WO2015131333A1 - Microcapsule amorcée par des ions chlore et son procédé de fabrication - Google Patents

Microcapsule amorcée par des ions chlore et son procédé de fabrication Download PDF

Info

Publication number
WO2015131333A1
WO2015131333A1 PCT/CN2014/072864 CN2014072864W WO2015131333A1 WO 2015131333 A1 WO2015131333 A1 WO 2015131333A1 CN 2014072864 W CN2014072864 W CN 2014072864W WO 2015131333 A1 WO2015131333 A1 WO 2015131333A1
Authority
WO
WIPO (PCT)
Prior art keywords
chloride ion
microcapsule
chloride
preparation
steel bar
Prior art date
Application number
PCT/CN2014/072864
Other languages
English (en)
Chinese (zh)
Inventor
朱光明
邢峰
何永兴
汤皎宁
董必钦
王险峰
韩宁旭
Original Assignee
深圳大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学 filed Critical 深圳大学
Priority to PCT/CN2014/072864 priority Critical patent/WO2015131333A1/fr
Publication of WO2015131333A1 publication Critical patent/WO2015131333A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/10Coating or impregnating
    • C04B20/1018Coating or impregnating with organic materials
    • C04B20/1029Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/26Corrosion of reinforcement resistance

Definitions

  • the invention relates to the field of concrete engineering, in particular to the field of concrete microcapsules, in particular to a chloride ion triggered microcapsule and a preparation method thereof.
  • Reinforced concrete is the most widely used material in civil engineering, and its durability determines the service life and construction benefits.
  • the most important factor affecting the durability of concrete materials is steel corrosion.
  • the intrusion and penetration of chloride ions is the main cause of corrosion of concrete reinforcement. Therefore, slowing the penetration of chloride ions into concrete and blocking its diffusion path to the surface of the steel bar is an effective measure to improve the durability of the reinforced concrete structure under the above-mentioned conditions of use.
  • Chloride ion absorbers are usually inorganic substances such as active magnesium aluminum hydrotalcite, active aluminum oxide, calcium hydroxide, sodium metaaluminate (NaAlO 2 ), tricalcium aluminate (3CaO•Al 2 O 3 ), aluminate. Calcium powder (CaO•2Al 2 O 3 and CaO•Al 2 O 3 ), ettringite, and the like.
  • rust inhibitors such as nitrite, phosphate, lithium hydroxide, lithium nitrate, amino alcohol or amino alcohol, fatty acid esters, organosiloxanes, aromatic salts, phosphorous organic compounds, fatty acids.
  • the chloride ion absorbent or the rust inhibitor is a water-soluble solution or a solid powder, and they are directly incorporated into the concrete, and are easily dissolved and lost in the cement pulping stage.
  • the technical solution adopted by the present invention to achieve the above object is to provide a chloride ion-triggered microcapsule, the wall material of the microcapsule comprising a polymer embedded with cuprous chloride particles, the core material of the microcapsule containing chloride ion Absorbent and / or steel bar rust inhibitor.
  • the invention also provides a method of preparing the chloride ion triggered microcapsules, comprising the steps of:
  • Step 1 dissolving the polymer as the wall material in a good organic solvent to obtain a wall polymer solution, and dispersing the cuprous chloride in the wall polymer solution to obtain a cuprous chloride suspension;
  • Step 2 adding a chloride ion absorbent and/or a steel bar rust inhibitor and a water-in-oil surfactant to the cuprous chloride suspension;
  • Step 3 The mixture obtained in the second step is made into microcapsules.
  • the beneficial effects of the invention are as follows: (1) using a chloride ion absorbent and/or a steel bar rust inhibitor as a core material to form microcapsules and then incorporating them into concrete to prevent chloride ion absorbent and/or steel bars in the cement pulping stage. Dissolution and loss of rust inhibitors; (2) These microcapsules are dispersed in concrete, can be lurked for a long time in a chlorine-free environment after solidification, will not be lost or react, and can be stably and persistently present; (3) when chlorine is present The water penetrates into the concrete.
  • the capsule wall dissolves to release the contents of the capsule, that is, the chloride ion absorbent or the rust inhibitor will flow out or be immersed in water to achieve the purpose of removing chlorine or preventing rust.
  • the reaction product can block the channel of chloride ion corrosion, slow the penetration of chloride ions into the concrete, and block the arrival of the chloride surface.
  • the diffusion route; (5) The preparation method is simple, and large-scale industrial production can be realized.
  • Example 1 is an SEM image of a chloride ion-triggered microcapsule of Example 1 of the present invention
  • Example 2 is an SEM image of a chloride ion-triggered microcapsule of Example 2 of the present invention
  • Figure 3 is a SEM image of a chloride ion-triggered microcapsule of Example 2 of the present invention.
  • the chloride ion-triggered microcapsule comprises a polymer material embedded with cuprous chloride particles, and the core material contains a chloride ion absorbent and/or a steel bar rust inhibitor.
  • the particle diameter of the microcapsule wall material cuprous chloride particles is between 0.1 and 100 ⁇ m
  • the core material is a solid particle containing a chloride ion absorbent and/or a steel bar rust inhibitor or a chloride ion absorbent and / or an aqueous solution of steel rust inhibitor.
  • the microcapsule core material preferably contains an aqueous solution of a chloride ion absorbent and/or a steel bar rust inhibitor which is susceptible to flow migration.
  • the chloride ion absorbent is preferably active magnesium aluminum hydrotalcite, active aluminum oxide, calcium hydroxide, sodium metaaluminate (NaAlO 2 ), tricalcium aluminate (3CaO•Al 2 O 3 ), calcium aluminate powder ( CaO•2Al 2 O 3 and CaO•Al 2 O 3 ), trisulfide type sulphoaluminate (AFt, 3CaO•Al 2 O 3 •3CaSO 4 •30 ⁇ 32H 2 O), monosulfide type sulphoaluminate ( a mixture of one or more of AFm, 3CaO•Al2O 3 •CaSO 4 •nH 2 O), preferably active magnesium aluminum hydrotalcite or active aluminum oxide, said “activity” means that it has a large ratio The surface area can adsorb a large amount of chloride ions.
  • the steel bar rust inhibitor is preferably calcium nitrite, sodium nitrite, sodium monofluorophosphate, lithium hydroxide, lithium nitrate, aminomethylpropanol (AMP), triethanolamine (TEA), dimethylethanolamine (DMEA), Fatty acid ester rust inhibitor RHY702, triethoxysilane (TES), sodium benzoate, ammonium benzoate, N-tetramethylenephosphoramide (TTP), hexamethylphosphoric triamide (HMPA), fatty acid amide, Triethanolamine Borate), diethylenetriamine-thiourea condensate (DETA-TU), sodium polynaphthalene sulfonate (Sodium Mixture of one or more of poly[(naphthaleneformaldehyde)sulfonate]).
  • the polymer constituting the wall material is an organic polymer soluble in an organic solvent but insoluble in water, preferably polystyrene (PS), polymethyl methacrylate (PMMA), polyvinyl chloride (PVC), Chlorinated polyvinyl chloride (CPVC), polyvinyl acetate (PVAc), polyvinyl chloride vinyl acetate (PVCA), polyurea, polyethylene (PE), polypropylene (PP), polybutene (PB), poly Isobutylene (PIB), poly 4-methylpentene (PMP), poly- ⁇ -methylstyrene (PMS), poly-4-methyl-1-pentene (TPX), polyvinyl formal (PVFM) , polyvinyl carbazole (PVK), polyvinyl butyral (PVB), phenolic resin (PF), urea formaldehyde resin (UF), melamine-formaldehyde resin (MF), melamine-phenolic resin (MPF), furan - Form
  • Step 1 dissolving the polymer as the wall material in a good organic solvent to obtain a wall polymer solution, and dispersing the cuprous chloride in the wall polymer solution to obtain a cuprous chloride suspension;
  • Step 2 adding a chloride ion absorbent and/or a steel bar rust inhibitor and a water-in-oil surfactant to the cuprous chloride suspension;
  • Step 3 The mixture obtained in the second step is made into microcapsules.
  • the method of preparing the microcapsules in the third step can form the product microcapsules by dropping the mixture prepared in the second step into the extract to cause the solvent of the wall polymer solution to be extracted; or spraying the obtained mixture Drying allows the solvent to be evaporated to yield the product.
  • the extract is a poor solvent for the wall polymer and is insoluble in water.
  • the chloride ion absorbent and/or the steel bar rust inhibitor in the second step may be a solid particle or an aqueous solution.
  • the solid particles are spherical solid particles having a particle diameter of 0.1 to 10 mm by granulating the powder, and the chloride ion absorbent and the steel bar rust inhibitor are solute when the chloride ion absorbent and/or the steel bar rust inhibitor are aqueous solutions.
  • the content is not less than 10% by weight, and the organic good solvent and the poor solvent of the extract used in the preparation process are insoluble in water.
  • the amount of the water-in-oil surfactant is not more than 15% by weight of the total amount of the wall polymer solution, and the solid amount of the cuprous chloride particles is not less than 20% by weight of the total amount of the cuprous chloride suspension.
  • steps one and two should be carried out in an inert atmosphere or a reducing atmosphere, or a reducing agent may be added to the polymer solution and the extract to prevent oxidation of cuprous chloride.
  • the chloride ion-triggered microcapsules produced by the present invention can automatically release the contents in an aqueous solution containing chloride ions, but not in an aqueous solution without chloride ions.
  • the dissolution loss in the cement pulping process is avoided, the durability of the concrete is enhanced, and the preparation method is simple, and large-scale industrial production can be realized.
  • the calcium hydroxide powder was mixed with 30% by weight of cellulose acetate, and a small amount of water was added to prepare a relatively dry paste, and an granule having an average particle diameter of about 500 ⁇ m was produced by an extrusion type granulator.
  • PS Polystyrene
  • dichloroethane were weighed in a mass ratio of 1:5, mixed and stirred to obtain a PS solution, and then a cuprous chloride powder having an average particle diameter of 10 ⁇ m was weighed according to 20% by mass of the polystyrene. Add to the PS solution, mix and stir to obtain a PS suspension of cuprous chloride.
  • the calcium hydroxide particles were mixed with the cuprous chloride-containing PS suspension at a mass ratio of 10:3, and spray-dried under a N 2 atmosphere to obtain a PS-coated calcium hydroxide microparticle with a cuprous chloride particle embedded in the wall of the capsule.
  • Capsules as shown in Figure 1.
  • the emulsion was dropped from a dropper having a diameter of 200 ⁇ m into 5 L of cyclohexane by a high pressure peristaltic pump to obtain microcapsules of PS coated sodium monofluorophosphate aqueous solution in which the cuprous chloride particles were embedded, as shown in FIGS. 2 and 3. Shown.
  • the BASF GP-22 acrylonitrile/butadiene/styrene copolymer (ABS) was dissolved in dichloroethane to prepare a 5 wt% solution, and a chlorination with an ABS mass of 30% and an average particle size of 8 ⁇ m was added.
  • the cuprous powder is further added with a 5% mass% styrene-maleic anhydride random copolymer SMA-8000 as a surfactant and uniformly mixed to obtain a cuprous chloride suspension.
  • Polypropylene PP F401 fine powder is dissolved in ortho-xylene at 140 ° C, and is formulated into a 5 wt% PP solution, and 30% of a cuprous chloride fine powder having an average particle diameter of 10 ⁇ m and a 15% by mass of ascorbic acid palmitic acid having a PP mass of 15% are added.
  • the ester is used as a reducing agent and uniformly mixed to obtain a cuprous chloride suspension. 4L of this suspension and 1kg of calcium aluminate powder particles with a particle size of 1mm were sent to a fluidized bed at 160 °C for spray drying to obtain micro-particles of PP-coated calcium aluminate powder with cuprous chloride particles embedded in the wall. capsule.
  • PET Polyethylene terephthalate
  • a mixed solvent of phenol and tetrachloroethane (1:2 by volume) was heated and dissolved in a mixed solvent of phenol and tetrachloroethane (1:2 by volume) to prepare a 10 wt% solution, and the PET mass was 30%.
  • a fine powder of cuprous chloride having an average particle diameter of 10 ⁇ m is uniformly mixed to obtain a suspension of cuprous chloride. 2L of this suspension was mixed with 1L of hexamethylphosphoric triamide (HMPA), and dropped into 4L of cyclohexane with a dropper of 1 mm in diameter to obtain PET-coated HMPA with cuprous chloride particles embedded in the wall.
  • HMPA hexamethylphosphoric triamide

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing Of Micro-Capsules (AREA)

Abstract

La présente invention concerne une microcapsule amorcée par des ions chlore et un procédé pour la préparer. Le matériau formant la paroi de la microcapsule est un polymère solide intégrant des particules solides de chlorure de cuivre et le matériau formant le noyau contient un matériau absorbant les ions chlore et/ou un mélange inhibant la corrosion des barres d'acier de renfort. Le procédé de fabrication de ladite microcapsule comprend les étapes consistant à mettre en suspension le chlorure de cuivre dans une solution polymère formant le matériau de la paroi, à mélanger cette solution avec le matériau formant le noyau, à faire précipiter le polymère sur la surface du matériau formant le noyau par séchage par pulvérisation ou extraction au solvant, de manière à obtenir la microcapsule.
PCT/CN2014/072864 2014-03-04 2014-03-04 Microcapsule amorcée par des ions chlore et son procédé de fabrication WO2015131333A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072864 WO2015131333A1 (fr) 2014-03-04 2014-03-04 Microcapsule amorcée par des ions chlore et son procédé de fabrication

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/072864 WO2015131333A1 (fr) 2014-03-04 2014-03-04 Microcapsule amorcée par des ions chlore et son procédé de fabrication

Publications (1)

Publication Number Publication Date
WO2015131333A1 true WO2015131333A1 (fr) 2015-09-11

Family

ID=54054346

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/072864 WO2015131333A1 (fr) 2014-03-04 2014-03-04 Microcapsule amorcée par des ions chlore et son procédé de fabrication

Country Status (1)

Country Link
WO (1) WO2015131333A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735485A (zh) * 2021-09-07 2021-12-03 青岛理工大学 用于混凝土的环境复响应同质膨胀型自修复微胶囊及其制备方法
CN114920493A (zh) * 2022-06-22 2022-08-19 水利部交通运输部国家能源局南京水利科学研究院 一种pH自免疫型水滑石阻锈剂及其制备方法和应用
CN115466067A (zh) * 2022-09-26 2022-12-13 郑州大学 一种复合干凝胶缓释型氯离子固化剂及其制备、应用
CN115650630A (zh) * 2022-09-27 2023-01-31 深圳大学 一种复配阻锈微胶囊及其制备方法
CN118063173A (zh) * 2024-04-24 2024-05-24 浙江大学 一种具有氯离子固化能力的低收缩海水混凝土及制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289299A (zh) * 2008-05-20 2008-10-22 深圳大学 使用聚脲树酯高分子微胶囊的自修复混凝土及其制造方法
CN101792279A (zh) * 2010-02-08 2010-08-04 徐运海 混凝土抗硫酸盐侵蚀剂的配方及制备工艺
CN102992673A (zh) * 2012-12-11 2013-03-27 同济大学 一种地下结构混凝土化学微胶囊抗氯盐腐蚀系统
CN103496874A (zh) * 2013-09-16 2014-01-08 深圳大学 一种具有化学触发功能的化学自修复混凝土及其制备方法
CN103833256A (zh) * 2014-03-04 2014-06-04 深圳大学 氯离子触发的微胶囊及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101289299A (zh) * 2008-05-20 2008-10-22 深圳大学 使用聚脲树酯高分子微胶囊的自修复混凝土及其制造方法
CN101792279A (zh) * 2010-02-08 2010-08-04 徐运海 混凝土抗硫酸盐侵蚀剂的配方及制备工艺
CN102992673A (zh) * 2012-12-11 2013-03-27 同济大学 一种地下结构混凝土化学微胶囊抗氯盐腐蚀系统
CN103496874A (zh) * 2013-09-16 2014-01-08 深圳大学 一种具有化学触发功能的化学自修复混凝土及其制备方法
CN103833256A (zh) * 2014-03-04 2014-06-04 深圳大学 氯离子触发的微胶囊及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113735485A (zh) * 2021-09-07 2021-12-03 青岛理工大学 用于混凝土的环境复响应同质膨胀型自修复微胶囊及其制备方法
CN114933441A (zh) * 2021-09-07 2022-08-23 青岛理工大学 用于混凝土的环境复响应同质膨胀型自修复微胶囊及其制备方法
CN114920493A (zh) * 2022-06-22 2022-08-19 水利部交通运输部国家能源局南京水利科学研究院 一种pH自免疫型水滑石阻锈剂及其制备方法和应用
CN114920493B (zh) * 2022-06-22 2023-03-28 水利部交通运输部国家能源局南京水利科学研究院 一种pH自免疫型水滑石阻锈剂及其制备方法和应用
CN115466067A (zh) * 2022-09-26 2022-12-13 郑州大学 一种复合干凝胶缓释型氯离子固化剂及其制备、应用
CN115650630A (zh) * 2022-09-27 2023-01-31 深圳大学 一种复配阻锈微胶囊及其制备方法
CN115650630B (zh) * 2022-09-27 2024-04-16 深圳大学 一种复配阻锈微胶囊及其制备方法
CN118063173A (zh) * 2024-04-24 2024-05-24 浙江大学 一种具有氯离子固化能力的低收缩海水混凝土及制备方法

Similar Documents

Publication Publication Date Title
WO2015131333A1 (fr) Microcapsule amorcée par des ions chlore et son procédé de fabrication
CN103833256B (zh) 氯离子触发的微胶囊及其制备方法
US8778216B2 (en) Slow release anti-icing material for bituminous pavement and preparation method thereof
CN106380111B (zh) 一种阻锈剂缓释微胶囊及其制备方法
WO2004101463B1 (fr) Compositions et procede de traitement de la perte de circulation
CA2677778C (fr) Accelerateur de prise et de durcissement pour des liants hydrauliques et procede de fabrication
JP2007531758A5 (fr)
CN103739223B (zh) 一种缓释微胶囊型混凝土外加剂及其制备方法
CN103998392A (zh) 高pH值下具有受控的释放特性的活性组分的紫胶涂覆颗粒及其制造方法和用途
BRPI0707542A2 (pt) composições de limpeza de roupas com agentes de melhoria lìquidos encapsulados
CN103962072B (zh) 一种化学触发微胶囊及其制备方法
CN103962073B (zh) 一种化学触发微胶囊及其制备方法
US9145336B2 (en) Self-repairing composites responsive in the presence of an aqueous medium
Gretz et al. Hybrid additives for construction applications, fabricated through layer-by-layer adsorption of polycondensate type superplasticizers on latex templates
CN104016606B (zh) 一种混凝土防腐剂
JP2001505958A (ja) 銅および貴金属のたい積浸出の集塊補助として用いられるポリマーの組み合わせ
WO2015074341A1 (fr) Procédé de préparation de microcapsule en époxy par utilisation de résine phénolique en tant que matériau paroi
JP4593383B2 (ja) 防食性複合体およびその製法
CN115417618B (zh) 阴离子固化膨胀微胶囊及其制备方法与应用
CN107032700A (zh) 一种硅烷改性聚合物混凝土
CN113943122B (zh) 一种有效防止喷射混凝土析晶堵塞排水系统的无碱液体速凝剂及其制备方法
CN105366980A (zh) 一种喷雾干燥制备聚合物包裹阻锈物微胶囊的方法
CN103570308B (zh) 一种加速凝结硬化的大掺量粉煤灰绿色高性能混凝土
CN114806506B (zh) 一种抑尘材料及其制备方法和应用
CN104529224A (zh) 一种混凝土改性剂

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884298

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04.05.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 14884298

Country of ref document: EP

Kind code of ref document: A1