WO2015131353A1 - 抽油机拖动电机节能控制设备系统 - Google Patents

抽油机拖动电机节能控制设备系统 Download PDF

Info

Publication number
WO2015131353A1
WO2015131353A1 PCT/CN2014/072920 CN2014072920W WO2015131353A1 WO 2015131353 A1 WO2015131353 A1 WO 2015131353A1 CN 2014072920 W CN2014072920 W CN 2014072920W WO 2015131353 A1 WO2015131353 A1 WO 2015131353A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
switched reluctance
power
reluctance motor
motor
Prior art date
Application number
PCT/CN2014/072920
Other languages
English (en)
French (fr)
Inventor
辛宏
朱天寿
慕立俊
曾亚勤
黄伟
甘庆明
李明
杨海涛
张磊
韩二涛
李明江
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to PCT/CN2014/072920 priority Critical patent/WO2015131353A1/zh
Publication of WO2015131353A1 publication Critical patent/WO2015131353A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/08Reluctance motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/32Arrangements for controlling wound field motors, e.g. motors with exciter coils
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor

Definitions

  • the invention relates to the technical field of a pumping unit of a pumping unit, in particular to an energy-saving control device system for a pumping unit of a pumping unit. Background technique
  • the current pumping unit of the pumping unit mainly uses a three-phase asynchronous motor, which is adapted to the load-changing working condition, which causes the motor Does not match the load.
  • the use of three-phase asynchronous motors as pumping unit drag motors has the following limitations:
  • the pumping unit starts with load, the motor starting current and torque are large, resulting in high installed power and energy consumption of the motor;
  • Embodiments of the present invention provide an energy-saving control device system for a pumping unit of a pumping unit, which is used to solve the problem that the pumping unit properly matches the motor, reduce the energy loss of the motor, and improve the efficiency of the motor.
  • the system includes:
  • the energy-saving controller comprises: an operation display circuit, a control circuit, a drive circuit and a power circuit; wherein, the operation display circuit is connected to the control circuit, the control circuit is connected to the switch reluctance motor, the drive circuit and the power circuit; the drive circuit is connected to the power circuit; the power circuit is connected Switched reluctance motor;
  • the operation display circuit is used for adjusting the rotation speed of the switched reluctance motor to adjust the output power of the switched reluctance motor;
  • the control circuit is used for adjusting the output signal of the operation display circuit to meet the operation requirements of the switched reluctance motor;
  • the drive circuit is used to generate the output signal according to the control circuit Switched reluctance motor drive signal;
  • the power circuit is used for rectifying and driving control of the driving signal of the switched reluctance motor
  • the switched reluctance motor is used to operate according to the power circuit output signal, and feeds back the power signal to the control circuit; the control circuit is further configured to further adjust the operation according to the power circuit output signal and the switched reluctance motor feedback power signal. Used as a display circuit output signal.
  • the switched reluctance motor is a stator, a rotor bipolar salient variable reluctance motor, and the stator and rotor have different numbers of poles.
  • stator and the rotor are each formed by laminating silicon steel sheets, the windings are free of windings and permanent magnets, and the stator has windings.
  • the energy saving controller further includes: a control power source, and the control power source is respectively connected to the control circuit and the power circuit for supplying power to the control circuit and the power circuit.
  • the power circuit is also connected to an external power source.
  • the operational display circuit provides a switched reluctance motor speed adjustment button.
  • the operational display circuit provides one or any combination of a shutdown button, a reversing button, and an electrical parameter display button.
  • the operation display circuit is specifically configured to reduce the rotation speed of the switched reluctance motor when the output power of the switched reluctance motor is higher than the first threshold; and increase the switching magnetic when the output power of the switched reluctance motor is lower than the second threshold The speed of the resistance motor; the first threshold is higher than the second threshold.
  • the energy-saving control device system of the pumping unit of the pumping unit of the present invention adjusts the output power of the switched reluctance motor by adjusting the rotation speed of the switched reluctance motor, which not only solves the problem that the pumping unit is reasonably matched with the motor, but also reduces the motor operation.
  • the current and power of the process reduce the energy loss of the motor and improve the efficiency of the motor, thereby improving the efficiency of the entire mining system.
  • FIG. 1 is a view showing an example of an energy-saving control device system for a pumping unit of a pumping unit according to an embodiment of the present invention
  • FIG. 2 is a diagram showing an example of an energy-saving control device system for a pumping unit of a pumping unit according to an embodiment of the present invention
  • FIG. 3 is a diagram showing an example of an energy-saving control device system for a pumping unit of a pumping unit according to an embodiment of the present invention
  • FIG. 4 is a graph showing an initial state of an angular velocity and an output power of a motor in an embodiment of the present invention
  • Fig. 5 is a graph showing a target state of angular velocity and output power of a motor in an embodiment of the present invention. detailed description
  • an energy-saving control device system for a pumping unit of a pumping unit uses a switched reluctance motor as a pumping unit to drive a motor to solve the problem that the pumping unit is reasonably matched with the motor, and the motor is lowered.
  • FIG. 1 is a diagram showing an example of an energy-saving control device system for a pumping unit of a pumping unit according to an embodiment of the present invention.
  • the energy-saving control device system of the pumping unit of the pumping unit of the embodiment of the invention is mainly composed of a switched reluctance motor 101 and an energy-saving controller 102, wherein the energy-saving controller is used for the switched reluctance motor. Drive control.
  • the switched reluctance motor utilizes the principle of minimum reluctance, that is, the magnetic flux is always closed along the path with the smallest reluctance, and the rotor is rotated by the attraction between the teeth.
  • the coil current is turned on and off, and the magnetic flux state is directly controlled by the switch.
  • the working principle of the switched reluctance motor is completely different from that of the three-phase asynchronous motor, and has the following characteristics:
  • the starting torque is large, the current is low, and the starting torque is 1.5 times of the rated torque, the starting current is 0.3 times of the rated current;
  • the power factor of the switched reluctance motor is close to 1 while the power factor of the three-phase asynchronous motor is related to the load factor, and the maximum value is less than 0.9;
  • controllable parameters are many, the speed control is flexible and convenient, and can be combined with the digital pumping unit. According to the load condition of the pumping unit, different control methods and parameter values are adopted to realize the automatic speed regulation of the motor.
  • the switched reluctance motor is used as the pumping unit to drive the motor, which has the advantages of frequent positive and negative rotation, large starting torque, wide speed regulation range, high power factor, electronic braking, high efficiency and good energy saving effect. Then through the energy-saving controller for intelligent speed regulation, the motor and the load can be matched and matched at every point of the cycle of the switched reluctance motor, so that the pumping unit is in the optimal working state, and the energy loss of the motor is reduced. , to improve the efficiency of the motor and machine mining system.
  • the switched reluctance motor can be a stator and a rotor double salient pole variable reluctance motor, and the number of stators and rotor poles can be different.
  • the stator and the rotor can be laminated by silicon steel sheets, and the rotor can be free of windings and permanent magnets. There can be windings on the stator.
  • 2 is a diagram showing an example of an energy-saving control device system for a pumping unit of a pumping unit according to an embodiment of the present invention.
  • the structure of the switched reluctance motor is shown in detail by taking a three-phase 12/8-pole structure of a switched reluctance motor as an example. As shown in FIG.
  • the rotor 12 in the switched reluctance motor 201, is substantially Al1, B1, C1, A2, B2, C2, al, bl, cl, a2, b2.
  • Pole, C 2 pole take the relative position of the rotor and the starting position in Figure 2, and energize the B-C-A phase windings in turn, the rotor will continuously rotate counterclockwise against the excitation sequence; When the C-B-A phase is energized, the motor will rotate clockwise.
  • the steering of the switched reluctance motor is independent of the direction of the current in the phase winding and depends on the order in which the phase windings are energized.
  • the operating states of the first electronic switch (IGBT) S1 and the second electronic switch (IGBT) S2 of the phase winding By controlling the operating states of the first electronic switch (IGBT) S1 and the second electronic switch (IGBT) S2 of the phase winding, the operating states of the steering reluctance motor 201 such as steering, torque, speed, and braking can be changed. Also shown in FIG. 2 is a switched reluctance motor 201 coupled to the energy saving controller 202.
  • FIG. 3 is a diagram showing an example of an energy-saving control device system for a pumping unit of a pumping unit according to an embodiment of the present invention.
  • the structural composition of the energy-saving controller is shown in detail in Figure 3.
  • the energy-saving controller 310 includes: an operation display circuit 31 1 , a control circuit 312 , a driving circuit 313 , and a power circuit 314 ; wherein the operation display circuit 31 1 is connected to the control circuit 312, and the control circuit 312 is connected to the switched reluctance motor.
  • the operation display circuit is used for adjusting the rotation speed of the switched reluctance motor to adjust the output power of the switched reluctance motor;
  • the control circuit is used for adjusting the output signal of the operation display circuit to meet the operation requirements of the switched reluctance motor;
  • the driving circuit is configured to generate a driving signal of the switched reluctance motor according to the output signal of the control circuit;
  • the power circuit is used for rectifying and driving control of the driving signal of the switched reluctance motor;
  • the switched reluctance motor is used for operating according to the output signal of the power circuit, to the control circuit
  • the power signal is fed back;
  • the control circuit is further configured to further adjust the output signal of the operation display circuit according to the power circuit output signal and the switched reluctance motor feedback power signal.
  • the energy saving controller 310 may further include: a control power source 315 connected to the control circuit 312 and the power circuit 314 for supplying power to the control circuit 312 and the power circuit 314, respectively.
  • the power circuit 314 can also be connected to an external power source 330.
  • the operation display circuit adjusts the rotation speed of the switched reluctance motor according to the principle of intelligent speed regulation to achieve the purpose of adjusting the output power of the switched reluctance motor.
  • the principle of intelligent speed regulation is:
  • the output power of the motor is proportional to the output torque and angular velocity of the motor, namely:
  • the rotation speed of the switched reluctance motor when the output power of the switched reluctance motor is higher than the first threshold, the rotation speed of the switched reluctance motor can be reduced; when the output power of the switched reluctance motor is lower than the second threshold, the rotation speed of the switched reluctance motor is increased; A threshold is above the second threshold.
  • first track the initial state curve of the angular motor speed and output power of a cycle motor see Figure 4
  • adjust the output power of the motor by changing the motor speed, reduce the speed of the high power zone to reduce the output power, and improve the low power zone.
  • the speed is increased to increase the output power, realizing the redistribution of the motor output power and output torque, so that the motor power tends to be stable, straight and the absolute value is low, achieving the purpose of "shaving the peak and filling the valley", that is, achieving the target state curve (see Figure 5), so that the motor can achieve energy saving and efficiency.
  • the operation display circuit can provide a switch reluctance motor speed adjustment button.
  • the operation display circuit can also provide one or any combination of a stop button, a reversing button and an electric parameter display button to realize functions such as starting and stopping the motor and protecting the motor.
  • the operation display circuit can also provide a display panel for real-time viewing of motor parameters and operating conditions.
  • the operation display circuit can generate a signal for adjusting the rotational speed of the switched reluctance motor and output the signal to the control circuit, and the control circuit adjusts the output signal of the operation display circuit to achieve the operation requirement of the switched reluctance motor.
  • the control circuit can adjust the output signal of the operation display circuit according to the external operation requirements and the actual running condition of the motor, and then change the energization time and current of the motor winding through the drive circuit and the power circuit. After adjusting the output signal of the operation display circuit, the control circuit outputs the adjusted signal to the drive circuit.
  • the driving circuit generates a driving signal of the switched reluctance motor according to the output signal of the control circuit, and supplies the signal to the power circuit.
  • the power circuit rectifies and drives the driving signal of the switched reluctance motor, and the output signals of the power circuit are respectively sent to the switched reluctance motor and the control circuit.
  • the switched reluctance motor operates according to the output signal of the power circuit, and feeds back the power signal to the control circuit.
  • the control circuit further adjusts the output signal of the operation display circuit according to the output signal of the power circuit and the feedback power signal of the switched reluctance motor, so that the whole system continuously optimizes the rotation speed of the switched reluctance motor to adjust the output power of the switched reluctance motor to form a self-learning. , adaptive loop circuit.
  • the energy-saving control device system of the pumping unit of the pumping unit of the present invention adjusts the output power of the switched reluctance motor by adjusting the rotational speed of the switched reluctance motor, which not only solves the problem that the pumping unit properly matches the motor, It can also reduce the current and power of the motor running process, reduce the energy loss of the motor, improve the efficiency of the motor, and improve the efficiency of the whole machine mining system.
  • the energy-saving control device system of the pumping unit of the pumping unit of the embodiment of the invention adopts the variable-speed driving mode, which has certain influence on the inertia load in the suspension load, and changes the pumping unit without changing the pumping stroke of the pumping unit.
  • Running acceleration The distribution can reduce the maximum inertia load, increase the minimum inertia load, reduce the fluctuation of the pumping unit load, and protect the pumping unit equipment.
  • the variable speed drive method can reduce the peak value of the crank torque and reduce the rated power of the motor. When implemented, a small power motor can be selected to enable the low power motor to operate under a higher load to achieve energy saving effect.
  • embodiments of the present invention can be provided as a method, system, or computer program product.
  • the present invention can take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • the invention can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

一种抽油机拖动电机节能控制设备系统,包括:开关磁阻电机(320)和节能控制器(310);节能控制器(310)包括:操作显示电路(311)、控制电路(312)、驱动电路(313)和功率电路(314);其中,操作显示电路(311)连接控制电路(312),控制电路(312)连接开关磁阻电机(320)、驱动电路(313)和功率电路(314);驱动电路(313)连接功率电路(314);功率电路(314)连接开关磁阻电机(320);节能控制器(310)通过调节开关磁阻电机(320)的转速来调节开关磁阻电机(320)输出功率。减小了电机能量损耗,提升了电机效率。

Description

抽油机拖动电机节能控制设备系统 技术领域
本发明涉及抽油机拖动电机技术领域, 尤其涉及抽油机拖动电机节能控制设备系 统。 背景技术
由于抽油机的负载是一种带有冲击性的交变负载, 而目前抽油机拖动电机主要是采 用三相异步电机, 该电机适应于负载不变的工况, 这就造成了电机与负载的不匹配。 三 相异步电机用作抽油机拖动电机存在以下几个方面的局限性:
1、 抽油机带载起动, 电机启动电流、 扭矩大, 导致电机装机功率、 能耗偏高;
2、 运行时电流、 扭矩小, 电机负载率及效率偏低;
3、 同一机型, 电机额定功率越大, 电机负载率越低;
4、 电机负载率越低, 导致效率低。
由于上述四个方面的原因, 导致电机长期处于低负荷下运行, 无法达到额定效率范 围, 电机能量损耗高, 从而影响油井整体机采系统效率水平。 发明内容
本发明实施例提供一种抽油机拖动电机节能控制设备系统, 用以解决抽油机合理匹 配电机的问题, 减小电机能量损耗, 提升电机效率, 该系统包括:
开关磁阻电机和节能控制器;
节能控制器包括: 操作显示电路、 控制电路、 驱动电路和功率电路; 其中, 操作显 示电路连接控制电路, 控制电路连接开关磁阻电机、 驱动电路和功率电路; 驱动电路连 接功率电路; 功率电路连接开关磁阻电机;
操作显示电路用于调节开关磁阻电机的转速以调节开关磁阻电机输出功率; 控制电路用于调节操作显示电路输出信号以达到开关磁阻电机运行要求; 驱动电路用于根据控制电路输出信号产生开关磁阻电机驱动信号;
功率电路用于对开关磁阻电机驱动信号进行整流及驱动控制;
开关磁阻电机用于按功率电路输出信号运行, 向控制电路反馈功率信号; 控制电路还用于根据功率电路输出信号及开关磁阻电机反馈功率信号进一步调节操 作显示电路输出信号。
一个实施例中, 开关磁阻电机为定子、 转子双凸极可变磁阻电动机, 且定子、 转子 极数不同。
一个实施例中, 定子、 转子均由硅钢片叠压而成, 转子上无绕组及永磁体, 定子上 有绕组。
一个实施例中, 节能控制器还包括: 控制电源, 控制电源分别与控制电路和功率电 路连接, 用于向控制电路和功率电路提供电源。
一个实施例中, 功率电路还连接外接电源。
一个实施例中, 操作显示电路提供开关磁阻电机转速调节按键。
一个实施例中, 操作显示电路提供起停机按键、 换向按键和电参数显示按键其中之 一或任意组合。
一个实施例中, 操作显示电路具体用于在开关磁阻电机输出功率高于第一阈值时, 降低开关磁阻电机的转速; 在开关磁阻电机输出功率低于第二阈值时, 提高开关磁阻电 机的转速; 第一阈值高于第二阈值。
本发明实施例的抽油机拖动电机节能控制设备系统, 通过调节开关磁阻电机的转速 来调节开关磁阻电机输出功率, 不但可以解决抽油机合理匹配电机的问题, 还可以降低 电机运行过程的电流、 功率, 减小电机能量损耗, 提升电机效率, 进而提升整个机采系 统的效率。 附图说明
为了更清楚地说明本发明实施例中的技术方案, 下面将对实施例描述中所需要使用 的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对 于本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得 其他的附图。 在附图中:
图 1为本发明实施例中抽油机拖动电机节能控制设备系统的示例图;
图 2为本发明实施例中抽油机拖动电机节能控制设备系统的示例图;
图 3为本发明实施例中抽油机拖动电机节能控制设备系统的示例图;
图 4为本发明实施例中电机角速度和输出功率的初始状态曲线图;
图 5为本发明实施例中电机角速度和输出功率的目标状态曲线图。 具体实施方式
为使本发明实施例的目的、 技术方案和优点更加清楚明白, 下面结合附图对本发明 实施例做进一步详细说明。 在此, 本发明的示意性实施例及其说明用于解释本发明, 但 并不作为对本发明的限定。
在本发明实施例中, 提供一种抽油机拖动电机节能控制设备系统, 该系统使用开关 磁阻电机作为抽油机拖动电机, 以解决抽油机合理匹配电机的问题, 挖掘电机降耗空 间。 图 1为本发明实施例中抽油机拖动电机节能控制设备系统的示例图。 如图 1所示, 本发明实施例的抽油机拖动电机节能控制设备系统, 主要由开关磁阻电机 101和节能控 制器 102两部分组成, 其中节能控制器是用于对开关磁阻电机进行驱动控制。
开关磁阻电机利用磁阻最小原理, 即磁通总是沿磁阻最小的路径闭合, 用齿极间的 吸引力拉动转子旋转; 线圈电流通断、 磁通状态直接受开关控制。 开关磁阻电机工作原 理与三相异步电机完全不同, 具有如下特点:
特点 1、 电机效率高
主要体现在两个方面: 一是空载电流小, 二是调速范围广、 效率高;
特点 2: 启动扭矩大、 电流低
与三相异步电机相比启动扭矩大、 电流低, 启动扭矩为额定转矩的 1.5倍时, 启动 电流为额定电流的 0.3倍;
特点 3 : 功率因数高
开关磁阻电机运行时功率因数接近 1 ; 而三相异步电机功率因数与负载率有关, 最 大值 0.9以下;
特点 4: 转速易于控制
可控参数多, 转速控制灵活方便, 可与数字化抽油机结合, 根据抽油机负载情况, 采取不同控制方法和参数值, 实现电机自动调速。
将开关磁阻电机作为抽油机拖动电机, 应用了其频繁正、 反转, 起动转矩大, 调速 范围广, 功率因数高, 具有电子制动, 效率高, 节能效果好等优点, 再通过节能控制器 进行智能调速, 可以对开关磁阻电机每一个冲程周期的每一个点都进行电机与负载的控 制匹配, 进而使抽油机处于最佳工作状态, 实现减小电机能量损耗, 提升电机和机采系 统效率的目的。
具体实施时, 开关磁阻电机可以为定子、 转子双凸极可变磁阻电动机, 且定子、 转 子极数可以不同。 定子、 转子均可以由硅钢片叠压而成, 转子上可以无绕组及永磁体, 定子上可以有绕组。 图 2为本发明实施例中抽油机拖动电机节能控制设备系统的示例 图。 图 2中以开关磁阻电机为三相 12/8极结构为例详细示出开关磁阻电机的结构。 如图 2所示, 在开关磁阻电机 201中, 转子的 12极为 A1极、 B1极、 C 1极、 A2极、 B2极、 C2极、 al极、 bl极、 cl极、 a2极、 b2极、 C2极; 以图 2中定、 转子的相对位置作为起 始位置, 依次给 B—C—A相绕组通电, 转子即会逆着励磁顺序以逆时针方向连续旋转; 反之, 依次给 C—B—A相通电, 则电机会顺时针方向转动。 开关磁阻电机的转向与相绕 组的电流方向无关, 而取决于相绕组通电的顺序。 通过控制相绕组的第一电子开关 ( IGBT) S l、 第二电子开关 (IGBT ) S2的工作状态, 就可以改变开关磁阻电机 201的转 向、 转矩、 转速、 制动等工作状态。 图 2 中还示出了开关磁阻电机 201 与节能控制器 202连接。
图 3为本发明实施例中抽油机拖动电机节能控制设备系统的示例图。 图 3中详细示 出了节能控制器的结构组成。 如图 3所示, 节能控制器 310包括: 操作显示电路 31 1、 控制电路 312、 驱动电路 313和功率电路 314; 其中, 操作显示电路 31 1连接控制电路 312, 控制电路 312连接开关磁阻电机 320、 驱动电路 313和功率电路 314; 驱动电路 313连接功率电路 314; 功率电路 314连接开关磁阻电机 320。
具体实施时, 在节能控制器中, 操作显示电路用于调节开关磁阻电机的转速以调节 开关磁阻电机输出功率; 控制电路用于调节操作显示电路输出信号以达到开关磁阻电机 运行要求; 驱动电路用于根据控制电路输出信号产生开关磁阻电机驱动信号; 功率电路 用于对开关磁阻电机驱动信号进行整流及驱动控制; 开关磁阻电机用于按功率电路输出 信号运行, 向控制电路反馈功率信号; 控制电路还用于根据功率电路输出信号及开关磁 阻电机反馈功率信号进一步调节操作显示电路输出信号。 如图 3所示, 节能控制器 310 还可以包括: 控制电源 315, 控制电源 315分别与控制电路 312和功率电路 314连接, 用于向控制电路 312和功率电路 314提供电源。 实施时, 功率电路 314还可以连接外接 电源 330。
具体实施时, 操作显示电路是根据智能调速原理, 调节开关磁阻电机的转速以达到 调节开关磁阻电机输出功率的目的。 智能调速原理为:
电机的输出功率与电机的输出转矩及角速度成正比关系, 即:
Ρ = Τ χ ω ·,
其中, Ρ为电机的输出功率, 单位为 ^ ; Γ为电机的输出转矩, 单位为 N* ; ω 为角速度, 单位为 rat / s。 由于电机的输出转矩取决于被驱动负荷的大小, 而负荷的大小取决于抽油机井下工 况, 在井下工况确定时, 可以通过调节开关磁阻电机的转速来调节开关磁阻电机输出功 率。 具体实施时, 可以在开关磁阻电机输出功率高于第一阈值时, 降低开关磁阻电机的 转速; 在开关磁阻电机输出功率低于第二阈值时, 提高开关磁阻电机的转速; 第一阈值 高于第二阈值。 举个例子, 先跟踪一个周期电机角速度和输出功率的初始状态曲线 (见 图 4 ) , 通过改变电机转速来调节电机的输出功率, 降低高功率区的转速以降低输出功 率、 提高低功率区的转速以提高输出功率, 实现对电机输出功率和输出转矩的重新分 布, 使电机功率趋于平稳, 平直且绝对值低, 达到 "削峰填谷" 的目的, 即实现目标状 态曲线 (见图 5 ) , 从而使电机达到节能降耗, 效率提升。
具体实施时, 为便于人员操作, 操作显示电路可以提供开关磁阻电机转速调节按 键。 此外, 操作显示电路还可以提供起停机按键、 换向按键和电参数显示按键其中之一 或任意组合, 实现电机启动及停止、 电机保护等功能。 操作显示电路还可以提供显示面 板, 以便实时查看电机参数及工作状态等。
具体实施时, 操作显示电路可以生成调节开关磁阻电机转速的信号并向控制电路输 出该信号, 控制电路对操作显示电路输出信号进行调节, 以达到开关磁阻电机运行要 求。 控制电路可以根据外部操作要求和电机实际运行情况连接调节操作显示电路输出信 号, 后续再通过驱动电路和功率电路, 改变电机绕组的通电时间和电流的大小。 控制电 路在调节操作显示电路输出信号后, 将调节后的信号输出至驱动电路。 驱动电路根据控 制电路输出信号产生开关磁阻电机驱动信号, 并提供给功率电路。 功率电路对开关磁阻 电机驱动信号进行整流及驱动控制, 功率电路的输出信号分别送入开关磁阻电机和控制 电路。 开关磁阻电机按功率电路输出信号运行, 向控制电路反馈功率信号。 控制电路再 根据功率电路输出信号及开关磁阻电机反馈功率信号进一步调节操作显示电路输出信 号, 进而使整个系统不断优化调节开关磁阻电机的转速以调节开关磁阻电机输出功率, 形成一个自学习、 自适应的循环电路。
综上所述, 本发明实施例的抽油机拖动电机节能控制设备系统, 通过调节开关磁阻 电机的转速来调节开关磁阻电机输出功率, 不但可以解决抽油机合理匹配电机的问题, 还可以降低电机运行过程的电流、 功率, 减小电机能量损耗, 提升电机效率, 进而提升 整个机采系统的效率。
本发明实施例的抽油机拖动电机节能控制设备系统, 采用了变速驱动方式, 对悬点 载荷中的惯性载荷有一定影响, 在不改变抽油机冲次的前提下, 改变抽油机运行加速度 的分布, 可降低最大惯性负荷, 提高最小惯性负荷, 降低抽油机载荷的波动程度, 保护 了抽油机设备。 并且, 变速驱动方式能使曲柄转矩峰值降低, 降低电机额定功率, 实施 时可以选用小功率电机, 使小功率电机在较高的负荷下运行, 达到节能效果。
此外, 从功率曲线对比可知 (见图 4、 5 ) , 不仅功率波动大幅度减小, 而且基本消 除了负功, 抽油机减速箱消除了 "背击"现象, 延长减速箱的工作寿命。
本领域内的技术人员应明白, 本发明的实施例可提供为方法、 系统、 或计算机程序 产品。 因此, 本发明可采用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面 的实施例的形式。 而且, 本发明可采用在一个或多个其中包含有计算机可用程序代码的 计算机可用存储介质 (包括但不限于磁盘存储器、 CD-ROM、 光学存储器等) 上实施的 计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、 设备 (系统) 、 和计算机程序产品的流程 图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图和 /或方框图中的每一 流程和 /或方框、 以及流程图和 /或方框图中的流程和 /或方框的结合。 可提供这些计算机 程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的处理 器以产生一个机器, 使得通过计算机或其他可编程数据处理设备的处理器执行的指令产 生用于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能 的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方 式工作的计算机可读存储器中, 使得存储在该计算机可读存储器中的指令产生包括指令 装置的制造品, 该指令装置实现在流程图一个流程或多个流程和 /或方框图一个方框或多 个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算 机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理, 从而在计算机或 其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和 /或方框图一 个方框或多个方框中指定的功能的步骤。
以上所述的具体实施例, 对本发明的目的、 技术方案和有益效果进行了进一步详细 说明, 所应理解的是, 以上所述仅为本发明的具体实施例而已, 并不用于限定本发明的 保护范围, 凡在本发明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应 包含在本发明的保护范围之内。

Claims

权利要求书
1、 一种抽油机拖动电机节能控制设备系统, 其特征在于, 包括:
开关磁阻电机和节能控制器;
节能控制器包括: 操作显示电路、 控制电路、 驱动电路和功率电路; 其中, 操作显 示电路连接控制电路, 控制电路连接开关磁阻电机、 驱动电路和功率电路; 驱动电路连 接功率电路; 功率电路连接开关磁阻电机;
操作显示电路用于调节开关磁阻电机的转速以调节开关磁阻电机输出功率; 控制电路用于调节操作显示电路输出信号以达到开关磁阻电机运行要求; 驱动电路用于根据控制电路输出信号产生开关磁阻电机驱动信号;
功率电路用于对开关磁阻电机驱动信号进行整流及驱动控制;
开关磁阻电机用于按功率电路输出信号运行, 向控制电路反馈功率信号; 控制电路还用于根据功率电路输出信号及开关磁阻电机反馈功率信号进一步调节操 作显示电路输出信号。
2、 如权利要求 1所述的抽油机拖动电机节能控制设备系统, 其特征在于, 开关磁阻 电机为定子、 转子双凸极可变磁阻电动机, 且定子、 转子极数不同。
3、 如权利要求 1所述的抽油机拖动电机节能控制设备系统, 其特征在于, 定子、 转 子均由硅钢片叠压而成, 转子上无绕组及永磁体, 定子上有绕组。
4、 如权利要求 1所述的抽油机拖动电机节能控制设备系统, 其特征在于, 节能控制 器还包括: 控制电源, 控制电源分别与控制电路和功率电路连接, 用于向控制电路和功 率电路提供电源。
5、 如权利要求 4所述的抽油机拖动电机节能控制设备系统, 其特征在于, 功率电路 还连接外接电源。
6、 如权利要求 1所述的抽油机拖动电机节能控制设备系统, 其特征在于, 操作显示 电路提供开关磁阻电机转速调节按键。
7、 如权利要求 1所述的抽油机拖动电机节能控制设备系统, 其特征在于, 操作显示 电路提供起停机按键、 换向按键和电参数显示按键其中之一或任意组合。
8、 如权利要求 1至 7任一项所述的抽油机拖动电机节能控制设备系统, 其特征在 于, 操作显示电路具体用于在开关磁阻电机输出功率高于第一阈值时, 降低开关磁阻电 机的转速; 在开关磁阻电机输出功率低于第二阈值时, 提高开关磁阻电机的转速; 第一 阈值高于第二阈值。
PCT/CN2014/072920 2014-03-05 2014-03-05 抽油机拖动电机节能控制设备系统 WO2015131353A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072920 WO2015131353A1 (zh) 2014-03-05 2014-03-05 抽油机拖动电机节能控制设备系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072920 WO2015131353A1 (zh) 2014-03-05 2014-03-05 抽油机拖动电机节能控制设备系统

Publications (1)

Publication Number Publication Date
WO2015131353A1 true WO2015131353A1 (zh) 2015-09-11

Family

ID=54054362

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072920 WO2015131353A1 (zh) 2014-03-05 2014-03-05 抽油机拖动电机节能控制设备系统

Country Status (1)

Country Link
WO (1) WO2015131353A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106351618A (zh) * 2016-09-18 2017-01-25 淄博京科电气有限公司 强鲁棒性抗干扰采油节能控制器
CN110939410A (zh) * 2019-12-26 2020-03-31 张海涛 一种用于皮带式抽油机的速度保护控制器

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258284A (ja) * 2000-03-14 2001-09-21 Aisin Seiki Co Ltd 運動体制御装置及びモータ制御装置
CN1457142A (zh) * 2002-05-10 2003-11-19 扬州中凌电机技术有限公司 开关磁阻调速电动机控制器
CN102291068A (zh) * 2011-07-14 2011-12-21 中国矿业大学 四象限无位置传感器开关磁阻电机控制装置及方法
CN202997991U (zh) * 2012-11-14 2013-06-12 安徽理工大学 一种煤矿用蓄电池电机车开关磁阻电机调速系统
CN203119818U (zh) * 2012-11-16 2013-08-07 淄博京科电气研究所 抽油机专用开关磁阻电机调速系统
CN103888034A (zh) * 2014-03-05 2014-06-25 中国石油天然气股份有限公司 抽油机拖动电机节能控制设备系统
CN203851071U (zh) * 2014-03-05 2014-09-24 中国石油天然气股份有限公司 抽油机拖动电机节能控制设备系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001258284A (ja) * 2000-03-14 2001-09-21 Aisin Seiki Co Ltd 運動体制御装置及びモータ制御装置
CN1457142A (zh) * 2002-05-10 2003-11-19 扬州中凌电机技术有限公司 开关磁阻调速电动机控制器
CN102291068A (zh) * 2011-07-14 2011-12-21 中国矿业大学 四象限无位置传感器开关磁阻电机控制装置及方法
CN202997991U (zh) * 2012-11-14 2013-06-12 安徽理工大学 一种煤矿用蓄电池电机车开关磁阻电机调速系统
CN203119818U (zh) * 2012-11-16 2013-08-07 淄博京科电气研究所 抽油机专用开关磁阻电机调速系统
CN103888034A (zh) * 2014-03-05 2014-06-25 中国石油天然气股份有限公司 抽油机拖动电机节能控制设备系统
CN203851071U (zh) * 2014-03-05 2014-09-24 中国石油天然气股份有限公司 抽油机拖动电机节能控制设备系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106351618A (zh) * 2016-09-18 2017-01-25 淄博京科电气有限公司 强鲁棒性抗干扰采油节能控制器
CN110939410A (zh) * 2019-12-26 2020-03-31 张海涛 一种用于皮带式抽油机的速度保护控制器

Similar Documents

Publication Publication Date Title
CN104242521B (zh) 一种双模电动发电机
JP2011236056A5 (zh)
US20170093257A1 (en) Rotary electric machine and rotary electric machine controller
CN107925370B (zh) 用于电机的制动能量回收系统及方法
CN201754571U (zh) 新型开关磁阻电机伺服系统
JP5641660B2 (ja) ブラシレスモータの制御方法及び制御システム
JP5624873B2 (ja) 空気調和機
CN105763121B (zh) 面向变负载超高速磨削的同步电主轴加加速强磁控制方法
CN101917086B (zh) 电机装置
KR20080103846A (ko) 모터의 운전제어장치 및 방법
CN103618480A (zh) 一种磁场矢量控制软起动器及其控制方法
JP2013132200A (ja) モータ制御装置
WO2015131353A1 (zh) 抽油机拖动电机节能控制设备系统
CN203851071U (zh) 抽油机拖动电机节能控制设备系统
Peter Modeling & Torque Ripple Minimization of Switched Reluctance Motor for High Speed Applications
CN106549621A (zh) 一种电子变极的感应电机控制系统及其控制方法
CN116961350A (zh) 一种同步电动装置及其起动方法
Sozer et al. Advanced control techniques for switched reluctance machine drives in emerging applications
JP2017507631A (ja) スイッチドリラクタンスモータの始動方法
CN103888034B (zh) 抽油机拖动电机节能控制设备系统
CN104113254B (zh) 一种调压调磁电机控制方法
CN104269985A (zh) 适用于机床主轴驱动的直流无刷永磁同步电机及其控制器
Kumar et al. Sensorless speed control of brushless doubly-fed reluctance machine for pump storage and wind power application
CN103956944A (zh) 永磁同步电机带速启停控制系统及控制方法
JP2019083594A5 (zh)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14885034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14885034

Country of ref document: EP

Kind code of ref document: A1