WO2015132878A1 - Measurement device and measurement method - Google Patents

Measurement device and measurement method Download PDF

Info

Publication number
WO2015132878A1
WO2015132878A1 PCT/JP2014/055447 JP2014055447W WO2015132878A1 WO 2015132878 A1 WO2015132878 A1 WO 2015132878A1 JP 2014055447 W JP2014055447 W JP 2014055447W WO 2015132878 A1 WO2015132878 A1 WO 2015132878A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
measuring apparatus
scattered
measurement target
grating
Prior art date
Application number
PCT/JP2014/055447
Other languages
French (fr)
Japanese (ja)
Inventor
育也 菊池
敦也 伊藤
Original Assignee
パイオニア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パイオニア株式会社 filed Critical パイオニア株式会社
Priority to JP2016505980A priority Critical patent/JPWO2015132878A1/en
Priority to PCT/JP2014/055447 priority patent/WO2015132878A1/en
Publication of WO2015132878A1 publication Critical patent/WO2015132878A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/662Constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/66Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters
    • G01F1/661Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by measuring frequency, phase shift or propagation time of electromagnetic or other waves, e.g. using ultrasonic flowmeters using light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P5/00Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft
    • G01P5/26Measuring speed of fluids, e.g. of air stream; Measuring speed of bodies relative to fluids, e.g. of ship, of aircraft by measuring the direct influence of the streaming fluid on the properties of a detecting optical wave
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/50Systems of measurement based on relative movement of target
    • G01S17/58Velocity or trajectory determination systems; Sense-of-movement determination systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements

Definitions

  • the present invention relates to a technical field of a measuring apparatus and a measuring method for measuring a measurement target by irradiating a laser beam.
  • a device that detects the velocity of a fluid using a laser beam Doppler shift for example, a device that detects the velocity of a fluid using a laser beam Doppler shift (so-called laser Doppler) is known.
  • laser Doppler a device that detects the velocity of a fluid using a laser beam Doppler shift
  • Patent Document 1 laser light separated into two by a beam splitter is irradiated to the same location of the fluid to be measured from different angles, and the velocity of the measurement target is detected by Doppler shift of the reflected light.
  • the technology is proposed.
  • the measurement target may be damaged by the laser beam.
  • the measurement target is blood of a living body
  • the components in the blood are destroyed by the laser beam, and there is a possibility of serious influence. Therefore, it is preferable that the power of the laser beam is not too high.
  • the power of the laser beam is low, the S / N ratio (signal-to-noise ratio) of the detection light deteriorates, resulting in a technical problem that accurate measurement cannot be performed.
  • Patent Document 1 when the laser beam separated into two parts is to be irradiated to the same location, high accuracy is required for the optical system on the irradiation side. In addition, there is a technical problem that adjustment work is required every time the measurement target is changed.
  • a measuring apparatus for solving the above-described problem is a separation irradiation means for separating laser light into a plurality of light beams, and irradiating the plurality of light beams to different portions of the measurement target at different angles of incidence, and the plurality of light beams
  • Light receiving means for receiving scattered light scattered by the measurement target.
  • a measurement method for solving the above-described problems includes a separation irradiation step of separating laser light into a plurality of light beams, and irradiating the plurality of light beams to different portions of a measurement target at different incident angles, and the plurality of light beams A light receiving step of receiving scattered light scattered by the measurement target.
  • the measuring apparatus separates laser light into a plurality of light beams, and irradiates the plurality of light beams to different portions of the measurement target at different angles of incidence, and the plurality of light beams
  • Light receiving means for receiving scattered light scattered by the measurement object.
  • the object to be measured for example, a fluid such as blood flowing inside the transparent tube or an individual such as a plate member flowing on the conveyor
  • Laser light is irradiated.
  • the laser beam according to the present embodiment is separated into a plurality of light beams by the separating and irradiating means, and is irradiated to different portions of the measurement target at different incident angles.
  • the separation irradiation unit includes, for example, a grating (diffraction grating), a half mirror, and the like.
  • the plurality of light beams irradiated to the measurement target are scattered (specifically, transmitted or reflected) by the measurement target, and become a plurality of scattered lights.
  • the plurality of scattered lights are received by a common light receiving means.
  • the light receiving means is configured as a photodiode or the like, for example.
  • the intensity of the scattered light received is signaled and used for calculation of the measurement result. More specifically, for example, speed calculation of the measurement target using Doppler shift is executed.
  • the laser light is separated into a plurality of light beams and irradiated at different incident angles at different positions of the measurement target.
  • the power of the laser beam irradiated to the same location can be reduced.
  • the power of the laser light irradiated to one place is reduced compared to the case where the same place is irradiated without separation or the same place after separation. Is done. Therefore, it is possible to reduce damage that the measurement target receives due to laser light irradiation.
  • the separation light flux since the separated light flux only needs to be irradiated to different places (that is, it may not be irradiated to one point), high positional accuracy is not required for the light flux irradiated to the measurement target. Therefore, the adjustment of the optical system is easy and the reliability is improved. In particular, when the measurement target is replaced and the measurement is continued (more specifically, when the measurement is performed by exchanging a tube or the like in which the fluid to be measured flows), the adjustment after the replacement is performed. Little or no need.
  • scattered light scattered at different locations on the measurement target is detected by the light receiving means. That is, the laser beam separated at the time of irradiating the measurement target is also detected by the light receiving means. Therefore, it can be avoided that the intensity of the detection signal is reduced due to the separation of the laser light. As a result, it is possible to obtain a signal having an S / N ratio equivalent to that in the case where the signals are not separated, and perform accurate measurement.
  • the measurement apparatus According to the measurement apparatus according to the present embodiment, it is possible to suitably perform measurement while reducing damage to the measurement target.
  • the separation irradiation unit includes a grating.
  • the laser light is incident on the grating (diffraction grating) and is separated into a plurality of light beams. For this reason, compared with the case where a laser beam is isolate
  • the grating may be a blazed grating.
  • the grating is parallel to the measurement target (that is, the emission surface of the grating and the irradiation surface of the measurement target are parallel). Can be arranged). Therefore, for example, the layout space can be effectively used as compared with the case where the grating is disposed obliquely with respect to the measurement target. As a result, for example, simplification and downsizing of the device configuration can be realized.
  • the said grating may have a condensing effect.
  • the grating it is possible to make the focal positions of the plurality of separated light beams different from each other. Thereby, even if it is a case where the optical path length to each to-be-measured object of a some light beam differs mutually, it can each be suitably condensed on a measurement object position.
  • the separation irradiation unit includes a partial reflection unit that reflects a part of the laser beam.
  • the laser beam is partially reflected by the partially reflecting means configured as a half mirror, for example, and the other part is transmitted. Therefore, the laser beam can be reliably separated into a plurality of light beams.
  • the separation irradiation unit may further include a reflection unit whose position relative to the partial reflection unit is fixed.
  • At least one of the plurality of light beams separated by the reflecting means is reflected by the reflecting means and becomes a light beam directed toward the measurement target.
  • the reflecting means since the reflecting means is fixed in position relative to the partially reflecting means (in other words, configured as a dihedral mirror), the angle of the partially reflecting means and the reflecting means can be adjusted. You don't have to do it separately. Therefore, it is possible to easily adjust the irradiation angle of the laser beam.
  • a post-scattering condensing unit that condenses the scattered light on the light receiving unit is further provided.
  • scattered light irradiated in a relatively wide range can be efficiently collected in the light receiving means. Therefore, the intensity of light detected by the light receiving means can be increased, and as a result, measurement accuracy can be increased.
  • a post-separation condensing unit that condenses the plurality of light fluxes on the measurement target is further provided.
  • the post-separation condensing means can also be used for adjusting the incident angle of a plurality of separated light beams.
  • the separation irradiation unit irradiates the laser beam separately into at least a first light beam and a second light beam, and the first light beam is scattered by the measurement target.
  • the optical path of the first scattered light to the light receiving means is parallel to the optical path of the second light flux, and the second scattered light scattered by the measurement target to the light receiving means.
  • the optical path is parallel to the optical path of the second light flux.
  • the optical path of the first light beam (specifically, the optical path from the first light beam separating and irradiating means to the measurement target) and the optical path of the scattered light of the second light beam (specifically, the second light beam).
  • the optical path from the object to be measured to the light receiving means after scattering of the light beam is parallel to each other.
  • the optical path of the second light beam (specifically, the optical path from the second light beam separating and irradiating means to the measurement target) and the optical path of the scattered light of the first light beam (specifically, the scattering of the first light beam).
  • the optical path from the object to be measured to the light receiving means) is parallel to each other. Therefore, the optical path of the first light beam, the optical path of the second light beam, the optical path of the scattered light of the first light beam, and the optical path of the scattered light of the second light beam form each side of the parallelogram.
  • the detection intensity of scattered light in the light receiving means can be theoretically maximized. Accordingly, measurement can be performed with high accuracy without increasing the power of the laser beam more than necessary. Even if the optical path is not a perfect parallelogram, the above-described effects can be achieved by making the shape close to a parallelogram.
  • the measuring device further includes speed detecting means for detecting the speed of the measurement target from the Doppler shift of the scattered light received by the light receiving means.
  • the speed of the measurement target can be detected using the Doppler shift generated in the scattered light of each of the separated light beams.
  • the speed of the measurement target can be detected using beat signals of a plurality of scattered lights.
  • the measuring apparatus can reduce damage to the measurement target due to the laser beam, and thus is remarkably effective when detecting the speed of blood or the like that can be seriously affected by the damage, for example. Demonstrate.
  • the measurement method includes a separation irradiation step in which laser light is separated into a plurality of light beams, and the plurality of light beams are irradiated to different parts of the measurement target at different incident angles, and the plurality of light beams are A light receiving step for receiving scattered light scattered by the measurement object.
  • the measurement method according to the present embodiment it is possible to suitably perform measurement while reducing damage to the measurement target, similarly to the measurement apparatus according to the present embodiment described above.
  • FIG. 1 is a side view showing the overall configuration of the measuring apparatus according to the first embodiment.
  • the measuring apparatus 1 includes a light source 100, a grating 200, and a detector 500 as main components.
  • the light source 100 is a laser light source configured to output the irradiation light Li.
  • the light source 100 can adjust the output intensity of the laser light.
  • the grating 200 is an example of the “separation irradiation means” in the present invention, and is configured as a binary type grating.
  • the grating 200 separates the irradiation light Li emitted from the light source 100 into separated light Ld1 and Ld2, and irradiates the fluid 400 flowing in the right direction in the drawing in the transparent tube 300.
  • the separated lights Ld1 and Ld2 are incident on the fluid 400 to be measured at different angles at different positions. Specifically, the separated light Ld1 is scattered (transmitted) by the scatterer 401 in the fluid 400. As a result, scattered light Ls1 is emitted from the scatterer 401. On the other hand, the separated light Ld2 is scattered (transmitted) by the scatterer 402 in the fluid 400. As a result, scattered light Ls2 is emitted from the scatterer 402.
  • the detector 500 is an example of the “light receiving means” in the present invention, and is configured as, for example, a photodetector.
  • the detector 500 is disposed on the opposite side of the light source 100 when viewed from the fluid 400, and the scattered light Ls1 and Ls2 transmitted through the fluid 400 can be detected on the detection surface thereof. That is, the detector 500 is configured to detect the interference light of the scattered light Ls1 and Ls2.
  • the intensity of the interference light detected by the detector 500 is converted into a signal and used for various calculations in an arithmetic circuit (not shown). More specifically, the speed of the fluid 400 is calculated by a speed calculation unit which is an example of the “speed detection unit” of the present invention.
  • FIG. 2 to FIG. 4 are side views showing the overall configuration of a modification of the measuring apparatus according to the first embodiment.
  • the detector 500 is disposed on the same side as the light source 100 when viewed from the fluid 400, and the scattered light Ls1b reflected by the fluid 400 on the detection surface. And Ls2b can be detected.
  • the detector 500 may be configured to be able to detect the scattered light Ls1b and Ls2b reflected by the fluid 400, instead of the scattered light Ls1 and Ls2 (see FIG. 1) transmitted through the fluid 400. Even in this case, the measurement can be performed in the same manner as when the transmitted scattered light Ls is detected.
  • a blazed grating 200b is provided instead of the binary grating 200.
  • the blazed grating 200b emits the separated light Ld1 at the same angle as the incident angle of the irradiation light Li (that is, so as to go straight).
  • the blazed grating 200b can be arranged so that the emission surface is parallel to the transparent tube 300. Therefore, for example, the degree of freedom in layout becomes higher compared to the case of using a binary grating 200 (see FIG. 1) in which the emission surface has to be disposed obliquely with respect to the transparent tube 300.
  • a blazed grating 200b is used, and the detector 500 is configured to detect scattered light Ls1b and Ls2b that are reflected light.
  • the grating 200 is a binary type or a blaze type, and whether the measurement target of the detector 500 is transmitted light or reflected light. Absent.
  • FIG. 5 is a conceptual diagram showing a detection sensitivity optimization method.
  • the measurement apparatus 1c shown in FIG. 3 that is, a transmission type apparatus including the blazed grating 200b
  • FIG. 5 shows a detection sensitivity optimization method.
  • the measurement apparatus 1c shown in FIG. 3 that is, a transmission type apparatus including the blazed grating 200b
  • FIG. 3 that is, a transmission type apparatus including the blazed grating 200b
  • other examples are optimized by the same method. Can be done.
  • the angle between the exit surface of the grating 200b and the separated light Ld1 is ⁇ 1, and the angle between the exit surface of the grating 200b and the separated light Ld2 is ⁇ 2.
  • An angle formed by the detection surface of the detector 500 and the scattered light Ls1 is ⁇ 3, and an angle formed by the detection surface of the detector 500 and the scattered light Ls2 is ⁇ 4.
  • the angle between the separating light Ld1 and separating light Ld2 is 2 [Theta]
  • the angle between the scattered light Ls1 and scattered light Ls2 is to 2 [Theta] 2.
  • is an angle formed by the 2 ⁇ center line and a line along the direction in which the scatterers 401 and 402 flow
  • is an angle formed by the 2 ⁇ 2 center line and the line along the direction in which the scatterers 401 and 402 flow.
  • the frequency ⁇ f of the beat signal can be expressed as the following formulas (1) to (4) using the above parameters, the light frequency fe and the light velocity c.
  • the detection sensitivity increases if ⁇ and the ⁇ 2 code are the same, and the detection sensitivity decreases if they are different.
  • the detection sensitivity is maximized. Therefore, the detection sensitivity can be maximized by adjusting the optical system so that the quadrangle formed by the separated light Ld1 and Ld2 and the scattered light Ls1 and Ls2 is a parallelogram.
  • FIG. 6 is a side view showing the overall configuration of the measuring apparatus according to the comparative example.
  • the irradiation light Li irradiated from the light source is separated by the half mirror 210. That is, the light transmitted through the half mirror 210 is the separated light Ld1, and the light reflected by the half mirror 210 is the separated light Ld2.
  • the separated light Ld2 is reflected by the mirror 220 and travels toward the fluid 400 to be measured.
  • the separated lights Ld1 and Ld2 are irradiated to the same position of the fluid 400. That is, the separated light Ld1 and Ld2 are irradiated to the same scatterer 401.
  • the separated lights Ld1 and Ld2 applied to the scatterer 401 become scattered lights Ls1 and Ls2, respectively, and are detected by the detector 500.
  • the light intensity at the irradiation position is likely to be relatively high, and damage is caused to the fluid 400 that is the measurement target by irradiation.
  • the possibility increases.
  • the measurement target is blood
  • a part of the blood may be destroyed by irradiating a high-intensity laser beam, which may adversely affect the living body.
  • the light intensity detected by the detector 500 is reduced, and the S / N ratio is deteriorated. As a result, there is a possibility that accurate measurement cannot be performed.
  • each of the separated lights Ld1 and Ld2 separated by the grating 200 is different from each other in the fluid 400 (that is, the scatterers 401 and 402). Therefore, if the intensity of the laser light emitted from the light source 100 is the same, the damage received at the same location is halved as compared with the comparative example described above. Moreover, since the scattered lights Ls1 and Ls2 scattered at different locations are detected, the S / N ratio does not deteriorate. That is, according to the measuring apparatus 1 according to the first embodiment, damage to the measurement target can be reduced without deteriorating the detection sensitivity.
  • the incident angles of the separated lights Ld1 and Ld2 can be adjusted by adjusting only the grating 200. Therefore, compared with the case where adjustment is performed using two mirrors as in the comparative example, the adjustment operation can be performed very easily. As a result, the reliability of the apparatus is improved, and furthermore, the cost can be reduced and the apparatus configuration can be simplified by reducing the number of parts.
  • the measuring apparatus 1 As described above, according to the measuring apparatus 1 according to the first embodiment, it is possible to appropriately measure while reducing damage to the measurement target by separating the laser beam and irradiating it at different positions. Is possible.
  • FIG. 7 is a side view showing the overall configuration of the measuring apparatus according to the second embodiment.
  • the second embodiment differs from the first embodiment described above only in part of the configuration, and the other configurations and operations are substantially the same. For this reason, below, a different part from 1st Example already demonstrated is demonstrated in detail, and description shall be abbreviate
  • the grating 200c has a light condensing effect (lens effect). Therefore, each of the separated lights Ld1 and Ld2 can be efficiently irradiated onto the fluid 400 (specifically, the scatterers 401 and 402). Therefore, the detection sensitivity can be improved without increasing the intensity of the irradiation light Li from the light source 100.
  • the grating 200c can set the focal lengths of the separated lights Ld1 and Ld2 to different values. Therefore, even when the distances from the grating 200c to the scatterers 401 and 402 are different from each other, the separated lights Ld1 and Ld2 can be suitably condensed.
  • FIG. 8 is a side view showing the overall configuration of the measuring apparatus according to the third embodiment.
  • the third embodiment differs from the first and second embodiments described above only in part of the configuration, and the other configurations and operations are substantially the same. For this reason, below, a different part from the already demonstrated 1st and 2nd Example is demonstrated in detail, and description is abbreviate
  • a dihedral mirror 250 is used instead of the grating 200.
  • the dihedral mirror 250 includes a half mirror 251 that separates the irradiation light Li from the light source 100 and a mirror 252 that reflects the separated light Ld2 reflected by the half mirror 251.
  • adjustment work is easy as with the grating 200.
  • the adjustment work can be suitably performed as compared with a configuration in which the half mirror 210 and the mirror 220 are individually adjusted.
  • FIG. 9 is a side view showing the overall configuration of the measurement apparatus according to the fourth embodiment
  • FIG. 10 is a side view showing the overall configuration of a modification of the measurement apparatus according to the fourth embodiment.
  • the fourth embodiment differs from the first to third embodiments described above only in part of the configuration, and the other configurations and operations are substantially the same. For this reason, below, a different part from the 1st-3rd Example already demonstrated is demonstrated in detail, and description is abbreviate
  • a condenser lens 600 is disposed between the transparent tube 300 and the detector 500.
  • the condenser lens 600 is an example of the “post-scattering condensing means” of the present invention, and has a function of condensing the scattered light Ls1 and Ls2 on the detector 500.
  • the condenser lens 600 may be configured as a cylinder lens or the like in addition to a normal lens.
  • an optical member having a light collecting effect may be used instead of a lens.
  • the condenser lens 600 By arranging the condenser lens 600, the scattered light Ls1 and Ls2 can be efficiently detected by the detector 500. Therefore, the detection sensitivity can be improved without increasing the intensity of the irradiation light Li from the light source 100.
  • two condenser lenses 610 and 620 are disposed between the transparent tube 300 and the detector 500.
  • the condensing lens 610 functions as condensing the scattered light Ls1 on the detector 500.
  • the condensing lens 620 functions to condense the scattered light Ls2 onto the detector 500.
  • the dedicated condensing lenses 610 and 620 are arranged for each of the scattered lights Ls1 and Ls2, the scattered lights Ls1 and Ls2 can be collected more efficiently. Therefore, detection sensitivity can be improved more effectively.
  • FIG. 11 is a side view showing the overall configuration of the measuring apparatus according to the fifth embodiment.
  • the fifth embodiment differs from the first to fourth embodiments described above only in part of the configuration, and the other configurations and operations are substantially the same. For this reason, below, a different part from the already demonstrated 1st-4th Example is demonstrated in detail, and description is abbreviate
  • a condensing lens 700 is disposed between the grating 200 b and the transparent tube 300.
  • the condensing lens 700 is an example of the “post-separation condensing unit” of the present invention, and has a function of condensing the separated lights Ld1 and Ld2.
  • the condensing lens 700 is configured as one lens common to the separated lights Ld1 and Ld2, but a lens may be provided for each of the separated lights Ld1 and Ld2.
  • the scatterers 401 and 402 can be efficiently irradiated with the separated light Ld1 and Ld2. As a result, the detection sensitivity can be improved without increasing the intensity of the irradiation light Li from the light source 100.
  • the traveling directions of the separated lights Ld1 and Ld2 can be changed.
  • the incident angle with respect to the fluid 400 of the separated lights Ld1 and Ld2 can be adjusted to an appropriate value.
  • the incident angles of the separated lights Ld1 and Ld2 may be set so that the incident angles intersect with each other and do not intersect within the transparent tube 300.
  • FIG. 12 is a side view showing the overall configuration of the measuring apparatus according to the sixth embodiment.
  • the sixth embodiment is different from the first to fifth embodiments described above only in a part of the configuration, and the other configurations and operations are substantially the same. For this reason, below, a different part from the already demonstrated 1st-5th Example is demonstrated in detail, and description is abbreviate
  • the irradiation light Li from the light source 100 is separated into three separated lights Ld1, Ld2, and Ld3 in the grating 200c having a light condensing effect.
  • the separated lights Ld1, Ld2, and Ld3 are the 0th order light, the + 1st order light, and the ⁇ 1st order light of the grating 200d, respectively (however, the light that can be used in this embodiment is not limited to these). Absent).
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification.
  • the measuring method is also included in the technical scope of the present invention.
  • Measuring device 100
  • Light source 200
  • Grating 210
  • Half mirror 220 Mirror 250
  • Two-sided mirror 300
  • Transparent tube 400
  • Condensing lens Li Irradiation light Ld1, Ld2, Ld3 Separated light Ls1, Ls2, Ls3 Scattered light

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Remote Sensing (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Fluid Mechanics (AREA)
  • Multimedia (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Measuring Volume Flow (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

A measurement device (1) is provided with a separation and irradiation means (200) for separating laser light (Li) into a plurality of light beams (Ld1, Ld2) and irradiating the plurality of light beams onto different parts (401, 402) of an object under measurement (400) at different angles of incidence and a light reception means (500) for receiving scattered light (Ls1, Ls2) resulting from the plurality of light beams being scattered by the object under measurement. This measurement device reduces damage to an object under measurement resulting from laser light and makes suitable measurement possible.

Description

測定装置及び測定方法Measuring apparatus and measuring method
 本発明は、レーザー光を照射することで被計測対象に関する測定を行う測定装置及び測定方法の技術分野に関する。 The present invention relates to a technical field of a measuring apparatus and a measuring method for measuring a measurement target by irradiating a laser beam.
 この種の装置として、例えばレーザー光のドップラーシフト(所謂、レーザードップラー)を利用して流体の速度を検出する装置が知られている。例えば特許文献1では、ビームスプリッタで2つに分離したレーザー光を、被計測対象である流体の同一箇所に異なる角度から照射し、反射された光のドップラーシフトにより被計測対象の速度を検出するという技術が提案されている。 As this type of device, for example, a device that detects the velocity of a fluid using a laser beam Doppler shift (so-called laser Doppler) is known. For example, in Patent Document 1, laser light separated into two by a beam splitter is irradiated to the same location of the fluid to be measured from different angles, and the velocity of the measurement target is detected by Doppler shift of the reflected light. The technology is proposed.
特開昭63-191086号公報Japanese Patent Application Laid-Open No. 63-191086
 上述したように、レーザー光を照射して行う測定では、被計測対象がレーザー光によりダメージを受けてしまうことがある。特に、被計測対象が生体の血液である場合、レーザー光により血液中の成分が破壊されてしまい深刻な影響を及ぼす可能性もある。従って、レーザー光のパワーは必要以上に高過ぎないことが好ましい。一方で、レーザー光のパワーが低いと、検出光のS/N比(信号対雑音比)が悪化し、正確な測定が行えなくなってしまうという技術的問題点が生ずる。 As described above, in the measurement performed by irradiating the laser beam, the measurement target may be damaged by the laser beam. In particular, when the measurement target is blood of a living body, the components in the blood are destroyed by the laser beam, and there is a possibility of serious influence. Therefore, it is preferable that the power of the laser beam is not too high. On the other hand, if the power of the laser beam is low, the S / N ratio (signal-to-noise ratio) of the detection light deteriorates, resulting in a technical problem that accurate measurement cannot be performed.
 また、上述した特許文献1のように、2つに分離されたレーザー光を同一箇所に照射しようとする場合、照射側の光学系に高い精度が求められてしまう。加えて、被計測対象が代わる度に調整作業が必要となってしまうという技術的問題点も生ずる。 Also, as in Patent Document 1 described above, when the laser beam separated into two parts is to be irradiated to the same location, high accuracy is required for the optical system on the irradiation side. In addition, there is a technical problem that adjustment work is required every time the measurement target is changed.
 本発明が解決しようとする課題には、上記のようなものが一例として挙げられる。本発明は、レーザー光を分離して照射することで、被計測対象に関する測定を好適に実行可能な測定装置及び測定方法を提供することを課題とする。 Examples of problems to be solved by the present invention include the above. It is an object of the present invention to provide a measurement apparatus and a measurement method that can suitably perform measurement on a measurement target object by separating and irradiating laser light.
 上記課題を解決するための測定装置は、レーザー光を複数の光束に分離し、前記複数の光束を互いに被計測対象の異なる部分に異なる入射角で照射する分離照射手段と、前記複数の光束が前記被計測対象で散乱された散乱光を受光する受光手段とを備える。 A measuring apparatus for solving the above-described problem is a separation irradiation means for separating laser light into a plurality of light beams, and irradiating the plurality of light beams to different portions of the measurement target at different angles of incidence, and the plurality of light beams Light receiving means for receiving scattered light scattered by the measurement target.
 上記課題を解決するための測定方法は、レーザー光を複数の光束に分離し、前記複数の光束を互いに被計測対象の異なる部分に異なる入射角で照射する分離照射工程と、前記複数の光束が前記被計測対象で散乱された散乱光を受光する受光工程とを備える。 A measurement method for solving the above-described problems includes a separation irradiation step of separating laser light into a plurality of light beams, and irradiating the plurality of light beams to different portions of a measurement target at different incident angles, and the plurality of light beams A light receiving step of receiving scattered light scattered by the measurement target.
第1実施例に係る測定装置の全体構成を示す側面図である。It is a side view which shows the whole structure of the measuring apparatus which concerns on 1st Example. 第1実施例に係る測定装置の変形例の全体構成を示す側面図(その1)である。It is a side view (the 1) which shows the whole structure of the modification of the measuring apparatus which concerns on 1st Example. 第1実施例に係る測定装置の変形例の全体構成を示す側面図(その2)である。It is a side view (the 2) which shows the whole structure of the modification of the measuring apparatus which concerns on 1st Example. 第1実施例に係る測定装置の変形例の全体構成を示す側面図(その3)である。It is a side view (the 3) which shows the whole structure of the modification of the measuring apparatus which concerns on 1st Example. 検出感度の最適化方法を示す概念図である。It is a conceptual diagram which shows the optimization method of detection sensitivity. 比較例に係る測定装置の全体構成を示す側面図である。It is a side view which shows the whole structure of the measuring apparatus which concerns on a comparative example. 第2実施例に係る測定装置の全体構成を示す側面図である。It is a side view which shows the whole structure of the measuring apparatus which concerns on 2nd Example. 第3実施例に係る測定装置の全体構成を示す側面図である。It is a side view which shows the whole structure of the measuring apparatus which concerns on 3rd Example. 第4実施例に係る測定装置の全体構成を示す側面図である。It is a side view which shows the whole structure of the measuring apparatus which concerns on 4th Example. 第4実施例に係る測定装置の変形例の全体構成を示す側面図である。It is a side view which shows the whole structure of the modification of the measuring apparatus which concerns on 4th Example. 第5実施例に係る測定装置の全体構成を示す側面図である。It is a side view which shows the whole structure of the measuring apparatus which concerns on 5th Example. 第6実施例に係る測定装置の全体構成を示す側面図である。It is a side view which shows the whole structure of the measuring apparatus which concerns on 6th Example.
 <1>
 本実施形態に係る測定装置は、レーザー光を複数の光束に分離し、前記複数の光束を互いに被計測対象の異なる部分に異なる入射角で照射する分離照射手段と、前記複数の光束が前記被計測対象で散乱された散乱光を受光する受光手段とを備える。
<1>
The measuring apparatus according to the present embodiment separates laser light into a plurality of light beams, and irradiates the plurality of light beams to different portions of the measurement target at different angles of incidence, and the plurality of light beams Light receiving means for receiving scattered light scattered by the measurement object.
 本実施形態に係る測定装置によれば、その動作時には、移動する被計測対象(例えば、透明チューブの内部を流れる血液等の流体、或いはコンベヤ上を流れる板状部材等の個体など)に対して、レーザー光が照射される。本実施形態に係るレーザー光は、分離照射手段によって複数の光束に分離され、互いに被計測対象の異なる部分に異なる入射角で照射される。分離照射手段は、例えばグレーティング(回折格子)やハーフミラー等を含んで構成される。 According to the measuring apparatus according to the present embodiment, at the time of operation, the object to be measured (for example, a fluid such as blood flowing inside the transparent tube or an individual such as a plate member flowing on the conveyor) is moved. Laser light is irradiated. The laser beam according to the present embodiment is separated into a plurality of light beams by the separating and irradiating means, and is irradiated to different portions of the measurement target at different incident angles. The separation irradiation unit includes, for example, a grating (diffraction grating), a half mirror, and the like.
 被計測対象に照射された複数の光束は、被計測対象で散乱(具体的には、透過や反射)され、複数の散乱光となる。これら複数の散乱光は共通の受光手段によって受光される。受光手段は、例えばフォトダイオード等として構成されている。受光手段では、例えば受光された散乱光の強度が信号化され、測定結果の演算に用いられる。より具体的には、例えばドップラーシフトを利用した被計測対象の速度算出が実行される。 The plurality of light beams irradiated to the measurement target are scattered (specifically, transmitted or reflected) by the measurement target, and become a plurality of scattered lights. The plurality of scattered lights are received by a common light receiving means. The light receiving means is configured as a photodiode or the like, for example. In the light receiving means, for example, the intensity of the scattered light received is signaled and used for calculation of the measurement result. More specifically, for example, speed calculation of the measurement target using Doppler shift is executed.
 ここで本実施形態では特に、上述したように、レーザー光が複数の光束に分離され、被計測対象の異なる位置に異なる入射角で照射される。これにより、同一箇所に照射されるレーザー光のパワーを低減することができる。即ち、分離して異なる箇所に照射するため、分離せずに同一箇所に照射する、或いは分離した後に同一箇所に照射する場合等と比べて、一の箇所に照射されるレーザー光のパワーが低減される。よって、被計測対象がレーザー光の照射によって受けてしまうダメージを低減することができる。 Here, particularly in the present embodiment, as described above, the laser light is separated into a plurality of light beams and irradiated at different incident angles at different positions of the measurement target. Thereby, the power of the laser beam irradiated to the same location can be reduced. In other words, because it irradiates different places separately, the power of the laser light irradiated to one place is reduced compared to the case where the same place is irradiated without separation or the same place after separation. Is done. Therefore, it is possible to reduce damage that the measurement target receives due to laser light irradiation.
 また、分離された光束は、異なる箇所に照射されればよい(即ち、一点に照射されずともよい)ため、被計測対象に照射される光束に対して高い位置精度が要求されない。よって、光学系の調整が容易であり、信頼性も向上する。特に、被計測対象を交換して測定を続行するような場合(より具体的には、被計測対象である流体が流れるチューブ等を交換して測定を行う場合)には、交換後の調整が殆ど或いは全く不要となる。 In addition, since the separated light flux only needs to be irradiated to different places (that is, it may not be irradiated to one point), high positional accuracy is not required for the light flux irradiated to the measurement target. Therefore, the adjustment of the optical system is easy and the reliability is improved. In particular, when the measurement target is replaced and the measurement is continued (more specifically, when the measurement is performed by exchanging a tube or the like in which the fluid to be measured flows), the adjustment after the replacement is performed. Little or no need.
 本実施形態では更に、被計測対象の異なる箇所で散乱された散乱光は、夫々受光手段において検出される。即ち、被計測対象に照射される時点では分離されていたレーザー光も、受光手段で併せて検出される。よって、レーザー光を分離することに起因して検出信号の強度が低下してしまうことを回避できる。この結果、分離しない場合と同等のS/N比の信号を得ることができ、正確な測定が行える。 Further, in the present embodiment, scattered light scattered at different locations on the measurement target is detected by the light receiving means. That is, the laser beam separated at the time of irradiating the measurement target is also detected by the light receiving means. Therefore, it can be avoided that the intensity of the detection signal is reduced due to the separation of the laser light. As a result, it is possible to obtain a signal having an S / N ratio equivalent to that in the case where the signals are not separated, and perform accurate measurement.
 以上説明したように、本実施形態に係る測定装置によれば、被計測対象に対するダメージを低減しつつ、好適に測定を行うことが可能である。 As described above, according to the measurement apparatus according to the present embodiment, it is possible to suitably perform measurement while reducing damage to the measurement target.
 <2>
 本実施形態に係る測定装置の一態様では、前記分離照射手段は、グレーティングを含む。
<2>
In one aspect of the measuring apparatus according to this embodiment, the separation irradiation unit includes a grating.
 この態様によれば、レーザー光は、グレーティング(回折格子)に入射されることで、複数の光束に分離される。このため、例えば複数のミラーを利用してレーザー光を分離する場合と比較して、光路の調整に精度が要求されない。従って、容易に且つ精度良く測定が実行できる。 According to this aspect, the laser light is incident on the grating (diffraction grating) and is separated into a plurality of light beams. For this reason, compared with the case where a laser beam is isolate | separated using a some mirror, for example, the precision is not required for adjustment of an optical path. Therefore, measurement can be performed easily and accurately.
 また、部品点数も削減することができるため、コストの増大や装置構成の複雑化を防止することができる。 Also, since the number of parts can be reduced, it is possible to prevent an increase in cost and a complicated apparatus configuration.
 <3>
 上述したグレーティングを含む態様では、前記グレーティングは、ブレーズ型のグレーティングであってもよい。
<3>
In the aspect including the above-described grating, the grating may be a blazed grating.
 この場合、グレーティングに入射したレーザー光の一部を直進させることができるため、グレーティングを被計測対象に対して平行に(即ち、グレーティングの出射面と、被計測対象の照射面とが平行となるように)配置することができる。従って、例えばグレーティングを被計測対象に対して斜めに配置する場合と比較して、レイアウトスペースを有効に活用することができる。この結果、例えば装置構成の簡単化や小型化を実現することができる。 In this case, since a part of the laser light incident on the grating can be moved straight, the grating is parallel to the measurement target (that is, the emission surface of the grating and the irradiation surface of the measurement target are parallel). Can be arranged). Therefore, for example, the layout space can be effectively used as compared with the case where the grating is disposed obliquely with respect to the measurement target. As a result, for example, simplification and downsizing of the device configuration can be realized.
 <4>
 或いはグレーティングを含む態様では、前記グレーティングは、集光効果を有していてもよい。
<4>
Or in the aspect containing a grating, the said grating may have a condensing effect.
 この場合、グレーティングにおいて分離した複数の光束を、集光して被計測対象に照射することができるため、レーザー光のエネルギー効率を高めることができる。 In this case, since a plurality of light beams separated in the grating can be condensed and irradiated onto the measurement target, the energy efficiency of the laser beam can be increased.
 また、グレーティングでは特に、分離した複数の光束の各々の焦点位置を互いに異ならしめることができる。これにより、複数の光束の各々の被計測対象までの光路長が互いに異なる場合であっても、それぞれ好適に計測対象位置に集光させることができる。 In particular, in the grating, it is possible to make the focal positions of the plurality of separated light beams different from each other. Thereby, even if it is a case where the optical path length to each to-be-measured object of a some light beam differs mutually, it can each be suitably condensed on a measurement object position.
 <5>
 本実施形態に係る測定装置の他の態様では、前記分離照射手段は、前記レーザー光の一部を反射する一部反射手段を含む。
<5>
In another aspect of the measuring apparatus according to this embodiment, the separation irradiation unit includes a partial reflection unit that reflects a part of the laser beam.
 この態様によれば、レーザー光は、例えばハーフミラーとして構成される一部反射手段により、一部が反射され、他の一部が透過される。よって、レーザー光を確実に複数の光束に分離することができる。 According to this aspect, the laser beam is partially reflected by the partially reflecting means configured as a half mirror, for example, and the other part is transmitted. Therefore, the laser beam can be reliably separated into a plurality of light beams.
 <6>
 上述した一部反射手段を含む態様では、前記分離照射手段は、前記一部反射手段との相対的な位置が固定された反射手段を更に含んでいてもよい。
<6>
In the aspect including the partial reflection unit described above, the separation irradiation unit may further include a reflection unit whose position relative to the partial reflection unit is fixed.
 この場合、一部反射手段で分離された複数の光束の少なくとも1つが反射手段により反射され、被計測対象へと向かう光束とされる。本態様では特に、反射手段は、一部反射手段との相対的な位置が固定されている(言い換えれば、2面鏡として構成されている)ため、一部反射手段と反射手段の角度調整を別々に行わずに済む。従って、レーザー光の照射角度の調整が容易に行える。 In this case, at least one of the plurality of light beams separated by the reflecting means is reflected by the reflecting means and becomes a light beam directed toward the measurement target. In this aspect, in particular, since the reflecting means is fixed in position relative to the partially reflecting means (in other words, configured as a dihedral mirror), the angle of the partially reflecting means and the reflecting means can be adjusted. You don't have to do it separately. Therefore, it is possible to easily adjust the irradiation angle of the laser beam.
 <7>
 本実施形態に係る測定装置の他の態様では、前記散乱光を前記受光手段に集光する散乱後集光手段を更に備える。
<7>
In another aspect of the measuring apparatus according to the present embodiment, a post-scattering condensing unit that condenses the scattered light on the light receiving unit is further provided.
 この態様によれば、比較的広範囲に照射される散乱光を受光手段に効率的に集めることができる。従って、受光手段において検出される光の強度を高めることができ、結果として測定精度を高めることが可能となる。 According to this aspect, scattered light irradiated in a relatively wide range can be efficiently collected in the light receiving means. Therefore, the intensity of light detected by the light receiving means can be increased, and as a result, measurement accuracy can be increased.
 <8>
 本実施形態に係る測定装置の他の態様では、前記複数の光束を前記被計測対象に集光する分離後集光手段を更に備える。
<8>
In another aspect of the measuring apparatus according to the present embodiment, a post-separation condensing unit that condenses the plurality of light fluxes on the measurement target is further provided.
 この態様によれば、分離された複数の光束を効率よく被計測対象に照射することができ、レーザー光のエネルギー効率を高めることができる。また、分離後集光手段は、分離された複数の光束の入射角調整にも利用できる。 According to this aspect, it is possible to efficiently irradiate the measurement target with a plurality of separated light beams, and to increase the energy efficiency of the laser beam. The post-separation condensing means can also be used for adjusting the incident angle of a plurality of separated light beams.
 <9>
 本実施形態に係る測定装置の他の態様では、前記分離照射手段は、前記レーザー光を少なくとも第1光束及び第2光束に分離して照射し、前記第1光束が前記被計測対象で散乱された第1散乱光の前記受光手段までの光路は、前記第2光束の光路と平行とされており、前記第2光束が前記被計測対象で散乱された第2散乱光の前記受光手段までの光路は、前記第2光束の光路と平行とされている。
<9>
In another aspect of the measuring apparatus according to the present embodiment, the separation irradiation unit irradiates the laser beam separately into at least a first light beam and a second light beam, and the first light beam is scattered by the measurement target. The optical path of the first scattered light to the light receiving means is parallel to the optical path of the second light flux, and the second scattered light scattered by the measurement target to the light receiving means. The optical path is parallel to the optical path of the second light flux.
 この態様によれば、第1光束の光路(具体的には、第1光束の分離照射手段から被計測対象までの光路)と、第2光束の散乱光の光路(具体的には、第2光束の散乱後の被計測対象から受光手段までの光路)とが互いに平行となる。同様に、第2光束の光路(具体的には、第2光束の分離照射手段から被計測対象までの光路)と、第1光束の散乱光の光路(具体的には、第1光束の散乱後の被計測対象から受光手段までの光路)とが互いに平行となる。よって、第1光束の光路、第2光束の光路、第1光束の散乱光の光路、及び第2光束の散乱光の光路は平行四辺形の各辺をなす。 According to this aspect, the optical path of the first light beam (specifically, the optical path from the first light beam separating and irradiating means to the measurement target) and the optical path of the scattered light of the second light beam (specifically, the second light beam). The optical path from the object to be measured to the light receiving means after scattering of the light beam is parallel to each other. Similarly, the optical path of the second light beam (specifically, the optical path from the second light beam separating and irradiating means to the measurement target) and the optical path of the scattered light of the first light beam (specifically, the scattering of the first light beam). The optical path from the object to be measured to the light receiving means) is parallel to each other. Therefore, the optical path of the first light beam, the optical path of the second light beam, the optical path of the scattered light of the first light beam, and the optical path of the scattered light of the second light beam form each side of the parallelogram.
 このようにすれば、受光手段における散乱光の検出強度を理論的に最大にすることができる。従って、レーザー光のパワーを必要以上に高くせずとも、高い精度で測定が行える。なお、光路が完全な平行四辺形とならない場合でも、平行四辺形に近い形とすることで、上述した効果は相応に発揮される。 In this way, the detection intensity of scattered light in the light receiving means can be theoretically maximized. Accordingly, measurement can be performed with high accuracy without increasing the power of the laser beam more than necessary. Even if the optical path is not a perfect parallelogram, the above-described effects can be achieved by making the shape close to a parallelogram.
 <10>
 本実施形態に係る測定装置の他の態様では、前記受光手段で受光された前記散乱光のドップラーシフトから、前記被計測対象の速度を検出する速度検出手段を更に備える。
<10>
In another aspect of the measuring apparatus according to the present embodiment, the measuring device further includes speed detecting means for detecting the speed of the measurement target from the Doppler shift of the scattered light received by the light receiving means.
 この態様によれば、分離された複数の光束の各々の散乱光に発生するドップラーシフトを利用して、被計測対象の速度を検出できる。具体的には、複数の散乱光のビート信号を利用して、被計測対象の速度を検出できる。 According to this aspect, the speed of the measurement target can be detected using the Doppler shift generated in the scattered light of each of the separated light beams. Specifically, the speed of the measurement target can be detected using beat signals of a plurality of scattered lights.
 本態様に係る測定装置は、上述したように、レーザー光による被計測対象へのダメージを低減することができるため、例えばダメージによる影響が深刻となり得る血液等の速度を検出する場合に顕著に効果を発揮する。 As described above, the measuring apparatus according to this aspect can reduce damage to the measurement target due to the laser beam, and thus is remarkably effective when detecting the speed of blood or the like that can be seriously affected by the damage, for example. Demonstrate.
 <11>
 本実施形態に係る測定方法は、レーザー光を複数の光束に分離し、前記複数の光束を互いに被計測対象の異なる部分に異なる入射角で照射する分離照射工程と、前記複数の光束が前記被計測対象で散乱された散乱光を受光する受光工程とを備える。
<11>
The measurement method according to the present embodiment includes a separation irradiation step in which laser light is separated into a plurality of light beams, and the plurality of light beams are irradiated to different parts of the measurement target at different incident angles, and the plurality of light beams are A light receiving step for receiving scattered light scattered by the measurement object.
 本実施形態に係る測定方法によれば、上述した本実施形態に係る測定装置と同様に、被計測対象に対するダメージを低減しつつ、好適に測定を行うことが可能である。 According to the measurement method according to the present embodiment, it is possible to suitably perform measurement while reducing damage to the measurement target, similarly to the measurement apparatus according to the present embodiment described above.
 なお、本実施形態に係る測定方法においても、上述した本実施形態に係る測定装置における各種態様と同様の各種態様を採ることが可能である。 In the measurement method according to this embodiment, it is possible to adopt various aspects similar to the various aspects of the measurement apparatus according to this embodiment described above.
 本実施形態に係る測定装置及び測定方法の作用及び他の利得については、以下に示す実施例において、より詳細に説明する。 The operation and other gains of the measuring apparatus and measuring method according to the present embodiment will be described in more detail in the following examples.
 以下では、図面を参照して測定装置及び測定方法の実施例について詳細に説明する。なお、以下の実施例では、本発明に係る測定装置が、例えば血液等の流体の速度を測定する装置として適用される場合について説明する。 Hereinafter, embodiments of the measuring apparatus and the measuring method will be described in detail with reference to the drawings. In the following embodiments, a case where the measuring apparatus according to the present invention is applied as an apparatus for measuring the velocity of a fluid such as blood will be described.
 <第1実施例>
 第1実施例に係る測定装置について、図1から図6を参照して説明する。
<First embodiment>
A measuring apparatus according to the first embodiment will be described with reference to FIGS.
 <全体構成>
 先ず、第1実施例に係る測定装置の全体構成について、図1を参照して説明する。ここに図1は、第1実施例に係る測定装置の全体構成を示す側面図である。
<Overall configuration>
First, the overall configuration of the measuring apparatus according to the first embodiment will be described with reference to FIG. FIG. 1 is a side view showing the overall configuration of the measuring apparatus according to the first embodiment.
 図1において、第1実施例に係る測定装置1は、主な構成要素として、光源100と、グレーティング200と、検出器500とを備えて構成されている。 In FIG. 1, the measuring apparatus 1 according to the first embodiment includes a light source 100, a grating 200, and a detector 500 as main components.
 光源100は、照射光Liを出力可能に構成されたレーザー光源である。光源100は、レーザー光の出力強度を調整可能とされている。 The light source 100 is a laser light source configured to output the irradiation light Li. The light source 100 can adjust the output intensity of the laser light.
 グレーティング200は、本発明の「分離照射手段」の一例であり、バイナリ型のグレーティングとして構成されている。グレーティング200は、光源100から照射された照射光Liを分離光Ld1及びLd2に分離して、透明チューブ300内を図の右方向に向かって流れる流体400に照射する。 The grating 200 is an example of the “separation irradiation means” in the present invention, and is configured as a binary type grating. The grating 200 separates the irradiation light Li emitted from the light source 100 into separated light Ld1 and Ld2, and irradiates the fluid 400 flowing in the right direction in the drawing in the transparent tube 300.
 分離光Ld1及びLd2は、被計測対象である流体400に対して、夫々異なる位置に異なる角度で入射される。具体的には、分離光Ld1は、流体400内の散乱体401において散乱(透過)される。この結果、散乱体401から散乱光Ls1が放射される。一方、分離光Ld2は、流体400内の散乱体402において散乱(透過)される。この結果、散乱体402から散乱光Ls2が放射される。 The separated lights Ld1 and Ld2 are incident on the fluid 400 to be measured at different angles at different positions. Specifically, the separated light Ld1 is scattered (transmitted) by the scatterer 401 in the fluid 400. As a result, scattered light Ls1 is emitted from the scatterer 401. On the other hand, the separated light Ld2 is scattered (transmitted) by the scatterer 402 in the fluid 400. As a result, scattered light Ls2 is emitted from the scatterer 402.
 検出器500は、本発明の「受光手段」の一例であり、例えばフォトディテクターとして構成されている。検出器500は、流体400から見て光源100とは反対側に配置されており、その検出面において、流体400を透過した散乱光Ls1及びLs2を夫々検出可能とされている。即ち、検出器500は、散乱光Ls1及びLs2の干渉光を検出可能に構成されている。 The detector 500 is an example of the “light receiving means” in the present invention, and is configured as, for example, a photodetector. The detector 500 is disposed on the opposite side of the light source 100 when viewed from the fluid 400, and the scattered light Ls1 and Ls2 transmitted through the fluid 400 can be detected on the detection surface thereof. That is, the detector 500 is configured to detect the interference light of the scattered light Ls1 and Ls2.
 検出器500で検出された干渉光の強度は信号化され、図示せぬ演算回路等において各種演算に用いられる。具体的には、本発明の「速度検出手段」の一例である速度演算部において演算され、流体400の速度が算出される。 The intensity of the interference light detected by the detector 500 is converted into a signal and used for various calculations in an arithmetic circuit (not shown). More specifically, the speed of the fluid 400 is calculated by a speed calculation unit which is an example of the “speed detection unit” of the present invention.
 <変形例>
 次に、第1実施例に係る測定装置の変形例について、図2から図4を参照して説明する。ここに図2から図4は夫々、第1実施例に係る測定装置の変形例の全体構成を示す側面図である。
<Modification>
Next, modified examples of the measuring apparatus according to the first embodiment will be described with reference to FIGS. Here, FIG. 2 to FIG. 4 are side views showing the overall configuration of a modification of the measuring apparatus according to the first embodiment.
 図2において、第1比較例に係る測定装置1bでは、検出器500が、流体400から見て光源100と同じ側に配置されており、その検出面において、流体400で反射された散乱光Ls1b及びLs2bを夫々検出可能とされている。 In FIG. 2, in the measuring apparatus 1b according to the first comparative example, the detector 500 is disposed on the same side as the light source 100 when viewed from the fluid 400, and the scattered light Ls1b reflected by the fluid 400 on the detection surface. And Ls2b can be detected.
 このように、検出器500は、流体400を透過した散乱光Ls1及びLs2(図1参照)に代えて、流体400で反射された散乱光Ls1b及びLs2bを検出可能に構成されてもよい。この場合でも、透過した散乱光Lsを検出する場合と同様に測定が行える。 Thus, the detector 500 may be configured to be able to detect the scattered light Ls1b and Ls2b reflected by the fluid 400, instead of the scattered light Ls1 and Ls2 (see FIG. 1) transmitted through the fluid 400. Even in this case, the measurement can be performed in the same manner as when the transmitted scattered light Ls is detected.
 図3において、第2比較例に係る測定装置1cでは、バイナリ型のグレーティング200に代えて、ブレーズ型のグレーティング200b設けられている。ブレーズ型のグレーティング200bは、分離光Ld1が照射光Liの入射角と同じ角度で(即ち、直進するように)出射される。このため、ブレーズ型のグレーティング200bは、出射面が透明チューブ300と平行となるように配置できる。よって、例えば透明チューブ300に対して斜めに出射面を配置せざるを得ないバイナリ型のグレーティング200を使用する場合(図1参照)と比較して、レイアウトの自由度が高くなる。 In FIG. 3, in the measuring apparatus 1c according to the second comparative example, a blazed grating 200b is provided instead of the binary grating 200. The blazed grating 200b emits the separated light Ld1 at the same angle as the incident angle of the irradiation light Li (that is, so as to go straight). For this reason, the blazed grating 200b can be arranged so that the emission surface is parallel to the transparent tube 300. Therefore, for example, the degree of freedom in layout becomes higher compared to the case of using a binary grating 200 (see FIG. 1) in which the emission surface has to be disposed obliquely with respect to the transparent tube 300.
 図4において、第3比較例に係る測定装置1dでは、ブレーズ型のグレーティング200bが使用されると共に、検出器500が、反射光である散乱光Ls1b及びLs2bを検出するように構成されている。 In FIG. 4, in the measuring apparatus 1d according to the third comparative example, a blazed grating 200b is used, and the detector 500 is configured to detect scattered light Ls1b and Ls2b that are reflected light.
 以上のように、本実施例に係る測定装置1は、グレーティング200が、バイナリ型或いはブレーズ型であるかを問わず、また検出器500の測定対象が、透過光或いは反射光であるかを問わない。 As described above, in the measuring apparatus 1 according to the present embodiment, it does not matter whether the grating 200 is a binary type or a blaze type, and whether the measurement target of the detector 500 is transmitted light or reflected light. Absent.
 <検出感度の最適化>
 次に、第1実施例に係る測定装置における検出感度の最適化について、図5を参照して説明する。ここに図5は、検出感度の最適化方法を示す概念図である。なお、以下では、図3で示した測定装置1c(即ち、ブレーズ型のグレーティング200bを備えた透過型の装置)を例に挙げて説明を進めるが、他の例についても同様の方法で最適化を行うことが可能である。
<Optimization of detection sensitivity>
Next, optimization of detection sensitivity in the measurement apparatus according to the first embodiment will be described with reference to FIG. FIG. 5 is a conceptual diagram showing a detection sensitivity optimization method. In the following description, the measurement apparatus 1c shown in FIG. 3 (that is, a transmission type apparatus including the blazed grating 200b) will be described as an example. However, other examples are optimized by the same method. Can be done.
 図5に示すように、グレーティング200bの出射面と分離光Ld1とがなす角度をγ1、グレーティング200bの出射面と分離光Ld2とがなす角度をγ2とする。検出器500の検出面と散乱光Ls1とがなす角度をγ3、検出器500の検出面と散乱光Ls2とがなす角度をγ4とする。分離光Ld1と分離光Ld2とがなす角度を2θ、散乱光Ls1と散乱光Ls2とがなす角度を2θとする。なお、図からも分かるように、2θ=γ1-γ2であり、2θ=γ3-γ4である。 As shown in FIG. 5, the angle between the exit surface of the grating 200b and the separated light Ld1 is γ1, and the angle between the exit surface of the grating 200b and the separated light Ld2 is γ2. An angle formed by the detection surface of the detector 500 and the scattered light Ls1 is γ3, and an angle formed by the detection surface of the detector 500 and the scattered light Ls2 is γ4. The angle between the separating light Ld1 and separating light Ld2 is 2 [Theta], the angle between the scattered light Ls1 and scattered light Ls2 is to 2 [Theta] 2. As can be seen from the figure, 2θ = γ1−γ2 and 2θ 2 = γ3−γ4.
 更に、2θの中心線と散乱体401及び402の流れる方向に沿う線とがなす角度をαとし、2θの中心線と散乱体401及び402の流れる方向に沿う線とがなす角度をβとする。散乱体401及び402は、互いに近接しているため、同じ速度vで流れているものとする。 Furthermore, α is an angle formed by the 2θ center line and a line along the direction in which the scatterers 401 and 402 flow, and β is an angle formed by the 2θ 2 center line and the line along the direction in which the scatterers 401 and 402 flow. To do. Since the scatterers 401 and 402 are close to each other, they are assumed to flow at the same velocity v.
 この場合、ビート信号の周波数Δfは、上記各パラメータと、光の周波数f及び光の速度cとを用いて、以下の数式(1)から(4)のように表すことができる。 In this case, the frequency Δf of the beat signal can be expressed as the following formulas (1) to (4) using the above parameters, the light frequency fe and the light velocity c.
Figure JPOXMLDOC01-appb-M000001
 ここで、γ3≠γ4(即ち、θ≠θ)の場合は、θ及びのθ符号が同一であれば検出感度が上がり、異なれば検出感度が低下する。そして特に、γ1=γ3、γ2=γ4とすれば、検出感度が最大となる。よって、分離光Ld1及びLd2、並びに散乱光Ls1及びLs2がなす四角形が平行四辺形となるように光学系を調整すれば、検出感度を最大とすることができる。
Figure JPOXMLDOC01-appb-M000001
Here, in the case of γ3 ≠ γ4 (that is, θ 2 ≠ θ), the detection sensitivity increases if θ and the θ 2 code are the same, and the detection sensitivity decreases if they are different. In particular, when γ1 = γ3 and γ2 = γ4, the detection sensitivity is maximized. Therefore, the detection sensitivity can be maximized by adjusting the optical system so that the quadrangle formed by the separated light Ld1 and Ld2 and the scattered light Ls1 and Ls2 is a parallelogram.
 <測定時の効果>
 次に、第1実施例に係る測定装置によって得られる技術的効果について、図6に示す比較例を参照しながら詳細に説明する。ここに図6は、比較例に係る測定装置の全体構成を示す側面図である。
<Effects during measurement>
Next, technical effects obtained by the measuring apparatus according to the first embodiment will be described in detail with reference to a comparative example shown in FIG. FIG. 6 is a side view showing the overall configuration of the measuring apparatus according to the comparative example.
 図6において、比較例に係る測定装置1eでは、光源から照射された照射光Liは、ハーフミラー210によって分離される。即ち、ハーフミラー210を透過した光が分離光Ld1とされ、ハーフミラー210で反射された光が分離光Ld2とされる。なお、分離光Ld2は、ミラー220で反射されることにより被計測対象である流体400に向かう。 In FIG. 6, in the measuring apparatus 1 e according to the comparative example, the irradiation light Li irradiated from the light source is separated by the half mirror 210. That is, the light transmitted through the half mirror 210 is the separated light Ld1, and the light reflected by the half mirror 210 is the separated light Ld2. The separated light Ld2 is reflected by the mirror 220 and travels toward the fluid 400 to be measured.
 また、比較例に係る測定装置1eでは特に、分離光Ld1及びLd2は、流体400の互いに同じ位置に照射される。即ち、分離光Ld1及びLd2は、同じ散乱体401に照射される。散乱体401に照射された分離光Ld1及びLd2は、夫々散乱光Ls1及びLs2となり、検出器500において検出される。 Further, particularly in the measuring apparatus 1e according to the comparative example, the separated lights Ld1 and Ld2 are irradiated to the same position of the fluid 400. That is, the separated light Ld1 and Ld2 are irradiated to the same scatterer 401. The separated lights Ld1 and Ld2 applied to the scatterer 401 become scattered lights Ls1 and Ls2, respectively, and are detected by the detector 500.
 上述した比較例では、分離光Ld1及びLd2が流体400の同じ一点に照射されるため、照射位置における光強度が比較的高くなり易く、被計測対象である流体400に対して照射によるダメージを与える可能性が高くなる。例えば、被計測対象が血液である場合、強度の高いレーザー光が照射されることで血液の一部が破壊され、生体に対して悪影響を与えてしまうおそれがある。一方で、ダメージの低減を図るために光強度を低くすると、検出器500で検出される光強度が小さくなり、S/N比が悪化する。この結果、正確な測定が実行できないおそれが生ずる。 In the comparative example described above, since the separated lights Ld1 and Ld2 are irradiated to the same point of the fluid 400, the light intensity at the irradiation position is likely to be relatively high, and damage is caused to the fluid 400 that is the measurement target by irradiation. The possibility increases. For example, when the measurement target is blood, a part of the blood may be destroyed by irradiating a high-intensity laser beam, which may adversely affect the living body. On the other hand, when the light intensity is lowered in order to reduce damage, the light intensity detected by the detector 500 is reduced, and the S / N ratio is deteriorated. As a result, there is a possibility that accurate measurement cannot be performed.
 更に、上述した比較例では、分離光Ld1及びLd2を流体400の同じ一点に照射しなければならないため、ハーフミラー210及びミラー220に対して高精度のアライメントが要求されると共に、信頼性を確保することも容易ではない。 Furthermore, in the comparative example described above, since the separated light Ld1 and Ld2 must be irradiated to the same point of the fluid 400, high precision alignment is required for the half mirror 210 and the mirror 220, and reliability is ensured. It is not easy to do.
 一方、図1から図4に示した第1実施例に係る測定装置1によれば、グレーティング200で分離された分離光Ld1及びLd2の各々が、流体400の異なる箇所(即ち、散乱体401及び402)に照射される。よって、仮に光源100から照射されるレーザー光の強度が同じであるとすると、上述した比較例と比べて、同一箇所で受けるダメージは半減される。また、異なる箇所で散乱された散乱光Ls1及びLs2が夫々検出されるため、S/N比は悪化しない。即ち、第1実施例に係る測定装置1によれば、検出感度を悪化させることなく、被計測対象へのダメージを低減できる。 On the other hand, according to the measuring apparatus 1 according to the first embodiment shown in FIG. 1 to FIG. 4, each of the separated lights Ld1 and Ld2 separated by the grating 200 is different from each other in the fluid 400 (that is, the scatterers 401 and 402). Therefore, if the intensity of the laser light emitted from the light source 100 is the same, the damage received at the same location is halved as compared with the comparative example described above. Moreover, since the scattered lights Ls1 and Ls2 scattered at different locations are detected, the S / N ratio does not deteriorate. That is, according to the measuring apparatus 1 according to the first embodiment, damage to the measurement target can be reduced without deteriorating the detection sensitivity.
 また、2つの分離光Ld1及びLd2を一点に照射することが要求されないことで、光学系のアライメントに高い精度が要求されずに済む。よって、例えば被計測対象を変更するために透明チューブ300の交換を行うような場合であっても、交換後の微調整が要求されない。 Further, since it is not required to irradiate the two separated lights Ld1 and Ld2 at one point, high accuracy is not required for alignment of the optical system. Therefore, for example, even when the transparent tube 300 is replaced in order to change the measurement target, fine adjustment after replacement is not required.
 加えて、第1実施例に係る測定装置1では、グレーティング200のみの調整によって、分離光Ld1及びLd2の入射角を調整できる。従って、比較例のように2つのミラーを利用して調整する場合と比較すると、極めて容易に調整作業が行える。この結果、装置の信頼性も向上し、更には部品数の削減によるコストの低減及び装置構成の簡単化も実現できる。 In addition, in the measuring apparatus 1 according to the first embodiment, the incident angles of the separated lights Ld1 and Ld2 can be adjusted by adjusting only the grating 200. Therefore, compared with the case where adjustment is performed using two mirrors as in the comparative example, the adjustment operation can be performed very easily. As a result, the reliability of the apparatus is improved, and furthermore, the cost can be reduced and the apparatus configuration can be simplified by reducing the number of parts.
 以上説明したように、第1実施例に係る測定装置1によれば、レーザー光を分離して異なる位置に照射することで、被計測対象に対するダメージを低減しつつ、好適に測定を行うことが可能である。 As described above, according to the measuring apparatus 1 according to the first embodiment, it is possible to appropriately measure while reducing damage to the measurement target by separating the laser beam and irradiating it at different positions. Is possible.
 <第2実施例>
 次に、第2実施例に係る測定装置について、図7を参照して説明する。ここに図7は、第2実施例に係る測定装置の全体構成を示す側面図である。なお、第2実施例は、上述した第1実施例と一部の構成が異なるのみであり、その他の構成や動作については概ね同様である。このため、以下では、既に説明した第1実施例と異なる部分について詳細に説明し、他の重複する部分については適宜説明を省略するものとする。
<Second embodiment>
Next, a measuring apparatus according to the second embodiment will be described with reference to FIG. FIG. 7 is a side view showing the overall configuration of the measuring apparatus according to the second embodiment. The second embodiment differs from the first embodiment described above only in part of the configuration, and the other configurations and operations are substantially the same. For this reason, below, a different part from 1st Example already demonstrated is demonstrated in detail, and description shall be abbreviate | omitted suitably about another overlapping part.
 図7において、第2実施例に係る測定装置2では、グレーティング200cが集光効果(レンズ効果)を有している。このため、分離光Ld1及びLd2の各々を、効率よく流体400(具体的には、散乱体401及び402)に照射することができる。よって、光源100からの照射光Liの強度を高めることなく、検出感度を向上させることができる。 In FIG. 7, in the measuring apparatus 2 according to the second embodiment, the grating 200c has a light condensing effect (lens effect). Therefore, each of the separated lights Ld1 and Ld2 can be efficiently irradiated onto the fluid 400 (specifically, the scatterers 401 and 402). Therefore, the detection sensitivity can be improved without increasing the intensity of the irradiation light Li from the light source 100.
 また、グレーティング200cは、分離光Ld1及びLd2の焦点距離を異なる値に設定できる。よって、グレーティング200cから散乱体401及び402までの距離が互いに異なる場合であっても、分離光Ld1及びLd2を好適に集光することが可能である。 Further, the grating 200c can set the focal lengths of the separated lights Ld1 and Ld2 to different values. Therefore, even when the distances from the grating 200c to the scatterers 401 and 402 are different from each other, the separated lights Ld1 and Ld2 can be suitably condensed.
 <第3実施例>
 次に、第3実施例に係る測定装置について、図8を参照して説明する。ここに図8は、第3実施例に係る測定装置の全体構成を示す側面図である。なお、第3実施例は、上述した第1及び第2実施例と一部の構成が異なるのみであり、その他の構成や動作については概ね同様である。このため、以下では、既に説明した第1及び第2実施例と異なる部分について詳細に説明し、他の重複する部分については適宜説明を省略するものとする。
<Third embodiment>
Next, a measuring apparatus according to the third embodiment will be described with reference to FIG. FIG. 8 is a side view showing the overall configuration of the measuring apparatus according to the third embodiment. The third embodiment differs from the first and second embodiments described above only in part of the configuration, and the other configurations and operations are substantially the same. For this reason, below, a different part from the already demonstrated 1st and 2nd Example is demonstrated in detail, and description is abbreviate | omitted suitably about another overlapping part.
 図8において、第3実施例に係る測定装置3では、グレーティング200に代えて、2面鏡250が用いられている。2面鏡250は、光源100からの照射光Liを分離するハーフミラー251と、ハーフミラー251で反射された分離光Ld2を反射するミラー252を備えている。このような2面鏡250によれば、ハーフミラー251及びミラー252の相対的な位置が固定されているため、グレーティング200と同様に調整作業が容易である。具体的には、例えば図6で示した比較例のように、ハーフミラー210及びミラー220を夫々個別に調整する構成と比較して、好適に調整作業が行える。 In FIG. 8, in the measuring apparatus 3 according to the third embodiment, a dihedral mirror 250 is used instead of the grating 200. The dihedral mirror 250 includes a half mirror 251 that separates the irradiation light Li from the light source 100 and a mirror 252 that reflects the separated light Ld2 reflected by the half mirror 251. According to such a two-sided mirror 250, since the relative positions of the half mirror 251 and the mirror 252 are fixed, adjustment work is easy as with the grating 200. Specifically, for example, as in the comparative example shown in FIG. 6, the adjustment work can be suitably performed as compared with a configuration in which the half mirror 210 and the mirror 220 are individually adjusted.
 <第4実施例>
 次に、第4実施例に係る測定装置について、図9及び図10を参照して説明する。ここに図9は、第4実施例に係る測定装置の全体構成を示す側面図であり、図10は、第4実施例に係る測定装置の変形例の全体構成を示す側面図である。なお、第4実施例は、上述した第1から第3実施例と一部の構成が異なるのみであり、その他の構成や動作については概ね同様である。このため、以下では、既に説明した第1から第3実施例と異なる部分について詳細に説明し、他の重複する部分については適宜説明を省略するものとする。
<Fourth embodiment>
Next, a measuring apparatus according to the fourth embodiment will be described with reference to FIGS. FIG. 9 is a side view showing the overall configuration of the measurement apparatus according to the fourth embodiment, and FIG. 10 is a side view showing the overall configuration of a modification of the measurement apparatus according to the fourth embodiment. The fourth embodiment differs from the first to third embodiments described above only in part of the configuration, and the other configurations and operations are substantially the same. For this reason, below, a different part from the 1st-3rd Example already demonstrated is demonstrated in detail, and description is abbreviate | omitted suitably about another overlapping part.
 図9において、第4実施例に係る測定装置4では、透明チューブ300と検出器500との間に、集光レンズ600が配置されている。集光レンズ600は、本発明の「散乱後集光手段」の一例であり、散乱光Ls1及びLs2を検出器500に集光する機能を有している。なお、集光レンズ600は、通常のレンズの他、シリンダーレンズ等として構成されてもよい。また、レンズでなくとも、集光効果を有する光学部材であればよい。 In FIG. 9, in the measuring device 4 according to the fourth example, a condenser lens 600 is disposed between the transparent tube 300 and the detector 500. The condenser lens 600 is an example of the “post-scattering condensing means” of the present invention, and has a function of condensing the scattered light Ls1 and Ls2 on the detector 500. The condenser lens 600 may be configured as a cylinder lens or the like in addition to a normal lens. In addition, an optical member having a light collecting effect may be used instead of a lens.
 集光レンズ600を配置することで、散乱光Ls1及びLs2を効率よく検出器500で検出できる。従って、光源100からの照射光Liの強度を高めることなく、検出感度を向上させることができる。 By arranging the condenser lens 600, the scattered light Ls1 and Ls2 can be efficiently detected by the detector 500. Therefore, the detection sensitivity can be improved without increasing the intensity of the irradiation light Li from the light source 100.
 図10において、変形例に係る測定装置4bでは、透明チューブ300と検出器500との間に、2つの集光レンズ610及び620が配置されている。集光レンズ610は、散乱光Ls1を検出器500に集光するものとして機能する。他方、集光レンズ620は、散乱光Ls2を検出器500に集光するものとして機能する。 In FIG. 10, in the measuring device 4 b according to the modification, two condenser lenses 610 and 620 are disposed between the transparent tube 300 and the detector 500. The condensing lens 610 functions as condensing the scattered light Ls1 on the detector 500. On the other hand, the condensing lens 620 functions to condense the scattered light Ls2 onto the detector 500.
 このように、散乱光Ls1及びLs2の各々に対して、専用の集光レンズ610及び620を配置すれば、より効率的に散乱光Ls1及びLs2を集光することができる。従って、より効果的に検出感度を向上させることができる。 Thus, if the dedicated condensing lenses 610 and 620 are arranged for each of the scattered lights Ls1 and Ls2, the scattered lights Ls1 and Ls2 can be collected more efficiently. Therefore, detection sensitivity can be improved more effectively.
 <第5実施例>
 次に、第5実施例に係る測定装置について、図11を参照して説明する。ここに図11は、第5実施例に係る測定装置の全体構成を示す側面図である。なお、第5実施例は、上述した第1から第4実施例と一部の構成が異なるのみであり、その他の構成や動作については概ね同様である。このため、以下では、既に説明した第1から第4実施例と異なる部分について詳細に説明し、他の重複する部分については適宜説明を省略するものとする。
<Fifth embodiment>
Next, a measuring apparatus according to the fifth embodiment will be described with reference to FIG. FIG. 11 is a side view showing the overall configuration of the measuring apparatus according to the fifth embodiment. The fifth embodiment differs from the first to fourth embodiments described above only in part of the configuration, and the other configurations and operations are substantially the same. For this reason, below, a different part from the already demonstrated 1st-4th Example is demonstrated in detail, and description is abbreviate | omitted suitably about another overlapping part.
 図11において、第5実施例に係る測定装置5では、グレーティング200bと透明チューブ300との間に集光レンズ700が配置されている。集光レンズ700は、本発明の「分離後集光手段」の一例であり、分離光Ld1及びLd2を集光する機能を有している。なお、集光レンズ700は、分離光Ld1及びLd2に共通する1つのレンズとして構成されているが、分離光Ld1及びLd2の各々に対して夫々レンズが設けられてもよい。 In FIG. 11, in the measuring apparatus 5 according to the fifth example, a condensing lens 700 is disposed between the grating 200 b and the transparent tube 300. The condensing lens 700 is an example of the “post-separation condensing unit” of the present invention, and has a function of condensing the separated lights Ld1 and Ld2. The condensing lens 700 is configured as one lens common to the separated lights Ld1 and Ld2, but a lens may be provided for each of the separated lights Ld1 and Ld2.
 集光レンズ700を配置することで、分離光Ld1及びLd2を効率よく散乱体401及び402に照射することができる。この結果、光源100からの照射光Liの強度を高めることなく、検出感度を向上させることができる。 By disposing the condenser lens 700, the scatterers 401 and 402 can be efficiently irradiated with the separated light Ld1 and Ld2. As a result, the detection sensitivity can be improved without increasing the intensity of the irradiation light Li from the light source 100.
 また、集光レンズ700によれば、分離光Ld1及びLd2の進行方向を変更することができる。このため、分離光Ld1及びLd2の流体400に対する入射角を適切な値に調整できる。なお、分離光Ld1及びLd2の入射角は、互いの入射角が交わるように、且つ透明チューブ300内では交差しないように設定されればよい。 Further, according to the condensing lens 700, the traveling directions of the separated lights Ld1 and Ld2 can be changed. For this reason, the incident angle with respect to the fluid 400 of the separated lights Ld1 and Ld2 can be adjusted to an appropriate value. The incident angles of the separated lights Ld1 and Ld2 may be set so that the incident angles intersect with each other and do not intersect within the transparent tube 300.
 <第6実施例>
 次に、第6実施例に係る測定装置について、図12を参照して説明する。ここに図12は、第6実施例に係る測定装置の全体構成を示す側面図である。なお、第6実施例は、上述した第1から第5実施例と一部の構成が異なるのみであり、その他の構成や動作については概ね同様である。このため、以下では、既に説明した第1から第5実施例と異なる部分について詳細に説明し、他の重複する部分については適宜説明を省略するものとする。
<Sixth embodiment>
Next, a measuring apparatus according to the sixth embodiment will be described with reference to FIG. FIG. 12 is a side view showing the overall configuration of the measuring apparatus according to the sixth embodiment. The sixth embodiment is different from the first to fifth embodiments described above only in a part of the configuration, and the other configurations and operations are substantially the same. For this reason, below, a different part from the already demonstrated 1st-5th Example is demonstrated in detail, and description is abbreviate | omitted suitably about another overlapping part.
 図12において、第6実施例に係る測定装置6では、光源100からの照射光Liが、集光効果を有するグレーティング200cにおいて3つの分離光Ld1、Ld2及びLd3に分離されている。具体的には、分離光Ld1、Ld2及びLd3は夫々、グレーティング200dの0次光、+1次光、-1次光である(ただし、本実施例で利用可能な光がこれらに限れられる訳ではない)。 12, in the measuring apparatus 6 according to the sixth embodiment, the irradiation light Li from the light source 100 is separated into three separated lights Ld1, Ld2, and Ld3 in the grating 200c having a light condensing effect. Specifically, the separated lights Ld1, Ld2, and Ld3 are the 0th order light, the + 1st order light, and the −1st order light of the grating 200d, respectively (however, the light that can be used in this embodiment is not limited to these). Absent).
 このように、照射光Liを3つの分離光Ld1、Ld2及びLd3に分離する場合でも、上述した各実施形態と同様の効果を得ることが可能である。特に、分離光の数が多い分だけ光のエネルギーも分散されることになるため、流体400に与えるダメージを効果的に低減できる。このような観点からすれば、照射光Liをより多くの分離光に分離することで、更にダメージを低減できる。 As described above, even when the irradiation light Li is separated into the three separated lights Ld1, Ld2, and Ld3, it is possible to obtain the same effects as those of the above-described embodiments. In particular, since the energy of light is also dispersed as much as the number of separated lights, damage to the fluid 400 can be effectively reduced. From this point of view, the damage can be further reduced by separating the irradiation light Li into more separated light.
 本発明は、上述した実施形態に限られるものではなく、特許請求の範囲及び明細書全体から読み取れる発明の要旨或いは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う測定装置及び測定方法もまた本発明の技術的範囲に含まれるものである。 The present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification. The measuring method is also included in the technical scope of the present invention.
 1,2,3,4,5,6 測定装置
 100 光源
 200 グレーティング
 210 ハーフミラー
 220 ミラー
 250 2面鏡
 300 透明チューブ
 400 流体
 401,402 散乱体
 500 検出器
 600,700 集光レンズ
 Li 照射光
 Ld1,Ld2,Ld3 分離光
 Ls1,Ls2,Ls3 散乱光
1, 2, 3, 4, 5, 6 Measuring device 100 Light source 200 Grating 210 Half mirror 220 Mirror 250 Two-sided mirror 300 Transparent tube 400 Fluid 401, 402 Scatterer 500 Detector 600, 700 Condensing lens Li Irradiation light Ld1, Ld2, Ld3 Separated light Ls1, Ls2, Ls3 Scattered light

Claims (11)

  1.  レーザー光を複数の光束に分離し、前記複数の光束を互いに被計測対象の異なる部分に異なる入射角で照射する分離照射手段と、
     前記複数の光束が前記被計測対象で散乱された散乱光を受光する受光手段と
     を備えることを特徴とする測定装置。
    Separating irradiation means for separating laser light into a plurality of light fluxes, and irradiating the plurality of light fluxes to different parts of the measurement target at different incident angles;
    A measuring apparatus comprising: a light receiving unit configured to receive scattered light in which the plurality of light beams are scattered by the measurement target.
  2.  前記分離照射手段は、グレーティングを含むことを特徴とする請求項1に記載の測定装置。 The measuring apparatus according to claim 1, wherein the separation irradiation means includes a grating.
  3.  前記グレーティングは、ブレーズ型のグレーティングであることを特徴とする請求項2に記載の測定装置。 3. The measuring apparatus according to claim 2, wherein the grating is a blazed grating.
  4.  前記グレーティングは、集光効果を有していることを特徴とする請求項2又は3に記載の測定装置。 4. The measuring apparatus according to claim 2, wherein the grating has a light collecting effect.
  5.  前記分離照射手段は、前記レーザー光の一部を反射する一部反射手段を含むことを特徴とする請求項1に記載の測定装置。 2. The measuring apparatus according to claim 1, wherein the separating and irradiating means includes a partially reflecting means for reflecting a part of the laser beam.
  6.  前記分離照射手段は、前記一部反射手段との相対的な位置が固定された反射手段を更に含むことを特徴とする請求項5に記載の測定装置。 6. The measuring apparatus according to claim 5, wherein the separation irradiation unit further includes a reflection unit whose position relative to the partial reflection unit is fixed.
  7.  前記散乱光を前記受光手段に集光する散乱後集光手段を更に備えることを特徴とする請求項1から6のいずれか一項に記載の測定装置。 7. The measuring apparatus according to claim 1, further comprising a post-scattering condensing unit that condenses the scattered light on the light receiving unit.
  8.  前記複数の光束を前記被計測対象に集光する分離後集光手段を更に備えることを特徴とする請求項1から7のいずれか一項に記載の測定装置。 The measuring apparatus according to claim 1, further comprising a post-separation condensing unit that condenses the plurality of light beams on the measurement target.
  9.  前記分離照射手段は、前記レーザー光を少なくとも第1光束及び第2光束に分離して照射し、
     前記第1光束が前記被計測対象で散乱された第1散乱光の前記受光手段までの光路は、前記第2光束の光路と平行とされており、
     前記第2光束が前記被計測対象で散乱された第2散乱光の前記受光手段までの光路は、前記第2光束の光路と平行とされている
     ことを特徴とする請求項1から8のいずれか一項に記載の測定装置。
    The separating and irradiating means irradiates the laser beam by separating it into at least a first light beam and a second light beam,
    The optical path to the light receiving means of the first scattered light scattered from the measurement target by the first light flux is parallel to the optical path of the second light flux,
    9. The optical path to the light receiving means of the second scattered light scattered from the measurement target by the second light flux is parallel to the optical path of the second light flux. A measuring device according to claim 1.
  10.  前記受光手段で受光された前記散乱光のドップラーシフトから、前記被計測対象の速度を検出する速度検出手段を更に備えることを特徴とする請求項1から9のいずれか一項に記載の測定装置。 10. The measuring apparatus according to claim 1, further comprising a speed detecting unit that detects a speed of the measurement target from a Doppler shift of the scattered light received by the light receiving unit. .
  11.  レーザー光を複数の光束に分離し、前記複数の光束を互いに被計測対象の異なる部分に異なる入射角で照射する分離照射工程と、
     前記複数の光束が前記被計測対象で散乱された散乱光を受光する受光工程と
     を備えることを特徴とする測定方法。
    Separating and irradiating a laser beam into a plurality of light fluxes, and irradiating the plurality of light fluxes at different incident angles to different parts of the measurement target;
    A light receiving step of receiving the scattered light scattered by the measurement object.
PCT/JP2014/055447 2014-03-04 2014-03-04 Measurement device and measurement method WO2015132878A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016505980A JPWO2015132878A1 (en) 2014-03-04 2014-03-04 Measuring apparatus and measuring method
PCT/JP2014/055447 WO2015132878A1 (en) 2014-03-04 2014-03-04 Measurement device and measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055447 WO2015132878A1 (en) 2014-03-04 2014-03-04 Measurement device and measurement method

Publications (1)

Publication Number Publication Date
WO2015132878A1 true WO2015132878A1 (en) 2015-09-11

Family

ID=54054718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055447 WO2015132878A1 (en) 2014-03-04 2014-03-04 Measurement device and measurement method

Country Status (2)

Country Link
JP (1) JPWO2015132878A1 (en)
WO (1) WO2015132878A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112683198B (en) * 2020-12-01 2023-02-21 江西省中久光电产业研究院 Three-degree-of-freedom angle photoelectric measuring device and measuring method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425787A (en) * 1990-05-21 1992-01-29 Canon Inc Doppler speed indicator
JP2012098169A (en) * 2010-11-02 2012-05-24 Tokai Univ Laser doppler speed meter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0425787A (en) * 1990-05-21 1992-01-29 Canon Inc Doppler speed indicator
JP2012098169A (en) * 2010-11-02 2012-05-24 Tokai Univ Laser doppler speed meter

Also Published As

Publication number Publication date
JPWO2015132878A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP4927182B2 (en) Laser distance meter
JP6299600B2 (en) Fine particle measuring device
US20140285817A1 (en) Limited reflection type photoelectric sensor
US9030661B1 (en) Alignment measurement system
US11703571B2 (en) Optical device
JP5828440B1 (en) Fine particle measuring device
US20200363509A1 (en) Optical device
JP6253761B2 (en) Measuring apparatus and measuring method
WO2015132878A1 (en) Measurement device and measurement method
JP6955058B2 (en) Measuring device and measuring method
JP2018151408A (en) Measurement device
JP2011149760A (en) Light-wave distance measuring apparatus
JP4266075B2 (en) Particle size distribution measuring device
JP2018040748A (en) Laser range measuring device
CN107450272B (en) Off-axis illumination device
KR102106861B1 (en) Optical module for optical height measurement
JP6735463B2 (en) Measuring device
JP6908245B2 (en) Measuring device
JP2020071414A (en) Measuring device for collimation adjustment and method for adjusting collimation optical system
KR102122020B1 (en) Apparatus for analyzing blood cell, method for analyzing blood cell using the apparatus
JP7365247B2 (en) laser doppler velocimeter
JPH1164719A (en) Microscope equipped with focus detection means and displacement measuring device
JP6901089B2 (en) Measuring device
JP2007127539A (en) Encoder
JP2018091769A (en) Displacement detector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884666

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505980

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884666

Country of ref document: EP

Kind code of ref document: A1