WO2015132880A1 - Measurement device and measurement method - Google Patents

Measurement device and measurement method Download PDF

Info

Publication number
WO2015132880A1
WO2015132880A1 PCT/JP2014/055453 JP2014055453W WO2015132880A1 WO 2015132880 A1 WO2015132880 A1 WO 2015132880A1 JP 2014055453 W JP2014055453 W JP 2014055453W WO 2015132880 A1 WO2015132880 A1 WO 2015132880A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light beam
measuring apparatus
measurement
measurement target
Prior art date
Application number
PCT/JP2014/055453
Other languages
French (fr)
Japanese (ja)
Inventor
育也 菊池
敦也 伊藤
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to PCT/JP2014/055453 priority Critical patent/WO2015132880A1/en
Priority to JP2016505982A priority patent/JP6253761B2/en
Publication of WO2015132880A1 publication Critical patent/WO2015132880A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/47Scattering, i.e. diffuse reflection
    • G01N21/49Scattering, i.e. diffuse reflection within a body or fluid
    • G01N21/53Scattering, i.e. diffuse reflection within a body or fluid within a flowing fluid, e.g. smoke
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/661Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems

Definitions

  • the present invention relates to a technical field of a measuring apparatus and a measuring method for measuring a measurement target by irradiating a laser beam.
  • Patent Document 1 proposes an apparatus that separates a light beam of a laser light source with a beam splitter and uses a part thereof as reference light.
  • the light irradiated to the measurement target is diffused by scattering.
  • the reference light since the reference light is not diffused, the diameter of the light beam remains small.
  • the S / N ratio (signal-to-noise ratio) of the detection result deteriorates, resulting in a technical problem that accurate measurement cannot be performed.
  • Examples of problems to be solved by the present invention include the above. It is an object of the present invention to provide a measurement apparatus and a measurement method that can suitably perform measurement related to an object to be measured by diffusing reference light.
  • a measuring apparatus for solving the above-described problems includes a separation irradiation unit that separates laser light into a first light beam and a second light beam, and irradiates the measurement target with the first light beam, and a diffusion unit that diffuses the second light beam. And a light receiving means for receiving the first light beam scattered by the measurement target and the second light beam diffused by the diffusion means.
  • a measurement method for solving the above-described problems includes a separation irradiation step of separating laser light into a first light beam and a second light beam, and irradiating the measurement target with the first light beam, and a diffusion step of diffusing the second light beam. And a light receiving step for receiving the first light beam scattered by the measurement target and the second light beam diffused in the diffusion step.
  • the measuring apparatus separates laser light into a first light beam and a second light beam, separate irradiation means for irradiating the measurement target with the first light beam, diffusion means for diffusing the second light beam, And a light receiving unit that receives the first light beam scattered by the measurement target and the second light beam diffused by the diffusion unit.
  • the object to be measured for example, a fluid such as blood flowing inside the transparent tube or an individual such as a plate member flowing on the conveyor
  • Laser light is irradiated.
  • the laser beam according to the present embodiment is separated into a first light beam and a second light beam by the separation irradiation means before being irradiated onto the measurement target.
  • the separation irradiation unit includes, for example, a grating (diffraction grating), a half mirror, and the like.
  • the separating and irradiating means may irradiate the laser beam by separating it into three or more light beams (that is, a third light beam, a fourth light beam, etc. may exist).
  • the first light flux is irradiated onto the object to be measured.
  • the first light beam irradiated to the measurement target is scattered (specifically, transmitted or reflected) by the measurement target and becomes scattered light.
  • the second light flux is diffused by the diffusing means without being irradiated on the measurement target.
  • the diffusing unit includes, for example, a diffusing plate and a lens.
  • the scattered first light beam and the diffused second light beam are received by a common light receiving means.
  • the light receiving means is configured as a photodiode or the like, for example.
  • the intensity of the received light is converted into a signal and used for calculation of the measurement result. More specifically, for example, speed calculation of the measurement target using Doppler shift is executed.
  • the measurement is performed using the first light beam that is irradiated onto the measurement target and the second light beam that is not irradiated onto the measurement target.
  • the energy loss due to scattering at the measurement target can be reduced. Therefore, the S / N ratio of the detection result can be improved.
  • the alignment of the optical system can be easily performed as compared with the case where the first light flux and the second light flux are irradiated to one point to be measured. In addition, it is possible to reduce damage to the measurement target by irradiating the laser beam.
  • the second light beam is detected after being diffused. Accordingly, it is possible to prevent a situation in which the first light beam scattered by the measurement target is detected in a relatively large area, whereas the second light beam is detected only in a very small area. In this way, each of the first light beam and the second light beam can be efficiently detected on the detection surface of the detection means, and the detection sensitivity can be improved. In addition, it is possible to avoid the need for highly accurate alignment of the second light flux. In addition, the energy balance with the first light beam scattered by the measurement target can be achieved by the dispersion of energy by diffusion.
  • the measurement apparatus it is possible to suitably perform the measurement on the measurement target object by detecting the scattered first light beam and the diffused second light beam.
  • the separation irradiation unit includes a grating.
  • the laser light is incident on the grating (diffraction grating) and is separated into the first light flux and the second light flux. For this reason, compared with the case where a laser beam is isolate
  • the separation irradiation unit includes a partial reflection unit that reflects a part of the laser beam.
  • the laser beam is partially reflected by the partially reflecting means configured as a half mirror, for example, and the other part is transmitted. Therefore, the laser beam can be reliably separated into the first light flux and the second light flux.
  • the separation irradiation unit may further include a reflection unit whose position relative to the partial reflection unit is fixed.
  • one of the first light beam and the second light beam partially separated by the reflecting means is reflected by the reflecting means and guided in an appropriate direction.
  • the reflecting means since the reflecting means is fixed in position relative to the partially reflecting means (in other words, configured as a dihedral mirror), the angle of the partially reflecting means and the reflecting means can be adjusted. You don't have to do it separately. Therefore, it is possible to easily adjust the irradiation angle of the laser beam.
  • the diffusing unit is a scattering plate disposed in the optical path of the second light beam.
  • the second light beam can be reliably diffused by the scattering plate.
  • the diffusion plate may be configured as a reflection type or a transmission type.
  • the diffusing unit is a lens disposed in the optical path of the second light beam.
  • the second light flux can be reliably diffused by the lens.
  • a plurality of lenses may be provided.
  • the lens condenses the first light flux on the detection means.
  • the first light beam can be condensed using a lens that diffuses the second light beam. For this reason, the first light flux can be efficiently detected by the detection means, and as a result, the S / N ratio can be improved.
  • the lens condenses the first light flux so that the diameters of the first light flux and the second light flux are uniform on the detection surface of the detection means, The second light flux is diffused.
  • the first light flux and the second light flux can be detected very efficiently by the detection means. Therefore, the S / N ratio of the detection result can be improved.
  • “so as to be aligned” according to the present embodiment is not limited to the case where the diameter of the first light beam and the diameter of the second light beam completely coincide with each other, and is a value close to the extent that the above-described effect can be obtained. It means that it is said.
  • the separation unit separates the laser light so that the light amount of the second light beam is smaller than the light amount of the first light beam.
  • the light amounts (energy) of the first light flux and the second light flux at the time of detection can be made uniform. Specifically, the energy at the time of detection of the first light beam that causes a large energy loss when irradiated on the measurement target and the second light beam that generates almost no energy loss because it is not irradiated on the measurement target are close to each other. It becomes. Therefore, the first light flux and the second light flux can be detected efficiently, and the S / N ratio can be improved.
  • the measuring apparatus further includes speed detecting means for detecting the speed of the measurement target from the Doppler shift of the first light beam received by the light receiving means.
  • the speed of the measurement target can be detected using the Doppler shift generated in the scattered light of the separated first light flux.
  • the speed of the measurement target can be detected using a beat signal obtained from interference light between the first light flux in which the Doppler shift is generated and the second light flux in which the Doppler shift is not generated.
  • the measurement method separates laser light into a first light flux and a second light flux, irradiates the measurement target with the first light flux, a diffusion process for diffusing the second light flux, A light receiving step of receiving the first light beam scattered by the measurement target and the second light beam diffused in the diffusion step.
  • the measurement method according to the present embodiment similarly to the measurement apparatus according to the present embodiment described above, it is possible to detect the scattered first light beam and the diffused second light beam and perform measurement appropriately. It is.
  • FIG. 1 is a side view showing the overall configuration of the measuring apparatus according to the first embodiment.
  • FIG. 2 is a cross-sectional view showing the overall configuration of the measuring apparatus according to the first embodiment.
  • the measuring apparatus 1 includes a light source 100, a grating 200, a detector 500, and a diffuser plate 600 as main components.
  • the light source 100 is a laser light source configured to output the irradiation light Li.
  • the light source 100 can adjust the output intensity of the laser light.
  • the grating 200 is an example of the “separation irradiation means” in the present invention, and is configured as a blazed grating.
  • the grating 200 may be configured as a binary grating. Moreover, you may comprise as what has a condensing effect (namely, lens effect).
  • the grating 200 separates the irradiation light Li irradiated from the light source 100 into separated light Ld1 and Ld2, and irradiates the fluid 400 flowing in the right direction in FIG. 1 (frontward direction in FIG. 2) in the transparent tube 300. .
  • the separated light Ld1 is incident on the fluid 400 to be measured.
  • the separated light Ld1 is scattered (transmitted) by the scatterer 401 in the fluid 400.
  • scattered light Ls is emitted from the scatterer 401.
  • the separated light Ld2 is not incident on the fluid 400 but is incident on the diffusion plate 600.
  • the diffusion plate 600 is an example of the “diffusion means” of the present invention, and is configured as a reflective diffusion plate.
  • the diffusion plate 600 diffuses the incident separated light Ld2 and irradiates the detector 500 as reference light Lr.
  • the detector 500 is an example of the “light receiving means” in the present invention, and is configured as, for example, a photodetector.
  • the detector 500 is disposed on the side opposite to the light source 100 when viewed from the fluid 400, and can detect the scattered light Ls transmitted through the fluid 400 and the reference light Lr diffused by the diffusion plate 600 on the detection surface. It is said that. That is, the detector 500 is configured to be able to detect the interference light of the scattered light Ls and the reference light Lr.
  • the intensity of the interference light detected by the detector 500 is converted into a signal and used for various calculations in an arithmetic circuit (not shown). More specifically, the speed of the fluid 400 is calculated by a speed calculation unit which is an example of the “speed detection unit” of the present invention.
  • FIG. 3 is a side view showing the overall configuration of the measurement apparatus according to the first modification
  • FIG. 4 is a cross-sectional view showing the overall configuration of the measurement apparatus according to the first modification
  • FIG. 5 is a side view showing the overall configuration of the measuring apparatus according to the second modification.
  • a dihedral mirror 250 is used instead of the grating 200.
  • the dihedral mirror 250 includes a half mirror 251 that separates the irradiation light Li from the light source 100 and a mirror 252 that reflects the separated light Ld2 reflected by the half mirror 251. According to such a two-sided mirror 250, since the relative positions of the half mirror 251 and the mirror 252 are fixed, adjustment work is easy as with the grating 200.
  • the detector 500 is arranged on the same side as the light source 100 when viewed from the fluid 400, and the scattered light Lsb reflected by the fluid 400 on the detection surface. And Lrb can be detected respectively.
  • the detector 500 uses the scattered light reflected by the fluid 400 instead of the scattered light Ls transmitted through the fluid 400 and the reference light Lr reflected and diffused so as to bypass the transparent tube 300 (see FIG. 2).
  • the light Lsb and the Lrb reflected and diffused on the side opposite to the fluid 400 may be configured to be detectable. Even in this case, the measurement can be performed in the same manner as when the transmitted scattered light Ls is detected.
  • FIG. 6 is a side view showing the overall configuration of the measuring apparatus according to the first comparative example.
  • FIG. 7 is a cross-sectional view showing the overall configuration of the measuring apparatus according to the second comparative example.
  • the irradiation light Li irradiated from the light source is separated by the half mirror 210. That is, the light transmitted through the half mirror 210 is the separated light Ld1, and the light reflected by the half mirror 210 is the separated light Ld2.
  • the separated light Ld2 is reflected by the mirror 220 and travels toward the fluid 400 to be measured.
  • the separated lights Ld1 and Ld2 are irradiated to the same position of the fluid 400. That is, the separated light Ld1 and Ld2 are irradiated to the same scatterer 401.
  • the separated lights Ld1 and Ld2 applied to the scatterer 401 become scattered lights Ls1 and Ls2, respectively, and are detected by the detector 500.
  • the light intensity at the irradiation position is likely to be relatively high, and damage is caused to the fluid 400 that is the measurement target by irradiation.
  • the possibility increases.
  • the measurement target is blood
  • a part of the blood may be destroyed by irradiating a high-intensity laser beam, which may adversely affect the living body.
  • the light intensity detected by the detector 500 is reduced, and the S / N ratio is deteriorated. As a result, there is a possibility that accurate measurement cannot be performed.
  • the separated light Ld1 separated by the grating 200 is irradiated to the fluid 400, whereas the separated light Ld2 is applied to the fluid 400. Irradiated and used as reference light Lr. For this reason, damage to the fluid can be reduced as compared with the measuring device 1d according to the first comparative example. Further, since both the scattered light Ld and the reference light Lr scattered by the fluid are detected by the detector 500, the S / N ratio does not deteriorate even when compared with the measuring apparatus 1d according to the first comparative example. That is, according to the measuring apparatus 1 according to the first embodiment, damage to the measurement target can be reduced without deteriorating the detection sensitivity.
  • the incident angles of the separated lights Ld1 and Ld2 can be adjusted by adjusting only the grating 200. Therefore, compared with the case where adjustment is performed using two mirrors as in the first comparative example, the adjustment work can be performed very easily. As a result, the reliability of the apparatus is improved, and furthermore, the cost can be reduced and the apparatus configuration can be simplified by reducing the number of parts.
  • the separated light Ld2 does not enter the fluid 400 but is used as the reference light, but is only reflected by the mirror 700 and is diffused as in this embodiment. No diffusion by 600 is performed. For this reason, the reference light Lrc according to the second comparative example is detected on a relatively narrow surface of the detector 500.
  • the scattered light Ls and the reference light Lrc do not interfere efficiently on the detection surface of the detector 500. For this reason, the S / N ratio of the detection result is deteriorated. Further, since the position where the reference light Lrc is irradiated is limited, relatively high accuracy is required for alignment of the reference light Lrc.
  • each of the scattered light Ls and the reference light Lrc is detected in a wide area of the detection surface of the detector 500. For this reason, it is possible to improve the detection sensitivity without increasing the intensity of the irradiation light Li from the light source.
  • the reference light Lr is irradiated over a wide area by diffusion, it is possible to avoid the need for highly accurate alignment of the reference light Lr.
  • energy balance with the scattered light Ls can be achieved by dispersion of energy by diffusion.
  • the scattered light Ls and the reference light Lr detected by the detector 500 are preferably detected as light having similar energy.
  • the energy loss is larger than the reference light Lr that does not enter the fluid 400. Therefore, if the light quantity of the separated light Ld2 is adjusted to be smaller than the light quantity of the separated light Ld1 at the stage of separation in the grating 200 (for example, the light quantity of the separated light Ld2 is about 1/10 of the light quantity of the separated light Ld1). If it is adjusted so as to be, the detector 500 can detect the scattered light Ls and the reference light Lr having appropriate intensities.
  • the measuring apparatus 1 According to the measuring apparatus 1 according to the first embodiment, it is possible to suitably measure the measurement target by diffusing the reference light Lr.
  • FIG. 8 is a sectional view showing the overall configuration of the measuring apparatus according to the second embodiment.
  • the second embodiment differs from the first embodiment described above only in part of the configuration, and the other configurations and operations are substantially the same. For this reason, below, a different part from 1st Example already demonstrated is demonstrated in detail, and description shall be abbreviate
  • the measuring apparatus 2 according to the second embodiment includes a transmission type diffusion plate 600b instead of the reflection type diffusion plate 600 according to the first embodiment (see FIGS. 1 and 2).
  • the diffusing plate 600b is disposed in the optical path of the separated light Ld2 reflected by the mirror 700, and diffuses the incident separated light Ld2 when passing through to be used as the reference light Lr.
  • the diffused reference light Lr can be irradiated to the detector 500. Therefore, also in the measuring apparatus 2 according to the second embodiment, the same effect as that of the measuring apparatus 1 according to the first embodiment can be obtained.
  • FIG. 9 is a sectional view showing the overall configuration of the measuring apparatus according to the third embodiment.
  • the third embodiment differs from the first and second embodiments described above only in part of the configuration, and the other configurations and operations are substantially the same. For this reason, below, a different part from the already demonstrated 1st and 2nd Example is demonstrated in detail, and description is abbreviate
  • the measuring apparatus 3 includes a lens 650 instead of the reflective diffusion plate 600 (see FIGS. 1 and 2) according to the first embodiment.
  • the lens 650 is disposed in the optical path of the separated light Ld2 reflected by the mirror 700, and diffuses the incident separated light Ld2 into the reference light Lr.
  • the diffused reference light Lr can be irradiated to the detector 500. Therefore, also in the measuring apparatus 3 according to the third embodiment, the same effects as those of the measuring apparatus 1 according to the first embodiment and the measuring apparatus 2 according to the second embodiment can be obtained.
  • the member that diffuses the reference light Lr is not limited to the diffusion plate 600 and the lens 650 described above, and any member that can diffuse incident light can be used as appropriate. That is, any means for diffusing may be used as long as the detector 500 is irradiated with the reference light Lr in a diffused state.
  • FIG. 10 is a cross-sectional view showing the overall configuration of the measuring apparatus according to the fourth embodiment.
  • the fourth embodiment differs from the first to third embodiments described above only in part of the configuration, and the other configurations and operations are substantially the same. For this reason, below, a different part from the 1st-3rd Example already demonstrated is demonstrated in detail, and description is abbreviate
  • the separated light Ld2 reflected by the mirror 700 is diffused by the lens 650b and applied to the detector 500, as in the measuring apparatus 3 according to the third embodiment. Is done.
  • the scattered light Ls scattered by the fluid 400 is further collected by the lens 650b and applied to the detector 500. That is, the lens 650b according to the fourth example has a condensing function for the scattered light Ls in addition to the diffusing function for the separated light Ld2.
  • the detector 500 can be efficiently irradiated with the scattered light Ls. Therefore, the S / N ratio can be improved without increasing the intensity of the irradiation light Li from the light source 100.
  • the scattered light Ls is collected and the reference light Lr so that the diameters of the light beams on the detection surface of the detector 500 are aligned with each other (more preferably, the values are close to the area of the detection surface of the detector 500). Can be detected more efficiently.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification.
  • the measuring method is also included in the technical scope of the present invention.
  • Measuring device 100 Light source 200 Grating 210 Half mirror 220 Mirror 250 Two-sided mirror 300 Transparent tube 400 Fluid 401 Scatterer 500 Detector 600 Diffuser 650 Lens 700 Mirror Li irradiation light Ld1, Ld2 Separated light Ls Scattering Light Lr Reference light

Abstract

A measurement device (1) is provided with a separation and irradiation means (200) for separating laser light into a first light beam (Ld1) and a second light beam (Ld2) and irradiating the first light beam onto an object under measurement (400), a diffusion means (600) for diffusing the second light beam, and a reception means (500) for receiving the first light beam (Ls) scattered by the object under measurement and the second light beam (Lr) diffused by the diffusion means. This measurement device enables suitable measurement of an object under measurement through detection of a scattered first light beam and a diffused second light beam.

Description

測定装置及び測定方法Measuring apparatus and measuring method
 本発明は、レーザー光を照射することで被計測対象に関する測定を行う測定装置及び測定方法の技術分野に関する。 The present invention relates to a technical field of a measuring apparatus and a measuring method for measuring a measurement target by irradiating a laser beam.
 この種の装置として、例えばレーザー光のドップラーシフト(所謂、レーザードップラー)を利用して流体の速度を検出する装置が知られている。例えば特許文献1では、レーザー光源の光束をビームスプリッターで分離して、その一部を参照光として利用する装置が提案されている。 As this type of device, for example, a device that detects the velocity of a fluid using a laser beam Doppler shift (so-called laser Doppler) is known. For example, Patent Document 1 proposes an apparatus that separates a light beam of a laser light source with a beam splitter and uses a part thereof as reference light.
特開2013-96918号公報JP 2013-96918 A
 上述したような測定において、被計測対象に照射された光は散乱によって拡散される。その一方で、参照光は拡散されないため光束の径は小さいままである。このような散乱光と参照光との干渉光を検出しようとする場合、互いの光束の径に大きく違いがあるため、検出器の検出面において効率よく干渉が生じない。この結果、検出結果のS/N比(信号対雑音比)が悪化し、正確な測定が行えなくなってしまうという技術的問題点が生ずる。 In the measurement as described above, the light irradiated to the measurement target is diffused by scattering. On the other hand, since the reference light is not diffused, the diameter of the light beam remains small. When the interference light between the scattered light and the reference light is to be detected, there is a large difference in the diameters of the light beams, so that interference does not occur efficiently on the detection surface of the detector. As a result, the S / N ratio (signal-to-noise ratio) of the detection result deteriorates, resulting in a technical problem that accurate measurement cannot be performed.
 本発明が解決しようとする課題には、上記のようなものが一例として挙げられる。本発明は、参照光を拡散することで、被計測対象に関する測定を好適に実行可能な測定装置及び測定方法を提供することを課題とする。 Examples of problems to be solved by the present invention include the above. It is an object of the present invention to provide a measurement apparatus and a measurement method that can suitably perform measurement related to an object to be measured by diffusing reference light.
 上記課題を解決するための測定装置は、レーザー光を第1光束及び第2光束に分離し、前記第1光束を被計測対象に照射する分離照射手段と、前記第2光束を拡散させる拡散手段と、前記被計測対象で散乱された前記第1光束と、前記拡散手段で拡散された前記第2光束とを受光する受光手段とを備える。 A measuring apparatus for solving the above-described problems includes a separation irradiation unit that separates laser light into a first light beam and a second light beam, and irradiates the measurement target with the first light beam, and a diffusion unit that diffuses the second light beam. And a light receiving means for receiving the first light beam scattered by the measurement target and the second light beam diffused by the diffusion means.
 上記課題を解決するための測定方法は、レーザー光を第1光束及び第2光束に分離し、前記第1光束を被計測対象に照射する分離照射工程と、前記第2光束を拡散させる拡散工程と、前記被計測対象で散乱された前記第1光束と、前記拡散工程で拡散された前記第2光束とを受光する受光工程とを備える。 A measurement method for solving the above-described problems includes a separation irradiation step of separating laser light into a first light beam and a second light beam, and irradiating the measurement target with the first light beam, and a diffusion step of diffusing the second light beam. And a light receiving step for receiving the first light beam scattered by the measurement target and the second light beam diffused in the diffusion step.
第1実施例に係る測定装置の全体構成を示す側面図である。It is a side view which shows the whole structure of the measuring apparatus which concerns on 1st Example. 第1実施例に係る測定装置の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the measuring apparatus which concerns on 1st Example. 第1変形例に係る測定装置の全体構成を示す側面図である。It is a side view which shows the whole structure of the measuring apparatus which concerns on a 1st modification. 第1変形例に係る測定装置の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the measuring apparatus which concerns on a 1st modification. 第2変形例に係る測定装置の全体構成を示す側面図である。It is a side view which shows the whole structure of the measuring apparatus which concerns on a 2nd modification. 第1比較例に係る測定装置の全体構成を示す側面図である。It is a side view which shows the whole structure of the measuring apparatus which concerns on a 1st comparative example. 第2比較例に係る測定装置の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the measuring apparatus which concerns on a 2nd comparative example. 第2実施例に係る測定装置の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the measuring apparatus which concerns on 2nd Example. 第3実施例に係る測定装置の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the measuring apparatus which concerns on 3rd Example. 第4実施例に係る測定装置の全体構成を示す断面図である。It is sectional drawing which shows the whole structure of the measuring apparatus which concerns on 4th Example.
 <1>
 本実施形態に係る測定装置は、レーザー光を第1光束及び第2光束に分離し、前記第1光束を被計測対象に照射する分離照射手段と、前記第2光束を拡散させる拡散手段と、前記被計測対象で散乱された前記第1光束と、前記拡散手段で拡散された前記第2光束とを受光する受光手段とを備える。
<1>
The measuring apparatus according to the present embodiment separates laser light into a first light beam and a second light beam, separate irradiation means for irradiating the measurement target with the first light beam, diffusion means for diffusing the second light beam, And a light receiving unit that receives the first light beam scattered by the measurement target and the second light beam diffused by the diffusion unit.
 本実施形態に係る測定装置によれば、その動作時には、移動する被計測対象(例えば、透明チューブの内部を流れる血液等の流体、或いはコンベヤ上を流れる板状部材等の個体など)に対して、レーザー光が照射される。本実施形態に係るレーザー光は特に、被計測対象に照射される前に、分離照射手段によって第1光束及び第2光束に分離される。分離照射手段は、例えばグレーティング(回折格子)やハーフミラー等を含んで構成される。なお、分離照射手段は、レーザー光を3以上の光束に分離して照射してもよい(即ち、第3光束や第4光束等が存在してもよい)。 According to the measuring apparatus according to the present embodiment, at the time of operation, the object to be measured (for example, a fluid such as blood flowing inside the transparent tube or an individual such as a plate member flowing on the conveyor) is moved. Laser light is irradiated. In particular, the laser beam according to the present embodiment is separated into a first light beam and a second light beam by the separation irradiation means before being irradiated onto the measurement target. The separation irradiation unit includes, for example, a grating (diffraction grating), a half mirror, and the like. The separating and irradiating means may irradiate the laser beam by separating it into three or more light beams (that is, a third light beam, a fourth light beam, etc. may exist).
 分離された光束のうち、第1光束は被計測対象に照射される。被計測対象に照射された第1光束は、被計測対象で散乱(具体的には、透過や反射)され散乱光となる。他方で、第2光束は、被計測対象に照射されることなく、拡散手段で拡散される。拡散手段は、例えば拡散板やレンズ等を含んで構成される。 Of the separated light fluxes, the first light flux is irradiated onto the object to be measured. The first light beam irradiated to the measurement target is scattered (specifically, transmitted or reflected) by the measurement target and becomes scattered light. On the other hand, the second light flux is diffused by the diffusing means without being irradiated on the measurement target. The diffusing unit includes, for example, a diffusing plate and a lens.
 散乱された第1光束及び拡散された第2光束は、共通の受光手段によって受光される。受光手段は、例えばフォトダイオード等として構成されている。受光手段では、例えば受光された光の強度が信号化され、測定結果の演算に用いられる。より具体的には、例えばドップラーシフトを利用した被計測対象の速度算出が実行される。 The scattered first light beam and the diffused second light beam are received by a common light receiving means. The light receiving means is configured as a photodiode or the like, for example. In the light receiving means, for example, the intensity of the received light is converted into a signal and used for calculation of the measurement result. More specifically, for example, speed calculation of the measurement target using Doppler shift is executed.
 ここで本実施形態では特に、上述したように、被計測対象に照射される第1光束と、被計測対象に照射されない第2光束とを利用して測定が実行されるため、例えば第1光束及び第2光束の両方を被計測対象に照射して散乱光を検出する場合と比べて、被計測対象での散乱によるエネルギーロスを低減することができる。よって、検出結果のS/N比を改善することができる。また、第1光束及び第2光束を被計測対象の一点に照射する場合と比べて、光学系のアライメントを容易に行える。加えて、レーザー光を照射することによる被計測対象へのダメージを低減することができる。 Here, in the present embodiment, in particular, as described above, the measurement is performed using the first light beam that is irradiated onto the measurement target and the second light beam that is not irradiated onto the measurement target. Compared with the case where scattered light is detected by irradiating both the second light flux and the second light flux, the energy loss due to scattering at the measurement target can be reduced. Therefore, the S / N ratio of the detection result can be improved. Further, the alignment of the optical system can be easily performed as compared with the case where the first light flux and the second light flux are irradiated to one point to be measured. In addition, it is possible to reduce damage to the measurement target by irradiating the laser beam.
 本実施形態では更に、上述したように、第2光束が拡散されてから検出される。これにより、被計測対象で散乱された第1光束が比較的広い面積で検出されるのに対し、第2光束が極めて狭い面積でしか検出されないという状況を防止できる。このようにすれば、検出手段の検出面において第1光束及び第2光束の各々を効率的に検出でき、検出感度を向上させることができる。また、第2光束に高精度のアライメントが要求されるのを回避できる。加えて、拡散によるエネルギーの分散により、被計測対象で散乱される第1光束とのエネルギーバランスをとることができる。 In the present embodiment, as described above, the second light beam is detected after being diffused. Accordingly, it is possible to prevent a situation in which the first light beam scattered by the measurement target is detected in a relatively large area, whereas the second light beam is detected only in a very small area. In this way, each of the first light beam and the second light beam can be efficiently detected on the detection surface of the detection means, and the detection sensitivity can be improved. In addition, it is possible to avoid the need for highly accurate alignment of the second light flux. In addition, the energy balance with the first light beam scattered by the measurement target can be achieved by the dispersion of energy by diffusion.
 以上説明したように、本実施形態に係る測定装置によれば、散乱された第1光束及び拡散された第2光束を検出することで、被計測対象に関する測定を好適に実行可能である。 As described above, according to the measurement apparatus according to the present embodiment, it is possible to suitably perform the measurement on the measurement target object by detecting the scattered first light beam and the diffused second light beam.
 <2>
 本実施形態に係る測定装置の一態様では、前記分離照射手段は、グレーティングを含む。
<2>
In one aspect of the measuring apparatus according to this embodiment, the separation irradiation unit includes a grating.
 この態様によれば、レーザー光は、グレーティング(回折格子)に入射されることで、第1光束及び第2光束に分離される。このため、例えば複数のミラーを利用してレーザー光を分離する場合と比較して、光路の調整に精度が要求されない。従って、容易に且つ精度良く測定が実行できる。 According to this aspect, the laser light is incident on the grating (diffraction grating) and is separated into the first light flux and the second light flux. For this reason, compared with the case where a laser beam is isolate | separated using a some mirror, for example, the precision is not required for adjustment of an optical path. Therefore, measurement can be performed easily and accurately.
 また、部品点数も削減することができるため、コストの増大や装置構成の複雑化を防止することができる。 Also, since the number of parts can be reduced, it is possible to prevent an increase in cost and a complicated apparatus configuration.
 <3>
 本実施形態に係る測定装置の他の態様では、前記分離照射手段は、前記レーザー光の一部を反射する一部反射手段を含む。
<3>
In another aspect of the measuring apparatus according to this embodiment, the separation irradiation unit includes a partial reflection unit that reflects a part of the laser beam.
 この態様によれば、レーザー光は、例えばハーフミラーとして構成される一部反射手段により、一部が反射され、他の一部が透過される。よって、レーザー光を確実に第1光束及び第2光束に分離することができる。 According to this aspect, the laser beam is partially reflected by the partially reflecting means configured as a half mirror, for example, and the other part is transmitted. Therefore, the laser beam can be reliably separated into the first light flux and the second light flux.
 <4>
 上述した一部反射手段を含む態様では、前記分離照射手段は、前記一部反射手段との相対的な位置が固定された反射手段を更に含んでいてもよい。
<4>
In the aspect including the partial reflection unit described above, the separation irradiation unit may further include a reflection unit whose position relative to the partial reflection unit is fixed.
 この場合、一部反射手段で分離された第1光束及び第2光束の一方が反射手段により反射され、適切な方向に導かれる。本態様では特に、反射手段は、一部反射手段との相対的な位置が固定されている(言い換えれば、2面鏡として構成されている)ため、一部反射手段と反射手段の角度調整を別々に行わずに済む。従って、レーザー光の照射角度の調整が容易に行える。 In this case, one of the first light beam and the second light beam partially separated by the reflecting means is reflected by the reflecting means and guided in an appropriate direction. In this aspect, in particular, since the reflecting means is fixed in position relative to the partially reflecting means (in other words, configured as a dihedral mirror), the angle of the partially reflecting means and the reflecting means can be adjusted. You don't have to do it separately. Therefore, it is possible to easily adjust the irradiation angle of the laser beam.
 <5>
 本実施形態に係る測定装置の他の態様では、前記拡散手段は、前記第2光束の光路内に配置された散乱板である。
<5>
In another aspect of the measuring apparatus according to the present embodiment, the diffusing unit is a scattering plate disposed in the optical path of the second light beam.
 この態様によれば、散乱板によって第2光束を確実に拡散させることができる。なお、拡散板は反射型のものとして構成されてもよいし、透過型のものとして構成されてもよい。 According to this aspect, the second light beam can be reliably diffused by the scattering plate. The diffusion plate may be configured as a reflection type or a transmission type.
 <6>
 本実施形態に係る測定装置の他の態様では、前記拡散手段は、前記第2光束の光路内に配置されたレンズである。
<6>
In another aspect of the measuring apparatus according to this embodiment, the diffusing unit is a lens disposed in the optical path of the second light beam.
 この態様によれば、レンズによって第2光束を確実に拡散させることができる。なお、レンズは複数設けられてもよい。 According to this aspect, the second light flux can be reliably diffused by the lens. A plurality of lenses may be provided.
 <7>
 上述したレンズを備える態様では、レンズは、前記第1光束を前記検出手段に対して集光する。
<7>
In the aspect provided with the lens described above, the lens condenses the first light flux on the detection means.
 この場合、第2光束を拡散させるレンズを利用して、第1光束を集光することもできる。このため、第1光束を効率的に検出手段で検出することが可能となり、結果としてS/N比を向上させることが可能となる。 In this case, the first light beam can be condensed using a lens that diffuses the second light beam. For this reason, the first light flux can be efficiently detected by the detection means, and as a result, the S / N ratio can be improved.
 <8>
 上述したレンズで第1光束を集光する態様では、前記レンズは、前記検出手段の検出面における前記第1光束及び前記第2光束の径が揃うように、前記第1光束を集光し、前記第2光束を拡散する。
<8>
In the aspect of condensing the first light flux by the lens described above, the lens condenses the first light flux so that the diameters of the first light flux and the second light flux are uniform on the detection surface of the detection means, The second light flux is diffused.
 この場合、検出手段で第1光束及び第2光束を極めて効率的に検出できる。従って、検出結果のS/N比を向上させることが可能である。 In this case, the first light flux and the second light flux can be detected very efficiently by the detection means. Therefore, the S / N ratio of the detection result can be improved.
 なお、本態様に係る「揃うように」とは、第1光束の径と第2光束の径とが完全に一致する場合に限定されるものではなく、上述した効果を得られる程度に近い値とされていることを意味する。 Note that “so as to be aligned” according to the present embodiment is not limited to the case where the diameter of the first light beam and the diameter of the second light beam completely coincide with each other, and is a value close to the extent that the above-described effect can be obtained. It means that it is said.
 <9>
 本実施形態に係る測定装置の他の態様では、前記分離手段は、前記第2光束の光量が前記第1光束の光量より小さくなるように前記レーザー光を分離する。
<9>
In another aspect of the measuring apparatus according to the present embodiment, the separation unit separates the laser light so that the light amount of the second light beam is smaller than the light amount of the first light beam.
 この態様によれば、検出時点での第1光束及び第2光束の光量(エネルギー)を揃えることができる。具体的には、被計測対象に照射されることで大きなエネルギーロスを生じる第1光束と、被計測対象に照射されないため殆どエネルギーロスを生じない第2光束との検出時点でのエネルギーが近い値となる。よって、第1光束及び第2光束を効率よく検出でき、S/N比を向上させることが可能である。 According to this aspect, the light amounts (energy) of the first light flux and the second light flux at the time of detection can be made uniform. Specifically, the energy at the time of detection of the first light beam that causes a large energy loss when irradiated on the measurement target and the second light beam that generates almost no energy loss because it is not irradiated on the measurement target are close to each other. It becomes. Therefore, the first light flux and the second light flux can be detected efficiently, and the S / N ratio can be improved.
 <10>
 本実施形態に係る測定装置の他の態様では、前記受光手段で受光された前記第1光束のドップラーシフトから、前記被計測対象の速度を検出する速度検出手段を更に備える。
<10>
In another aspect of the measuring apparatus according to the present embodiment, the measuring apparatus further includes speed detecting means for detecting the speed of the measurement target from the Doppler shift of the first light beam received by the light receiving means.
 この態様によれば、分離された第1光束の散乱光に発生するドップラーシフトを利用して、被計測対象の速度を検出できる。具体的には、ドップラーシフトが発生している第1光束と、ドップラーシフトが発生していない第2光束との干渉光から得られるビート信号を利用して、被計測対象の速度を検出できる。 According to this aspect, the speed of the measurement target can be detected using the Doppler shift generated in the scattered light of the separated first light flux. Specifically, the speed of the measurement target can be detected using a beat signal obtained from interference light between the first light flux in which the Doppler shift is generated and the second light flux in which the Doppler shift is not generated.
 <11>
 本実施形態に係る測定方法は、レーザー光を第1光束及び第2光束に分離し、前記第1光束を被計測対象に照射する分離照射工程と、前記第2光束を拡散させる拡散工程と、前記被計測対象で散乱された前記第1光束と、前記拡散工程で拡散された前記第2光束とを受光する受光工程とを備える。
<11>
The measurement method according to the present embodiment separates laser light into a first light flux and a second light flux, irradiates the measurement target with the first light flux, a diffusion process for diffusing the second light flux, A light receiving step of receiving the first light beam scattered by the measurement target and the second light beam diffused in the diffusion step.
 本実施形態に係る測定方法によれば、上述した本実施形態に係る測定装置と同様に、散乱された第1光束及び拡散された第2光束を検出して、好適に測定を行うことが可能である。 According to the measurement method according to the present embodiment, similarly to the measurement apparatus according to the present embodiment described above, it is possible to detect the scattered first light beam and the diffused second light beam and perform measurement appropriately. It is.
 なお、本実施形態に係る測定方法においても、上述した本実施形態に係る測定装置における各種態様と同様の各種態様を採ることが可能である。 In the measurement method according to this embodiment, it is possible to adopt various aspects similar to the various aspects of the measurement apparatus according to this embodiment described above.
 本実施形態に係る測定装置及び測定方法の作用及び他の利得については、以下に示す実施例において、より詳細に説明する。 The operation and other gains of the measuring apparatus and measuring method according to the present embodiment will be described in more detail in the following examples.
 以下では、図面を参照して測定装置及び測定方法の実施例について詳細に説明する。なお、以下の実施例では、本発明に係る測定装置が、例えば血液等の流体の速度を測定する装置として適用される場合について説明する。 Hereinafter, embodiments of the measuring apparatus and the measuring method will be described in detail with reference to the drawings. In the following embodiments, a case where the measuring apparatus according to the present invention is applied as an apparatus for measuring the velocity of a fluid such as blood will be described.
 <第1実施例>
 第1実施例に係る測定装置について、図1から図7を参照して説明する。
<First embodiment>
A measuring apparatus according to the first embodiment will be described with reference to FIGS.
 <全体構成>
 先ず、第1実施例に係る測定装置の全体構成について、図1及び図2を参照して説明する。ここに図1は、第1実施例に係る測定装置の全体構成を示す側面図である。また図2は、第1実施例に係る測定装置の全体構成を示す断面図である。
<Overall configuration>
First, the overall configuration of the measuring apparatus according to the first embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 is a side view showing the overall configuration of the measuring apparatus according to the first embodiment. FIG. 2 is a cross-sectional view showing the overall configuration of the measuring apparatus according to the first embodiment.
 図1及び図2において、第1実施例に係る測定装置1は、主な構成要素として、光源100と、グレーティング200と、検出器500と、拡散板600とを備えて構成されている。 1 and 2, the measuring apparatus 1 according to the first embodiment includes a light source 100, a grating 200, a detector 500, and a diffuser plate 600 as main components.
 光源100は、照射光Liを出力可能に構成されたレーザー光源である。光源100は、レーザー光の出力強度を調整可能とされている。 The light source 100 is a laser light source configured to output the irradiation light Li. The light source 100 can adjust the output intensity of the laser light.
 グレーティング200は、本発明の「分離照射手段」の一例であり、ブレーズ型のグレーティングとして構成されている。なお、グレーティン200は、バイナリ型のグレーティングとして構成されてもよい。また、集光効果(即ち、レンズ効果)を有するものとして構成されてもよい。グレーティング200は、光源100から照射された照射光Liを分離光Ld1及びLd2に分離して、透明チューブ300内を図1の右方向(図2の手前方向)に向かって流れる流体400に照射する。 The grating 200 is an example of the “separation irradiation means” in the present invention, and is configured as a blazed grating. The grating 200 may be configured as a binary grating. Moreover, you may comprise as what has a condensing effect (namely, lens effect). The grating 200 separates the irradiation light Li irradiated from the light source 100 into separated light Ld1 and Ld2, and irradiates the fluid 400 flowing in the right direction in FIG. 1 (frontward direction in FIG. 2) in the transparent tube 300. .
 分離光Ld1は、被計測対象である流体400に対して入射される。これにより、分離光Ld1は、流体400内の散乱体401において散乱(透過)される。この結果、散乱体401から散乱光Lsが放射される。一方、分離光Ld2は、流体400には入射されず、拡散板600に入射される。 The separated light Ld1 is incident on the fluid 400 to be measured. Thus, the separated light Ld1 is scattered (transmitted) by the scatterer 401 in the fluid 400. As a result, scattered light Ls is emitted from the scatterer 401. On the other hand, the separated light Ld2 is not incident on the fluid 400 but is incident on the diffusion plate 600.
 拡散板600は、本発明の「拡散手段」の一例であり、反射型の拡散板として構成されている。拡散板600は、入射された分離光Ld2を拡散し、参照光Lrとして検出器500に照射する。 The diffusion plate 600 is an example of the “diffusion means” of the present invention, and is configured as a reflective diffusion plate. The diffusion plate 600 diffuses the incident separated light Ld2 and irradiates the detector 500 as reference light Lr.
 検出器500は、本発明の「受光手段」の一例であり、例えばフォトディテクターとして構成されている。検出器500は、流体400から見て光源100とは反対側に配置されており、その検出面において、流体400を透過した散乱光Ls及び拡散板600で拡散された参照光Lrを夫々検出可能とされている。即ち、検出器500は、散乱光Ls及び参照光Lrの干渉光を検出可能に構成されている。 The detector 500 is an example of the “light receiving means” in the present invention, and is configured as, for example, a photodetector. The detector 500 is disposed on the side opposite to the light source 100 when viewed from the fluid 400, and can detect the scattered light Ls transmitted through the fluid 400 and the reference light Lr diffused by the diffusion plate 600 on the detection surface. It is said that. That is, the detector 500 is configured to be able to detect the interference light of the scattered light Ls and the reference light Lr.
 検出器500で検出された干渉光の強度は信号化され、図示せぬ演算回路等において各種演算に用いられる。具体的には、本発明の「速度検出手段」の一例である速度演算部において演算され、流体400の速度が算出される。 The intensity of the interference light detected by the detector 500 is converted into a signal and used for various calculations in an arithmetic circuit (not shown). More specifically, the speed of the fluid 400 is calculated by a speed calculation unit which is an example of the “speed detection unit” of the present invention.
 <変形例>
 次に、第1実施例に係る測定装置の変形例について、図3から図5を参照して説明する。ここに図3は、第1変形例に係る測定装置の全体構成を示す側面図であり、図4は、第1変形例に係る測定装置の全体構成を示す断面図である。また図5は、第2変形例に係る測定装置の全体構成を示す側面図である。
<Modification>
Next, modified examples of the measuring apparatus according to the first embodiment will be described with reference to FIGS. FIG. 3 is a side view showing the overall configuration of the measurement apparatus according to the first modification, and FIG. 4 is a cross-sectional view showing the overall configuration of the measurement apparatus according to the first modification. FIG. 5 is a side view showing the overall configuration of the measuring apparatus according to the second modification.
 図3及び図4において、第1変形例に係る測定装置1bでは、グレーティング200に代えて、2面鏡250が用いられている。2面鏡250は、光源100からの照射光Liを分離するハーフミラー251と、ハーフミラー251で反射された分離光Ld2を反射するミラー252を備えている。このような2面鏡250によれば、ハーフミラー251及びミラー252の相対的な位置が固定されているため、グレーティング200と同様に調整作業が容易である。 3 and 4, in the measuring apparatus 1b according to the first modification, a dihedral mirror 250 is used instead of the grating 200. The dihedral mirror 250 includes a half mirror 251 that separates the irradiation light Li from the light source 100 and a mirror 252 that reflects the separated light Ld2 reflected by the half mirror 251. According to such a two-sided mirror 250, since the relative positions of the half mirror 251 and the mirror 252 are fixed, adjustment work is easy as with the grating 200.
 図5において、第2変形例に係る測定装置1cでは、検出器500が、流体400から見て光源100と同じ側に配置されており、その検出面において、流体400で反射された散乱光Lsb及びLrbを夫々検出可能とされている。 In FIG. 5, in the measuring apparatus 1c according to the second modification, the detector 500 is arranged on the same side as the light source 100 when viewed from the fluid 400, and the scattered light Lsb reflected by the fluid 400 on the detection surface. And Lrb can be detected respectively.
 このように、検出器500は、流体400を透過した散乱光Ls及び透明チューブ300を迂回するように反射及び拡散された参照光Lr(図2参照)に代えて、流体400で反射された散乱光Lsb及び流体400とは反対側に反射及び拡散されたLrbを検出可能に構成されてもよい。この場合でも、透過した散乱光Lsを検出する場合と同様に測定が行える。 As described above, the detector 500 uses the scattered light reflected by the fluid 400 instead of the scattered light Ls transmitted through the fluid 400 and the reference light Lr reflected and diffused so as to bypass the transparent tube 300 (see FIG. 2). The light Lsb and the Lrb reflected and diffused on the side opposite to the fluid 400 may be configured to be detectable. Even in this case, the measurement can be performed in the same manner as when the transmitted scattered light Ls is detected.
 <測定時の効果>
 次に、第1実施例に係る測定装置によって得られる技術的効果について、図6及び図7に示す比較例を参照しながら詳細に説明する。ここに図6は、第1比較例に係る測定装置の全体構成を示す側面図である。また図7は、第2比較例に係る測定装置の全体構成を示す断面図である。
<Effects during measurement>
Next, technical effects obtained by the measuring apparatus according to the first embodiment will be described in detail with reference to comparative examples shown in FIGS. FIG. 6 is a side view showing the overall configuration of the measuring apparatus according to the first comparative example. FIG. 7 is a cross-sectional view showing the overall configuration of the measuring apparatus according to the second comparative example.
 図6において、第1比較例に係る測定装置1dでは、光源から照射された照射光Liは、ハーフミラー210によって分離される。即ち、ハーフミラー210を透過した光が分離光Ld1とされ、ハーフミラー210で反射された光が分離光Ld2とされる。なお、分離光Ld2は、ミラー220で反射されることにより被計測対象である流体400に向かう。 In FIG. 6, in the measuring apparatus 1 d according to the first comparative example, the irradiation light Li irradiated from the light source is separated by the half mirror 210. That is, the light transmitted through the half mirror 210 is the separated light Ld1, and the light reflected by the half mirror 210 is the separated light Ld2. The separated light Ld2 is reflected by the mirror 220 and travels toward the fluid 400 to be measured.
 また、比較例に係る測定装置1dでは特に、分離光Ld1及びLd2は、流体400の互いに同じ位置に照射される。即ち、分離光Ld1及びLd2は、同じ散乱体401に照射される。散乱体401に照射された分離光Ld1及びLd2は、夫々散乱光Ls1及びLs2となり、検出器500において検出される。 Further, particularly in the measurement apparatus 1d according to the comparative example, the separated lights Ld1 and Ld2 are irradiated to the same position of the fluid 400. That is, the separated light Ld1 and Ld2 are irradiated to the same scatterer 401. The separated lights Ld1 and Ld2 applied to the scatterer 401 become scattered lights Ls1 and Ls2, respectively, and are detected by the detector 500.
 上述した比較例では、分離光Ld1及びLd2が流体400の同じ一点に照射されるため、照射位置における光強度が比較的高くなり易く、被計測対象である流体400に対して照射によるダメージを与える可能性が高くなる。例えば、被計測対象が血液である場合、強度の高いレーザー光が照射されることで血液の一部が破壊され、生体に対して悪影響を与えてしまうおそれがある。一方で、ダメージの低減を図るために光強度を低くすると、検出器500で検出される光強度が小さくなり、S/N比が悪化する。この結果、正確な測定が実行できないおそれが生ずる。 In the comparative example described above, since the separated lights Ld1 and Ld2 are irradiated to the same point of the fluid 400, the light intensity at the irradiation position is likely to be relatively high, and damage is caused to the fluid 400 that is the measurement target by irradiation. The possibility increases. For example, when the measurement target is blood, a part of the blood may be destroyed by irradiating a high-intensity laser beam, which may adversely affect the living body. On the other hand, when the light intensity is lowered in order to reduce damage, the light intensity detected by the detector 500 is reduced, and the S / N ratio is deteriorated. As a result, there is a possibility that accurate measurement cannot be performed.
 更に、上述した比較例では、分離光Ld1及びLd2を流体400の同じ一点に照射しなければならないため、ハーフミラー210及びミラー220に対して高精度のアライメントが要求されると共に、信頼性を確保することも容易ではない。 Furthermore, in the comparative example described above, since the separated light Ld1 and Ld2 must be irradiated to the same point of the fluid 400, high precision alignment is required for the half mirror 210 and the mirror 220, and reliability is ensured. It is not easy to do.
 一方、図1から図4に示した第1実施例に係る測定装置1によれば、グレーティング200で分離された分離光Ld1が流体400に照射されるのに対し、分離光Ld2は流体400に照射されず参照光Lrとして利用される。このため、第1比較例に係る測定装置1dと比べて、流体に対するダメージを低減できる。また、流体で散乱された散乱光Ld及び参照光Lrは共に検出器500で検出されるため、第1比較例に係る測定装置1dと比べてもS/N比は悪化しない。即ち、第1実施例に係る測定装置1によれば、検出感度を悪化させることなく、被計測対象へのダメージを低減できる。 On the other hand, according to the measuring apparatus 1 according to the first embodiment shown in FIGS. 1 to 4, the separated light Ld1 separated by the grating 200 is irradiated to the fluid 400, whereas the separated light Ld2 is applied to the fluid 400. Irradiated and used as reference light Lr. For this reason, damage to the fluid can be reduced as compared with the measuring device 1d according to the first comparative example. Further, since both the scattered light Ld and the reference light Lr scattered by the fluid are detected by the detector 500, the S / N ratio does not deteriorate even when compared with the measuring apparatus 1d according to the first comparative example. That is, according to the measuring apparatus 1 according to the first embodiment, damage to the measurement target can be reduced without deteriorating the detection sensitivity.
 また、2つの分離光Ld1及びLd2を一点に照射することが要求されないことで、光学系のアライメントに高い精度が要求されずに済む。よって、例えば被計測対象を変更するために透明チューブ300の交換を行うような場合であっても、交換後の微調整が要求されない。 Further, since it is not required to irradiate the two separated lights Ld1 and Ld2 at one point, high accuracy is not required for alignment of the optical system. Therefore, for example, even when the transparent tube 300 is replaced in order to change the measurement target, fine adjustment after replacement is not required.
 加えて、第1実施例に係る測定装置1では、グレーティング200のみの調整によって、分離光Ld1及びLd2の入射角を調整できる。従って、第1比較例のように2つのミラーを利用して調整する場合と比較すると、極めて容易に調整作業が行える。この結果、装置の信頼性も向上し、更には部品数の削減によるコストの低減及び装置構成の簡単化も実現できる。 In addition, in the measuring apparatus 1 according to the first embodiment, the incident angles of the separated lights Ld1 and Ld2 can be adjusted by adjusting only the grating 200. Therefore, compared with the case where adjustment is performed using two mirrors as in the first comparative example, the adjustment work can be performed very easily. As a result, the reliability of the apparatus is improved, and furthermore, the cost can be reduced and the apparatus configuration can be simplified by reducing the number of parts.
 図7において、第2比較例に係る測定装置1eでは、分離光Ld2が流体400に入射せず参照光として利用されるものの、ミラー700によって反射されるだけで、本実施例のように拡散板600による拡散は行われない。このため、第2比較例に係る参照光Lrcは、検出器500の比較的狭い面において検出されることになる。 In FIG. 7, in the measuring apparatus 1e according to the second comparative example, the separated light Ld2 does not enter the fluid 400 but is used as the reference light, but is only reflected by the mirror 700 and is diffused as in this embodiment. No diffusion by 600 is performed. For this reason, the reference light Lrc according to the second comparative example is detected on a relatively narrow surface of the detector 500.
 この場合、検出器500の検出面において、散乱光Ls及び参照光Lrcが効率よく干渉しない。このため、検出結果のS/N比は悪化する。また、参照光Lrcが照射される位置が限定されるため、参照光Lrcのアライメントにも比較的高い精度が要求されることになる。 In this case, the scattered light Ls and the reference light Lrc do not interfere efficiently on the detection surface of the detector 500. For this reason, the S / N ratio of the detection result is deteriorated. Further, since the position where the reference light Lrc is irradiated is limited, relatively high accuracy is required for alignment of the reference light Lrc.
 一方、図1から図4に示した第1実施例に係る測定装置1によれば、散乱光Ls及び参照光Lrcの各々が検出器500の検出面の広い面積で検出される。このため、光源からの照射光Liの強度を高くせずとも、検出感度を向上させることができる。また、拡散によって参照光Lrが広い面積に照射されるため、参照光Lrに高精度のアライメントが要求されるのを回避できる。加えて、拡散によるエネルギーの分散により、散乱光Lsとのエネルギーバランスをとることができる。 On the other hand, according to the measuring apparatus 1 according to the first embodiment shown in FIGS. 1 to 4, each of the scattered light Ls and the reference light Lrc is detected in a wide area of the detection surface of the detector 500. For this reason, it is possible to improve the detection sensitivity without increasing the intensity of the irradiation light Li from the light source. In addition, since the reference light Lr is irradiated over a wide area by diffusion, it is possible to avoid the need for highly accurate alignment of the reference light Lr. In addition, energy balance with the scattered light Ls can be achieved by dispersion of energy by diffusion.
 なお、検出器500で検出される散乱光Lsと参照光Lrは、同程度のエネルギーを有する光として検出されることが好ましい。ここで、散乱光Lsは、被計測対象である流体400で散乱されるため、流体400に入射しない参照光Lrと比べてエネルギーロスが大きい。よって、グレーティング200における分離の段階で、分離光Ld2の光量が分離光Ld1の光量より小さくなるように調整すれば(例えば、分離光Ld2の光量が分離光Ld1の光量の10分の1程度になるように調整すれば)、検出器500において適切な強度の散乱光Ls及び参照光Lrを検出できる。 Note that the scattered light Ls and the reference light Lr detected by the detector 500 are preferably detected as light having similar energy. Here, since the scattered light Ls is scattered by the fluid 400 to be measured, the energy loss is larger than the reference light Lr that does not enter the fluid 400. Therefore, if the light quantity of the separated light Ld2 is adjusted to be smaller than the light quantity of the separated light Ld1 at the stage of separation in the grating 200 (for example, the light quantity of the separated light Ld2 is about 1/10 of the light quantity of the separated light Ld1). If it is adjusted so as to be, the detector 500 can detect the scattered light Ls and the reference light Lr having appropriate intensities.
 以上説明したように、第1実施例に係る測定装置1によれば、参照光Lrを拡散することにより、好適に被計測対象の測定を行うことが可能である。 As described above, according to the measuring apparatus 1 according to the first embodiment, it is possible to suitably measure the measurement target by diffusing the reference light Lr.
 <第2実施例>
 次に、第2実施例に係る測定装置について、図8を参照して説明する。ここに図8は、第2実施例に係る測定装置の全体構成を示す断面図である。なお、第2実施例は、上述した第1実施例と一部の構成が異なるのみであり、その他の構成や動作については概ね同様である。このため、以下では、既に説明した第1実施例と異なる部分について詳細に説明し、他の重複する部分については適宜説明を省略するものとする。
<Second embodiment>
Next, a measuring apparatus according to the second embodiment will be described with reference to FIG. FIG. 8 is a sectional view showing the overall configuration of the measuring apparatus according to the second embodiment. The second embodiment differs from the first embodiment described above only in part of the configuration, and the other configurations and operations are substantially the same. For this reason, below, a different part from 1st Example already demonstrated is demonstrated in detail, and description shall be abbreviate | omitted suitably about another overlapping part.
 図8において、第2実施例に係る測定装置2では、第1実施例に係る反射型の拡散板600(図1及び図2参照)に代えて、透過型の拡散板600bが備えられている。拡散板600bは、ミラー700で反射された分離光Ld2の光路中に配置されており、入射した分離光Ld2を透過する際に拡散させて参照光Lrとする。 In FIG. 8, the measuring apparatus 2 according to the second embodiment includes a transmission type diffusion plate 600b instead of the reflection type diffusion plate 600 according to the first embodiment (see FIGS. 1 and 2). . The diffusing plate 600b is disposed in the optical path of the separated light Ld2 reflected by the mirror 700, and diffuses the incident separated light Ld2 when passing through to be used as the reference light Lr.
 このように、透過型の拡散板600bを用いる場合でも、拡散された参照光Lrを検出器500に照射することができる。よって、第2実施例に係る測定装置2においても、第1実施例に係る測定装置1と同様の効果を得ることができる。 Thus, even when the transmission type diffusion plate 600b is used, the diffused reference light Lr can be irradiated to the detector 500. Therefore, also in the measuring apparatus 2 according to the second embodiment, the same effect as that of the measuring apparatus 1 according to the first embodiment can be obtained.
 <第3実施例>
 次に、第3実施例に係る測定装置について、図9を参照して説明する。ここに図9は、第3実施例に係る測定装置の全体構成を示す断面図である。なお、第3実施例は、上述した第1及び第2実施例と一部の構成が異なるのみであり、その他の構成や動作については概ね同様である。このため、以下では、既に説明した第1及び第2実施例と異なる部分について詳細に説明し、他の重複する部分については適宜説明を省略するものとする。
<Third embodiment>
Next, a measurement apparatus according to the third embodiment will be described with reference to FIG. FIG. 9 is a sectional view showing the overall configuration of the measuring apparatus according to the third embodiment. The third embodiment differs from the first and second embodiments described above only in part of the configuration, and the other configurations and operations are substantially the same. For this reason, below, a different part from the already demonstrated 1st and 2nd Example is demonstrated in detail, and description is abbreviate | omitted suitably about another overlapping part.
 図9において、第3実施例に係る測定装置3では、第1実施例に係る反射型の拡散板600(図1及び図2参照)に代えて、レンズ650が備えられている。レンズ650は、ミラー700で反射された分離光Ld2の光路中に配置されており、入射した分離光Ld2を拡散させて参照光Lrとする。 In FIG. 9, the measuring apparatus 3 according to the third embodiment includes a lens 650 instead of the reflective diffusion plate 600 (see FIGS. 1 and 2) according to the first embodiment. The lens 650 is disposed in the optical path of the separated light Ld2 reflected by the mirror 700, and diffuses the incident separated light Ld2 into the reference light Lr.
 このように、レンズ600を用いる場合でも、拡散された参照光Lrを検出器500に照射することができる。よって、第3実施例に係る測定装置3においても、第1実施例に係る測定装置1や第2実施例に係る測定装置2と同様の効果を得ることができる。 Thus, even when the lens 600 is used, the diffused reference light Lr can be irradiated to the detector 500. Therefore, also in the measuring apparatus 3 according to the third embodiment, the same effects as those of the measuring apparatus 1 according to the first embodiment and the measuring apparatus 2 according to the second embodiment can be obtained.
 なお、参照光Lrを拡散する部材は、上述した拡散板600及びレンズ650に限られるものではなく、入射した光を拡散できる部材であれば適宜利用することができる。即ち、参照光Lrが拡散された状態で検出器500に照射されるのであれば、拡散する手段は問わない。 The member that diffuses the reference light Lr is not limited to the diffusion plate 600 and the lens 650 described above, and any member that can diffuse incident light can be used as appropriate. That is, any means for diffusing may be used as long as the detector 500 is irradiated with the reference light Lr in a diffused state.
 <第4実施例>
 次に、第4実施例に係る測定装置について、図10を参照して説明する。ここに図10は、第4実施例に係る測定装置の全体構成を示す断面図である。なお、第4実施例は、上述した第1から第3実施例と一部の構成が異なるのみであり、その他の構成や動作については概ね同様である。このため、以下では、既に説明した第1から第3実施例と異なる部分について詳細に説明し、他の重複する部分については適宜説明を省略するものとする。
<Fourth embodiment>
Next, a measuring apparatus according to the fourth embodiment will be described with reference to FIG. FIG. 10 is a cross-sectional view showing the overall configuration of the measuring apparatus according to the fourth embodiment. The fourth embodiment differs from the first to third embodiments described above only in part of the configuration, and the other configurations and operations are substantially the same. For this reason, below, a different part from the 1st-3rd Example already demonstrated is demonstrated in detail, and description is abbreviate | omitted suitably about another overlapping part.
 図10において、第4実施例に係る測定装置4では、第3実施例に係る測定装置3と同様に、ミラー700で反射された分離光Ld2が、レンズ650bで拡散されて検出器500に照射される。また、第4実施例に係る測定装置4では更に、流体400で散乱された散乱光Lsが、レンズ650bで集光されて検出器500に照射される。即ち、第4実施例に係るレンズ650bは、分離光Ld2に対する拡散機能に加えて、散乱光Lsに対する集光機能を有している。 In FIG. 10, in the measuring apparatus 4 according to the fourth embodiment, the separated light Ld2 reflected by the mirror 700 is diffused by the lens 650b and applied to the detector 500, as in the measuring apparatus 3 according to the third embodiment. Is done. Further, in the measuring apparatus 4 according to the fourth example, the scattered light Ls scattered by the fluid 400 is further collected by the lens 650b and applied to the detector 500. That is, the lens 650b according to the fourth example has a condensing function for the scattered light Ls in addition to the diffusing function for the separated light Ld2.
 上述したレンズ650bによれば、分離光Ld2の拡散と同時に、散乱光Lsの集光が行えるため、散乱光Lsを効率的に検出器500に照射させることが可能である。よって、光源100からの照射光Liの強度を高くせずとも、S/N比を向上させることができる。 According to the lens 650b described above, since the scattered light Ls can be condensed simultaneously with the diffusion of the separated light Ld2, the detector 500 can be efficiently irradiated with the scattered light Ls. Therefore, the S / N ratio can be improved without increasing the intensity of the irradiation light Li from the light source 100.
 なお、検出器500の検出面における光束の径が互いに揃うように(より好ましくは、検出器500の検出面の面積に近い値で揃うように)、散乱光Lsが集光され、参照光Lrが拡散されることで、より効率的な検出が実現できる。 Note that the scattered light Ls is collected and the reference light Lr so that the diameters of the light beams on the detection surface of the detector 500 are aligned with each other (more preferably, the values are close to the area of the detection surface of the detector 500). Can be detected more efficiently.
 本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う測定装置及び測定方法もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification. The measuring method is also included in the technical scope of the present invention.
 1,2,3,4 測定装置
 100 光源
 200 グレーティング
 210 ハーフミラー
 220 ミラー
 250 2面鏡
 300 透明チューブ
 400 流体
 401 散乱体
 500 検出器
 600 拡散板
 650 レンズ
 700 ミラー
 Li 照射光
 Ld1,Ld2 分離光
 Ls 散乱光
 Lr 参照光
1, 2, 3, 4 Measuring device 100 Light source 200 Grating 210 Half mirror 220 Mirror 250 Two-sided mirror 300 Transparent tube 400 Fluid 401 Scatterer 500 Detector 600 Diffuser 650 Lens 700 Mirror Li irradiation light Ld1, Ld2 Separated light Ls Scattering Light Lr Reference light

Claims (11)

  1.  レーザー光を第1光束及び第2光束に分離し、前記第1光束を被計測対象に照射する分離照射手段と、
     前記第2光束を拡散させる拡散手段と、
     前記被計測対象で散乱された前記第1光束と、前記拡散手段で拡散された前記第2光束とを受光する受光手段と
     を備えることを特徴とする測定装置。
    Separating irradiation means for separating laser light into a first light flux and a second light flux, and irradiating the measurement target with the first light flux;
    Diffusing means for diffusing the second light flux;
    A measurement apparatus comprising: a light receiving unit configured to receive the first light beam scattered by the measurement target and the second light beam diffused by the diffusion unit.
  2.  前記分離照射手段は、グレーティングを含むことを特徴とする請求項1に記載の測定装置。 The measuring apparatus according to claim 1, wherein the separation irradiation means includes a grating.
  3.  前記分離照射手段は、前記レーザー光の一部を反射する一部反射手段を含むことを特徴とする請求項1に記載の測定装置。 2. The measuring apparatus according to claim 1, wherein the separating and irradiating means includes a partially reflecting means for reflecting a part of the laser beam.
  4.  前記分離照射手段は、前記一部反射手段との相対的な位置が固定された反射手段を更に含むことを特徴とする請求項3に記載の測定装置。 4. The measuring apparatus according to claim 3, wherein the separation irradiation unit further includes a reflection unit whose position relative to the partial reflection unit is fixed.
  5.  前記拡散手段は、前記第2光束の光路内に配置された散乱板であることを特徴とする請求項1から4のいずれか一項に記載の測定装置。 The measuring device according to any one of claims 1 to 4, wherein the diffusing means is a scattering plate disposed in an optical path of the second light flux.
  6.  前記拡散手段は、前記第2光束の光路内に配置されたレンズであることを特徴とする請求項1から4のいずれか一項に記載の測定装置。 The measuring device according to any one of claims 1 to 4, wherein the diffusing unit is a lens disposed in an optical path of the second light flux.
  7.  前記レンズは、前記第1光束を前記検出手段に対して集光することを特徴とする請求項6に記載の測定装置。 The measuring apparatus according to claim 6, wherein the lens condenses the first light flux on the detection means.
  8.  前記レンズは、前記検出手段の検出面における前記第1光束及び前記第2光束の径が揃うように、前記第1光束を集光し、前記第2光束を拡散することを特徴とする請求項7に記載の測定装置。 The said lens condenses the said 1st light beam and diffuses the said 2nd light beam so that the diameter of the said 1st light beam and the said 2nd light beam in the detection surface of the said detection means may be equal. 8. The measuring device according to 7.
  9.  前記分離手段は、前記第2光束の光量が前記第1光束の光量より小さくなるように前記レーザー光を分離することを特徴とする請求項1から8のいずれか一項に記載の測定装置。 9. The measuring apparatus according to claim 1, wherein the separating unit separates the laser light so that a light amount of the second light beam is smaller than a light amount of the first light beam.
  10.  前記受光手段で受光された前記第1光束のドップラーシフトから、前記被計測対象の速度を検出する速度検出手段を更に備えることを特徴とする請求項1から9のいずれか一項に記載の測定装置。 10. The measurement according to claim 1, further comprising a speed detection unit that detects a speed of the measurement target from a Doppler shift of the first light beam received by the light receiving unit. apparatus.
  11.  レーザー光を第1光束及び第2光束に分離し、前記第1光束を被計測対象に照射する分離照射工程と、
     前記第2光束を拡散させる拡散工程と、
     前記被計測対象で散乱された前記第1光束と、前記拡散工程で拡散された前記第2光束とを受光する受光工程と
     を備えることを特徴とする測定方法。
    A separation irradiation step of separating the laser light into a first light flux and a second light flux, and irradiating the measurement target with the first light flux;
    A diffusion step of diffusing the second light flux;
    And a light receiving step for receiving the first light beam scattered by the measurement target and the second light beam diffused in the diffusion step.
PCT/JP2014/055453 2014-03-04 2014-03-04 Measurement device and measurement method WO2015132880A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/055453 WO2015132880A1 (en) 2014-03-04 2014-03-04 Measurement device and measurement method
JP2016505982A JP6253761B2 (en) 2014-03-04 2014-03-04 Measuring apparatus and measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055453 WO2015132880A1 (en) 2014-03-04 2014-03-04 Measurement device and measurement method

Publications (1)

Publication Number Publication Date
WO2015132880A1 true WO2015132880A1 (en) 2015-09-11

Family

ID=54054720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055453 WO2015132880A1 (en) 2014-03-04 2014-03-04 Measurement device and measurement method

Country Status (2)

Country Link
JP (1) JP6253761B2 (en)
WO (1) WO2015132880A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106124801A (en) * 2016-08-03 2016-11-16 常熟市浙大紫金光电技术研究中心 Wind speed sensing device based on fiber grating and wind speed and direction monitoring system
WO2019146762A1 (en) * 2018-01-26 2019-08-01 京セラ株式会社 Fluid measurement device, fluid measurement method, and program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113533774B (en) * 2020-04-21 2023-08-15 中国航天科工飞航技术研究院(中国航天海鹰机电技术研究院) Wide-speed-range laser speed measurement and calibration test device and method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238354A (en) * 1990-02-16 1991-10-24 Canon Inc Laser doppler speedometer
JPH07167879A (en) * 1993-12-16 1995-07-04 Ono Sokki Co Ltd Laser doppler flow velocity meter
JPH09257819A (en) * 1996-03-25 1997-10-03 Toyota Central Res & Dev Lab Inc Optical-fiber laser doppler current meter
JPH109811A (en) * 1996-06-21 1998-01-16 Masao Umemoto Coherent divergence interference method
JP2001066247A (en) * 1999-08-26 2001-03-16 Japan Science & Technology Corp Photometric apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238354A (en) * 1990-02-16 1991-10-24 Canon Inc Laser doppler speedometer
JPH07167879A (en) * 1993-12-16 1995-07-04 Ono Sokki Co Ltd Laser doppler flow velocity meter
JPH09257819A (en) * 1996-03-25 1997-10-03 Toyota Central Res & Dev Lab Inc Optical-fiber laser doppler current meter
JPH109811A (en) * 1996-06-21 1998-01-16 Masao Umemoto Coherent divergence interference method
JP2001066247A (en) * 1999-08-26 2001-03-16 Japan Science & Technology Corp Photometric apparatus

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106124801A (en) * 2016-08-03 2016-11-16 常熟市浙大紫金光电技术研究中心 Wind speed sensing device based on fiber grating and wind speed and direction monitoring system
WO2019146762A1 (en) * 2018-01-26 2019-08-01 京セラ株式会社 Fluid measurement device, fluid measurement method, and program
JPWO2019146762A1 (en) * 2018-01-26 2020-02-06 京セラ株式会社 Fluid measurement device, fluid measurement method, and program
JP2020187136A (en) * 2018-01-26 2020-11-19 京セラ株式会社 Liquid measuring device, liquid measuring method, and program
JP2021192053A (en) * 2018-01-26 2021-12-16 京セラ株式会社 Liquid measuring method
JP7291754B2 (en) 2018-01-26 2023-06-15 京セラ株式会社 Fluid measurement method

Also Published As

Publication number Publication date
JPWO2015132880A1 (en) 2017-03-30
JP6253761B2 (en) 2017-12-27

Similar Documents

Publication Publication Date Title
KR101824900B1 (en) Particle counter
US10481264B2 (en) Laser processing device and laser processing system
JP2012058068A5 (en)
SG152162A1 (en) An optical focus sensor, an inspection apparatus and a lithographic apparatus
JP6253761B2 (en) Measuring apparatus and measuring method
JP5828440B1 (en) Fine particle measuring device
WO2010106758A1 (en) Shape measurement device and method
US9719922B2 (en) Optical system and optical quality measuring apparatus
EP1892705A3 (en) Optical pick-up
JP2006058224A (en) Measuring instrument
US9945656B2 (en) Multi-function spectroscopic device
JP5842652B2 (en) Tunable monochromatic light source
JP2014503842A5 (en) Confocal laser scanning microscope
US9612112B2 (en) Optical system and optical quality measuring apparatus
WO2015132878A1 (en) Measurement device and measurement method
JP2019168313A (en) Optical module for optical height measurement
WO2018173294A1 (en) Measurement device
JP2018151408A (en) Measurement device
KR102122020B1 (en) Apparatus for analyzing blood cell, method for analyzing blood cell using the apparatus
JP6955058B2 (en) Measuring device and measuring method
JP7365247B2 (en) laser doppler velocimeter
JPH1164719A (en) Microscope equipped with focus detection means and displacement measuring device
CN106908386B (en) Optical pickup device
JP7039922B2 (en) Laser processing equipment
JP2010164354A (en) Autocollimator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505982

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884274

Country of ref document: EP

Kind code of ref document: A1