WO2015132983A1 - 画像表示装置 - Google Patents

画像表示装置 Download PDF

Info

Publication number
WO2015132983A1
WO2015132983A1 PCT/JP2014/071614 JP2014071614W WO2015132983A1 WO 2015132983 A1 WO2015132983 A1 WO 2015132983A1 JP 2014071614 W JP2014071614 W JP 2014071614W WO 2015132983 A1 WO2015132983 A1 WO 2015132983A1
Authority
WO
WIPO (PCT)
Prior art keywords
wave
light
liquid crystal
display device
light source
Prior art date
Application number
PCT/JP2014/071614
Other languages
English (en)
French (fr)
Inventor
健太 福岡
朋幸 石原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to US15/123,264 priority Critical patent/US9997122B2/en
Publication of WO2015132983A1 publication Critical patent/WO2015132983A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/36Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using liquid crystals
    • G09G3/3611Control of matrices with row and column drivers
    • G09G3/3648Control of matrices with row and column drivers using an active matrix
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/02Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
    • G02B26/04Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light by periodically varying the intensity of light, e.g. using choppers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3406Control of illumination source
    • G09G3/342Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines
    • G09G3/3426Control of illumination source using several illumination sources separately controlled corresponding to different display panel areas, e.g. along one dimension such as lines the different display panel areas being distributed in two dimensions, e.g. matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/34Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
    • G09G3/3433Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
    • G09G3/346Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on modulation of the reflection angle, e.g. micromirrors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133618Illuminating devices for ambient light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133626Illuminating devices providing two modes of illumination, e.g. day-night
    • G02F1/133627Projection-direct viewing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/28Reflectors in projection beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface
    • G03B21/62Translucent screens
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/02Composition of display devices
    • G09G2300/023Display panel composed of stacked panels
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/0426Layout of electrodes and connections
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0439Pixel structures
    • G09G2300/0465Improved aperture ratio, e.g. by size reduction of the pixel circuit, e.g. for improving the pixel density or the maximum displayable luminance or brightness
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0264Details of driving circuits
    • G09G2310/0278Details of driving circuits arranged to drive both scan and data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/06Adjustment of display parameters
    • G09G2320/0626Adjustment of display parameters for control of overall brightness
    • G09G2320/0646Modulation of illumination source brightness and image signal correlated to each other

Definitions

  • the present invention relates to an image display device, and more particularly, to an image display device having a see-through display function with a transparent background.
  • FIG. 12 is a diagram showing a configuration of a liquid crystal display device 800 having a see-through display function disclosed in Patent Document 1.
  • the liquid crystal display device 800 includes a liquid crystal panel 810, a shutter film 820 provided on the back surface of the liquid crystal panel 810, and a control unit 830 that controls driving of the liquid crystal panel 810 and the shutter film 820. I have.
  • the shutter film 820 directly transmits the incident light applied to the liquid crystal panel 810, indirectly transmits the incident light applied to the liquid crystal panel 810, and allows the rear of the shutter film 820 to be seen through, The state where the rear of the shutter film 820 is blocked indistinguishably is switched. Thereby, in the liquid crystal display device 800, the image displayed on the liquid crystal panel 810 becomes easy to see, or the back can be seen through the liquid crystal panel 810.
  • the liquid crystal panel 810 is not a self-luminous panel, it is necessary to arrange a backlight light source on the back surface of the liquid crystal panel 810, turn on the backlight light source, and irradiate the liquid crystal panel 810 with the backlight light from the back side.
  • the liquid crystal display device 800 described in Patent Document 1 the liquid crystal panel 810 is irradiated with backlight light from the back side, and the display object (column) 850 displayed behind the liquid crystal panel 810 is also irradiated with light.
  • a case 840 for storing them is provided, and a light source (not shown) is arranged inside the case 840.
  • the interior of the case 840 is filled with strong light, so that not only the liquid crystal panel 810 but also the exhibit 850 is irradiated with light.
  • the transparent background in the liquid crystal display device 800 is limited to the inside of the case 840, and the background of the case 840 cannot be seen through.
  • an object of the present invention is to provide an image display device having a see-through display function in which the background can be seen through.
  • a first aspect of the present invention is an image display device having a see-through display function, A polarization control pixel array that generates and emits a polarized wave including at least one of an S wave, a P wave, an S wave component, and a P wave component by controlling a polarization direction of light based on image information given from outside; A light-emitting light source for display that irradiates light source light to the polarization control pixel array; The P wave or P wave component derived from the ambient light generated by controlling the polarization direction of ambient light incident from the back side of the image display device is transmitted, and the display is turned on when the display light source is turned on.
  • the S wave or S wave component derived from the ambient light and the S wave or S wave component derived from the light source light are reflected by reflecting the S wave or S wave component derived from the light source light emitted from the light emitting light source.
  • Light control means for emitting at least one of the image display device toward the front side of the image display device or blocking the ambient light so as not to transmit part or all of the ambient light, The light control means is attached so that an incident angle of the light source light is substantially equal to a Brewster angle.
  • the polarization control pixel array is irradiated with a P wave or P wave component derived from the ambient light transmitted through the light control unit and an S wave included in the light source light reflected by the light control unit from the back side.
  • the light control means transmits the P wave or P wave component derived from the ambient light, and reflects the S wave included in the light source light when the display light source is turned on.
  • the polarization control pixel array is irradiated from the back side with at least one of the P wave or P wave component derived from S and the S wave included in the light source light, or a part or all of the ambient light is not transmitted.
  • the polarization control pixel array reflects a first selected polarized wave selected from a first polarized wave generated based on a P wave or a P wave component derived from the ambient light transmitted through the light control means, and reflected by the light control means. Transmitting at least one of the second selected polarized wave having the same polarization direction as the first selected polarized wave selected from the second polarized wave generated based on the S wave included in the light source light.
  • the polarization control pixel array includes a first liquid crystal panel and a first polarizing plate attached to the front surface of the first liquid crystal panel,
  • the first liquid crystal panel includes a plurality of pixel forming portions, and based on the image information, the P wave or P wave component derived from the ambient light and the polarization of the S wave included in the light source light for each pixel forming portion.
  • Each of the directions is rotationally controlled to generate the first polarized wave and the second polarized wave
  • the first polarizing plate is selected from the first polarized wave selected from the first polarized wave generated by the first liquid crystal panel and the second selected wave from the second polarized wave for each pixel forming unit. At least one of the polarized waves is transmitted to the front side of the image display device.
  • the polarization control pixel array is disposed adjacent to the display light source, and controls the third polarization wave generated by controlling the polarization direction of the light source light emitted from the display light source. Injecting towards the means, The light control means transmits a P wave or P wave component derived from the ambient light, and an S wave selected from the third polarized wave derived from the light source light when the display light source is turned on. Alternatively, by reflecting the S wave component, at least one of the P wave or P wave component derived from the ambient light and the S wave or S wave component derived from the light source light reaches the front side of the image display device. Or is blocked so as not to transmit part or all of the ambient light.
  • the polarization control pixel array includes a second liquid crystal panel and a second polarizing plate attached to a surface of the second liquid crystal panel on the display light source side,
  • the second polarizing plate transmits either the P wave or the S wave included in the light source light emitted from the display light source toward the second liquid crystal panel
  • the second liquid crystal panel includes a plurality of pixel forming units, and generates the third polarized wave by rotationally controlling the polarization direction of the one of the polarized waves for each of the pixel forming units based on the image information.
  • the light is emitted toward the light control means.
  • a sixth aspect of the present invention is the fourth aspect of the present invention,
  • a lens group including a plurality of lenses is provided on the opposite side of the light emitting light source for display across the polarization control pixel array.
  • the light control means includes a third liquid crystal panel and two third polarizing plates that are respectively attached to both surfaces of the third liquid crystal panel and transmit P-waves.
  • the third liquid crystal panel displays the image display
  • the polarization direction of the ambient light incident from the back side of the apparatus is rotationally controlled to generate a fourth polarized wave, and a P wave or a P wave component included in the fourth polarized wave is selected and transmitted, or It is characterized by blocking part or all of ambient light so as not to be transmitted.
  • the light control means includes a transparent plate and a plurality of openable / closable elements formed on the surface of the transparent plate.
  • the P-wave included in the environmental light is transmitted by blocking the mechanical shutter by opening and closing the mechanical shutter, or part or all of the environmental light is not transmitted.
  • It further comprises a light emission light source driving circuit for controlling power supplied to the display light emission source.
  • the image display device can display in a light-off state in which neither the light source light nor the environmental light is transmitted, so that black can be expressed. For this reason, the freedom degree of a display can be improved significantly. Furthermore, only the image is displayed by the lighting state that transmits only the light source light, only the background is displayed by the transparent state that turns off the display light source and transmits only the ambient light, or the intermediate state between them is displayed. can do. Moreover, an image and a background can be displayed according to each of the above-described states only by attaching the light control means so that the incident angle of the light source light becomes the Brewster angle.
  • the polarization control pixel array and the display so that the S wave included in the light source light and the P wave or P wave component derived from the ambient light are irradiated to the polarization control pixel array.
  • a light control means is disposed between the light emitting light source.
  • the polarization control pixel array includes a first liquid crystal panel and a first polarizing plate attached to a front surface of the first liquid crystal panel. Accordingly, the first liquid crystal panel can easily rotate and control the polarization directions of the light source light and the ambient light based on the image information, and the first polarizing wave can be changed from the first polarized wave by the first polarizing plate. The second selected polarized wave can be easily selected from the two polarized waves.
  • the same effect as that of the first invention can be obtained also in the image display device functioning as a transparent see-through display in which the ambient light is transmitted only through the light control means.
  • the polarization control pixel array includes a second liquid crystal panel and a second polarizing plate attached to the surface of the second liquid crystal panel on the display light source side.
  • a lens group is provided on the side opposite to the display light-emitting light source with the polarization control pixel array interposed therebetween. Since the lens group can project and display an image on the light control means, the image display device is used as a projector.
  • the light control means selects and transmits the P wave or the P wave component included in the fourth polarized wave generated by rotationally controlling the polarization direction of the ambient light, or the ambient light. Therefore, the image display device can display three states, ie, a lighting state, a transparent state, and a light-off state, and an intermediate state between them.
  • the P wave included in the environmental light is transmitted by opening and closing the mechanical shutter or is blocked so as not to transmit a part or all of the environmental light.
  • the three states of the lighting state, the transparent state, and the light-off state, and the intermediate state between them can be displayed.
  • the luminance of the image is increased by increasing the intensity of the light source light, the overlapping background is less likely to be visually recognized. Therefore, the luminance of the image is increased by supplying power to the display light source to increase the amount of light from the light source. This makes it difficult for the viewer to visually recognize the background that is displayed so as to overlap the image, and substantially only the image is visually recognized, making it easier to see the image.
  • FIG. 1 is a block diagram illustrating a circuit configuration of a liquid crystal display device according to a first embodiment of the present invention. It is a figure which shows the structure of the liquid crystal display device which concerns on the 1st Embodiment of this invention. In the liquid crystal display device shown in FIG. 3, it is a figure which shows the structure of the liquid crystal display device using the container filled with the liquid instead of the transparent plate. It is a figure which shows the structure of the liquid crystal display device which concerns on the 2nd Embodiment of this invention.
  • the reflection of light (Fresnel reflection) that occurs at the boundary surface between two substances having different refractive indexes will be described separately for the case of the S wave and the case of the P wave.
  • the incident surface is a plane perpendicular to the boundary surface and includes the incident light and the reflected light
  • the P wave is linearly polarized light whose electric field oscillates in a direction parallel to the incident surface
  • the S wave Is linearly polarized light whose electric field vibrates in a direction perpendicular to the incident surface. That is, the P wave and the S wave are linearly polarized light whose electric field vibration directions are orthogonal to each other.
  • the reflectance of the S wave is about 3% when the incident angle is 0 °, and is constant at about 3% up to around 20 °, but starts to increase from around 20 °.
  • the incidence angle suddenly increases from around 60 °, and the reflectance becomes 100% when the incidence angle is 90 °.
  • the reflectance of the P wave is about 3% when the incident angle is from 0 ° to around 20 °, as in the case of the S wave.
  • the reflectivity gradually decreases in contrast to the case of the S wave, and becomes approximately 0% near 60 °.
  • the reflectance increases rapidly as in the case of the S wave, and when the incident angle is 90 °, the reflectance becomes 100%. Note that the reflectance of the S wave is always greater than the reflectance of the P wave over the entire range of incident angles from 0 ° to 90 °.
  • the P wave has a reflectance of approximately 0% when the incident angle is around 60 °. That is, when the incident angle is around 60 °, the P wave is transmitted through the transparent plate without being reflected, and the transmittance is approximately 100%.
  • Such an incident angle is called a Brewster angle, and when the incident angle of the P wave becomes the Brewster angle, the P wave is transmitted through the transparent plate without being reflected. If this phenomenon is utilized, a transparent plate can be used as a polarizing plate for separating the S wave and the P wave and irradiating only the S wave to the liquid crystal panel.
  • FIG. 2 is a block diagram showing a circuit configuration of the liquid crystal display device 100 (also referred to as “image display device”) according to the first embodiment of the present invention.
  • the liquid crystal display device 100 includes a display control circuit 110, a backlight driving circuit 120 (also referred to as “light emitting light source driving circuit”), a driving unit 130, a liquid crystal panel 150 (also referred to as “first liquid crystal panel”) as a display unit, And a backlight source 160 (also referred to as “display light source”).
  • the driving unit 130 includes a source driver 131 as a data signal line driving circuit and a gate driver 132 as a scanning signal line driving circuit.
  • image data DAT also referred to as “image information”
  • the source driver 131 and the gate driver 132 are based on the image data DAT inside the display control circuit 110.
  • a control signal for controlling is generated. These control signals may be supplied from the outside together with the image data DAT.
  • the liquid crystal panel 150 includes a plurality of data signal lines SL, a plurality of scanning signal lines GL, and a plurality of intersections of the plurality of data signal lines SL and the plurality of scanning signal lines GL.
  • Pixel forming portions 10 are respectively arranged. In FIG. 2, for convenience, one data signal line SL and one scanning signal line GL and one pixel forming portion 10 arranged at the intersection of them are shown.
  • Each pixel forming unit 10 includes a thin film transistor (TFT) 11 operating as a switching element having a gate terminal connected to a corresponding scanning signal line GL and a source terminal connected to a corresponding data signal line SL,
  • TFT thin film transistor
  • a liquid crystal layer (not shown) provided in common to the pixel forming portions 10.
  • the liquid crystal capacitance formed by the pixel electrode 12 and the common electrode 13 constitutes a pixel capacitance Cp.
  • an auxiliary capacitor is provided in parallel with the liquid crystal capacitor in order to reliably hold the voltage in the pixel capacitor Cp. For this reason, the pixel capacitor Cp is actually composed of a liquid crystal capacitor and an auxiliary capacitor.
  • the TFT 11 for example, a TFT having a channel layer made of an oxide semiconductor is used. More specifically, the channel layer of the TFT 11 is formed of an oxide semiconductor containing InGaZnO (indium gallium zinc oxide) made of indium (In), gallium (Ga), zinc (Zn), and oxygen (O). .
  • InGaZnO indium gallium zinc oxide
  • the off-leakage current is greatly reduced as compared with the silicon TFT 11 having a channel layer made of amorphous silicon or the like, and the voltage written in the pixel capacitor Cp of each pixel forming portion 10 is more increased. Hold for a long time.
  • the TFT 11 can be reduced in size, the aperture ratio of the pixel forming portion 10 is increased, and the transparency of the liquid crystal panel 150 can be increased.
  • an oxide semiconductor is used as a channel layer of the TFT 11, and a silicon-based semiconductor such as polycrystalline silicon or amorphous silicon may be used.
  • a backlight light source 160 is disposed on the back side of the liquid crystal panel 150.
  • the backlight light source 160 is a light source in which a plurality of LEDs (Light Emitting Diodes) are arranged in a matrix or a plurality of CCFLs (Cold Cathode Fluorescent Lamps) are arranged in parallel.
  • Back light also referred to as “light source light” is applied to the liquid crystal panel 150 from the back side.
  • the backlight light source 160 is turned on / off by the backlight drive circuit 120, and the backlight drive circuit 120 turns on or turns off all LEDs or CCFLs constituting the backlight light source 160 simultaneously.
  • the backlight driving circuit 120 uses only some LEDs or CCFLs of the backlight light source 160 based on the input image data DAT. It can also be lit. Further, as the backlight light source 160, a light guide plate in which light sources are linearly attached to end portions may be used. Thereby, the light from the light source attached to the end is irradiated to the liquid crystal panel 150 as light spread in a planar shape by the light guide plate.
  • the display control circuit 110 When the display control circuit 110 receives image data DAT representing an image to be displayed on the liquid crystal panel 150 from the outside, the display control circuit 110 controls the source driver 131 based on the image data DAT, and a gate driver control signal Ssc.
  • a gate driver control signal Sgc for controlling 132, a backlight control signal Sbk for controlling the backlight drive circuit 120, and digital image data DV are generated.
  • the source driver control signal Ssc and the digital image data DV are supplied to the source driver 131, the gate driver control signal Sgc is supplied to the gate driver 132, and the backlight control signal Sbk is supplied to the backlight drive circuit 120.
  • the source driver 131, the gate driver 132, and the backlight drive circuit 120 are driven in synchronization.
  • the source driver 131 generates and outputs a data signal to be given to each data signal line SL based on the digital image data DV representing the image to be displayed and the source driver control signal Ssc.
  • the source driver control signal Ssc includes, for example, a source start pulse signal, a source clock signal, a latch strobe signal, and a polarity switching control signal.
  • the source driver 131 operates a shift register, a sampling latch circuit, and the like not shown therein, and does not show a digital image signal obtained based on the digital image data DV.
  • the data signal is generated by converting it into an analog signal by a DA conversion circuit.
  • the gate driver 132 sequentially applies an active scanning signal to each scanning signal line GL in a predetermined cycle based on the gate driver control signal Sgc.
  • the gate driver control signal Sgc includes, for example, a gate clock signal and a gate start pulse signal.
  • the gate driver 132 generates the scan signal by operating an internal shift register (not shown) or the like in accordance with the gate clock signal and the gate start pulse signal. Note that FIG. 2 also shows a transparent plate 170 described later.
  • FIG. 3 is a diagram illustrating a configuration of the liquid crystal display device 100 according to the present embodiment.
  • the liquid crystal display device 100 includes a backlight light source 160, a transparent plate 170 (also referred to as “light control means”), a liquid crystal panel 150, and an absorption-type polarizing plate 151 (“first polarizing plate”). Also called).
  • the absorption polarizing plate 151 is a polarizing plate that absorbs S waves and transmits P waves, and is attached to the front surface (viewer side) of the liquid crystal panel 150.
  • the absorption polarizing plate 151 may be a polarizing plate that absorbs P waves and transmits S waves.
  • the transparent plate 170 is attached so that the incident angle of the backlight light emitted from the backlight light source 160 becomes the Brewster angle ⁇ b.
  • n refractive index
  • FIG. 1 about 17% of the S wave included in the incident light is reflected by the surface of the transparent plate 170, and about 83% of the S wave and the P wave enter the transparent plate 170.
  • the light incident on the transparent plate 170 is emitted from the transparent plate 170, about 17% of the S wave is further reflected.
  • the transparent plate 170 is a substrate made of a transparent material such as glass, PMMA (polymethyl methacrylate resin), PC (polycarbonate), PS (polystyrene).
  • the transparent plate 170 As described above, the backlight light that is reflected by the transparent plate 170 and contains a lot of S waves and the ambient light that passes through the transparent plate 170 and contains a lot of P waves enter the liquid crystal panel 150 from the back side at the same time.
  • a data signal generated by the source driver 131 based on the image data DAT is applied to each pixel forming unit 10 of the liquid crystal panel 150. If the S wave of the backlight light is incident on these pixel forming units 10, the polarization direction of the S wave is rotated for each pixel forming unit 10 according to the data signal. As a result, each pixel forming unit 10 of the liquid crystal panel 150 emits the S wave as it is, emits the P wave converted from the S wave, or converts the S wave into light including the S wave component and the P wave component. And then inject.
  • the absorptive polarizing plate 151 attached to the surface of the liquid crystal panel 150 is a polarizing plate that transmits the P wave or P wave component and absorbs the S wave or S wave component.
  • the P-wave or P-wave component derived from the light reaches the front side of the liquid crystal display device 100.
  • the P light is also included in the backlight light reflected by the transparent plate 170.
  • the polarization direction of the S wave included in the backlight light is rotated according to the data signal applied to the liquid crystal panel 150 and converted from the S wave and S wave emitted from the liquid crystal panel 150.
  • the P wave and the light including the S wave component and the P wave component converted from the S wave may be collectively referred to as “second polarized wave”.
  • the P wave or the P wave component transmitted through the absorption polarizing plate 151 may be referred to as a “second selective polarized wave”.
  • the S wave or the S wave component is referred to as a “second selective polarized wave”.
  • the polarization direction of the P wave included in the ambient light is rotated according to the data signal applied to each pixel forming unit 10 of the liquid crystal panel 150. If the P wave of the ambient light is incident on these pixel forming units 10, the polarization direction of the P wave is rotated according to the data signal for each pixel forming unit 10. As a result, the liquid crystal panel 150 emits the P wave as it is, emits the S wave converted from the P wave, or converts the P wave into light including the P wave component and the S wave component and emits it. .
  • the S wave or S wave component emitted from the liquid crystal panel 150 is absorbed by the absorption polarizing plate 151, and the P wave or P wave component passes through the absorption polarizing plate 151 and reaches the front side of the liquid crystal display device 100.
  • the ambient light transmitted through the transparent plate 170 includes S waves.
  • the P wave or P wave component passes through the absorption polarizing plate 151 and reaches the front side of the liquid crystal display device 100.
  • the polarization direction of the P wave included in the ambient light is rotated in accordance with the data signal applied to the liquid crystal panel 150, and the P wave emitted from the liquid crystal panel 150 and the S wave converted from the P wave are converted.
  • Waves and light including P wave components and S wave components converted from P waves may be collectively referred to as “first polarized waves”.
  • first polarized waves the P wave or the P wave component transmitted through the absorption polarizing plate 151 may be referred to as a “first selected polarized wave”.
  • first selected polarized wave the S wave or the S wave component is referred to as a “second selective polarized wave”.
  • the liquid crystal display device 100 an image corresponding to the image data DAT is displayed by the P wave or P wave component derived from the backlight light transmitted through the pixel forming unit 10, and the environment in which the same pixel forming unit 10 is transmitted is displayed.
  • the liquid crystal panel 150 becomes transparent due to the P wave or P wave component derived from light, and the background of the liquid crystal display device 100 can be seen through.
  • the backlight light and the ambient light are transmitted through the same pixel forming unit 10, so that the image is displayed so as to overlap the background.
  • the ratio of the S wave incident on the liquid crystal panel 150 is as low as about 34% of the S wave included in the backlight light. Therefore, in order to increase the amount of backlight light, the backlight drive circuit 120 is controlled to increase the power supplied to the backlight light source 160. Thereby, the brightness of the image displayed on the liquid crystal panel 150 can be increased. As a result, the viewer can substantially visually recognize only the image, and the background displayed superimposed on the image becomes difficult to visually recognize.
  • the backlight driving circuit 120 when the backlight driving circuit 120 is controlled to turn off the backlight light source 160, the P wave of the ambient light transmitted through the transparent plate 170 is irradiated to the liquid crystal panel 150 from the back side.
  • the polarization direction of the P wave is rotated according to the voltage value of the applied data signal, and light including P wave, S wave, or P wave component and S wave component is emitted. It is injected.
  • the S wave or S wave component derived from the ambient light emitted from the liquid crystal panel 150 is absorbed by the absorption type polarizing plate 151, and only the P wave or P wave component is transmitted through the absorption type polarizing plate 151 and the front surface of the liquid crystal display device 100. Reach the side.
  • the ambient light transmitted through the transparent plate 170 includes S waves that are not reflected by the transparent plate 170.
  • the P wave or the P wave component passes through the absorption polarizing plate 151 and reaches the front side of the liquid crystal display device 100.
  • the backlight light source 160 is thus turned off, the P wave or P wave component derived from the ambient light is transmitted to the front side of the liquid crystal display device 100.
  • the liquid crystal display device 100 functions as a see-through display, and each pixel forming unit 10 becomes transparent and displays only the background. For this reason, the viewer can visually recognize the background of the liquid crystal display device 100.
  • the backlight light source 160 is turned on, the P wave derived from the ambient light incident on the liquid crystal panel 150 and the S wave derived from the backlight light are transmitted without rotating the polarization direction. Then, the S wave derived from the backlight light is absorbed by the absorption polarizing plate 151, and the P wave derived from the ambient light is transmitted to the front side of the liquid crystal display device 100. In this way, when the P wave included in the reflected light of the backlight light can be ignored, the light transmitted through the liquid crystal panel 150 is only the P wave derived from the environmental light, and each pixel forming unit 10 is substantially It becomes transparent and displays only the background.
  • a polarizing plate that absorbs S waves and transmits P waves is used as the absorbing polarizing plate 151, it transmits through the transparent plate 170 even when the liquid crystal display device 100 including the backlight source 160 is turned off.
  • the P wave included in the ambient light passes through the liquid crystal panel and the absorption polarizing plate 151 without rotating the polarization direction, and reaches the front side of the liquid crystal display device 100. Therefore, even when the power of the liquid crystal display device 100 is turned off, the viewer can visually recognize the background of the liquid crystal display device 100 through the liquid crystal panel 150.
  • the liquid crystal display device 100 turns on the backlight light source 160 to display an image based on the image data DAT over the background, or turns off the backlight light source 160 to make the liquid crystal panel 150 transparent. Only the background can be displayed. As described above, the liquid crystal display device 100 can display either a state in which an image and a background are superimposed (lighted state) or a state in which only the background is displayed (transparent state).
  • the image when the image is displayed, if the brightness of the image is increased by increasing the intensity of the backlight light, the overlapping background becomes difficult to see, so that the viewer can easily see the image.
  • the liquid crystal display device 100 can be used as a highly transparent see-through display only by attaching the transparent plate 170 between the liquid crystal panel 150 and the backlight light source 160 so that the incident angle of the backlight light becomes the Brewster angle ⁇ b. Function. For this reason, the liquid crystal display device 100 having a function as a see-through display with high transparency can be manufactured at a low cost.
  • a reflective polarizing plate that reflects the S wave and transmits the P wave may be pasted.
  • the liquid crystal display device 100 can display two states, a lighting state and a transparent state.
  • the reflective polarizing plate reflects not only S waves emitted from the liquid crystal panel 150 but also S waves incident from the front side of the liquid crystal display device 100. For this reason, when a reflective polarizing plate is attached to the front side of the liquid crystal panel 150, the viewer visually recognizes an image corresponding to the image data DAT in a half mirror in which the scenery on the front side is reflected. Become.
  • a polarizing plate that reflects the P wave and transmits the S wave may be attached to the surface of the liquid crystal panel 150.
  • the absorption-type polarizing plate and the reflective-type polarizing plate may be collectively referred to as “polarizing plate”.
  • FIG. 4 is a diagram showing a configuration of a liquid crystal display device 100A (also referred to as “image display device”) using a container 175 filled with a liquid instead of the transparent plate 170.
  • the backlight source 160 is attached to the ceiling of the room, and the container 175 filled with the liquid is installed obliquely below the backlight source 160 so that the incident angle of the backlight becomes the Brewster angle ⁇ b. To do.
  • the liquid crystal display device 100A can display an image based on the image data DAT.
  • the circuit configuration of the liquid crystal display device 200 (also referred to as “image display device”) according to the second embodiment of the present invention is the same as the circuit configuration of the liquid crystal display device 100 shown in FIG. Is omitted.
  • FIG. 5 is a diagram showing a configuration of the liquid crystal display device 200 according to the present embodiment.
  • the arrangement of the backlight light source 160 and the transparent plate 170 is the same as that of the liquid crystal display device 100 shown in FIG.
  • the liquid crystal panel 250 also referred to as “second liquid crystal panel” is disposed not on the front surface of the liquid crystal display device 200 but adjacent to the backlight light source 160, and on the surface facing the backlight light source 160.
  • An absorption polarizing plate 251 (also referred to as “second polarizing plate”) is attached.
  • the absorption polarizing plate 251 of the present embodiment is also a polarizing plate that absorbs S waves and transmits P waves, but may be a polarizing plate that absorbs P waves and transmits S waves.
  • the S wave and the P wave emitted from the backlight light source 160 enter the absorption polarizing plate 251. Since the absorption type polarizing plate 251 absorbs the S wave and transmits the P wave, only the P wave is incident on the liquid crystal panel 250. Since a data signal corresponding to the image data DAT is applied to each pixel forming unit 10 of the liquid crystal panel 250, the polarization direction of the P wave incident on the liquid crystal panel 250 is rotated according to the data signal. As a result, the liquid crystal panel 250 emits the P wave as it is, emits the S wave converted from the P wave, or converts the P wave into light including the S wave component and the P wave component and emits it. .
  • the transparent plate 170 is attached so that the incident angle of the backlight emitted from the liquid crystal panel 250 becomes the Brewster angle ⁇ b. Therefore, part of the S wave or S wave component included in the backlight emitted from the liquid crystal panel 250 is reflected by the surface of the transparent plate 170 and reaches the front side of the liquid crystal display device 200.
  • the P wave or P wave component of the backlight light and the S wave or S wave component that has not been reflected pass through the transparent plate 170 and exit to the back side of the liquid crystal display device 200. Thereby, the viewer on the front side of the liquid crystal display device 200 can visually recognize an image corresponding to the image data DAT.
  • the polarization direction of the S wave included in the backlight light is rotated according to the data signal applied to the liquid crystal panel 250 and converted from the S wave and S wave emitted from the liquid crystal panel 250.
  • the P wave and the light including the S wave component and the P wave component converted from the S wave may be collectively referred to as “third polarized wave”.
  • the liquid crystal display device 200 can display two states, a lighting state and a transparent state, as in the case of the liquid crystal display device 100.
  • each pixel forming unit 10 is substantially transparent and displays only the background even when the backlight light source 160 is lit.
  • the liquid crystal display device 200 including the backlight light source 160 is turned off even when the power is turned off. As in the case of the display device 100, the viewer can visually recognize the background of the liquid crystal display device 200 through the transparent plate 170.
  • the liquid crystal display device 200 not only controls all the pixel formation units 10 of the liquid crystal panel 250 so as to be in any one of the lighting state and the transparent state, but also has different states for each pixel formation unit 10. It can also be controlled to become.
  • a color filter is pasted on the liquid crystal panel to display a color image.
  • This color filter has a high light absorptivity, and since the TFT, data signal line, scanning signal line, etc. are formed on the liquid crystal panel, it is difficult to increase the aperture ratio. For this reason, in the liquid crystal display device 100 according to the first embodiment, the incident light passes through the liquid crystal panel 150 on which the color film is pasted and the wiring is formed. For this reason, if the liquid crystal display device 100 is driven by a color filter method, the transmittance of incident light is lowered. On the other hand, in the liquid crystal display device 200, since ambient light is incident from the back side and passes through only the transparent plate 170 before reaching the front side, the transmittance of the ambient light is very high.
  • the liquid crystal display device 200 is used as a see-through display having very high transparency, and the viewer can easily see the background of the liquid crystal display device 200. If the liquid crystal display device 100 is also driven by the field sequential method, the viewer can directly view the liquid crystal panel 150 on which the image is displayed, so that the image can be easily viewed.
  • the absorption polarizing plate 251 is attached to the surface of the liquid crystal panel 250 facing the backlight light source 160.
  • a reflective polarizing plate that reflects S waves and transmits P waves may be attached instead of the absorption-type polarizing plate 251.
  • only the P wave passes through the reflective polarizing plate and enters the liquid crystal panel 250.
  • the subsequent operation of the liquid crystal display device 200 is the same as that of the case where the absorptive polarizing plate 251 is attached, and the description thereof is omitted.
  • a polarizing plate that reflects the P wave and transmits the S wave may be attached to the liquid crystal panel 250.
  • local dimming can also be performed by turning on some of the plurality of LEDs and the like that constitute the backlight light source 160.
  • the liquid crystal display device 200 can also display two states, a lighting state and a transparent state.
  • the liquid crystal display device 200 since the ambient light passes only through the transparent plate 170 and reaches the front side of the liquid crystal display device 200, the transmittance of the ambient light is increased. Thereby, the liquid crystal display device 200 is used as a see-through display having very high transparency, and the viewer can easily see the background or visually recognize the background for each pixel forming unit 10.
  • the liquid crystal display device 200 In order to realize high transparency as a see-through display, it is usually necessary to drive in a field sequential manner using a liquid crystal panel to which no color filter is attached. However, in the liquid crystal display device 200, only the transparent plate 170 has an influence on the transparency determined by the transmittance of ambient light, and no color filter is attached to the transparent plate 170, and wiring is also formed. Absent. Therefore, the liquid crystal display device 200 does not need to be driven by the field sequential method in order to obtain high transparency, and can be driven by the color filter method. Therefore, even if a normal liquid crystal panel is used as the liquid crystal panel 250, the liquid crystal display device 200 functions as a see-through display having very high transparency.
  • FIG. 6 is a diagram showing a configuration of a liquid crystal display device 200A (also referred to as “image display device”) according to a first modification of the present embodiment, and is used as a projector.
  • a backlight light source 160 is provided on one surface side of the liquid crystal panel 250, and a lens group 255 in which a plurality of lenses are combined is provided on the other surface side.
  • the liquid crystal display device 200 ⁇ / b> A projects an image on the transparent plate 170 by the lens group 255. By viewing the transparent plate 170, the viewer can visually recognize the projected image or visually recognize the background.
  • the lens group 255 is represented by a single convex lens for convenience.
  • the liquid crystal display device 200 ⁇ / b> A can perform local dimming as in the case of the liquid crystal display device 200.
  • FIG. 7 is a diagram illustrating a configuration of a liquid crystal display device 200B (also referred to as “image display device”) according to a second modification of the present embodiment.
  • the backlight light source 160 is attached to the ceiling in the room, and the liquid crystal panel 250 is attached to the backlight light source 160.
  • An absorption polarizing plate 251 is attached to the surface of the liquid crystal panel 250 facing the backlight light source 160.
  • a table having a glass top plate 190 also referred to as “glass plate” is placed on the floor surface obliquely below the backlight light source 160.
  • the position where the table top 190 is placed is a position where the incident angle of the backlight emitted from the backlight light source 160 becomes equal to the Brewster angle ⁇ b.
  • the table top 190 reflects the S wave included in the backlight as a transparent plate, so that the viewer in the traveling direction of the reflected S wave visually recognizes the image corresponding to the image data DAT. Can do.
  • a reflective polarizing plate may be attached to the surface of the liquid crystal panel 250 instead of the absorption polarizing plate 251.
  • the liquid crystal display device 200B can also perform local dimming as in the case of the liquid crystal display device 200.
  • FIG. 8 is a block diagram showing a circuit configuration of a liquid crystal display device 300 (also referred to as “image display device”) according to the third embodiment of the present invention.
  • a liquid crystal display device 300 also referred to as “image display device”
  • FIG. 8 shows a circuit configuration of a liquid crystal display device 300 (also referred to as “image display device”) according to the third embodiment of the present invention.
  • a shutter panel 180 also referred to as “shutter array” or “light control means”
  • a shutter panel drive circuit 140 are used instead of the transparent plate 170 of the liquid crystal display device 100 shown in FIG. (Also referred to as “light control means driving circuit”).
  • the shutter panel 180 simply reflects the S wave included in the backlight emitted from the backlight light source 160 to the front side of the liquid crystal display device 300. Without transmitting or blocking the P wave included in the ambient light.
  • the shutter panel drive circuit 140 is a circuit for driving the shutter panel 180, generates an opening / closing signal Ssv based on the shutter control signal Spc given from the outside together with the image data DAT, and gives it to the shutter panel 180.
  • the shutter panel 180 functions as a shutter that opens and closes each pixel forming portion (not shown) provided corresponding to each pixel forming portion 10 of the liquid crystal panel 150. A detailed description of opening and closing of the pixel formation portion of the shutter panel 180 will be described later.
  • FIG. 9 is a diagram illustrating a configuration of the liquid crystal display device 300 according to the present embodiment.
  • a shutter panel 180 is provided in place of the transparent plate 170 used in the liquid crystal display device 100 shown in FIG.
  • the same components are denoted by the same reference numerals, description thereof is omitted, and different components will be mainly described.
  • the shutter panel 180 includes a liquid crystal panel 181 (also referred to as “third liquid crystal panel”), and absorption-type polarizing plates 182 and 183 (also referred to as “third polarizing plate”) are attached to both surfaces of the liquid crystal panel 181, respectively.
  • Each of the absorption-type polarizing plates 182 and 183 is a polarizing plate that transmits a P wave and absorbs an S wave. Further, since the liquid crystal panel 181 only rotates the polarization direction of the incident ambient light, no color film is attached. For this reason, the transmittance of the shutter panel 180 is high, and the shutter panel 180 can transmit more ambient light.
  • the background is displayed with high brightness, so that the viewer can easily see the background of the liquid crystal display device 300.
  • the liquid crystal display device 300 does not need to perform high-speed driving such as field sequential driving. Therefore, a panel having an operation speed comparable to that of a normal liquid crystal panel is used as the liquid crystal panel 181 constituting the shutter panel 180. be able to.
  • the S wave incident on the liquid crystal panel 150 is converted into an S wave, a P wave, or light including an S wave component and a P wave component based on a data signal applied to each pixel forming unit 10 and then emitted.
  • the S wave or S wave component is absorbed by the absorption polarizing plate 151, and only the P wave or P wave component reaches the front side of the liquid crystal display device 300. Therefore, the viewer on the front side can visually recognize the image displayed on the liquid crystal panel 150.
  • the shutter function of the shutter panel 180 will be described. If the ambient light is incident on the shutter panel 180 from the back side of the liquid crystal display device 300, the S wave included in the ambient light is absorbed by the absorptive polarizing plate 182, so that only the P wave is transmitted through the absorptive polarizing plate 182. Incident on the liquid crystal panel 181. As a result, the intensity of the ambient light transmitted through the absorption type polarizing plate 182 is 50% of the incident light.
  • the open / close signal Ssv supplied from the shutter panel drive circuit 140 is applied to the pixel forming portions formed at the respective positions of the liquid crystal panel 181 corresponding to the pixel forming portions 10 of the liquid crystal panel 150.
  • the pixel forming portion of the liquid crystal panel 181 rotates the polarization direction of the incident P wave according to the opening / closing signal Ssv. Thereby, the liquid crystal panel 181 emits the P wave as it is, emits the S wave converted from the P wave, or converts the P wave into light including the P wave component and the S wave component and emits it. .
  • the S wave and the S wave component emitted from the liquid crystal panel 181 are absorbed by the absorption polarizing plate 183, and the P wave or P wave component passes through the absorption polarizing plate 183 as a P wave and is applied to the liquid crystal panel 150.
  • the shutter panel 180 transmits the ambient light as a P wave controlled to an arbitrary value in the range of 0 to 50% of the incident intensity by rotating the polarization direction of the polarized wave included in the ambient light. It functions as a shutter.
  • the polarization direction of the P wave included in the ambient light is rotated according to the open / close signal Ssv applied to the liquid crystal panel 181 and converted from the P wave and the P wave emitted from the liquid crystal panel 181.
  • the S wave and the light including the P wave component converted from the P wave and the S wave component may be collectively referred to as a “fourth polarized wave”.
  • the P wave of the ambient light emitted from the shutter panel 180 enters the liquid crystal panel 150.
  • the pixel forming unit 10 of the liquid crystal panel 150 transmits the polarization direction of the P wave derived from the ambient light without rotating, the P wave is further transmitted through the absorption polarizing plate 151 and the liquid crystal display device 300. Reach the front side. For this reason, the pixel forming unit 10 becomes transparent, and the viewer can visually recognize the background of the liquid crystal display device 300.
  • the pixel forming unit 10 of the liquid crystal panel 150 converts the P wave derived from the ambient light into an S wave and emits it, the emitted S wave is absorbed by the absorption polarizing plate 151, and thus the ambient light. Cannot reach the front side of the liquid crystal display device 300. For this reason, the pixel forming unit 10 is not transparent, and the viewer cannot see the background of the liquid crystal display device 300 at all.
  • the pixel forming unit 10 of the liquid crystal panel 150 converts the P wave derived from the ambient light into light including the P wave component and the S wave component and emits it, the S wave component is applied to the absorption polarizing plate 151. Only the P wave component is absorbed and passes through the absorption polarizing plate 151 and reaches the front side of the liquid crystal display device 300. For this reason, the pixel forming unit 10 becomes transparent, and the viewer can visually recognize the background of the liquid crystal display device 300. However, since a part of the P wave derived from the ambient light incident on the liquid crystal panel 150 is converted into the S wave component, the amount of the P wave reaching the front side of the liquid crystal display device 300 is reduced. For this reason, the brightness
  • the shutter panel 180 when the shutter panel 180 is completely opened or closed and the backlight light source 160 is turned on / off, the image displayed on the liquid crystal panel 150 and the transparent background are displayed.
  • completely open the shutter panel 180 means that the pixel forming portion of the liquid crystal panel 181 emits the light without changing the polarization direction of the incident P wave, and the shutter panel 180 is completely closed. This means that neither the P wave nor the S wave is emitted when the pixel forming portion of the liquid crystal panel 181 rotates the polarization direction of the P wave to convert it into the S wave.
  • the backlight light source 160 is turned on and the shutter panel 180 is completely closed.
  • the liquid crystal display device 300 can completely block ambient light. For this reason, for example, when displaying an image of a person, the pixel forming unit 10 that displays black hair can be displayed as black, and the degree of freedom of expression can be greatly improved. This state is called “lighting state”.
  • the backlight light source 160 is turned off and the shutter panel 180 is completely opened.
  • the liquid crystal panel 150 functions as a transparent see-through display. Therefore, only the background of the liquid crystal display device 300 is displayed on the liquid crystal panel 150, and no image corresponding to the image data DAT is displayed. This state is called “transparent state”.
  • the liquid crystal panel 150 of the liquid crystal display device 300 is a display capable of displaying three states of a lighted state, a transparent state, and a light-off state, and these states can be freely controlled for each pixel forming unit 10. .
  • the backlight light source 160 is turned on and the shutter panel 180 is fully opened, the background is displayed on the liquid crystal panel 150 together with the image. Therefore, the viewer on the front side of the liquid crystal display device 300 can visually recognize the image and the background.
  • This state corresponds to a state in which two states of a lighting state and a transparent state are displayed simultaneously.
  • the shutter panel 180 may be partially opened. Specifically, it is realized by rotating the polarization direction of the P wave incident on the shutter panel 180 in the liquid crystal panel 181 and converting the P wave into light including a P wave component and an S wave component.
  • the transmittance of the shutter panel 180 is determined by the ratio of the converted P wave component and S wave component, and the transmittance increases as the ratio of the P wave component increases.
  • the liquid crystal display device 300 functions as a see-through display with transparency according to the transmittance of the shutter panel 180, and the image is displayed so as to overlap the background. This state corresponds to an intermediate state between the three states of the lit state, the transparent state, and the unlit state.
  • the absorption-type polarizing plate 151 is a polarizing plate that absorbs the S wave and transmits the P wave
  • the liquid crystal display device 300 including the backlight source 160 is turned off even when the power is turned off.
  • the viewer can visually recognize the background of the liquid crystal display device 300 through the liquid crystal panel 150.
  • the liquid crystal display device 300 not only controls all the pixel forming units 10 of the liquid crystal panel 150 to be in any one of a lighting state, a transparent state, a light-off state, and an intermediate state thereof, You may control so that it may become a different state for every pixel formation part 10, respectively.
  • the same effect as that described in the first embodiment can be obtained. Furthermore, according to the present embodiment, it is possible to display three states of a lighting state, a transparent state, and a light-off state, and an intermediate state between them. That is, unlike the case of the first and second embodiments, the liquid crystal display device 300 can display not only in the lit state and the transparent state but also in the unlit state. As a result, black can be expressed, and the degree of freedom of display can be greatly improved.
  • a reflective polarizing plate that transmits the P wave and reflects the S wave may be attached.
  • the reflective polarizing plate reflects the S wave included in the ambient light
  • the back side of the liquid crystal display device 300 is a mirror surface that reflects the background.
  • a reflective polarizing plate that transmits the P wave and reflects the S wave may be attached to the liquid crystal panel 181.
  • a shutter panel in which a mechanical shutter is formed may be provided instead of the shutter panel 180 in which the absorption polarizing plates 182 and 183 are pasted on both surfaces of the liquid crystal panel 181.
  • a shutter panel in which a mechanical shutter is formed may be provided in the shutter panel.
  • an absorption-type polarizing plate that transmits P waves and absorbs S waves is attached to the front surface of the transparent plate 170.
  • a plurality of mechanical shutters whose open / close states can be controlled are provided on the back surface of the transparent plate 170 so as to correspond to the pixel forming unit 10 of the liquid crystal panel 150.
  • Such mechanical shutters include, for example, MEMS (Micro Electro Mechanical Systems).
  • the mechanical shutter When the mechanical shutter is open, both the P wave and the S wave pass through the mechanical shutter, and when the mechanical shutter is closed, neither the P wave nor the S wave can pass. Since the S wave that has passed through the shutter panel is absorbed by the absorptive polarizing plate, only the P wave passes through the shutter panel and enters the liquid crystal panel 150. Thus, the shutter panel formed with the mechanical shutter has the same function as that of the shutter panel 180. In order to increase the transmittance of the P wave, it is preferable to provide a mechanical shutter having a large aperture ratio.
  • the transparent plate 170 is attached so that the incident angle of the ambient light becomes the Brewster angle ⁇ b, the ambient light transmitted through the transparent plate 170 is transmitted regardless of whether or not the absorption polarizing plate is attached. Mainly only P waves. For this reason, the absorptive polarizing plate may not be attached to the transparent plate 170.
  • the circuit configuration of the liquid crystal display device 400 (also referred to as “image display device”) according to the fourth embodiment of the present invention is the same as the circuit configuration of the liquid crystal display device 300 shown in FIG. Is omitted.
  • FIG. 10 is a diagram showing a configuration of the liquid crystal display device 400 according to the present embodiment.
  • the liquid crystal display device 400 of the present embodiment is different from the liquid crystal display device 200 shown in FIG. 5 in that a shutter panel 180 is provided instead of the transparent plate 170.
  • the configuration and function of the shutter panel 180 are the same as the configuration and function of the shutter panel 180 described in the third embodiment. Therefore, a detailed description of the configuration and operation of the liquid crystal display device 400 is omitted.
  • the liquid crystal display device 400 can display not only in a lighted state and a transparent state but also in a light-off state. For this reason, as described in the third embodiment, the degree of freedom of display can be greatly improved.
  • the liquid crystal display device 400 functions as a see-through display having very high transparency even when the liquid crystal panel 250 is driven by a color filter method using a normal liquid crystal panel. .
  • a panel having an operation speed comparable to that of a normal liquid crystal panel can be used for the liquid crystal panel 181 constituting the shutter panel 180.
  • FIG. 11 is a diagram illustrating a configuration of a liquid crystal display device 400A (also referred to as “image display device”) that functions as a projector according to a second modification of the present embodiment.
  • a backlight light source 160 is provided on one surface side of the liquid crystal panel 250, and a lens group 255 in which a plurality of lenses are combined is provided on the other surface side.
  • the liquid crystal display device 200 ⁇ / b> A projects an image on the transparent plate 170 by the lens group 255. By viewing the transparent plate 170, the viewer can visually recognize the projected image or visually recognize the background of the liquid crystal display device 400A.
  • the lens group 255 is represented by one convex lens for convenience.
  • the liquid crystal display device 400 ⁇ / b> A can also perform local dimming as in the case of the liquid crystal display device 200.
  • a display that can be used as the polarization control pixel array of the present invention requires a backlight light source and is required to be transparent.
  • the liquid crystal panels 150 and 250 have been described as examples of such displays.
  • the display usable in the present invention is not limited to the liquid crystal panels 150 and 250.
  • the magneto-optical effect in which the polarization of the light transmitted through the material or the light reflected from the surface of the material is affected by the magnetic properties of the material. It may be a display using an electro-optic effect in which optical rotation changes when light interacts with a substance affected by an electric field, or a half-wave plate that rotates linearly polarized light using birefringence. .
  • the present invention can be applied to an image display device capable of transparent display through which the background can be seen from the front side of the display.
  • Liquid crystal display device image display device 110 ... Display control circuit 120 ... Backlight control circuit (light emission source driving circuit) DESCRIPTION OF SYMBOLS 130 ... Drive circuit 140 ... Shutter panel drive circuit 150 ... Liquid crystal panel (1st liquid crystal panel or polarization control pixel array) 151... Absorption type polarizing plate (first polarizing plate) 160 ... Backlight light source (light-emitting light source for display) 170 ... Transparent plate (light control means) 175 ... Container filled with liquid (light control means) 180 ... Shutter panel (light control means) 181 ... Liquid crystal panel (third liquid crystal panel) 182, 183 ... Absorption type polarizing plate (third polarizing plate) 250 ... Liquid crystal panel (second liquid crystal panel or polarization control pixel array) 251 ... Absorption-type polarizing plate (second polarizing plate) 255: Lens group DAT: Image data (image information) ⁇ b ... Brewster angle

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)

Abstract

 背景が透けて見えるシースルーディスプレイの機能を備えた画像表示装置を提供する。 液晶表示装置(100)は、バックライト光源(160)から射出された光源光の入射角がブリュースター角θbになるように透明板(170)が取り付けられているので、光源光に含まれるS波は透明板(170)によって反射され、背面側から入射する環境光に含まれるP波は透明板(170)を透過して液晶パネル(150)に照射される。このため、バックライト光源(160)が点灯されていれば、視聴者は、背景に重ねて表示される画像を視認することができ、バックライト光源(160)が消灯されていれば、背景のみを視認することができる。

Description

画像表示装置
 本発明は、画像表示装置に関し、特に、背景が透けて見えるシースルーディスプレイの機能を備えた画像表示装置に関する。
 近年、外部から入力された画像データに応じた画像を表示するだけではなく、背景が透けて見えるシースルーディスプレイの機能を備えた画像表示装置の開発が進められている。例えば特許文献1には、画像を表示するときに、背景を不透明にして表示画像を見やすくしたシースルーディスプレイの機能を備えた画像表示装置が開示されている。図12は、特許文献1に開示されたシースルーディスプレイの機能を備えた液晶表示装置800の構成を示す図である。図12に示すように、液晶表示装置800は、液晶パネル810と、液晶パネル810の背面に設けられたシャッタフィルム820と、当該液晶パネル810およびシャッタフィルム820の駆動を制御する制御部830とを備えている。シャッタフィルム820は、液晶パネル810に照射される入射光を直接透過させ、かつ、シャッタフィルム820の後方が透かして見える状態と、液晶パネル810に照射される入射光を間接的に透過させ、かつ、シャッタフィルム820の後方が識別不能に遮られた状態とを切り替える。これにより、液晶表示装置800では、液晶パネル810に表示された画像が見やすくなったり、液晶パネル810を通して後方が透けて見えるようになったりする。
日本の特開2010-91609号公報
 液晶パネル810は自発光パネルではないので、液晶パネル810の背面にバックライト光源を配置し、バックライト光源を点灯して背面側からバックライト光を液晶パネル810に照射する必要がある。特許文献1に記載の液晶表示装置800では、液晶パネル810にその背面側からバックライト光を照射するとともに、液晶パネル810の後方に展示されている展示物(円柱)850にも光を照射するために、それらを収納するケース840が設けられ、ケース840の内部に光源(図示しない)が配置されている。これにより、ケース840の内部は強い光で満たされるので、液晶パネル810だけでなく展示物850にも光が照射される。しかし、液晶表示装置800において透けて見える背景はケース840の内部に限られ、ケース840の背景は透けて見えない。
 そこで、本発明は、背景が透けて見えるシースルーディスプレイの機能を備えた画像表示装置を提供することを目的とする。
 本発明の第1の局面は、シースルーディスプレイの機能を備えた画像表示装置であって、
 外部から与えられる画像情報に基づき光の偏光方向を制御することによりS波、P波、S波成分またはP波成分の少なくともいずれかを含む偏光波を生成して射出する偏光制御画素アレイと、
 前記偏光制御画素アレイに光源光を照射する表示用発光光源と、
 前記画像表示装置の背面側から入射した環境光の偏光方向を制御して生成した前記環境光に由来するP波もしくはP波成分を透過させ、前記表示用発光光源が点灯しているとき前記表示用発光光源から射出された前記光源光に由来するS波もしくはS波成分を反射することによって、前記環境光に由来するP波もしくはP波成分および前記光源光に由来するS波もしくはS波成分のうち少なくともいずれかを前記画像表示装置の前面側に向けて射出し、または、前記環境光の一部または全部を透過させないように遮断する光制御手段とを備え、
 前記光制御手段は、前記光源光の入射角がブリュースター角と略等しくなるように取り付けられていることを特徴とする。
 本発明の第2の局面は、本発明の第1の局面において、
 前記偏光制御画素アレイは、前記光制御手段を透過した前記環境光に由来するP波もしくはP波成分と、前記光制御手段によって反射された前記光源光に含まれるS波が背面側から照射されるように配置され、
 前記光制御手段は、前記環境光に由来するP波もしくはP波成分を透過させ、前記表示用発光光源が点灯されているとき前記光源光に含まれるS波を反射することによって、前記環境光に由来するP波もしくはP波成分および前記光源光に含まれるS波のうち少なくともいずれかを前記偏光制御画素アレイに背面側から照射し、または、前記環境光の一部または全部を透過させないように遮断し、
 前記偏光制御画素アレイは、前記光制御手段を透過した前記環境光に由来するP波もしくはP波成分に基づき生成した第1偏光波から選択した第1選択偏光波と、前記光制御手段によって反射された前記光源光に含まれるS波に基づき生成した第2偏光波から選択した、前記第1選択偏光波と同じ偏光方向を有する第2選択偏光波とのうち少なくともいずれかを透過させることを特徴とする。
 本発明の第3の局面は、本発明の第2の局面において、
 前記偏光制御画素アレイは、第1液晶パネルと前記第1液晶パネルの前面側の表面に貼られた第1偏光板とを含み、
 前記第1液晶パネルは、複数の画素形成部を含み、前記画像情報に基づき、前記画素形成部毎に前記環境光に由来するP波もしくはP波成分および前記光源光に含まれるS波の偏光方向をそれぞれ回転制御して前記第1偏光波および前記第2偏光波を生成し、
 前記第1偏光板は、画素形成部毎に、前記第1液晶パネルによって生成された前記第1偏光波から選択した前記第1選択偏光波と、前記第2偏光波から選択した前記第2選択偏光波とのうち少なくともいずれかを前記画像表示装置の前面側に透過させることを特徴とする。
 本発明の第4の局面は、本発明の第1の局面において、
 前記偏光制御画素アレイは、前記表示用発光光源に隣接して配置されており、前記表示用発光光源から射出された前記光源光の偏光方向を制御して生成した第3偏光波を前記光制御手段に向けて射出し、
 前記光制御手段は、前記環境光に由来するP波もしくはP波成分を透過させ、前記表示用発光光源が点灯されているとき、前記光源光に由来する前記第3偏光波から選択したS波もしくはS波成分を反射することによって、前記環境光に由来するP波もしくはP波成分および前記光源光に由来するS波もしくはS波成分のうち少なくともいずれかを前記画像表示装置の前面側に到達させ、または、前記環境光の一部または全部を透過させないように遮断することを特徴とする。
 本発明の第5の局面は、本発明の第4の局面において、
 前記偏光制御画素アレイは、第2液晶パネルと前記第2液晶パネルの前記表示用発光光源側の表面に貼られた第2偏光板とを含み、
 前記第2偏光板は、前記表示用発光光源から射出された前記光源光に含まれるP波もしくはS波のうちいずれか一方の偏光波を前記第2液晶パネルに向けて透過させ、
 前記第2液晶パネルは、複数の画素形成部を含み、前記画像情報に基づき、前記画素形成部毎に前記いずれか一方の偏光波の偏光方向を回転制御して前記第3偏光波を生成し、前記光制御手段に向けて射出することを特徴とする。
 本発明の第6の局面は、本発明の第4の局面において、
 前記偏光制御画素アレイを挟んで前記表示用発光光源と反対側に複数枚のレンズからなるレンズ群が設けられていることを特徴とする。
 本発明の第7の局面は、本発明の第1、第2または第4のいずれかの局面において、
 前記光制御手段は、第3液晶パネルと、前記第3液晶パネルの両面にそれぞれ貼られ、P波を透過する2枚の第3偏光板とを含み、前記第3液晶パネルは、前記画像表示装置の背面側から入射する前記環境光の偏光方向を回転制御して第4偏光波を生成し、前記第4偏光波に含まれるP波もしくはP波成分を選択して透過させ、または、前記環境光の一部または全部を透過させないように遮断することを特徴とする。
 本発明の第8の局面は、本発明の第1、第2または第4のいずれかの局面において、 前記光制御手段は、透明板と、前記透明板の表面に形成された開閉可能な複数のメカニカルシャッタとを含み、前記メカニカルシャッタを開閉することによって前記環境光に含まれるP波を透過させ、または、前記環境光の一部または全部を透過させないように遮断することを特徴とする。
 本発明の第9の局面は、本発明の第1、第2または第4のいずれかの局面において、
 前記表示用発光光源に供給する電力を制御する発光光源駆動回路をさらに備えることを特徴とする。
 本発明の第1の局面によれば、表示用発光光源から射出された光源光が偏光制御画素アレイに照射されるので、画像表示装置を収納するためのケースを設ける必要がない。また、画像表示装置は、光源光および環境光のいずれも透過させない消灯状態による表示が可能であるので、黒色を表現することができる。このため、表示の自由度を大幅に向上させることができる。さらに、光源光のみを透過させる点灯状態により画像のみを表示したり、表示用発光光源を消灯して環境光のみを透過させる透明状態により背景のみを表示したり、それらの中間状態を表示したりすることができる。また、光源光の入射角がブリュースター角になるように光制御手段を取り付けるだけで、上記各状態により画像や背景を表示することができる。
 本発明の第2の局面によれば、光源光に含まれるS波と、環境光に由来するP波またはP波成分とが偏光制御画素アレイに照射されるように、偏光制御画素アレイと表示用発光光源との間に光制御手段を配置する。これにより、第1の発明と同様の効果が得られる。
 本発明の第3の局面によれば、偏光制御画素アレイは、第1液晶パネルとその前面側の表面に貼られた第1偏光板を含む。これにより、第1液晶パネルによって画像情報に基づき光源光および環境光の偏光方向を容易に回転制御することができ、また第1偏光板によって、第1偏光波から第1選択偏光波を、第2偏光波から第2選択偏光波をそれぞれ容易に選択することができる。
 本発明の第4の局面によれば、環境光は光制御手段のみを透過させる透明度のより高いシースルーディスプレイとして機能する画像表示装置においても、第1の発明と同様の効果が得られる。
 本発明の第5の局面によれば、偏光制御画素アレイは、第2液晶パネルと第2液晶パネルの表示用発光光源側の表面に貼られた第2偏光板とを含む。これにより、光源光に含まれるP波およびS波のうちいずれか一方だけが第2偏光板を透過して第2液晶パネルに入射するので、画像情報に基づき第2偏光波の偏光方向を容易に回転制御することができる。
 本発明の第6の局面によれば、偏光制御画素アレイを挟んで表示用発光光源と反対側にレンズ群を設ける。レンズ群により光制御手段に画像を投影して表示することができるので、画像表示装置はプロジェクタとして利用される。
 本発明の第7の局面によれば、光制御手段は環境光の偏光方向を回転制御して生成した第4偏光波に含まれるP波もしくはP波成分を選択して透過させ、または環境光の一部または全部を透過させないように遮断するので、画像表示装置は、点灯状態と、透明状態と、消灯状態の3つの状態、およびそれらの中間の状態を表示することができる。
 本発明の第8の局面によれば、メカニカルシャッタを開閉することによって環境光に含まれるP波を透過させ、または環境光の一部または全部を透過させないように遮断するので、画像表示装置は、点灯状態と、透明状態と、消灯状態の3つの状態、およびそれらの中間の状態を表示することができる。
 本発明の第9の局面によれば、画像を表示する際に、光源光の強度を強くすることにより画像の輝度を高くすれば、重なって表示される背景が視認されにくくなる。そこで、表示用発光光源に電力を供給して光源光の光量を多くすることによって、画像の輝度を高くする。これにより、視聴者は、画像に重なって表示される背景を視認しにくくなり、実質的に画像だけを視認するようになるので、画像が見やすくなる。
空気中から屈折率n=1.49の材質からなる透明板に光が入射したときに生じるフレネル反射におけるP波とS波の入射角と反射率との関係を示す図である。 本発明の第1の実施形態に係る液晶表示装置の回路構成を示すブロック図である。 本発明の第1の実施形態に係る液晶表示装置の構成を示す図である。 図3に示す液晶表示装置において、透明板に代えて液体を満たした容器を使用した液晶表示装置の構成を示す図である。 本発明の第2の実施形態に係る液晶表示装置の構成を示す図である。 本発明の第2の実施形態の第1の変形例に係るプロジェクタとして機能する画像表示装置の構成を示す図である。 本発明の第2の実施形態の第2の変形例に係る液晶表示装置の構成を示す図である。 本発明の第3の実施形態に係る液晶表示装置の回路構成を示すブロック図である。 本発明の第3の実施形態に係る液晶表示装置の構成を示す図である。 本発明の第4の実施形態に係る液晶表示装置の構成を示す図である。 本発明の第4の実施形態の第3の変形例に係るプロジェクタとして機能する画像表示装置の構成を示す図である。 従来のシースルーディスプレイの機能を備えた液晶表示装置の構成を示す図である。
<0.基礎検討>
 屈折率の異なる2つの物質の境界面で生じる光の反射(フレネル反射)について、S波の場合とP波の場合に分けて説明する。なお、入射面を、境界面に垂直な平面であって、かつ入射光と反射光を含む平面としたとき、P波は入射面に平行な方向に電界が振動する直線偏光であり、S波は入射面に直交する方向に電界が振動する直線偏光である。すなわち、P波とS波は、電界の振動方向が互いに直交する直線偏光である。
 図1は、空気中から屈折率n=1.49の材質からなる透明板に光が入射したときに生じるフレネル反射におけるP波とS波の入射角と反射率との関係を示す図である。図1に示すように、S波の反射率は入射角が0°のときに略3%であり、20°付近までは略3%と一定であるが、20°付近から大きくなり始める。特に入射角が60°付近から急激に大きくなり、入射角が90°のときに反射率は100%になる。
 一方、P波の反射率は、入射角が0°から20°付近まではS波の場合と同様に略3%程度である。しかし、入射角が20°よりも大きくなると、反射率はS波の場合とは逆に徐々に減少し、60°付近で略0%になる。さらに、入射角が60°付近から大きくなると、S波の場合と同様に反射率は急激に大きくなり、入射角が90°のときに反射率は100%になる。なお、入射角が0°から90°までの全範囲で、S波の反射率は常にP波の反射率よりも大きくなっている。
 このように、P波は、S波と異なり、入射角が60°付近のときに反射率が略0%になる。すなわち、入射角が60°付近のときに、P波は反射されることなく透明板を透過し、その透過率は略100%になる。このような入射角をブリュースター角といい、P波の入射角がブリュースター角になったときに、P波は反射されることなく透明板を透過するようになる。この現象を利用すれば、S波とP波を分離し、S波のみを液晶パネルに照射するための偏光板として透明板を使用することができる。
<1.第1の実施形態>
<1.1 液晶表示装置の回路構成>
 図2は、本発明の第1の実施形態に係る液晶表示装置100(「画像表示装置」ともいう)の回路構成を示すブロック図である。この液晶表示装置100は、表示制御回路110、バックライト駆動回路120(「発光光源駆動回路」ともいう)、駆動部130、表示部としての液晶パネル150(「第1液晶パネル」ともいう)、およびバックライト光源160(「表示用発光光源」ともいう)を備えている。駆動部130は、データ信号線駆動回路としてのソースドライバ131と走査信号線駆動回路としてのゲートドライバ132とを含んでいる。この液晶表示装置100では、外部から画像データDAT(「画像情報」ともいう)が表示制御回路110に与えられれば、表示制御回路110の内部で当該画像データDATに基づきソースドライバ131やゲートドライバ132を制御するための制御信号が生成される。なお、これらの制御信号は、画像データDATとともに外部から与えられるようにしてもよい。
 液晶パネル150の表面には吸収型偏光板(図示しない)が貼られている。また液晶パネル150には、複数本のデータ信号線SLと、複数本の走査信号線GLと、当該複数本のデータ信号線SLおよび当該複数本の走査信号線GLの各交点には複数個の画素形成部10がそれぞれ配置されている。図2には、便宜上、1本のデータ信号線SLおよび1本の走査信号線GLと、それらの交点に配置された1個の画素形成部10とが示されている。
 各画素形成部10は、対応する走査信号線GLにゲート端子が接続されるとともに対応するデータ信号線SLにソース端子が接続されたスイッチング素子として動作する薄膜トランジスタ(Thin Film Transistor:TFT)11と、当該TFT11のドレイン端子に接続された画素電極12と、上記複数個の画素形成部10に共通的に設けられた共通電極13と、画素電極12と共通電極13との間に挟持され、上記複数個の画素形成部10に共通的に設けられた液晶層(図示しない)とを有している。また、画素電極12および共通電極13により形成される液晶容量は画素容量Cpを構成する。なお、典型的には、画素容量Cpに電圧を確実に保持すべく液晶容量に並列に補助容量が設けられている。このため、実際には画素容量Cpは液晶容量と補助容量により構成される。
 またTFT11として、例えば酸化物半導体からなるチャネル層を有するTFTが用いられる。より詳細には、TFT11のチャネル層は、インジウム(In)、ガリウム(Ga)、亜鉛(Zn)、および酸素(O)からなるInGaZnO(酸化インジウムガリウム亜鉛)を含む酸化物半導体により形成されている。InGaZnOからなるチャネル層を有するTFT11では、アモルファスシリコン等からなるチャネル層を有するシリコン系のTFT11に比べてオフリーク電流は大幅に低減され、各画素形成部10の画素容量Cpに書き込まれた電圧はより長時間保持される。さらに、TFT11を小型化できるので、画素形成部10の開口率が大きくなり、液晶パネル150の透明度を高くすることができる。なお、TFT11のチャネル層として酸化物半導体を用いるのは一例であり、多結晶シリコンまたはアモルファスシリコン等のシリコン系の半導体を用いてもよい。
 液晶パネル150の背面側には、バックライト光源160が配置されている。バックライト光源160は、複数個のLED(Light Emitting Diode)をマトリクス状に配置したり、複数本のCCFL(Cold Cathode Fluorescent Lamp)を並列に配置したりした光源であり、それらを点灯することにより背面側からバックライト光(「光源光」ともいう)を液晶パネル150に照射する。バックライト光源160の点灯/消灯はバックライト駆動回路120によって制御され、バックライト駆動回路120はバックライト光源160を構成するすべてのLEDまたはCCFLを同時に点灯したり消灯したりする。なお、画像のコントラストを向上させるためにローカルデミングによって画像を表示する場合には、バックライト駆動回路120は、入力された画像データDATに基づき、バックライト光源160の一部のLEDまたはCCFLだけを点灯することもできる。また、バックライト光源160として、端部に光源を直線状に取り付けた導光板を用いてもよい。これにより、端部に取り付けられた光源からの光は、導光板により面状に広がった光として液晶パネル150に照射される。
 表示制御回路110は、液晶パネル150に表示すべき画像を表す画像データDATを外部から与えられると、画像データDATに基づいて、ソースドライバ131を制御するためのソースドライバ用制御信号Ssc、ゲートドライバ132を制御するためのゲートドライバ用制御信号Sgc、およびバックライト駆動回路120を制御するためのバックライト用制御信号Sbkと、デジタル画像データDVとを生成する。ソースドライバ用制御信号Sscおよびデジタル画像データDVはソースドライバ131に与えられ、ゲートドライバ用制御信号Sgcはゲートドライバ132に与えられ、バックライト用制御信号Sbkはバックライト駆動回路120に与えられる。これにより、ソースドライバ131、ゲートドライバ132、およびバックライト駆動回路120は、同期して駆動される。
 ソースドライバ131は、表示すべき画像を表すデジタル画像データDVおよびソースドライバ用制御信号Sscに基づき、各データ信号線SLに与えるべきデータ信号を生成して出力する。ソースドライバ用制御信号Sscには、例えばソーススタートパルス信号、ソースクロック信号、ラッチストローブ信号、および、極性切替制御信号等が含まれる。ソースドライバ131は、このようなソースドライバ用制御信号Sscに応じて、その内部の図示しないシフトレジスタおよびサンプリングラッチ回路等を動作させ、デジタル画像データDVに基づいて得られたデジタル画像信号を図示しないDA変換回路でアナログ信号に変換することにより上記データ信号を生成する。
 ゲートドライバ132は、ゲートドライバ用制御信号Sgcに基づき、アクティブな走査信号を各走査信号線GLに所定周期で順に印加する。ゲートドライバ用制御信号Sgcには、例えばゲートクロック信号およびゲートスタートパルス信号が含まれる。ゲートドライバ132は、ゲートクロック信号およびゲートスタートパルス信号に応じて、その内部の図示しないシフトレジスタ等を動作させることにより上記走査信号を生成する。なお図2には、後述する透明板170も記載されている。
<1.2 液晶表示装置の構成および動作>
 図3は、本実施形態に係る液晶表示装置100の構成を示す図である。図3に示すように、液晶表示装置100は、バックライト光源160と、透明板170(「光制御手段」ともいう)と、液晶パネル150と、吸収型偏光板151(「第1偏光板」ともいう)とを含む。吸収型偏光板151は、S波を吸収し、P波を透過させる偏光板であり、液晶パネル150の前面側(視聴者側)の表面に貼られている。なお、吸収型偏光板151は、P波を吸収し、S波を透過させる偏光板であってもよい。
 透明板170は、バックライト光源160から射出されるバックライト光の入射角がブリュースター角θbになるように取り付けられている。例えば、バックライト光源160から射出されたバックライト光が屈折率n=1.49の材質からなる透明板170に入射する場合を例に挙げて説明する。図1に示すように、入射光に含まれるS波の約17%が透明板170の表面で反射され、S波の約83%とP波とが透明板170内に入射する。透明板170に入射した光が透明板170から射出される際にさらにS波の約17%が反射されるので、S波の約66%とP波とが透明板170を透過し、液晶表示装置100の背面側に出ていく。透明板170によって反射されたS波(入射光に含まれるS波の約34%)は、背面側から液晶パネル150に入射する。
 なお、入射角がブリュースター角θbになるように透明板170を正確に取り付けることは難しいので、透明板170によって反射されたバックライト光にはS波だけでなくP波も含まれる。透明板170を透過したP波およびS波は、透明板170に入射する際および透明板170から射出される際に屈折するが、この屈折は本発明の本質に直接影響を与えない。そこで、図3および後述の各図面では透明板170に入射するP波およびS波は屈折することなく直進するとして描いた。また透明板170は、例えばガラス、PMMA(poly methyl methacrylate:ポリメタクリル酸メチル樹脂)、PC(poly carbonate:ポリカーボネート樹脂)、PS(polystyrene:ポリスチレン)等の透明な材質からなる基板である。
 また、液晶表示装置100の背景を表わす光(以下「環境光」という)も背面側から透明板170に入射する。透明板170に入射した環境光のうち、S波の一部は透明板170によって反射され、P波と反射されなかったS波は透明板170を透過する。このため、透明板170を透過する環境光にはS波よりもP波が多く含まれる。透明板170を透過した環境光も背面側から液晶パネル150に入射する。このように、透明板170によって反射され、S波を多く含むバックライト光と、透明板170を透過し、P波を多く含む環境光とが液晶パネル150に背面側から同時に入射する。
 液晶パネル150の各画素形成部10には画像データDATに基づいてソースドライバ131で生成されたデータ信号がそれぞれ印加されている。これらの画素形成部10にバックライト光のS波が入射すれば、画素形成部10毎にS波の偏光方向はデータ信号に応じて回転される。その結果、液晶パネル150の各画素形成部10は、S波をそのまま射出したり、S波から変換されたP波を射出したり、S波をS波成分とP波成分を含む光に変換して射出したりする。液晶パネル150の表面に貼られた吸収型偏光板151は、P波またはP波成分を透過させ、S波またはS波成分を吸収する偏光板であるので、液晶パネル150を透過したバックライト光に由来するP波またはP波成分のみが液晶表示装置100の前面側に到達する。このとき、透明板170によって反射されたバックライト光にはP波も含まれる。このP波に基づき液晶パネル150において生成された光のうちP波またはP波成分のみが吸収型偏光板151を透過して液晶表示装置100の前面側に到達する。なお、本明細書において、バックライト光に含まれるS波の偏光方向が液晶パネル150に印加されたデータ信号に応じて回転され、液晶パネル150から射出されたS波、S波から変換されたP波、および、S波から変換されたS波成分とP波成分を含む光をまとめて「第2偏光波」ということがある。また、「第2偏光波」のうち、吸収型偏光板151を透過したP波またはP波成分を「第2選択偏光波」ということがある。吸収型偏光板151に代えて、S波を透過する偏光板を使用した場合には、S波またはS波成分を「第2選択偏光波」という。
 環境光に含まれるP波も、液晶パネル150の各画素形成部10に印加されたデータ信号に応じてその偏光方向が回転される。これらの画素形成部10に環境光のP波が入射すれば、画素形成部10毎にP波の偏光方向はデータ信号に応じて回転される。その結果、液晶パネル150は、P波をそのまま射出したり、P波から変換されたS波を射出したり、P波をP波成分とS波成分を含む光に変換して射出したりする。液晶パネル150から射出されたS波またはS波成分は吸収型偏光板151に吸収され、P波またはP波成分は吸収型偏光板151を透過して液晶表示装置100の前面側に到達する。このとき、透明板170を透過する環境光にはS波も含まれる。このS波に基づき液晶パネル150において生成された光のうち、P波またはP波成分のみが吸収型偏光板151を透過して液晶表示装置100の前面側に到達する。なお、本明細書において、環境光に含まれるP波の偏光方向が液晶パネル150に印加されたデータ信号に応じて回転され、液晶パネル150から射出されたP波、P波から変換されたS波、および、P波から変換されたP波成分とS波成分を含む光をまとめて「第1偏光波」ということがある。また、「第1偏光波」のうち、吸収型偏光板151を透過したP波またはP波成分を「第1選択偏光波」ということがある。吸収型偏光板151に代えて、S波を透過する偏光板を使用した場合には、S波またはS波成分を「第2選択偏光波」という。
 その結果、液晶表示装置100では、画素形成部10を透過したバックライト光に由来するP波またはP波成分により、画像データDATに応じた画像が表示され、同じ画素形成部10を透過した環境光に由来するP波またはP波成分により液晶パネル150が透明になり、液晶表示装置100の背景が透けて見える。このように、バックライト光と環境光とは同じ画素形成部10を透過するので、画像が背景に重なって表示される。
 なお、上述のように液晶表示装置100では、液晶パネル150に入射するS波の割合は、バックライト光に含まれるS波の約34%と低い。そこで、バックライト光の光量が多くするために、バックライト駆動回路120を制御してバックライト光源160に供給する電力を増加させる。これにより、液晶パネル150に表示される画像の輝度を高くすることができる。その結果、視聴者は実質的に画像だけを視認することができ、画像に重ねて表示される背景は視認されにくくなる。
 また、バックライト駆動回路120を制御してバックライト光源160を消灯したときには、透明板170を透過した環境光のP波が液晶パネル150に背面側から照射される。液晶パネル150の各画素形成部10では、印加されるデータ信号の電圧値に応じて当該P波の偏光方向が回転され、P波、S波、またはP波成分とS波成分を含む光が射出される。液晶パネル150から射出された環境光に由来するS波またはS波成分は吸収型偏光板151に吸収され、P波またはP波成分のみが吸収型偏光板151を透過し液晶表示装置100の前面側に到達する。
 このとき、透明板170を透過する環境光には透明板170によって反射されなかったS波も含まれる。このS波に基づき液晶パネル150において生成された光のうちP波またはP波成分のみが吸収型偏光板151を透過して液晶表示装置100の前面側に到達する。このようにバックライト光源160を消灯したときには、環境光に由来するP波またはP波成分が液晶表示装置100の前面側に透過する。このように、バックライト光源160を消灯したときには、液晶表示装置100はシースルーディスプレイとして機能し、各画素形成部10は透明になり背景だけを表示する。このため、視聴者は液晶表示装置100の背景を視認することができる。
 なお、バックライト光源160が点灯しているときであっても、液晶パネル150に入射した環境光に由来するP波およびバックライト光に由来するS波を、偏光方向を回転させることなく透過させれば、バックライト光に由来するS波は吸収型偏光板151に吸収され、環境光に由来するP波が液晶表示装置100の前面側に透過する。このように、バックライト光の反射光に含まれるP波が無視できる場合には、液晶パネル150を透過する光は環境光に由来するP波だけになり、各画素形成部10は実質的に透明になり背景だけを表示する。
 また、吸収型偏光板151として、S波を吸収し、P波を透過させる偏光板を用いれば、バックライト光源160を含む液晶表示装置100の電源をオフしたときでも、透明板170を透過した環境光に含まれるP波は偏光方向を回転されることなく液晶パネルおよび吸収型偏光板151を透過し、液晶表示装置100の前面側に到達する。このため、液晶表示装置100の電源をオフしているときにも、視聴者は液晶パネル150を通して液晶表示装置100の背景を視認することができる。
<1.3 効果>
 本実施形態によれば、液晶表示装置100を収納するためのケースを設ける必要がないので、視聴者はケースの内部に限定されることなく液晶表示装置100の背景を透かして視認することができる。
 また、液晶表示装置100は、バックライト光源160を点灯することにより、背景に重ねて画像データDATに基づく画像を表示したり、バックライト光源160を消灯することにより、液晶パネル150を透明にして背景のみを表示したりすることができる。このように、液晶表示装置100は、画像と背景を重ねて表示した状態(点灯状態)と、背景のみを表示した状態(透明状態)のいずれかを表示することができる。
 また、画像を表示する際に、バックライト光の強度を強くすることにより画像の輝度を高くすれば、重なって表示される背景が視認されにくくなるので、視聴者は画像を見やすくなる。
 さらに、液晶表示装置100は、液晶パネル150とバックライト光源160との間に、バックライト光の入射角がブリュースター角θbになるように透明板170を取り付けるだけで、透明度の高いシースルーディスプレイとして機能する。このため、透明度の高いシースルーディスプレイとしての機能を有する液晶表示装置100を安価なコストで製造することができる。
<1.4 変形例>
<1.4.1 第1の変形例>
 液晶パネル150の前面側の表面に、吸収型偏光板151を貼る代わりに、S波を反射し、P波を透過させる反射型偏光板を貼ってもよい。この場合も、液晶表示装置100は、点灯状態と透明状態の2つの状態を表示することができる。なお、反射型偏光板は、液晶パネル150から射出されるS波だけでなく、液晶表示装置100の前面側から入射するS波も反射する。このため、液晶パネル150の前面側に反射型偏光板を貼った場合には、視聴者は画像データDATに応じた画像を、前面側の景色が映っているハーフミラーの中に視認することになる。なお、上記反射型偏光板に代えて、P波を反射し、S波を透過させる偏光板を液晶パネル150の表面に貼ってもよい。本明細書では、吸収型偏光板と反射型偏光板をまとめて「偏光板」ということがある。
<1.4.2 第2の変形例>
 また、透明板170に代えて、水等の液体を満たした容器175(「光制御手段」ともいう)を使用することができる。図4は、透明板170に代えて、液体を満たした容器175を使用した液晶表示装置100A(「画像表示装置」ともいう)の構成を示す図である。図4に示すように、バックライト光源160を室内の天井に取り付け、バックライト光の入射角がブリュースター角θbになるように、液体を満たした容器175をバックライト光源160の斜め下方に設置する。液体を満たした容器175をこのように設置すれば、バックライト光源160から射出されたバックライト光に含まれるS波は液体の表面で反射して液晶パネル150に背面側から入射する。これにより、液晶表示装置100Aは、画像データDATに基づく画像を表示することができる。
<2.第2の実施形態>
 本発明の第2の実施形態に係る液晶表示装置200(「画像表示装置」ともいう)の回路構成は、図2に示す液晶表示装置100の回路構成と同じであるので、その説明およびブロック図を省略する。
<2.1 液晶表示装置の構成および動作>
 図5は、本実施形態に係る液晶表示装置200の構成を示す図である。液晶表示装置200において、バックライト光源160および透明板170の配置は、図2に示す液晶表示装置100の場合と同じである。しかし、液晶パネル250(「第2液晶パネル」ともいう)は、液晶表示装置200の前面ではなく、バックライト光源160に隣接して配置されており、バックライト光源160と対向する側の表面に吸収型偏光板251(「第2偏光板」ともいう)が貼られている。本実施形態の吸収型偏光板251も、S波を吸収し、P波を透過させる偏光板とするが、P波を吸収し、S波を透過させる偏光板であってもよい。
 このような液晶表示装置200において、バックライト光源160から射出されたS波とP波は吸収型偏光板251に入射する。吸収型偏光板251は、S波を吸収し、P波を透過させるので、液晶パネル250にはP波のみが入射する。液晶パネル250の各画素形成部10には画像データDATに応じたデータ信号が印加されているので、液晶パネル250に入射したP波の偏光方向は当該データ信号に応じて回転される。その結果、液晶パネル250は、P波をそのまま射出したり、P波から変換されたS波を射出したり、P波をS波成分とP波成分を含む光に変換して射出したりする。この状態では偏光方向が回転されているだけなので、視聴者が液晶パネル250を上方から見ることができたとしても、視聴者には液晶パネル250の全面が均一に光っているように見えるだけであり、画像は視認できない。透明板170は液晶パネル250から射出されたバックライト光の入射角度がブリュースター角θbになるように取り付けられている。このため、液晶パネル250から射出されたバックライト光に含まれるS波またはS波成分の一部が透明板170の表面で反射されて液晶表示装置200の前面側に到達する。また、バックライト光のうちP波またはP波成分と、反射されなかったS波またはS波成分とは透明板170を透過して液晶表示装置200の背面側に出ていく。これにより、液晶表示装置200の前面側にいる視聴者は画像データDATに応じた画像を視認することができる。なお、本明細書において、バックライト光に含まれるS波の偏光方向が液晶パネル250に印加されたデータ信号に応じて回転され、液晶パネル250から射出されたS波、S波から変換されたP波、および、S波から変換されたS波成分とP波成分を含む光をまとめて「第3偏光波」ということがある。
 また、液晶表示装置200の背面側から透明板170に環境光が入射すると、環境光に含まれるS波の一部は透明板170によって反射されて液晶表示装置200の背面側に出ていき、P波と反射されなかったS波とは透明板170を透過して液晶パネル250に入射する。液晶パネル250で偏光方向を回転して生成されたP波は、吸収型偏光板を透過して液晶表示装置200の前面側に到達する。このため、液晶表示装置200の前面側にいる視聴者は、透明板170を透過した環境光に由来するP波により、液晶表示装置200の背景を視認することができる。
 このように、バックライト光源160を点灯しているときには、視聴者は背景と重なって表示された画像を視認し、バックライト光源160を消灯しているときには透明になり背景だけを視認することができる。つまり、液晶表示装置200は、液晶表示装置100の場合と同様に、点灯状態と透明状態の2つの状態を表示することができる。なお、液晶表示装置100の場合と同様に、バックライト光源160が点灯している場合にも、各画素形成部10は実質的に透明になり背景だけを表示する。
 また、吸収型偏光板251として、S波を吸収し、P波を透過させる偏光板を用いる場合には、バックライト光源160を含む液晶表示装置200の電源をオフしているときにも、液晶表示装置100の場合と同様に、視聴者は透明板170を通して液晶表示装置200の背景を視認することができる。
 なお、液晶表示装置200は、液晶パネル250のすべての画素形成部10を、点灯状態または透明状態のいずれか1つの状態になるように制御するだけでなく、画素形成部10毎にそれぞれ異なる状態になるように制御することもできる。
 通常、カラー画像を表示するために液晶パネルにはカラーフィルタが貼られている。このカラーフィルタは光の吸収率が高く、また液晶パネルにはTFT、データ信号線、走査信号線等が形成されているのでその開口率を大きくすることは難しい。このため、第1の実施形態に係る液晶表示装置100では、入射光は、カラーフィルムが貼られかつ配線が形成された液晶パネル150を透過する。このため、液晶表示装置100をカラーフィルタ方式で駆動すれば、入射光の透過率が低くなる。これに対し、液晶表示装置200では、環境光は背面側から入射して前面側に到達するまでに透明板170だけを透過するので、環境光の透過率は非常に高くなる。そこで、液晶表示装置200は、非常に高い透明度を有するシースルーディスプレイとして使用され、視聴者は液晶表示装置200の背景を視認しやすくなる。なお、液晶表示装置100もフィールドシーケンシャル方式で駆動すれば、視聴者は画像が表示された液晶パネル150を直視できるので、画像を視認しやすくなる。
 なお、上記説明では、バックライト光源160と対向する液晶パネル250の表面に吸収型偏光板251が貼られているとして説明した。しかし、吸収型偏光板251の代わりに、S波を反射し、P波を透過させる反射型偏光板が貼られていてもよい。この場合、P波のみが反射型偏光板を透過して液晶パネル250に入射する。その後の液晶表示装置200の動作は吸収型偏光板251が貼られている場合と同様であるので、その説明を省略する。また、S波を反射し、P波を透過させる反射型偏光板に代えて、P波を反射し、S波を透過させる偏光板を液晶パネル250に貼ってもよい。また、液晶表示装置200では、バックライト光源160を構成する複数のLED等の一部を点灯させることによってローカルデミングを行うこともできる。
<2.2 効果>
 本実施形態によれば、第1の実施形態の場合と同様の効果が得られる。このため、液晶表示装置200も、点灯状態と透明状態の2つの状態を表示することができる。
 また、本実施形態によれば、環境光は透明板170だけを透過して液晶表示装置200の前面側に到達するので、環境光の透過率が高くなる。これにより、液晶表示装置200は、非常に高い透明度を有するシースルーディスプレイとして利用され、視聴者は背景を視認したり、画素形成部10毎に背景を視認したりしやすくなる。
 さらに、シースルーディスプレイとして高い透明度を実現するために、通常、カラーフィルタが貼られていない液晶パネルを用いてフィールドシーケンシャル方式で駆動する必要がある。しかし、液晶表示装置200では、環境光の透過率で決まる透明度に影響を与えるのは透明板170だけであり、しかも透明板170にはカラーフィルタが貼られておらず、また配線も形成されていない。このため、液晶表示装置200は、高い透明度を得るために、フィールドシーケンシャル方式で駆動する必要はなく、カラーフィルタ方式で駆動できる。そこで、液晶パネル250に通常の液晶パネルを用いても、液晶表示装置200は、非常に高い透明度を有するシースルーディスプレイとして機能する。
<2.3 変形例>
<2.3.1 第1の変形例>
 図6は、本実施形態の第1の変形例に係る液晶表示装置200A(「画像表示装置」ともいう)の構成を示す図であり、プロジェクタとして利用される。図6に示すように、液晶パネル250の一方の表面側にバックライト光源160が設けられ、他方の表面側に複数枚のレンズを組み合わせたレンズ群255が設けられている。液晶表示装置200Aは、レンズ群255により透明板170に画像を投影する。視聴者は透明板170を見ることにより、投影された画像を視認したり、背景を視認したりすることができる。なお、図6では、レンズ群255を便宜上1枚の凸レンズで表わしている。また、液晶表示装置200Aも、液晶表示装置200の場合と同様に、ローカルデミングを行うこともできる。
<2.3.2 第2の変形例>
 図7は、本実施形態の第2の変形例に係る液晶表示装置200B(「画像表示装置」ともいう)の構成を示す図である。図7に示すように、バックライト光源160が室内の天井に取り付けられ、さらにバックライト光源160に液晶パネル250が取り付けられている。液晶パネル250のバックライト光源160と対向する表面には吸収型偏光板251が貼られている。バックライト光源160の斜め下方の床面にガラス製の天板190(「ガラス板」ともいう)を有するテーブルが置かれている。テーブルの天板190が置かれている位置は、バックライト光源160から射出されるバックライト光の入射角がブリュースター角θbと等しくなる位置である。この場合、テーブルの天板190は透明板としてバックライト光に含まれるS波を反射するので、反射されたS波の進行方向にいる視聴者は、画像データDATに応じた画像を視認することができる。なお、吸収型偏光板251の代わりに、反射型偏光板を液晶パネル250の表面に貼ってもよい。また、液晶表示装置200Bも、液晶表示装置200の場合と同様に、ローカルデミングを行うこともできる。
<3.第3の実施形態>
 図8は、本発明の第3の実施形態に係る液晶表示装置300(「画像表示装置」ともいう)の回路構成を示すブロック図である。図8に示す液晶表示装置300の構成要素のうち、図2に示す液晶表示装置100の構成要素と同じ構成要素については、同じ参照符号を付してその説明を省略し、異なる構成要素を中心に説明する。
<3.1 液晶表示装置の回路構成>
 本実施形態に係る液晶表示装置300では、図2に示す液晶表示装置100の透明板170に代えて、シャッタパネル180(「シャッタアレイ」または「光制御手段」ともいう)とシャッタパネル駆動回路140(「光制御手段駆動回路」ともいう)とが設けられている。シャッタパネル180は、図3に示す液晶表示装置100の透明板170と同様に、バックライト光源160から射出されるバックライト光に含まれるS波を液晶表示装置300の前面側に反射するだけでなく、環境光に含まれるP波を透過させたり遮断したりする。
 また、シャッタパネル駆動回路140は、シャッタパネル180を駆動するための回路であり、画像データDATとともに外部から与えられるシャッタ制御信号Spcに基づき開閉用信号Ssvを生成しシャッタパネル180に与える。これにより、シャッタパネル180は液晶パネル150の各画素形成部10に対応して設けられた各画素形成部(図示しない)が開いたり閉じたりするシャッタとして機能する。なお、シャッタパネル180の画素形成部の開閉についての詳細な説明は後述する。
<3.2 液晶表示装置の構成および動作>
 図9は、本実施形態に係る液晶表示装置300の構成を示す図である。図9に示す液晶表示装置300では、図2に示す液晶表示装置100に使用されている透明板170に代えて、シャッタパネル180が設けられている。しかし、その他の構成要素は、液晶表示装置100の構成要素と同じであるので、同じ構成要素には同じ参照符号を付してその説明を省略し、異なる構成要素を中心に説明する。
 シャッタパネル180は液晶パネル181(「第3液晶パネル」ともいう)を含み、液晶パネル181の両面にそれぞれ吸収型偏光板182、183(「第3偏光板」ともいう)が貼られている。この吸収型偏光板182、183はいずれも、P波を透過させ、S波を吸収する偏光板である。また、液晶パネル181は入射した環境光の偏光方向を回転させるだけなので、カラーフィルムは貼られていない。このため、シャッタパネル180の透過率は高く、シャッタパネル180はより多くの環境光を透過させることができる。これにより、シースルーディスプレイとして機能する際には、背景は高い輝度で表示されるので、視聴者は液晶表示装置300の背景を視認しやすくなる。なお、液晶表示装置300では、フィールドシーケンシャル駆動のような高速駆動を行う必要がないので、シャッタパネル180を構成する液晶パネル181には、通常の液晶パネルと同程度の動作速度を有するパネルを用いることができる。
 次に液晶表示装置300の動作について説明する。まず、バックライト光がシャッタパネル180によって反射される場合について説明する。バックライト光源160から射出されるバックライト光がシャッタパネル180に入射すると、バックライト光はシャッタパネル180に貼られた吸収型偏光板183の表面でフレネル反射が生じる。シャッタパネル180はバックライト光の入射角がブリュースター角θbになるように取り付けられている。このため、バックライト光に含まれるS波の一部は吸収型偏光板183によって反射されて液晶パネル150に照射され、反射されなかったS波はシャッタパネル180を透過して液晶表示装置300の背面側に出ていき、P波は吸収型偏光板183に吸収される。液晶パネル150に入射したS波は、各画素形成部10に印加されたデータ信号に基づきS波、P波、またはS波成分とP波成分を含む光に変換されて射出される。S波またはS波成分は吸収型偏光板151に吸収され、P波またはP波成分のみが液晶表示装置300の前面側に到達する。このため、前面側にいる視聴者は液晶パネル150に表示された画像を視認することができる。
 次に、シャッタパネル180のシャッタ機能について説明する。環境光が液晶表示装置300の背面側からシャッタパネル180に入射すれば、環境光に含まれるS波は吸収型偏光板182に吸収されるので、P波のみが吸収型偏光板182を透過して液晶パネル181に入射する。これにより、吸収型偏光板182を透過する環境光の強度は入射時の50%になる。液晶パネル150の各画素形成部10に対応する液晶パネル181の各位置に形成された画素形成部には、シャッタパネル駆動回路140から与えられる開閉用信号Ssvが印加される。液晶パネル181の画素形成部は、開閉用信号Ssvに応じて、入射したP波の偏光方向を回転させる。これにより、液晶パネル181は、P波をそのまま射出したり、P波から変換されたS波を射出したり、P波をP波成分とS波成分を含む光に変換して射出したりする。液晶パネル181から射出されたS波およびS波成分は吸収型偏光板183によって吸収され、P波またはP波成分はP波として吸収型偏光板183を透過し、液晶パネル150に照射される。つまり、シャッタパネル180は、環境光に含まれる偏光波の偏光方向を回転させることにより、環境光を、入射時の強度の0~50%の範囲で任意の値に制御されたP波として透過させるシャッタとして機能する。なお、本明細書において、環境光に含まれるP波の偏光方向が液晶パネル181に印加された開閉用信号Ssvに応じて回転され、液晶パネル181から射出されたP波、P波から変換されたS波、および、P波から変換されたP波成分とS波成分を含む光をまとめて「第4偏光波」ということがある。
 次に、シャッタパネル180から射出された環境光のP波は、液晶パネル150に入射する。液晶パネル150の画素形成部10が環境光に由来するP波の偏光方向を回転させることなくそのまま透過させた場合には、P波はさらに吸収型偏光板151を透過して液晶表示装置300の前面側に到達する。このため、当該画素形成部10は透明になり、視聴者は液晶表示装置300の背景を視認できるようになる。
 また、液晶パネル150の画素形成部10が環境光に由来するP波をS波に変換して射出した場合には、射出されたS波は吸収型偏光板151に吸収されるので、環境光は液晶表示装置300の前面側に到達することができない。このため、当該画素形成部10は透明にならず、視聴者は液晶表示装置300の背景を全く視認できなくなる。
 また、液晶パネル150の画素形成部10が環境光に由来するP波を、P波成分とS波成分を含む光に変換して射出した場合には、S波成分は吸収型偏光板151に吸収され、P波成分のみが吸収型偏光板151を透過して液晶表示装置300の前面側に到達する。このため、当該画素形成部10は透明になり、視聴者は液晶表示装置300の背景を視認できるようになる。しかし、液晶パネル150に入射した環境光に由来するP波の一部がS波成分に変換されたため、液晶表示装置300の前面側に到達するP波の光量が少なくなる。このため、視認される背景の輝度も低くなる。
 次に、液晶表示装置300において、シャッタパネル180を完全に開いたり閉じたりするとともに、バックライト光源160の点灯/消灯を行なったときに、液晶パネル150に表示される画像および透けて見える背景について説明する。なお、以下の説明においてシャッタパネル180を完全に開くとは、液晶パネル181の画素形成部が入射したP波の偏光方向を回転させることなくそのまま射出することをいい、シャッタパネル180を完全に閉じるとは、液晶パネル181の画素形成部がP波の偏光方向を回転させてS波に変換することによりP波およびS波のいずれも射出しないことをいう。
 まず、バックライト光源160を点灯するとともに、シャッタパネル180を完全に閉じた場合について説明する。この場合には、バックライト光に由来するS波のみが液晶パネル150に背面から入射するので、液晶パネル150には、画像データDATに応じた画像のみが表示され、液晶表示装置300の背景は全く表示されない。このように、液晶表示装置300は、液晶表示装置100と異なり、環境光を完全に遮断することができる。このため、例えば人物の画像を表示する場合に、黒色の髪の毛を表示する画素形成部10を黒色として表示できるようになり、表現の自由度を大幅に向上させることができる。この状態を「点灯状態」という。
 次に、バックライト光源160を消灯するとともに、シャッタパネル180を完全に開いた場合について説明する。この場合には、環境光に由来するP波のみが液晶パネル150に背面から入射するので、液晶パネル150は透明なシースルーディスプレイとして機能する。したがって、液晶パネル150には液晶表示装置300の背景のみが表示され、画像データDATに応じた画像は全く表示されない。この状態を「透明状態」という。
 さらに、バックライト光源160を消灯するとともに、シャッタパネル180を完全に閉じた場合について説明する。この場合には、バックライト光に由来するS波も、環境光に由来するP波も液晶パネル150に入射しないので、液晶パネル150には画像も背景の全く表示されない。この状態を「消灯状態」という。
 このように、液晶表示装置300の液晶パネル150は、点灯状態、透明状態、消灯状態の3つの状態を表示できるディスプレイであり、それらの状態は画素形成部10毎に自由に制御することができる。なお、バックライト光源160を点灯するとともに、シャッタパネル180を完全に開いた場合、液晶パネル150には画像とともに背景も表示される。このため、液晶表示装置300の前面側にいる視聴者は、画像と背景を視認することができる。この状態は、点灯状態と透明状態の2つの状態を同時に表示している状態に相当する。
 なお、上記説明では、シャッタパネル180を完全に開いたり閉じたりする場合について説明したが、部分的に開くようにしてもよい。具体的には、シャッタパネル180に入射したP波の偏光方向を液晶パネル181において回転させ、P波をP波成分とS波成分を含む光に変換することにより実現される。シャッタパネル180の透過率は、変換されたP波成分とS波成分の割合によって決まり、P波成分の割合が大きいほど透過率も高くなる。この場合にも、液晶表示装置300は、シャッタパネル180の透過率に応じた透明度のシースルーディスプレイとして機能し、画像が背景と重なって表示される。この状態は点灯状態と透明状態と消灯状態の3つの状態の中間の状態に相当する。
 また、吸収型偏光板151が、S波を吸収し、P波を透過させる偏光板である場合には、バックライト光源160を含む液晶表示装置300の電源をオフしているときにも、液晶表示装置100の場合と同様に、視聴者は液晶パネル150を通して液晶表示装置300の背景を視認することができる。
 また、液晶表示装置300は、液晶パネル150のすべての画素形成部10を、点灯状態、透明状態、消灯状態、およびそれらの中間状態のいずれか1つの状態になるように制御するだけでなく、画素形成部10毎にそれぞれ異なる状態になるように制御してもよい。
<3.3 効果>
 本実施形態によれば、第1の実施形態において説明した効果と同様の効果が得られる。さらに、本実施形態によれば、点灯状態と、透明状態と、消灯状態の3つの状態、およびそれらの中間の状態を表示することができる。すなわち、第1および第2の実施形態の場合と異なり、液晶表示装置300は点灯状態と透明状態による表示だけでなく、消灯状態による表示が可能になる。これにより黒色を表現することが可能になるので、表示の自由度を大幅に向上させることができる。
<3.4 変形例>
<3.4.1 第1の変形例>
 液晶パネル181の両面に、吸収型偏光板182、183を貼る代わりに、P波を透過させ、S波を反射する反射型偏光板を貼ってもよい。この場合、反射型偏光板は環境光に含まれるS波を反射するので、液晶表示装置300の背面側は背景を映すミラー面になる。また、吸収型偏光板182の代わりに、P波を透過させ、S波を反射する反射型偏光板を液晶パネル181に貼ってもよい。
<3.4.2 第2の変形例>
 また、液晶パネル181の両面に吸収型偏光板182、183をそれぞれ貼ったシャッタパネル180に代えて、メカニカルシャッタを形成したシャッタパネルを設けてもよい。シャッタパネルには、透明板170の前面側の表面に、P波を透過させ、S波を吸収する吸収型偏光板が貼られている。また、透明板170の背面側の表面には、液晶パネル150の画素形成部10と対応するように、開閉状態を制御可能な複数のメカニカルシャッタが設けられている。このようなメカニカルシャッタには、例えばMEMS(Micro Electro Mechanical Systems:微小電気機械素子)等がある。メカニカルシャッタが開いているときにはP波とS波はいずれもメカニカルシャッタを通過し、メカニカルシャッタが閉じているときにはP波とS波はいずれも通過できない。シャッタパネルを通過したS波は吸収型偏光板に吸収されるので、P波だけがシャッタパネルを透過して、液晶パネル150に入射する。このように、メカニカルシャッタを形成したシャッタパネルは、シャッタパネル180の場合と同様の機能を有する。なお、P波の透過率を高くするために、開口率の大きなメカニカルシャッタを設けることが好ましい。また、透明板170は環境光の入射角がブリュースター角θbになるように取り付けられているので、吸収型偏光板が貼られているか否かに関係なく、透明板170を透過する環境光は主にP波だけである。このため、透明板170には吸収型偏光板が貼られていなくてもよい。
<4.第4の実施形態>
 本発明の第4の実施形態に係る液晶表示装置400(「画像表示装置」ともいう)の回路構成は、図8に示す液晶表示装置300の回路構成と同じであるので、その説明およびブロック図を省略する。
 図10は、本実施形態に係る液晶表示装置400の構成を示す図である。図10に示すように、本実施形態の液晶表示装置400は、図5に示す液晶表示装置200において透明板170の代わりにシャッタパネル180が設けられていることが異なる。このシャッタパネル180の構成および機能は第3の実施形態において説明したシャッタパネル180の構成および機能と同じである。このため、液晶表示装置400の構成および動作の詳細な説明は省略する。
<4.1 効果>
 本実施形態によれば、第2の実施形態において説明した効果と同様の効果が得られる。さらに、本実施形態によれば、液晶表示装置400は、第2の実施形態の場合と異なり、点灯状態と透明状態による表示だけでなく、さらに消灯状態による表示が可能になる。このため、第3の実施形態において説明したように、表示の自由度を大幅に向上させることができる。
 また、第2の実施形態の場合と同様に、液晶表示装置400は、液晶パネル250に通常の液晶パネルを用いてカラーフィルタ方式で駆動しても、非常に高い透明度を有するシースルーディスプレイとして機能する。このとき、第3の実施形態の場合と同様に、シャッタパネル180を構成する液晶パネル181にも、通常の液晶パネルと同程度の動作速度を有するパネルを用いることができる。
<4.2 変形例>
<4.2.1 第1の変形例>
 吸収型偏光板182、183に代えて、P波を透過させ、S波を反射する反射型偏光板を液晶パネル181の両面に貼ってもよい。この場合、反射型偏光板は環境光に含まれるS波を反射するので、液晶表示装置400の背面は背景を映すミラー面になる。また、吸収型偏光板182、183のいずれか一方を、P波を透過させ、S波を反射する反射型偏光板に代えてもよい。
<4.2.2 第2の変形例>
 図11は、本実施形態の第2の変形例に係るプロジェクタとして機能する液晶表示装置400A(「画像表示装置」ともいう)の構成を示す図である。図11に示すように、液晶表示装置400Aは、液晶パネル250の一方の表面側にバックライト光源160が設けられ、他方の表面側に複数枚のレンズを組み合わせたレンズ群255が設けられている。液晶表示装置200Aは、レンズ群255により透明板170に画像を投影する。視聴者は透明板170を見ることにより、投影された画像を視認したり、液晶表示装置400Aの背景を視認したりすることができる。なお、図11では、レンズ群255は便宜上1枚の凸レンズで表わされている。また、液晶表示装置400Aも、液晶表示装置200の場合と同様に、ローカルデミングを行うこともできる。
<4.2.3 第3の変形例>
 また、液晶パネル181の両面に吸収型偏光板182、183を貼ったシャッタパネル180に代えて、第3の実施形態の第2の変形例で説明したメカニカルシャッタを形成したシャッタパネルと同じ構造のシャッタパネルを設けてもよい。この場合も、第3の実施形態の第2の変形例の場合と同様の効果が得られる。なお、透明板は環境光の入射角がブリュースター角θbになるように取り付けられているので、透明板に吸収型偏光板や反射型偏光板を貼らなくてもよい。
<5.その他の変形例>
 本発明の偏光制御画素アレイとして使用可能なディスプレイには、バックライト光源を必要とし、かつ透明になることが求められる。上記各実施形態では、このようなディスプレイとして液晶パネル150、250を例に挙げて説明した。しかし、本発明において使用可能なディスプレイは液晶パネル150、250に限定されず、例えば物質を透過した光や物質の表面で反射された光の偏光が物質の磁気的性質の影響を受ける磁気光学効果、光が電界の影響を受けている物質と作用することによって旋光が変化する電気光学効果、複屈折を利用して直線偏光を回転させる1/2波長板等を利用したディスプレイであってもよい。
 本発明は、ディスプレイの前面側から背景が透けて見える透明表示が可能な画像表示装置に適用することができる。
 100~400 … 液晶表示装置(画像表示装置)
 110 … 表示制御回路
 120 … バックライト制御回路(発光光源駆動回路)
 130 … 駆動回路
 140 … シャッタパネル駆動回路
 150 … 液晶パネル(第1液晶パネルまたは偏光制御画素アレイ)
 151 … 吸収型偏光板(第1偏光板)
 160 … バックライト光源(表示用発光光源)
 170 … 透明板(光制御手段)
 175 … 液体を満たした容器(光制御手段)
 180 … シャッタパネル(光制御手段)
 181 … 液晶パネル(第3液晶パネル)
 182、183 … 吸収型偏光板(第3偏光板)
 250 … 液晶パネル(第2液晶パネルまたは偏光制御画素アレイ)
 251 … 吸収型偏光板(第2偏光板)
 255 … レンズ群
 DAT … 画像データ(画像情報)
 θb  … ブリュースター角

Claims (9)

  1.  シースルーディスプレイの機能を備えた画像表示装置であって、
     外部から与えられる画像情報に基づき光の偏光方向を制御することによりS波、P波、S波成分またはP波成分の少なくともいずれかを含む偏光波を生成して射出する偏光制御画素アレイと、
     前記偏光制御画素アレイに光源光を照射する表示用発光光源と、
     前記画像表示装置の背面側から入射した環境光の偏光方向を制御して生成した前記環境光に由来するP波もしくはP波成分を透過させ、前記表示用発光光源が点灯しているとき前記表示用発光光源から射出された前記光源光に由来するS波もしくはS波成分を反射することによって、前記環境光に由来するP波もしくはP波成分および前記光源光に由来するS波もしくはS波成分のうち少なくともいずれかを前記画像表示装置の前面側に向けて射出し、または、前記環境光の一部または全部を透過させないように遮断する光制御手段とを備え、
     前記光制御手段は、前記光源光の入射角がブリュースター角と略等しくなるように取り付けられていることを特徴とする、画像表示装置。
  2.  前記偏光制御画素アレイは、前記光制御手段を透過した前記環境光に由来するP波もしくはP波成分と、前記光制御手段によって反射された前記光源光に含まれるS波が背面側から照射されるように配置され、
     前記光制御手段は、前記環境光に由来するP波もしくはP波成分を透過させ、前記表示用発光光源が点灯されているとき前記光源光に含まれるS波を反射することによって、前記環境光に由来するP波もしくはP波成分および前記光源光に含まれるS波のうち少なくともいずれかを前記偏光制御画素アレイに背面側から照射し、または、前記環境光の一部または全部を透過させないように遮断し、
     前記偏光制御画素アレイは、前記光制御手段を透過した前記環境光に由来するP波もしくはP波成分に基づき生成した第1偏光波から選択した第1選択偏光波と、前記光制御手段によって反射された前記光源光に含まれるS波に基づき生成した第2偏光波から選択した、前記第1選択偏光波と同じ偏光方向を有する第2選択偏光波とのうち少なくともいずれかを透過させることを特徴とする、請求項1に記載の画像表示装置。
  3.  前記偏光制御画素アレイは、第1液晶パネルと前記第1液晶パネルの前面側の表面に貼られた第1偏光板とを含み、
     前記第1液晶パネルは、複数の画素形成部を含み、前記画像情報に基づき、前記画素形成部毎に前記環境光に由来するP波もしくはP波成分および前記光源光に含まれるS波の偏光方向をそれぞれ回転制御して前記第1偏光波および前記第2偏光波を生成し、
     前記第1偏光板は、画素形成部毎に、前記第1液晶パネルによって生成された前記第1偏光波から選択した前記第1選択偏光波と、前記第2偏光波から選択した前記第2選択偏光波とのうち少なくともいずれかを前記画像表示装置の前面側に透過させることを特徴とする、請求項2に記載の画像表示装置。
  4.  前記偏光制御画素アレイは、前記表示用発光光源に隣接して配置されており、前記表示用発光光源から射出された前記光源光の偏光方向を制御して生成した第3偏光波を前記光制御手段に向けて射出し、
     前記光制御手段は、前記環境光に由来するP波もしくはP波成分を透過させ、前記表示用発光光源が点灯されているとき、前記光源光に由来する前記第3偏光波から選択したS波もしくはS波成分を反射することによって、前記環境光に由来するP波もしくはP波成分および前記光源光に由来するS波もしくはS波成分のうち少なくともいずれかを前記画像表示装置の前面側に到達させ、または、前記環境光の一部または全部を透過させないように遮断することを特徴とする、請求項1に記載の画像表示装置。
  5.  前記偏光制御画素アレイは、第2液晶パネルと前記第2液晶パネルの前記表示用発光光源側の表面に貼られた第2偏光板とを含み、
     前記第2偏光板は、前記表示用発光光源から射出された前記光源光に含まれるP波もしくはS波のうちいずれか一方の偏光波を前記第2液晶パネルに向けて透過させ、
     前記第2液晶パネルは、複数の画素形成部を含み、前記画像情報に基づき、前記画素形成部毎に前記いずれか一方の偏光波の偏光方向を回転制御して前記第3偏光波を生成し、前記光制御手段に向けて射出することを特徴とする、請求項4に記載の画像表示装置。
  6.  前記偏光制御画素アレイを挟んで前記表示用発光光源と反対側に複数枚のレンズからなるレンズ群が設けられていることを特徴とする、請求項4に記載の画像表示装置。
  7.  前記光制御手段は、第3液晶パネルと、前記第3液晶パネルの両面にそれぞれ貼られ、P波を透過する2枚の第3偏光板とを含み、前記第3液晶パネルは、前記画像表示装置の背面側から入射する前記環境光の偏光方向を回転制御して第4偏光波を生成し、前記第4偏光波に含まれるP波もしくはP波成分を選択して透過させ、または、前記環境光の一部または全部を透過させないように遮断することを特徴とする、請求項1、2または4のいずれかに記載の画像表示装置。
  8.  前記光制御手段は、透明板と、前記透明板の表面に形成された開閉可能な複数のメカニカルシャッタとを含み、前記メカニカルシャッタを開閉することによって前記環境光に含まれるP波を透過させ、または、前記環境光の一部または全部を透過させないように遮断することを特徴とする、請求項1、2または4のいずれかに記載の画像表示装置。
  9.  前記表示用発光光源に供給する電力を制御する発光光源駆動回路をさらに備えることを特徴とする、請求項1、2または4のいずれかに記載の画像表示装置。
PCT/JP2014/071614 2014-03-06 2014-08-19 画像表示装置 WO2015132983A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/123,264 US9997122B2 (en) 2014-03-06 2014-08-19 Image display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-043800 2014-03-06
JP2014043800 2014-03-06

Publications (1)

Publication Number Publication Date
WO2015132983A1 true WO2015132983A1 (ja) 2015-09-11

Family

ID=54054810

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071614 WO2015132983A1 (ja) 2014-03-06 2014-08-19 画像表示装置

Country Status (2)

Country Link
US (1) US9997122B2 (ja)
WO (1) WO2015132983A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3026196B1 (fr) * 2014-09-22 2016-12-02 Thales Sa Systeme de visualisation semi-transparent monoculaire
US10048538B1 (en) * 2014-10-08 2018-08-14 Sharp Kabushiki Kaisha Display device
JP7023870B2 (ja) * 2017-12-14 2022-02-22 京東方科技集團股▲ふん▼有限公司 表示装置、表示装置の表示コントラストを適応的に変調するためのアセンブリ、および表示装置の表示コントラストを適応的に変調する方法
JP7035701B2 (ja) * 2018-03-28 2022-03-15 日本精機株式会社 表示装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091609A (ja) * 2008-10-03 2010-04-22 Toshiba Mobile Display Co Ltd 液晶表示装置
JP2013127489A (ja) * 2010-03-29 2013-06-27 Panasonic Corp シースルーディスプレイ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090059368A1 (en) * 2007-08-27 2009-03-05 Fujifilm Corporation Optical film, and glass
KR101067348B1 (ko) * 2009-03-04 2011-09-23 한국과학기술원 편광각 투과 유도 프리즘 및 이를 이용한 신호 대 잡음비 향상을 위한 형광검출장치
WO2011043100A1 (ja) * 2009-10-09 2011-04-14 シャープ株式会社 表示パネル、表示システム、携帯端末、電子機器
JP6019891B2 (ja) * 2012-07-30 2016-11-02 セイコーエプソン株式会社 光源装置及びプロジェクター

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010091609A (ja) * 2008-10-03 2010-04-22 Toshiba Mobile Display Co Ltd 液晶表示装置
JP2013127489A (ja) * 2010-03-29 2013-06-27 Panasonic Corp シースルーディスプレイ

Also Published As

Publication number Publication date
US9997122B2 (en) 2018-06-12
US20170069281A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
JP4508505B2 (ja) 液晶表示装置
US9891517B2 (en) Translucent screen and image projection system
TW591291B (en) Double-sided liquid crystal display device and information equipment
US20180149918A1 (en) Specular Display Apparatus and Controlling Method Thereof
WO2015020032A1 (ja) 画像表示装置
US7259815B2 (en) Two-way trans-reflective display
KR101832957B1 (ko) 미세 셔터 표시장치
WO2015132983A1 (ja) 画像表示装置
US9927673B2 (en) Display apparatus and displaying method thereof
JP2009510513A (ja) 画像表示装置
TWI269099B (en) Liquid crystal display device using dual light unit and method of fabricating the same
CN106681087B (zh) 投影装置及其驱动方法
US20190047383A1 (en) Sun visor
US20170307914A1 (en) Liquid crystal display device being switchable between transmission mode and reflection mode and display module thereof
KR20130037435A (ko) 투과형 및 반사형 전환 가능한 디스플레이
US6690348B2 (en) Transmissive color liquid crystal display
KR20140113463A (ko) 액정 표시 장치 및 전자 기기
JP7063081B2 (ja) 表示装置および表示装置の制御方法
JP2019194643A (ja) 表示装置
WO2017208897A1 (ja) 表示装置
JP2008216525A (ja) 画像表示装置
JP4654573B2 (ja) スクリーン、プロジェクタシステムおよびプロジェクタシステムの画像表示方法
JP2010132107A (ja) 車両用ミラー装置
JP2007193242A (ja) 液晶表示装置
KR101296467B1 (ko) 백라이트 유닛 및 이를 갖는 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884448

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15123264

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP