WO2015131452A1 - 太阳能电池供电的含有微电流led光源的内红点枪瞄 - Google Patents

太阳能电池供电的含有微电流led光源的内红点枪瞄 Download PDF

Info

Publication number
WO2015131452A1
WO2015131452A1 PCT/CN2014/078360 CN2014078360W WO2015131452A1 WO 2015131452 A1 WO2015131452 A1 WO 2015131452A1 CN 2014078360 W CN2014078360 W CN 2014078360W WO 2015131452 A1 WO2015131452 A1 WO 2015131452A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
micro
led light
current led
solar cell
Prior art date
Application number
PCT/CN2014/078360
Other languages
English (en)
French (fr)
Inventor
孙建华
Original Assignee
西安华科光电有限公司
孙建华
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410071368.7A external-priority patent/CN103868409B/zh
Priority claimed from CN201420092959.8U external-priority patent/CN203908408U/zh
Priority claimed from CN201420124716.8U external-priority patent/CN203785545U/zh
Priority claimed from CN201420124704.5U external-priority patent/CN203785547U/zh
Priority claimed from CN201420198235.1U external-priority patent/CN203785548U/zh
Priority claimed from CN201420198358.5U external-priority patent/CN203785549U/zh
Application filed by 西安华科光电有限公司, 孙建华 filed Critical 西安华科光电有限公司
Priority to US15/122,894 priority Critical patent/US9982965B2/en
Publication of WO2015131452A1 publication Critical patent/WO2015131452A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/32Night sights, e.g. luminescent
    • F41G1/34Night sights, e.g. luminescent combined with light source, e.g. spot light
    • F41G1/345Night sights, e.g. luminescent combined with light source, e.g. spot light for illuminating the sights
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G1/00Sighting devices
    • F41G1/30Reflecting-sights specially adapted for smallarms or ordnance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G11/00Details of sighting or aiming apparatus; Accessories
    • F41G11/001Means for mounting tubular or beam shaped sighting or aiming devices on firearms
    • F41G11/003Mountings with a dove tail element, e.g. "Picatinny rail systems"

Definitions

  • the invention belongs to the field of optoelectronic technology, and particularly relates to a micro-current LED light source or a module thereof, in particular to an inner red spot gun with a micro-current LED light source powered by a solar battery. Background technique
  • red dot sights use batteries.
  • lithium batteries provide the internal red dot module (using LED as the light source) to work.
  • the battery life is limited, it needs to be replaced, the cost of use is increased, and, during use, Because of the change of illumination in the external environment, it is necessary to adjust the supply current or voltage of the battery by adjusting the switch to adjust the brightness of the output light of the red dot module. If the ambient brightness is enhanced, it needs to be brightened.
  • the brightness of the output light of the red dot module needs to reduce the brightness of the output light of the inner red dot module.
  • This type of red dot sight depends on battery power during day and night, and the replacement of the battery increases the cost of use.
  • many lighting fixtures or auxiliary sighting appliances currently use LEDs as light sources, most of which are powered by batteries, requiring frequent replacement of batteries, and the cost of use is increased.
  • the object of the present invention is an internal red dot lance with a micro-current LED light source powered by a solar cell, which uses a solar cell to power the LED light source, thereby reducing the use of the battery, thereby reducing the cost of use.
  • the present invention provides a solar cell-powered internal red dot gun with a micro-current LED light source, comprising a housing, a micro-current LED light source disposed in the housing or on the housing, and the housing is provided with a battery compartment for arranging the battery, a brightness adjustment switch, and a control circuit board disposed in the casing, the battery compartment, the brightness adjustment switch, the control circuit board and the micro-current LED light source form a series circuit;
  • the special feature is that the casing Having a solar cell disposed thereon, the solar cell is electrically connected to the micro-current LED light source to supply power to the micro-current LED light source; and further comprising a dual-power automatic switching module disposed in the housing, wherein the brightness adjustment switch is In the off state, the electrical connection between the solar cell and the micro-current LED light source is connected, so that the solar cell supplies power to the micro-current LED light source; or when the solar cell cannot provide sufficient voltage or current, the battery and the brightness adjustment switch are connected , a control circuit board
  • a trigger switch is further disposed on the housing, and the dual power automatic switching module receives the trigger After the input signal is turned off, the electrical connection between the solar cell and the micro-current LED light source is disconnected, and the serial circuit formed by the battery, the brightness adjustment switch, the control circuit board and the micro-current LED light source is turned on; the trigger switch is connected in series with the battery and Dual power supply automatically switches between modules.
  • the above brightness adjustment switch is a push button switch, including "+” and "-” buttons.
  • the control circuit board includes a processing chip MCU and a gear position control circuit;
  • the solar cell is connected to the micro-current LED light source through the processing chip MCU, and the battery is connected to the micro-current LED light source through the processing chip MCU and the gear position control circuit; the "+" and "-" buttons are respectively connected with the processing chip MCU;
  • the processing chip MCU cuts off the electrical connection between the solar cell and the micro-current LED light source according to the first input signal of any one of the "+” and “-” buttons, and according to the "+", “", any one of the buttons
  • the signal control circuit is controlled again or repeatedly to realize the adjustment of the supply voltage or current of the micro current LED light source, change the brightness of the output light of the micro current LED light source, and simultaneously input according to the "+” and "-” buttons.
  • the signal or the electrical connection of the battery and the gear control circuit is cut off after the input signal is not arbitrarily for a period of time, and the electrical connection between the solar cell and the micro-current LED light source is restored.
  • the solar cell-powered internal red dot gun with a micro-current LED light source further includes an arch lens holder mounted on the front end of the housing, a control circuit board disposed in the housing, a battery compartment, a brightness adjustment switch,
  • the control circuit board and the micro current LED light source form a series circuit, the micro current LED light source is installed at the rear end of the housing, the battery compartment is embedded in the top surface of the housing, and is placed in the battery compartment and the micro current LED light source Between the "+” and "-” buttons, the rear end of the left side or the right side of the housing is respectively disposed.
  • the micro-current LED light source is mounted on a slider disposed in a rear end of the casing and slidable in a lateral direction of the casing.
  • the cross-section of the slider is "work"-shaped, and a micro-current LED light source is disposed at the top of the front end surface.
  • the slot is arranged at the top, and the limit slot is matched with a limit slider extending downward from the inner surface of the top surface of the housing.
  • the bottom surface of the casing is provided with a lower cover located below the slider, and four three fixing holes and at least one drainage hole are opened.
  • the bottom surface of the casing is provided with left and right clamping rails extending in the axial direction, and the left clamping rail is provided with a dovetail clamping block, which is screwed with the locking screw penetrating from the right clamping rail;
  • the housing is coupled to the barrel through the left and right clamping rails
  • the barrel coupling sleeve is composed of a support tube with an axial bore and an outer sleeve sleeved thereon; the support tube includes a quadrangular prism and a circular end face disposed at the front end of the quadrangular prism.
  • the bottom ends of the left and right sides of the quadrangular prism are respectively provided with an axially extending limiting ⁇ ; the bottom surface of the quadrangular prism is extended along the axial direction and protrudes downwardly from the bottom surface
  • the top end of the quadrangular prism is provided with a fixed clip extending from the circular end surface and extending rearward in the axial direction for the left and right rails, and a through shaft is disposed at the rear of the fixed rail a first screw hole of the tunnel;
  • a front end of the top surface of the outer casing is provided with an axially extending slot for inserting the left and right latch rails, and a top surface of the outer shell behind the slot is an axially extending strip a groove, and a second screw hole is formed in the long groove;
  • a front end of the bottom surface of the outer casing is provided with a lower protrusion chamber for accommodating the sliding groove, and the lower protrusion chamber is coupled to the sliding groove by a screw.
  • the axial bore, the axial bore gradually decreases from the front end to the rear end of the support tube; the rear end of the outer casing is in the shape of a truncated cone which tapers from front to back.
  • a horizontal adjustment screw is mounted on a right side surface of the housing on a corresponding portion of the slider, and an adjustment coil spring is mounted between the left side surface of the housing and the slider, and the adjustment coil spring is sleeved on the limiting post.
  • An open retaining ring that is sleeved on the leveling screw is provided in the housing to prevent the horizontal adjusting screw from rotating under the squeezing action of the adjusting coil spring.
  • the fixing screw of the part, the front and rear limit of the slider is realized by the boosting pin, the assisting coil spring and the fixing screw.
  • the rear end of the housing is vertically disposed with upper and lower adjustment screws that are threadedly coupled to an adjustment disk that is disposed within the rear end of the housing and that is in-line coupled to the rear end surface of the slider.
  • the solar cell is embedded in a top surface of the casing, and a protective glass is disposed on a top surface of the solar cell.
  • the solar cell is any one of a single crystal silicon, a polycrystalline silicon, a silicon photodiode, or a low-light amorphous silicon solar cell.
  • the brightness adjustment switch is a push button switch, including "+" and "-” buttons, and is respectively disposed on both sides of the front end of the housing.
  • the invention has the advantages that: the solar battery is used to supply electric energy to the micro current LED light source, and the inner red dot sight itself automatically adjusts the brightness of the output light of the micro current LED light source according to the change of the ambient brightness, and does not need to rely on any control circuit.
  • the battery can be used without battery power to ensure the normal operation of the sight, reduce the use of the battery, extend the battery life and reduce the cost of use. Combined with the internal red dot sight or other battery-powered system of the LED light source device, it ensures the normal use of the inner red dot sight or other LED light source devices at night.
  • DRAWINGS 1 is a perspective view of a solar red dot sight of a brightness-free adjustment switch and a battery.
  • FIG. 2 is a perspective view of a solar red dot sight provided with a button type brightness adjustment switch and a battery compartment.
  • 3 is a perspective view of a solar red dot sight provided with a knob type brightness adjustment switch and a battery compartment.
  • FIG. 4 is a schematic perspective view of a solar red dot sight in which a dual power automatic switching module is built.
  • Figure 5 is a perspective view of a solar red dot sight with a multi-position manual brightness adjustment knob.
  • FIG. 6 is a perspective view of a solar red dot sight according to a chip controlled power source switching.
  • FIG. 7 is a schematic diagram of a control circuit for controlling a power supply to be switched by a control chip.
  • Figure 8 is a front end view of the inner red dot sight of the inner red dot module disposed at the rear end of the housing.
  • Figure 9 is a top plan view of the inner red dot sight disposed on the rear end of the top of the housing.
  • Figure 10 is a side elevational view of the inner red dot sight disposed on the rear end of the top of the housing.
  • Figure 11 is an isometric isometric view of a red point gun in a solar energy with a sight star.
  • Figure 12 is an isometric view of the left front azimuth of the solar red point gun with a collimated star.
  • Figure 13 is an axial cross-sectional view of a red point gun in a solar energy with a sight star.
  • Figure 14 is a perspective view of the slider.
  • Figure 15 is an axial cross-sectional view of the slider (with LED lamp and adjustment plate installed).
  • Figure 16 is an exploded view of a red point gun in a solar energy with a collimated star.
  • Figure 17 is a perspective view of the dial.
  • Figure 18 is a schematic view of the structure of the lower cover.
  • Figure 19 is a transverse cross-sectional view (in the left and right direction) of a red point gun in a solar energy with a collimated star.
  • Figure 20 is a schematic view of the support tube.
  • Figure 21 is a schematic view of the outer casing.
  • Figure 22 is an axial cross-sectional view of the in-solar red dot rifle with a crosshair mounted to the barrel coupling sleeve.
  • Battery compartment 9, lens; 10, arch lens holder; 11, brightness adjustment switch; 12, slider; 13, micro current LED light source placement slot; 14, limit slider; 15, limit slot; 16, lower cover 17, fixed screw hole; 18, drainage hole; 19, dovetail block; 20, locking screw; 21, support tube; 22, outer casing; 23, quadrangular prism; 24, round end; 25, 26, 27; chute; 28, fixed rail; 29, first screw hole; 30, slot; 31, long groove; 32, second screw hole; 34; horizontal adjustment screw; 35, adjusting coil spring; 36, limit column; 37, open retaining ring; 38, boost pin; 39, power coil spring; 40, fixing screw; 41, up and down adjusting screw; 42. Adjusting plate; 43. Axial hole; 44, ring; 45, circuit board; 46, protective glass; 47, battery cover; 48, battery; 49, battery gasket; 50, front cover; 52, screws.
  • Embodiment 1 The inner red dot module without the brightness adjustment switch is mounted on the LED mounting bracket in the housing.
  • the red dot sight is powered by the solar battery: as shown in FIG. 1 and FIG. 4 (the inner red dot of the brightness adjustment switch is not provided)
  • the sighting device includes a housing 1, an inner red dot module disposed in the housing 1 or on the housing 1 (using a micro-current LED as a light source), and a battery disposed in the housing 1 (indicated in FIG.
  • the side of the housing of the red dot sight is provided with a battery compartment, the battery compartment is in the knob switch 6), the brightness adjustment switch disposed on the housing 1, the control circuit board disposed in the housing 1, the battery, the brightness adjustment switch
  • the control circuit board and the inner red dot module constitute a series circuit, in particular: further comprising a solar cell 2 disposed on the casing 1 and a dual power source disposed in the casing 1 Automatic switching module
  • the multi-position manual brightness adjustment knob shown in FIG. 5 can also be used to realize manual switching of the power supply) for connecting the solar cell 2 and the inner red dot module when the brightness adjustment switch is in the off state
  • the electrical connection of the micro-current LED is the light source, so that the solar cell 2 supplies power to the inner red dot module (using the micro-current LED as the light source); or when the solar cell 2 cannot provide sufficient voltage or current, the battery and the brightness are connected
  • the internal red dot module (using the micro-current LED as the light source) is powered by the solar cell.
  • the battery is not required to ensure the normal operation of the sight. It is not necessary to install the battery at the same time.
  • the battery is powered by the dual power automatic switching module when there is no sunlight (night).
  • the embodiment uses the trigger switch 3 disposed on the casing 1 shown in FIG. 2 to input an input signal to the dual power supply automatic switching module to realize manual switching of the power supply, that is, to cut off the solar battery 2 and the inner red.
  • Point module disposed on the casing 1 shown in FIG. 2 to input an input signal to the dual power supply automatic switching module to realize manual switching of the power supply, that is, to cut off the solar battery 2 and the inner red.
  • connection using the micro-current LED as the light source
  • the internal red dot module using the micro-current LED as the light source
  • Disconnect the solar cell 2 from the internal red dot module using the micro-current LED as the light source
  • a series circuit consisting of a control circuit board and an internal red dot module (using a micro-current LED as a light source).
  • FIG. 2 is a perspective view showing an inner red dot sighting device provided with a brightness adjusting switch on the outer side wall of the casing 1.
  • the brightness adjusting switch is a push button switch, including the "+" and "" shown in FIG. - “Keys 4, 5.
  • the solar cell 2 provided in this embodiment is embedded in the top surface of the casing 1 as shown in FIG. 1 (of course, it can also be installed as needed) to facilitate the longest time of the low-light amorphous silicon solar cell 2, The largest area is exposed to sunlight to provide a sufficient amount of long-term electric energy.
  • a protective glass is disposed on the top surface of the solar cell 2, Prevent the landing of dust and accidentally scratch the low-light amorphous silicon solar cell.
  • the dual power automatic switching module turns on the solar battery 2 without the signal input of the trigger switch 3.
  • the electrical connection with the inner red dot module (using the micro current LED as the light source) is powered by the solar cell 2 to the inner red dot module (using the micro current LED as the light source), and the brightness of the output light of the micro current LED light source is
  • the change of the electric energy generated by the solar cell 2 changes adaptively.
  • the brightness of the output light of the inner red dot module (using the micro current LED as the light source) also follows, and vice versa, according to the ambient brightness.
  • the dual power automatic switching module will cut off the connection between the solar cell 2 and the inner red dot module (using the micro current LED as the light source), and switch to the battery.
  • Power supply can also provide a small voltage or current in the solar cell 2, but not enough to make the dual power automatic switching module jump
  • the input signal is automatically switched to the dual power supply by the trigger switch 3, thereby cutting off the solar cell 2 and the inner red dot module (using the micro current LED as the light source)
  • the connection of the battery and the internal red dot module (using the micro-current LED as the light source).
  • the solar cell 2 involved in this embodiment may be any one of single crystal silicon, polycrystalline silicon, silicon photodiode or low light type amorphous silicon solar cell.
  • Embodiment 2 When the battery compartment is disposed at the bottom of the inner red dot sight shown in FIG. 2, the solar cell is serially connected to the micro current LED light source through the processing chip MCU, and the battery is serially connected to the microchip through the processing chip MCU and the gear position control circuit.
  • the current LED light source; the brightness adjustment switch is a push button switch, including "+”, “-” buttons, the “+”, “-” buttons 4, 5 are respectively connected to the processing chip MCU; the processing chip MCU is based on “+”, “ - "The first input signal of any of the buttons 4, 5 cuts off the electrical connection between the solar cell and the micro-current LED light source, and according to one or more of the "+", “-” buttons 4, 5
  • the secondary input signal controls the gear control circuit to achieve the micro current LED light source
  • the adjustment of the supply voltage or current, changing the brightness of the output light of the micro-current LED light source, and cutting off the battery and the file according to the "+", “_” buttons 4, 5 simultaneously input signals or without any input signal for a period of time
  • the electrical connection of the bit control circuit simultaneously restores the electrical connection of the solar cell to the microcurrent LED light source.
  • a second selection switch for controlling the electrical connection of the processing chip MCU, turning on or off the solar cell and the inner red dot module is edited in the processing chip MCU, according to the control chip MCU control, on or The electrical connection between the gear position control circuit and the processing chip MCU is cut off to cut or turn on the first selection switch of the power supply loop of the inner red dot module.
  • FIG. 7 it is an electronic circuit diagram of the inner red dot sight of the solar power supply provided by the embodiment, wherein U1 is a processing chip MCU, a button switch "+”, "", and buttons 4, 5 respectively Connected to the pins 19 and 20 of the processing chip MCU for inputting a trigger signal or a brightness adjustment signal to the processing chip MCU, so that the processing chip MCU inputs signals according to the "+” and "-” buttons 4, 5 Controlling the opening and closing of the first selection switch T3 or the second selection switch (which is a combination switch composed of the M0S tubes T1 and ⁇ 2), thereby switching the inner red dot module, that is, the LED connection port shown in FIG.
  • the light-emitting elements in the group are the power source for the light-emitting diodes LEDs, that is, powered by the solar cells or powered by the battery, and then in the "+", "-” buttons 4, 5 according to the input again or any number of times.
  • the input signal of any button controls the number of resistors connected to the working circuit in the gear control circuit to change the magnitude of the supply voltage or current at the red dot module, ie, the LED interface, to realize the internal red dot module.
  • Output brightness adjustment is composed of a plurality of series connected resistors shown in FIG.
  • resistors R1, R2, R3, R4, R5, R6, R7 and the first selection which are sequentially connected between the LED interface and the negative electrode potential.
  • the switch T3, and the node connecting the adjacent resistors and the processing chip MCU, the resistor R7 and the node of the first selection switch T3 and the control line of the processing chip MCU, these control lines are respectively associated with the processing chip MCU 10, 9, 8 , 7, 6, 5, 4 connection, the processing chip MCU realizes the change of the voltage or current at the LED interface by controlling the voltage of these pins to realize the series resistance between the LED interface and the first selection switch T3. Finally, the adjustment of the output light brightness of the inner red dot module is realized, and the on/off of the first selection switch T3 is controlled by controlling the voltages at the pins 4 and 3 connected to the first selection switch T3.
  • the second selection switch is a combination switch composed of M0S tubes T1 and ⁇ 2 (the G poles of the M0S tubes T1 and ⁇ 2 are respectively connected to the pins 11 and 12 of U1, and the S and D poles are respectively connected. Both are connected to the LED interface, the battery or the solar cell), and the on-off of the MOSFETs T1 and ⁇ 2 is controlled by the processing chip MCU, so that the battery or the solar cell and the LED interface are turned on and off, that is, the state of the MOS tube T1 and the MOS tube T2 are opposite.
  • the MOSFET T1 is turned on or off
  • the MOSFET T2 is turned off or on.
  • the processing chip MCU cuts off the power supply of the gear position control circuit, and turns on the solar battery 2 and
  • the inner red dot module (using the micro-current LED as the light source) is electrically connected, and the solar cell 2 supplies the inner red dot module (using the micro-current LED as the light source), and the inner red dot module (using the micro-current LED as the light source)
  • the brightness of the output light changes adaptively with the change of the electric energy generated by the solar cell 2.
  • the brightness of the output light of the inner red dot module (using the micro current LED as the light source) also follows. On the contrary, it will be weakened as the brightness of the environment becomes darker, and it is very convenient without human operation. More importantly, there is no need for a battery and corresponding control circuit to power the internal red dot module (using the micro-current LED as the light source), eliminating the cost of replacing the battery.
  • any one of the "+” and “-” buttons 4, 5 is pressed to input a signal to the processing chip MCU, thereby cutting off the solar cell.
  • the battery is powered by the inner red dot module (using the micro current LED as the light source), and the "+” is input again or repeatedly.
  • the input signal of any one of the buttons 4, 5, adjust the power supply voltage or current of the red dot module (using the micro-current LED as the light source), thereby implementing the internal red dot module (with micro The current LED is the light source) for the enhancement of the output brightness enhancement or attenuation.
  • the processing chip MCU cuts off the electrical connection between the battery and the gear position control circuit. At the same time, the electrical connection between the solar cell and the inner red dot module (using the micro current LED as the light source) is restored.
  • the solar cell 2 in each of the above embodiments is mounted on the top surface of the casing 1 in order to ensure the maximum light receiving area of the solar cell 2 and to fully exert its performance.
  • the solar cell 2 can also be disposed in the inner red dot sight shown in FIG. 8 according to the actual structure and needs of the inner red dot sight (the LED light source is mounted on the top surface of the rear end of the casing 1, and the battery compartment is disposed at The top surface of the casing 1 is placed between the LED light source and the lens 9, as shown in the front end face of the casing 1 of Fig. 9).
  • the brightness adjustment switch of the inner red dot sight is a push button type, and the "+" and "-" buttons 4, 5 are respectively mounted on the left and right sides of the front end of the casing 1.
  • the in-solar red dot rifle with a collimated star includes an arch lens holder 10 mounted on the front end of the housing 1 and a battery holder 7 disposed in the housing 1.
  • the brightness adjusting switch 10 on the casing 1 and the control circuit board disposed in the casing 1 , the battery compartment 7 , the brightness adjusting switch 11 , the control circuit board and the micro current LED light source 6 form a series circuit, and the micro current LED light source 6 is installed
  • the battery compartment 7 is embedded in the top surface of the housing 1 and placed between the battery compartment 7 and the micro-current LED light source 6, the brightness adjustment switch 7
  • the push button switch including the "+" and "-" buttons 4, 5, respectively, are disposed on the left side or the right side of the housing 1
  • the micro-current LED light source 6 is mounted on a slider 12 which is disposed in the rear end of the casing 1 and slidable in the lateral direction of the casing 1, and the slider 12 has a cross-section of "work" shape, the front end of which is A micro-current LED light source setting groove 13 is disposed at the top of the surface, and a limiting chute 15 is disposed at the top portion to cooperate with the limiting slider 14 extending downward from the inner surface of the top surface of the casing 1.
  • a horizontal adjustment screw 34 is mounted on the right side surface of the housing 1 at a corresponding position on the slider 12 in conjunction with the arrangement shown in FIG.
  • an adjustment coil spring is mounted between the left side surface of the housing 1 and the slider 12.
  • the adjusting coil spring 35 is sleeved on the limiting post 36, and is pushed or unloaded inwardly by the forward and reverse rotation level adjusting screw 34, and the slider 12 is pressed under the pushing of the horizontal adjusting screw 34.
  • the adjustment coil spring 35 or the adjusted coil spring 35 is reversely pushed to achieve lateral horizontal movement of the slider 12, ultimately achieving adjustment of the lateral horizontal position of the micro-current LED light source 6.
  • the limit slider 14 and the limit chute 15 limit the lateral adjustment range of the slider 12, thereby avoiding excessive tightening or rotation of the horizontal adjustment screw 30, which greatly affects the lateral direction of the micro-current LED light source 6.
  • the position, the fine adjustment of the lateral position of the micro-current LED light source 6 is realized, which contributes to the improvement of the adjustment precision.
  • a power-assisting pin 38 that is pressed against the rear end surface of the slider 12 is disposed in the rear end surface of the housing 1, and is sleeved on
  • a boosting coil spring 39 on the boosting pin 38 and a fixing screw 40 threadedly coupled to the housing 1 and pressed against the rear end portion of the assisting coil spring 39 are realized by the boosting pin 38, the assisting coil spring 39 and the fixing screw 40.
  • an opening collar 37 that is sleeved on the level adjustment screw 34 is provided in the housing 1.
  • the rear end of the housing 1 is vertically disposed with an upper and lower adjustment screw 41 which is embedded in the rear end of the housing 1 and is in-line coupled with the rear end surface of the slider 12 (see FIG. As can be seen from Fig. 14, the bottom end of the rear end surface of the slider 12 is provided with a recess for facilitating the threaded engagement of the adjusting disk 42 of the collar 44 on the peripheral wall of the adjusting disk 42 shown in Fig. 17.
  • the bottom surface of the casing 1 is provided with a lower cover 16 located below the slider 12.
  • a lower cover 16 located below the slider 12.
  • four three fixing screw holes 40 and at least one drainage hole 18 are provided.
  • the bottom surface of the casing 1 is provided with left and right card rails extending in the axial direction, left.
  • a dovetail block 19 is disposed on the card rail, and is threadedly coupled with the locking screw 20 penetrating from the right card rail; the casing 1 is coupled to the barrel coupling sleeve through the left and right rails; the barrel coupling sleeve is as shown in FIG. Shown by the axially hollow support tube 21 and the outer casing 22 sleeved outside thereof; As shown in FIG. 20, the support tube 21 includes a quadrangular prism cylinder 23 and a circular end surface 24 disposed at the front end of the quadrangular prism cylinder 23. The bottom ends of the left and right sides of the quadrangular prism cylinder 23 are each provided with an axial extension.
  • a bottom surface of the quadrangular prism body 23 defines a sliding groove 27 extending in the axial direction and protruding downwardly from the bottom surface; the front end of the top surface of the quadrangular prism cylinder 23 is provided with a self-circular end surface 24, along the axis To the rearwardly extending fixed rail 28 for holding the left and right rails, a first screw hole 29 penetrating the hole 43 is disposed behind the fixed rail 28; the outer casing 22 is as shown in FIG. An axially extending slot 30 for inserting the left and right latches is formed. The top surface of the outer casing 18 behind the slot 30 is an axially extending slot 31, and the slot 31 is opened. There is a second screw hole 32; a front end chamber 33 of the outer casing 22 is provided with a lower protrusion chamber 33 for accommodating the chute 27, and the lower protrusion chamber 33 is coupled to the chute 27 by a screw 52.
  • the second screw hole 29 and the second screw hole 32 are coupled by screws.
  • the solar red point gun with the sight star passes through the left and right card tracks disposed on the bottom surface of the casing 1 and is inserted into the hole groove 30, and the left and right card rails and the fixed card rail are realized by the dovetail card dovetail block 19 and the locking screw 20.
  • the clamping connection of 28 is then applied to the barrel of the firearm through the support tube 21 together with the entire solar red point gun with the sight star, and finally by the connecting screw passing through the first screw hole 29 and the second screw hole 32. , disassembly and assembly is very convenient.
  • the axially extending axial passage 43 of the support tube 21 is gradually reduced from the front end to the rear end of the support tube 21, and this structure is actually used to realize the solar energy with the entire alignment star. Red dot gun aiming installation limit.
  • the rear end of the outer casing 22 is a truncated cone shape which tapers from front to back, and the obstruction of the outer casing 22 against the line of sight can be reduced.
  • the solar red dot gun sight with the collimated star provided by the above embodiments further includes the protective glass of the solar cell 2 to prevent the Tianyang battery from being damaged, and is provided outside the battery 48.
  • the battery cover 47 is provided with a battery gasket 49 at the bottom of the battery 48 as an elastic member for engaging the battery cover 47 to press the battery 48.
  • an LED protection glass 46 is provided outside the micro-current LED light source 6.
  • the screw 52 shown in Fig. 21 is used to connect the lower cover 16 to the housing 1.
  • the solar cell 2 is used to supply power to the micro-current LED light source 6, and the inner red spot gun itself automatically adjusts the brightness of the output light of the micro-current LED light source as the ambient brightness changes, and does not need to
  • the normal operation of the sight can be ensured without the battery, the use of the battery is reduced, the service life of the battery is prolonged, and the use cost is reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Telescopes (AREA)

Abstract

一种太阳能电池供电的含有微电流LED光源的内红点枪瞄,包括壳体(1)、设置在壳体(1)内或壳体(1)上的微电流LED光源(6),壳体(1)上设置有太阳能电池(2),该太阳能电池(2)与微电流LED光源(6)通过导线连接以给微电流LED光源(6)供电,通过太阳能电池(2)给微电流LED光源(6)供电,节省了电池用量,降低了使用成本,并通过双电源自动切换模块实现微电流LED光源(6)的供电电源的切换,在有阳光的环境中,使用太阳能电池(2)为微电流LED光源(6)提供电能,实现了内红点枪瞄本身随着环境亮度的变化自动调节微电流LED光源(6)的输出光的亮度,且无需依靠任何控制电路,无需电池供电。在夜间,改由电池供电,保证了瞄具的正常使用。

Description

太阳能电池供电的含有微电流 LED光源的内红点枪瞄
技术领域
本发明属于光电技术领域, 具体涉及一种微电流 LED光源或其模组, 尤其是太 阳能电池供电的含有微电流 LED光源的内红点枪瞄。 背景技术
现有的内红点瞄具大多使用电池, 如锂电池提供内红点模组 (以 LED为光源) 工作所需的电能, 电池寿命有限, 需要更换, 增加使用成本, 而且, 在使用过程中, 会因为外界环境的光照的变化, 需要通过调节开关, 调节电池的供电电流或电压, 以实现对内红点模组的输出光的亮度的调节, 如环境亮度增强时, 就需要调亮内红 点模组的输出光的亮度, 反之, 则需要减弱内红点模组的输出光的亮度。 这种内红 点瞄具无论白天、 黑夜都依赖电池供电, 电池的更换增加使用成本。 除上述的内红 点瞄具外, 目前许多照明用具或辅助瞄准器具都有使用 LED作为光源, 大都通过电 池供电, 需经常更换电池, 使用成本增高。
发明内容
本发明的目的是太阳能电池供电的含有微电流 LED光源的内红点枪瞄, 通过使 用太阳能电池给 LED光源供电, 减少对电池的使用, 从而降低使用成本。
为达上述目的, 本发明提供了一种太阳能电池供电的含有微电流 LED光源的内红 点枪瞄, 包括壳体、 设置在壳体内或壳体上的微电流 LED光源, 壳体上设置有置放电 池的电池仓、 亮度调节开关及设置在壳体内的控制电路板, 电池仓、 亮度调节开关、 控制电路板与所述微电流 LED光源构成串接回路; 其特殊之处在于, 壳体上设置有太 阳能电池, 该太阳能电池与所述微电流 LED光源通过导线连接以给该微电流 LED光源 供电; 还包括设置在壳体内的双电源自动切换模块, 用以在所述亮度调节开关处于 关断状态时, 连通太阳能电池与微电流 LED光源的电连接, 使该太阳能电池给微电流 LED光源提供电源; 或在所述太阳能电池不能提供足够的电压或电流时, 连通电池、 亮度调节开关、 控制电路板与内微电流 LED光源构成的串接回路, 实现电池对微电流 LED光源的供电及亮度调节开关对微电流 LED光源的输出光亮度的控制。
上述壳体上还设置有一触发开关, 所述双电源自动切换模块在接收到该触发开 关的输入信号后, 断开太阳能电池与微电流 LED光源的电连接, 同时接通电池、 亮度 调节开关、 控制电路板与微电流 LED光源构成的串接回路; 该触发开关串接在电池与 双电源自动切换模块之间。
上述亮度调节开关为按键式开关, 包括 " + "、 "-"按键。 控制电路板上包括处 理芯片 MCU和档位控制电路;
太阳能电池经处理芯片 MCU串接至微电流 LED光源, 电池经处理芯片 MCU、 档位控 制电路串接至微电流 LED光源; 所述 " + "、 "-"按键分别与处理芯片 MCU连接;
处理芯片 MCU根据 " + "、 "-"按键中的任一按键的首次输入信号切断太阳能电池 与微电流 LED光源的电连接、 并根据该 " + "、 "」,按键中的任一按键的再次或多次输 入信号控制档位控制电路以实现对微电流 LED光源的供电电压或电流大小的调节, 改 变微电流 LED光源的输出光的亮度, 且根据 " + "、 "-"按键同时输入的信号或在一段 时间内没有任意输入信号后切断电池与档位控制电路的电连接, 同时恢复太阳能电 池与微电流 LED光源的电连接。
上述的太阳能电池供电的含有微电流 LED光源的内红点枪瞄, 还包括设置在壳体 前端的安装透镜的拱形透镜支架、 设置在壳体内的控制电路板, 电池仓、 亮度调节 开关、 控制电路板与微电流 LED光源构成串接回路, 微电流 LED光源安装在壳体的后 端, 电池仓嵌入式安装在所述壳体的顶面, 且置于该电池仓与微电流 LED光源之间, 所述 " + "、 "-"按键, 分别设置在壳体的左侧面或右侧面的后端。
上述微电流 LED光源安装在置于所述壳体的后端内的可沿壳体的横向左右滑动 的滑块上, 滑块横截面为 "工"字形, 其前端面顶部设置微电流 LED光源置放槽、 顶 部开设有与自壳体顶面内表面向下延伸的限位滑块配合的限位滑槽。
上述壳体底面上设置有位于所述滑块下方的下盖, 其上开设有四个三个固定螺 孔和至少一个排水孔。
上述壳体底面设置有沿轴向延伸的左右卡轨, 左卡轨上设置有燕尾卡块, 与自 右卡轨穿入的锁紧螺钉螺纹联接; 壳体通过该左右卡轨与枪管联接套管联接; 该枪 管联接套管由内设轴向孔道的支撑管和套设在其外的外壳构成; 支撑管包括四棱柱 柱体和设置在该四棱柱柱体前端的圆形端面, 四棱柱柱体的左右侧面的底端各设置 有一沿轴向延伸的限位楞; 四棱柱柱体的底面开设沿轴向延伸且向下突出于该底面 的; 四棱柱柱体的顶面前端设置有自圆形端面、 沿轴向向后延伸的供所述左右卡轨 卡持的固定卡轨, 于该固定卡轨的后方设置有穿透轴向孔道的第一螺孔; 所述外壳 的顶面前端开设有轴向延伸的用以使所述左右卡轨插入的孔槽, 于该孔槽后方的外 壳的顶面为沿轴向延伸长条凹槽, 且该长条凹槽上开设有第二螺孔; 外壳的底面前 端设置有容置所述滑槽的下突腔室, 该下突腔室通过螺钉与滑槽联接。
上述轴向孔道, 该轴向孔道自支撑管的前端向后端方向, 内径逐渐减小; 所述 外壳的后端为自前向后逐渐变细的圆台形。
上述壳体的右侧面上于所述滑块对应处安装水平调节螺钉, 壳体的左侧面与滑 块之间安装有调节螺旋弹簧, 该调节螺旋弹簧套设在限位柱上。 壳体内设置有卡套 在水平调节螺钉上的开口挡圈, 以防止水平调节螺钉在调节螺旋弹簧的挤压作用下 发生旋转。
上述壳体的后端面内设置有触压在滑块的后端面上的助力销、 套设在该助力销 上的助力螺旋弹簧及与壳体螺纹联接并触压在该助力螺旋弹簧的后端部的固定螺 钉, 通过该助力销、 助力螺旋弹簧和固定螺钉实现对滑块的前后限位。 壳体的后端 垂直设置有上下调节螺钉, 其与设置在壳体的后端内且与所述滑块的后端面嵌入式 联接的调节盘螺纹联接。
上述太阳能电池嵌入式安装在所述壳体的顶面, 且于该太阳能电池的顶面设置 有保护玻璃。 太阳能电池是单晶硅、 多晶硅、 硅光电二极管或弱光型非晶硅太阳能 电池中的任一种。 亮度调节开关为按键式开关, 包括 " + "、 "-"按键, 且分别设置 在壳体前端两侧。
本发明的优点是: 使用太阳能电池为微电流 LED光源提供电能, 实现了内红点瞄 具本身随着环境亮度的变化自动调节微电流 LED光源的输出光的亮度, 且无需依靠任 何控制电路, 无需电池供电即可在没有电池的情况下, 确保瞄具的正常工作用电, 减少了对电池的使用, 延长了电池的使用寿命, 降低了使用成本。 结合内红点瞄具 或其他 LED光源器件本身的电池供电系统, 确保了内红点瞄具或其他 LED光源器件夜 间的正常使用。
以下结合附图和实施例, 对本发明做进一步说明, 但不用来限制本发明的范围。 附图说明 图 1是无亮度调节开关和电池的太阳能内红点瞄具立体示意图。
图 2是设置有按键式亮度调节开关和电池仓的太阳能内红点瞄具立体示意图。 图 3是设置有旋钮式亮度调节开关和电池仓的太阳能内红点瞄具立体示意图。 图 4是内设双电源自动切换模块的太阳能内红点瞄具立体示意图。
图 5是选用多档位手动式亮度调节旋钮的太阳能内红点瞄具立体示意图。
图 6是依靠芯片控制电源切换的太阳能内红点瞄具立体示意图。
图 7是控制芯片实现电源切换的控制电路示意图。
图 8是内红点模组设置在壳体顶部后端的内红点瞄具的前端端面示意图。
图 9是内红点模组设置在壳体顶部后端的内红点瞄具的俯视图。
图 10是内红点模组设置在壳体顶部后端的内红点瞄具的侧面示意图。
图 11是带准星的太阳能内红点枪瞄后方位等轴侧视图。
图 12是带准星的太阳能内红点枪瞄左前方位等轴侧视图。
图 13是带准星的太阳能内红点枪瞄轴向剖视图。
图 14是滑块立体示意图。
图 15是滑块轴向剖视图 (安装有 LED灯和调节盘的)。
图 16是带准星的太阳能内红点枪瞄爆炸图。
图 17是调节盘立体图。
图 18是下盖结构示意图。
图 19是带准星的太阳能内红点枪瞄横向剖视图 (沿左右方向)。
图 20是支撑管示意图。
图 21是外壳示意图。
图 22是带准星的太阳能内红点枪瞄与枪管联接套管安装在一起的轴向剖视图。 附图标记说明: 1、 壳体; 2、 太阳能电池; 3、 触发开关; 4、 5、 "+"、 "-"按键; 6、 微电流 LED光源; 7、 电池仓; 8、 卡轨; 9、 透镜; 10、 拱形透镜支架; 11、 亮 度调节开关; 12、 滑块; 13、 微电流 LED光源置放槽; 14、 限位滑块; 15、 限位滑 槽; 16、 下盖; 17、 固定螺孔; 18、 排水孔; 19、 燕尾卡块; 20、 锁紧螺钉; 21、 支撑管; 22、 外壳; 23、 四棱柱柱体; 24、 圆形端面; 25、 26, 限位楞; 27、 滑槽; 28、 固定卡轨; 29、 第一螺孔; 30、 孔槽; 31、 长条凹槽; 32、 第二螺孔; 33、 下 突腔室; 34、 水平调节螺钉; 35、 调节螺旋弹簧; 36、 限位柱; 37、 开口挡圈; 38、 助力销; 39、 助力螺旋弹簧; 40、 固定螺钉; 41、 上下调节螺钉; 42、 调节盘; 43、 轴向孔道; 44、 突圈; 45、 电路板; 46、 保护玻璃; 47、 电池盖; 48、 电池; 49、 电池垫圈; 50、 前盖; 51、 LED保护玻璃; 52、 螺钉。
具体实施方式
实施例一, 无亮度调节开关的内红点模组安装在壳体内的 LED安装支架上的内红 点瞄具采用太阳能电池供电: 如图 1、 4所示 (无亮度调节开关的内红点瞄具), 包括 壳体 1、 设置在壳体 1内或壳体 1上的内红点模组 (以微电流 LED为光源)、 设置在壳体 1内的电池 (图 3所示的内红点瞄具的壳体侧面设置有电池仓, 该电池仓在旋钮开关 6 内)、 设置在壳体 1上的亮度调节开关、 设置在壳体 1内的控制电路板, 电池、 亮度调 节开关、 控制电路板与内红点模组 (以微电流 LED为光源) 构成串接回路, 特别之处 是: 还包括设置在壳体 1上的太阳能电池 2和设置在壳体 1内的双电源自动切换模块
(当然, 也可以采用图 5所示的多档位手动式亮度调节旋钮, 实现手动切换电源), 用以在亮度调节开关处于关断状态时,连通太阳能电池 2与内红点模组(以微电流 LED 为光源) 的电连接, 使该太阳能电池 2给内红点模组 (以微电流 LED为光源) 提供电 源; 或在太阳能电池 2不能提供足够的电压或电流时, 连通电池、 亮度调节开关、 控 制电路板与内红点模组 (以微电流 LED为光源) 构成的串接回路, 实现电池对内红点 模组 (以微电流 LED为光源) 的供电及亮度调节开关对内红点模组 (以微电流 LED为 光源) 的输出光亮度的控制。
通过增设太阳能电池和双电源自动切换模块(开关), 可以方便的实现在阳光照
(白天) 环境中, 通过太阳能电池给内红点模组 (以微电流 LED为光源) 供电, 不需 要电池可保证瞄具的正常工作用电, 不需要同时安装电池, 只需在阳光光照不足或 没有阳光光照 (夜晚) 的时候通过该双电源自动切换模块切换为电池供电。
当天色变暗时, 本实施例通过图 2所示的设置在壳体 1上的触发开关 3, 给双电源 自动切换模块一输入信号, 以实现手动切换电源, 即切断太阳能电池 2与内红点模组
(以微电流 LED为光源) 的连接, 改由电池给内红点模组 (以微电流 LED为光源) 供 电, 也就是当双电源自动切换模块在接收到该触发开关 4的输入信号后, 断开太阳能 电池 2与内红点模组 (以微电流 LED为光源) 的电连接, 同时接通电池、 亮度调节开 关、 控制电路板与内红点模组 (以微电流 LED为光源) 构成的串接回路。
图 2所示为壳体 1外侧壁上设置有亮度调节开关的内红点瞄具立体示意图, 由此 图可见, 该亮度调节开关为按键式开关, 包括图 1所示的 " + "、 "-"按键 4、 5。
本实施例提供的太阳能电池 2如图 1所示, 嵌入式安装在壳体 1的顶面 (当然, 还 可以根据需要安装图), 以利于弱光型非晶硅太阳能电池 2最长时间、 最大面积的接 受阳光的照射, 以提供足量的、 长时间的电能, 为了确保弱光型非晶硅太阳能电池 2 的最大效能的发挥, 且于该太阳能电池 2的顶面设置有保护玻璃, 防止灰尘的着落及 意外划伤弱光型非晶硅太阳能电池。
如此一来, 在白天或有阳光的环境中使用本实施例提供的太阳能供电的内红点 瞄具时, 在没有触发开关 3的信号输入的前提下, 双电源自动切换模块导通太阳能电 池 2与内红点模组(以微电流 LED为光源)的电连接, 由太阳能电池 2给内红点模组(以 微电流 LED为光源) 供电, 并且微电流 LED光源的输出光的亮度会随着太阳能电池 2产 生的电能的变化而自适应变化, 如环境亮度增强时, 内红点模组 (以微电流 LED为光 源) 的输出光的亮度也跟随变亮, 反之, 则随环境亮度的变暗而减弱, 太阳能电池 2 不能提供足够的电压或电流的情况下, 双电源自动切换模块便会切断太阳能电池 2与 内红点模组 (以微电流 LED为光源) 的连接, 切换为电池供电, 当然, 也可以在太阳 能电池 2提供的电压或电流较小、 但不足以使双电源自动切换模块发生跳转、 且此时 微电流 LED光源的输出激光亮度较暗的前提下, 通过触发开关 3手动给双电源自动切 换模块一输入信号, 实现切断太阳能电池 2与内红点模组 (以微电流 LED为光源) 的 连接, 导通电池与内红点模组 (以微电流 LED为光源) 的连接回路。 本实施例中涉及 的太阳能电池 2可以是单晶硅、 多晶硅、 硅光电二极管或弱光型非晶硅太阳能电池中 的任一种。
实施例二: 在图 2所示的内红点瞄具的底部设置电池仓时, 太阳能电池经处理芯 片 MCU串接至微电流 LED光源, 电池经处理芯片 MCU、 档位控制电路串接至微电流 LED 光源; 亮度调节开关为按键式开关, 包括 " + "、 "-"按键, 该 " + "、 "-"按键 4、 5 分别与处理芯片 MCU连接; 处理芯片 MCU根据 " + "、 "-"按键 4、 5中的任一按键的首 次输入信号切断太阳能电池与微电流 LED光源的电连接、 并根据该 " + "、 "-"按键 4、 5中的任一按键的再次或多次输入信号控制档位控制电路以实现对微电流 LED光源的 供电电压或电流大小的调节, 改变微电流 LED光源的输出光的亮度, 且根据 " + "、 "_" 按键 4、 5同时输入的信号或在一段时间内没有任意输入信号后切断电池与档位控制 电路的电连接, 同时恢复太阳能电池与微电流 LED光源的电连接。 结合图 6可见, 在 处理芯片 MCU内编辑有受处理芯片 MCU的控制、 接通或切断太阳能电池与内红点模组 的电连接的第二选择开关, 根据处理芯片 MCU的控制、 接通或切断档位控制电路与处 理芯片 MCU的电连接, 以切断或接通内红点模组的供电回路的第一选择开关。
而图 7所示, 则是本实施例提供的阳能供电的内红点瞄具的电子线路图, 其中 U1 为处理芯片 MCU, 按键式开关的 " + "、 "」,按键 4、 5分别与该处理芯片 MCU的管脚 19、 20相接,用以给该处理芯片 MCU输入触发信号或亮度调节信号, 以使得该处理芯片 MCU 根据 " + "、 "-"按键 4、 5的输入信号控制第一选择开关 T3或第二选择开关 (为由 M0S 管 Tl、 Τ2构成的组合开关) 的通断, 从而切换内红点模组即图 3中所示的 LED连接口 (内红点模组中的发光元件是发光二极管 LED ) 的供电来源, 即是由太阳能电池供电 或是由电池供电, 而后, 在根据再次或任意多次输入的 " + "、 "-"按键 4、 5中的任 一按键的输入信号, 控制档位控制电路的串联入工作回路中的电阻的多少, 以改变 内红点模组即 LED接口处的供电电压或电流的大小, 实现对内红点模组的输出亮度的 调节。 其中, 档位控制电路由图 3中所示的多个串接的电阻即依次串接在 LED接口和 负极电位之间的电阻 Rl、 R2、 R3、 R4、 R5、 R6、 R7和第一选择开关 T3, 及连接相邻 的电阻的节点与处理芯片 MCU、 电阻 R7与第一选择开关 T3的节点与处理芯片 MCU的控 制线构成, 这些控制线分别与处理芯片 MCU的管教 10、 9、 8、 7、 6、 5、 4连接, 处理 芯片 MCU通过控制这些管脚的电压实现接入 LED接口和第一选择开关 T3之间的串联电 阻的多少, 实现对 LED接口处的电压或电流的改变, 最终实现对内红点模组的输出光 亮度的调节, 而通过控制与第一选择开关 T3连接的管脚 4和 3处的电压控制第一选择 开关 T3的通断。
当然, 由图 7不难看出, 第二选择开关是由 M0S管 Tl、 Τ2构成的组合开关 (M0S管 Tl、 Τ2的 G极分别与 U1的 11、 12管脚连接, S极和 D极则均与 LED接口、 电池或太阳能 电池连接), 通过处理芯片 MCU控制 M0S管 Tl、 Τ2的通断, 实现电池或太阳能电池与 LED 接口的通断, 即 M0S管 T1与 M0S管 T2的状态相反, 在 M0S管 T1导通或关断时, M0S管 T2 处于关断或导通状态。 如此一来, 在白天或有阳光的环境中使用本实施例提供的太 阳能供电的内红点瞄具时, 在没有 " + "、 "-"按键 4、 5的任一输入信号的前提下, 处理芯片 MCU切断档位控制电路的供电, 导通太阳能电池 2与内红点模组 (以微电流 LED为光源) 的电连接, 由太阳能电池 2给内红点模组 (以微电流 LED为光源) 供电, 并且内红点模组 (以微电流 LED为光源) 的输出光的亮度会随着太阳能电池 2产生的 电能的变化而自适应变化, 如环境亮度增强时, 内红点模组 (以微电流 LED为光源) 的输出光的亮度也跟随变亮, 反之, 则随环境亮度的变暗而减弱, 无需人为操作, 非常便利。 更为重要的是, 无需电池及相应的控制电路给内红点模组 (以微电流 LED 为光源) 供电, 省去了更换电池所产生的使用成本。
在夜间使用本实施例提供的太阳能供电的内红点瞄具时, 随意触压 " + "、 "-" 按键 4、 5中的任一个按键, 给处理芯片 MCU—输入信号, 从而切断太阳能电池 2与内 红点瞄具的电连接, 同时接通档位控制电路的供电回路, 由电池为内红点模组 (以 微电流 LED为光源) 供电, 并随再次或多次输入 " + "、 "」,按键 4、 5中的任一个按键 的输入信号, 调节内红点模组 (以微电流 LED为光源) 的供电电压或电流的大小, 进 而实现对内红点模组 (以微电流 LED为光源) 的输出光亮的增强或减弱调整。 在恢复 太阳能电池供电时, 只需要同时输入 " + "、 "-"按键 4、 5的输入信号或在一段时间 内没有任意输入信号后, 处理芯片 MCU切断电池与档位控制电路的电连接, 同时恢复 太阳能电池与内红点模组 (以微电流 LED为光源) 的电连接。
以上各实施例中的太阳能电池 2安装在壳体 1的顶面, 目的是保证太阳能电池 2的 最大受光面积, 充分发挥其效能。 当然, 还可以根据内红点瞄具的实际结构和需要, 将太阳能电池 2设置在图 8所示的内红点瞄具 (LED光源安装在壳体 1的后端的顶面, 电池仓设置在壳体 1的顶面, 且置于 LED光源和透镜 9之间, 见图 9 ) 的壳体 1的前端端 面上。 由图 10可见, 该内红点瞄具的亮度调节开关为按键式, 其 " + "、 "-"按键 4、 5分别安装在壳体 1的前端的左右两侧。
如图 11、 12所示的带准星的太阳能内红点枪瞄, 其包括设置在壳体 1前端的安装 透镜 9的拱形透镜支架 10、 设置在壳体 1内的电池仓 7、 设置在壳体 1上的亮度调节开 关 10、 设置在壳体 1内的控制电路板, 电池仓 7、 亮度调节开关 11、 控制电路板与微 电流 LED光源 6构成串接回路, 微电流 LED光源 6安装在壳体 1的后端, 电池仓 7嵌入式 安装在所述壳体 1的顶面, 且置于该电池仓 7与微电流 LED光源 6之间, 亮度调节开关 7 为按键式开关, 包括 " + "、 "-"按键 4、 5, 分别设置在壳体 1的左侧面或右侧面的后
¾。
由图 13可见, 微电流 LED光源 6安装在置于壳体 1的后端内的可沿壳体 1的横向左 右滑动的滑块 12上, 滑块 12横截面为 "工"字形, 其前端面顶部设置微电流 LED光源 置放槽 13、 顶部开设有与自壳体 1顶面内表面向下延伸的限位滑块 14配合的限位滑槽 15。 如此一来, 结合图 16所示的设置在壳体 1的右侧面上于滑块 12对应处安装水平调 节螺钉 34、 壳体 1的左侧面与滑块 12之间安装有调节螺旋弹簧 35, 该调节螺旋弹簧 35 套设在限位柱 36上, 通过正反旋转水平调节螺钉 34向内顶推或卸力于滑块 12, 滑块 12在水平调节螺钉 34的顶推下挤压调节螺旋弹簧 35或被调节螺旋弹簧 35反推, 从而 实现滑块 12的横向水平移动, 最终实现对微电流 LED光源 6的横向水平位置的调整。 在此过程中, 限位滑块 14和限位滑槽 15则限制滑块 12的横向调整范围, 避免水平调 节螺钉 30过多旋紧或旋送, 大幅度的影响微电流 LED光源 6的横向位置, 实现对微电 流 LED光源 6的横向位置的细微调整, 有助于调整精度的提高。
而为了确保滑块 12在横向水平位置的调整的稳定性, 如图 16所示, 在壳体 1的后 端面内设置有触压在滑块 12的后端面上的助力销 38、 套设在该助力销 38上的助力螺 旋弹簧 39及与壳体 1螺纹联接并触压在该助力螺旋弹簧 39的后端部的固定螺钉 40, 通 过该助力销 38、 助力螺旋弹簧 39和固定螺钉 40实现对滑块 12的前后限位。 为了防止 水平调节螺钉 34在调节螺旋弹簧 35的挤压作用下发生旋转, 特在壳体 1内设置有卡套 在水平调节螺钉 34上的开口挡圈 37。 由图 13或 16可以看到, 壳体 1的后端垂直设置有 上下调节螺钉 41, 其与设置在壳体 1的后端内且与滑块 12的后端面嵌入式联接 (见图 15, 由图 14可以看出, 滑块 12的后端面的底端开设有凹槽, 便于图 17所示的调节盘 42周壁上的突圈 44卡入) 的调节盘 42螺纹联接。
由图 16还可以看出, 壳体 1底面上设置有位于滑块 12下方的下盖 16, 结合图 18可 见, 其上开设有四个三个固定螺孔 40和至少一个排水孔 18。 为了实现上述实施例提 供的带准星的太阳能内红点枪瞄与枪械的简便联接, 在图 16的基础上, 结合图 19可 见, 壳体 1底面设置有沿轴向延伸的左右卡轨, 左卡轨上设置有燕尾卡块 19, 与自右 卡轨穿入的锁紧螺钉 20螺纹联接; 壳体 1通过该左右卡轨与枪管联接套管联接; 枪管 联接套管如图 16所示, 由轴向中空的支撑管 21和套设在其外的外壳 22构成; 支撑管 21如图 20所示, 包括四棱柱柱体 23和设置在该四棱柱柱体 23前端的圆形 端面 24, 四棱柱柱体 23的左右侧面的底端各设置有一沿轴向延伸的限位楞 25、 26; 四棱柱柱体 23的底面开设沿轴向延伸且向下突出于该底面的滑槽 27 ; 四棱柱柱体 23 的顶面前端设置有自圆形端面 24、 沿轴向向后延伸的供左右卡轨卡持的固定卡轨 28, 于该固定卡轨 28的后方设置有穿透孔道 43的第一螺孔 29 ; 外壳 22则如图 21所示, 顶 面前端开设有轴向延伸的用以使左右卡轨插入的孔槽 30, 于该孔槽 30后方的外壳 18 的顶面为沿轴向延伸长条凹槽 31, 且该长条凹槽 31上开设有第二螺孔 32 ; 外壳 22的 底面前端设置有容置滑槽 27的下突腔室 33, 该下突腔室 33通过螺钉 52与滑槽 27联接。
外壳 22套设在支撑管 21上之后, 通过第一螺孔 29、 第二螺孔 32采用螺钉联接。 带准星的太阳能内红点枪瞄通过设置在其壳体 1的底面的左右卡轨道, 插入孔槽 30 后, 借助燕尾卡块燕尾卡块 19和锁紧螺钉 20实现左右卡轨与固定卡轨 28的夹持联接, 而后通过支撑管 21连同整个带准星的太阳能内红点枪瞄套装在枪械的枪管上, 最后 通过穿过第一螺孔 29和第二螺孔 32的连接螺钉限位, 拆装非常方便。 如图 22所示, 支撑管 21的沿周向延伸的轴向孔道 43, 自支撑管 21的前端向后端方向, 内径逐渐减 小, 这一结构其实也是为了实现对整个带准星的太阳能内红点枪瞄的安装限位。
外壳 22的后端为自前向后逐渐变细的圆台形, 可以减少外壳 22对视线的阻碍。 由图 16中还可看出, 以上各个实施例提供的带准星的太阳能内红点枪瞄, 还设置有 太阳能电池 2的保护玻璃,防止天阳能电池受损伤, 同时在电池 48外设置有电池盖 47, 电池 48底部设置电池垫圈 49, 为弹性件, 用于与电池盖 47配合压紧电池 48。 同样, 在微电流 LED光源 6外也设置了 LED保护玻璃 46。 图 21中所示的螺钉 52用以实现下盖 16 与壳体 1的连接。
综上所述, 不难看出, 使用太阳能电池 2为微电流 LED光源 6提供电能, 实现了内 红点枪瞄本身随着环境亮度的变化自动调节微电流 LED光源的输出光的亮度, 且无需 依靠任何控制电路即可在没有电池的情况下, 确保瞄具的正常工作用电, 减少了对 电池的使用, 延长了电池的使用寿命, 降低了使用成本。 并且通过安装在枪瞄底部 的左右卡轨及枪管联接套管与枪管联接, 非常方便。

Claims

权 利 要 求 书
1、 太阳能电池供电的含有微电流 LED光源的内红点枪瞄, 包括壳体 (1)、 设置 在壳体 (1) 内或壳体 (1) 上的微电流 LED光源 (6), 壳体 (1) 上设置有置放电池 的电池仓 (7)、 亮度调节开关及设置在壳体 (1) 内的控制电路板, 电池仓、 亮度调 节开关 (11)、 控制电路板与所述微电流 LED光源 (6) 构成串接回路,其特征在于: 所述壳体 (1) 上设置有太阳能电池 (2), 该太阳能电池 (2) 与所述微电流 LED光源 通过导线连接以给该微电流 LED光源 (6) 供电;
还包括设置在壳体 (1) 内的双电源自动切换模块, 用以在所述亮度调节开关处 于关断状态时, 连通太阳能电池 (2) 与微电流 LED光源 (6) 的电连接, 使该太阳能 电池 (2) 给微电流 LED光源 (6) 提供电源; 或在所述太阳能电池 (2) 不能提供足 够的电压或电流时, 连通电池、 亮度调节开关、 控制电路板与内微电流 LED光源 (6) 构成的串接回路, 实现电池对微电流 LED光源 (6) 的供电及亮度调节开关对微电流 LED光源 (6) 的输出光亮度的控制。
2、 如权利要求 1所述的太阳能电池供电的含有微电流 LED光源的内红点枪瞄, 其 特征在于: 所述壳体 (1) 上还设置有一触发开关 (3), 所述双电源自动切换模块在 接收到该触发开关 (3) 的输入信号后, 断开太阳能电池 (2) 与微电流 LED光源 (6) 的电连接, 同时接通电池、 亮度调节开关、 控制电路板与微电流 LED光源 (6) 构成 的串接回路;
该触发开关 (3) 串接在电池与双电源自动切换模块之间。
3、 如权利要求 1或 2所述的太阳能电池供电的含有微电流 LED光源的内红点枪瞄, 其特征在于: 所述亮度调节开关为按键式开关 (11), 包括 " + "、 "-"按键 (4、 5)。
4、 如权利要求 1所述的太阳能电池供电的含有微电流 LED光源的内红点枪瞄, 其 特征在于: 所述控制电路板上包括处理芯片 MCU和档位控制电路;
太阳能电池(2)经处理芯片 MCU串接至微电流 LED光源(6), 电池经处理芯片 MCU、 档位控制电路串接至微电流 LED光源 (6); 所述 " + "、 "-"按键 (4、 5) 分别与处理 芯片 MCU连接;
处理芯片 MCU根据 " + "、 "-"按键 (4、 5) 中的任一按键的首次输入信号切断太 阳能电池 (2) 与微电流 LED光源 (6) 的电连接、 并根据该 " + "、 "-"按键 (4、 5) 中的任一按键的再次或多次输入信号控制档位控制电路以实现对微电流 LED光源 (6) 的供电电压或电流大小的调节, 改变微电流 LED光源 (6) 的输出光的亮度, 且根据 " + "、 "-"按键 (4、 5) 同时输入的信号或在一段时间内没有任意输入信号后切断 电池与档位控制电路的电连接, 同时恢复太阳能电池 (2) 与微电流 LED光源 (6) 的 电连接。
5、 如权利要求 1所述的太阳能电池供电的含有微电流 LED光源的内红点枪瞄, 其 特征在于: 还包括设置在壳体 (1) 前端的安装透镜 (9) 的拱形透镜支架 (10)、 设 置在壳体 (1) 内的控制电路板, 电池仓 (7)、 亮度调节开关 (11)、 控制电路板与 微电流 LED光源 (6) 构成串接回路, 微电流 LED光源 (6) 安装在壳体 (1) 的后端, 电池仓(7)嵌入式安装在所述壳体(1) 的顶面, 且置于该电池仓(7)与微电流 LED 光源 (6) 之间, 所述 " + "、 "-"按键 (4、 5), 分别设置在壳体 (1) 的左侧面或右 侧面的后端。
6、 如权利要求 5所述的带准星的太阳能内红点枪瞄, 其特征在于: 所述微电流 LED光源 (0) 安装在置于所述壳体 (1) 的后端内的可沿壳体 (1) 的横向左右滑动 的滑块 (12) 上, 滑块 (12) 横截面为 "工"字形, 其前端面顶部设置微电流 LED光 源置放槽 (13)、 顶部开设有与自壳体 (1) 顶面内表面向下延伸的限位滑块 (14) 配合的限位滑槽 (15)。
7、 如权利要求 6所述的带准星的太阳能内红点枪瞄, 其特征在于: 所述壳体(1) 底面上设置有位于所述滑块 (12) 下方的下盖 (16), 其上开设有四个三个固定螺孔 (17) 和至少一个排水孔 (18)。
8、 如权利要求 5所述的带准星的太阳能内红点枪瞄, 其特征在于: 所述壳体(1) 底面设置有沿轴向延伸的左右卡轨, 左卡轨上设置有燕尾卡块 (19), 与自右卡轨穿 入的锁紧螺钉 (20) 螺纹联接;
壳体 (1) 通过该左右卡轨与枪管联接套管联接;
该枪管联接套管由内设轴向孔道(43)的支撑管(21)和套设在其外的外壳(22) 构成;
支撑管 (21) 包括四棱柱柱体 (23) 和设置在该四棱柱柱体 (23) 前端的圆形 端面(24),四棱柱柱体(23)的左右侧面的底端各设置有一沿轴向延伸的限位楞(25、 26); 四棱柱柱体 (23) 的底面开设沿轴向延伸且向下突出于该底面的滑槽 (27); 四棱柱柱体 (23) 的顶面前端设置有自圆形端面 (24)、 沿轴向向后延伸的供所 述左右卡轨卡持的固定卡轨 (28), 于该固定卡轨 (28) 的后方设置有穿透轴向孔道 (43) 的第一螺孔 (29);
所述外壳 (22) 的顶面前端开设有轴向延伸的用以使所述左右卡轨插入的孔槽
(30), 于该孔槽 (30) 后方的外壳 (22) 的顶面为沿轴向延伸长条凹槽 (31), 且 该长条凹槽 (31) 上开设有第二螺孔 (32);
外壳 (22) 的底面前端设置有容置所述滑槽 (27) 的下突腔室 (33), 该下突腔 室 (33) 通过螺钉与滑槽 (27) 联接。
9、 如权利要求 8所述的带准星的太阳能内红点枪瞄, 其特征在于: 所述轴向孔 道 (43), 该轴向孔道 (43) 自支撑管 (21) 的前端向后端方向, 内径逐渐减小; 所 述外壳 (22) 的后端为自前向后逐渐变细的圆台形。
10、如权利要求 6所述的带准星的太阳能内红点枪瞄,其特征在于:所述壳体(1) 的右侧面上于所述滑块 (12) 对应处安装水平调节螺钉 (34), 壳体 (1) 的左侧面 与滑块 (12) 之间安装有调节螺旋弹簧 (35), 该调节螺旋弹簧 (35) 套设在限位柱 (36) 上。
11、 如权利要求 10所述的带准星的太阳能内红点枪瞄, 其特征在于: 所述壳体 (1) 内设置有卡套在水平调节螺钉 (34) 上的开口挡圈 (37), 以防止水平调节螺 钉 (34) 在调节螺旋弹簧 (35) 的挤压作用下发生旋转。
12、 如权利要求 6或 10所述的带准星的太阳能内红点枪瞄, 其特征在于: 所述壳 体 (1) 的后端面内设置有触压在滑块 (12) 的后端面上的助力销 (38)、 套设在该 助力销 (38) 上的助力螺旋弹簧 (39) 及与壳体 (1) 螺纹联接并触压在该助力螺旋 弹簧 (39) 的后端部的固定螺钉 (40), 通过该助力销 (38)、 助力螺旋弹簧 (39) 和固定螺钉 (40) 实现对滑块 (12) 的前后限位。
13、 如权利要求 6或 10所述的带准星的太阳能内红点枪瞄, 其特征在于: 所述壳 体 (1) 的后端垂直设置有上下调节螺钉 (41), 其与设置在壳体 (1) 的后端内且与 所述滑块 (12) 的后端面嵌入式联接的调节盘 (42) 螺纹联接。
14、 如权利要求 1或 2或 4所述的太阳能电池供电的含有微电流 LED光源的内红点 枪瞄, 其特征在于: 所述太阳能电池 (2) 嵌入式安装在所述壳体 (1) 的顶面或前 端端面, 且于该太阳能电池 (2) 的顶面设置有保护玻璃。
15、 如权利要求 1或 5所述的太阳能电池供电的含有微电流 LED光源的内红点枪 瞄, 其特征在于: 所述太阳能电池 (2) 是单晶硅、 多晶硅、 硅光电二极管或弱光型 非晶硅太阳能电池中的任一种。
PCT/CN2014/078360 2014-03-01 2014-05-25 太阳能电池供电的含有微电流led光源的内红点枪瞄 WO2015131452A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/122,894 US9982965B2 (en) 2014-03-01 2014-05-25 Inner red-dot gun sighting device powered by solar cell and provided with micro-current LED light source

Applications Claiming Priority (12)

Application Number Priority Date Filing Date Title
CN201420092959.8 2014-03-01
CN201410071368.7 2014-03-02
CN201410071368.7A CN103868409B (zh) 2014-03-02 2014-03-02 一种太阳能供电的内红点瞄具
CN201420092959.8U CN203908408U (zh) 2014-03-01 2014-03-04 一种太阳能供电的内红点枪瞄
CN201420124704.5 2014-03-19
CN201420124716.8U CN203785545U (zh) 2014-03-19 2014-03-19 一种具有太阳能电池的内红点瞄具
CN201420124704.5U CN203785547U (zh) 2014-03-19 2014-03-19 一种太阳能内红点瞄具
CN201420124716.8 2014-03-19
CN201420198358.5 2014-04-23
CN201420198235.1U CN203785548U (zh) 2014-04-23 2014-04-23 一种太阳能供电的卡轨式内红点瞄具
CN201420198235.1 2014-04-23
CN201420198358.5U CN203785549U (zh) 2014-04-23 2014-04-23 一种带准星的太阳能内红点枪瞄

Publications (1)

Publication Number Publication Date
WO2015131452A1 true WO2015131452A1 (zh) 2015-09-11

Family

ID=54062532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/078360 WO2015131452A1 (zh) 2014-03-01 2014-05-25 太阳能电池供电的含有微电流led光源的内红点枪瞄

Country Status (2)

Country Link
US (1) US9982965B2 (zh)
WO (1) WO2015131452A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440939A (zh) * 2016-06-06 2017-02-22 西安华科光电有限公司 一种太阳能内红点瞄具
CN109405645A (zh) * 2018-12-20 2019-03-01 西安华科光电有限公司 一种自适应亮度调节电路及内红点瞄具
CN109839026A (zh) * 2019-04-15 2019-06-04 珠海市敏夫光学仪器有限公司 一种瞄具内管及具有其的红点瞄具
WO2021121070A1 (zh) * 2019-12-16 2021-06-24 珠海市敏夫光学仪器有限公司 一种可充电的瞄具支架及具有其的瞄具

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11680772B2 (en) * 2013-09-06 2023-06-20 Sheltered Wings, Inc. Reticle with fiber optic illumination
WO2015131452A1 (zh) * 2014-03-01 2015-09-11 西安华科光电有限公司 太阳能电池供电的含有微电流led光源的内红点枪瞄
EP3246655B1 (en) * 2015-01-18 2020-05-06 Huanic Corporation Red dot sight
US10408571B2 (en) * 2015-02-05 2019-09-10 Raytheon Canada Limited Switch assembly for optical sight activation
TWD184900S (zh) 2015-06-16 2017-08-11 庇護翼股份有限公司以渦旋&#x5 瞄準器之部分(三)
TWD183231S (zh) * 2015-06-16 2017-05-21 庇護翼股份有限公司以渦旋&#x5 瞄準器之部分(二)
USD819160S1 (en) * 2015-08-20 2018-05-29 Sheltered Wings, Inc. Riflescope
USD795989S1 (en) * 2015-11-18 2017-08-29 Sellmark Corporation Firearm sight
USD895050S1 (en) * 2017-12-20 2020-09-01 Aimpoint Ab Sight
CN110017728A (zh) * 2018-01-08 2019-07-16 西安华科光电有限公司 一种基于目标物的自适应亮度调节电路及内红点瞄具
USD846691S1 (en) * 2018-01-16 2019-04-23 NcSTAR, Inc Reflex sight
US10652964B1 (en) * 2018-02-26 2020-05-12 Energy Bank Incorporated Systems and methods related to photovoltaic direct drive lighting systems
US10107592B1 (en) * 2018-04-11 2018-10-23 Quarton, Inc. Laser target pointer
US11777166B2 (en) 2018-05-03 2023-10-03 Huanic Corporation Multi-gear brightness adjustment circuit board, multi-gear battery holder structure, and multi-gear brightness adjustment assembly
DE112018007954T5 (de) 2018-09-03 2021-06-10 Light Optical Works, Ltd. Punkt-Zielvorrichtung
USD906562S1 (en) * 2018-11-06 2020-12-29 Streamlight, Inc. Lighting device
US10429150B1 (en) * 2019-02-04 2019-10-01 Kruger Optical, Inc. Compact optical sight
CN211696074U (zh) * 2019-06-04 2020-10-16 西安华科光电有限公司 一种开放式机载或车载瞄具
US11236971B2 (en) * 2019-07-10 2022-02-01 Primary Arms, Llc Solar powered cap assembly for optical sighting systems
US11543212B1 (en) * 2019-11-22 2023-01-03 Phillip Letts Indexing scope mount assembly
USD987765S1 (en) * 2020-04-20 2023-05-30 Primary Arms, Llc Optical aiming device
CN111664424B (zh) * 2020-05-18 2022-10-11 深圳市傲雷电商科技股份有限公司 一种手枪枪灯的快拆装置
USD1004816S1 (en) 2020-06-24 2023-11-14 Streamlight, Inc. Lighting device
CN116783447A (zh) * 2020-10-20 2023-09-19 夏尔特银斯公司D.B.A.涡流光学 具有太阳能电池板的观察光学器件
USD954170S1 (en) * 2021-07-27 2022-06-07 Yibing LIU Rifle scope
USD982642S1 (en) * 2022-08-01 2023-04-04 Peng Wang Night vision monocular

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94018842A (ru) * 1994-05-24 1997-05-20 В.К. Салахутдинов Коллиматорный прицел
CN2463779Y (zh) * 2000-09-15 2001-12-05 珠海市敏夫光学仪器有限公司 一种用于瞄准镜持久照明的装置
US20020191401A1 (en) * 2001-06-15 2002-12-19 Yinquan He All-weather automatic illuminating device for sight
CN2809578Y (zh) * 2005-07-26 2006-08-23 齐麟 枪械光学瞄准镜太阳能电源装置
CN102032840A (zh) * 2009-09-29 2011-04-27 西安华科光电有限公司 一种led灯激光瞄具
CN103954173A (zh) * 2014-04-23 2014-07-30 西安华科光电有限公司 一种带准星的太阳能内红点枪瞄

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE464104B (sv) * 1989-05-10 1991-03-04 Aimpoint Ab Parallaxfritt sikte
US5272514A (en) 1991-12-06 1993-12-21 Litton Systems, Inc. Modular day/night weapon aiming system
US6519889B1 (en) * 2000-07-26 2003-02-18 Hensoldt Systemtechnik Gmbh Bright point sight
DE10133302A1 (de) * 2001-07-12 2003-01-23 Hensoldt Systemtechnik Gmbh Visiervorrichtung
US7325354B2 (en) 2004-05-06 2008-02-05 Insight Technology, Inc. Weapon aiming device
TWI258561B (en) 2005-10-26 2006-07-21 Yi-Jung Lee Internal red dot aiming structure and method
TW200744222A (en) * 2006-05-19 2007-12-01 Luo wei hong Natural photonic energy cell and efficiency-enhancing conversion powder
US8656622B2 (en) * 2007-10-11 2014-02-25 Ashbury International Group, Inc. Tactical firearm systems and methods of manufacturing same
KR101059035B1 (ko) * 2008-09-11 2011-08-24 정인 탄도 보정 장치
US8215050B2 (en) * 2008-10-02 2012-07-10 Trijicon, Inc. Optical sight
US20120151816A1 (en) * 2009-01-23 2012-06-21 Jeffrey Kleck Apparatus and method for powering an electronic weapon sight
WO2011075028A1 (en) * 2009-12-18 2011-06-23 Vidderna Jakt & Utbildning Ab Optical aiming device with light sensor for adjusting reticle light intensity
EP2513700B1 (en) * 2009-12-18 2016-08-24 Redring AB Aiming device with a reticle defining a target area at a specified distance
US8899220B2 (en) * 2010-05-14 2014-12-02 II Edward J. MORRIS Archery apparatus, system, and method with automatic device activation
US8544203B2 (en) * 2010-08-23 2013-10-01 Dotshot Ammo, Llc Laser aimed small arms ammunition
US8484881B2 (en) * 2010-09-07 2013-07-16 Range Tactics Llc Method and system for mitigating parallax in gun sights
US20120327247A1 (en) * 2010-09-13 2012-12-27 Mironichev Sergei Y Automated thermal scope set
US8966805B2 (en) * 2011-09-02 2015-03-03 Trijicon, Inc. Reflex sight
WO2013115875A1 (en) * 2011-11-09 2013-08-08 B.E. Meyers & Co., Inc. A laser viewing system
US10054852B2 (en) * 2012-01-27 2018-08-21 Trackingpoint, Inc. Rifle scope, portable telescope, and binocular display device including a network transceiver
US8925238B2 (en) * 2012-03-29 2015-01-06 Norman L. Anderson Firearm sight
US20130333266A1 (en) * 2012-06-16 2013-12-19 Bradley H. Gose Augmented Sight and Sensing System
DE102014002050A1 (de) * 2014-02-17 2015-08-20 Carl Zeiss Sports Optics Gmbh Fernoptisches Gerät, Energiespeichereinheit für ein fernoptisches Gerät, Peripheriegerät und Verfahren zum Bereitstellen einer Kommunikation zwischen einem fernoptischen Gerät und einem Peripheriegerät
WO2015131452A1 (zh) * 2014-03-01 2015-09-11 西安华科光电有限公司 太阳能电池供电的含有微电流led光源的内红点枪瞄
US9163902B1 (en) * 2014-07-30 2015-10-20 NcSTAR.Inc. Sight module
US9752853B2 (en) * 2014-10-13 2017-09-05 Wilcox Industries Corp. Combined reflex and laser sight with elevation macro-adjustment mechanism

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU94018842A (ru) * 1994-05-24 1997-05-20 В.К. Салахутдинов Коллиматорный прицел
CN2463779Y (zh) * 2000-09-15 2001-12-05 珠海市敏夫光学仪器有限公司 一种用于瞄准镜持久照明的装置
US20020191401A1 (en) * 2001-06-15 2002-12-19 Yinquan He All-weather automatic illuminating device for sight
CN2809578Y (zh) * 2005-07-26 2006-08-23 齐麟 枪械光学瞄准镜太阳能电源装置
CN102032840A (zh) * 2009-09-29 2011-04-27 西安华科光电有限公司 一种led灯激光瞄具
CN103954173A (zh) * 2014-04-23 2014-07-30 西安华科光电有限公司 一种带准星的太阳能内红点枪瞄

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106440939A (zh) * 2016-06-06 2017-02-22 西安华科光电有限公司 一种太阳能内红点瞄具
CN106440939B (zh) * 2016-06-06 2023-12-26 西安华科光电有限公司 一种太阳能内红点瞄具
CN109405645A (zh) * 2018-12-20 2019-03-01 西安华科光电有限公司 一种自适应亮度调节电路及内红点瞄具
CN109405645B (zh) * 2018-12-20 2024-03-29 西安华科光电有限公司 一种自适应亮度调节电路及内红点瞄具
CN109839026A (zh) * 2019-04-15 2019-06-04 珠海市敏夫光学仪器有限公司 一种瞄具内管及具有其的红点瞄具
WO2021121070A1 (zh) * 2019-12-16 2021-06-24 珠海市敏夫光学仪器有限公司 一种可充电的瞄具支架及具有其的瞄具

Also Published As

Publication number Publication date
US20170038177A1 (en) 2017-02-09
US9982965B2 (en) 2018-05-29

Similar Documents

Publication Publication Date Title
WO2015131452A1 (zh) 太阳能电池供电的含有微电流led光源的内红点枪瞄
ES2585008T3 (es) Lámpara LED decorativa
CN103954173B (zh) 一种带准星的太阳能内红点枪瞄
WO2016112592A1 (zh) 一种可投射图形标识的led光源及其内红点瞄具
TW200729124A (en) Solid state lighting panels with variable voltage boost current sources
CN103868409B (zh) 一种太阳能供电的内红点瞄具
WO2017211074A1 (zh) 一种太阳能内红点瞄具
US20080074869A1 (en) Lighting apparatus
US9018848B2 (en) Method of powering flashlight tailcaps
CN210141494U (zh) 一种多功能露营灯
CN201622822U (zh) 一种背光调节电路
EP2385749B1 (en) Light emitting diode module with controllable luminosity
CN202125733U (zh) 一种多功能led手电筒
CN213694216U (zh) 一种智能人体感应带充电无眩光led灯
CN209982777U (zh) 双模式切换的led驱动电路
CN101545740B (zh) 一种带红绿发光电控的侧调焦结构
CN203785549U (zh) 一种带准星的太阳能内红点枪瞄
CN205830122U (zh) 门店灯光控制系统
CN203908408U (zh) 一种太阳能供电的内红点枪瞄
CN102625531A (zh) 防水led手电筒控制电路
CN201487581U (zh) 一种调光电筒
CN201153599Y (zh) 一种太阳能照明钥匙圈
CN205299208U (zh) 一种智能led台灯
CN217721528U (zh) 一种便携式可调节光照状态的智能手电筒
CN219499583U (zh) 一种太阳能智能变光灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884452

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15122894

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884452

Country of ref document: EP

Kind code of ref document: A1