WO2015131756A1 - 外飘式张力腿浮动风机基础、海上风力发电机及施工方法 - Google Patents

外飘式张力腿浮动风机基础、海上风力发电机及施工方法 Download PDF

Info

Publication number
WO2015131756A1
WO2015131756A1 PCT/CN2015/072953 CN2015072953W WO2015131756A1 WO 2015131756 A1 WO2015131756 A1 WO 2015131756A1 CN 2015072953 W CN2015072953 W CN 2015072953W WO 2015131756 A1 WO2015131756 A1 WO 2015131756A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating
tension leg
wind turbine
fan foundation
floating fan
Prior art date
Application number
PCT/CN2015/072953
Other languages
English (en)
French (fr)
Inventor
李荣富
张建海
朱海飞
Original Assignee
新疆金风科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆金风科技股份有限公司 filed Critical 新疆金风科技股份有限公司
Priority to DK15758548.0T priority Critical patent/DK3115600T3/en
Priority to AU2015226662A priority patent/AU2015226662B2/en
Priority to ES15758548T priority patent/ES2718934T3/es
Priority to EP15758548.0A priority patent/EP3115600B1/en
Priority to US14/911,887 priority patent/US10293890B2/en
Publication of WO2015131756A1 publication Critical patent/WO2015131756A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B21/00Tying-up; Shifting, towing, or pushing equipment; Anchoring
    • B63B21/50Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers
    • B63B21/502Anchoring arrangements or methods for special vessels, e.g. for floating drilling platforms or dredgers by means of tension legs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/107Semi-submersibles; Small waterline area multiple hull vessels and the like, e.g. SWATH
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D13/00Assembly, mounting or commissioning of wind motors; Arrangements specially adapted for transporting wind motor components
    • F03D13/20Arrangements for mounting or supporting wind motors; Masts or towers for wind motors
    • F03D13/25Arrangements for mounting or supporting wind motors; Masts or towers for wind motors specially adapted for offshore installation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/10Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls
    • B63B1/12Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly
    • B63B2001/128Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with multiple hulls the hulls being interconnected rigidly comprising underwater connectors between the hulls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/446Floating structures carrying electric power plants for converting wind energy into electric energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B39/00Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude
    • B63B39/06Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water
    • B63B2039/067Equipment to decrease pitch, roll, or like unwanted vessel movements; Apparatus for indicating vessel attitude to decrease vessel movements by using foils acting on ambient water effecting motion dampening by means of fixed or movable resistance bodies, e.g. by bilge keels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/93Mounting on supporting structures or systems on a structure floating on a liquid surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05BINDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
    • F05B2240/00Components
    • F05B2240/90Mounting on supporting structures or systems
    • F05B2240/95Mounting on supporting structures or systems offshore
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/727Offshore wind turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of offshore wind power generators, and more particularly to an external floating tension leg floating fan foundation, an offshore wind power generator having the floating wind turbine foundation and an installation and construction method of the offshore wind power generator.
  • the floating wind turbine foundation applied to the offshore wind power field is different from the mobile platform in the traditional offshore oil project.
  • the floating offshore wind turbine foundation not only bears the combined effect of wind and wave current, but also withstands the high-rise structure operation of the wind turbine.
  • the resulting gyroscopic turning effect, the overturning moment Mx, My and the torque Mz around the vertical axis, the entire wind machine produces six degrees of freedom of intense motion, including the axial movement of the X, Y and Z axes and the pivoting around the axis, giving
  • the pitch and yaw control system of the wind turbine poses great challenges, affecting the normal operation of the wind turbine, affecting the power generation, and even jeopardizing the safety of the entire system structure.
  • the floating structure is a slender steel tube about 117m long with a base at one end and a fan flange at the other end.
  • the steel pipe filled with the ballast tank is transported to the installation site and stands on the sea surface.
  • the entire structure of the floating body is connected to the seabed through three anchor cables.
  • the Netherlands Blue H company installed a two-blade wind turbine prototype on the coast of Italy, using a tension leg platform design, by making the platform's buoyancy greater than gravity, the tension leg is always in tension to maintain the stability of the platform.
  • Principle Power, Vestas and EDP collaborated to complete the Windfloat project on the west coast of Portugal.
  • the floating foundation is a semi-submersible concept.
  • the main body consists of three floats.
  • the fan stands on one of the floats and the dynamic ballast water can be automatically offset. Wind tilting moment, the bottom is fastened to the bottom of the sea with a water depth of more than 50m through four catenary lines.
  • the floating fan project mentioned above generally has disadvantages such as high manufacturing, transportation, installation cost, insufficient sports performance, complicated structure and short service life.
  • the object of the present invention is to provide an external floating tension leg floating fan foundation and an offshore wind power generator which are integrally installed and suitable for towing a whole machine.
  • Another object of the present invention is to provide an external floating tension leg floating fan foundation and an offshore wind power generator excellent in sports performance.
  • Another object of the present invention is to provide an external floating tension leg floating fan foundation and an offshore wind power generator with reduced manufacturing and installation costs.
  • the object of the present invention is also to provide a convenient, fast and cost-effective installation method for offshore wind turbines.
  • an external floating tension leg floating fan foundation comprising: a top support platform for supporting a tower, a blade and a wind power generator; and a bottom support structure connected to the plurality of tension legs; At least three hollow columns connected between the top support platform and the bottom support structure and disposed about a vertical centerline of the floating fan foundation, each column being vertically oriented relative to the floating fan foundation The centerline slopes outwardly from the lower end toward the upper end; a ballast adjustment system is disposed in the upright and/or bottom support structure.
  • the bottom support structure may be formed by a polygonal pontoon having a plurality of convex portions.
  • the polygonal pontoon has a plurality of convex portions, and the lower ends of the columns are respectively disposed on the convex portions.
  • the central portion of the polygonal pontoon may form a hole.
  • the angle between each column and the vertical direction can be in the range of 5 to 15 degrees.
  • the bottom support structure can be formed by a truss structure.
  • the polygonal pontoon may be a Y-shaped pontoon having a Y-shaped planar shape.
  • the ballast adjustment system may be provided at the bottom of the column.
  • a convex guide cable hole may be formed at an end of the convex portion of the polygonal floating box, and the tension leg may be connected to the polygonal floating box through the convex guide cable hole.
  • the male guide cable hole can be connected to the tension leg through the universal joint.
  • the convex guide holes may be respectively located outside the column, and at least two tension legs are connected to the protruding guide holes on the outer side of each column
  • the horizontal length of the convex cable guide can be approximately 0.5 to 1.5 times the maximum outer diameter of the column.
  • the truss structure may have a polygonal planar shape, and a guide cable hole may be disposed at the convex edge of the truss structure, and the cable guide hole may be connected to the tension leg through the universal joint.
  • the uprights may be arranged symmetrically with respect to the center of the floating fan base.
  • At least one of the columns may have a rounded rectangular cross section.
  • At least one of the columns may have a circular or elliptical cross section.
  • the ballast medium of the ballast conditioning system can be seawater or a combination of seawater and sand.
  • the top support platform may be formed from a polygonal box structure, the interior of which may form an interior space for mounting an auxiliary device.
  • the top support platform may be formed from a Y-shaped box structure.
  • the top support platform may be formed by a truss structure.
  • the holes may have a polygonal cross section.
  • the floating fan base may further include a tower support disposed on the top support platform Support base.
  • the tower support base may include: a support cylinder mounted on the top support platform; a plurality of support rods disposed around the support cylinder, one end of each support rod is connected to the upper part of the support cylinder, and the other end is connected with the top support platform to tilt Support the support tube.
  • the interior of the support cylinder can form an auxiliary equipment installation space.
  • the bottom of the tower is mounted to the top of the support cylinder by a flange.
  • a tower support base can be installed in the center of the top support platform to support the bottom of the tower.
  • the tension leg may be formed of at least one of a steel cable, a polyester fiber cable, a steel pipe, a polyurethane cable, and an anchor chain.
  • an offshore wind power generator comprising an external floating tension leg floating wind turbine foundation as described above and a tower, a blade and a wind power generator mounted on the floating wind turbine.
  • the bottom of the tower can be connected to the outer floating tension leg floating fan foundation via a flange.
  • An outer convex guide hole may be formed at an outer edge of the bottom support structure to be coupled to the tension leg.
  • the male guide cable hole can be connected to the tension leg through a universal joint.
  • an offshore wind turbine installation and construction method comprising the steps of: assembling the outer floating tension leg floating fan foundation, a tower, a blade and a wind power generator at a port terminal to form The entire floating offshore wind turbine; the tugboat is used to wet the entire floating offshore wind turbine to the offshore installation site; the tension leg is anchored to the sea floor.
  • the ballast regulation system can be used to keep the state of the entire floating offshore wind turbine stable.
  • the tension leg can be connected to the external floating tension leg floating fan foundation during assembly.
  • the tension legs can be connected after the entire floating offshore wind turbine is wetted to the offshore installation site using a tugboat.
  • the floating fan foundation adopts an external tilting column
  • the static stability and the sea wave resistance during towing are excellent, which overcomes the shortcoming that the conventional tension leg platform cannot be wet-mounted by the whole machine, and avoids the use of an expensive large sea.
  • Installation of the ship reducing the installation and construction this.
  • Due to the extraversion of the column the size of the column can be appropriately reduced, and the same buoyancy as the conventional vertical column can be ensured, thereby reducing the amount of steel used, thereby reducing the structural cost of the floating fan foundation.
  • the convex guide hole since the convex guide hole is employed, the arrangement size of the column and the bottom pontoon can be reduced, thereby saving steel material and reducing the number of tension legs, thereby further reducing the cost. Moreover, the convex guide cable hole increases the force arm, increases the lateral/pivoting recovery torque, and the overall basic motion performance is better, and the swing angle is reduced by at least 25% compared with the prior art.
  • the vertical column and the bottom floating box of the floating fan base have a rectangular cross section, the process is simple, the processing is convenient and easy to implement, and can be built on a dock or a ship platform, does not require complicated aerial work, and can pass through the land at the shore dock.
  • the upper crane completes the assembly of the entire floating fan, and then the overall towage (wet drag) to the installation site, through mooring positioning.
  • the outer floating tension leg floating fan base according to the invention has excellent kinematic performance and is lower in cost than the conventional floating type fan, and is suitable for a sea area with a water depth of 30 m or more, especially in a medium water depth of 30 to 60 m, and the performance and cost can be compared with the conventional one.
  • Competing with the jacket base it can be equipped with fans above 5MW, which can ensure the structural strength and fatigue life of the entire fan, as well as ensure the normal operation of the fan, and has unique advantages, such as good mobility, convenient transportation and maintenance, Recyclability is good, and installation and dismantling have little impact on the environment.
  • the overall horizontal/longitudinal and heave motion cycles are below 3 s, avoiding the concentration of wave energy 3 ⁇
  • the 20s cycle range avoids the first-order frequency of the tower and also avoids the 1P and 3P frequency ranges of the fan, effectively reducing the resonance response of the entire floating fan system and reducing the ultimate load and fatigue load level of the whole machine. To ensure safe and reliable operation of the fan.
  • the amplitude of the horizontal/longitudinal motion of the entire floating fan system is significantly reduced and reduced.
  • the angle between the wind flow and the impeller increases the amount of power generated by the fan below the rated wind speed.
  • the camber column can provide a large lateral pitch assist recovery force similar to the semi-submersible foundation, thereby reducing the risk of tension leg relaxation.
  • the tension in the tension leg is reduced, the risk of fatigue damage of the cable guide hole is reduced, the disaster caused by the tension leg relaxation of the conventional tension leg platform and the drawback that the cable guide hole is damaged due to high stress and fatigue are overcome.
  • the floating-type tension leg floating foundation avoids the use of the conventional jacket node as much as possible, reduces fatigue damage, and ensures the fatigue life of the entire structure.
  • the tension leg connected to the floating-type tension leg floating foundation reduces the mooring cost and construction difficulty by using a polyurethane cable or a steel cable.
  • the outer floating tension leg floating fan base is also equipped with an adjustable pressure water carrying system, that is, a ballast regulating system, which can satisfy various shore assembling, towing and in-position working conditions, and the like.
  • an adjustable pressure water carrying system that is, a ballast regulating system, which can satisfy various shore assembling, towing and in-position working conditions, and the like.
  • the stability requirements under working conditions make it possible to carry out convenient offshore construction work under various working conditions.
  • the outer floating tension leg floating fan base according to the invention has the characteristics of simple structure, convenient processing, low cost and easy realization, and the outer floating tension leg floating fan foundation proposed in the invention is an important sea for developing deep sea wind farms.
  • the equipment can support the safe operation of large-capacity wind turbines above 5MW.
  • the installation and construction of the corresponding offshore wind power generator has obvious advantages of easy operation: by assembling the three columns and the bottom float when the shore port terminal is assembled The ballast water in the box makes the basic draft meet the assembly requirements of the entire floating structure. At this time, the draft is shallow (not more than 8 meters); after the assembly is completed, the ballast water is adjusted to a certain amount of water, and the whole machine is wetly dragged to the installation site. In place, open the valve that communicates with the inside of the bottom pontoon, fill the ballast water, then connect the tension leg, and then discharge the ballast water through the transfer system until the design draws the tension leg. It can be seen that the whole operation is simple and convenient, and the cost is low.
  • FIG. 1 is a perspective view showing an offshore wind power generator having an outer floating tension leg floating wind turbine foundation according to a first embodiment of the present invention
  • FIG. 2 is a perspective view showing a foundation of an external floating tension leg floating fan according to a first embodiment of the present invention
  • FIG. 3 is a perspective view showing a tower support base of an outer floating tension leg floating fan base according to a first embodiment of the present invention
  • FIG. 4 is a perspective view showing a pillar and a bottom pontoon of an outer floating tension leg floating fan base according to a first embodiment of the present invention
  • Figure 5 is a perspective view showing an offshore wind power generator having an outer floating tension leg floating fan base according to a second embodiment of the present invention
  • FIG. 6 is a perspective view showing an offshore wind power generator having an outer floating tension leg floating wind turbine foundation according to a second embodiment of the present invention, in which the wind power generator set and the blades are omitted.
  • FIG. 1 is a perspective view showing an offshore wind power generator 100 having an external floating tension leg floating wind turbine foundation 4 according to a first embodiment of the present invention
  • FIG. 2 is a view showing the outer portion according to the first embodiment of the present invention.
  • FIG. 3 is a perspective view showing the tower support bases 10, 11 of the outer float type tension leg floating fan base 4 according to the first embodiment of the present invention;
  • FIG. 4 is a view A perspective view of the upright 6 and the bottom pontoon 7 of the flared tension leg floating fan base 4 according to the first embodiment of the present invention is shown.
  • the offshore wind turbine 100 mainly comprises an external floating tension leg floating fan foundation 4, a tower 3, a blade 1 and a wind turbine 2, wherein the floating fan foundation 4 is anchored to the seabed through the tension leg 5 (not show).
  • the blade 1 and the wind turbine 1 are mounted at the top end of the tower 3, and the bottom of the tower 3 is connected to the floating fan foundation 4, thereby supporting the wind turbine 2 and the blade 1 to operate normally by the floating fan foundation 4 for power generation.
  • the outer float type tension leg floating fan base 4 mainly comprises a top support platform 9, three uprights 6 and a bottom support structure 7, wherein three uprights 6 It is connected between the top support platform 9 and the bottom support structure 7.
  • the bottom support structure 7 is connected to a plurality of tension legs 5.
  • the bottom support structure 7 can be formed as a pontoon, and thus, in this embodiment, the bottom support structure 7 can also be referred to as a bottom pontoon. As shown in Fig. 4, the bottom pontoon 7 has a Y-shaped plane, whereby the pontoon is referred to as a Y-shaped pontoon.
  • the present invention is not limited thereto, that is, the shape of the bottom pontoon 7 and the number of the columns 6 may vary. For example, four, five or more columns may be provided, and accordingly, the bottom pontoon 7 may form a polygonal box of a triangular box, a quadrangular box, a pentagonal box or more.
  • the bottom pontoon 7 is not limited to a polygonal shape, and may have a planar shape such as a circular shape or an elliptical shape. However, it is preferable to form a hole in the central portion of the bottom pontoon 7, and the hole preferably has a polygonal cross section, which not only reduces the weight of the bottom pontoon 7, but also saves material and facilitates processing.
  • the shape of the hole is not limited to a polygon, and other shapes such as a circle, an ellipse, or the like may be employed.
  • the polygonal bottom pontoon 7 is mainly located deep below the water surface, greatly reducing the wave force.
  • the bottom pontoon has a polygonal cross section, the additional damping and additional mass of the heave, roll, pitch and roll of the entire floating fan base are effectively increased, thereby achieving the purpose of reducing the range of motion of the entire offshore wind turbine.
  • the bottom pontoon 7 can provide buoyancy to support the entire floating fan, so that the basic draft is shallower and meets the shallow draught requirements of the port; in the installation position of the fan to eat underwater, the bottom pontoon can be filled Ballast water reduces the overall base center of gravity and improves stability and seakeeping.
  • the bottom pontoon 7 may be formed with a plurality of convex portions such that the bottom end of the uprights 6 may be disposed on the corresponding convex portions of the bottom pontoon 7.
  • the Y-shaped bottom pontoon 7 can also be considered to be formed by forming three convex portions on the outer side of the hexagonal pontoon.
  • the convex portion may be integrally formed with the hexagonal pontoon.
  • the end of the convex portion may form an outer convex guide hole 8 to be connected with the tension leg 5.
  • the number of convex portions may vary, for example, the number of convex portions may be the same as the number of the columns 6.
  • the convex guide cable hole 8 is formed in The outside of the column 6 is connected to the tension leg 5 by a universal joint (not shown).
  • the tension leg 5 can be formed from a steel cable or a polyester fiber cable.
  • the invention is not limited thereto, and the tension leg 5 may also be formed using a steel pipe, a polyurethane, an anchor chain, or a combination thereof.
  • two tension legs 5 can be used to connect with the male guide cable holes 8. It is also possible to use more root tension legs 5.
  • the convex guide cable hole 8 is connected with the tension leg 5 by a universal joint, so that the tension leg 5 can rotate around any axial direction without a bending moment, and its main function is to increase the force arm and increase the horizontal/longitudinal motion.
  • the return torque makes the entire floating fan base sport better, and the column and pontoon arrangement dimensions can be appropriately reduced to save steel and reduce the number of tension legs, thereby further reducing costs.
  • the top support platform 9 at the top of the externally inclined column 6 can not only provide the guardrail, but also arrange the windlass and the like on the top of the square pillar 6 after the support column 10 ensures the structural strength of the floating wind turbine foundation.
  • the on-site operation and maintenance personnel rely on the platform to maintain the fan, thereby serving as the main working platform of the offshore wind turbine 100.
  • the bottom of the top support platform 9 is supported by and connected to the uprights 6, while the top supports the tower 3, the wind turbine 2 and the blades 1.
  • the top support platform 9 is a triangular platform to match the shape of the Y-shaped bottom pontoon 7.
  • the three columns 6 can be arranged symmetrically with respect to the center of the floating fan base 4.
  • the present invention is not limited thereto, and the shape of the top support platform 9 may vary depending on the number of the columns 6 and/or the shape of the bottom support structure 7, for example, the top support platform 9 may be formed in various shapes such as a rectangle, a circle, and the like.
  • the top support platform 9 may be formed of a truss structure, a box structure, or a steel plate of a suitable thickness as long as it can support the tower 3, the wind turbine 2, and the blade 1.
  • the uprights 6 are connected between the top support platform 9 and the bottom support structure 7 and are arranged around the vertical centerline of the floating wind turbine foundation 4, each vertical column 6 being from the vertical centerline of the floating wind turbine foundation 4
  • the lower end is inclined outward toward the upper end.
  • the column 6 is hollow so that, similar to the bottom pontoon 7, a ballast adjustment system can be provided in the column 6.
  • a ballast regulation system is provided at the bottom of the column 6 to reduce the center of gravity of the ballast regulation system, thereby improving the stability of the floating fan foundation 4 and the entire offshore wind turbine 100.
  • the bottom pontoon 7 may not be provided.
  • the ballast adjustment system is placed, and only the ballast adjustment system is provided at the bottom of the column 6.
  • the ballast medium of the ballast regulation system can be fresh water, sea water, or a combination of sea water and sand.
  • the use of seawater or a combination of seawater and sandstone can be taken locally, not only infusion, but also at low cost.
  • the floating fan base 4 mainly comprises three cambered rounded square columns 6 (i.e., each column 6 has a rounded rectangular cross section) with a bottom and three convexities.
  • a portion of the hexagonal bottom pontoon 7 (also referred to as a Y-shaped pontoon) is connected, the top of which is connected by a triangular top support platform 9.
  • the uprights 6 are inclined outwardly by 5 to 15 relative to the vertical centerline of the floating fan foundation 4.
  • the present invention is not limited thereto, and the inclination angle of the column 6 with respect to the vertical center line of the floating fan foundation 4 may also be changed.
  • the main function of the cambered square column 6 is to increase the stability and wave resistance of the floating foundation in the free floating state, and the larger the horizontal/pitch angle, the larger the water line surface area, and the area centroid to the rotating shaft. The greater the distance, the larger the area moment, and therefore the greater the restoring force provided.
  • the column 6 is manufactured in a substantially square or rectangular cross section to facilitate the simplification of the manufacturing process, and the corners of the column 6 form an arc to alleviate the impact of the seawater on the column 6, thereby increasing the service life of the column 6. Therefore, the column 6 can also have a circular or elliptical cross section.
  • the horizontal length of the convex cable guide 8 provided at the end of the convex portion of the bottom pontoon 7 may be approximately 0.5 to 1.5 times the maximum outer diameter of the column 6.
  • the horizontal length of the convex shape of the male guide cable hole 8 may be 1 to 1.5 times the maximum side length of the rectangular cross section of the column 6 or the diameter of the circular cross section.
  • the present invention is not limited thereto, and the horizontal length of the convex shape of the male guide hole 8 can be changed as needed.
  • connection structure of the tower 3 and the top support platform 9 will be described below with reference to Figs. 2 and 3.
  • the bottom of the tower 3 is connected to the flared tension leg floating fan base 4 by a flange, and more specifically, the tower 3 can be mounted on the top support platform 9 by flanges.
  • a tower support base can be provided on the top support platform 9 to support the tower 3.
  • the tower support base includes: a support cylinder 10 installed at the center of the top support platform 9, a plurality of support rods 11 disposed around the support cylinder 10, one end of each support rod 11 being connected to the upper portion of the support cylinder 10, the other end and the top Support platform 9 connected to tilt
  • the support cylinder 11 is supported by the ground. Since the diameter of the support cylinder 10 is large, for example, the diameter can be 6.5 m or more, the inside of the support cylinder 10 forms an auxiliary equipment installation space, and various auxiliary equipment such as an electric cabinet can be installed in the space, thereby effectively The internal space of the support cylinder 10 is utilized. In the present embodiment, the number of the support bars 11 is three, but the present invention is not limited thereto, and the support bars 11 may have four or more.
  • the support cylinder 10 is connected to the tower 3 through a top flange and a bottom flange to support the upper wind turbine 2, the tower 3, and the like.
  • the invention is not limited thereto, and the tower 3 can also be mounted directly on the top support platform 9.
  • the entire floating fan base constructed as described above can be designed with a draught of about 10 m to 12 m, and a ballast water regulating system disposed inside the bottom of each column 6 and/or inside the bottom pontoon 7 can adjust the draught of the tow and in-position conditions. Therefore, the entire floating wind turbine foundation 4 has obvious structural cost, and has the advantages of installation, transportation and maintenance cost, and excellent sports performance, and the motion range under the extreme sea conditions of a once-in-a-century is not more than 2°.
  • the connection between the intermediate cylindrical column 10 and the top support platform 9 needs to be reasonably strengthened in accordance with the operating conditions of the wind turbine 100 and the structural strength analysis under extreme sea conditions.
  • the interior of the cambered square column 6 and the bottom pontoon 7 need to be properly reinforced to withstand hydrostatic pressure and wave pressure loads.
  • the structural dimensions can meet the requirements of buoyancy, stability and strength, and avoid wave energy concentration bands and towers.
  • the basic hydrodynamic performance can be optimized by hydrodynamic software or model test to obtain the optimal size.
  • the outer floating tension leg floating fan foundation according to the first embodiment of the present invention is an all-steel structure, and for different capacity wind turbines 2, the port terminal near the shore can be selected for assembly, and then the overall wet drag To the installation site, and then by mooring, the offshore wind turbine 100 device in accordance with an embodiment of the present invention has no routine maintenance requirements.
  • FIG. 5 is a diagram showing an external floating tension leg having a second embodiment in accordance with the present invention.
  • FIG. 6 is a perspective view showing an offshore wind power generator 200 having an outer floating tension leg floating wind turbine foundation 12 in accordance with a second embodiment of the present invention, wherein the wind power The generator set 2 and the blade 1 are omitted.
  • the offshore wind turbine 200 is similar to the offshore wind turbine 100 of the flared tension leg floating foundation 4 according to the first embodiment of the present invention, the same reference numerals will be used for the same components, and the same will be omitted. Detailed description.
  • the flared tension leg floating foundation 12 in accordance with the second embodiment of the present invention includes a top support platform 14, three uprights 15, and a bottom support structure 16.
  • the difference from the first embodiment is that the structure mainly depends on the structure of the top support platform 14, the shape of the uprights 15, and the structure of the bottom support structure 16.
  • the top of the top support platform 14 is formed by a Y-shaped box structure
  • the bottom support structure 16 is formed by a truss structure
  • a cable guide hole is provided at each convex edge of the truss and connected to the two tension legs 5.
  • the uprights 15 have a circular cross section.
  • the present invention is not limited thereto, and various changes may be made in the number and shape of the columns 15, the shape of the top support platform 14, the shape of the bottom support structure 16, and the like.
  • the tension leg 5 can be coupled to the cable guide hole on the bottom support structure 16 by a universal joint.
  • the bottom of the floating-type tension leg floating foundation scheme 12 is connected by a truss structure, which saves the amount of steel used and improves the economical efficiency of the foundation; the top support platform 14 adopts a box-type structure, which reduces the influence of the fatigue load of the fan, and
  • the internal space can be used to arrange motor cabinets and load-carrying equipment, increasing space utilization.
  • a tower support base may be installed at the center of the top support platform 9 to support the bottom of the tower 3, wherein the tower support base may adopt the structure of the tower support base in the first embodiment, Other structures can be employed. Further, in this embodiment, the tower support base can be omitted. In this case, the base of the tower 3 can be directly mounted on the top support platform 14.
  • the ballast regulation system can be used to keep the state of the entire floating offshore wind turbine stable.
  • tension legs can be attached to the external floating tension leg floating fan foundation during assembly. It is also possible to connect the tension legs after dragging the entire floating offshore wind turbine to the offshore installation site using a tugboat.
  • the tension leg floating fan of the present invention adopts an external tilting column, which can overcome the stability problem of the normal tension leg platform during free towing, realizes the wet floating installation of the entire floating fan, and avoids the use of an expensive large-scale sea transport ship. And install the boat.
  • the tension leg floating fan foundation of the invention adopts a convex guide cable hole, which can provide greater recovery torque, reduce the basic movement range, meet the normal operation of the fan, and can increase the power generation.
  • the outer float type tension leg floating fan base according to the present invention reduces the overall structural weight by about 30% by the combination of the cambered column and the male guide cable hole as compared with the conventional tension leg platform.
  • the tension leg can use the cost-effective steel cable and the polyester fiber cable, which not only reduces the product cost of the offshore wind turbine, but also reduces the mooring cost and construction difficulty.
  • the external floating tension leg floating fan foundation of the present invention is superior to the jacket foundation in the medium water depth sea, and the comprehensive performance index of the sport performance, economy and installation operation and maintenance is superior to the jacket foundation, for example, for the 6MW wind turbine, the tension leg foundation steel amount It is about 15% lower than the jacket base.
  • the external floating tension leg floating fan foundation and offshore wind power generation of the present invention The machine is easy to manufacture and manufacture. It can be built in the general dock or on the ship's platform. The whole dock is installed on the shore dock. The water depth of the port is not high, and the overall wet drag can be omitted, eliminating the need for large floating cranes for conventional sea hoisting. Facilitate the installation of offshore wind turbines, greatly saving transportation and installation costs.
  • the cable can be untwisted, and only one ordinary tugboat can be used to drag the whole port back to the port for component replacement. Or shelter from the wind, flexible maneuverability, saving the high cost of large floating cranes and transport vessels, and avoiding the damage caused by typhoons to the crew.

Abstract

一种外飘式张力腿浮动风机基础,所述浮动风机基础包括:顶部支撑平台(9),用于支撑塔架(3)、叶片(1)和风力发电机组(2);底部支撑结构(7),与多个张力腿(5)连接;至少三个中空的立柱(6),连接于顶部支撑平台(9)和底部支撑结构(7)之间并围绕浮动风机基础的竖直中心线布置,每根立柱(6)相对于浮动风机基础的竖直中心线从下端朝上端向外倾斜;压载调节系统,设置在所述立柱(6)和/或底部支撑结构(7)中。还披露了一种具有上述浮动风机基础的海上风力发电机以及施工方法。

Description

外飘式张力腿浮动风机基础、海上风力发电机及施工方法 技术领域
本发明涉及海上风力发电机领域,更具体地讲,涉及一种外飘式张力腿浮动风机基础、具有该浮动风机基础的海上风力发电机以及海上风力发电机的安装施工方法。
背景技术
在50米以上深海区域,可开发利用的风资源更多更优质,市场前景也更广阔。要开发这些海域的深海风电场,按照目前近海风场普遍采用的各种贯穿桩结构固定在海底的做法将不具备优势,因为:随着水深增加,固定式基础成本直线上升;固定式海上风机建造运维成本比浮动式海上风机更高。因此,为了使海上风电场的建设可以向深海区发展,需要开发经济实用的浮动式风力发电机。如何开发运动特性优异、结构紧凑、经济实用的浮动式风机基础已经成为开发浮动式风机最关键的课题。
应用于海上风电领域的浮动式风机基础,承受的载荷不同于传统的海油工程中的移动式平台,浮动式海上风机基础除了承受风浪流的联合作用外,还要承受风机这一高耸结构运行所引起的陀螺回转效应,倾覆力矩Mx,My以及绕垂直轴的扭矩Mz,整个风机会产生六个自由度的剧烈运动,包括X、Y和Z轴的轴向移动和绕轴的摆动,给风机的变桨和偏航控制系统带来巨大挑战,会影响到风机的正常运行,影响发电量,甚至会危及整个系统结构的安全性。
目前,根据开发深海风电场的需要,人们已经开始将海洋石油行业常用的深海漂浮式石油平台型式应用在风电领域,相继开发了采用单立柱平台(SPAR)、半潜式平台(Semi-submersible)、张力腿平台(TLP)的浮动式风机及其他复合形式的浮动式风机。到目前为止,全球范围内已有大概三个浮动式风机项目建成,分别是Hywind、Blue H和Windfloat。Hywind是由挪威国家海油 海德罗公司(Statoil Hydro)、法国德克尼普公司(Technip)和德国西门子公司联合开发成功,并于2009年在挪威附近的北海建成的。Hywind采用的基础概念为SPAR,漂浮结构是一个约为117m长的细长钢质管,一端是底座,另一端为风机法兰。用压载水舱填满的钢管被运送至安装地点并立于海面,浮体的整个结构与海底通过三条系锚缆索相连。2007年,荷兰Blue H公司在意大利沿海安装了一台两叶片风力涡轮原型机,使用了张力腿平台设计,通过使平台的浮力大于重力,张力腿始终处于张紧状态,以保持平台的稳定。2011年底,Principle Power、Vestas与EDP合作,在葡萄牙西海岸合作完成Windfloat项目,该浮动基础为半潜式概念,主体由三个浮筒组成,风机立于其中一个浮筒上,动态压载水可以自动抵消风倾力矩,底部通过四根悬链线系固在水深超过50m的海底。
然而,上述浮动式风机项目普遍存在制造、运输、安装成本高,运动性能不够优异,结构复杂以及使用寿命不长等不足之处。
发明内容
本发明的目的在于提供一种整体安装并适于整机拖航的外飘式张力腿浮动风机基础及海上风力发电机。
本发明的另一目的在于提供一种运动性能优异的外飘式张力腿浮动风机基础及海上风力发电机。
本发明的另一目的在于提供一种制造、安装成本降低的外飘式张力腿浮动风机基础及海上风力发电机。
本发明的目的还在于提供一种方便、快捷且节省成本的海上风力发电机安装施工方法。
为了实现上述目的,提供一种外飘式张力腿浮动风机基础,该浮动风机基础包括:顶部支撑平台,用于支撑塔架、叶片和风力发电机组;底部支撑结构,与多个张力腿连接;至少三个中空的立柱,连接于顶部支撑平台和底部支撑结构之间并围绕浮动风机基础的竖直中心线布置,每根立柱相对于浮动风机基础的竖直 中心线从下端朝上端向外倾斜;压载调节系统,设置在所述立柱和/或底部支撑结构中。
所述底部支撑结构可由具有多个外凸部分的多边形浮箱形成。所述多边形浮箱具有多个外凸部分,立柱的下端分别设置在外凸部分上。
所述多边形浮箱的中央部分可形成孔洞。
每个立柱与竖直方向的夹角可在5度至15度的范围内。
底部支撑结构可由桁架结构形成。
所述多边形浮箱可以是具有Y形平面形状的Y形浮箱。
在立柱的底部可设置有所述压载调节系统。
可在多边形浮箱的外凸部分的端部形成外凸式导缆孔,张力腿可通过外凸式导缆孔与多边形浮箱连接。
外凸式导缆孔可通过万向节与张力腿连接。
外凸式导缆孔可分别位于立柱的外侧,在每个立柱的外侧,至少两根张力腿与外凸式导缆孔连接
外凸式导缆孔外凸的水平长度可大致为立柱的最大外径的0.5倍至1.5倍。
所述桁架结构可具有多边形平面形状,桁架结构的外凸边缘处可设置有导缆孔,导缆孔可通过万向节与张力腿连接。
所述立柱可相对于浮动风机基础的中心对称地布置。
至少一个立柱可具有圆角矩形横截面。
至少一个立柱可具有圆形或椭圆形横截面。
所述压载调节系统的压载介质可以为海水或者海水和沙石的组合。
所述顶部支撑平台可由多边形箱式结构形成,所述顶部支撑平台的内部可形成用于安装辅助设备的内部空间。
所述顶部支撑平台可由Y形箱式结构形成。
所述顶部支撑平台可由桁架结构形成。
所述孔洞可具有多边形横截面。
所述浮动风机基础还可包括设置在顶部支撑平台上的塔架支 撑底座。
塔架支撑底座可包括:支撑筒,安装在顶部支撑平台上;多个支撑杆,围绕支撑筒设置,每个支撑杆的一端连接到支撑筒的上部,另一端与顶部支撑平台连接,以倾斜地支撑支撑筒。
支撑筒的内部可形成辅助设备安装空间。
塔架的底部通过法兰安装在支撑筒的顶部。
顶部支撑平台的中央可安装有塔架支撑底座,以支撑塔架的底部。
张力腿可由钢缆、聚酯纤维缆、钢管、聚氨酯缆绳、锚链中的至少一种形成。
根据本发明的另一方面,还提供一种海上风力发电机,包括如前面所述的外飘式张力腿浮动风机基础以及安装在该浮动风机基础上的塔架、叶片和风力发电机组。
塔架的底部可通过法兰与外飘式张力腿浮动风机基础连接。
所述底部支撑结构的外边缘处可形成外凸式导缆孔,以与张力腿连接。所述外凸式导缆孔可通过万向节与张力腿连接。
根据本发明的另一方面,还提供一种海上风力发电机安装施工方法,包括如下步骤:在港口码头将所述外飘式张力腿浮动风机基础、塔架、叶片和风力发电机组组装以形成整个浮动式的海上风力发电机;利用拖船将整个浮动式的海上风力发电机湿拖至海上安装地点;将张力腿锚固至海底。
在组装和固定整个浮动式的海上风力发电机的过程中,可利用压载调节系统保持整个浮动式的海上风力发电机状态稳定。
在组装过程中可将张力腿连接到外飘式张力腿浮动风机基础。
可在利用拖船将整个浮动式的海上风力发电机湿拖至海上安装地点之后连接张力腿。
在本发明中,由于浮动风机基础采用了外倾式立柱,拖航时静稳性和耐波性俱佳,克服了常规张力腿平台不能整机湿拖安装的缺点,避免了使用昂贵的大型海上安装船,降低了安装施工成 本。由于立柱外倾,立柱尺寸可适当减小,仍然能保证与常规垂直立柱相同的浮力,从而减小了用钢量,由此减低了浮动风机基础的结构成本。不仅如此,由于采用了外倾式立柱,有效地增大了整个浮动风机系统的横/纵荡的附加质量和附加阻尼,克服了常规张力腿平台水平运动过大的缺陷,保证风机不受尾流影响增加发电量;同时也有效的增大了首摇附加质量和阻尼,减小了首摇运动幅度,保证风机对风,从而提高发电量。
在本发明中,由于采用了外凸式导缆孔,立柱和底部浮箱的布置尺寸可减小,从而可节省钢料,降低张力腿的数目,从而进一步降低成本。而且,外凸式导缆孔增大了力臂,增大了横/纵摇回复力矩,整个基础运动性能更佳,与现有相似技术相比,摇摆角度减小了至少25%。
本发明中,浮动风机基础的立柱和底浮箱均为矩形截面,工艺简单,加工方便、易于实现,可在船坞或船台上建造,不需要复杂的高空作业,并可在岸边码头通过陆上吊机完成整个浮动式风机的拼装,然后整体拖航(湿拖)至安装地点,通过系泊定位。
根据本发明的外飘式张力腿浮动风机基础的运动性能优异,比传统浮动式风机基础成本低,适于水深30m以上的海域,尤其在30~60m的中等水深海域,性能和成本可与传统的导管架基础进行竞争,可以搭载5MW级别以上的风机,能保证整个风机的结构强度和疲劳寿命,以及保障风机正常运行发电,而且具有独特优势,例如,可移动性好、运输和维修方便、回收可利用性好、安装拆除对环境影响小。另外,由于本发明的外飘式张力腿浮动风机基础的外形特点以及依靠张力腿的较大张力,使得整体横/纵摇和垂荡运动周期在3s以下,避开了波浪能量集中的3~20s周期范围,避开了塔架的一阶频率,同时还避开风机的1P、3P频率范围,有效的减小了整个浮动式风机系统的共振响应,降低了整机极限载荷和疲劳载荷水平,保证了风机安全可靠运行。
在本发明中,由于采用了外倾式立柱和外凸式导缆孔的组合技术,显著地降低了整个浮动风机系统的横/纵摇运动幅度,减小 了来风流与叶轮的夹角,增加了风机在额定风速以下的发电量。
在本发明,由于采用了外倾式立柱和外凸式导缆孔的组合设计,外倾式立柱可类似半潜式基础提供较大的横纵摇辅助恢复力,可降低张力腿松弛的风险,降低张力腿中张力,减小了导缆孔疲劳损伤的风险,克服了常规张力腿平台的张力腿松弛会带来的灾难以及导缆孔由于高应力易疲劳受损的弊端。
在本发明中,外飘式张力腿浮动式基础尽量避免了传统的导管架节点的使用,减小了疲劳损伤,保证了整个结构的疲劳寿命。
在本发明中,与外飘式张力腿浮动式基础连接的张力腿由于采用聚氨酯缆绳或钢缆,降低了系泊成本和施工难度。
在本发明中,外飘式张力腿浮动风机基础还装备有可调压的载水系统,即,压载调节系统,这样能够满足各种岸边拼装、拖航及在位工作状态等各种工况下的稳性要求,使各种工况下方便的海上施工作业成为可能。
根据本发明的外飘式张力腿浮动风机基础具有结构形式简单、加工方便、成本较低、易于实现的特点,本发明中提出的外飘式张力腿浮动风机基础作为开发深海风电场的重要海工装备,能够支撑5MW以上大容量风电机组的安全运行。
通过利用根据本发明的外飘式张力腿浮动风机基础,相应的海上风力发电机的安装施工具有明显的易于操作的优势:在岸边港口码头整机拼装时,通过调整三个立柱及底浮箱中的压载水,使基础的吃水满足整个浮动结构的拼装要求,这时吃水较浅(不超过8米);在拼装完毕后调整压载水到一定吃水,整机湿拖至安装地点就位,可打开连通底浮箱内部的阀门,灌入压载水,然后连接张力腿,再通过调载系统排出压载水直到设计吃水将张力腿张紧。可以看出,整个操作简单方便,成本较低。
附图说明
通过下面结合附图进行的描述,本发明的上述和其他目的和特点将会变得更加清楚,其中:
图1是示出了具有根据本发明的第一实施例的外飘式张力腿浮动风机基础的海上风力发电机的立体图;
图2是示出了根据本发明的第一实施例的外飘式张力腿浮动风机基础的立体图;
图3是示出了根据本发明的第一实施例的外飘式张力腿浮动风机基础的塔架支撑底座的立体图;
图4是示出了根据本发明的第一实施例的外飘式张力腿浮动风机基础的立柱和底部浮箱的立体图;
图5是示出了具有根据本发明的第二实施例的外飘式张力腿浮动风机基础的海上风力发电机的立体图;
图6是示出了具有根据本发明的第二实施例的外飘式张力腿浮动风机基础的海上风力发电机的立体图,其中,风力发电机组和叶片被省略。
具体实施方式
以下,参照附图来详细说明本发明的实施例。
图1是示出了具有根据本发明的第一实施例的外飘式张力腿浮动风机基础4的海上风力发电机100的立体图;图2是示出了根据本发明的第一实施例的外飘式张力腿浮动风机基础4的立体图;图3是示出了根据本发明的第一实施例的外飘式张力腿浮动风机基础4的塔架支撑底座10、11的立体图;图4是示出了根据本发明的第一实施例的外飘式张力腿浮动风机基础4的立柱6和底部浮箱7的立体图。
如图1所示,海上风力发电机100主要包括外飘式张力腿浮动风机基础4、塔架3、叶片1和风力发电机组2,其中,浮动风机基础4通过张力腿5锚固至海底(未示出)。叶片1和风力发电机组1被安装在塔架3的顶端,塔架3的底部与浮动风机基础4连接,从而通过浮动风机基础4来支撑风力发电机组2和叶片1正常运转,以进行发电。
下面将参照图2至图4详细介绍根据本发明的第一实施例的 外飘式张力腿浮动风机基础4的结构特点。
如图2至图4所示,根据本发明的第一实施例的外飘式张力腿浮动风机基础4主要包括顶部支撑平台9、三个立柱6和底部支撑结构7,其中,三个立柱6连接于顶部支撑平台9和底部支撑结构7之间。底部支撑结构7与多个张力腿5连接。
底部支撑结构7可形成为浮箱,因此,在该实施例中,底部支撑结构7也可被称为底部浮箱。如图4所示,底部浮箱7具有Y形平面,由此,将该浮箱称为Y形浮箱。然而,本发明不限于此,即,底部浮箱7的形状和立柱6的数量可改变。例如,可设置4个、5个或更多个立柱,相应地,底部浮箱7可形成三边形箱体、四边形箱体、五边形箱体或更多个边的多边形箱体。此外,底部浮箱7也不局限于多边形形状,还可以具有圆形、椭圆形等平面形状。然而,在底部浮箱7的中央部分最好形成孔洞,孔洞最好具有多边形横截面,这样不仅可减轻底部浮箱7的重量,还可节省材料,并且便于加工。孔洞的形状不限于多边形,也可采用圆形、椭圆形等其它形状。多边形底部浮箱7主要位于水面以下的深处,大大减小了波浪作用力。由于底部浮箱具有多边形截面,有效地增加了整个浮动风机基础的垂荡、横摇、纵摇和艏摇的附加阻尼和附加质量,从而达到降低整个海上风力发电机的运动幅度的目的。在岸边拼装时,该底部浮箱7可以提供浮力以支撑整个浮动风机,使基础的吃水较浅,满足港口浅吃水的要求;在风机安装位置的设计吃水下,该底部浮箱中可以充满压载水,降低了整个基础重心,提高了稳定性和耐波性。
底部浮箱7可形成有多个外凸部分,这样,立柱6的底端可设置在底部浮箱7的相应的外凸部分上。在本实施例中,Y形底部浮箱7也可被认为是通过在六边形浮箱的外侧形成三个外凸部分而形成的。优选地,对于Y形底部浮箱7,外凸部分可以与六边形浮箱一体地形成。外凸部分的端部可形成外凸式导缆孔8,以与张力腿5连接。外凸部分的数量可改变,例如,外凸部分的数量可以与立柱6的数量相同。优选地,外凸式导缆孔8形成于 立柱6的外侧,并通过万向节(未示出)与张力腿5连接。张力腿5可由钢缆或聚酯纤维缆形成。然而,本发明不限于此,张力腿5还可使用钢管、聚氨酯、锚链或其组合形成。优选地,在每个立柱6的外侧,可使用两根张力腿5与外凸式导缆孔8连接。使用更多根张力腿5也是可以的。
外凸式导缆孔8采用万向节与张力腿5相连,因此张力腿5可绕任意轴向旋转,没有弯矩作用,其主要作用是增大了力臂,增大了横/纵摇回复力矩,使得整个浮动风机基础运动性能更佳,而且立柱和浮箱布置尺寸可适当减小节省钢料,并减少张力腿的数目,从而进一步降低成本。
外倾立柱6顶部的顶部支撑平台9除了支撑立柱10保证浮动风机基础的结构强度外,还可以在其上设置护栏,布置锚机等设备,同时便于维护船只在方形立柱6一侧停靠后,现场运维人员等靠此平台后对风机进行维护,由此用作海上风力发电机100的主要工作平台。顶部支撑平台9底部由立柱6支撑并与之连接,而其顶部支撑塔架3、风力发电机组2和叶片1。在该实施例中,顶部支撑平台9为三角形平台,以与Y形的底部浮箱7的形状匹配。三个立柱6可相对于浮动风机基础4的中心对称地布置。然而,本发明不限于此,顶部支撑平台9的形状可根据立柱6的数量和/或底部支撑结构7的形状而改变,例如,顶部支撑平台9可形成矩形、圆形等各种形状。顶部支撑平台9可由桁架结构、箱式结构或合适厚度的钢板形成,只要其能够支撑塔架3、风力发电机组2和叶片1即可。
在本实施例中,立柱6连接于顶部支撑平台9和底部支撑结构7之间并围绕浮动风机基础4的竖直中心线布置,每根立柱6相对于浮动风机基础4的竖直中心线从下端朝上端向外倾斜。立柱6是中空的,因此与底部浮箱7类似,立柱6中可设置压载调节系统。优选地,压载调节系统设置在立柱6的底部,以降低压载调节系统的重心,从而提高浮动风机基础4以及整个海上风力发电机100的稳定性。在这种情况下,底部浮箱7中也可以不设 置压载调节系统,而只在立柱6的底部设置压载调节系统。
压载调节系统的压载介质可采用淡水、海水,或者海水与沙石的组合。利用海水或者海水与沙石的组合可就地取材,不仅灌注方便,而且成本低廉。
如图2至4所示,该浮动风机基础4主要包括三个外倾的带倒圆角方形立柱6(即,每个立柱6具有圆角矩形横截面),其底部与具有三个外凸部分的六边形底部浮箱7(也可被称为Y形浮箱)相连,其顶部以三角形的顶部支撑平台9相连。优选地,立柱6相对于浮动风机基础4的竖直中心线向外倾斜5°至15°。然而,本发明不限于此,立柱6相对于浮动风机基础4的竖直中心线的倾斜角度也可改变。外倾式方形立柱6的主要作用是增大浮动式基础在自由漂浮状态下的稳性以及耐波性,且横/纵摇角度越大,水线面面积越大,面积形心到旋转轴的距离越大,面积矩越大,因此提供的回复力越大。
立柱6按照具有大致方形或矩形的截面制造有利于简化制造工艺,而立柱6的角形成圆弧则能够缓和海水对立柱6的冲击,从而提高立柱6的使用寿命。因此,立柱6也可具有圆形或椭圆形横截面。设置在底部浮箱7的外凸部分的端部的外凸式导缆孔8外凸的水平长度可大致为立柱6的最大外径的0.5倍至1.5倍。优选地,外凸式导缆孔8外凸的水平长度可为立柱6的矩形截面的最大边长或圆形截面的直径的1倍至1.5倍。然而,本发明不限于此,外凸式导缆孔8外凸的水平长度可根据需要进行改变。
下面将结合附图2和3对塔架3和顶部支撑平台9的连接结构进行介绍。总体来说,塔架3的底部通过法兰与外飘式张力腿浮动风机基础4连接,更具体地讲,塔架3可通过法兰安装在顶部支撑平台9上。优选地,如图1-3所示,可在顶部支撑平台9上设置塔架支撑底座来支撑塔架3。
塔架支撑底座包括:支撑筒10,安装在顶部支撑平台9的正中心,多个支撑杆11围绕支撑筒10设置,每个支撑杆11的一端连接到支撑筒10的上部,另一端与顶部支撑平台9连接,以倾斜 地支撑支撑筒11。由于支撑筒10的直径较大,例如,直径可达6.5m或更大,因此支撑筒10的内部形成辅助设备安装空间,电气柜等各种辅助设备可被安装在该空间中,从而有效地利用了支撑筒10的内部空间。在本实施例中,支撑杆11的数量为3个,但是本发明不限于此,支撑杆11可具有四个或更多个。
支撑筒10通过顶部法兰和塔底法兰与塔架3连接,以支撑上部的风力发电机组2和塔架3等。然而,本发明不限于此,塔架3也可直接安装在顶部支撑平台9上。
如上所述构造的整个浮动风机基础可设计吃水约10m至12m,在每个立柱6底部和/或底部浮箱7内部设置的压载水调节系统能够调节拖航和在位工况的吃水,因此整个浮动风机基础4具有明显的结构成本,且安装运输送和维护成本优势,而且运动性能优异,百年一遇的极端海况下运动幅度不超过2°。
上述实施例中,所有部件均通过焊接连在一起,中间圆柱形立柱10与顶部支撑平台9的连接,需要配合风机100的运行工况和极端海况下的结构强度分析进行合理的加强。外倾式方形立柱6和底部浮箱7内部需要进行合理加强以承受静水压力和波浪压力载荷,其结构尺寸可在满足浮性、稳性和强度要求,并避开波浪能量集中频段、塔架一阶频率、风机1P和3P频率范围以及张力腿5涡激振动的前提下,可以通过水动力软件或模型试验优化基础水动力性能,得到最优尺寸。
根据本发明的第一实施例的外飘式张力腿浮动风机基础系全钢制结构,针对不同容量的风力发电机组2,在建造时可以选择靠近岸边的港口码头进行拼装,再整体湿拖至安装地点,然后通过系泊定位,根据本发明的实施例的海上风力发电机100装置没有日常维护要求。
下面将结合附图5-6描述根据本发明的第二实施例的外飘式张力腿浮动风机基础12以及具有该浮动风机基础12的海上风力发电机200。
图5是示出了具有根据本发明的第二实施例的外飘式张力腿 浮动风机基础12的海上风力发电机200的立体图;图6是示出了具有根据本发明的第二实施例的外飘式张力腿浮动风机基础12的海上风力发电机200的立体图,其中,风力发电机组2和叶片1被省略。
由于具有的海上风力发电机200与根据本发明的第一实施例的外飘式张力腿浮动基础4的海上风力发电机100类似,因此对于相同的部件将使用相同的标号,并且将省略对它们的详细描述。
如图5-6所示,根据本发明的第二个实施例的外飘式张力腿浮动基础12包括顶部支撑平台14、三个立柱15以及底部支撑结构16。
与第一个实施例不同的是,区别主要在顶部支撑平台14的结构、立柱15的形状以及底部支撑结构16的结构。
在第二实施例中,顶部支撑平台14顶部由Y形箱式结构形成,底部支撑结构16以桁架结构形成,在桁架每个外凸的边缘设置导缆孔并与两根张力腿5相连。优选地,立柱15具有圆形横截面。然而,本发明不限于此,立柱15的数量和形状、顶部支撑平台14的形状、底部支撑结构16的形状等可进行各种改变。与第一个实施例类似,张力腿5可通过万向节与底部支撑结构16上的导缆孔连接。该外飘式张力腿浮动基础方案12底部采用桁架结构相连,节省了用钢量,提高了基础的经济性;顶部支撑平台14采用箱型结构,减小了风机运转疲劳载荷的影响,而且其内部空间可用于布置电机柜体和调载设备,提高了空间利用率。
虽然未示出,顶部支撑平台9的中央可安装有塔架支撑底座,以支撑塔架3的底部,其中,塔架支撑底座可采用第一个实施例中的塔架支撑底座的结构,也可采用其它的结构。此外,在该实施例中,可省略塔架支撑底座。这样的话,塔架3的底座可直接安装于顶部支撑平台14上。
虽然上面主要描述了两种实施方式,但是本发明不限于此,本领域技术人员可以在本发明的教导下将两个实施例的部件进行结合,以获得更多的实施方式,这样的实施方式也应当被认为与 本发明的发明构思一致。
下面将描述根据本发明的实施例的海上风力发电机安装施工方法,主要包括如下步骤:
(1)在港口码头将所述外飘式张力腿浮动风机基础、塔架、叶片和风力发电机组组装以形成整个浮动式的海上风力发电机;
(2)利用拖船将整个浮动式的海上风力发电机湿拖至海上安装地点;
(3)将张力腿锚固至海底。
在组装和固定整个浮动式的海上风力发电机的过程中,可利用压载调节系统保持整个浮动式的海上风力发电机状态稳定。
此外,可以在组装过程中将张力腿连接到外飘式张力腿浮动风机基础。也可以在利用拖船将整个浮动式的海上风力发电机湿拖至海上安装地点之后连接张力腿。
通过以上描述可以清楚的是:
第一、本发明的张力腿浮动风机基础采用外倾式立柱,可克服一般张力腿平台自由拖航时的稳性问题,实现整个浮动式风机湿拖安装,避免了使用昂贵的大型海上运输船和安装船。
第二、本发明的张力腿浮动风机基础采用外凸式导缆孔,可提供更大的回复力矩,降低了基础运动幅度,满足风机正常运行发电,能够提高发电量。另外,与传统张力腿平台比,根据本发明的外飘式张力腿浮动风机基础通过外倾式立柱和外凸式导缆孔结合降低了整体结构重量约30%。
第三、在本发明中,张力腿可使用性价比高的钢缆和聚酯纤维缆,不仅降低海上风力发电机的产品成本,而且降低了系泊成本和施工难度。
第四、本发明的外飘式张力腿浮动风机基础,在中等水深海域,运动性能、经济性和安装运维的综合指标优于导管架基础,比如对于6MW风机,该张力腿基础用钢量可比导管架基础降低约15%。
第五、本发明的外飘式张力腿浮动风机基础和海上风力发电 机的加工制造方便,可在一般船坞中或船台上建造,在岸边码头实行整机拼装,对港口水深要求不高,可整体湿拖,省去了常规海上吊装需要的大型浮吊船,给海上风机安装带来便利,大大节省运输安装成本。
第六、对于采用了外飘式张力腿浮动风机基础的浮动式风机,当需要大部件更换或遇台风来袭时,可以解缆,只需要一条普通拖船即可整体拖航回港进行部件更换或避风,机动灵活性能好,节省了大型浮吊船和运输船的高昂费用,避免了台风对机组造成的危害。
本发明不限于上述实施例,在不脱离本发明范围的情况下,可以进行各种变形和修改。

Claims (20)

  1. 一种外飘式张力腿浮动风机基础,其特征在于,该浮动风机基础包括:
    顶部支撑平台,用于支撑塔架、叶片和风力发电机组;
    底部支撑结构,与多个张力腿连接;
    至少三个中空的立柱,连接于顶部支撑平台和底部支撑结构之间并围绕浮动风机基础的竖直中心线布置,每根立柱相对于浮动风机基础的竖直中心线从下端朝上端向外倾斜;
    压载调节系统,设置在所述立柱和/或底部支撑结构中。
  2. 如权利要求1所述的外飘式张力腿浮动风机基础,其特征在于,所述底部支撑结构由多边形浮箱形成,所述多边形浮箱具有多个外凸部分,立柱的底端分别设置在外凸部分上。
  3. 如权利要求2所述的外飘式张力腿浮动风机基础,其特征在于,所述多边形浮箱的中央部分形成孔洞。
  4. 如权利要求1所述的外飘式张力腿浮动风机基础,其特征在于,每个立柱与竖直方向的夹角在5度至15度的范围内。
  5. 如权利要求1所述的外飘式张力腿浮动风机基础,其特征在于,底部支撑结构由桁架结构形成。
  6. 如权利要求1所述的外飘式张力腿浮动风机基础,其特征在于,在立柱的底部设置有所述压载调节系统。
  7. 如权利要求2所述的外飘式张力腿浮动风机基础,其特征在于,在多边形浮箱的外凸部分的端部形成外凸式导缆孔,张力腿通过外凸式导缆孔与多边形浮箱连接,外凸式导缆孔通过万向节与张力腿连接。
  8. 如权利要求7所述的外飘式张力腿浮动风机基础,其特征在于,外凸式导缆孔分别位于立柱的外侧,在每个立柱的外侧,至少两根张力腿与外凸式导缆孔连接,外凸式导缆孔外凸的水平长度为立柱的最大外径的0.5倍至1.5倍。
  9. 如权利要求5所述的外飘式张力腿浮动风机基础,其特征在于,所述桁架结构具有多边形平面形状,桁架结构的外凸边缘处设置有导缆孔,导缆孔通过万向节与张力腿连接。
  10. 如权利要求1所述的外飘式张力腿浮动风机基础,其特征在于,所述顶部支撑平台由多边形箱式结构形成,所述顶部支撑平台的内部形成用于安装辅助设备的内部空间。
  11. 如权利要求1所述的外飘式张力腿浮动风机基础,其特征在于,所述顶部支撑平台由桁架结构形成。
  12. 如权利要求3所述的外飘式张力腿浮动风机基础,其特征在于,所述孔洞具有多边形横截面。
  13. 如权利要求1所述的外飘式张力腿浮动风机基础,其特征在于,所述浮动风机基础还包括设置在顶部支撑平台上的塔架支撑底座。
  14. 如权利要求13所述的外飘式张力腿浮动风机基础,其特征在于,塔架支撑底座包括:
    支撑筒,安装在顶部支撑平台上;
    多个支撑杆,围绕支撑筒设置,每个支撑杆的一端连接到支撑筒的上部,另一端与顶部支撑平台连接,以倾斜地支撑支撑筒。
  15. 如权利要求14所述的外飘式张力腿浮动风机基础,其特征在于,其中,支撑筒的内部形成辅助设备安装空间。
  16. 如权利要求10所述的外飘式张力腿浮动风机基础,其特征在于,所述顶部支撑平台的中央安装有塔架支撑底座,以支撑塔架的底部。
  17. 如权利要求1所述的外飘式张力腿浮动风机基础,其特征在于,所述底部支撑结构的外边缘处形成导缆孔,所述导缆孔通过万向节与张力腿连接。
  18. 一种海上风力发电机,包括如权利要求1至17中任一项所述的外飘式张力腿浮动风机基础以及安装在该浮动风机基础上的塔架、叶片和风力发电机组。
  19. 一种海上风力发电机安装施工方法,其特征在于,包括如下步骤:
    在港口码头将如权利要求1所述的外飘式张力腿浮动风机基础、塔架、叶片和风力发电机组组装以形成整个浮动式的海上风力发电机;
    利用拖船将整个浮动式的海上风力发电机湿拖至海上安装地点;
    将张力腿锚固至海底。
  20. 如权利要求19所述的海上风力发电机安装施工方法,其特征在于,在组装和固定整个浮动式的海上风力发电机的过程中,利用压载调节系统保持整个浮动式的海上风力发电机状态稳定,在组装过程中将张力腿连接到外飘式张力腿浮动风机基础。
PCT/CN2015/072953 2014-03-04 2015-02-12 外飘式张力腿浮动风机基础、海上风力发电机及施工方法 WO2015131756A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
DK15758548.0T DK3115600T3 (en) 2014-03-04 2015-02-12 FLOATING STRETCH STRAP WINDOW FOUNDATION OF THE TYPE
AU2015226662A AU2015226662B2 (en) 2014-03-04 2015-02-12 Flare-type tensile legs floating wind turbine base, offshore wind turbine and construction method
ES15758548T ES2718934T3 (es) 2014-03-04 2015-02-12 Base de turbina eólica flotante con patas de tensión de tipo abocinado, turbina eólica marina y método de construcción
EP15758548.0A EP3115600B1 (en) 2014-03-04 2015-02-12 Flare-type tensile legs floating wind turbine base, offshore wind turbine and construction method
US14/911,887 US10293890B2 (en) 2014-03-04 2015-02-12 Flare-type tensile legs floating wind turbine base, offshore wind turbine and construction method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410077288.2 2014-03-04
CN201410077288.2A CN103818523B (zh) 2014-03-04 2014-03-04 外飘式张力腿浮动风机基础、海上风力发电机及施工方法

Publications (1)

Publication Number Publication Date
WO2015131756A1 true WO2015131756A1 (zh) 2015-09-11

Family

ID=50753884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072953 WO2015131756A1 (zh) 2014-03-04 2015-02-12 外飘式张力腿浮动风机基础、海上风力发电机及施工方法

Country Status (7)

Country Link
US (1) US10293890B2 (zh)
EP (1) EP3115600B1 (zh)
CN (1) CN103818523B (zh)
AU (1) AU2015226662B2 (zh)
DK (1) DK3115600T3 (zh)
ES (1) ES2718934T3 (zh)
WO (1) WO2015131756A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108757336A (zh) * 2018-05-03 2018-11-06 明阳智慧能源集团股份公司 一种四立柱带压载半潜式漂浮风机基础

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103818523B (zh) 2014-03-04 2016-09-14 新疆金风科技股份有限公司 外飘式张力腿浮动风机基础、海上风力发电机及施工方法
CN104389748A (zh) * 2014-11-11 2015-03-04 天津大学 用于海上风电联接风机塔筒与导管架基础的导管架帽结构
CN105369790A (zh) * 2015-09-30 2016-03-02 南通中远船务工程有限公司 一种海洋平台设计建造过程中的重量控制方法
CN105539725B (zh) * 2016-01-06 2017-08-08 深圳海油工程水下技术有限公司 张力腿安装方法
US10767632B2 (en) * 2016-09-09 2020-09-08 Siemens Gamesa Renewable Energy A/S Transition piece for a wind turbine
CN106650080B (zh) * 2016-12-16 2021-01-08 中国海洋石油集团有限公司 基于张力腿参数图谱的动力不稳定性识别方法
CN107021190A (zh) * 2017-03-30 2017-08-08 中国海洋石油总公司 可自浮安装的张力腿式海上浮动风机基础及其安装方法
CN106926977A (zh) * 2017-04-25 2017-07-07 周俊麟 一种海洋平台张力索型系泊系统
CN108791737A (zh) * 2017-04-28 2018-11-13 中石化石油工程技术服务有限公司 一种自升式半潜多功能平台
CN108860495A (zh) * 2017-05-09 2018-11-23 上海绿色环保能源有限公司 应用于浅水和深水之间的漂浮式风机
CN107585268A (zh) * 2017-07-20 2018-01-16 山东中车风电有限公司 张力腿海上浮式风力发电机基础
CN109866887A (zh) * 2017-12-01 2019-06-11 中石化石油工程技术服务有限公司 一种带外斜立柱的自稳式半潜平台
CN108005098A (zh) * 2017-12-13 2018-05-08 四川建筑职业技术学院 一种深海石油开采平台架的固定底座
SE542925C2 (en) 2018-01-19 2020-09-15 Freia Offshore Ab Floating wind power platform
FR3090567B1 (fr) * 2018-12-24 2021-05-21 Doris Eng Plateforme navale de support d’une éolienne et installation navale associée
CN109653960B (zh) * 2018-12-25 2024-04-12 长江勘测规划设计研究有限责任公司 一种基于导管架基础的风能和波浪能联合发电装置
DE102019101209B4 (de) 2019-01-17 2022-06-09 Gicon Windpower Ip Gmbh Offshore-Windkraftanlage zur Umwandlung von Windenergie in elektrische Energie
WO2020148374A1 (de) * 2019-01-17 2020-07-23 Gicon Windpower Ip Gmbh Offshore-windkraftanlage zur umwandlung von windenergie in elektrische energie
CN110107460B (zh) * 2019-05-11 2020-11-24 国网江苏省电力有限公司苏州供电分公司 一种耐腐蚀抗震性能好的风力发电机安装结构
NO345344B1 (en) * 2019-05-21 2020-12-21 Ægir Harvest As Floating wind turbine platform
EP4034455A1 (en) * 2019-09-25 2022-08-03 Clovers AS A floating metal platform
CN110712724A (zh) * 2019-10-15 2020-01-21 天津大学 一种具有高度自稳性的浮式风机平台
CN111469992B (zh) * 2020-03-17 2022-04-15 中国电建集团华东勘测设计研究院有限公司 一种具有阻尼效应的漂浮式海上风电结构基础及控制稳定性方法
KR102337859B1 (ko) * 2020-06-17 2021-12-09 달리안 유니버시티 오브 테크놀러지 평면형 나무 모양 팬 구조
CN113006694B (zh) * 2021-03-29 2023-01-20 中国石油管道局工程有限公司 海对海定向钻穿越作业系统及方法
CN113200129B (zh) * 2021-06-11 2022-06-28 中国船舶重工集团海装风电股份有限公司 一种新型漂浮式风机平台
EP4112439A1 (en) * 2021-07-02 2023-01-04 Mareal Floating platform for a floating wind turbine facility
CN113446164A (zh) * 2021-08-10 2021-09-28 台州衡达科技有限公司 海上风电结构基础
CN113982025A (zh) * 2021-10-13 2022-01-28 中国能源建设集团广东省电力设计研究院有限公司 一种海上风机的导管架基础结构及其施工方法
CN114104195A (zh) * 2021-11-25 2022-03-01 三峡珠江发电有限公司 一种适用于中浅水浮式海上风电基础平台的系泊系统
CN114370043B (zh) * 2021-12-31 2024-02-27 中国电建集团海南电力设计研究院有限公司 一种可缓冲海浪冲击的升压站固定装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101649803A (zh) * 2009-09-22 2010-02-17 上海海洋大学 海上可再生能源转换装置和系统
CN201582043U (zh) * 2009-09-22 2010-09-15 上海海洋大学 海上可再生能源转换装置和系统
CN101965454A (zh) * 2007-11-12 2011-02-02 海风科技有限责任公司 发电机组
CN102146873A (zh) * 2011-03-31 2011-08-10 上海交通大学 具有周向稳定柱的单柱式海上风力发电装置
CN202295236U (zh) * 2011-09-26 2012-07-04 中国水电顾问集团华东勘测设计研究院 浮式海上风电平台
CN202483813U (zh) * 2012-03-26 2012-10-10 刘红静 具有下沉底盘和支撑桩的海上风力发电机基础
CN203035449U (zh) * 2012-09-19 2013-07-03 王立夫 张力腿平台漂浮式双叶风电机
CN103277262A (zh) * 2013-04-27 2013-09-04 广东明阳风电产业集团有限公司 一种海上风力发电机组基础结构
US20130233231A1 (en) * 2010-11-04 2013-09-12 University Of Maine System Board Of Trustees Floating Wind Turbine Platform and Method of Assembling
CN103818523A (zh) * 2014-03-04 2014-05-28 新疆金风科技股份有限公司 外飘式张力腿浮动风机基础、海上风力发电机及施工方法
CN203767042U (zh) * 2014-03-04 2014-08-13 新疆金风科技股份有限公司 外飘式张力腿浮动风机基础和海上风力发电机

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57191188A (en) * 1981-05-21 1982-11-24 Mitsui Eng & Shipbuild Co Ltd Floating type structure in frozen sea
NO150874C (no) * 1981-10-07 1985-01-09 Selmer As Ingenioer F Flytende plattformkonstruksjon, konstruksjonsenhet for fremstilling av en flytende plattformkonstruksjon og fremgangsmaate for fremstilling av en flytende plattformkonstruksjon i armert betong
GB8527224D0 (en) 1985-11-05 1985-12-11 Hansen F J Segmental offshore structure
NO176395C (no) * 1992-07-09 1995-03-29 Kvaerner Eng Neddykket, svivelopplagret föringstrinseinnretning
US5704731A (en) * 1995-04-07 1998-01-06 San Tai International Corporation Multipurpose offshore modular platform
US6869251B2 (en) * 1999-04-30 2005-03-22 Abb Lummus Global, Inc. Marine buoy for offshore support
EP1483502B1 (en) * 2002-03-08 2009-08-26 Ocean Wind Energy Systems Offshore wind turbine
US8196539B2 (en) 2006-03-02 2012-06-12 Seahorse Equipment Corporation Battered column offshore platform
JP2010539378A (ja) * 2007-09-13 2010-12-16 フローティング ウィンドファームズ コーポレイション 海上用垂直軸風力タービン並びにそれと関連したシステム及び方法
JP5190329B2 (ja) * 2008-11-11 2013-04-24 三井造船株式会社 緊張係留浮体のための支援用浮体、及び、これを用いた緊張係留浮体の曳航方法と設置方法
EP2409020A2 (en) 2009-03-19 2012-01-25 Technip France Offshore wind turbine installation system and method
JP5422050B2 (ja) * 2009-06-10 2014-02-19 キーストーン エンジニアリング,インコーポレイテッド 洋上支持構造物、及びその設置方法
FR2950397B1 (fr) * 2009-09-22 2013-03-01 Cie Engrenages Et Reducteurs Messian Durand Dispositif de conversion de l'energie mecanique de la houle d'une etendue d'eau en energie electrique.
EP2496469B1 (en) * 2009-11-08 2018-07-25 Jurong Shipyard Pte. Ltd. Offshore buoyant drilling, production, storage and offloading structure
FR2955828B1 (fr) * 2010-01-29 2012-04-20 Dcns Support flottant pour structure off-shore telle que notamment une eolienne
AP3558A (en) 2010-10-04 2016-01-18 Horton Wison Deepwater Inc Tension buoyant tower
FR2970695B1 (fr) 2011-01-25 2013-01-04 Dcns Support flottant pour structure offshore de type eolienne
US20120213592A1 (en) * 2011-02-18 2012-08-23 David Bruce Nowlin Submerging offshore support structure
US8707882B2 (en) * 2011-07-01 2014-04-29 Seahorse Equipment Corp Offshore platform with outset columns
CN202295230U (zh) * 2011-09-20 2012-07-04 中国水电顾问集团华东勘测设计研究院 浮式海上风电基础
CN102765466B (zh) * 2012-07-27 2016-07-06 北京金风科创风电设备有限公司 半潜式海上浮动风机基础
CN203158199U (zh) * 2013-04-07 2013-08-28 江苏金风科技有限公司 一种漂浮式风机基础
CN103291546B (zh) * 2013-06-27 2014-04-16 上海交通大学 调液柱阻尼控制的近海漂浮式风电机
CN103423093B (zh) * 2013-09-03 2014-12-31 上海交通大学 用于深海海面的带吸力式沉箱的平台浮式风电机

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101965454A (zh) * 2007-11-12 2011-02-02 海风科技有限责任公司 发电机组
CN101649803A (zh) * 2009-09-22 2010-02-17 上海海洋大学 海上可再生能源转换装置和系统
CN201582043U (zh) * 2009-09-22 2010-09-15 上海海洋大学 海上可再生能源转换装置和系统
US20130233231A1 (en) * 2010-11-04 2013-09-12 University Of Maine System Board Of Trustees Floating Wind Turbine Platform and Method of Assembling
CN102146873A (zh) * 2011-03-31 2011-08-10 上海交通大学 具有周向稳定柱的单柱式海上风力发电装置
CN202295236U (zh) * 2011-09-26 2012-07-04 中国水电顾问集团华东勘测设计研究院 浮式海上风电平台
CN202483813U (zh) * 2012-03-26 2012-10-10 刘红静 具有下沉底盘和支撑桩的海上风力发电机基础
CN203035449U (zh) * 2012-09-19 2013-07-03 王立夫 张力腿平台漂浮式双叶风电机
CN103277262A (zh) * 2013-04-27 2013-09-04 广东明阳风电产业集团有限公司 一种海上风力发电机组基础结构
CN103818523A (zh) * 2014-03-04 2014-05-28 新疆金风科技股份有限公司 外飘式张力腿浮动风机基础、海上风力发电机及施工方法
CN203767042U (zh) * 2014-03-04 2014-08-13 新疆金风科技股份有限公司 外飘式张力腿浮动风机基础和海上风力发电机

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3115600A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108757336A (zh) * 2018-05-03 2018-11-06 明阳智慧能源集团股份公司 一种四立柱带压载半潜式漂浮风机基础

Also Published As

Publication number Publication date
CN103818523B (zh) 2016-09-14
US10293890B2 (en) 2019-05-21
AU2015226662A1 (en) 2016-03-03
US20160195070A1 (en) 2016-07-07
EP3115600B1 (en) 2019-01-09
EP3115600A1 (en) 2017-01-11
ES2718934T3 (es) 2019-07-05
AU2015226662B2 (en) 2017-10-05
CN103818523A (zh) 2014-05-28
EP3115600A4 (en) 2017-12-13
DK3115600T3 (en) 2019-04-15

Similar Documents

Publication Publication Date Title
WO2015131756A1 (zh) 外飘式张力腿浮动风机基础、海上风力发电机及施工方法
CN104401458B (zh) 半潜式浮动风机基础和浮动风机
CN102758446B (zh) 半潜式海上浮动风机基础
CN102765466B (zh) 半潜式海上浮动风机基础
CN102758447B (zh) 半潜式海上浮动风机基础
WO2018095304A1 (zh) 一种浮式风机的移动压载调平控制装置
US7156586B2 (en) Wind turbine with floating foundation
US9592889B2 (en) Submersible active support structure for turbine towers and substations or similar elements, in offshore facilities
CN208416796U (zh) 一种四立柱带压载半潜式漂浮风机基础
CN204415681U (zh) 半潜式浮动风机基础和浮动风机
CN108757336A (zh) 一种四立柱带压载半潜式漂浮风机基础
CN107738730A (zh) 一种三立柱半潜式海上风机基础
CN104816797B (zh) 一种海上风力发电机组及其安装方法
CN206554109U (zh) 一种三立柱半潜式海上风机基础
CN211874639U (zh) 一种可被动偏航的双风轮漂浮式海上风力发电装置
CN112319717A (zh) 一种具有倾斜侧柱的全潜式海上风机浮式平台
CN204436705U (zh) 浮动式风机系泊系统、海上风力发电机组
CN203767042U (zh) 外飘式张力腿浮动风机基础和海上风力发电机
CN104632549A (zh) 浮动式风机系泊系统、海上风力发电机组及其安装方法
CN110356521A (zh) 一种浮筒柔性连接的半潜型漂浮式风机结构
CN106609511B (zh) 一种半固定式海上风机基础
CN207225614U (zh) 一种浮式风机的移动压载调平控制装置
CN217074735U (zh) 漂浮式平台以及多风机发电系统
CN214356565U (zh) 一种具有倾斜侧柱的全潜式海上风机浮式平台
US20240034436A1 (en) Wind power plant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15758548

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14911887

Country of ref document: US

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
REEP Request for entry into the european phase

Ref document number: 2015758548

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015758548

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2015226662

Country of ref document: AU

Date of ref document: 20150212

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE