WO2015132846A1 - 電磁波検出装置 - Google Patents

電磁波検出装置 Download PDF

Info

Publication number
WO2015132846A1
WO2015132846A1 PCT/JP2014/055218 JP2014055218W WO2015132846A1 WO 2015132846 A1 WO2015132846 A1 WO 2015132846A1 JP 2014055218 W JP2014055218 W JP 2014055218W WO 2015132846 A1 WO2015132846 A1 WO 2015132846A1
Authority
WO
WIPO (PCT)
Prior art keywords
electromagnetic wave
signal
sensor
detection device
electric field
Prior art date
Application number
PCT/JP2014/055218
Other languages
English (en)
French (fr)
Inventor
彩 大前
須賀 卓
ウンベルト パオレッティ
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2014/055218 priority Critical patent/WO2015132846A1/ja
Priority to US15/111,288 priority patent/US9804215B2/en
Priority to JP2016505959A priority patent/JP6148786B2/ja
Publication of WO2015132846A1 publication Critical patent/WO2015132846A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • G01R29/0885Sensors; antennas; probes; detectors using optical probes, e.g. electro-optical, luminescent, glow discharge, or optical interferometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors

Definitions

  • the present invention relates to an electromagnetic wave detection device.
  • Patent Document 1 Japanese Patent Laid-Open No. 2013-130466
  • Patent Document 2 Patent Document 2
  • Patent Document 1 states that “an electromagnetic wave visualization device senses the energy of an electromagnetic wave emitted from the emission direction separation unit and an emission direction separation unit that changes the emission direction of the electromagnetic wave according to the incident direction of the electromagnetic wave.
  • a plurality of sensors each outputting a detection signal having a strength corresponding to the magnitude of the energy, and the detection signal can be received from each of the plurality of sensors, and when the detection signal is received from the sensor,
  • a processing unit that outputs a display signal including arrival direction information of an electromagnetic wave obtained by referring to a table based on position information of a sensor that has transmitted a detection signal, and can each display the arrival directions of the plurality of electromagnetic waves,
  • a display unit that displays the arrival direction of the electromagnetic wave It has been described as obtain ".
  • Patent Document 2 includes “a radio wave absorber that has a plane having a plurality of cells and absorbs radio waves incident on the plane, and a measurement unit that measures the intensity of radio waves in the plurality of cells. Provides a radio wave intensity measuring device and a radio wave intensity measuring system capable of measuring radio wave intensity in a short time. "
  • Patent Document 1 The technology described in Patent Document 1 is a device that uses a spherical radio wave lens or an aspherical lens and receives and visualizes electromagnetic wave energy with a two-dimensional electric field sensor.
  • the size of the device depends on the size of the lens, and it is necessary to increase the lens diameter to ensure the ability to separate electromagnetic waves.
  • Non-Patent Document 1 As a configuration of a receiving device using a lens that is smaller than a spherical radio wave lens or an aspheric lens, there are a planar Luneberg lens and a receiving antenna as described in Non-Patent Document 1, but in this configuration, a receiving unit There is only one point, and electromagnetic waves can be detected, but the arrival direction of electromagnetic waves cannot be detected.
  • EBG Electromagnetic Band Gap
  • This sensor is a kind of metamaterial that has an equivalent material property by arranging metal pieces that are sufficiently small with respect to the wavelength of electromagnetic waves periodically.
  • the EBG type electric field sensor has a periodic structure composed of metal pieces and vias, and can provide a state in which incoming electromagnetic waves are not reflected by providing a resistance equivalent to a wave impedance of 377 ⁇ in the air between the metal pieces.
  • planar Luneberg lens requires metal parallel plates above and below the lens in order to control the characteristics of the lens. Because of these parallel plates, the number of periodic structures of sensors installed on the lens is limited. Therefore, it is difficult to realize low reflection.
  • the electromagnetic field is affected by the metal wall, and the low reflection state may deteriorate.
  • an object of the present invention is to provide a small electromagnetic wave detection device.
  • an electromagnetic wave detection device which is covered with an opposing metal plate, changes the emission direction of the electromagnetic wave according to the incident direction of the electromagnetic wave.
  • An electric field sensor having a planar Luneberg lens and electrically connected to the metal plate, wherein the electric field sensor detects an electromagnetic wave emitted from the Luneberg lens, and detects the arrival direction of the electromagnetic wave and the detection
  • a detection signal having a strength corresponding to the magnitude of the energy of the electromagnetic wave is output.
  • FIG. 1 is a configuration diagram of an electromagnetic wave detection device according to the present embodiment.
  • FIG. 2 is a two-dimensional Luneberg lens that is an arrival direction separation unit of the electromagnetic wave detection device according to the present embodiment.
  • FIG. 3 is a diagram showing the thickness of the dielectric of the Luneberg lens according to this embodiment.
  • FIG. 4 is a diagram illustrating an electromagnetic field analysis example of the radio wave propagation characteristics of the Luneberg lens according to the present embodiment.
  • FIG. 5 shows an ideal configuration example of the electric field sensor according to the present embodiment.
  • FIG. 6 is a partial overhead view of the electric field sensor according to the present embodiment.
  • FIG. 7 is a partial cross-sectional view of the electric field sensor according to the present embodiment.
  • FIG. 8 is an ideal equivalent circuit of the electric field sensor according to this embodiment.
  • FIG. 9 is a configuration example of the substrate end portion of the electric field sensor according to the present embodiment.
  • FIG. 10 is an equivalent circuit at the substrate end of the electric field sensor according to the present embodiment.
  • FIG. 11 is a diagram showing the reflection characteristics of the electric field sensor according to the present embodiment.
  • FIG. 12 is an analysis result example of electromagnetic wave propagation characteristics when the electric field sensor according to this embodiment is combined with a planar Luneberg lens.
  • FIG. 13 is an example of visualization of the arrival direction of electromagnetic waves when the electric field sensor according to the present embodiment and a planar Luneberg lens are combined.
  • the electromagnetic wave detection device includes a planar Luneberg lens 1 that is an emission direction separation unit having a function of separating the emission direction of an electromagnetic wave according to the arrival direction (incident direction) of the electromagnetic wave. And a waveguide 12 is provided so as to cover one surface of the lens.
  • One end of the waveguide 12 is connected to an electric field sensor 2 in which a plurality of sensors for inducing a voltage by energy of electromagnetic waves are arranged so as to cover one side surface of the planar Luneberg lens 1.
  • the electric field sensor 2 has a plurality of metal pieces 201 on a dielectric 204, and the adjacent metal pieces 201 are connected to each other by a resistor 202 and a capacitor 203.
  • a via 205 is provided at the center of the metal piece 201. A further detailed structure of the sensor will be described later.
  • the signal detector 3 for detecting a signal from the electric field sensor 2 is connected to the electric field sensor 2, and the signal processing / result display unit 4 is connected to the signal detector 3 through the transmission line 210.
  • the electromagnetic wave detection device is provided with a camera 7 that captures an image of an object, and is connected to the signal processing / result display unit 4.
  • the signal processing / result display unit 4 includes image information from the camera 7, a signal processing unit for processing the detection signal, and a signal processing / result display unit 4 having a display unit for displaying the processing result and the like.
  • the signal processing unit and the display unit are described as an integral configuration, they may be configured independently of each other.
  • planar Luneberg lens 1 which is an injection
  • the planar Luneberg lens 1 has metal waveguides 12 on the upper and lower sides.
  • the dielectric 11 is formed between the waveguides 12 while changing the thickness as shown in FIG. As a result, the energy can be converged to different positions depending on the emission direction of the electromagnetic wave as in the case of the spherical Luneberg lens.
  • the thickness of the lens is a relative dielectric constant ⁇ r , a radius Radius, a distance r from the center, and a height d of a metal parallel plate of the lens
  • the effective relative dielectric constant ⁇ S and the dielectric constant at the distance r is expressed by [Equation 1] and [Equation 2], respectively.
  • Fig. 4 shows the radio wave propagation characteristics when the lens of this configuration is irradiated with electromagnetic waves from the front upper side. It can be seen that the energy of the electromagnetic wave arriving from above gradually bends inside the planar lens and converges to the central part on the opposite side of the lens.
  • the electric field sensor 2 includes a plurality of sensors that detect the energy of electromagnetic waves emitted from the planar Luneberg lens 1 and output a detection signal having a strength corresponding to the magnitude of the detected energy.
  • a sensor at a position corresponding to the convergence position (focus) of the electromagnetic wave incident on the lens outputs a detection signal such as voltage or power. That is, the sensor that outputs the detection signal differs depending on the convergence position of the electromagnetic wave incident on the lens.
  • visualization is realized by superimposing the image obtained by the camera 7 and the arrival direction estimation result of the electromagnetic wave based on the detection signal of the electric field sensor 2.
  • the electric field sensor of the present embodiment is realized by, for example, a mushroom-like metal periodic structure.
  • a mushroom-like metal periodic structure is widely used because the electric capacity and inductance for realizing low reflection can be controlled by the size of the mushroom.
  • metal pieces 201 are periodically arranged on the first layer which is the surface of the plate-like dielectric 204. More specifically, a plurality of metal pieces 201 are arranged in a grid pattern in the row direction (lateral direction) and the column direction (vertical direction). Each metal piece 201 is connected by a resistor 202 and a capacitor 203. A via 205 described later is provided in the center of each metal piece 201.
  • Each metal piece 201 is sufficiently small with respect to the wavelength ⁇ of the electromagnetic wave to be measured, and the length of one side of the metal piece 201 is (1/10) ⁇ or less.
  • the length D of one side of the metal piece 201 is 12.5 mm or less as shown in FIG.
  • the metal piece 201 is a square metal plate in the present embodiment, but is not limited to a square.
  • FIG. 7 is a cross-sectional view of the portion a in FIG.
  • a ground (GND) 206 which is a conductor as a second layer facing the first layer, is provided as a surface having substantially the same size as the surface of the dielectric 204.
  • the GND 206 is connected to each metal piece 201 by a via 205 that is a conductor with the dielectric 204 interposed therebetween.
  • the voltage detection via 225 for detecting the voltage induced at both ends of the resistor 203 is connected to the detection circuit.
  • the voltage detection circuit that is the signal detection unit 3 shown in FIG. 1 is configured by, for example, an amplifier, an AD converter, a voltage measurement device, and the like.
  • the resistance 202 is 377 ⁇ , which is the same as the wave impedance, the impedance of the space and the electric field sensor 2 is matched, and the electromagnetic wave is not reflected and the electric field sensor 2 absorbs the energy of the electromagnetic wave.
  • the resistor 202 may not be provided, and a matching circuit matching 377 ⁇ may be provided on the voltage detection circuit side.
  • Z Air in FIG. 8 is the wave impedance of the space
  • R 2 is the input resistance of the voltage detection circuit.
  • the capacitor 203 may be a variable capacitor in addition to a fixed capacitor.
  • the variable capacitor has a capacitance value that changes depending on a bias voltage value applied to both ends of the element.
  • the inductance L and the capacitance (C + C add ) are in parallel resonance at a desired frequency, and the resistance R may be 377 ⁇ which is the same value as the wave impedance Z Air .
  • the resonance frequency is obtained from [Equation 5].
  • the electric constant C add of the capacitor 203 may be determined. If it is desired to change the frequency, a voltage is applied to the variable capacitor to change the capacitance value.
  • the two-dimensional Luneberg lens requires metal waveguides on the top and bottom.
  • an EBG type electric field sensor having a structure suitable for a Luneberg lens having a metal waveguide is necessary, and the structure of this embodiment in consideration of these will be described with reference to FIGS.
  • FIG. 9 is a detailed view of the waveguide type EBG electric field sensor used in the present embodiment.
  • a periodic metal piece 201 disposed on the dielectric 204, a resistor 202 connecting the metal pieces, and a capacitor 203 are shown.
  • the metal piece 201 and the via 205 connected to the second layer GND.
  • voltage detection vias 225 are provided at both ends of the resistor 202, and these vias are connected to the third layer without being connected to the second layer GND.
  • this electric field sensor is configured such that the metal waveguide 12 of the Luneberg lens is positioned at the center of the metal piece having a periodic structure. With such a structure, it seems that the periodic structure is electrically folded by the electric image.
  • FIG. 10 shows an equivalent circuit of a dotted line b portion including an electric image of a portion in contact with the waveguide 12.
  • the electromagnetic wave reflection characteristics of this structure are shown in FIG.
  • the reflection characteristics when 2 to 4 cells of metal pieces are arranged between metal waveguides and the reflection characteristics of an electric field sensor with an infinite periodic structure were compared.
  • the number of cells of a metal piece is counted as 1/2 for a half-sized cell in contact with a metal waveguide.
  • low reflection characteristics similar to those of an electric field sensor having an infinite periodic structure can be obtained.
  • FIG. 12 and FIG. 13 show examples in which the arrival direction of electromagnetic waves is estimated with the configuration of this embodiment.
  • FIG. 12 is a diagram showing the propagation characteristics of electromagnetic waves in which a planar Luneberg lens and a waveguide-type electric field sensor are combined and the incident angle is changed from 0 to 10 degrees from the front direction of the lens.
  • An electric field sensor of a waveguide type metal piece 3 cell was provided on a plane perpendicular to the incident angle of 0 degrees of the lens. It can be seen that the electromagnetic wave incident from each angle is absorbed by the electric field sensor.
  • Fig. 13 shows the induced voltage of the electric field sensor.
  • the horizontal axis is the angle
  • the vertical axis is the cell position in the vertical axis direction. It can be seen that the sensor reacts correctly at 0 to 10 degrees, and the direction of arrival of electromagnetic waves can be visualized.
  • planar Luneberg lens a lens that changes the dielectric thickness step by step is used as the planar Luneberg lens.
  • the effective dielectric constant can be changed by opening a hole in the same thickness of the dielectric, or the surface of the dielectric.
  • planar Lunevel lens that changes the effective dielectric constant by providing a metal periodic structure may be used.
  • the present embodiment it is possible to detect the direction of arrival of electromagnetic waves and the intensity of electromagnetic waves using a flat lens, which is smaller than an electromagnetic wave detection device using a sphere or an aspheric lens. It is feasible.
  • the electromagnetic wave reception sensitivity can be suppressed and arrival of electromagnetic waves can be detected with high accuracy.
  • FIG. 14 shows a second embodiment of the present invention.
  • the waveguide type electric field sensor is provided on a plane perpendicular to the incident angle of the lens, but in this example, the electric field sensor is provided along the lens shape.
  • the senor is arranged along the lens shape so that half of the lens peripheral surface is covered.
  • the sensor located at a position away from the lens surface is expected to reduce energy compared to the lens surface, but the maximum energy can be received by arranging the sensor at each focal point of the lens, and the detection sensitivity is improved.
  • the lateral length of the sensor may be arbitrary.
  • FIG. 15 to FIG. 17 show a third embodiment of the present invention.
  • FIG. 15 shows a waveguide type electric field sensor according to the third embodiment of the present invention.
  • FIG. 15 is a bird's-eye view of the waveguide type electric field sensor, and is configured so that the metal waveguide 12 of the planar Luneberg lens is positioned at the center of the metal piece of the periodic structure and the metal piece.
  • FIG. 16 shows an equivalent circuit of a dotted line c portion including an electric image of a portion in contact with the waveguide 12.
  • the electromagnetic wave reflection characteristics of this structure are shown in FIG.
  • the reflection characteristics when 2 to 4 cells of metal pieces are arranged between metal waveguides and the reflection characteristics of an electric field sensor with an infinite periodic structure were compared.
  • characteristics similar to those of an electric field sensor having an infinite periodic structure can be obtained.
  • the resonance frequency slightly varies from the design value. Therefore, the design is performed in consideration of this variation at the time of designing.
  • the configuration of the electric field sensor according to the present embodiment can be applied to any of the mounting modes of the electric field sensor with respect to the planar Luneberg lens described in the first and second embodiments.
  • FIG. 18 shows a waveguide type electric field sensor according to the fourth embodiment of the present invention.
  • FIG. 18 is a bird's-eye view of the waveguide type electric field sensor, and is configured so that the metal waveguide 12 of the Luneberg lens is positioned at the center of the metal piece of the periodic structure and the metal piece.
  • FIG. 19 shows an equivalent circuit of a dotted line d portion including an electric image of a portion in contact with the waveguide 12. Since it appears that the resistor 202 and the capacitor 203 do not exist in the dotted line d portion, the equivalent circuit of the dotted line d portion is different from the equivalent circuit of the other periodic structure as shown in FIG. 8, and the parasitic capacitance C as shown in FIG. And parallel resonance of only the parasitic inductance L.
  • the reflection characteristics are compared, when the number of cells is small as shown in FIG. 20, the influence becomes large, resulting in a frequency shift and deterioration of the reflection characteristics.
  • the number of cells is determined in accordance with the reception sensitivity in consideration of the frequency shift and the deterioration of the reflection characteristics, thereby reducing the size and the reception sensitivity. It is possible to provide an electromagnetic wave detection device capable of suppressing the above.
  • the configuration of the electric field sensor according to the present embodiment can be applied to any of the attachment modes of the electric field sensor to the planar Luneberg lens described in the first and second embodiments.
  • FIG. 21 shows a fifth embodiment of the present invention. Visualization of the arrival direction of electromagnetic waves using a planar Luneberg lens and an electric field sensor can separate the arrival direction of the azimuth, but cannot separate the elevation direction ⁇ .
  • the electromagnetic wave detection apparatus is provided with a rotating unit 6 that can rotate in the elevation angle direction.
  • the rotation unit 6 includes, for example, a rotation control mechanism and a sensor that detects the degree of rotation. Information from the sensor is transmitted to the signal processing / result display unit 4 via the transmission line 211, and information on the elevation angle direction ⁇ is transmitted. Get.
  • the signal processing / result display unit 4 combines the azimuth electromagnetic wave visualization result, the information on the elevation angle ⁇ , and the image obtained by the camera 7 to enable the arrival direction estimation of the two-dimensional electromagnetic wave.
  • FIG. 22 shows a sixth embodiment of the present invention.
  • the separation function in the elevation direction is mechanically realized.
  • the separation in the elevation direction is electrically realized.
  • a leaky wave antenna 8 is provided as a beam scanning unit in front of the flat lens.
  • the leaky wave antenna 8 is an antenna designed to have a strong directivity in a specific direction by controlling the phase of an electromagnetic wave by a periodic structure of a metal patch 92 provided on a dielectric 94, for example. is there.
  • the metal periodic structure By designing the metal periodic structure so that the reactance determined by the periodic structure of the metal patch is the average value of the reactance and the reactance is modulated by a sin wave as shown in FIG. Realization is possible.
  • the relational expression representing the average reactance when the wavelength ⁇ , one period d of the modulation of the periodic structure, the wave impedance ⁇ of the space, and the incident angle ⁇ is as shown in [Formula 6].
  • variable capacitor 95 is an element whose capacitance value changes as shown in FIG. 28 when a voltage is applied across the element. With this variable capacitance, it is possible to change the angle ⁇ by changing the reactance of the periodic structure. By attaching the leaky wave antenna unit 8 to the front surface of the lens as shown in FIG. 22, the electromagnetic waves in the elevation angle direction can be separated.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Aerials With Secondary Devices (AREA)
  • Radar Systems Or Details Thereof (AREA)

Abstract

 小型の電磁波検出装置を提供することを目的とする。 対向する金属板で覆われた、電磁波の入射方向に応じ電磁波の射出方向を変える平面のルネベルグレンズを有し、前記金属板と電気的に接続した電界センサと、を有し、前記電界センサで前記ルネベルグレンズから射出された電磁波を検知し、電磁波の到来方向と該検知した電磁波のエネルギーの大きさに応じた強さの検知信号を出力する電磁波検出装置。

Description

電磁波検出装置
  本発明は、電磁波検出装置に関するものである。
  社会インフラを支えるさまざまな電子装置は、高機能化に伴い高速化・高密度化し、これらの機器から放射される電磁ノイズは、他の機器、もしくは自機器内部に対し電磁干渉を起こさないよう設計される必要がある。また電磁干渉問題が発生した際には、現場での迅速なサーベイが必要であり、これらの電磁ノイズの発生源をリアルタイムに検出し、また可視化する装置が求められている。
  電磁波の検出や可視化技術として、特許文献1(特開2013-130466号公報)や特許文献2(WO2010/013408号公報)がある。特許文献1には、「電磁波可視化装置が、電磁波の入射方向に応じて電磁波の射出方向を変える射出方向分離部と、前記射出方向分離部から射出された電磁波のエネルギーを感知して、該感知したエネルギーの大きさに応じた強さの検知信号をそれぞれ出力する複数のセンサと、前記複数のセンサのそれぞれから前記検知信号を受信可能であって、前記センサから前記検知信号を受信すると、該検知信号を送信したセンサの位置情報を基にテーブルを参照して得た電磁波の到来方向情報を含む表示信号を出力する処理部と、前記複数の電磁波の到来方向をそれぞれ表示可能であって、前記表示信号を受信すると、該表示信号に含まれる前記センサの位置情報から得る電磁波到来方向情報に基づき、当該電磁波の到来方向を表示する表示部とを備える」と記載されている。
 また、特許文献2には、「複数のセルを有する平面を有し、平面に入射される電波を吸収する電波吸収部と、複数のセルにおける、電波の強度を測定する測定部とを備えることにより、電波強度を短時間で測定することが可能な電波強度計測装置および電波強度計測システムを提供する」と記載されている。
特開2013-130466号公報 WO2010/013408号公報
"Non-Uniform Metasurface Luneburg Lens Antenna Design," M. Bosiljevac, M. Casaletti, F. Caminita, Z. Sipus, and S. Maci, IEEE Trans. Ant. and Prop. vol. 60, no. 9, pp. 4065-4073, 2012.
 特許文献1に記載の技術は、球体の電波レンズもしくは、非球面レンズを使用し、2次元の電界センサで電磁波のエネルギーを受信し可視化する装置である。特許文献1の構成では、装置のサイズはレンズのサイズに依存し、電磁波の分離能力を確保するにはレンズ径を大きくする必要があるため、装置全体としての小型化が困難であった。
 また、球体の電波レンズや非球面レンズよりも小型のレンズを用いた受信装置の構成として、非特許文献1にあるような平面のルネベルグレンズと受信アンテナがあるが、この構成では、受信部が1点のみしかなく、電磁波の検出は可能だが、電磁波の到来方向を検出することはできない。
 また、複数の受信部を有する構造として、特許文献2の記載にあるようなEBG(Electromagnetic Band Gap)型の電界センサがある。このセンサは、電磁波の波長に対して十分に小さい金属片を周期的に配置することで、従来にはない材料特性を等価的に持つメタマテリアルの一種である。EBG型電界センサは、金属片とビアによる周期構造をもち、各金属片間に空気中の波動インピーダンス377Ωと同等の抵抗を設けることにより、到来する電磁波を反射させない状態を実現できる。しかし、上記の平面のルネベルグレンズには、レンズの特性を制御するために、レンズ上下に金属の平行平板が必要であり、この平行平板があるためレンズに設置するセンサの周期構造数は限られ、低反射を実現することが困難である。また、周期構造の端部に金属壁があるため、電磁界が金属壁の影響を受け、低反射状態が劣化する可能性もある。
 そこで、本発明は上記課題を考慮し、小型の電磁波検出装置を提供することを目的とする。 
  上記課題を解決するために、例えば特許請求の範囲に記載の構成を採用する。
  本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、電磁波検出装置であって、対向する金属板で覆われた、電磁波の入射方向に応じ電磁波の射出方向を変える平面のルネベルグレンズを有し、前記金属板と電気的に接続した電界センサと、を有し、前記電界センサで前記ルネベルグレンズから射出された電磁波を検知し、電磁波の到来方向と該検知した電磁波のエネルギーの大きさに応じた強さの検知信号を出力することを特徴とする。
  本発明によれば、小型の電磁波検出装置を提供することが可能である。
本発明の第1実施例に係る電磁波検出装置の構成図である。 本発明の第1実施例に係る平面電磁波レンズの俯瞰図および断面図である。 本発明の第1実施例に係る平面電磁波レンズの実効的な比誘電率の条件を満たす誘電率の厚みを示した例である。 本発明の第1実施例に係る平面電磁波レンズの電波伝播特性を示す図である。 本発明の第1実施例に係る電界センサの俯瞰図である。 本発明の第1実施例に係る電界センサの部分俯瞰図である。 本発明の第1実施例に係る電界センサの部分断面図である。 本発明の第1実施例に係る電界センサの等価回路の図である。 本発明の第1実施例に係るセンサ部である電界センサの基板端部における詳細図である。 本発明の第1実施例に係るセンサ部である電界センサの基板端部における等価回路図である。 本発明の第1実施例に係るセンサ部である電界センサの電磁波反射特性の解析結果である。 本発明の第1実施例に係るセンサ部である電界センサと、平面レンズの組合せ時の電磁波伝播特性の解析結果である。 本発明の第1実施例に係るセンサ部である電界センサと、平面レンズの組合せ時の電磁波到来方向推定結果例である。 本発明の第2実施例に係るセンサ部である電界センサの構成図である。 本発明の第3実施例に係るセンサ部である電界センサの俯瞰図である。 本発明の第3実施例に係るセンサ部である電界センサの等価回路図である。 本発明の第3実施例に係るセンサ部である電界センサの電磁波反射特性の解析結果である。 本発明の第4実施例に係るセンサ部である電界センサの俯瞰図である。 本発明の第4実施例に係るセンサ部である電界センサの等価回路図である。 本発明の第4実施例に係るセンサ部である電界センサの電磁波反射特性の解析結果である。 本発明の第5実施例に係る電波の仰角方向の分離機能の構成図である。 本発明の第6実施例に係る電波の仰角方向の分離機能の構成図である。 本発明の第6実施例に係る電波の仰角方向の分離機能部の構成図である。 本発明の第6実施例に係る電波の仰角方向の分離機能部の金属片のリアクタンス変化を表す図である。 本発明の第6実施例に係る電波の仰角方向の分離機能部の構成図である。 本発明の第6実施例に係る電波の仰角方向の分離機能部の部分俯瞰図である。 本発明の第6実施例に係る電波の仰角方向の分離機能部の部分断面図である。 本発明の第6実施例に係る可変容量の、電圧に対する容量変化特性例である。
  実施例1では、電磁波の可視化構成を備えた電磁波検出装置の構成について、図1から図13を用いて説明する。図1は、本実施形態に係る電磁波検出装置の構成図である。図2は、本実施形態に係る電磁波検出装置の到来方向分離部である2次元のルネベルグレンズである。図3は本実施形態に係るルネベルグレンズの誘電体の厚みを示す図である。図4は本実施形態に係るルネベルグレンズの電波伝播特性の電磁界解析例を示す図である。図5は本実施形態に係る電界センサの理想的な構成例である。図6は本実施形態に係る電界センサの部分的な俯瞰図である。図7は本実施形態に係る電界センサの部分的な断面図である。図8は本実施形態に係る電界センサの理想的な等価回路である。図9は本実施形態に係る電界センサの基板端部における構成例である。図10は本実施形態に係る電界センサの基板端部における等価回路である。図11は本実施形態に係る電界センサの反射特性を示す図である。図12は本実施形態に係る電界センサと平面のルネベルグレンズを組合せた際の電磁波の伝播特性の解析結果例である。図13は本実施形態に係る電界センサと平面のルネベルグレンズを組合せた際の電磁波の到来方向の可視化例である。
 図1に示すように、本実施形態では、電磁波検出装置は、電磁波の到来方向(入射方向)に応じて電磁波の射出方向を分離する機能を有する射出方向分離部である平面ルネベルグレンズ1を有し、このレンズの一両面を覆うように導波路12が設けられている。
 この導波路12の一端には、平面ルネベルグレンズ1の一側面を覆うようにして、電磁波のエネルギーによって電圧を誘起する複数のセンサを配置した電界センサ2が接続されている。
 電界センサ2は、誘電体204上に複数の金属片201を有し、隣り合った金属片201同士は抵抗202及び容量203で接続されている。そして、金属片201の中央部にはビア205が設けられている。当該センサの更なる詳細構造については、後述する。
 電界センサ2には、電界センサ2からの信号を検出する信号検出部3が接続され、信号検出部3には伝送線路210を介して信号処理/結果表示部4が接続されている。また、電磁波検出装置には対象物の画像を撮影するカメラ7が備えられ、信号処理/結果表示部4に接続されている。
 信号処理/結果表示部4はカメラ7からの画像情報と、検出信号を処理する信号処理部と処理結果等を表示する表示部を有する信号処理/結果表示部4とを備える。ここで、信号処理部と表示部は一体の構成として記載しているが、これらはそれぞれ独立した構成であってもよい。
 図2には、射出方向分離部である平面ルネベルグレンズ1の構造を示す。平面ルネベルグレンズ1は上下に金属の導波路12を有し、例えばこの導波路12間に図3のように誘電体11を厚みを変えながら構成することにより、実効的な誘電率を変化させることで、球体のルネベルグレンズと同様に電磁波の射出方向により、それぞれ異なる位置にエネルギーを収束させることが可能である。レンズの厚みは比誘電率ε、半径Radius、中心からの距離r、レンズの金属の平行平板の高さdとしたときに、実効的な比誘電率εおよび、距離rにおける誘電率の厚みtはそれぞれ[数1]および[数2]により表される。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 図4に本構成のレンズに正面上方から電磁波を照射した場合の電波伝播特性を示す。上方から到来した電磁波のエネルギーは平面レンズ内部で次第に曲がり、レンズの反対側の中央部にエネルギーが収束することがわかる。電界センサ2は、平面ルネベルグレンズ1から射出された電磁波のエネルギーを感知して、該感知したエネルギーの大きさに応じた強さの検知信号を出力するセンサを複数配置している。
 したがって、レンズに入射する電磁波の収束位置(焦点)に対応する位置にあるセンサが電圧、もしくは電力などの検知信号を出力するようになっている。すなわち、レンズに入射する電磁波の収束位置に応じて、検知信号を出力するセンサが異なるものである。
 そして、カメラ7で得た画像と、電界センサ2の検知信号を元にした電磁波の到来方向推定結果を重ね合わせることで可視化を実現する。
 ここで、本実施例の電界センサ2の各センサによる電磁波計測原理について説明する。本実施例の電界センサは、例えばマッシュルーム状の金属の周期構造で実現される。マッシュルーム状の金属の周期構造は、低反射を実現する電気的な容量、インダクタンスをマッシュルームの寸法により制御できるため広く用いられている。
 図5、図6に示すように、板状の誘電体204の表面である第1層に、金属片201が周期状に配置されている。詳しく言えば、複数の金属片201が行方向(横方向)と列方向(縦方向)に、碁盤の目状に配置されている。各金属片201は、抵抗202および容量203により接続されている。そして、各金属片201の中央には、それぞれ、後述するビア205が設けられている。
 各金属片201は、測定する電磁波の波長λに対して十分小さい大きさであり、金属片201の1辺の長さは、(1/10)λ以下である。例えば、測定する電磁波の周波数が2.4GHzの場合は、図6に示すように金属片201の1辺の長さDは12.5mm以下とする。金属片201は、本実施例では正方形の金属板であるが、正方形に限られるものではない。
 図7は図6のaの部分の断面図である。誘電体204の下面に、第1層と対向する第2層として導体であるグランド(GND)206が、誘電体204の面と略同じ大きさの面として設けられている。GND206は、誘電体204を挟んで導体であるビア205により、各金属片201に接続されている。
 また、抵抗203の両端に誘起する電圧を検出する電圧検出用ビア225は検出回路に接続されている。図1に示した信号検出部3である電圧検出回路は、例えば、増幅器やAD変換器や電圧測定器等により構成される。
 電磁波が、低反射電磁界シートを構成する金属片201のいずれかに照射されると、照射された金属片201に接続された抵抗202にのみ電圧が誘起されるため、その抵抗202に接続された電圧検出回路の電圧検出位置から電磁波の到来方向がわかる。
 このとき、抵抗202を波動インピーダンスと同様の377Ωとすれば、空間と電界センサ2のインピーダンスが整合され、電磁波が反射せず電界センサ2に電磁波のエネルギーが吸収される。このとき、インピーダンス整合のために、抵抗202を設けず、電圧検出回路側に377Ωに整合する整合回路を設けてもよい。
 インピーダンス整合についてさらに説明する。図6に記載の2セル分の金属片201について、金属片201の幅をD、金属片間の距離をw、金属片とGND層の高さをhとすると、図8のような等価回路で表現することができる。ここで寄生容量Cと寄生インダクタンスLはそれぞれ[数3]、[数4]より求まる。
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
 ここで、図8のZAirは空間の波動インピーダンス、Rは電圧検出回路の入力抵抗である。容量203は、固定の容量の他に、可変容量を用いてもよい。可変容量は、素子両端にかけるバイアス電圧値により容量値が変わるものである。
 この電界センサが無反射状態となるためには、所望の周波数においてインダクタンスLとキャパシタンス(C+Cadd)が並列共振となり、抵抗Rが波動インピーダンスZAirと同値の377Ωであればよい。このとき共振周波数は[数5]より求まる。
Figure JPOXMLDOC01-appb-M000005
 所望の周波数において条件を満足するためには、容量203の電気定数Caddを決めればよい。また周波数を可変としたい場合には、可変容量に電圧をかけ、容量値を変化させればよい。
 ただし、図2に示したとおり、2次元のルネベルグレンズは上下に金属の導波路が必要である。このため、金属導波路を有するルネベルグレンズに適した構造の、EBG型電界センサが必要であり、これらを考慮した本実施例の構造を図9~図11を用いて説明する。
 図9は本実施例に使用する導波路型EBG電界センサの詳細図であり、誘電体204上に配置された周期的な金属片201と、金属片同士を接続する抵抗202、および容量203と、金属片201と第2層のGNDに接続するビア205で構成されている。
 抵抗202の両端には、図7と同様に、電圧検出用ビア225が設けられており、このビアは第2層のGNDには接続されず第3層に接続されている。本電界センサは図9に示すとおり、ルネベルグレンズの金属導波路12が、周期構造の金属片の中央の位置になるように構成する。このような構造にすると、電気影像により電気的に周期構造が折り返したように見える。
 導波路12と接する部分の電気影像を含む点線b部の等価回路を図10に示す。端部抵抗212と端部容量213をそれぞれR’,Cadd'とすると、電気影像によりR',Cadd'がそれぞれ2つずつ並列になったように見える。このため、R'=2×377Ω、Cadd'= Cadd /2とすると、図8の等価回路と同様になる。
 本構造の電磁波反射特性を図11に示す。金属導波路間に、金属片を2~4セル並べた場合の反射特性と、無限の周期構造を持つ場合の電界センサの反射特性を比較した。金属片のセル数は、金属導波路と接する半分のサイズのセルは1/2とカウントする。図11の通り、無限の周期構造の電界センサと同様の低反射特性が得られることがわかる。
 図12,図13に本実施例の構成で、電磁波の到来方向を推定した例を示す。図12は平面ルネベルグレンズと導波路型の電界センサを組み合わせ、レンズ正面方向から入射角を0~10度と変化させた電磁波の伝播特性を表す図である。レンズの入射角0度に対して垂直な平面に導波路型の金属片3セルの電界センサを設けた。各角度から入射する電磁波が電界センサで吸収されている様子がわかる。
 図13に電界センサの誘起電圧を示す。横軸が角度、縦軸が縦軸方向のセル位置である。0度~10度において正しくセンサが反応しており、電磁波の到来方向の可視化が可能であることがわかる。
 本実施例においては、平面ルネベルグレンズとして、誘電体厚を段階的に変えるレンズを用いたが、同一厚さの誘電体に孔をあけて実効的な誘電率を変えるものや、誘電体表面に金属の周期構造を設け実効的な誘電率を変えるような別タイプの平面ルネベルレンズを使用してもよい。
 以上のことから、本実施例によれば、平面型レンズを用いて電磁波の到来方向や電磁波の強さを検出できるものであり、球体や非球面レンズを用いた電磁波検出装置よりも小型化を実現可能である。また、電磁波の受信感度が低減するのを抑制し、精度良く電磁波の到来を検出することができるものである。
 図14に本発明の第2の実施の形態を示す。第1の実施の形態では、レンズの入射角0度に垂直な平面に導波路型の電界センサを設けたが、本実施例では、レンズ形状に沿うように電界センサを設ける。
 本実施例では、レンズ形状に沿って、レンズ周面の半分が覆われるようにセンサを配置している。実施例1ではレンズ表面から離れた位置にあるセンサは、レンズ表面よりもエネルギーの減少が見込まれるが、レンズの各焦点にセンサを配置することで最大のエネルギーを受けることができ検出感度が向上する。センサの横方向の長さは任意でよい。
 図15~図17を用いて、本発明の第3の実施の形態を示す。図15は本発明の第3の実施の形態の導波路型電界センサである。図15は導波路型電界センサの俯瞰図であり、平面ルネベルグレンズの金属導波路12が周期構造の金属片と金属片の中央の位置になるように構成する。
 周期構造の金属片は電気影像により、周期構造が電気的に折り返したように見える。この導波路12と接する部分の電気影像を含む点線c部の等価回路を図16に示す。端部抵抗212と端部容量213をそれぞれR”,Cadd”とすると、電気影像により図16のようにR”,Cadd”がそれぞれ2つずつ直列になったように見える。このため、R”=377/2Ω、Cadd”=2×Caddとすると、図8の等価回路と同様になる。
 本構造の電磁波反射特性を図17に示す。金属導波路間に、金属片を2~4セル並べた場合の反射特性と、無限の周期構造を持つ場合の電界センサの反射特性を比較した。図17の通り、無限の周期構造を持つ電界センサと同様の特性が得られることがわかる。セル数が少ない場合には、共振周波数が設計値から若干変動するため、設計時にはこの変動分を考慮して設計する。
 なお、本実施例の電界センサの構成は、実施例1及び実施例2に記載の平面ルネベルグレンズに対する電界センサの取り付け態様のいずれにも適用可能である。
 図18~図20を用いて、本発明の第4の実施の形態を示す。図18は本発明の第4の実施の形態の導波路型電界センサである。図18は導波路型電界センサの俯瞰図であり、ルネベルグレンズの金属導波路12が周期構造の金属片と金属片の中央の位置になるように構成する。
 周期構造の金属片201は電気影像により、周期構造が電気的に折り返したように見える。この導波路12と接する部分の電気影像を含む点線d部の等価回路を図19に示す。点線d部には抵抗202と容量203が無いように見える為、点線d部分の等価回路は、図8のような他の周期構造の等価回路とは異なり、図19に示す様に寄生容量Cと寄生インダクタンスLのみの並列共振となる。反射特性を比較すると、図20のようにセル数が少ない場合に影響が大きくなり、周波数のずれや反射特性の劣化が生じる。
 本構造の導波路型EBG電界センサを使用する場合には、周波数のずれや反射特性の劣化を考慮し、受信感度に応じてセル数を決定することで、小型で、また、受信感度の低下を抑制することが可能な電磁波検出装置を提供することができる。なお、本実施例の電界センサの構成は、実施例1及び実施例2に記載の平面ルネベルグレンズに対する電界センサの取り付け態様のいずれにも適用可能である。
 図21に本発明の第5の実施の形態を示す。平面ルネベルグレンズと電界センサを用いた電磁波の到来方向可視化は、方位角の到来方向分離は可能であるが、仰角方向θの分離はできない。
 そこで、第1から第4の実施の形態の電磁波検出装置に、仰角方向に回転可能な回転部6を設ける。回転部6には、例えば回転制御する機構と回転度を検知するセンサを有し、このセンサからの情報を伝送線路211を介して信号処理/結果表示部4に伝送し、仰角方向θの情報を得る。
 方位角電磁波可視化結果と、仰角θの情報、およびカメラ7で得た画像を信号処理/結果表示部4で組み合わせることにより2次元の電磁波の到来方向推定を可能とする。
 図22に本発明の第6の実施の形態を示す。実施例5は仰角方向の分離機能を機械的に実現するものであるが、本実施例では仰角方向の分離を電気的に実現する。図22に示す様に、平面レンズの前にビーム走査部として漏れ波アンテナ8を設ける。
 漏れ波アンテナ8は図23に示す様に、例えば誘電体94上に設けた金属パッチ92の周期構造により電磁波の位相を制御し、特定の方向に強い指向性を持つように設計されたアンテナである。
 金属パッチの周期構造により決まるリアクタンスをリアクタンスの平均値として、図24に示す様にsin波で変調をかけたリアクタンスを持つように金属の周期構造を設計することで、強い指向性を持つアンテナの実現が可能である。波長λ、周期構造の変調の一周期d、空間の波動インピーダンスη、入射角θとしたときの平均リアクタンスを表す関係式は[数6]に示すとおりである。
Figure JPOXMLDOC01-appb-M000006
 また、基板上の各位置ρでのリアクタンスは変調度をMとしたときに[数7]に従う。
Figure JPOXMLDOC01-appb-M000007
 [数6]より指向性角度θを可変とする為には、リアクタンスを変化させる必要があることがわかる。図26の構造が無限遠まで広がっていると仮定すると、リアクタンスは金属片の幅Dと間隔w、GNDからの高さh、比誘電率εrにより、[数8]~[数13]により求まる。
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000010
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
 つまり、リアクタンスを変化させる場合には構造を変更しなくてはならない。しかし、構造を動的に変化させる事は非常に困難である。そこで、図25、図26に示す通り、金属パッチ間に可変容量を設け、リアクタンスを制御する。
 可変容量95は、素子両端に電圧をかけると図28の通り容量値が変化する素子である。この可変容量により、周期構造のリアクタンスを変化させることで、角度θを変更することが可能である。この漏れ波アンテナ部8をレンズ前面に図22のように取り付けることにより、仰角方向の電磁波の分離が可能となる。
 実際には、可変容量95に与える電圧と仰角θの関係を示すテーブルを有し、電圧制御部5で制御しながら可変容量に電圧を与えると共に、電圧値と紐付けられた仰角θの情報、およびカメラ7の画像を信号処理/結果表示部4において組み合わせることにより2次元の電磁波の到来方向推定を可能とする。
 以上のことから、球体や非球面レンズを用いた電磁波検出装置よりも小型化を実現可能である。また、電磁波の受信感度が低減するのを抑制し、精度良く電磁波の到来を検出することができるものである。
1…平面ルネベルグレンズ、11…誘電体、12…導波路、2…電界センサ、201…金属片、202…抵抗、203…容量、204…誘電体、205…ビア、206…GND、210~212…伝送線路、225…電圧検出用ビア、3…信号検出部、4…信号処理/結果表示部、5…電圧制御部、6…回転部、7…カメラ、71…電磁波a、72…電磁波b、8…ビーム走査部漏れ波アンテナ
91…受信用アンテナ、92…金属パッチ、93…GND、94…誘電体、95…可変容量、96…ビア
901…射出方向分離部、902…センサ部、903…信号検出部、904…カメラ部、905…信号処理/結果表示部、933…信号伝送線路、911…ルネベルグレンズ

Claims (12)

  1.  対向する金属板で覆われた、電磁波の入射方向に応じ電磁波の射出方向を変える平面のルネベルグレンズを有し、
     前記金属板と電気的に接続した電界センサと、を有し、
     前記電界センサで前記ルネベルグレンズから射出された電磁波を検知し、電磁波の到来方向と該検知した電磁波のエネルギーの大きさに応じた強さの検知信号を出力する電磁波検出装置。
  2.  請求項1に記載の電磁波検出装置であって、
     前記電界センサに接続された信号検出回路を有し、
     前記電界センサは、板状の誘電体の表面層に複数の金属片を格子上に設け、隣接した複数の金属片の各々は抵抗および容量により接続され、各金属片の中央部には前記表面層と対向して前記誘電体内部に設けられたグランド層に接続するグランドビアが設けられ、前記抵抗の両端には前記信号検出回路と接続する検出用ビアが設けられていることを特徴とする電磁波検出装置。
  3.  請求項2に記載の電磁波検出装置であって、
     前記金属板は前記電界センサの金属片と接続されており、前記電界センサの端部の複数の金属片は、該金属片の中央位置から半分になった構造をしていることを特徴とする電磁波検出装置。
  4.  請求項2に記載の電磁波検出装置であって、
     前記金属板に隣接する前記電界センサの端部の金属片と前記金属板との距離は、前記周期構造を有する金属片同士の距離の半分であることを特徴とする電磁波検出装置。
  5.  請求項4に記載の電磁波検出装置であって、
     前記金属板は前記電界センサの金属片に接続された抵抗及び容量と接続されており、該抵抗及び容量の長さは、金属片どうしを接続する他の抵抗及び容量の長さの半分であることを特徴とする電磁波検出装置。
  6.  請求項1乃至5のいずれか1項に記載の電磁波検出装置であって、
     前記電界センサと伝送線路によって接続された信号処理部と、
     前記信号処理部と接続し、前記信号処理部で処理した情報を表示する表示部と、を有し、
     前記信号処理部で前記検知信号を受信すると、該検知信号に含まれる前記センサの位置情報に基づき、当該センサの位置に基づいた電磁波の到来方向情報を前記表示部に送り、前記表示部で表示することを特徴とする電磁波検出装置。
  7.  請求項6に記載の電磁波検出装置であって、
     前記処理部は、前記センサから受信した検知信号の強さが所定値以上の場合に、前記表示部へ電磁波の到来方向情報を送り、前記表示部で表示することを特徴とする電磁波検出装置。
  8.  請求項6または7に記載の電磁波検出装置であって、
      測定対象の画像を撮影し、該撮影した画像の画像信号を出力するカメラ部を備え、
      前記信号処理部は、前記カメラ部からの画像信号と前記センサからの検知信号とを受信すると、前記画像信号と前記検知信号を送信したセンサの位置情報からテーブルを参照して得た電磁波の到来方向とを含む表示信号を出力し、
      前記表示部は、前記表示信号を受信すると、該表示信号に含まれる前記画像信号と前記センサの位置情報を元にえた電磁波の到来方向情報とに基づき、前記画像信号による画像上に重ねて、前記電磁波の到来方向の表示を行うことを特徴とする電磁波検出装置。
  9.  請求項6または7に記載の電磁波検出装置であって、
     前記信号処理部と接続された電磁波検出装置を回転させる回転部を有し、
     前記回転部は、基準位置からの回転角度の情報を前記信号処理部に出力し、前記信号処理部は回転角度の情報と電磁波を検出したセンサの位置情報に基づいた電磁波の到来方向情報を前記表示部に送り、前記表示部で表示することを特徴とする電磁波検出装置。
  10.  請求項9に記載の電磁波検出装置であって、
      測定対象の画像を撮影し、該撮影した画像の画像信号を出力するカメラ部を備え、
      前記処理部は、前記カメラ部からの画像信号と前記センサからの検知信号とを受信すると、前記画像信号と前記検知信号を送信したセンサの位置情報からテーブルを参照して得た電磁波の到来方向とを含む表示信号と前記回転部からの装置全体の回転情報を出力し、
      前記表示部は、前記表示信号を受信すると、該表示信号に含まれる前記画像信号と、前記センサの位置情報及び回転情報を元に得た電磁波の到来方向情報とに基づき、前記画像信号による画像上に重ねて、前記電磁波の到来方向の表示を行うことを特徴とする電磁波検出装置。
  11.  請求項6または7に記載の電磁波検出装置であって、
     受信する電磁波の方向を電気的に変化させる機構を持ち、前記受信方向の情報と、センサの位置に基づいた電磁波の到来方向を表示する表示部とを備える事を特徴とする電磁波検出装置。
  12.  請求項11に記載の電磁波検出装置であって、
      測定対象の画像を撮影し、該撮影した画像の画像信号を出力するカメラ部を備え、
      前記処理部は、前記カメラ部からの画像信号と前記センサからの検知信号とを受信すると、前記画像信号と前記検知信号を送信したセンサの位置情報からテーブルを参照して得た電磁波の到来方向とを含む表示信号と電磁波の受信方向の情報を出力し
      前記表示部は、前記表示信号を受信すると、該表示信号に含まれる前記画像信号と前記センサの位置情報を元に得た電磁波の到来方向情報とに基づき、前記画像信号による画像上に重ねて、前記電磁波の到来方向の表示を行うことを特徴とする電磁波検出装置。
PCT/JP2014/055218 2014-03-03 2014-03-03 電磁波検出装置 WO2015132846A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2014/055218 WO2015132846A1 (ja) 2014-03-03 2014-03-03 電磁波検出装置
US15/111,288 US9804215B2 (en) 2014-03-03 2014-03-03 Electromagnetic wave detection apparatus
JP2016505959A JP6148786B2 (ja) 2014-03-03 2014-03-03 電磁波検出装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/055218 WO2015132846A1 (ja) 2014-03-03 2014-03-03 電磁波検出装置

Publications (1)

Publication Number Publication Date
WO2015132846A1 true WO2015132846A1 (ja) 2015-09-11

Family

ID=54054691

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/055218 WO2015132846A1 (ja) 2014-03-03 2014-03-03 電磁波検出装置

Country Status (3)

Country Link
US (1) US9804215B2 (ja)
JP (1) JP6148786B2 (ja)
WO (1) WO2015132846A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216181A1 (ja) * 2018-05-09 2019-11-14 住友電気工業株式会社 レンズ、アンテナおよび車載器
JP2020012720A (ja) * 2018-07-18 2020-01-23 日本電信電話株式会社 電磁波情報可視化装置
JP2021135221A (ja) * 2020-02-28 2021-09-13 国立大学法人金沢大学 電波センサ、および電界成分検出装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017223299A1 (en) * 2016-06-22 2017-12-28 Massachusetts Institute Of Technology Methods and systems for optical beam steering

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334423A (ja) * 1993-05-26 1994-12-02 Toyota Central Res & Dev Lab Inc 追尾アンテナ装置
JP2005110231A (ja) * 2003-09-09 2005-04-21 Advanced Telecommunication Research Institute International アレーアンテナ装置とその制御方法
JP2009141983A (ja) * 2009-02-10 2009-06-25 Electronic Navigation Research Institute 全方向性を有する誘電体レンズを用いたアンテナ装置。
JP2011258920A (ja) * 2010-06-08 2011-12-22 Samsung Electro-Mechanics Co Ltd 半導体パッケージ及びその製造方法
JP2013130466A (ja) * 2011-12-21 2013-07-04 Hitachi Ltd 電磁波可視化装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1992021159A1 (en) * 1991-05-13 1992-11-26 Thomson Consumer Electronics S.A. Radiowave antenna system
US5243186A (en) * 1992-08-17 1993-09-07 The United States Of America As Represented By The Secretary Of The Navy Photonic electromagnetic field sensor apparatus
JP5737672B2 (ja) 2008-07-28 2015-06-17 国立大学法人金沢大学 電波強度計測装置および電波強度計測システム
JP5666241B2 (ja) * 2010-10-21 2015-02-12 矢崎総業株式会社 近傍無線通信装置
GB2497328A (en) * 2011-12-07 2013-06-12 Canon Kk Method of making a dielectric material with a varying permittivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06334423A (ja) * 1993-05-26 1994-12-02 Toyota Central Res & Dev Lab Inc 追尾アンテナ装置
JP2005110231A (ja) * 2003-09-09 2005-04-21 Advanced Telecommunication Research Institute International アレーアンテナ装置とその制御方法
JP2009141983A (ja) * 2009-02-10 2009-06-25 Electronic Navigation Research Institute 全方向性を有する誘電体レンズを用いたアンテナ装置。
JP2011258920A (ja) * 2010-06-08 2011-12-22 Samsung Electro-Mechanics Co Ltd 半導体パッケージ及びその製造方法
JP2013130466A (ja) * 2011-12-21 2013-07-04 Hitachi Ltd 電磁波可視化装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019216181A1 (ja) * 2018-05-09 2019-11-14 住友電気工業株式会社 レンズ、アンテナおよび車載器
CN112106255A (zh) * 2018-05-09 2020-12-18 住友电气工业株式会社 透镜、天线及车载器
CN112106255B (zh) * 2018-05-09 2022-12-06 住友电气工业株式会社 透镜、天线及车载器
US11664602B2 (en) 2018-05-09 2023-05-30 Sumitomo Electric Industries, Ltd. Lens, antenna, and device for vehicle
JP2020012720A (ja) * 2018-07-18 2020-01-23 日本電信電話株式会社 電磁波情報可視化装置
JP2021135221A (ja) * 2020-02-28 2021-09-13 国立大学法人金沢大学 電波センサ、および電界成分検出装置
JP7410561B2 (ja) 2020-02-28 2024-01-10 国立大学法人金沢大学 電波センサ、および電界成分検出装置

Also Published As

Publication number Publication date
US20160334451A1 (en) 2016-11-17
JPWO2015132846A1 (ja) 2017-03-30
JP6148786B2 (ja) 2017-06-14
US9804215B2 (en) 2017-10-31

Similar Documents

Publication Publication Date Title
WO2013094306A1 (ja) 電磁波可視化装置
JP6148786B2 (ja) 電磁波検出装置
US20150255870A1 (en) Antenna
JP4341573B2 (ja) 電波送受信モジュールおよび、この電波送受信モジュールを用いたイメージングセンサ
US7642963B2 (en) Soldier/ground vehicle passive ranging system utilizing compact spatiotemporal processor
US20150219704A1 (en) Electromagnetic Wave Visualization Device
WO2021181872A1 (ja) アンテナ装置及びレーダ装置
Abedi et al. Low-cost 3D printed dielectric hyperbolic lens antenna for beam focusing and steering of a 79GHz MIMO radar
JP5993754B2 (ja) 電磁波計測装置及び電磁波計測方法
JP2023547206A (ja) レーダービーコンおよびレーダー測定システム
JP6456716B2 (ja) アンテナユニット
KR101627939B1 (ko) 메타물질 흡수체 및 이를 이용한 측정 시스템
WO2015182325A1 (ja) アンテナ装置およびそれを用いた速度センサ
JP2016046577A (ja) アンテナ装置
EP3480893B1 (en) Determining direction of arrival of an electromagnetic wave
CN105914477A (zh) 一种卫星跟踪接收装置
US20240243486A1 (en) Antenna device
JP7229452B2 (ja) 到来波受信装置
Mazouni et al. 77 GHz offset reflectarray for FOD detection on airport runways
ES2588927T3 (es) Elemento de superficie inductivo
KR20190046178A (ko) 무전력 와이파이 확장 장치
US20220163323A1 (en) Irradiance-Based Radiation Source Orientation Method
Gu et al. Enhancement of angular resolution of a flat-base Luneburg lens antenna by using correlation method
JP2023062445A (ja) 電波吸収体およびアンテナ
KR101527330B1 (ko) 전파를 이용한 이미지 센싱 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505959

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15111288

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884685

Country of ref document: EP

Kind code of ref document: A1