WO2015132846A1 - 電磁波検出装置 - Google Patents
電磁波検出装置 Download PDFInfo
- Publication number
- WO2015132846A1 WO2015132846A1 PCT/JP2014/055218 JP2014055218W WO2015132846A1 WO 2015132846 A1 WO2015132846 A1 WO 2015132846A1 JP 2014055218 W JP2014055218 W JP 2014055218W WO 2015132846 A1 WO2015132846 A1 WO 2015132846A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electromagnetic wave
- signal
- sensor
- detection device
- electric field
- Prior art date
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 80
- 239000002184 metal Substances 0.000 claims abstract description 79
- 230000005684 electric field Effects 0.000 claims abstract description 76
- 238000012545 processing Methods 0.000 claims description 25
- 230000000737 periodic effect Effects 0.000 claims description 24
- 239000003990 capacitor Substances 0.000 claims description 20
- 238000005259 measurement Methods 0.000 claims description 6
- 230000005540 biological transmission Effects 0.000 claims description 4
- 239000010410 layer Substances 0.000 claims 2
- 239000002344 surface layer Substances 0.000 claims 1
- 238000000926 separation method Methods 0.000 description 15
- 238000010586 diagram Methods 0.000 description 11
- 238000002955 isolation Methods 0.000 description 7
- 238000012800 visualization Methods 0.000 description 6
- 230000035945 sensitivity Effects 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- 230000003071 parasitic effect Effects 0.000 description 4
- 240000004050 Pentaglottis sempervirens Species 0.000 description 3
- 235000004522 Pentaglottis sempervirens Nutrition 0.000 description 3
- 230000005672 electromagnetic field Effects 0.000 description 3
- 239000004020 conductor Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 235000001674 Agaricus brunnescens Nutrition 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
- G01R29/0864—Measuring electromagnetic field characteristics characterised by constructional or functional features
- G01R29/0878—Sensors; antennas; probes; detectors
- G01R29/0885—Sensors; antennas; probes; detectors using optical probes, e.g. electro-optical, luminescent, glow discharge, or optical interferometers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
- G01R29/0864—Measuring electromagnetic field characteristics characterised by constructional or functional features
- G01R29/0878—Sensors; antennas; probes; detectors
Definitions
- the present invention relates to an electromagnetic wave detection device.
- Patent Document 1 Japanese Patent Laid-Open No. 2013-130466
- Patent Document 2 Patent Document 2
- Patent Document 1 states that “an electromagnetic wave visualization device senses the energy of an electromagnetic wave emitted from the emission direction separation unit and an emission direction separation unit that changes the emission direction of the electromagnetic wave according to the incident direction of the electromagnetic wave.
- a plurality of sensors each outputting a detection signal having a strength corresponding to the magnitude of the energy, and the detection signal can be received from each of the plurality of sensors, and when the detection signal is received from the sensor,
- a processing unit that outputs a display signal including arrival direction information of an electromagnetic wave obtained by referring to a table based on position information of a sensor that has transmitted a detection signal, and can each display the arrival directions of the plurality of electromagnetic waves,
- a display unit that displays the arrival direction of the electromagnetic wave It has been described as obtain ".
- Patent Document 2 includes “a radio wave absorber that has a plane having a plurality of cells and absorbs radio waves incident on the plane, and a measurement unit that measures the intensity of radio waves in the plurality of cells. Provides a radio wave intensity measuring device and a radio wave intensity measuring system capable of measuring radio wave intensity in a short time. "
- Patent Document 1 The technology described in Patent Document 1 is a device that uses a spherical radio wave lens or an aspherical lens and receives and visualizes electromagnetic wave energy with a two-dimensional electric field sensor.
- the size of the device depends on the size of the lens, and it is necessary to increase the lens diameter to ensure the ability to separate electromagnetic waves.
- Non-Patent Document 1 As a configuration of a receiving device using a lens that is smaller than a spherical radio wave lens or an aspheric lens, there are a planar Luneberg lens and a receiving antenna as described in Non-Patent Document 1, but in this configuration, a receiving unit There is only one point, and electromagnetic waves can be detected, but the arrival direction of electromagnetic waves cannot be detected.
- EBG Electromagnetic Band Gap
- This sensor is a kind of metamaterial that has an equivalent material property by arranging metal pieces that are sufficiently small with respect to the wavelength of electromagnetic waves periodically.
- the EBG type electric field sensor has a periodic structure composed of metal pieces and vias, and can provide a state in which incoming electromagnetic waves are not reflected by providing a resistance equivalent to a wave impedance of 377 ⁇ in the air between the metal pieces.
- planar Luneberg lens requires metal parallel plates above and below the lens in order to control the characteristics of the lens. Because of these parallel plates, the number of periodic structures of sensors installed on the lens is limited. Therefore, it is difficult to realize low reflection.
- the electromagnetic field is affected by the metal wall, and the low reflection state may deteriorate.
- an object of the present invention is to provide a small electromagnetic wave detection device.
- an electromagnetic wave detection device which is covered with an opposing metal plate, changes the emission direction of the electromagnetic wave according to the incident direction of the electromagnetic wave.
- An electric field sensor having a planar Luneberg lens and electrically connected to the metal plate, wherein the electric field sensor detects an electromagnetic wave emitted from the Luneberg lens, and detects the arrival direction of the electromagnetic wave and the detection
- a detection signal having a strength corresponding to the magnitude of the energy of the electromagnetic wave is output.
- FIG. 1 is a configuration diagram of an electromagnetic wave detection device according to the present embodiment.
- FIG. 2 is a two-dimensional Luneberg lens that is an arrival direction separation unit of the electromagnetic wave detection device according to the present embodiment.
- FIG. 3 is a diagram showing the thickness of the dielectric of the Luneberg lens according to this embodiment.
- FIG. 4 is a diagram illustrating an electromagnetic field analysis example of the radio wave propagation characteristics of the Luneberg lens according to the present embodiment.
- FIG. 5 shows an ideal configuration example of the electric field sensor according to the present embodiment.
- FIG. 6 is a partial overhead view of the electric field sensor according to the present embodiment.
- FIG. 7 is a partial cross-sectional view of the electric field sensor according to the present embodiment.
- FIG. 8 is an ideal equivalent circuit of the electric field sensor according to this embodiment.
- FIG. 9 is a configuration example of the substrate end portion of the electric field sensor according to the present embodiment.
- FIG. 10 is an equivalent circuit at the substrate end of the electric field sensor according to the present embodiment.
- FIG. 11 is a diagram showing the reflection characteristics of the electric field sensor according to the present embodiment.
- FIG. 12 is an analysis result example of electromagnetic wave propagation characteristics when the electric field sensor according to this embodiment is combined with a planar Luneberg lens.
- FIG. 13 is an example of visualization of the arrival direction of electromagnetic waves when the electric field sensor according to the present embodiment and a planar Luneberg lens are combined.
- the electromagnetic wave detection device includes a planar Luneberg lens 1 that is an emission direction separation unit having a function of separating the emission direction of an electromagnetic wave according to the arrival direction (incident direction) of the electromagnetic wave. And a waveguide 12 is provided so as to cover one surface of the lens.
- One end of the waveguide 12 is connected to an electric field sensor 2 in which a plurality of sensors for inducing a voltage by energy of electromagnetic waves are arranged so as to cover one side surface of the planar Luneberg lens 1.
- the electric field sensor 2 has a plurality of metal pieces 201 on a dielectric 204, and the adjacent metal pieces 201 are connected to each other by a resistor 202 and a capacitor 203.
- a via 205 is provided at the center of the metal piece 201. A further detailed structure of the sensor will be described later.
- the signal detector 3 for detecting a signal from the electric field sensor 2 is connected to the electric field sensor 2, and the signal processing / result display unit 4 is connected to the signal detector 3 through the transmission line 210.
- the electromagnetic wave detection device is provided with a camera 7 that captures an image of an object, and is connected to the signal processing / result display unit 4.
- the signal processing / result display unit 4 includes image information from the camera 7, a signal processing unit for processing the detection signal, and a signal processing / result display unit 4 having a display unit for displaying the processing result and the like.
- the signal processing unit and the display unit are described as an integral configuration, they may be configured independently of each other.
- planar Luneberg lens 1 which is an injection
- the planar Luneberg lens 1 has metal waveguides 12 on the upper and lower sides.
- the dielectric 11 is formed between the waveguides 12 while changing the thickness as shown in FIG. As a result, the energy can be converged to different positions depending on the emission direction of the electromagnetic wave as in the case of the spherical Luneberg lens.
- the thickness of the lens is a relative dielectric constant ⁇ r , a radius Radius, a distance r from the center, and a height d of a metal parallel plate of the lens
- the effective relative dielectric constant ⁇ S and the dielectric constant at the distance r is expressed by [Equation 1] and [Equation 2], respectively.
- Fig. 4 shows the radio wave propagation characteristics when the lens of this configuration is irradiated with electromagnetic waves from the front upper side. It can be seen that the energy of the electromagnetic wave arriving from above gradually bends inside the planar lens and converges to the central part on the opposite side of the lens.
- the electric field sensor 2 includes a plurality of sensors that detect the energy of electromagnetic waves emitted from the planar Luneberg lens 1 and output a detection signal having a strength corresponding to the magnitude of the detected energy.
- a sensor at a position corresponding to the convergence position (focus) of the electromagnetic wave incident on the lens outputs a detection signal such as voltage or power. That is, the sensor that outputs the detection signal differs depending on the convergence position of the electromagnetic wave incident on the lens.
- visualization is realized by superimposing the image obtained by the camera 7 and the arrival direction estimation result of the electromagnetic wave based on the detection signal of the electric field sensor 2.
- the electric field sensor of the present embodiment is realized by, for example, a mushroom-like metal periodic structure.
- a mushroom-like metal periodic structure is widely used because the electric capacity and inductance for realizing low reflection can be controlled by the size of the mushroom.
- metal pieces 201 are periodically arranged on the first layer which is the surface of the plate-like dielectric 204. More specifically, a plurality of metal pieces 201 are arranged in a grid pattern in the row direction (lateral direction) and the column direction (vertical direction). Each metal piece 201 is connected by a resistor 202 and a capacitor 203. A via 205 described later is provided in the center of each metal piece 201.
- Each metal piece 201 is sufficiently small with respect to the wavelength ⁇ of the electromagnetic wave to be measured, and the length of one side of the metal piece 201 is (1/10) ⁇ or less.
- the length D of one side of the metal piece 201 is 12.5 mm or less as shown in FIG.
- the metal piece 201 is a square metal plate in the present embodiment, but is not limited to a square.
- FIG. 7 is a cross-sectional view of the portion a in FIG.
- a ground (GND) 206 which is a conductor as a second layer facing the first layer, is provided as a surface having substantially the same size as the surface of the dielectric 204.
- the GND 206 is connected to each metal piece 201 by a via 205 that is a conductor with the dielectric 204 interposed therebetween.
- the voltage detection via 225 for detecting the voltage induced at both ends of the resistor 203 is connected to the detection circuit.
- the voltage detection circuit that is the signal detection unit 3 shown in FIG. 1 is configured by, for example, an amplifier, an AD converter, a voltage measurement device, and the like.
- the resistance 202 is 377 ⁇ , which is the same as the wave impedance, the impedance of the space and the electric field sensor 2 is matched, and the electromagnetic wave is not reflected and the electric field sensor 2 absorbs the energy of the electromagnetic wave.
- the resistor 202 may not be provided, and a matching circuit matching 377 ⁇ may be provided on the voltage detection circuit side.
- Z Air in FIG. 8 is the wave impedance of the space
- R 2 is the input resistance of the voltage detection circuit.
- the capacitor 203 may be a variable capacitor in addition to a fixed capacitor.
- the variable capacitor has a capacitance value that changes depending on a bias voltage value applied to both ends of the element.
- the inductance L and the capacitance (C + C add ) are in parallel resonance at a desired frequency, and the resistance R may be 377 ⁇ which is the same value as the wave impedance Z Air .
- the resonance frequency is obtained from [Equation 5].
- the electric constant C add of the capacitor 203 may be determined. If it is desired to change the frequency, a voltage is applied to the variable capacitor to change the capacitance value.
- the two-dimensional Luneberg lens requires metal waveguides on the top and bottom.
- an EBG type electric field sensor having a structure suitable for a Luneberg lens having a metal waveguide is necessary, and the structure of this embodiment in consideration of these will be described with reference to FIGS.
- FIG. 9 is a detailed view of the waveguide type EBG electric field sensor used in the present embodiment.
- a periodic metal piece 201 disposed on the dielectric 204, a resistor 202 connecting the metal pieces, and a capacitor 203 are shown.
- the metal piece 201 and the via 205 connected to the second layer GND.
- voltage detection vias 225 are provided at both ends of the resistor 202, and these vias are connected to the third layer without being connected to the second layer GND.
- this electric field sensor is configured such that the metal waveguide 12 of the Luneberg lens is positioned at the center of the metal piece having a periodic structure. With such a structure, it seems that the periodic structure is electrically folded by the electric image.
- FIG. 10 shows an equivalent circuit of a dotted line b portion including an electric image of a portion in contact with the waveguide 12.
- the electromagnetic wave reflection characteristics of this structure are shown in FIG.
- the reflection characteristics when 2 to 4 cells of metal pieces are arranged between metal waveguides and the reflection characteristics of an electric field sensor with an infinite periodic structure were compared.
- the number of cells of a metal piece is counted as 1/2 for a half-sized cell in contact with a metal waveguide.
- low reflection characteristics similar to those of an electric field sensor having an infinite periodic structure can be obtained.
- FIG. 12 and FIG. 13 show examples in which the arrival direction of electromagnetic waves is estimated with the configuration of this embodiment.
- FIG. 12 is a diagram showing the propagation characteristics of electromagnetic waves in which a planar Luneberg lens and a waveguide-type electric field sensor are combined and the incident angle is changed from 0 to 10 degrees from the front direction of the lens.
- An electric field sensor of a waveguide type metal piece 3 cell was provided on a plane perpendicular to the incident angle of 0 degrees of the lens. It can be seen that the electromagnetic wave incident from each angle is absorbed by the electric field sensor.
- Fig. 13 shows the induced voltage of the electric field sensor.
- the horizontal axis is the angle
- the vertical axis is the cell position in the vertical axis direction. It can be seen that the sensor reacts correctly at 0 to 10 degrees, and the direction of arrival of electromagnetic waves can be visualized.
- planar Luneberg lens a lens that changes the dielectric thickness step by step is used as the planar Luneberg lens.
- the effective dielectric constant can be changed by opening a hole in the same thickness of the dielectric, or the surface of the dielectric.
- planar Lunevel lens that changes the effective dielectric constant by providing a metal periodic structure may be used.
- the present embodiment it is possible to detect the direction of arrival of electromagnetic waves and the intensity of electromagnetic waves using a flat lens, which is smaller than an electromagnetic wave detection device using a sphere or an aspheric lens. It is feasible.
- the electromagnetic wave reception sensitivity can be suppressed and arrival of electromagnetic waves can be detected with high accuracy.
- FIG. 14 shows a second embodiment of the present invention.
- the waveguide type electric field sensor is provided on a plane perpendicular to the incident angle of the lens, but in this example, the electric field sensor is provided along the lens shape.
- the senor is arranged along the lens shape so that half of the lens peripheral surface is covered.
- the sensor located at a position away from the lens surface is expected to reduce energy compared to the lens surface, but the maximum energy can be received by arranging the sensor at each focal point of the lens, and the detection sensitivity is improved.
- the lateral length of the sensor may be arbitrary.
- FIG. 15 to FIG. 17 show a third embodiment of the present invention.
- FIG. 15 shows a waveguide type electric field sensor according to the third embodiment of the present invention.
- FIG. 15 is a bird's-eye view of the waveguide type electric field sensor, and is configured so that the metal waveguide 12 of the planar Luneberg lens is positioned at the center of the metal piece of the periodic structure and the metal piece.
- FIG. 16 shows an equivalent circuit of a dotted line c portion including an electric image of a portion in contact with the waveguide 12.
- the electromagnetic wave reflection characteristics of this structure are shown in FIG.
- the reflection characteristics when 2 to 4 cells of metal pieces are arranged between metal waveguides and the reflection characteristics of an electric field sensor with an infinite periodic structure were compared.
- characteristics similar to those of an electric field sensor having an infinite periodic structure can be obtained.
- the resonance frequency slightly varies from the design value. Therefore, the design is performed in consideration of this variation at the time of designing.
- the configuration of the electric field sensor according to the present embodiment can be applied to any of the mounting modes of the electric field sensor with respect to the planar Luneberg lens described in the first and second embodiments.
- FIG. 18 shows a waveguide type electric field sensor according to the fourth embodiment of the present invention.
- FIG. 18 is a bird's-eye view of the waveguide type electric field sensor, and is configured so that the metal waveguide 12 of the Luneberg lens is positioned at the center of the metal piece of the periodic structure and the metal piece.
- FIG. 19 shows an equivalent circuit of a dotted line d portion including an electric image of a portion in contact with the waveguide 12. Since it appears that the resistor 202 and the capacitor 203 do not exist in the dotted line d portion, the equivalent circuit of the dotted line d portion is different from the equivalent circuit of the other periodic structure as shown in FIG. 8, and the parasitic capacitance C as shown in FIG. And parallel resonance of only the parasitic inductance L.
- the reflection characteristics are compared, when the number of cells is small as shown in FIG. 20, the influence becomes large, resulting in a frequency shift and deterioration of the reflection characteristics.
- the number of cells is determined in accordance with the reception sensitivity in consideration of the frequency shift and the deterioration of the reflection characteristics, thereby reducing the size and the reception sensitivity. It is possible to provide an electromagnetic wave detection device capable of suppressing the above.
- the configuration of the electric field sensor according to the present embodiment can be applied to any of the attachment modes of the electric field sensor to the planar Luneberg lens described in the first and second embodiments.
- FIG. 21 shows a fifth embodiment of the present invention. Visualization of the arrival direction of electromagnetic waves using a planar Luneberg lens and an electric field sensor can separate the arrival direction of the azimuth, but cannot separate the elevation direction ⁇ .
- the electromagnetic wave detection apparatus is provided with a rotating unit 6 that can rotate in the elevation angle direction.
- the rotation unit 6 includes, for example, a rotation control mechanism and a sensor that detects the degree of rotation. Information from the sensor is transmitted to the signal processing / result display unit 4 via the transmission line 211, and information on the elevation angle direction ⁇ is transmitted. Get.
- the signal processing / result display unit 4 combines the azimuth electromagnetic wave visualization result, the information on the elevation angle ⁇ , and the image obtained by the camera 7 to enable the arrival direction estimation of the two-dimensional electromagnetic wave.
- FIG. 22 shows a sixth embodiment of the present invention.
- the separation function in the elevation direction is mechanically realized.
- the separation in the elevation direction is electrically realized.
- a leaky wave antenna 8 is provided as a beam scanning unit in front of the flat lens.
- the leaky wave antenna 8 is an antenna designed to have a strong directivity in a specific direction by controlling the phase of an electromagnetic wave by a periodic structure of a metal patch 92 provided on a dielectric 94, for example. is there.
- the metal periodic structure By designing the metal periodic structure so that the reactance determined by the periodic structure of the metal patch is the average value of the reactance and the reactance is modulated by a sin wave as shown in FIG. Realization is possible.
- the relational expression representing the average reactance when the wavelength ⁇ , one period d of the modulation of the periodic structure, the wave impedance ⁇ of the space, and the incident angle ⁇ is as shown in [Formula 6].
- variable capacitor 95 is an element whose capacitance value changes as shown in FIG. 28 when a voltage is applied across the element. With this variable capacitance, it is possible to change the angle ⁇ by changing the reactance of the periodic structure. By attaching the leaky wave antenna unit 8 to the front surface of the lens as shown in FIG. 22, the electromagnetic waves in the elevation angle direction can be separated.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Aerials With Secondary Devices (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
Description
電磁波の検出や可視化技術として、特許文献1(特開2013-130466号公報)や特許文献2(WO2010/013408号公報)がある。特許文献1には、「電磁波可視化装置が、電磁波の入射方向に応じて電磁波の射出方向を変える射出方向分離部と、前記射出方向分離部から射出された電磁波のエネルギーを感知して、該感知したエネルギーの大きさに応じた強さの検知信号をそれぞれ出力する複数のセンサと、前記複数のセンサのそれぞれから前記検知信号を受信可能であって、前記センサから前記検知信号を受信すると、該検知信号を送信したセンサの位置情報を基にテーブルを参照して得た電磁波の到来方向情報を含む表示信号を出力する処理部と、前記複数の電磁波の到来方向をそれぞれ表示可能であって、前記表示信号を受信すると、該表示信号に含まれる前記センサの位置情報から得る電磁波到来方向情報に基づき、当該電磁波の到来方向を表示する表示部とを備える」と記載されている。
本願は上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、電磁波検出装置であって、対向する金属板で覆われた、電磁波の入射方向に応じ電磁波の射出方向を変える平面のルネベルグレンズを有し、前記金属板と電気的に接続した電界センサと、を有し、前記電界センサで前記ルネベルグレンズから射出された電磁波を検知し、電磁波の到来方向と該検知した電磁波のエネルギーの大きさに応じた強さの検知信号を出力することを特徴とする。
この電界センサが無反射状態となるためには、所望の周波数においてインダクタンスLとキャパシタンス(C+Cadd)が並列共振となり、抵抗Rが波動インピーダンスZAirと同値の377Ωであればよい。このとき共振周波数は[数5]より求まる。
91…受信用アンテナ、92…金属パッチ、93…GND、94…誘電体、95…可変容量、96…ビア
901…射出方向分離部、902…センサ部、903…信号検出部、904…カメラ部、905…信号処理/結果表示部、933…信号伝送線路、911…ルネベルグレンズ
Claims (12)
- 対向する金属板で覆われた、電磁波の入射方向に応じ電磁波の射出方向を変える平面のルネベルグレンズを有し、
前記金属板と電気的に接続した電界センサと、を有し、
前記電界センサで前記ルネベルグレンズから射出された電磁波を検知し、電磁波の到来方向と該検知した電磁波のエネルギーの大きさに応じた強さの検知信号を出力する電磁波検出装置。 - 請求項1に記載の電磁波検出装置であって、
前記電界センサに接続された信号検出回路を有し、
前記電界センサは、板状の誘電体の表面層に複数の金属片を格子上に設け、隣接した複数の金属片の各々は抵抗および容量により接続され、各金属片の中央部には前記表面層と対向して前記誘電体内部に設けられたグランド層に接続するグランドビアが設けられ、前記抵抗の両端には前記信号検出回路と接続する検出用ビアが設けられていることを特徴とする電磁波検出装置。 - 請求項2に記載の電磁波検出装置であって、
前記金属板は前記電界センサの金属片と接続されており、前記電界センサの端部の複数の金属片は、該金属片の中央位置から半分になった構造をしていることを特徴とする電磁波検出装置。 - 請求項2に記載の電磁波検出装置であって、
前記金属板に隣接する前記電界センサの端部の金属片と前記金属板との距離は、前記周期構造を有する金属片同士の距離の半分であることを特徴とする電磁波検出装置。 - 請求項4に記載の電磁波検出装置であって、
前記金属板は前記電界センサの金属片に接続された抵抗及び容量と接続されており、該抵抗及び容量の長さは、金属片どうしを接続する他の抵抗及び容量の長さの半分であることを特徴とする電磁波検出装置。 - 請求項1乃至5のいずれか1項に記載の電磁波検出装置であって、
前記電界センサと伝送線路によって接続された信号処理部と、
前記信号処理部と接続し、前記信号処理部で処理した情報を表示する表示部と、を有し、
前記信号処理部で前記検知信号を受信すると、該検知信号に含まれる前記センサの位置情報に基づき、当該センサの位置に基づいた電磁波の到来方向情報を前記表示部に送り、前記表示部で表示することを特徴とする電磁波検出装置。 - 請求項6に記載の電磁波検出装置であって、
前記処理部は、前記センサから受信した検知信号の強さが所定値以上の場合に、前記表示部へ電磁波の到来方向情報を送り、前記表示部で表示することを特徴とする電磁波検出装置。 - 請求項6または7に記載の電磁波検出装置であって、
測定対象の画像を撮影し、該撮影した画像の画像信号を出力するカメラ部を備え、
前記信号処理部は、前記カメラ部からの画像信号と前記センサからの検知信号とを受信すると、前記画像信号と前記検知信号を送信したセンサの位置情報からテーブルを参照して得た電磁波の到来方向とを含む表示信号を出力し、
前記表示部は、前記表示信号を受信すると、該表示信号に含まれる前記画像信号と前記センサの位置情報を元にえた電磁波の到来方向情報とに基づき、前記画像信号による画像上に重ねて、前記電磁波の到来方向の表示を行うことを特徴とする電磁波検出装置。 - 請求項6または7に記載の電磁波検出装置であって、
前記信号処理部と接続された電磁波検出装置を回転させる回転部を有し、
前記回転部は、基準位置からの回転角度の情報を前記信号処理部に出力し、前記信号処理部は回転角度の情報と電磁波を検出したセンサの位置情報に基づいた電磁波の到来方向情報を前記表示部に送り、前記表示部で表示することを特徴とする電磁波検出装置。 - 請求項9に記載の電磁波検出装置であって、
測定対象の画像を撮影し、該撮影した画像の画像信号を出力するカメラ部を備え、
前記処理部は、前記カメラ部からの画像信号と前記センサからの検知信号とを受信すると、前記画像信号と前記検知信号を送信したセンサの位置情報からテーブルを参照して得た電磁波の到来方向とを含む表示信号と前記回転部からの装置全体の回転情報を出力し、
前記表示部は、前記表示信号を受信すると、該表示信号に含まれる前記画像信号と、前記センサの位置情報及び回転情報を元に得た電磁波の到来方向情報とに基づき、前記画像信号による画像上に重ねて、前記電磁波の到来方向の表示を行うことを特徴とする電磁波検出装置。 - 請求項6または7に記載の電磁波検出装置であって、
受信する電磁波の方向を電気的に変化させる機構を持ち、前記受信方向の情報と、センサの位置に基づいた電磁波の到来方向を表示する表示部とを備える事を特徴とする電磁波検出装置。 - 請求項11に記載の電磁波検出装置であって、
測定対象の画像を撮影し、該撮影した画像の画像信号を出力するカメラ部を備え、
前記処理部は、前記カメラ部からの画像信号と前記センサからの検知信号とを受信すると、前記画像信号と前記検知信号を送信したセンサの位置情報からテーブルを参照して得た電磁波の到来方向とを含む表示信号と電磁波の受信方向の情報を出力し
前記表示部は、前記表示信号を受信すると、該表示信号に含まれる前記画像信号と前記センサの位置情報を元に得た電磁波の到来方向情報とに基づき、前記画像信号による画像上に重ねて、前記電磁波の到来方向の表示を行うことを特徴とする電磁波検出装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/055218 WO2015132846A1 (ja) | 2014-03-03 | 2014-03-03 | 電磁波検出装置 |
US15/111,288 US9804215B2 (en) | 2014-03-03 | 2014-03-03 | Electromagnetic wave detection apparatus |
JP2016505959A JP6148786B2 (ja) | 2014-03-03 | 2014-03-03 | 電磁波検出装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2014/055218 WO2015132846A1 (ja) | 2014-03-03 | 2014-03-03 | 電磁波検出装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015132846A1 true WO2015132846A1 (ja) | 2015-09-11 |
Family
ID=54054691
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2014/055218 WO2015132846A1 (ja) | 2014-03-03 | 2014-03-03 | 電磁波検出装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US9804215B2 (ja) |
JP (1) | JP6148786B2 (ja) |
WO (1) | WO2015132846A1 (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019216181A1 (ja) * | 2018-05-09 | 2019-11-14 | 住友電気工業株式会社 | レンズ、アンテナおよび車載器 |
JP2020012720A (ja) * | 2018-07-18 | 2020-01-23 | 日本電信電話株式会社 | 電磁波情報可視化装置 |
JP2021135221A (ja) * | 2020-02-28 | 2021-09-13 | 国立大学法人金沢大学 | 電波センサ、および電界成分検出装置 |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017223299A1 (en) * | 2016-06-22 | 2017-12-28 | Massachusetts Institute Of Technology | Methods and systems for optical beam steering |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06334423A (ja) * | 1993-05-26 | 1994-12-02 | Toyota Central Res & Dev Lab Inc | 追尾アンテナ装置 |
JP2005110231A (ja) * | 2003-09-09 | 2005-04-21 | Advanced Telecommunication Research Institute International | アレーアンテナ装置とその制御方法 |
JP2009141983A (ja) * | 2009-02-10 | 2009-06-25 | Electronic Navigation Research Institute | 全方向性を有する誘電体レンズを用いたアンテナ装置。 |
JP2011258920A (ja) * | 2010-06-08 | 2011-12-22 | Samsung Electro-Mechanics Co Ltd | 半導体パッケージ及びその製造方法 |
JP2013130466A (ja) * | 2011-12-21 | 2013-07-04 | Hitachi Ltd | 電磁波可視化装置 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1992021159A1 (en) * | 1991-05-13 | 1992-11-26 | Thomson Consumer Electronics S.A. | Radiowave antenna system |
US5243186A (en) * | 1992-08-17 | 1993-09-07 | The United States Of America As Represented By The Secretary Of The Navy | Photonic electromagnetic field sensor apparatus |
JP5737672B2 (ja) | 2008-07-28 | 2015-06-17 | 国立大学法人金沢大学 | 電波強度計測装置および電波強度計測システム |
JP5666241B2 (ja) * | 2010-10-21 | 2015-02-12 | 矢崎総業株式会社 | 近傍無線通信装置 |
GB2497328A (en) * | 2011-12-07 | 2013-06-12 | Canon Kk | Method of making a dielectric material with a varying permittivity |
-
2014
- 2014-03-03 JP JP2016505959A patent/JP6148786B2/ja active Active
- 2014-03-03 US US15/111,288 patent/US9804215B2/en active Active
- 2014-03-03 WO PCT/JP2014/055218 patent/WO2015132846A1/ja active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06334423A (ja) * | 1993-05-26 | 1994-12-02 | Toyota Central Res & Dev Lab Inc | 追尾アンテナ装置 |
JP2005110231A (ja) * | 2003-09-09 | 2005-04-21 | Advanced Telecommunication Research Institute International | アレーアンテナ装置とその制御方法 |
JP2009141983A (ja) * | 2009-02-10 | 2009-06-25 | Electronic Navigation Research Institute | 全方向性を有する誘電体レンズを用いたアンテナ装置。 |
JP2011258920A (ja) * | 2010-06-08 | 2011-12-22 | Samsung Electro-Mechanics Co Ltd | 半導体パッケージ及びその製造方法 |
JP2013130466A (ja) * | 2011-12-21 | 2013-07-04 | Hitachi Ltd | 電磁波可視化装置 |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019216181A1 (ja) * | 2018-05-09 | 2019-11-14 | 住友電気工業株式会社 | レンズ、アンテナおよび車載器 |
CN112106255A (zh) * | 2018-05-09 | 2020-12-18 | 住友电气工业株式会社 | 透镜、天线及车载器 |
CN112106255B (zh) * | 2018-05-09 | 2022-12-06 | 住友电气工业株式会社 | 透镜、天线及车载器 |
US11664602B2 (en) | 2018-05-09 | 2023-05-30 | Sumitomo Electric Industries, Ltd. | Lens, antenna, and device for vehicle |
JP2020012720A (ja) * | 2018-07-18 | 2020-01-23 | 日本電信電話株式会社 | 電磁波情報可視化装置 |
JP2021135221A (ja) * | 2020-02-28 | 2021-09-13 | 国立大学法人金沢大学 | 電波センサ、および電界成分検出装置 |
JP7410561B2 (ja) | 2020-02-28 | 2024-01-10 | 国立大学法人金沢大学 | 電波センサ、および電界成分検出装置 |
Also Published As
Publication number | Publication date |
---|---|
US20160334451A1 (en) | 2016-11-17 |
JPWO2015132846A1 (ja) | 2017-03-30 |
JP6148786B2 (ja) | 2017-06-14 |
US9804215B2 (en) | 2017-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013094306A1 (ja) | 電磁波可視化装置 | |
JP6148786B2 (ja) | 電磁波検出装置 | |
US20150255870A1 (en) | Antenna | |
JP4341573B2 (ja) | 電波送受信モジュールおよび、この電波送受信モジュールを用いたイメージングセンサ | |
US7642963B2 (en) | Soldier/ground vehicle passive ranging system utilizing compact spatiotemporal processor | |
US20150219704A1 (en) | Electromagnetic Wave Visualization Device | |
WO2021181872A1 (ja) | アンテナ装置及びレーダ装置 | |
Abedi et al. | Low-cost 3D printed dielectric hyperbolic lens antenna for beam focusing and steering of a 79GHz MIMO radar | |
JP5993754B2 (ja) | 電磁波計測装置及び電磁波計測方法 | |
JP2023547206A (ja) | レーダービーコンおよびレーダー測定システム | |
JP6456716B2 (ja) | アンテナユニット | |
KR101627939B1 (ko) | 메타물질 흡수체 및 이를 이용한 측정 시스템 | |
WO2015182325A1 (ja) | アンテナ装置およびそれを用いた速度センサ | |
JP2016046577A (ja) | アンテナ装置 | |
EP3480893B1 (en) | Determining direction of arrival of an electromagnetic wave | |
CN105914477A (zh) | 一种卫星跟踪接收装置 | |
US20240243486A1 (en) | Antenna device | |
JP7229452B2 (ja) | 到来波受信装置 | |
Mazouni et al. | 77 GHz offset reflectarray for FOD detection on airport runways | |
ES2588927T3 (es) | Elemento de superficie inductivo | |
KR20190046178A (ko) | 무전력 와이파이 확장 장치 | |
US20220163323A1 (en) | Irradiance-Based Radiation Source Orientation Method | |
Gu et al. | Enhancement of angular resolution of a flat-base Luneburg lens antenna by using correlation method | |
JP2023062445A (ja) | 電波吸収体およびアンテナ | |
KR101527330B1 (ko) | 전파를 이용한 이미지 센싱 장치 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14884685 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2016505959 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15111288 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14884685 Country of ref document: EP Kind code of ref document: A1 |