WO2015131644A1 - 一种抗肿瘤磁性纳米粒子药物的靶向给药装置 - Google Patents

一种抗肿瘤磁性纳米粒子药物的靶向给药装置 Download PDF

Info

Publication number
WO2015131644A1
WO2015131644A1 PCT/CN2014/095544 CN2014095544W WO2015131644A1 WO 2015131644 A1 WO2015131644 A1 WO 2015131644A1 CN 2014095544 W CN2014095544 W CN 2014095544W WO 2015131644 A1 WO2015131644 A1 WO 2015131644A1
Authority
WO
WIPO (PCT)
Prior art keywords
tumor
magnetic
magnetic field
delivery device
drug
Prior art date
Application number
PCT/CN2014/095544
Other languages
English (en)
French (fr)
Inventor
汪华
Original Assignee
广州一代医药科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州一代医药科技有限公司 filed Critical 广州一代医药科技有限公司
Priority to US15/306,114 priority Critical patent/US20170189706A1/en
Publication of WO2015131644A1 publication Critical patent/WO2015131644A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M31/00Devices for introducing or retaining media, e.g. remedies, in cavities of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/69Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit
    • A61K47/6921Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere
    • A61K47/6923Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the conjugate being characterised by physical or galenical forms, e.g. emulsion, particle, inclusion complex, stent or kit the form being a particulate, a powder, an adsorbate, a bead or a sphere the form being an inorganic particle, e.g. ceramic particles, silica particles, ferrite or synsorb
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/40Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals
    • A61N1/403Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia
    • A61N1/406Applying electric fields by inductive or capacitive coupling ; Applying radio-frequency signals for thermotherapy, e.g. hyperthermia using implantable thermoseeds or injected particles for localized hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/004Magnetotherapy specially adapted for a specific therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/02Magnetotherapy using magnetic fields produced by coils, including single turn loops or electromagnets
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • A61N2/06Magnetotherapy using magnetic fields produced by permanent magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the invention belongs to the technical field of drug delivery device products, and in particular relates to a targeted drug delivery device for anti-tumor magnetic nanoparticle drugs.
  • Nanoparticles refer to particles having a particle size between 1 and 100 nm (nanoparticles are also referred to as ultrafine particles). It belongs to the category of colloidal particle size. They are in the transition zone between atomic clusters and macroscopic objects, between microcosm and macroscopic systems, and are a group of a small number of atoms or molecules, so they are neither a typical microscopic system nor an atypical macroscopic system. It is foreseeable that nanoparticles should have some new physicochemical properties. The difference between a nanoparticle and a macroscopic structure is that its surface area accounts for a large proportion, while the surface atom has neither a long program nor a short-programmed amorphous layer.
  • the state of the atoms on the surface of the nanoparticles is closer to the gaseous state, and the atoms inside the particles may be arranged in an orderly manner. Even so, due to the small particle size, the surface curvature is large, and the internal Glists pressure is high, which can lead to some internal structure. Kind of deformation.
  • Nanomaterials have many applications in medicine and bioengineering, and have successfully developed targeted drugs using nanomagnetic materials as drug carriers, called “biological missiles.” That is, the drug is carried on the surface of the magnetic nanoparticle coated protein, as shown in FIG. 1 , and the anti-tumor drug 20, such as pingyangmycin, is carried on the surface of the magnetic nanoparticle 10, and is combined into a magnetic nanometer by physical or covalent bond bonding.
  • the drug is carried on the surface of the magnetic nanoparticle coated protein, as shown in FIG. 1
  • the anti-tumor drug 20 such as pingyangmycin
  • the particle anti-tumor drug 30, and then the magnetic nano-particle anti-tumor drug 20 enters the human diseased tissue by means of intravascular injection or intratumoral injection, which can reduce liver, spleen, kidney and the like due to drug-induced side effects, but intratumoral injection
  • Drugs that enter the lesion area by vascular perfusion can be reabsorbed into the blood circulation, especially blood-rich lesions such as angiosarcoma, malignant melanoma, arterial malformations (mantle hemangioma) and large venous malformations, blood flow in the lesion area
  • the speed is fast, the residence time of the tissue in the lesion area is short after the drug enters, the drug concentration is low, the medicinal effect is poor, affecting the curative effect of the tumor patient, in addition, the medicine entering the blood circulation increases the damage of the human tissue and organ, therefore, research and development
  • a targeting device that controls the concentration of anti-tumor magnetic nanoparticle drugs in the tumor area is imminent.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a targeted drug delivery device for an anti-tumor magnetic nanoparticle drug, which can reduce the flow of magnetic nanoparticle drugs and can better concentrate drugs. Controlled in the tumor area, the drug concentration in the tumor area is higher, the medicinal effect is good, the body recovery of the tumor patient is facilitated, and the unnecessary damage of the drug to the human tissue and organs is also reduced.
  • the invention relates to a targeted drug delivery device for anti-tumor magnetic nano-particle medicine, comprising an infusion container for containing anti-tumor magnetic nano-particle medicine and a medicine for transporting anti-tumor magnetic nano-particle medicine connected with the infusion container
  • the liquid delivery device is provided with a magnetic field capable of magnetically adsorbing the anti-tumor magnetic nanoparticle drug outside the body surface corresponding to the tumor region
  • the generating device and the bioelectric sensor that senses the magnetic stimulation of the living tissue in the tumor area; and the device includes receiving and analyzing the bioelectric sensor signal and the magnetic field strength, the infusion speed and the liquid flow required according to the bioelectrical sensor signal total control.
  • a control unit a magnetic field control device for controlling the strength of the magnetic field is connected to the magnetic field generating device; a flow rate controller for controlling the flow rate thereof is connected to the liquid chemical delivery device, and the control unit is respectively connected with the bioelectric sensor and the magnetic field control device Connect to the flow controller.
  • the bioelectric sensor comprises a surface electrode or a needle electrode placed on a surface of a treatment area corresponding to a tumor area, a bioelectrical amplifier and a signal processing system, the surface electrode or the needle electrode will be detected
  • the bioelectrical response of the treatment area tissue to the magnetic field force and the magnetic nano anti-tumor drug stimulation is transmitted to the control unit through bioelectrical amplification of the bio-amplifier and signal analysis processing of the signal processing system.
  • the magnetic field generating device can have the following two forms:
  • the magnetic field generating device is a rotating magnetic field formed by an alternating current coil, which is fixed to a body surface corresponding to the tumor region by a fixing member, and the magnetic field generating device is connected with a magnetic field control for controlling the magnetic field strength and the magnetic field rotating speed.
  • the device can effectively control the magnetic field strength and the magnetic field speed through the magnetic field control device.
  • the magnetic field generating device is a plurality of arranged magnetic materials, and the magnetic material is pasted on a body surface corresponding to the tumor region by a medical dressing or a tape, the magnetic material is a magnetite, and the magnetite is adjusted.
  • the amount is used to control the magnetic size of the magnetic device; moreover, in order to have a better gas permeable effect, the magnetic material and the medical dressing or tape are filled with a medically permeable material.
  • the magnetic nano anti-tumor drug is mainly concentrated in the tumor region, the concentration of the anti-tumor drug in the tumor region is increased, and the re-absorption of the tumor drug is reduced. Blood circulation, more targeted administration, its medicinal effect is good, and can reduce the damage of drugs to other organs of the human body;
  • the present invention can also be provided with a magnetic field control device for controlling the strength of the magnetic field.
  • a magnetic field control device for controlling the strength of the magnetic field.
  • the magnetic field strength can be increased, and on the contrary, the strength is lowered, the controllability is good, and the human body is easy to be healthy.
  • the invention can also be provided with a bioelectric sensor, which receives the bioelectrical response of the magnetic field force and the magnetic nano antitumor drug stimulation in the treatment area tissue, evaluates the influence range and intensity of the two on the tumor tissue, and feedbacks the magnetic field strength.
  • drug dosage which helps to increase the accuracy of treatment, reduce complications and improve medical safety;
  • the invention is particularly suitable for benign and malignant tumors rich in blood circulation, and increases the residence time of magnetic nano antitumor drugs in the lesion area by magnetic force, and is an angiosarcoma, malignant melanoma, arterial malformation (vine blood vessel) with low therapeutic effect at present. Patients with tumors and large venous malformations bring new hopes for treatment.
  • FIG. 1 is a schematic view showing a process of combining magnetic nanoparticles with an antitumor drug
  • FIG. 2 is a schematic structural view of a targeted drug delivery device for a magnetic nanoparticle antitumor drug according to the present invention
  • FIG. 3 is a schematic diagram of a bioelectric susceptor structure and a connection thereof according to the first embodiment
  • FIG. 4 is a schematic structural view of a magnetic field generating device according to Embodiment 1;
  • Figure 5 is a schematic diagram of magnetic nano antitumor drug treatment
  • Fig. 6 is a schematic structural view of a magnetic field generating device according to a second embodiment.
  • Embodiment 1 is a diagrammatic representation of Embodiment 1:
  • a targeted drug delivery device for an anti-tumor magnetic nanoparticle drug comprises an infusion container 1 for containing a magnetic nanoparticle antitumor drug and a delivery connection with the infusion container 1
  • the magnetic nanoparticle anti-tumor drug delivery device 2 can react magnetically stimulating the magnetic field generating device 3 capable of magnetically adsorbing the anti-tumor magnetic nanoparticle drug and the living tissue in the tumor region corresponding to the body surface of the tumor region.
  • the bioelectric sensor 4 further comprising a control unit 5 for receiving and analyzing the bioelectric sensor 4 signal and the magnetic field strength, the infusion rate and the liquid flow required according to the signal of the bioelectric sensor 4; the magnetic field generating device 3 Connected to the magnetic field control device 6 for controlling the magnetic field strength; the liquid chemical delivery device 3 is connected with a flow rate controller 7 for controlling the flow rate thereof, the control unit 5 and the bioelectric sensor 4, the magnetic field control device 6 and the flow rate, respectively The controller 7 is correspondingly connected.
  • the bioelectric sensor 4 includes a surface electrode 41 or a needle electrode 42 placed on a surface of a treatment region corresponding to a tumor region, a bioelectric amplifier and a signal processing system 43, the bioelectric amplifier including interconnections Preamplifier 44, high pass filter 45, isolation amplifier 46, and low pass filter 47.
  • the bioelectric susceptor 4 receives the bioelectrical reaction of the magnetic field force and the magnetic nano antitumor drug stimulation through the skin surface electrode 41 or the needle electrode 42 through the bioelectrical amplification of the bioamplifier and the bioelectrical signal analysis processing.
  • the control unit 5; the control unit 5 further adjusts the magnetic field strength and the liquid medicine delivery speed according to the strength and range of the bioelectrical signal in the treatment area, and the bioelectrical signal according to the treatment region to react to the magnetic force and the drug stimulus, real-time feedback
  • the control of the adjustment magnetic field control device 6 and the flow rate controller 5 can effectively ensure higher adjustment accuracy and safer use.
  • the magnetic field generating device 3 is a rotating magnetic field formed by an alternating current coil, which is fixed to a body surface corresponding to a tumor region by a fixing member (not shown), and the magnetic field generating device 3
  • the magnetic field control device 6 for controlling the magnetic field strength and the magnetic field rotational speed is connected, and the magnetic field control device 6 can effectively control the magnetic field strength and the magnetic field rotational speed.
  • the magnetic field generating device 3 has strong magnetic properties, is convenient to use, and has strong controllability.
  • the magnetic field generating device 3 can design a corresponding shape according to the shape of the treatment area.
  • the upper jaw tumor is a jaw shape
  • the brain tumor is a cap
  • the neck thyroid, limb and chest and abdomen tumors are cylindrical.
  • the working principle of this embodiment is as shown in FIG. 5, and the magnetic nanoparticles flowing from the blood vessel 40 to the tumor region 50 are anti-tumor.
  • the drug 30, under the adsorption of the magnetic field generating device 3, is controlled within the tumor region 50, while the cells 60 in the tumor region 50 that are not labeled with magnetic nanoparticles continue to flow along the blood vessel 40.
  • Embodiment 2 is a diagrammatic representation of Embodiment 1:
  • This embodiment is basically the same as the first embodiment except that, as shown in FIG. 6, the magnetic field generating device 3 is a plurality of arranged magnetic materials, and the magnetic material is pasted by a medical dressing or a tape 8 corresponding to The extra-surface location of the tumor area, the magnetic material being a magnetite, is used to control the magnetic size of the secondary device by adjusting the number of magnet stones.
  • a medical permeable material may be filled between the magnetic materials or between the magnetic material and the adhesive tape.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Chemical & Material Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Anesthesiology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Magnetic Treatment Devices (AREA)
  • Medicinal Preparation (AREA)

Abstract

一种抗肿瘤磁性纳米粒子药物的靶向给药装置,包括用于盛装有抗肿瘤磁性纳米粒子药物的输液容器(1)及与输液容器(1)相连接的输送抗肿瘤磁性纳米粒子药物的药液输送装置(2)。在对应于肿瘤区域的体表外设有能将抗肿瘤磁性纳米粒子药物产生磁吸附作用的磁场发生装置(3)和感应肿瘤区域活体组织对磁力刺激反应的生物电感应器(4)。靶向给药装置设有接受和分析生物电感应器(4)信号以及依据生物电感应器(4)信号总控所需磁场强度、输液速度和液体流量的控制单元(5)。磁场发生装置(3)上连接有控制磁场强度的磁场控制装置(6)。药液输送装置(3)上连接有控制其流速的流速控制器(7)。所述控制单元(5)分别与生物电感应器(4)、磁场控制装置(6)和流速控制器(7)对应连接。

Description

一种抗肿瘤磁性纳米粒子药物的靶向给药装置 技术领域
本发明属于药物给药装置产品技术领域,特别涉及一种抗肿瘤磁性纳米粒子药物的靶向给药装置。
背景技术
纳米粒子是指粒度在1至100nm之间的粒子(纳米粒子又称超细微粒)。属于胶体粒子大小的范畴。它们处于原子簇和宏观物体之间的过度区,处于微观体系和宏观体系之间,是由数目不多的原子或分子组成的集团,因此它们既非典型的微观系统亦非典型的宏观系统。可以预见,纳米粒子应具有一些新异的物理化学特性。纳米粒子区别于宏观物体结构的特点是,它表面积占很大比重,而表面原子既无长程序又无短程序的非晶层。可以认为纳米粒子表面原子的状态更接近气态,而粒子内部的原子可能呈有序的排列,即使如此,由于粒径小,表面曲率大,内部产生很高的Gilibs压力,能导致内部结构的某种变形。
纳米材料在医学和生物工程也有许多应用,已成功开发了以纳米磁性材料为药物载体的靶向药物,称为“生物导弹”。即在磁性纳米粒子包敷的蛋白质表面携带药物,如图1所示,在磁性纳米粒子10的表面携带抗肿瘤药物20,如平阳霉素,通过物理或共价键结合的方式结合成磁性纳米粒子抗肿瘤药物30,然后将该磁性纳米粒子抗肿瘤药物20通过血管注射或瘤腔注射的方式进入人体病变组织,可减少肝、脾、肾等所受由于药物产生的副作用,但是瘤腔注射或血管灌注方式进入病灶区的药物,可再吸收进入血液循环,特别是血运丰富的病灶,如血管肉瘤、恶性黑色素瘤、动脉畸形(蔓状血管瘤)和大型静脉畸形,病灶区血流速度快,药物进入后在病灶区组织的停留时间短暂,药物浓度较低,药用效果较差,影响肿瘤病患的疗效,此外,进入血液循环的药物增加人体组织器官的损伤,因此,研发一种能将抗肿瘤磁性纳米粒子药物集中的控制在肿瘤区域的靶向装置迫在眉睫。
发明内容
本发明的目的是克服现有技术的不足,提供一种抗肿瘤磁性纳米粒子药物的靶向给药装置,该靶向给药装置能减少磁性纳米粒子药物的流动,能较好地将药物集中控制在肿瘤区域内,使得肿瘤区域的药物浓度较高,药用效果好,利于肿瘤病患的身体恢复,也减少药物对人体组织器官不必要的伤害。
为了克服上述技术目的,本发明是按以下技术方案实现的:
本发明所述的一种抗肿瘤磁性纳米粒子药物的靶向给药装置,包括用于盛装有抗肿瘤磁性纳米粒子药物的输液容器及与输液容器相连接的输送抗肿瘤磁性纳米粒子药物的药液输送装置,在对应于肿瘤区域的体表外设有能将抗肿瘤磁性纳米粒子药物产生磁吸附作用的磁场 发生装置和感应肿瘤区域活体组织对磁力刺激反应的生物电感应器;还包括设有接受和分析生物电感应器信号以及依据生物电感应器信号总控所需磁场强度、输液速度和液体流量的控制单元;所述磁场发生装置上连接有控制磁场强度的磁场控制装置;所述药液输送装置上连接有控制其流速的流速控制器,所述控制单元分别与生物电感应器、磁场控制装置和流速控制器对应连接。
作为上述技术的进一步改进,所述生物电感应器包括放置于对应肿瘤区域的治疗区域表面的表面电极或针状电极、生物电放大器和信号处理系统,所述表面电极或针状电极将探测到治疗区域组织对磁场力和磁性纳米抗肿瘤药物刺激的生物电反应,经过生物放大器的生物电放大及信号处理系统的信号分析处理,传送给控制单元。
在本发明中,所述磁场发生装置可以有以下两种形式:
第一种,所述磁场发生装置为交流线圈形成的旋转磁场,其通过固定件固定在对应于肿瘤区域的体表外,且所述磁场发生装置上连接有控制磁场强度和磁场转速的磁场控制装置,通过磁场控制装置能有效地控制磁场强度和磁场转速。
第二种,所述磁场发生装置为若干排布的磁性材料,所述磁性材料通过医用敷料或胶布粘贴在对应于肿瘤区域的体表外位置,所述磁性材料为磁铁石,通过调节磁铁石的数量用于控制所述磁性装置的磁性大小;此外,为了具有较好的透气效果,所述磁性材料和医用敷料或胶布之间充填有医用透气材料。
与现有技术相比,本发明的有益效果是:
(1)本发明通过对应于肿瘤区域体表位置所述的磁场发生装置,将磁性纳米抗肿瘤药物主要的集中在肿瘤区域,加大肿瘤区域的抗肿瘤药物的浓度,减少肿瘤药物再吸收进入血液循环,更能针对性的给药,其药用效果好,且能减少药物对人体其他器官的伤害;
(2)本发明还可设有磁场控制装置,来控制磁场的强度,对于肿瘤位于距体表较深的位置,可提高磁场强度,相反则降低其强度,可控性好,易于人体的健康。
(3)本发明还可设有生物电感应器,接受治疗区域组织对磁场力和磁性纳米抗肿瘤药物刺激的生物电反应,评价两者对肿瘤区域组织的影响范围和强度,反馈调节磁场强度和药物用量,有利于增加治疗的精确性,减少并发症和提高医疗安全;
(4)本发明特别适用于血运丰富的良恶性肿瘤,通过磁力增加磁性纳米抗肿瘤药物在病灶区域的停留时间,为目前治疗效果低下的血管肉瘤、恶性黑色素瘤、动脉畸形(蔓状血管瘤)和大型静脉畸形等患者带来新的治疗希望。
附图说明
下面结合附图和具体实施例对本发明做详细的说明:
图1是磁性纳米粒子与抗肿瘤药物结合过程示意图;
图2是本发明所述的磁性纳米粒子抗肿瘤药物的靶向给药装置结构示意图;
图3是实施例一所述的生物电感受器结构及其连接示意图;
图4是实施例一所述的磁场发生装置结构示意图;
图5是磁性纳米抗肿瘤药物治疗原理图;
图6是实施例二所述的磁场发生装置结构示意图。
具体实施方式
实施例一:
如图2所示,本发明所述的一种抗肿瘤磁性纳米粒子药物的靶向给药装置,包括用于盛装有磁性纳米粒子抗肿瘤药物的输液容器1及与输液容器1相连接的输送磁性纳米粒子抗肿瘤药物的药液输送装置2,在对应于肿瘤区域的体表外能将抗肿瘤磁性纳米粒子药物产生磁吸附作用的磁场发生装置3和感应肿瘤区域活体组织对磁力刺激反应的生物电感应器4;还包括设有接受和分析生物电感应器4信号以及依据生物电感应器4信号总控所需磁场强度、输液速度和液体流量的控制单元5;所述磁场发生装置3上连接有控制磁场强度的磁场控制装置6;所述药液输送装置3上连接有控制其流速的流速控制器7,所述控制单元5分别与生物电感应器4、磁场控制装置6和流速控制器7对应连接。
如图3所示,所述生物电感应器4包括放置于对应肿瘤区域的治疗区域表面的表面电极41或针状电极42、生物电放大器和信号处理系统43,所述生物电放大器包括相互连接的前置放大器44、高通滤波器45、隔离放大器46和低通滤波器47。所述生物电感受器4通过皮肤表面电极41或针状电极42接受治疗区域组织对磁场力和磁性纳米抗肿瘤药物刺激的生物电反应,经过生物放大器的生物电放大及生物电信号分析处理,传送给控制单元5;控制单元5依据治疗区域生物电信号的强弱和范围,进一步调节磁场强度和药液输送速度,这种依据治疗区域组织对磁力和药物刺激反应的生物电信号,实时地反馈至调节磁场控制装置6和流速控制器5的控制,能有效地确保调节准确度更高,使用更加安全。
如图4所示,所述磁场发生装置3为交流线圈形成的旋转磁场,其通过固定件(图中未示出)固定在对应于肿瘤区域的体表外,且所述磁场发生装置3上连接有控制磁场强度和磁场转速的磁场控制装置6,通过该磁场控制装置6能有效地控制磁场强度和磁场转速,当肿瘤的位置距离体表较深或较浅时,磁场控制装置6实时调节磁场发生装置3的磁性强弱,使用方便,可控性强。所述磁场发生装置3可以依据治疗区域的外形设计相应的形状,如上下颌肿瘤为颌骨外形,脑部肿瘤为帽状,颈部甲状腺、四肢和胸腹部肿瘤为筒状。
本实施例的工作原理如图5所示,从血管40流入至肿瘤区域50的磁性纳米粒子抗肿瘤 药物30,在磁场发生装置3的吸附下,被控制在肿瘤区域50内,而肿瘤区域50内未被磁性纳米粒子标记的细胞60则会继续沿着血管40流动。
实施例二:
本实施例与实施例一基本相同,其不同之处在于:如图6所示,所述磁场发生装置3为若干排布的磁性材料,所述磁性材料通过医用敷料或胶布8粘贴在对应于肿瘤区域的体表外位置,所述磁性材料为磁铁石,通过调节磁铁石的数量用于控制所述次性装置的磁性大小。为了磁性材料与治疗区域的外形密合,增加透气性和柔软性,可在磁性材料之间,或者磁性材料与胶布之间充填医用透气材料。
本发明并不局限于上述实施方式,凡是对本发明的各种改动或变型不脱离本发明的精神和范围,倘若这些改动和变型属于本发明的权利要求和等同技术范围之内,则本发明也意味着包含这些改动和变型。

Claims (6)

  1. 一种抗肿瘤磁性纳米粒子药物的靶向给药装置,包括用于盛装有抗肿瘤磁性纳米粒子药物的输液容器及与输液容器相连接的输送抗肿瘤磁性纳米粒子药物的药液输送装置,其特征在于:在对应于肿瘤区域的体表外设有能将抗肿瘤磁性纳米粒子药物产生磁吸附作用的磁场发生装置和感应肿瘤区域活体组织对磁力刺激反应的生物电感应器;还包括设有接受和分析生物电感应器信号以及依据生物电感应器信号总控所需磁场强度、输液速度和液体流量的控制单元;所述磁场发生装置上连接有控制磁场强度的磁场控制装置;所述药液输送装置上连接有控制其流速的流速控制器,所述控制单元分别与生物电感应器、磁场控制装置和流速控制器对应连接。
  2. 根据权利要求1所述的抗肿瘤磁性纳米粒子药物的靶向给药装置,其特征在于:所述生物电感应器包括放置于对应肿瘤区域的治疗区域表面的表面电极或针状电极、生物电放大器和信号处理系统,所述表面电极或针状电极将探测到治疗区域组织对磁场力和磁性纳米抗肿瘤药物刺激的生物电反应,经过生物放大器的生物电放大及信号处理系统的信号分析处理,传送给控制单元。
  3. 根据权利要求1或2所述的抗肿瘤磁性纳米粒子药物的靶向给药装置,其特征在于:所述磁场发生装置为交流线圈形成的旋转磁场,其通过固定件固定在对应于肿瘤区域的体表外。
  4. 根据权利要求1或2所述的抗肿瘤磁性纳米粒子药物的靶向给药装置,其特征在于:所述磁场发生装置为若干排布的磁性材料,所述磁性材料通过医用敷料或胶布粘贴在对应于肿瘤区域的体表外位置。
  5. 根据权利要求4所述的抗肿瘤磁性纳米粒子药物的靶向给药装置,其特征在于:所述磁性材料为磁铁石。
  6. 根据权利要求5所述的抗肿瘤磁性纳米粒子药物的靶向给药装置,其特征在于:所述磁性材料和医用敷料或胶布之间充填有医用透气材料。
PCT/CN2014/095544 2014-03-05 2014-12-30 一种抗肿瘤磁性纳米粒子药物的靶向给药装置 WO2015131644A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/306,114 US20170189706A1 (en) 2014-03-05 2014-12-30 Targeted drug delivery device for anti-tumor magnetic nanoparticle drugs

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410078803.9A CN103816578B (zh) 2014-03-05 2014-03-05 一种抗肿瘤磁性纳米粒子药物的靶向给药装置
CN201410078803.9 2014-03-05

Publications (1)

Publication Number Publication Date
WO2015131644A1 true WO2015131644A1 (zh) 2015-09-11

Family

ID=50752054

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095544 WO2015131644A1 (zh) 2014-03-05 2014-12-30 一种抗肿瘤磁性纳米粒子药物的靶向给药装置

Country Status (3)

Country Link
US (1) US20170189706A1 (zh)
CN (1) CN103816578B (zh)
WO (1) WO2015131644A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280203A (zh) * 2021-12-02 2022-04-05 贵州医科大学 便携式经颅磁刺激仪在药物传递系统中的应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103816578B (zh) * 2014-03-05 2016-04-27 广州一代医药科技有限公司 一种抗肿瘤磁性纳米粒子药物的靶向给药装置
US10359678B2 (en) 2014-04-07 2019-07-23 The Regents Of The University Of California Highly tunable magnetic liquid crystals
CN107320723A (zh) * 2017-08-08 2017-11-07 重庆科技学院 基于三维磁场的磁性纳米粒子聚集方法
CN107497039B (zh) * 2017-10-18 2020-04-17 河南科技大学第一附属医院 肿瘤内科给药装置
CN109364357A (zh) * 2018-11-14 2019-02-22 浙江理工大学 一种自动控制模拟生物体循环的磁靶向治疗装置及其控制方法
CN111407571B (zh) * 2020-03-25 2024-08-30 江汉大学 一种电磁诱导的磁性纳米粒子靶向热疗床
CN111888634B (zh) * 2020-07-30 2021-06-15 浙江大学 一种自动给药系统及方法
CN112245780B (zh) * 2020-10-27 2022-04-19 刘慧� 一种甲状腺药物给药系统
EP4104895A1 (en) * 2021-06-14 2022-12-21 Instituto Politécnico De Leiria Intelligent biomimetic biodevice and use thereof
CN116370039A (zh) * 2023-03-03 2023-07-04 南方医科大学 一种纳米粒子微刀介导的肿瘤精准消融系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1097338A (zh) * 1993-07-13 1995-01-18 中国人民解放军第四军医大学第二附属医院 治疗肿瘤的磁导向装置及药物的磁响应载体
CN1537646A (zh) * 2003-10-22 2004-10-20 高春平 肿瘤局部综合治疗方法和装置
CN1650853A (zh) * 2004-12-10 2005-08-10 徐玉清 多西紫杉醇磁微球及其制作方法
US20110054237A1 (en) * 2007-12-11 2011-03-03 University Of Maryland, College Park Methods and Systems for Magnetic Focusing of Therapeutic, Diagnostic or Prophylactic Agents to Deep Targets
CN103816578A (zh) * 2014-03-05 2014-05-28 广州一代医药科技有限公司 一种抗肿瘤磁性纳米粒子药物的靶向给药装置
CN204016940U (zh) * 2014-03-05 2014-12-17 广州一代医药科技有限公司 一种抗肿瘤磁性纳米粒子药物的靶向给药装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5203782A (en) * 1990-04-02 1993-04-20 Gudov Vasily F Method and apparatus for treating malignant tumors by local hyperpyrexia
US6200259B1 (en) * 1999-06-03 2001-03-13 Keith L. March Method of treating cardiovascular disease by angiogenesis
CN100431638C (zh) * 2002-12-11 2008-11-12 中国科学院电工研究所 磁性药物靶向治疗中深度部位的药物定位装置
DE10362104B4 (de) * 2003-08-29 2008-02-14 Kist-Europe Forschungsgesellschaft Mbh Zellprozessor zur Krankheitsbehandlung
CN1522665A (zh) * 2003-09-04 2004-08-25 高春平 立体定向磁性药物制剂导引系统
CN100509059C (zh) * 2005-10-25 2009-07-08 南京工业大学 磁热疗用纳米磁粉-抗cea抗体靶向药物
CN1899622A (zh) * 2006-05-29 2007-01-24 上海大学 将磁场作用于磁性颗粒的应用方法
US8568286B2 (en) * 2006-06-14 2013-10-29 Cardiac Pacemakers, Inc. Methods to position therapeutic agents using a magnetic field
CN202052111U (zh) * 2011-04-13 2011-11-30 俞能旺 体外循环癌细胞净化系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1097338A (zh) * 1993-07-13 1995-01-18 中国人民解放军第四军医大学第二附属医院 治疗肿瘤的磁导向装置及药物的磁响应载体
CN1537646A (zh) * 2003-10-22 2004-10-20 高春平 肿瘤局部综合治疗方法和装置
CN1650853A (zh) * 2004-12-10 2005-08-10 徐玉清 多西紫杉醇磁微球及其制作方法
US20110054237A1 (en) * 2007-12-11 2011-03-03 University Of Maryland, College Park Methods and Systems for Magnetic Focusing of Therapeutic, Diagnostic or Prophylactic Agents to Deep Targets
CN103816578A (zh) * 2014-03-05 2014-05-28 广州一代医药科技有限公司 一种抗肿瘤磁性纳米粒子药物的靶向给药装置
CN204016940U (zh) * 2014-03-05 2014-12-17 广州一代医药科技有限公司 一种抗肿瘤磁性纳米粒子药物的靶向给药装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114280203A (zh) * 2021-12-02 2022-04-05 贵州医科大学 便携式经颅磁刺激仪在药物传递系统中的应用

Also Published As

Publication number Publication date
CN103816578B (zh) 2016-04-27
CN103816578A (zh) 2014-05-28
US20170189706A1 (en) 2017-07-06

Similar Documents

Publication Publication Date Title
WO2015131644A1 (zh) 一种抗肿瘤磁性纳米粒子药物的靶向给药装置
Li et al. Magnetic nanoparticles for cancer theranostics: Advances and prospects
Feng et al. Magnetic targeting, tumor microenvironment-responsive intelligent nanocatalysts for enhanced tumor ablation
Brero et al. Hadron therapy, magnetic nanoparticles and hyperthermia: A promising combined tool for pancreatic cancer treatment
CN103028116B (zh) 基于纤维素基模板的磁性纳米复合微球及其制法和用途
CN110198742B (zh) 一种纳米炭-铁复合体系及其组合物、制备方法和用途
CN105997944A (zh) 一种具有磁热、光热效应的纳米药物载体及其制备方法
Pantic Magnetic nanoparticles in cancer diagnosis and treatment: novel approaches
Zhang et al. Human cancer cell membrane-cloaked Fe3O4 nanocubes for homologous targeting improvement
CN105126113A (zh) 一种转铁蛋白修饰的中空介孔硫化铜/青蒿琥酯纳米粒的制备方法及其应用
Ahmad et al. Recent advances in magnetic nanoparticle design for cancer therapy
Wang et al. New Types of Magnetic Nanoparticles for Stimuli‐Responsive Theranostic Nanoplatforms
Chen et al. Polypyrrole-coated mesoporous TiO2 nanocomposites simultaneously loading DOX and aspirin prodrugs for a synergistic theranostic and anti-inflammatory effect
CN204016940U (zh) 一种抗肿瘤磁性纳米粒子药物的靶向给药装置
CN105663043A (zh) 131I标记的c(RGDyk)靶向阿霉素热敏纳米脂质体及其制备与应用
Dhavalikar et al. Image-guided thermal therapy using magnetic particle imaging and magnetic fluid hyperthermia
CN106267238A (zh) 一种金属富勒烯复合物及其制备方法与应用
CN103120640B (zh) 一种栓塞剂及其制备方法
Bai et al. Magnetic nanoparticle-mediated hyperthermia: From heating mechanisms to cancer theranostics
CN100551443C (zh) 一种纳米碳管输液剂的制备方法
Sengupta et al. In vitro carcinoma treatment using magnetic nanocarriers under ultrasound and magnetic fields
Gotman et al. Iron oxide and gold nanoparticles in cancer therapy
Dou et al. Advances in nanostructure-mediated hyperthermia in tumor therapies
Li et al. Nanoparticles breakthroughs tumor treatment limitations by regulating tumor immune microenvironment to enhance tumor immunotherapy efficacy
Korovin et al. Application of nanodimensional particles and aluminum hydroxide nanostructures for cancer diagnosis and therapy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15306114

Country of ref document: US

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 26.01.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14884864

Country of ref document: EP

Kind code of ref document: A1