.g. SoC
- G01R31/3842—Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present invention relates to a battery type determination device and a determination method for determining a battery type.
- Vehicles that use the engine as the main power source are equipped with a battery as the power source for the starter motor that starts the engine.
- a lead storage battery is generally used.
- the charge / discharge characteristics of lead-acid batteries have been improved. For this reason, lead-acid batteries are becoming popular as power sources for special electric vehicles such as electric carts or forklifts that are not profitable with expensive lithium ion secondary batteries.
- the present invention provides a battery type determination device and a battery type determination method capable of suitably determining a battery type.
- the battery type determination device includes a sensor unit, a DC internal resistance calculation unit, and a type determination unit.
- the sensor unit detects the terminal voltage and charge / discharge current of the battery.
- the DC internal resistance calculation unit calculates the DC internal resistance during charging and discharging of the battery based on the terminal voltage and the charge / discharge current detected by the sensor unit.
- the type determining unit determines the type of the battery based on the DC internal resistance during charging and the DC internal resistance during discharging calculated by the DC internal resistance calculating unit.
- the battery terminal voltage and the charge / discharge current are detected, and the DC internal resistance at the time of charging and discharging is calculated based on the detected terminal voltage and charge / discharge current, respectively. To do. Then, the battery type is determined based on the calculated DC internal resistance during charging and DC internal resistance during discharging.
- the type of the battery can be suitably determined by a simple system using the DC internal resistance during charging and discharging.
- FIG. 1 is a block diagram showing a configuration of a battery type determination apparatus according to an embodiment of the present invention.
- FIG. 2 is a diagram for explaining an equivalent circuit model of a battery.
- FIG. 3 is a diagram schematically illustrating respective resistance components during charging and discharging.
- FIG. 4 is a diagram showing the difference in DC internal resistance during charging and discharging for each type of battery.
- FIG. 1 is a block diagram schematically showing the configuration of a battery type determination device according to an embodiment of the present invention.
- FIG. 2 is a diagram for explaining an equivalent circuit model of a battery.
- FIG. 3 is a diagram schematically illustrating respective resistance components during charging and discharging.
- FIG. 4 is a diagram illustrating changes in terminal voltage and charging / discharging current during charging and discharging of the battery in the idling stop system.
- the battery type determination device includes a sensor unit 100, a low-pass filter (LPF) 101, a charge / discharge switching determination unit 102, a DC internal resistance calculation unit (DCIR calculation unit) 103, and a type determination. Part 104.
- the sensor unit 100 is connected to a vehicle battery (not shown).
- the sensor unit 100 includes a voltage sensor and a current sensor, and measures the terminal voltage V t0 and the charge / discharge current i L0 of the battery, respectively.
- the battery is a rechargeable secondary battery, typically a lead storage battery, but is not necessarily limited thereto.
- a lead storage battery for ISS is assumed.
- This lead storage battery for ISS is generally required to have durability of about several years.
- the battery industry association standard SBA S 0101
- SBA S 0101 requires durability of about 30,000 cycles or more (capacity of about 3 years or more).
- a general lead storage battery which is almost the same size as the lead storage battery for ISS but is not for ISS has a shorter life than the lead storage battery for ISS.
- a normal lead-acid battery (ordinary product) used for normal engine start has a life of about 1.5 years, or the weight of the normal product is reduced by reducing the active material content for rationalization.
- An important type low-grade lead-acid battery (low-grade product) has a life of less than one year (for example, about 0.5 years). If such a general lead-acid battery that is not for ISS is accidentally mounted on an ISS vehicle at the time of battery replacement, there is a high possibility that it will not be possible to deal with service inspections such as vehicle inspections conducted annually. It is not desirable to install a general lead storage battery in a vehicle.
- the LPF 101 cuts the battery terminal voltage V t0 and the charge / discharge current i L0 input from the sensor unit 100 at a frequency determined by a predetermined time constant, and outputs a processing voltage value Vt1 and a processing current value i L1.
- the predetermined time constant may be a fixed value, but may be varied according to the state of the battery such as the temperature, the degree of deterioration, and the charging rate of the battery.
- the charge / discharge switching determination unit 102, the DCIR calculation unit 103, and the type determination unit 104 are a central processing unit (CPU) that performs arithmetic processing, a memory that stores processing programs, learning data, and the like, and processing results by the CPU. And a random access memory (RAM) for temporarily storing inputted data and the like. The following various processes are performed by these hardware. Further, the charge / discharge switching determination unit 102, the DCIR calculation unit 103, and the type determination unit 104 are typically configured by a single-chip large-scale integrated circuit (LSI) or a circuit board, but are not limited thereto. Instead, they may be composed of separate chips or partially integrated chips.
- LSI large-scale integrated circuit
- the charging / discharging switching determination unit 102 determines switching between charging and discharging of the battery based on the terminal voltage V t0 detected by the sensor unit 100 and the charging / discharging current iL0 . For example, typically, a large current flows instantaneously from the battery when the engine is started, so that the charge / discharge switching determination unit 102 determines that the amount of change of the charge / discharge current i L0 per predetermined time is a predetermined threshold ⁇ i. when Th1 or more, and determines that the amount of change per predetermined time of the terminal voltage V t0 is switched to a discharge state when at least one of time of more than a predetermined threshold value [Delta] V Th1.
- the charge / discharge switching determination unit 102 typically charges the battery at a constant current and a constant voltage when the vehicle is running, so at least one of the terminal voltage V t0 and the charge / discharge current i L0 per predetermined time.
- the amount of change is within the range of the predetermined threshold values ⁇ V Th2 and ⁇ i Th2 and is equal to or greater than the predetermined threshold values V Th3 and i Th3 , respectively, it is determined that the charging state has been switched.
- the method of the charging / discharging switching determination by the charging / discharging switching determination unit 102 is not limited to these, and other methods may be used as long as the determination is made using at least one of the terminal voltage V t0 and the charging / discharging current i L0 . It may be determined by a technique.
- the DCIR calculation unit 103 calculates the DC internal resistance (DCIR) of the battery during charging and discharging using the processing voltage value V t1 and the processing current value i L1 input from the LPF 101. For example, the DCIR calculation unit 103 plots two or more time changes of the processing voltage value V t1 and the processing current value i L1 and calculates the slope thereof as DCIR. However, the calculation method is not limited to this. Then, the DCIR calculation unit 103 acquires the determination result of the charge / discharge switching determination unit 102, and calculates DCIR as the DCIR of the battery at the time of charging at the time of charging and as the DCIR of the battery at the time of discharging at the time of discharging.
- DCIR DC internal resistance
- the DCIR calculation unit 103 has a known filter such as an equivalent circuit model of the battery shown in FIG. 2 and a Kalman filter.
- the input processing voltage value V t1 and the processing current are input using the equivalent circuit model and the filter.
- the parameter of the equivalent circuit model is sequentially estimated from the value i L1 .
- Battery equivalent circuit model of FIG. 2 the ohmic resistance R 0 and the reaction resistance which is the sum of the charge transfer resistance R 1 of the positive and negative electrodes, the resistance component R 2 and a capacitor component C of the primary of an equivalent circuit showing a diffusion resistance polarization It consists of two parameters.
- first order equivalent circuit means slow response component. Since the fast response component is cut by the LPF 101, the capacitor components of the primary equivalent circuit and the secondary equivalent circuit need not be considered.
- FIG. 3 is a diagram schematically illustrating respective resistance components during charging and discharging.
- the ohmic resistance R 0 — chg during charging corresponds to the AC internal resistance (ACIR) during charging
- the ohmic resistance R 0 — dis during discharging corresponds to the AC internal resistance (ACIR) during discharging.
- the reaction resistance by the sum of the ohmic resistance R 0 — chg at the time of charging and the charge transfer resistance R 1 — chg of the positive and negative electrodes is the DC internal resistance (DCIR) at the time of charging
- the ohmic resistance R 0 — dis at the time of discharging
- the reaction resistance based on the sum of the movement resistance R 1 — dis corresponds to the direct current internal resistance (DCIR) during discharge.
- R2_chg indicating diffusion resistance polarization during charging and R2_dis indicating diffusion resistance polarization during discharging are resistance components of a slow component, they are not included in DCIR due to a short-time reaction. In this way, by pre-processing the charge / discharge voltage and current with the LPF 101, the fast-response resistance component of the equivalent circuit model can be easily calculated as DCIR incorporating the ohmic resistance and the positive and negative charge transfer resistances.
- the type determining unit 104 determines the type of the battery from the DCIR at the time of charging and the DCIR at the time of discharging calculated by the DCIR calculating unit 103.
- the DCIR during charging and the DCIR during discharging differ depending on the battery.
- lead-acid batteries in particular, have poor charge acceptance, so that the DCIR during charging is higher than the DCIR during discharging when the state of charge (SOC) is high. This is influenced by R 1 — chg indicating the reaction resistance of the fast response component.
- the charge acceptance is improved as compared with a general lead storage battery, so that the DCIR at the time of charging is lower than the DCIR at the time of charging a general lead storage battery.
- R 1 — chg indicating the reaction resistance of the fast response component is also smaller than that of a general lead-acid battery.
- the type determination unit 104 calculates the difference between the DCIR at the time of charging and the DCIR at the time of discharging, and determines whether this difference is equal to or less than a predetermined threshold value. Since the ohmic resistance changes little between charging and discharging (R 0 — chg ⁇ R 0 — dis), the effect of the ohmic resistance is eliminated by taking the difference between the DCIR during charging and the DCIR during discharging. It can be specified as the difference (R 1 — chg ⁇ R 1 — dis) between the reaction resistance at the time and the reaction resistance at the time of discharge.
- the type determination unit 104 determines with it being not a lead storage battery for ISS but a general lead storage battery.
- the type determination unit 104 has a small reaction resistance R 1 — chg during charging, Therefore, it determines with it being a lead storage battery for ISS.
- FIG. 4 is a diagram illustrating a difference in DC internal resistance during charging and discharging for each type of battery.
- a to E shown on the horizontal axis in FIG. 4 are battery types.
- the battery A is a lead storage battery for ISS and has a lifetime of at least 3 years.
- the batteries B to E are lead storage batteries that are not for ISS use, and the life of the batteries decreases from the batteries B to E.
- the batteries B and C are relatively high grade products, and have a life of about several years (for example, the battery B has a life of about 2 years and the battery C has a life of about 1.5 years).
- the batteries B and C are relatively low-grade products and have a lifetime of less than one year (for example, the lifetimes of the battery D and the battery E are about 0.5 years).
- the vertical axis in FIG. 4 is a value obtained by normalizing the difference between the reaction resistance during charging and the reaction resistance during discharging in the battery A to a reference value.
- a high grade product has a normalization value close to that of an ISS product.
- the type determining unit 104 determines that it is not a lead storage battery for ISS but a general lead storage battery. . For example, it may be determined that the product is a lower grade product.
- the type determining unit 104 determines that there is a possibility of a lead storage battery for ISS. For example, it may be determined that any one of the high-grade products among the lead storage battery for ISS and the general lead storage battery is included.
- the first threshold Th1 it is possible to determine and omit an obvious low-grade product that has a relatively large margin with respect to the ISS product and is less affected by manufacturing variations and errors such as measurement. It is possible to prevent undesired loading preferentially and reliably.
- the second threshold value Th2 that is smaller than the first threshold value Th1 is a high-grade product among ISS products and general lead storage batteries. It is possible to determine whether the product is an ISS product with high accuracy.
- the type determination unit 104 determines the type of whether or not the battery is for ISS using the difference between the DCIR during charging and the DCIR during discharging. Therefore, in this type determination, as shown in FIG. 2, it is possible to accurately determine the type of the battery while suppressing the processing load and the processing time without using a higher-order equivalent circuit model.
- the battery type determination apparatus and the battery type determination method according to the present invention are particularly useful for determining whether or not a lead storage battery used in an idling stop system (ISS) is an appropriate ISS battery.
- ISS idling stop system
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Secondary Cells (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
This device for determining battery type has a sensor unit, a DC internal resistance computation unit, and a type determination unit. The sensor unit detects the terminal voltage and the charge/discharge current of a battery. On the basis of the terminal voltage and the charge/discharge current detected by the sensor unit, the DC internal resistance computation unit calculates the respective DC internal resistance during charging and discharging of the battery. On the basis of the DC internal resistance during charging and the DC internal resistance during discharging which have been computed by the DC internal resistance computation unit, the type determination unit determines the type of battery.
Description
本発明は、バッテリの種別を判定するバッテリの種別判定装置及び判定方法に関する。
The present invention relates to a battery type determination device and a determination method for determining a battery type.
エンジンを主たる動力源とする車両は、エンジンを始動するためのスタータモータの電源としてバッテリを搭載している。このバッテリとしては、一般に鉛蓄電池が使用される。また、近年、鉛蓄電池の充放電特性は改良されている。そのため、鉛蓄電池は、高価なリチウムイオン二次電池では採算が合わない電動カート又はフォークリフトなどの特殊電動車両の電源としても普及しつつある。
Vehicles that use the engine as the main power source are equipped with a battery as the power source for the starter motor that starts the engine. As the battery, a lead storage battery is generally used. In recent years, the charge / discharge characteristics of lead-acid batteries have been improved. For this reason, lead-acid batteries are becoming popular as power sources for special electric vehicles such as electric carts or forklifts that are not profitable with expensive lithium ion secondary batteries.
自家用車のトラブル回数(具体的には日本自動車連盟の出動回数)で最も多いものはバッテリ上がり及びバッテリの性能低下である。また、近年、エンジンを主たる動力源とする車両の排ガスを削減するために、アイドリングストップシステムが採用されている。しかし、アイドリングストップ時のエンジンの停止中に、バッテリの残存容量が低下して、エンジンを始動するのに必要な出力が得られなくなると、エンジンを再始動できなくなる。このようなバッテリのトラブルを事前に検知し対処できるように、バッテリの残存容量を精度良く検出することが望まれている(例えば特許文献1参照)。
The largest number of troubles with private cars (specifically, the number of times the Japan Automobile Federation has been dispatched) is battery exhaustion and battery performance degradation. In recent years, an idling stop system has been adopted in order to reduce exhaust gas from vehicles using an engine as a main power source. However, the engine cannot be restarted if the remaining capacity of the battery is reduced while the engine is stopped when idling is stopped, and the output required to start the engine cannot be obtained. It is desired to accurately detect the remaining capacity of the battery so that such a battery trouble can be detected and dealt with in advance (see, for example, Patent Document 1).
そこで、近年、バッテリの充放電反応の速い応答部分と遅い応答部分を考慮したバッテリ等価回路モデルを用いて、バッテリの残存容量や劣化状態を精度良く検出することが知られている(例えば特許文献2参照)。
Therefore, in recent years, it is known to accurately detect the remaining capacity and the deterioration state of a battery using a battery equivalent circuit model that takes into account a fast response portion and a slow response portion of the battery charge / discharge reaction (for example, Patent Documents). 2).
本発明は、バッテリの種別を好適に判定することができるバッテリの種別判定装置及びバッテリの種別判定方法を提供する。
The present invention provides a battery type determination device and a battery type determination method capable of suitably determining a battery type.
本発明に係るバッテリの種別判定装置は、センサ部と、直流内部抵抗算出部と、種別判定部とを有する。センサ部は、バッテリの端子電圧と充放電電流を検出する。直流内部抵抗算出部は、センサ部が検出した端子電圧と充放電電流に基づいて、バッテリの充電時と放電時の直流内部抵抗をそれぞれ算出する。種別判定部は、直流内部抵抗算出部が算出した充電時の直流内部抵抗と放電時の直流内部抵抗とに基づいて、バッテリの種別を判定する。
The battery type determination device according to the present invention includes a sensor unit, a DC internal resistance calculation unit, and a type determination unit. The sensor unit detects the terminal voltage and charge / discharge current of the battery. The DC internal resistance calculation unit calculates the DC internal resistance during charging and discharging of the battery based on the terminal voltage and the charge / discharge current detected by the sensor unit. The type determining unit determines the type of the battery based on the DC internal resistance during charging and the DC internal resistance during discharging calculated by the DC internal resistance calculating unit.
また、本発明に係るバッテリの種別判定方法では、バッテリの端子電圧と充放電電流を検出し、検出された端子電圧と充放電電流に基づいて、充電時と放電時の直流内部抵抗をそれぞれ算出する。そして、算出された充電時の直流内部抵抗と放電時の直流内部抵抗に基づいてバッテリの種別を判定する。
In the battery type determination method according to the present invention, the battery terminal voltage and the charge / discharge current are detected, and the DC internal resistance at the time of charging and discharging is calculated based on the detected terminal voltage and charge / discharge current, respectively. To do. Then, the battery type is determined based on the calculated DC internal resistance during charging and DC internal resistance during discharging.
本発明によれば、充電時と放電時の直流内部抵抗を利用した簡易なシステムでバッテリの種別を好適に判定することができる。
According to the present invention, the type of the battery can be suitably determined by a simple system using the DC internal resistance during charging and discharging.
本発明の実施の形態の説明に先立ち、特許文献1や2に開示されるような従来の検出方法における問題点を説明する。これらの検出方法においては、バッテリの交換が考慮されていない。バッテリは種別によって特性が異なる。そのため、誤ってこれまでと異なる種別のバッテリが取り付けられた場合には残存容量や劣化状態を精度よく検出することができない。
Prior to the description of the embodiments of the present invention, problems in conventional detection methods as disclosed in Patent Documents 1 and 2 will be described. In these detection methods, battery replacement is not considered. The characteristics of the battery vary depending on the type. For this reason, when a battery of a different type is attached by mistake, the remaining capacity and the deterioration state cannot be detected accurately.
以下、図面を参照しつつ本発明の実施形態が説明される。なお、以下の実施形態は、本発明を具体化した一例であって、本発明の技術的範囲を限定するものではない。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.
図1は本発明の実施形態のバッテリの種別判定装置の構成を概略的に示すブロック図である。図2は、バッテリの等価回路モデルをイメージで説明する図である。図3は、充電時と放電時のそれぞれの抵抗成分を模式的に表す図である。図4は、アイドリングストップシステムにおけるバッテリの充電時と放電時の端子電圧と充放電電流の変化を表す図である。
FIG. 1 is a block diagram schematically showing the configuration of a battery type determination device according to an embodiment of the present invention. FIG. 2 is a diagram for explaining an equivalent circuit model of a battery. FIG. 3 is a diagram schematically illustrating respective resistance components during charging and discharging. FIG. 4 is a diagram illustrating changes in terminal voltage and charging / discharging current during charging and discharging of the battery in the idling stop system.
図1に示すように、バッテリの種別判定装置は、センサ部100と、ローパスフィルタ(LPF)101と、充放電切替判定部102と、直流内部抵抗算出部(DCIR算出部)103と、種別判定部104とを有する。センサ部100は、図示しない車載のバッテリと接続されている。センサ部100は、電圧センサと電流センサを有し、これらによってバッテリの端子電圧Vt0と充放電電流iL0をそれぞれ計測する。
As shown in FIG. 1, the battery type determination device includes a sensor unit 100, a low-pass filter (LPF) 101, a charge / discharge switching determination unit 102, a DC internal resistance calculation unit (DCIR calculation unit) 103, and a type determination. Part 104. The sensor unit 100 is connected to a vehicle battery (not shown). The sensor unit 100 includes a voltage sensor and a current sensor, and measures the terminal voltage V t0 and the charge / discharge current i L0 of the battery, respectively.
ここでバッテリは充電可能な二次電池であり、典型的には鉛蓄電池であるが必ずしもこれに限られるものではない。特に、アイドリングストップシステム(ISS)用の車両に用いられるため、ISS用の鉛蓄電池が想定される。このISS用の鉛蓄電池は、一般に数年程度の耐久性を有することが要求される。例えば、電池工業会規格(SBA S 0101)では、30,000サイクル以上(実力約3年以上)程度の耐久性が要求される。
Here, the battery is a rechargeable secondary battery, typically a lead storage battery, but is not necessarily limited thereto. In particular, since it is used in a vehicle for an idling stop system (ISS), a lead storage battery for ISS is assumed. This lead storage battery for ISS is generally required to have durability of about several years. For example, the battery industry association standard (SBA S 0101) requires durability of about 30,000 cycles or more (capacity of about 3 years or more).
これに対して、ISS用の鉛蓄電池とほぼ同サイズであるがISS用でない一般の鉛蓄電池では、ISS用の鉛蓄電池に対して寿命が短い。例えば通常のエンジンスタートに用いられる通常の鉛蓄電池(通常品)では1.5年程度の寿命であったり、合理化のために通常品に対して活物質の含有量を低くして軽量化した容量重視タイプで低グレードな鉛蓄電池(低グレード品)では1年も持たない(例えば0.5年程度の)寿命であったりする。このようなISS用ではない一般の鉛蓄電池が、電池交換時に誤ってISS用の車両に搭載されると、年単位で行われる車検等のサービス点検で対応できなくなる可能性が高まるため、ISS用ではない一般の鉛蓄電池の車両への搭載は望ましくない。
On the other hand, a general lead storage battery which is almost the same size as the lead storage battery for ISS but is not for ISS has a shorter life than the lead storage battery for ISS. For example, a normal lead-acid battery (ordinary product) used for normal engine start has a life of about 1.5 years, or the weight of the normal product is reduced by reducing the active material content for rationalization. An important type low-grade lead-acid battery (low-grade product) has a life of less than one year (for example, about 0.5 years). If such a general lead-acid battery that is not for ISS is accidentally mounted on an ISS vehicle at the time of battery replacement, there is a high possibility that it will not be possible to deal with service inspections such as vehicle inspections conducted annually. It is not desirable to install a general lead storage battery in a vehicle.
LPF101は、センサ部100から入力されたバッテリの端子電圧Vt0と充放電電流iL0とを、所定の時定数で定まる周波数でカットして、処理電圧値Vt1と処理電流値iL1とを出力する。ここで、所定の時定数は固定値であってもよいが、バッテリの温度や劣化度や充電率等のバッテリの状態に応じて可変されるものであってもよい。
The LPF 101 cuts the battery terminal voltage V t0 and the charge / discharge current i L0 input from the sensor unit 100 at a frequency determined by a predetermined time constant, and outputs a processing voltage value Vt1 and a processing current value i L1. To do. Here, the predetermined time constant may be a fixed value, but may be varied according to the state of the battery such as the temperature, the degree of deterioration, and the charging rate of the battery.
充放電切替判定部102と、DCIR算出部103と、種別判定部104とは、演算処理を行う中央演算処理装置(CPU)と、処理プログラムや学習データ等を格納するメモリと、CPUによる処理結果や入力されたデータ等を一時記憶するランダム・アクセス・メモリ(RAM)とを有する。以下の各種処理はこれらのハードウェアによって行われる。また、充放電切替判定部102と、DCIR算出部103と、種別判定部104とは、典型的には1チップの大規模集積回路(LSI)や回路基板で構成されるが、これに限定されず、それぞれ別体のチップや一部一体となったチップで構成されてもよい。
The charge / discharge switching determination unit 102, the DCIR calculation unit 103, and the type determination unit 104 are a central processing unit (CPU) that performs arithmetic processing, a memory that stores processing programs, learning data, and the like, and processing results by the CPU. And a random access memory (RAM) for temporarily storing inputted data and the like. The following various processes are performed by these hardware. Further, the charge / discharge switching determination unit 102, the DCIR calculation unit 103, and the type determination unit 104 are typically configured by a single-chip large-scale integrated circuit (LSI) or a circuit board, but are not limited thereto. Instead, they may be composed of separate chips or partially integrated chips.
充放電切替判定部102は、センサ部100が検出した端子電圧Vt0と充放電電流iL0に基づいて、バッテリの充電と放電の切替を判定する。例えば、典型的にはエンジン始動時のような場合にバッテリから瞬間的に大きな電流が流れるので、充放電切替判定部102は、充放電電流iL0の所定時間当たりの変化量が所定の閾値ΔiTh1以上のとき、および端子電圧Vt0の所定時間当たりの変化量が所定の閾値ΔVTh1以上のときの少なくともいずれかのときに放電状態に切り替わったと判定する。また、充放電切替判定部102は、典型的には走行中のような場合にバッテリは定電流定電圧充電されるので、端子電圧Vt0および充放電電流iL0の少なくとも1つの所定時間当たりの変化量がそれぞれ所定の閾値ΔVTh2、ΔiTh2の範囲内で、かつ、それぞれ所定の閾値VTh3、iTh3以上であるとき充電状態に切り替わったと判定する。なお、充放電切替判定部102による充放電切替判定の手法はこれらに限定されるものではなく、端子電圧Vt0と充放電電流iL0の少なくとも1つを用いて判定するものであれば他の手法で判定されてもよい。
The charging / discharging switching determination unit 102 determines switching between charging and discharging of the battery based on the terminal voltage V t0 detected by the sensor unit 100 and the charging / discharging current iL0 . For example, typically, a large current flows instantaneously from the battery when the engine is started, so that the charge / discharge switching determination unit 102 determines that the amount of change of the charge / discharge current i L0 per predetermined time is a predetermined threshold Δi. when Th1 or more, and determines that the amount of change per predetermined time of the terminal voltage V t0 is switched to a discharge state when at least one of time of more than a predetermined threshold value [Delta] V Th1. In addition, the charge / discharge switching determination unit 102 typically charges the battery at a constant current and a constant voltage when the vehicle is running, so at least one of the terminal voltage V t0 and the charge / discharge current i L0 per predetermined time. When the amount of change is within the range of the predetermined threshold values ΔV Th2 and Δi Th2 and is equal to or greater than the predetermined threshold values V Th3 and i Th3 , respectively, it is determined that the charging state has been switched. In addition, the method of the charging / discharging switching determination by the charging / discharging switching determination unit 102 is not limited to these, and other methods may be used as long as the determination is made using at least one of the terminal voltage V t0 and the charging / discharging current i L0 . It may be determined by a technique.
DCIR算出部103は、LPF101から入力された処理電圧値Vt1と処理電流値iL1とを用いて充電時と放電時のバッテリの直流内部抵抗(DCIR)を算出する。DCIR算出部103は、例えば処理電圧値Vt1と処理電流値iL1の時間変化を2点以上プロットしてその傾きをDCIRとして算出するが算出手法はこれに限られない。そして、DCIR算出部103は、充放電切替判定部102の判定結果を取得して、充電時には充電時のバッテリのDCIRとして、放電時には放電時のバッテリのDCIRとして、DCIRを算出する。
The DCIR calculation unit 103 calculates the DC internal resistance (DCIR) of the battery during charging and discharging using the processing voltage value V t1 and the processing current value i L1 input from the LPF 101. For example, the DCIR calculation unit 103 plots two or more time changes of the processing voltage value V t1 and the processing current value i L1 and calculates the slope thereof as DCIR. However, the calculation method is not limited to this. Then, the DCIR calculation unit 103 acquires the determination result of the charge / discharge switching determination unit 102, and calculates DCIR as the DCIR of the battery at the time of charging at the time of charging and as the DCIR of the battery at the time of discharging at the time of discharging.
また、DCIR算出部103は、図2で示されるバッテリの等価回路モデルとカルマンフィルタ等の周知のフィルタを有し、この等価回路モデルとフィルタを用いて、入力された処理電圧値Vt1と処理電流値iL1とから等価回路モデルのパラメータの逐次推定を行う。図2のバッテリの等価回路モデルは、オーミック抵抗R0と正負極の電荷移動抵抗R1の和である反応抵抗と、拡散抵抗分極を示す1次の等価回路の抵抗成分R2とコンデンサ成分C2のパラメータで構成される。オーミック抵抗R0と正負極の電荷移動抵抗R1とは速い応答成分を意味し、1次の等価回路が遅い応答成分を意味する。LPF101によって速い応答成分がカットされているため、1次の等価回路と2次の等価回路のコンデンサ成分は考慮しなくてよい。
Further, the DCIR calculation unit 103 has a known filter such as an equivalent circuit model of the battery shown in FIG. 2 and a Kalman filter. The input processing voltage value V t1 and the processing current are input using the equivalent circuit model and the filter. The parameter of the equivalent circuit model is sequentially estimated from the value i L1 . Battery equivalent circuit model of FIG. 2, the ohmic resistance R 0 and the reaction resistance which is the sum of the charge transfer resistance R 1 of the positive and negative electrodes, the resistance component R 2 and a capacitor component C of the primary of an equivalent circuit showing a diffusion resistance polarization It consists of two parameters. Means a fast response components and the charge transfer resistance R 1 of the ohmic resistor R0 and the positive and negative electrodes, first order equivalent circuit means slow response component. Since the fast response component is cut by the LPF 101, the capacitor components of the primary equivalent circuit and the secondary equivalent circuit need not be considered.
次に、図2で示されるバッテリの等価回路モデルと、DCIR算出部103が算出したDCIRとの対応関係について説明する。図3は、充電時と放電時のそれぞれの抵抗成分を模式的に表す図である。
Next, the correspondence relationship between the equivalent circuit model of the battery shown in FIG. 2 and the DCIR calculated by the DCIR calculation unit 103 will be described. FIG. 3 is a diagram schematically illustrating respective resistance components during charging and discharging.
図3に示すように、充電時のオーミック抵抗R0_chgが充電時の交流内部抵抗(ACIR)、放電時のオーミック抵抗R0_disが放電時の交流内部抵抗(ACIR)に対応する。また、充電時のオーミック抵抗R0_chgと正負極の電荷移動抵抗R1_chgとの和による反応抵抗が充電時の直流内部抵抗(DCIR)、放電時のオーミック抵抗R0_disと正負極の電荷移動抵抗R1_disとの和による反応抵抗が放電時の直流内部抵抗(DCIR)に対応する。充電時の拡散抵抗分極を示すR2_chg、放電時の拡散抵抗分極を示すR2_disは遅い成分の抵抗成分であるため、短時間の反応によるDCIRに含まれない。このように、充放電の電圧と電流とをLPF101で前処理することによって、等価回路モデルの速い応答の抵抗成分を、オーミック抵抗と正負極の電荷移動抵抗を組み込んだDCIRとして容易に算出できる。
As shown in FIG. 3, the ohmic resistance R 0 — chg during charging corresponds to the AC internal resistance (ACIR) during charging, and the ohmic resistance R 0 — dis during discharging corresponds to the AC internal resistance (ACIR) during discharging. Further, the reaction resistance by the sum of the ohmic resistance R 0 — chg at the time of charging and the charge transfer resistance R 1 — chg of the positive and negative electrodes is the DC internal resistance (DCIR) at the time of charging, the ohmic resistance R 0 — dis at the time of discharging, The reaction resistance based on the sum of the movement resistance R 1 — dis corresponds to the direct current internal resistance (DCIR) during discharge. Since R2_chg indicating diffusion resistance polarization during charging and R2_dis indicating diffusion resistance polarization during discharging are resistance components of a slow component, they are not included in DCIR due to a short-time reaction. In this way, by pre-processing the charge / discharge voltage and current with the LPF 101, the fast-response resistance component of the equivalent circuit model can be easily calculated as DCIR incorporating the ohmic resistance and the positive and negative charge transfer resistances.
種別判定部104は、DCIR算出部103が算出した充電時のDCIRと放電時のDCIRとから電池の種別を判定する。充電時のDCIRと放電時のDCIRとが電池によって異なる。その上、特に鉛蓄電池は充電受入れ性が悪いため、充電状態(SOC)が高い状態では充電時のDCIRが放電時のDCIRに比べて高くなる。これは、速い応答成分の反応抵抗を示すR1_chgが影響している。一方、ISS用の鉛蓄電池では、充電受入れ性が一般的な鉛蓄電池より改良されているため、充電時のDCIRが一般的な鉛蓄電池の充電時のDCIRよりも低い。この結果、速い応答成分の反応抵抗を示すR1_chgも一般の鉛蓄電池に比べて小さくなっている。
The type determining unit 104 determines the type of the battery from the DCIR at the time of charging and the DCIR at the time of discharging calculated by the DCIR calculating unit 103. The DCIR during charging and the DCIR during discharging differ depending on the battery. In addition, lead-acid batteries, in particular, have poor charge acceptance, so that the DCIR during charging is higher than the DCIR during discharging when the state of charge (SOC) is high. This is influenced by R 1 — chg indicating the reaction resistance of the fast response component. On the other hand, in the lead storage battery for ISS, the charge acceptance is improved as compared with a general lead storage battery, so that the DCIR at the time of charging is lower than the DCIR at the time of charging a general lead storage battery. As a result, R 1 — chg indicating the reaction resistance of the fast response component is also smaller than that of a general lead-acid battery.
上記の関係を用いて、種別判定部104は、充電時のDCIRと放電時のDCIRとの差分を算出し、この差分が所定の閾値以下か否かを判定する。オーミック抵抗は充電時と放電時とで変化が小さいため(R0_chg≒R0_dis)、充電時のDCIRと放電時のDCIRとの差分をとることによってオーミック抵抗の影響を消去して、充電時の反応抵抗と放電時の反応抵抗との差分(R1_chg-R1_dis)として特定することができる。そこで、種別判定部104は、充電時の反応抵抗と放電時の反応抵抗との差分(R1_chg-R1_dis)が所定の閾値より大きい場合、充電時の反応抵抗R1_chgが大きく、したがってISS用の鉛蓄電池ではなく一般の鉛蓄電池であると判定する。一方、種別判定部104は、充電時の反応抵抗と放電時の反応抵抗との差分(R1_chg-R1_dis)が所定の閾値以下の場合、充電時の反応抵抗R1_chgが小さく、したがってISS用の鉛蓄電池であると判定する。
Using the above relationship, the type determination unit 104 calculates the difference between the DCIR at the time of charging and the DCIR at the time of discharging, and determines whether this difference is equal to or less than a predetermined threshold value. Since the ohmic resistance changes little between charging and discharging (R 0 — chg≈R 0 — dis), the effect of the ohmic resistance is eliminated by taking the difference between the DCIR during charging and the DCIR during discharging. It can be specified as the difference (R 1 — chg−R 1 — dis) between the reaction resistance at the time and the reaction resistance at the time of discharge. Therefore, if the difference between the reaction resistance during charging and the reaction resistance during discharging (R 1 — chg−R 1 — dis) is greater than a predetermined threshold, the type determination unit 104 has a large reaction resistance R 1 — chg during charging, Therefore, it determines with it being not a lead storage battery for ISS but a general lead storage battery. On the other hand, when the difference between the reaction resistance during charging and the reaction resistance during discharging (R 1 — chg−R 1 — dis) is equal to or less than a predetermined threshold, the type determination unit 104 has a small reaction resistance R 1 — chg during charging, Therefore, it determines with it being a lead storage battery for ISS.
(変形例)
以上の電池モデルに基づいて、各種バッテリについて充電時の反応抵抗と放電時の反応抵抗の差分を計測した。図4は、バッテリの種別毎の充電時と放電時の直流内部抵抗の差分を示す図である。 (Modification)
Based on the above battery model, the difference of the reaction resistance at the time of charge and the reaction resistance at the time of discharge was measured about various batteries. FIG. 4 is a diagram illustrating a difference in DC internal resistance during charging and discharging for each type of battery.
以上の電池モデルに基づいて、各種バッテリについて充電時の反応抵抗と放電時の反応抵抗の差分を計測した。図4は、バッテリの種別毎の充電時と放電時の直流内部抵抗の差分を示す図である。 (Modification)
Based on the above battery model, the difference of the reaction resistance at the time of charge and the reaction resistance at the time of discharge was measured about various batteries. FIG. 4 is a diagram illustrating a difference in DC internal resistance during charging and discharging for each type of battery.
ここで、図4の横軸に示すA~Eはバッテリの種別である。バッテリAはISS用の鉛蓄電池であり、寿命は少なくとも実力3年以上のものである。また、バッテリB~EはISS用でない鉛蓄電池であり、バッテリBからEに向かうほど電池の寿命が低いものになる。バッテリBやCは比較的高グレード品であり、寿命は数年程度(例えばバッテリBが2年程度、バッテリCの寿命が1.5年程度)である。一方、バッテリBやCは比較的低グレード品であり、寿命は1年未満(例えばバッテリD、バッテリEの寿命が0.5年程度)である。
Here, A to E shown on the horizontal axis in FIG. 4 are battery types. The battery A is a lead storage battery for ISS and has a lifetime of at least 3 years. In addition, the batteries B to E are lead storage batteries that are not for ISS use, and the life of the batteries decreases from the batteries B to E. The batteries B and C are relatively high grade products, and have a life of about several years (for example, the battery B has a life of about 2 years and the battery C has a life of about 1.5 years). On the other hand, the batteries B and C are relatively low-grade products and have a lifetime of less than one year (for example, the lifetimes of the battery D and the battery E are about 0.5 years).
また、図4の縦軸はバッテリAにおける充電時の反応抵抗と放電時の反応抵抗の差分を基準値に正規化した値である。図4に示すように各縦軸の値は、バッテリA=1、バッテリB=1.2、バッテリC=1.1、バッテリD=1.8、バッテリE=1.9である。ここで、図4に示される実測値によると、一般の鉛蓄電池であっても高グレード品はISS品に正規化の値が近くなっている。バッテリDとバッテリEとはバッテリAに対して比較的大きな差があるので、第1の閾値Th1=1.5程度の粗い値を設定すればISS品か否かを区別できる。一方、バッテリBとバッテリCとはバッテリAに対して比較的小さな差しかないので、第1の閾値Th1では区別できず、第2の閾値Th=1.05のような精密な値を設定する必要がある。
The vertical axis in FIG. 4 is a value obtained by normalizing the difference between the reaction resistance during charging and the reaction resistance during discharging in the battery A to a reference value. As shown in FIG. 4, the values on each vertical axis are battery A = 1, battery B = 1.2, battery C = 1.1, battery D = 1.8, and battery E = 1.9. Here, according to the actual measurement value shown in FIG. 4, even if it is a general lead acid battery, a high grade product has a normalization value close to that of an ISS product. Since the battery D and the battery E have a relatively large difference with respect to the battery A, whether or not the battery is an ISS product can be distinguished by setting a rough value of about the first threshold Th1 = 1.5. On the other hand, since the battery B and the battery C are relatively small with respect to the battery A, the first threshold Th1 cannot be distinguished, and it is necessary to set a precise value such as the second threshold Th = 1.05. There is.
そこで、種別判定部104は、充電時の反応抵抗と放電時の反応抵抗との差分が所定の第1の閾値Th1より大きい場合、ISS用の鉛蓄電池ではなく一般の鉛蓄電池であると判定する。例えばさらに低グレード品と判定してもよい。一方、種別判定部104は、充電時の反応抵抗と放電時の反応抵抗との差分が所定の第1の閾値Th1以下の場合、ISS用の鉛蓄電池の可能性があると判定する。例えばさらにISS用の鉛蓄電池と一般の鉛蓄電池のうち高グレード品のいずれかを含むと判定してもよい。第1の閾値Th1を設定することによって、ISS品との間のマージンが比較的大きく製造ばらつきや計測等の誤差の影響が少ない明らかな低グレード品を判定して省き、ISS用の車両にとってより望ましくないものの搭載を優先的、確実に防止することができる。一方、第1の閾値によってISS用の鉛蓄電池の可能性があると判定された場合、第1の閾値Th1よりも小さい第2の閾値Th2によってISS品と一般の鉛蓄電池のうち高グレード品とを区別して高精度にISS品か否かを判定することができる。
Therefore, if the difference between the reaction resistance at the time of charging and the reaction resistance at the time of discharging is larger than a predetermined first threshold value Th1, the type determining unit 104 determines that it is not a lead storage battery for ISS but a general lead storage battery. . For example, it may be determined that the product is a lower grade product. On the other hand, if the difference between the reaction resistance at the time of charging and the reaction resistance at the time of discharging is equal to or less than a predetermined first threshold value Th1, the type determining unit 104 determines that there is a possibility of a lead storage battery for ISS. For example, it may be determined that any one of the high-grade products among the lead storage battery for ISS and the general lead storage battery is included. By setting the first threshold Th1, it is possible to determine and omit an obvious low-grade product that has a relatively large margin with respect to the ISS product and is less affected by manufacturing variations and errors such as measurement. It is possible to prevent undesired loading preferentially and reliably. On the other hand, when it is determined by the first threshold value that there is a possibility of a lead storage battery for ISS, the second threshold value Th2 that is smaller than the first threshold value Th1 is a high-grade product among ISS products and general lead storage batteries. It is possible to determine whether the product is an ISS product with high accuracy.
以上説明されたように、この実施形態によれば、種別判定部104が充電時のDCIRと放電時のDCIRとの差分を用いて電池がISS用か否かの種別判定を行っている。したがって、この種別判定では、図2で示されたように、高次の等価回路モデルを用いることなく処理負荷や処理時間を抑制したまま精度良く電池の種別を判定することができる。
As described above, according to this embodiment, the type determination unit 104 determines the type of whether or not the battery is for ISS using the difference between the DCIR during charging and the DCIR during discharging. Therefore, in this type determination, as shown in FIG. 2, it is possible to accurately determine the type of the battery while suppressing the processing load and the processing time without using a higher-order equivalent circuit model.
本発明に係るバッテリの種別判定装置及びバッテリの種別判定方法は、特にアイドリングストップシステム(ISS)に用いられる鉛蓄電池が適切なISS用電池であるか否かを判定するものとして有用である。
The battery type determination apparatus and the battery type determination method according to the present invention are particularly useful for determining whether or not a lead storage battery used in an idling stop system (ISS) is an appropriate ISS battery.
100 センサ部
101 ローパスフィルタ(LPF)
102 充放電切替判定部
103 DCIR算出部
104 種別判定部 100Sensor part 101 Low pass filter (LPF)
102 charge / discharge switchingdetermination unit 103 DCIR calculation unit 104 type determination unit
101 ローパスフィルタ(LPF)
102 充放電切替判定部
103 DCIR算出部
104 種別判定部 100
102 charge / discharge switching
Claims (8)
- バッテリの端子電圧と充放電電流を検出するセンサ部と、
前記センサ部が検出した前記端子電圧と前記充放電電流に基づいて、前記バッテリの充電時の直流内部抵抗と放電時の直流内部抵抗とを算出する直流内部抵抗算出部と、
前記直流内部抵抗算出部が算出した前記充電時の直流内部抵抗と前記放電時の直流内部抵抗とに基づいて、前記バッテリの種別を判定する種別判定部と、を備えた、
バッテリの種別判定装置。 A sensor unit for detecting battery terminal voltage and charge / discharge current;
Based on the terminal voltage detected by the sensor unit and the charge / discharge current, a DC internal resistance calculation unit that calculates a DC internal resistance during charging and a DC internal resistance during discharging of the battery;
A type determining unit that determines the type of the battery based on the DC internal resistance at the time of charging and the DC internal resistance at the time of discharging calculated by the DC internal resistance calculating unit;
Battery type determination device. - 前記種別判定部は、前記充電時の直流内部抵抗と前記放電時の直流内部抵抗との差分に基づいて、前記バッテリの種別を判定する、
請求項1に記載のバッテリの種別判定装置。 The type determination unit determines the type of the battery based on the difference between the DC internal resistance at the time of charging and the DC internal resistance at the time of discharging.
The battery type determination device according to claim 1. - 前記種別判定部は、前記差分に基づいて、前記バッテリがアイドリングストップシステム用の鉛蓄電池の可能性があるか否かを判定する、
請求項2に記載のバッテリの種別判定装置。 The type determination unit determines whether the battery is a lead storage battery for an idling stop system based on the difference,
The battery type determination apparatus according to claim 2. - 前記種別判定部は、前記差分が第1の閾値より大きい場合に前記バッテリがアイドリングストップシステム用の鉛蓄電池ではないと判定し、前記差分が前記第1の閾値以下の場合に前記バッテリがアイドリングストップシステム用の鉛蓄電池の可能性があると判定する、
請求項3に記載のバッテリの種別判定装置。 The type determination unit determines that the battery is not a lead-acid battery for an idling stop system when the difference is greater than a first threshold, and the battery stops idling when the difference is equal to or less than the first threshold. Judge that there is a possibility of lead storage battery for the system,
The battery type determination device according to claim 3. - 前記種別判定部は、前記差分が前記第1の閾値より小さい第2の閾値以下の場合、前記バッテリがアイドリングストップシステム用の鉛蓄電池と判定し、前記差分が前記第2の閾値より大きい場合、前記バッテリがアイドリングストップシステム用の鉛蓄電池ではないと判定する、
請求項4に記載のバッテリの種別判定装置。 The type determination unit determines that the battery is a lead-acid battery for an idling stop system when the difference is equal to or smaller than a second threshold smaller than the first threshold, and when the difference is larger than the second threshold, Determining that the battery is not a lead acid battery for an idling stop system;
The battery type determination device according to claim 4. - 前記センサ部が検出した前記端子電圧と前記充放電電流に基づいて、前記バッテリの充電と放電の切替を判定する充放電切替判定部をさらに備えた、
請求項1~5のいずれか一項に記載のバッテリの種別判定装置。 Based on the terminal voltage detected by the sensor unit and the charge / discharge current, the battery pack further includes a charge / discharge switching determination unit that determines switching between charge and discharge of the battery.
The battery type determination device according to any one of claims 1 to 5. - 前記センサ部が検出した電圧値と電流値をローパスフィルタで処理するフィルタ部をさらに備え、
前記直流内部抵抗算出部は、前記充放電切替判定部の判定結果と、前記フィルタ部が処理した電圧値と電流値とを用いて、前記充放電切替判定部が充電時と判定したときの直流内部抵抗と、前記充放電切替判定部が放電時と判定したときの直流内部抵抗との差分を算出し、
前記種別判定部は、前記直流内部抵抗算出部の算出結果が所定の閾値以下の場合に前記バッテリがアイドリングストップシステム用の鉛蓄電池と判定する、
請求項6に記載のバッテリの種別判定装置。 A filter unit for processing a voltage value and a current value detected by the sensor unit with a low-pass filter;
The DC internal resistance calculation unit uses the determination result of the charge / discharge switching determination unit, the voltage value and the current value processed by the filter unit, and the direct current when the charge / discharge switching determination unit determines that charging is in progress. Calculate the difference between the internal resistance and the DC internal resistance when the charge / discharge switching determination unit determines that it is discharging,
The type determination unit determines that the battery is a lead storage battery for an idling stop system when a calculation result of the DC internal resistance calculation unit is a predetermined threshold value or less.
The battery type determination apparatus according to claim 6. - バッテリの端子電圧と充放電電流を検出するステップと、
検出された前記端子電圧と前記充放電電流に基づいて、前記バッテリの充電時の直流内部抵抗と放電時の直流内部抵抗とを算出するステップと、
算出された前記充電時の直流内部抵抗と前記放電時の直流内部抵抗に基づいて前記バッテリの種別を判定するステップと、を備えた、
バッテリの種別判定方法。 Detecting battery terminal voltage and charge / discharge current;
Based on the detected terminal voltage and the charging / discharging current, calculating a DC internal resistance during charging and a DC internal resistance during discharging of the battery;
Determining the type of the battery based on the calculated DC internal resistance at the time of charging and the DC internal resistance at the time of discharging,
Battery type determination method.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014040467 | 2014-03-03 | ||
JP2014-040467 | 2014-03-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015133068A1 true WO2015133068A1 (en) | 2015-09-11 |
Family
ID=54054889
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2015/000652 WO2015133068A1 (en) | 2014-03-03 | 2015-02-13 | Device for determining battery type and method for determining battery type |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015133068A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106291380A (en) * | 2016-08-16 | 2017-01-04 | 苏州协鑫集成科技工业应用研究院有限公司 | The appraisal procedure of cell degradation and device |
CN107732337A (en) * | 2017-10-18 | 2018-02-23 | 中航锂电(洛阳)有限公司 | A kind of retired battery module method for separating |
CN108535641A (en) * | 2018-06-12 | 2018-09-14 | 广东电网有限责任公司 | SF6 density relay calibration equipment |
WO2019172024A1 (en) * | 2018-03-06 | 2019-09-12 | トヨタ自動車株式会社 | Battery type identifying device, and method for identifying battery type |
JP2020101470A (en) * | 2018-12-24 | 2020-07-02 | 株式会社デンソー | Battery device |
CN113125980A (en) * | 2021-03-05 | 2021-07-16 | 深圳逸驰云动科技有限公司 | Method and device for detecting direct current internal resistance of battery and terminal equipment |
US11994563B2 (en) | 2020-10-22 | 2024-05-28 | Honda Motor Co., Ltd. | Battery type determination device and battery type determination method |
US12061238B2 (en) | 2021-10-19 | 2024-08-13 | Honda Motor Co., Ltd. | Battery type determining device and battery type determining method |
EP4451420A1 (en) | 2023-04-18 | 2024-10-23 | Yokogawa Electric Corporation | Battery identification device, battery identification method, and storage medium |
EP4451419A1 (en) | 2023-04-18 | 2024-10-23 | Yokogawa Electric Corporation | Battery identification device, battery identification method, and storage medium |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0984205A (en) * | 1995-09-19 | 1997-03-28 | Nissan Motor Co Ltd | Regenerative charging controller |
JPH11162526A (en) * | 1997-11-29 | 1999-06-18 | Sanyo Electric Co Ltd | Battery condition detecting device |
JP2003045387A (en) * | 2001-08-02 | 2003-02-14 | Matsushita Electric Ind Co Ltd | Battery pack system, and deterioration decision method of the same |
JP2004191113A (en) * | 2002-12-10 | 2004-07-08 | Nissan Motor Co Ltd | Charging rate estimation device of secondary battery |
JP2004270496A (en) * | 2003-03-06 | 2004-09-30 | Matsushita Electric Ind Co Ltd | Method for determining storage battery state |
JP2009208639A (en) * | 2008-03-04 | 2009-09-17 | Toyota Motor Corp | Battery short circuit detector, battery identification device, and idling stop control device using battery identification device |
JP2011078147A (en) * | 2009-09-29 | 2011-04-14 | Denso Corp | Onboard power supply device |
-
2015
- 2015-02-13 WO PCT/JP2015/000652 patent/WO2015133068A1/en active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0984205A (en) * | 1995-09-19 | 1997-03-28 | Nissan Motor Co Ltd | Regenerative charging controller |
JPH11162526A (en) * | 1997-11-29 | 1999-06-18 | Sanyo Electric Co Ltd | Battery condition detecting device |
JP2003045387A (en) * | 2001-08-02 | 2003-02-14 | Matsushita Electric Ind Co Ltd | Battery pack system, and deterioration decision method of the same |
JP2004191113A (en) * | 2002-12-10 | 2004-07-08 | Nissan Motor Co Ltd | Charging rate estimation device of secondary battery |
JP2004270496A (en) * | 2003-03-06 | 2004-09-30 | Matsushita Electric Ind Co Ltd | Method for determining storage battery state |
JP2009208639A (en) * | 2008-03-04 | 2009-09-17 | Toyota Motor Corp | Battery short circuit detector, battery identification device, and idling stop control device using battery identification device |
JP2011078147A (en) * | 2009-09-29 | 2011-04-14 | Denso Corp | Onboard power supply device |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN106291380A (en) * | 2016-08-16 | 2017-01-04 | 苏州协鑫集成科技工业应用研究院有限公司 | The appraisal procedure of cell degradation and device |
CN107732337A (en) * | 2017-10-18 | 2018-02-23 | 中航锂电(洛阳)有限公司 | A kind of retired battery module method for separating |
CN107732337B (en) * | 2017-10-18 | 2020-12-29 | 中航锂电(洛阳)有限公司 | Sorting method for retired battery modules |
WO2019172024A1 (en) * | 2018-03-06 | 2019-09-12 | トヨタ自動車株式会社 | Battery type identifying device, and method for identifying battery type |
JPWO2019172024A1 (en) * | 2018-03-06 | 2020-07-02 | トヨタ自動車株式会社 | Battery type determination device and battery type determination method |
CN108535641A (en) * | 2018-06-12 | 2018-09-14 | 广东电网有限责任公司 | SF6 density relay calibration equipment |
CN108535641B (en) * | 2018-06-12 | 2024-03-08 | 广东电网有限责任公司 | SF6 density relay calibration device |
JP2020101470A (en) * | 2018-12-24 | 2020-07-02 | 株式会社デンソー | Battery device |
JP7115294B2 (en) | 2018-12-24 | 2022-08-09 | 株式会社デンソー | battery device |
US11994563B2 (en) | 2020-10-22 | 2024-05-28 | Honda Motor Co., Ltd. | Battery type determination device and battery type determination method |
CN113125980A (en) * | 2021-03-05 | 2021-07-16 | 深圳逸驰云动科技有限公司 | Method and device for detecting direct current internal resistance of battery and terminal equipment |
CN113125980B (en) * | 2021-03-05 | 2022-04-08 | 深圳逸驰云动科技有限公司 | Method and device for detecting direct current internal resistance of battery and terminal equipment |
US12061238B2 (en) | 2021-10-19 | 2024-08-13 | Honda Motor Co., Ltd. | Battery type determining device and battery type determining method |
EP4451420A1 (en) | 2023-04-18 | 2024-10-23 | Yokogawa Electric Corporation | Battery identification device, battery identification method, and storage medium |
EP4451419A1 (en) | 2023-04-18 | 2024-10-23 | Yokogawa Electric Corporation | Battery identification device, battery identification method, and storage medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015133068A1 (en) | Device for determining battery type and method for determining battery type | |
EP2700966B1 (en) | Apparatus and method for estimating battery state | |
JP5282789B2 (en) | Battery capacity detection device for lithium ion secondary battery | |
JP6295858B2 (en) | Battery management device | |
US10466303B2 (en) | State-of-charge estimation device and state-of-charge estimation method | |
US9523740B2 (en) | Method for determining remaining lifetime | |
JP5159498B2 (en) | Charge / discharge control method for battery in power supply device of hybrid car | |
WO2014167920A1 (en) | Battery state determination device | |
JP5641215B2 (en) | Secondary battery control device | |
US20170274784A1 (en) | Secondary Battery Charger System and Method of Charging the Same | |
JP2008039515A (en) | Apparatus for detecting remaining capacity of battery | |
US9400313B2 (en) | Method and device for determining the actual capacity of a battery | |
US20150137763A1 (en) | Electrical storage system and equalizing method | |
JP6603888B2 (en) | Battery type determination device and battery type determination method | |
US20150276842A1 (en) | Diagnostic method for contactor resistance failure | |
CN111527644B (en) | Rechargeable battery abnormality detection device and rechargeable battery abnormality detection method | |
JP2018050373A (en) | Battery system | |
JP6377959B2 (en) | Secondary battery control device | |
JP5886225B2 (en) | Battery control device and battery control method | |
KR20100020113A (en) | Method of balancing cell in battery pack of hev | |
JP2015195096A (en) | Authenticity determination apparatus and authenticity determination method | |
KR20160043369A (en) | System and method for judging battery's replacement time | |
JP2009232659A (en) | Charge-discharge control method and charge-discharge control device of battery | |
CN113533985A (en) | Identification method of battery pack internal resistance abnormal module and storage medium thereof | |
JP4652627B2 (en) | Vehicle equipped with storage battery, vehicle having idling stop function, state determination device for storage battery mounted on vehicle having idling stop function, and method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15758531 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15758531 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |