WO2015129891A1 - Organic electroluminescent element and method and device for manufacturing same - Google Patents

Organic electroluminescent element and method and device for manufacturing same Download PDF

Info

Publication number
WO2015129891A1
WO2015129891A1 PCT/JP2015/055971 JP2015055971W WO2015129891A1 WO 2015129891 A1 WO2015129891 A1 WO 2015129891A1 JP 2015055971 W JP2015055971 W JP 2015055971W WO 2015129891 A1 WO2015129891 A1 WO 2015129891A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic light
substrate
light emitting
emitting layer
layer
Prior art date
Application number
PCT/JP2015/055971
Other languages
French (fr)
Japanese (ja)
Inventor
高嶋 伸彦
福田 和浩
伸明 高橋
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016505341A priority Critical patent/JPWO2015129891A1/en
Publication of WO2015129891A1 publication Critical patent/WO2015129891A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/162Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using laser ablation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • H10K50/822Cathodes characterised by their shape
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations

Definitions

  • the present invention relates to an organic electroluminescence element, a manufacturing method thereof, and a manufacturing apparatus thereof.
  • organic EL elements The mainstream of current organic electroluminescence elements (hereinafter sometimes referred to as “organic EL elements”) is a form in which a light emitting element is formed on a glass substrate.
  • organic EL elements When an organic EL element is formed on a glass substrate, it is formed by laminating various functional films by using a single glass substrate to move between various film forming apparatuses with a robot or the like.
  • a film-formation process in a roll shape is used when a functional film is formed on the entire surface, and since it can be continuously processed, it is used as an efficient and highly productive process method. Therefore, even when manufacturing an organic EL element, if a film forming method in a roll shape can be applied, the productivity is good, and it is possible to manufacture a large amount at a low cost. It is being advanced.
  • Patent Document 1 discloses a method of forming a pattern using a pattern forming mask that moves in synchronization with a support that is continuously conveyed.
  • Patent Document 2 discloses a method of forming a strip-shaped pattern thin film by using a wire-shaped mask while moving it on a strip-shaped substrate that runs continuously.
  • Patent Document 3 discloses a method for finely patterning an organic EL element using a laser ablation method. After the formation of the cathode / organic compound layer / anode structure, laser beam irradiation is performed from the cathode side to perform fine processing.
  • Patent Document 1 it is possible to form an arbitrary pattern shape, but positioning and the like are difficult when forming a multilayer film. Further, in the method disclosed in Patent Document 2, it is difficult to form a pattern in a direction orthogonal to the transport direction, and the pattern shape is limited.
  • Patent Document 3 is not limited as in Patent Document 1 and Patent Document 2, but does not disclose a method of forming the anode extraction electrode and the cathode extraction electrode in a specific pattern shape.
  • An object of the present invention is to provide an organic EL device having an organic light emitting layer, an anode extraction electrode and a cathode extraction electrode having a simple structure and a pattern (shape and position) with a high degree of freedom, a method for producing the same, and a method for producing the same. Is to provide a device.
  • the inventors of the present invention have studied about the solution of the above-mentioned problem, and can solve the above-mentioned problem by combining the process of forming each layer of the organic EL element and the process of forming a pattern by a laser. I found out.
  • the present invention has the following configuration.
  • a first step of forming a patterned anode on the substrate; a second step of forming a patterned anode extraction electrode and a patterned cathode extraction electrode on the substrate; and part of the anode extraction electrode A third step of forming a patterned insulating layer on the substrate, a fourth step of forming an organic light emitting layer on the substrate, the anode, the anode extraction electrode, the cathode extraction electrode, and the insulation layer; A part of the organic light-emitting layer on the cathode extraction electrode, a part of the organic light-emitting layer on the insulating layer, and a part of the organic light-emitting layer on the substrate are removed by a laser and surrounded by a closed line shape.
  • the eighth step at least one of the organic light emitting layer, the cathode, the sealing layer, and the protective layer on each part of the substrate, the anode extraction electrode, the insulating layer, and the cathode extraction electrode. 3.
  • An apparatus for forming a patterned anode on a substrate, an apparatus for forming a patterned anode extraction electrode and a patterned cathode extraction electrode on the substrate, and an insulating layer patterned on the substrate An apparatus for forming, an apparatus for forming an organic light emitting layer on the substrate, an apparatus for removing a part of the organic light emitting layer by a laser, an apparatus for forming a cathode on the organic light emitting layer, and the substrate At least one of a device for forming a sealing layer on the substrate and a device for forming a protective layer on the substrate, and at least one of the organic light emitting layer, the cathode, the sealing layer, and the protective layer on the substrate.
  • the apparatus for manufacturing an organic electroluminescence element having an apparatus for removing a portion.
  • An organic electroluminescence element configured by laminating an anode, an anode extraction electrode, a cathode extraction electrode, an insulating layer, an organic light emitting layer, and a cathode on a substrate, wherein the organic light emitting layer has a closed line shape
  • An organic electroluminescence device wherein the upper surface and the periphery of the organic light emitting layer are sealed with the cathode, and at least one of a sealing layer and a protective layer is formed on the upper surface of the cathode.
  • an organic EL element having a simple structure and having an organic light emitting layer, an anode extraction electrode, and a cathode extraction electrode formed in a pattern with a high degree of freedom is provided. can do.
  • the organic EL device of the present invention has a simple structure, can be manufactured by a simple manufacturing method, and has a structure that is not easily affected by the outside world.
  • FIG. 1 is a schematic plan view of an organic EL element according to a first embodiment of the present invention and a schematic cross-sectional view of an extraction electrode portion thereof.
  • An organic EL device manufacturing apparatus includes an apparatus for forming a patterned anode on a substrate, a patterned anode extraction electrode and a patterned cathode extraction electrode on the substrate.
  • FIG. 1A to FIG. 1C are schematic cross-sectional views of an organic EL element manufacturing apparatus according to the first embodiment of the present invention.
  • the organic EL element manufacturing apparatus 100 according to the first embodiment includes a chamber 101 provided with a device for feeding out a long substrate, a chamber 102 provided with a device for forming an organic light emitting layer on the substrate, and a part of the organic light emitting layer.
  • a chamber 103 having a device for removing by a laser, a chamber 104 having a device for forming a cathode on the organic light emitting layer, a chamber 105 having a device for forming a sealing layer on the substrate, and a protective layer on the substrate.
  • a chamber 106 having a forming apparatus and a substrate winding device obtained, a chamber 107 having an apparatus for removing a part of the organic light emitting layer, the cathode, the sealing layer, and the protective layer on the substrate, and cutting the substrate
  • a chamber 108 provided with a device for performing the above.
  • an apparatus for forming a patterned anode on a substrate which is related to the first to third steps of the method of manufacturing an organic EL element according to the first embodiment of the present invention described later, and a pattern formed on the substrate.
  • the apparatus for forming the anode extraction electrode and the patterned cathode extraction electrode and the apparatus for forming the patterned insulating layer on the substrate are not shown. These three devices are devices corresponding to the previous stage of the device shown in FIG.
  • the chamber 105 in FIG. 1A shows both an apparatus for forming a sealing layer on a substrate, and the chamber 106 shows an apparatus for forming a protective layer on a substrate.
  • the chamber 107 in FIG. 1B an apparatus for removing a part of the organic light emitting layer, the cathode, the sealing layer, and the protective layer on the substrate is illustrated.
  • the chamber 107 may include a device for removing a part of the organic light emitting layer, the cathode, and the sealing layer on the substrate, or a part of the organic light emitting layer, the cathode, and the protective layer on the substrate. You may provide the apparatus which removes.
  • the chambers 101 to 108 can be evacuated, and can be processed under vacuum or atmospheric pressure as necessary. As will be described later, in the chambers 101 to 106, processing is continuously performed on a long substrate, and it is preferable that each chamber be in the same temperature, humidity, pressure, and gas environment, It is particularly preferable to be under vacuum. Moreover, it is preferable that the chamber 107 and the chamber 108 are under atmospheric pressure from the property of processing.
  • the long substrate 1 is unwound from the take-up roll 2 and is continuously processed in each chamber from the chamber 102 to the chamber 106.
  • a buffering device may be provided between the chambers so that the substrate can be transported smoothly.
  • an organic EL element can be manufactured with high productivity by a roll-to-roll method.
  • the winding roll 3 wound up after various processing in the chamber 106 is processed in the chamber 107 by a device for removing a part of the organic light emitting layer, the cathode, the sealing layer, and the protective layer on the substrate. It is wound up as a roll 4. Thereafter, the substrate is cut at a predetermined position in the chamber 108 to obtain the product 5 of the organic EL element.
  • the organic EL device manufacturing method according to the first embodiment includes a first step of forming a patterned anode on a substrate, and a patterned anode extraction electrode and a patterned cathode extraction electrode on the substrate.
  • a fourth step, a part of the organic light emitting layer on the cathode extraction electrode, a part of the organic light emitting layer on the insulating layer, and a part of the organic light emitting layer on the substrate are removed by a laser to form a closed line shape
  • a fifth step of forming an organic light emitting layer surrounded by the organic light emitting layer, a cathode extraction electrode from which the organic light emitting layer has been removed by the laser, an insulating layer from which the organic light emitting layer has been removed by the laser, and an organic light emitting layer by the laser Substrate removed Forming a cathode thereon, sealing the upper surface and the periphery of the organic light emitting layer surrounded by the closed line shape with the cathode, and
  • FIG. 2 is a schematic cross-sectional view in each step of the method for manufacturing an organic EL element according to the first embodiment of the present invention.
  • Each of the schematic cross-sectional views from (a) to (f) of FIG. 2 shows a cross-sectional form at the time of processing performed in the first to sixth steps of the method of manufacturing the organic EL element of the first embodiment. It is a thing.
  • Each of the schematic cross-sectional views of (g) and (h) of FIG. 2 forms a sealing layer and a protective layer, which are performed in the seventh step of the method of manufacturing the organic EL element of the first embodiment.
  • the form of the cross section of the process to perform is shown.
  • Each of the schematic cross-sectional views of (i) and (j) of FIG. 2 shows a cross-sectional form at the time of processing performed in the eighth step and the ninth step of the method of manufacturing the organic EL element of the first embodiment. Is. Hereinafter, each step will be described.
  • the first step is a step of forming a patterned anode on the substrate.
  • a patterned anode 12 is shown on the substrate 11.
  • the substrate 11 can be a base material for forming an organic EL element.
  • Examples of the material of the substrate 11 include polyacrylate, polymethacrylate, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, and polyvinyl chloride.
  • PVC polyethylene
  • PE polyethylene
  • PE polyethylene copolymers
  • PP polypropylene
  • PS polystyrene
  • PA polyamide
  • PA polyetheretherketone
  • polysulfone polyethersulfone
  • polyimide polyether Polymers
  • imide heat-resistant transparent base film (product name: Sila-DEC, manufactured by Chisso Corporation) having a basic skeleton of silsesquioxane having an organic-inorganic hybrid structure, and further comprising two or more layers of the polymer. It can be given substrate or the like formed by laminating.
  • polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polycarbonate (PC), and the like are preferably used in terms of cost and availability. Further, in terms of optical transparency, heat resistance, and adhesion to an inorganic layer, a heat resistant transparent film having a basic skeleton of silsesquioxane having an organic-inorganic hybrid structure is preferably used.
  • the thickness of the substrate 11 is preferably 5 to 500 ⁇ m, more preferably 25 to 250 ⁇ m, from the viewpoints of handleability and mechanical strength.
  • the substrate 11 preferably has a function of blocking oxygen and moisture in the atmosphere.
  • oxygen and moisture may enter the inside, which may cause deterioration in light emission performance over time. Therefore, it is preferable to block the organic EL element from the outside by sealing it with a gas barrier layer or a sealing material. Therefore, it is preferable that a gas barrier layer is formed on at least one surface of the substrate 11.
  • the gas barrier layer may be organic or inorganic. Examples of the material for the inorganic gas barrier layer include metal oxides such as silicon, aluminum, and titanium, metal nitrides, and metal oxynitrides.
  • the anode 12 is an electrode film that supplies (injects) holes to the organic light emitting layer.
  • the material type and physical properties of the anode 12 are not particularly limited and can be arbitrarily set.
  • the anode 12 can be formed of a material having a high work function (4 eV or more), for example, an electrode material such as a metal, an alloy, an electrically conductive compound, and a mixture thereof.
  • the anode 12 may be made of a light-transmitting material (transparent electrode) such as indium tin oxide (ITO) or indium zinc oxide. At this time, light emitted from the organic light emitting layer can be extracted from the substrate 11 side.
  • dry film forming methods include vapor deposition and sputtering.
  • a method for forming a pattern by a dry film formation method a method such as pattern film formation using a metal mask, wet etching using a photoresist or printing, lift-off, or the like can be used.
  • examples of the wet film forming method include a coating method and an ink jet method. In these methods, it is possible to form a pattern directly.
  • a dry film forming method it is preferable to use wet etching or lift-off in consideration of pattern accuracy, flexibility, productivity, and the like.
  • a coating method or an inkjet method it is more preferable because a pattern can be directly drawn.
  • the sheet resistance of the anode 12 is preferably several hundred ⁇ / ⁇ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
  • the second step is a step of forming a patterned anode extraction electrode and a patterned cathode extraction electrode on the substrate.
  • a patterned anode extraction electrode 13 and a patterned cathode extraction electrode 14 are shown on the substrate 11.
  • the anode extraction electrode 13 and the cathode extraction electrode 14 are used when a voltage is applied by connecting the anode and cathode of the organic EL element to an external power source or the like, respectively.
  • materials for the anode extraction electrode 13 and the cathode extraction electrode 14 metal materials such as Al, Cr, Mo, Ti, Ta, Cu, Ag, Au, and alloys thereof are generally used.
  • the method of forming the anode extraction electrode 13 and the cathode extraction electrode 14 is the same as that of the anode 12. Known methods such as a vapor deposition method, a sputtering method, a coating method, and an ink jet method can be applied.
  • a method for forming the pattern a method similar to the method described in the first step can be used.
  • the third step is a step of forming a patterned insulating layer on a part of the anode extraction electrode.
  • FIG. 2C the insulating layer 15 patterned on a part of the anode extraction electrode 13 is shown.
  • the insulating layer 15 is a layer provided so that the anode extraction electrode 13 and the cathode are not short-circuited when the cathode described later is formed.
  • Examples of the material constituting the insulating layer 15 include inorganic materials such as SiO 2 , Si 3 N 4 , Al 2 O 3 , TiO 2 , SiOxCy, and SiOxNy, and insulating organic materials such as a photoresist. .
  • the method for forming the insulating layer 15 is the same as that for the anode 12. Known methods such as a vapor deposition method, a sputtering method, a coating method, and an ink jet method can be applied. As a method for forming the pattern, a method similar to the method described in the first step can be used.
  • the fourth step is a step of forming an organic light emitting layer on the substrate, the anode, the anode extraction electrode, the cathode extraction electrode, and the insulating layer.
  • the organic light emitting layer 16 is illustrated on the substrate 11, the anode 12, the anode extraction electrode 13, the cathode extraction electrode 14, and the insulating layer 15.
  • the organic light-emitting layer 16 has a structure in which holes injected directly from the anode or from the anode through the hole transport layer and the like and electrons injected directly from the cathode or from the cathode through the electron transport layer and the like are regenerated. It is a layer that emits light when bonded. Note that the portion that emits light may be inside the light emitting layer, or may be an interface between the light emitting layer and a layer adjacent thereto.
  • the organic light emitting layer 16 is preferably formed of an organic light emitting material including a host compound (host material) and a light emitting material (light emitting dopant compound).
  • a host compound host material
  • a light emitting material light emitting dopant compound
  • an arbitrary emission color can be obtained by appropriately adjusting the type of the light emitting material to be included.
  • the light emitting material included in the organic light emitting layer 16 for example, a phosphorescent light emitting material (phosphorescent compound, phosphorescent light emitting compound), a fluorescent light emitting material, or the like can be used.
  • the organic light emitting layer 16 may contain one type of light emitting material, or may contain a plurality of types of light emitting materials having different light emission maximum wavelengths. About a specific luminescent material, it can select from a well-known material suitably and can be used.
  • the method for forming the organic light emitting layer 16 is the same as that in the first step, but a vapor deposition method is generally used as a method for forming the layer of the organic light emitting material.
  • a vapor deposition method is generally used as a method for forming the layer of the organic light emitting material.
  • an apparatus for forming the organic light emitting layer 16 by vapor deposition is described.
  • an electron transport layer In addition to the organic light emitting layer 16, an electron transport layer, a hole transport layer, a hole blocking layer, an electron blocking layer, an electron injection layer (cathode buffer layer), a hole injection layer (anode buffer layer), etc., as necessary. These layers can be formed as appropriate. The specific contents of each layer can be appropriately selected from known knowledge and applied. As a method for forming each of these layers, a vapor deposition method is generally used.
  • a part of the organic light-emitting layer on the cathode extraction electrode, a part of the organic light-emitting layer on the insulating layer, and a part of the organic light-emitting layer on the substrate are removed with a laser to form a closed line shape.
  • FIG. 2 (e) a part of the organic light emitting layer 16 on the cathode extraction electrode 14 and a part of the organic light emitting layer 16 on the insulating layer 15 are removed by laser, and the portions indicated as 17b and 17a are respectively shown. It is shown in the figure.
  • FIG. 3A is a schematic plan view of the organic EL element according to the first embodiment of the present invention.
  • FIG. 3B is a schematic cross-sectional view of the anode extraction electrode portion AA.
  • FIG. 3C is a schematic cross-sectional view of the cathode extraction electrode portion BB.
  • a portion described as L3 is a portion removed by the laser in the fifth step. Due to the presence of L3, the organic light emitting layer 16 surrounded by the closed line shape is formed, and the light emitting part C having the organic light emitting layer 16 surrounded by the closed line shape is formed. .
  • the organic light emitting layer 16 basically includes an organic compound as a main component. Therefore, by heating to a high temperature, the organic compound can be thermally decomposed, volatilized and scattered. A part of the organic light emitting layer 16 on the cathode extraction electrode 14, a part of the organic light emitting layer 16 on the insulating layer 15 and a part of the organic light emitting layer 16 on the substrate are removed by heating to a high temperature. A part of the extraction electrode 14, a part of the insulating layer 15, and a part of the substrate 11 are exposed to the outside. Thereafter, the cathode can be formed thereon in the next step.
  • a laser is used as means for removing a part of the organic light emitting layer 16 by heating to a high temperature.
  • a laser is excellent in directivity and convergence, and it is possible to irradiate only a specific fine portion and heat only the fine portion to a high temperature.
  • Laser processing includes thermal processing and non-thermal processing.
  • Thermal processing is processing performed while laser light is absorbed on the surface of a solid material and converted into heat, and the material is melted with the thermal energy.
  • Infrared lasers that are susceptible to thermal effects are used.
  • non-thermal processing is also called laser ablation processing, which is a processing that instantly melts, absorbs, and scatters the portion where the laser beam is absorbed, even if the material melts at a fairly high temperature under atmospheric pressure. is there.
  • An infrared laser, an ultraviolet laser, a pulse laser, or the like is used depending on the processing content.
  • laser ablation processing is preferable because there is little thermal damage to the periphery of the processing portion, and it is possible to remove organic compounds by evaporation and scattering under vacuum and atmospheric pressure.
  • the wavelength of the laser used in this embodiment is preferably 300 to 700 nm from the viewpoint of energy absorption in the organic layer, but is not limited thereto.
  • a pulse laser that can take a wide range of processing conditions such as output, frequency, duty ratio, etc. is preferably used.
  • the laser medium classification includes solid laser, liquid laser, gas laser, semiconductor laser, and the like. From the viewpoint of high speed and low thermal damage, solid laser or gas laser is preferable.
  • solid laser or gas laser is preferable.
  • solid-state laser a ruby laser, a YAG laser, a sapphire laser, a titanium sapphire laser or the like can be used, and a YVO 4 laser is particularly preferable.
  • gas laser a CO 2 laser, a helium neon laser, an argon ion laser, an excimer laser or the like can be used, and an excimer laser is particularly preferable.
  • the organic light emitting layer 16 is instantaneously melted, evaporated and scattered. Since the pyrolyzed material becomes a low-molecular substance, it can be scattered far away and can be easily removed and discarded from the system using a vacuum pump or the like.
  • the chamber 103 in FIG. 1A describes an apparatus for removing a part of the organic light emitting layer with a laser under vacuum.
  • the pattern (shape, position) of the organic light emitting layer to be removed by the laser can be formed with high flexibility and accuracy by adjusting the position to be removed by the laser by the adjusting mechanism based on the position information.
  • the shape and position of part of the organic light emitting layer on the cathode extraction electrode, part of the organic light emitting layer on the insulating layer, and part of the organic light emitting layer on the substrate to be removed Various adjustments can be made by appropriately adjusting the irradiation conditions.
  • the pattern of the closed organic light emitting layer can be formed with a high degree of freedom and accuracy.
  • the sixth step includes an organic light emitting layer, a cathode extraction electrode from which the organic light emitting layer has been removed by a laser, an insulating layer from which the organic light emitting layer has been removed by a laser, and a substrate on which the organic light emitting layer has been removed by the laser. It is a process of forming. 2F, the organic light emitting layer 16, the cathode extraction electrode 14 from which the organic light emitting layer 16 has been removed by the laser, the insulating layer 15 from which the organic light emitting layer 16 has been removed by the laser, and the organic light emitting layer have been removed by the laser.
  • a cathode 18 is shown on the substrate 11.
  • the organic light emitting layer 16 has a structure in which the lower surface is sealed with the substrate 11 and the other periphery and the upper surface are sealed with the cathode 18.
  • the metal material usually used for the cathode 18 is excellent in gas barrier properties. Therefore, while having a simple structure, the organic light emitting layer 16 is not easily affected by a gas such as oxygen in the outside world, and the durability of the light emitting performance as the organic EL element can be improved.
  • the cathode 18 is an electrode that supplies (injects) electrons to the light emitting layer.
  • the material constituting the cathode is not particularly limited, but is usually an electrode material such as a material having a low work function (4 eV or less), for example, a metal (electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof. It is formed.
  • a vapor deposition method is generally used.
  • an apparatus for forming the cathode 14 by vapor deposition is described.
  • the cathode 18 can be formed of a light-transmitting electrode material like the anode.
  • a metal film made of an electrode material for forming a cathode so as to have a film thickness of 1 nm or more and 20 nm or less
  • a film made of a conductive transparent material described in the anode 12 is formed on this metal film.
  • a transparent or translucent cathode can be formed.
  • the light emitted from the organic light emitting layer 16 can be extracted from the opposite side of the substrate 11.
  • the seventh step is a step of forming at least one of a sealing layer and a protective layer on the cathode.
  • any one of the three methods of forming only the sealing layer on the cathode, forming only the protective layer, and forming both the sealing layer and the protective layer is performed. You may apply.
  • FIG. 2G the formation of the sealing layer 19 on the cathode 18 is illustrated.
  • FIG. 2 (h) shows that the protective layer 20 is formed on the sealing layer 19.
  • the sealing layer 19 is for shielding and protecting the organic light emitting layer 16 from the external environment.
  • the sealing layer 19 has a gas barrier property against water vapor and oxygen.
  • an inorganic material such as SiO 2 , Si 3 N 4 , Al 2 O 3 , TiO 2 , SiOxCy, or SiOxNy is used.
  • a known method such as a vapor deposition method, a sputtering method, a CVD method, or an ion plating method can be applied.
  • a vapor deposition method such as a vapor deposition method, a sputtering method, a CVD method, or an ion plating method.
  • a sputtering method such as a vapor deposition method, a sputtering method, a CVD method, or an ion plating method.
  • the protective layer 20 is a layer that is installed on the sealing layer 19 and protects the internal organic EL element from an external physical external force.
  • the material constituting the protective layer 20 include, for example, ethylene tetrafluoroethylene copolymer, polyethylene, polypropylene, polystyrene, polymethyl methacrylate, nylon, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, and polyethersulfone.
  • curable resins such as thermoplastic resins, urea resins, melamine resins, phenol resins, resorcinol resins, epoxy resins, unsaturated polyester resins, polyurethane resins, and acrylic resins.
  • the protective layer 20 preferably has a function of blocking oxygen and moisture in the atmosphere. That is, it is preferable that a gas barrier layer is formed on at least one surface of the protective layer 20.
  • the gas barrier layer may be organic or inorganic. Examples of the material for the inorganic gas barrier layer include metal oxides such as silicon, aluminum, and titanium, metal nitrides, and metal oxynitrides. If it is the protective layer 20 provided with such a gas barrier layer, the structure without the sealing layer 19 is also possible.
  • an adhesive layer may be provided and laminated.
  • a material constituting the adhesive layer any of a thermosetting resin, a photocurable resin, and a thermoplastic resin can be used.
  • the thermosetting resin for example, epoxy resin, acrylic resin, silicone resin, urea resin, melamine resin, phenol resin, resorcinol resin, unsaturated polyester resin, polyurethane resin, etc. Resin.
  • the photocurable resin examples include radical curable resins such as ester acrylates, urethane acrylates, epoxy acrylates, melamine acrylates, acrylic resin acrylates, etc., or radical photocurable resins using resins such as urethane polyesters, epoxies, vinyl ethers, and the like. Examples thereof include a cationic photocurable resin using a resin.
  • the thermoplastic resin examples include polyethylene, polypropylene, polyamide, polyethylene terephthalate (PET), polyvinyl alcohol (PVA), ethylene-vinyl acetate copolymer (EVA), ethylene-propylene copolymer, ethylene-acrylic acid copolymer. Polymers, ethylene-methacrylic acid copolymers, polyvinylidene chloride (PVDC), ionomers and the like can be used.
  • a known method such as a laminating method can be applied.
  • a laminating method In the chamber 106 of FIG. 1A, an apparatus for forming the protective layer 20 by a laminating method is described.
  • the fourth step to the seventh step it is possible to process continuously by using a long substrate. Therefore, the chamber provided with the apparatus which performs each process can be connected, and an organic EL element can be manufactured with high productivity by a roll-to-roll system. Further, since it is preferable to use a vapor phase method such as a vapor deposition method or a sputtering method, the fourth to seventh steps are preferably performed under vacuum.
  • the eighth step At least one of the organic light-emitting layer, the cathode, the sealing layer, and the protective layer on each of the substrate, the anode extraction electrode, the insulating layer, and the cathode extraction electrode is removed, and the anode extraction electrode and the cathode are removed.
  • the extraction electrode is exposed on the substrate.
  • FIG. 2 (i) the organic light emitting layer 16, the cathode 18, the sealing layer 19 and the protective layer 20 on each part of the substrate 11, the anode extraction electrode 13, the insulating layer 15 and the cathode extraction electrode 14 are removed.
  • the anode extraction electrode 13 and the cathode extraction electrode 14 are exposed on the substrate, and the portions indicated as 21a and 21b are illustrated.
  • a laser is used as a method for removing the organic light emitting layer 16, the cathode 18, the sealing layer 19 and the protective layer 20 on each of the substrate 11, the anode extraction electrode 13, the insulating layer 15 and the cathode extraction electrode 14.
  • part of the organic light emitting layer 16, the cathode 18, the sealing layer 19 and the protective layer 20 in the vicinity of a part of the anode extraction electrode 13 and the part of the cathode extraction electrode 14 are heated to a high temperature by a laser.
  • a part of the anode extraction electrode 13 and a part of the cathode extraction electrode 14 are exposed to the outside. Therefore, after cutting the organic EL element in the next ninth step, it is easy to connect an external power source or the like to each electrode of the organic EL element when the individual organic EL element is actually caused to emit light.
  • the specific content of the method of removing with a laser is the same as the content described in the fifth step, and the description thereof is omitted.
  • the organic light emitting layer is easily scattered by a laser. Therefore, the sealing layer and the protective layer existing on the organic light emitting layer can be simultaneously scattered.
  • what is removed by the laser may include a high molecular weight protective layer, it is preferable to appropriately adjust the laser irradiation conditions depending on the object to be removed.
  • the shapes and positions of the organic light emitting layer 16, the cathode 18, the sealing layer 19 and the protective layer 20 to be removed can be variously changed by appropriately adjusting the irradiation conditions such as laser.
  • the irradiation conditions such as laser.
  • the degree of freedom and accuracy of the pattern of the organic light emitting layer 16, the anode extraction electrode 13 to be exposed, and the cathode extraction electrode 14 are adjusted by adjusting the position to be removed by a laser or the like by an adjustment mechanism based on position information. Can be increased.
  • the ninth step is the eighth step, in which the organic light emitting layer surrounded by a closed line shape is cut by cutting a part of the substrate from which the organic light emitting layer, the cathode, the sealing layer and the protective layer have been removed.
  • This is a step of forming an organic EL element.
  • FIG. 2 (j) the substrate 11 is cut by a part of the substrate 11 from which the organic light emitting layer 16, the cathode 18, the sealing layer 19 and the protective layer 20 have been removed, and is surrounded by a closed line shape.
  • An organic EL element having a light emitting layer is illustrated.
  • the obtained organic EL element has the light emission part E, the anode extraction electrode part T1, and the cathode extraction electrode part T2.
  • the method for cutting the substrate can be applied by appropriately selecting a known method. At that time, it is preferable to adjust the cutting position by an adjustment mechanism based on position information.
  • an apparatus for cutting a substrate by an upper and lower cutter under atmospheric pressure In the chamber 108 of FIG. 1C, there is described an apparatus for cutting a substrate by an upper and lower cutter under atmospheric pressure.
  • FIG. 3A is a schematic plan view of the organic EL element according to the first embodiment of the present invention.
  • FIG. 3B is a schematic cross-sectional view of the anode extraction electrode portion AA.
  • FIG. 3C is a schematic cross-sectional view of the cathode extraction electrode portion BB.
  • L1 and L2 indicate locations removed in the eighth step.
  • An organic light emitting layer surrounded by a closed line shape by applying a voltage to the exposed anode extraction electrode 13 and cathode extraction electrode 14 in the anode extraction electrode portion L1 and the cathode extraction electrode portion L2 of the organic EL element, respectively.
  • the light emitting part C having the light emits light.
  • the first embodiment uses a long substrate.
  • a single-wafer substrate can be used as the substrate.
  • the organic light emission surrounded by the closed line shape with a wider degree of freedom is obtained by removing with the laser in the fifth step than when not removing with the laser.
  • a layer pattern can be formed.
  • the upper surface and the periphery of the organic light-emitting layer surrounded by the closed line shape are sealed with a cathode, so that the influence from the outside can be eliminated and a highly durable organic EL element can be obtained. Furthermore, since it can be manufactured by a relatively simple method, the manufacturing cost can be reduced. Further, by increasing the accuracy of removal processing by laser, it becomes possible to manufacture an organic EL element in which the shape and position of the organic light emitting layer are finely and complicatedly installed.
  • the removal by the laser in the fifth step is to remove only the organic light emitting layer before forming the cathode, it is a scattering of only the organic light emitting layer that is relatively easily decomposed, there is little contamination to other layers, and the organic Defects as EL elements are unlikely to occur.
  • Organic EL device An organic EL device comprising an anode, an anode extraction electrode, a cathode extraction electrode, an insulating layer, an organic light emitting layer, and a cathode stacked on a substrate by using the manufacturing method and the manufacturing apparatus of the first embodiment.
  • the organic light emitting layer has a closed linear shape, the organic light emitting layer has an upper surface and a periphery sealed with a cathode, and at least one of a sealing layer and a protective layer is formed on the upper surface of the cathode. Can be formed.
  • Such an organic EL element has a linear shape in which the organic light emitting layer is closed.
  • a substrate is present on the lower surface of the organic light emitting layer.
  • a cathode exists on the upper surface and the periphery of the organic light emitting layer, and the organic light emitting layer is sealed with the cathode. Further, at least one of a sealing layer and a protective layer is present on the upper surface of the cathode.
  • the gas barrier property in the end face direction of the organic light emitting layer is good even with only the cathode. Further, not only the cathode but also at least one of a sealing layer and a protective layer is present in the upper surface direction of the organic light emitting layer. Therefore, the gas barrier property in the upper surface direction of the organic light emitting layer is also good.
  • the organic EL element has a simple structure and can be manufactured by a simple manufacturing method, but the organic light emitting layer is blocked from the outside world and is not easily affected by the outside world. The light-emitting performance is excellent in durability.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

Provided are: an organic electroluminescent element of simple construction and having an organic light-emitting layer, a positive pole extraction electrode, and a negative pole extraction electrode formed in a pattern with a high degree of freedom; and a method and device for manufacturing said element. A method for manufacturing an organic electroluminescent element, and a manufacturing device with which the method for manufacturing is employed, said method including: a step for forming a positive pole on a substrate; a step for forming a positive pole extraction electrode and a negative pole extraction electrode on the substrate; a step for forming an insulating layer on the positive pole extraction electrode; a step for forming an organic light-emitting layer on the substrate; a step for removing a portion of the organic light-emitting layer using a laser to form an organic light-emitting layer enclosed in a closed linear state; a step for forming a negative pole on the substrate to seal the upper surface and periphery of the organic light-emitting layer with a negative pole; a step for forming a sealing layer and/or a protective layer on the negative pole; and a step for removing portions of the organic light-emitting layer, the negative pole, the sealing layer, and the protective layer to expose the positive pole extraction electrode and the negative pole extraction electrode on the substrate.

Description

有機エレクトロルミネッセンス素子とその製造方法および製造装置Organic electroluminescence element, manufacturing method and manufacturing apparatus thereof
 本発明は、有機エレクトロルミネッセンス素子とその製造方法とその製造装置に関する。 The present invention relates to an organic electroluminescence element, a manufacturing method thereof, and a manufacturing apparatus thereof.
 現在の有機エレクトロルミネッセンス素子(以下、「有機EL素子」と記載することもある。)の主流は、ガラス基板上に発光素子を形成する形態である。ガラス基板上に有機EL素子を形成する場合は、枚葉のガラス基板を用いて、各種成膜装置間をロボット等で行き来して、各種機能性膜を積層することによって形成される。 The mainstream of current organic electroluminescence elements (hereinafter sometimes referred to as “organic EL elements”) is a form in which a light emitting element is formed on a glass substrate. When an organic EL element is formed on a glass substrate, it is formed by laminating various functional films by using a single glass substrate to move between various film forming apparatuses with a robot or the like.
 近年、有機EL素子の薄膜、自発光という特徴から薄型化やフレキシブル化が試みられている。薄型基板を使用する場合、基板の剛性が低いため、既存のガラス基板等に貼り合わせて取扱性を向上させてから、有機EL素子を製造する方法が一般的である。薄型基板は一般に、連続シート状で製作されるため、ロール状に巻き取られた形態が一般的である。 In recent years, attempts have been made to reduce the thickness and flexibility of organic EL devices due to their thin film and self-luminous characteristics. When a thin substrate is used, since the rigidity of the substrate is low, a method of manufacturing an organic EL element after bonding to an existing glass substrate or the like to improve handling is common. Since a thin substrate is generally manufactured in a continuous sheet form, a form wound in a roll form is common.
 一般に、ロール状での成膜加工は、機能性膜を全面に形成する場合に用いられており、連続的に加工できるため、効率が良く、生産性のよい加工方法として利用されている。そのため、有機EL素子を製造する場合でも、ロール状での成膜加工方法を適用することができれば、生産性が良いので、安価で、大量に製造することが可能となるため、従来から開発が進められている。 Generally, a film-formation process in a roll shape is used when a functional film is formed on the entire surface, and since it can be continuously processed, it is used as an efficient and highly productive process method. Therefore, even when manufacturing an organic EL element, if a film forming method in a roll shape can be applied, the productivity is good, and it is possible to manufacture a large amount at a low cost. It is being advanced.
 しかしながら、有機EL素子の場合には、パターン状に成膜することが必要である。また、複数の層構成において異なるマスクパターンを必要とする。枚葉方式では、複数のメタルマスクを位置調整(アライメント)して使用する。薄型基板の連続シートを用いて、搬送しながら、パターン状に成膜することに関しては、課題が多く、現在決め手になる方式が無いのが現状である。 However, in the case of an organic EL element, it is necessary to form a film in a pattern. Further, different mask patterns are required in a plurality of layer configurations. In the single wafer method, a plurality of metal masks are used after being adjusted in position (alignment). There are many problems regarding film formation in a pattern while transporting using a continuous sheet of a thin substrate, and there is currently no decisive method.
 特許文献1には、連続して搬送される支持体に同期して運動するパターン形成用マスクを使用して、パターン形成する方法が開示されている。特許文献2には、連続走行する帯状基材の上に、ワイヤー状マスクを移動させながら使用して、帯状のパターン薄膜を形成する方法が開示されている。 Patent Document 1 discloses a method of forming a pattern using a pattern forming mask that moves in synchronization with a support that is continuously conveyed. Patent Document 2 discloses a method of forming a strip-shaped pattern thin film by using a wire-shaped mask while moving it on a strip-shaped substrate that runs continuously.
 特許文献3には、有機EL素子をレーザアブレーション加工法を用いて微細パターン化する方法が開示されている。陰極/有機化合物層/陽極の構成まで形成した後に、陰極側からレーザビームの照射を行って、微細加工することを特徴としている。 Patent Document 3 discloses a method for finely patterning an organic EL element using a laser ablation method. After the formation of the cathode / organic compound layer / anode structure, laser beam irradiation is performed from the cathode side to perform fine processing.
特開2000-183500号公報JP 2000-183500 A 国際公開第2011/021622号International Publication No. 2011/021622 特開平8-222371号公報JP-A-8-222371
 しかしながら、特許文献1に開示された方法では、任意のパターン形状を形成することが可能であるが、多層成膜する場合に位置決め等が困難である。また、特許文献2に開示された方法では、搬送方向と直交する方向へのパターン形成が困難であり、パターン形状に制約がある。 However, with the method disclosed in Patent Document 1, it is possible to form an arbitrary pattern shape, but positioning and the like are difficult when forming a multilayer film. Further, in the method disclosed in Patent Document 2, it is difficult to form a pattern in a direction orthogonal to the transport direction, and the pattern shape is limited.
 特許文献3に開示された方法では、上記特許文献1および特許文献2のような制約はないが、陽極取出電極および陰極取出電極を特定のパターン形状で形成する方法については開示されていない。 The method disclosed in Patent Document 3 is not limited as in Patent Document 1 and Patent Document 2, but does not disclose a method of forming the anode extraction electrode and the cathode extraction electrode in a specific pattern shape.
 本発明は、かかる状況に鑑みてなされたものである。本発明の課題は、簡便な構造を有し、高い自由度のパターン(形状、位置)で形成された有機発光層、陽極取出電極および陰極取出電極を有する有機EL素子およびその製造方法とその製造装置を提供することである。 The present invention has been made in view of such a situation. An object of the present invention is to provide an organic EL device having an organic light emitting layer, an anode extraction electrode and a cathode extraction electrode having a simple structure and a pattern (shape and position) with a high degree of freedom, a method for producing the same, and a method for producing the same. Is to provide a device.
 本発明者らは、上記課題の解決策について検討を重ねたところ、有機EL素子の各層を形成する工程とレーザによってパターン形成する工程とを組み合わせることによって、上記課題を解決することが可能となることを見出した。
 本発明は、以下のような構成を有している。
The inventors of the present invention have studied about the solution of the above-mentioned problem, and can solve the above-mentioned problem by combining the process of forming each layer of the organic EL element and the process of forming a pattern by a laser. I found out.
The present invention has the following configuration.
 1.基板上にパターン化された陽極を形成する第1工程と、前記基板上にパターン化された陽極取出電極およびパターン化された陰極取出電極を形成する第2工程と、前記陽極取出電極の一部の上にパターン化された絶縁層を形成する第3工程と、前記基板、前記陽極、前記陽極取出電極、前記陰極取出電極および前記絶縁層の上に有機発光層を形成する第4工程と、前記陰極取出電極上の一部の有機発光層、前記絶縁層上の一部の有機発光層および前記基板上の一部の有機発光層をレーザによって除去して、閉じられた線形状で囲まれた有機発光層を形成する第5工程と、前記有機発光層、前記レーザによって有機発光層が除去された陰極取出電極、前記レーザによって有機発光層が除去された絶縁層および前記レーザによって有機発光層が除去された基板の上に陰極を形成して、前記閉じられた線形状で囲まれた有機発光層の上面と周囲を前記陰極で封止する第6工程と、前記陰極の上に封止層および保護層の少なくとも一方を形成する第7工程と、前記基板、前記陽極取出電極、前記絶縁層および前記陰極取出電極の各一部の上の、前記有機発光層、前記陰極、前記封止層および前記保護層の少なくとも一方を除去して、前記陽極取出電極および前記陰極取出電極を前記基板表面上に露出させる第8工程とを有する有機エレクトロルミネッセンス素子の製造方法。 1. A first step of forming a patterned anode on the substrate; a second step of forming a patterned anode extraction electrode and a patterned cathode extraction electrode on the substrate; and part of the anode extraction electrode A third step of forming a patterned insulating layer on the substrate, a fourth step of forming an organic light emitting layer on the substrate, the anode, the anode extraction electrode, the cathode extraction electrode, and the insulation layer; A part of the organic light-emitting layer on the cathode extraction electrode, a part of the organic light-emitting layer on the insulating layer, and a part of the organic light-emitting layer on the substrate are removed by a laser and surrounded by a closed line shape. A fifth step of forming an organic light emitting layer, the organic light emitting layer, a cathode extraction electrode from which the organic light emitting layer has been removed by the laser, an insulating layer from which the organic light emitting layer has been removed by the laser, and an organic light emitting layer by the laser Removed A sixth step of forming a cathode on the formed substrate, and sealing the upper surface and the periphery of the organic light emitting layer surrounded by the closed line shape with the cathode; and a sealing layer on the cathode; and A seventh step of forming at least one of a protective layer; and the organic light emitting layer, the cathode, the sealing layer, and the organic light emitting layer on each of the substrate, the anode extraction electrode, the insulating layer, and the cathode extraction electrode And an eighth step of removing at least one of the protective layers and exposing the anode extraction electrode and the cathode extraction electrode on the substrate surface.
 2.前記第4工程から前記第7工程までを真空下で行い、前記第8工程を大気圧下で行うことを特徴とする前記1に記載の有機エレクトロルミネッセンス素子の製造方法。 2. 2. The method for producing an organic electroluminescent element according to 1, wherein the fourth to seventh steps are performed under vacuum and the eighth step is performed under atmospheric pressure.
 3.前記第8工程において、前記基板、前記陽極取出電極、前記絶縁層および前記陰極取出電極の各一部の上の、前記有機発光層、前記陰極、前記封止層および前記保護層の少なくとも一方の除去を、レーザによって行うことを特徴とする前記1または前記2に記載の有機エレクトロルミネッセンス素子の製造方法。 3. In the eighth step, at least one of the organic light emitting layer, the cathode, the sealing layer, and the protective layer on each part of the substrate, the anode extraction electrode, the insulating layer, and the cathode extraction electrode. 3. The method for producing an organic electroluminescent element according to 1 or 2, wherein the removal is performed by a laser.
 4.前記レーザによって除去する位置を位置情報による調整機構によって調整することを特徴とする前記1~前記3のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。 4. 4. The method for manufacturing an organic electroluminescence element according to any one of 1 to 3, wherein a position to be removed by the laser is adjusted by an adjustment mechanism based on position information.
 5.前記基板として長尺の基板を用いることを特徴とする前記1~前記4のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。 5. 5. The method for producing an organic electroluminescence element according to any one of 1 to 4, wherein a long substrate is used as the substrate.
 6.基板上にパターン化された陽極を形成する装置と、前記基板上にパターン化された陽極取出電極およびパターン化された陰極取出電極を形成する装置と、前記基板上にパターン化された絶縁層を形成する装置と、前記基板上に有機発光層を形成する装置と、前記有機発光層の一部をレーザによって除去する装置と、前記有機発光層の上に陰極を形成する装置と、前記基板上に封止層を形成する装置および前記基板上に保護層を形成する装置の少なくとも一方と、前記基板上の、前記有機発光層、前記陰極、前記封止層および前記保護層の少なくとも一方の一部を除去する装置とを有する有機エレクトロルミネッセンス素子の製造装置。 6. An apparatus for forming a patterned anode on a substrate, an apparatus for forming a patterned anode extraction electrode and a patterned cathode extraction electrode on the substrate, and an insulating layer patterned on the substrate An apparatus for forming, an apparatus for forming an organic light emitting layer on the substrate, an apparatus for removing a part of the organic light emitting layer by a laser, an apparatus for forming a cathode on the organic light emitting layer, and the substrate At least one of a device for forming a sealing layer on the substrate and a device for forming a protective layer on the substrate, and at least one of the organic light emitting layer, the cathode, the sealing layer, and the protective layer on the substrate. The apparatus for manufacturing an organic electroluminescence element having an apparatus for removing a portion.
 7.基板上に陽極、陽極取出電極、陰極取出電極、絶縁層、有機発光層、陰極が積層されて構成された有機エレクトロルミネッセンス素子であって、前記有機発光層は閉じられた線形状を有し、前記有機発光層の上面と周囲は前記陰極で封止され、前記陰極の上面に封止層および保護層の少なくとも一方が形成されていることを特徴とする有機エレクトロルミネッセンス素子。 7. An organic electroluminescence element configured by laminating an anode, an anode extraction electrode, a cathode extraction electrode, an insulating layer, an organic light emitting layer, and a cathode on a substrate, wherein the organic light emitting layer has a closed line shape, An organic electroluminescence device, wherein the upper surface and the periphery of the organic light emitting layer are sealed with the cathode, and at least one of a sealing layer and a protective layer is formed on the upper surface of the cathode.
 本発明の有機EL素子の製造方法および製造装置によると、簡便な構造を有し、高い自由度のパターンで形成された有機発光層、陽極取出電極および陰極取出電極を有した有機EL素子を提供することができる。また、本発明の有機EL素子は、簡便な構造を有し、簡便な製造方法で製造できるものであり、外界からの影響を受けにくい構造を有している。 According to the method and apparatus for producing an organic EL element of the present invention, an organic EL element having a simple structure and having an organic light emitting layer, an anode extraction electrode, and a cathode extraction electrode formed in a pattern with a high degree of freedom is provided. can do. The organic EL device of the present invention has a simple structure, can be manufactured by a simple manufacturing method, and has a structure that is not easily affected by the outside world.
本発明の第1実施形態に係る有機EL素子の製造装置の模式的断面図である。It is a typical sectional view of a manufacturing device of an organic EL element concerning a 1st embodiment of the present invention. 本発明の第1実施形態に係る有機EL素子の製造方法の各工程における模式的断面図である。It is typical sectional drawing in each process of the manufacturing method of the organic EL element concerning 1st Embodiment of this invention. 本発明の第1実施形態に係る有機EL素子の模式的平面図およびその取出電極部分の模式的断面図である。1 is a schematic plan view of an organic EL element according to a first embodiment of the present invention and a schematic cross-sectional view of an extraction electrode portion thereof.
 以下、本発明を実施するための形態を説明するが、本発明は、以下に説明する実施形態に何ら制限されず、本発明の要旨を逸脱しない範囲内で実施形態を任意に変更して実施することが可能である。 DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Modes for carrying out the present invention will be described below, but the present invention is not limited to the embodiments described below, and the embodiments are arbitrarily changed within the scope of the present invention. Is possible.
[第1実施形態]
(第1実施形態の有機EL素子の製造装置)
 本発明の第1実施形態に係る有機EL素子の製造装置は、基板上にパターン化された陽極を形成する装置と、基板上にパターン化された陽極取出電極およびパターン化された陰極取出電極を形成する装置と、基板上にパターン化された絶縁層を形成する装置と、基板上に有機発光層を形成する装置と、有機発光層の一部をレーザによって除去する装置と、有機発光層の上に陰極を形成する装置と、基板上に封止層を形成する装置および基板上に保護層を形成する装置の少なくとも一方と、基板上の、有機発光層、陰極、封止層および保護層の少なくとも一方の一部を除去する装置とを有している。
[First Embodiment]
(Organic EL device manufacturing apparatus of the first embodiment)
An organic EL device manufacturing apparatus according to a first embodiment of the present invention includes an apparatus for forming a patterned anode on a substrate, a patterned anode extraction electrode and a patterned cathode extraction electrode on the substrate. A device for forming, a device for forming a patterned insulating layer on a substrate, a device for forming an organic light emitting layer on a substrate, a device for removing a part of the organic light emitting layer by a laser, At least one of a device for forming a cathode on the substrate, a device for forming a sealing layer on the substrate, and a device for forming a protective layer on the substrate, and an organic light emitting layer, a cathode, a sealing layer, and a protective layer on the substrate And a device for removing a part of at least one of the above.
 第1実施形態の有機EL素子の製造装置の具体的な実施態様について、図1を用いて説明する。図1(a)~図1(c)は、本発明の第1実施形態に係る有機EL素子の製造装置の模式的断面図である。第1実施形態の有機EL素子の製造装置100は、長尺の基板を繰り出す装置を備えるチャンバ101と、基板上に有機発光層を形成する装置を備えるチャンバ102と、有機発光層の一部をレーザによって除去する装置を備えるチャンバ103と、有機発光層の上に陰極を形成する装置を備えるチャンバ104と、基板上に封止層を形成する装置を備えるチャンバ105と、基板上に保護層を形成する装置と得られた基板の巻き取り装置とを備えるチャンバ106と、基板上の有機発光層、陰極、封止層、保護層の一部を除去する装置を備えるチャンバ107と、基板を断裁する装置を備えるチャンバ108とを有している。 A specific embodiment of the organic EL element manufacturing apparatus of the first embodiment will be described with reference to FIG. FIG. 1A to FIG. 1C are schematic cross-sectional views of an organic EL element manufacturing apparatus according to the first embodiment of the present invention. The organic EL element manufacturing apparatus 100 according to the first embodiment includes a chamber 101 provided with a device for feeding out a long substrate, a chamber 102 provided with a device for forming an organic light emitting layer on the substrate, and a part of the organic light emitting layer. A chamber 103 having a device for removing by a laser, a chamber 104 having a device for forming a cathode on the organic light emitting layer, a chamber 105 having a device for forming a sealing layer on the substrate, and a protective layer on the substrate. A chamber 106 having a forming apparatus and a substrate winding device obtained, a chamber 107 having an apparatus for removing a part of the organic light emitting layer, the cathode, the sealing layer, and the protective layer on the substrate, and cutting the substrate And a chamber 108 provided with a device for performing the above.
 ここで、後記する本発明の第1実施形態の有機EL素子の製造方法の第1工程から第3工程にかかわる、基板上にパターン化された陽極を形成する装置と、基板上にパターン化された陽極取出電極およびパターン化された陰極取出電極を形成する装置と、基板上にパターン化された絶縁層を形成する装置とは図示されていない。これら3つの装置は、図1に示された装置の前段階に相当する装置である。 Here, an apparatus for forming a patterned anode on a substrate, which is related to the first to third steps of the method of manufacturing an organic EL element according to the first embodiment of the present invention described later, and a pattern formed on the substrate. The apparatus for forming the anode extraction electrode and the patterned cathode extraction electrode and the apparatus for forming the patterned insulating layer on the substrate are not shown. These three devices are devices corresponding to the previous stage of the device shown in FIG.
 図1(a)のチャンバ105には、基板上に封止層を形成する装置、チャンバ106には、基板上に保護層を形成する装置の両者を図示した。実施態様によっては、チャンバ105の基板上に封止層を形成する装置だけを備えていてもよいし、チャンバ106の基板上に保護層を形成する装置だけを備えていてもよい。
 同様に、図1(b)のチャンバ107には、基板上の有機発光層、陰極、封止層、保護層の一部を除去する装置を図示したが、上記チャンバ105、チャンバ106の装置の種類に合わせて、チャンバ107は、基板上の有機発光層、陰極、封止層の一部を除去する装置を備えていてもよいし、基板上の有機発光層、陰極、保護層の一部を除去する装置を備えていてもよい。
The chamber 105 in FIG. 1A shows both an apparatus for forming a sealing layer on a substrate, and the chamber 106 shows an apparatus for forming a protective layer on a substrate. Depending on the embodiment, only an apparatus for forming a sealing layer on the substrate of the chamber 105 may be provided, or only an apparatus for forming a protective layer on the substrate of the chamber 106 may be provided.
Similarly, in the chamber 107 in FIG. 1B, an apparatus for removing a part of the organic light emitting layer, the cathode, the sealing layer, and the protective layer on the substrate is illustrated. Depending on the type, the chamber 107 may include a device for removing a part of the organic light emitting layer, the cathode, and the sealing layer on the substrate, or a part of the organic light emitting layer, the cathode, and the protective layer on the substrate. You may provide the apparatus which removes.
 チャンバ101~チャンバ108は、真空にすることができるものであり、必要に応じて、真空下または大気圧下で加工を行うことができる。後記するように、チャンバ101~チャンバ106では、長尺の基板上に連続して加工が施されるものであり、各チャンバを同一の温度・湿度・圧力・ガス環境下とすることが好ましく、特に真空下にあることが好ましい。またチャンバ107とチャンバ108は、加工の性質上、大気圧下にあることが好ましい。 The chambers 101 to 108 can be evacuated, and can be processed under vacuum or atmospheric pressure as necessary. As will be described later, in the chambers 101 to 106, processing is continuously performed on a long substrate, and it is preferable that each chamber be in the same temperature, humidity, pressure, and gas environment, It is particularly preferable to be under vacuum. Moreover, it is preferable that the chamber 107 and the chamber 108 are under atmospheric pressure from the property of processing.
 チャンバ101において、長尺の基板1は巻き取りロール2から繰り出されて、チャンバ102~チャンバ106に至るまで、連続して各チャンバにおける加工が施されていく。各チャンバ間には、基板の搬送がスムーズに行われるように、緩衝装置が設けられていてもよい。 In the chamber 101, the long substrate 1 is unwound from the take-up roll 2 and is continuously processed in each chamber from the chamber 102 to the chamber 106. A buffering device may be provided between the chambers so that the substrate can be transported smoothly.
 このように、長尺の基板1を用いることによって、チャンバ101の基板の繰り出し装置からチャンバ106の基板の巻き取り装置に至るまで、連続して流すことが可能である。そうすることで、ロールツーロール方式で生産性よく、有機EL素子を製造することができる。チャンバ106で各種加工後に巻き取られた巻き取りロール3は、チャンバ107において、基板上の有機発光層、陰極、封止層、保護層の一部を除去する装置によって加工が施され、巻き取りロール4として巻き取られる。その後、チャンバ108において、所定の箇所で基板は断裁されて、有機EL素子の製品5とすることができる。 Thus, by using the long substrate 1, it is possible to continuously flow from the substrate feeding device of the chamber 101 to the substrate winding device of the chamber 106. By doing so, an organic EL element can be manufactured with high productivity by a roll-to-roll method. The winding roll 3 wound up after various processing in the chamber 106 is processed in the chamber 107 by a device for removing a part of the organic light emitting layer, the cathode, the sealing layer, and the protective layer on the substrate. It is wound up as a roll 4. Thereafter, the substrate is cut at a predetermined position in the chamber 108 to obtain the product 5 of the organic EL element.
(第1実施形態の有機EL素子の製造方法)
 次に、第1実施形態の有機EL素子の製造方法について説明する。
 第1実施形態の有機EL素子の製造方法は、基板上にパターン化された陽極を形成する第1工程と、基板上にパターン化された陽極取出電極およびパターン化された陰極取出電極を形成する第2工程と、陽極取出電極の一部の上にパターン化された絶縁層を形成する第3工程と、基板、陽極、陽極取出電極、陰極取出電極および絶縁層の上に有機発光層を形成する第4工程と、陰極取出電極上の一部の有機発光層、絶縁層上の一部の有機発光層および基板上の一部の有機発光層をレーザによって除去して、閉じられた線形状で囲まれた有機発光層を形成する第5工程と、有機発光層、前記レーザによって有機発光層が除去された陰極取出電極、レーザによって有機発光層が除去された絶縁層およびレーザによって有機発光層が除去された基板の上に陰極を形成して、閉じられた線形状で囲まれた有機発光層の上面と周囲を前記陰極で封止する第6工程と、陰極の上に封止層および保護層の少なくとも一方を形成する第7工程と、基板、陽極取出電極、絶縁層および陰極取出電極の各一部の上の、有機発光層、陰極、封止層および保護層の少なくとも一方を除去して、陽極取出電極および陰極取出電極を基板表面上に露出させる第8工程と、第8工程で、有機発光層、陰極、封止層および保護層の少なくとも一方が除去された基板の一部で基板を断裁して、閉じられた線形状で囲まれた有機発光層を有する有機EL素子を形成する第9工程を有している。
(Manufacturing method of the organic EL device of the first embodiment)
Next, the manufacturing method of the organic EL element of 1st Embodiment is demonstrated.
The organic EL device manufacturing method according to the first embodiment includes a first step of forming a patterned anode on a substrate, and a patterned anode extraction electrode and a patterned cathode extraction electrode on the substrate. A second step, a third step of forming a patterned insulating layer on a portion of the anode extraction electrode, and an organic light emitting layer on the substrate, anode, anode extraction electrode, cathode extraction electrode and insulation layer A fourth step, a part of the organic light emitting layer on the cathode extraction electrode, a part of the organic light emitting layer on the insulating layer, and a part of the organic light emitting layer on the substrate are removed by a laser to form a closed line shape A fifth step of forming an organic light emitting layer surrounded by the organic light emitting layer, a cathode extraction electrode from which the organic light emitting layer has been removed by the laser, an insulating layer from which the organic light emitting layer has been removed by the laser, and an organic light emitting layer by the laser Substrate removed Forming a cathode thereon, sealing the upper surface and the periphery of the organic light emitting layer surrounded by the closed line shape with the cathode, and at least one of a sealing layer and a protective layer on the cathode A seventh step to be formed, and at least one of the organic light emitting layer, the cathode, the sealing layer, and the protective layer on each of the substrate, the anode extraction electrode, the insulating layer, and the cathode extraction electrode is removed, and the anode extraction electrode In the eighth step of exposing the cathode extraction electrode on the substrate surface and in the eighth step, the substrate is cut at a part of the substrate from which at least one of the organic light emitting layer, the cathode, the sealing layer, and the protective layer has been removed. And a ninth step of forming an organic EL element having an organic light emitting layer surrounded by a closed line shape.
 図2は、本発明の第1実施形態に係る有機EL素子の製造方法の各工程における模式的断面図である。図2の(a)から(f)に至る各模式的断面図はそれぞれ、第1実施形態の有機EL素子の製造方法の第1工程から第6工程において行われる加工時の断面の形態を示したものである。図2の(g)と(h)の各模式的断面図はそれぞれ、第1実施形態の有機EL素子の製造方法の第7工程において行われる、封止層を形成する工程と保護層を形成する工程の断面の形態を示したものである。図2の(i)と(j)の各模式的断面図はそれぞれ、第1実施形態の有機EL素子の製造方法の第8工程と第9工程において行われる加工時の断面の形態を示したものである。
 以下、各工程について説明する。
FIG. 2 is a schematic cross-sectional view in each step of the method for manufacturing an organic EL element according to the first embodiment of the present invention. Each of the schematic cross-sectional views from (a) to (f) of FIG. 2 shows a cross-sectional form at the time of processing performed in the first to sixth steps of the method of manufacturing the organic EL element of the first embodiment. It is a thing. Each of the schematic cross-sectional views of (g) and (h) of FIG. 2 forms a sealing layer and a protective layer, which are performed in the seventh step of the method of manufacturing the organic EL element of the first embodiment. The form of the cross section of the process to perform is shown. Each of the schematic cross-sectional views of (i) and (j) of FIG. 2 shows a cross-sectional form at the time of processing performed in the eighth step and the ninth step of the method of manufacturing the organic EL element of the first embodiment. Is.
Hereinafter, each step will be described.
(第1工程)
 第1工程は、基板上にパターン化された陽極を形成する工程である。図2(a)において、基板11上にパターン化された陽極12が図示されている。
(First step)
The first step is a step of forming a patterned anode on the substrate. In FIG. 2 (a), a patterned anode 12 is shown on the substrate 11.
 基板11とは、有機EL素子を形成する際の基材となり得るものである。基板11の材料としては、例えば、ポリアクリル酸エステル、ポリメタクリル酸エステル、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリアリレート、ポリ塩化ビニル(PVC)、ポリエチレン(PE)、エチレン-環状オレフィン等のポリエチレン共重合体、ポリプロピレン(PP)、ポリスチレン(PS)、ポリアミド(PA)、ポリエーテルエーテルケトン、ポリスルホン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド等のポリマー、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明基材フィルム(製品名Sila-DEC、チッソ株式会社製)、更には前記ポリマーを2層以上積層して成る基材等を挙げることができる。 The substrate 11 can be a base material for forming an organic EL element. Examples of the material of the substrate 11 include polyacrylate, polymethacrylate, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polycarbonate (PC), polyarylate, and polyvinyl chloride. (PVC), polyethylene (PE), polyethylene copolymers such as ethylene-cyclic olefin, polypropylene (PP), polystyrene (PS), polyamide (PA), polyetheretherketone, polysulfone, polyethersulfone, polyimide, polyether Polymers such as imide, heat-resistant transparent base film (product name: Sila-DEC, manufactured by Chisso Corporation) having a basic skeleton of silsesquioxane having an organic-inorganic hybrid structure, and further comprising two or more layers of the polymer. It can be given substrate or the like formed by laminating.
 基板11の材料としては、コストや入手の容易性の点で、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)などが好ましく用いられる。また、光学的透明性、耐熱性、無機層との密着性の点においては、有機無機ハイブリッド構造を有するシルセスキオキサンを基本骨格とした耐熱透明フィルムが好ましく用いられる。 As the material of the substrate 11, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyethylene naphthalate (PEN), polycarbonate (PC), and the like are preferably used in terms of cost and availability. Further, in terms of optical transparency, heat resistance, and adhesion to an inorganic layer, a heat resistant transparent film having a basic skeleton of silsesquioxane having an organic-inorganic hybrid structure is preferably used.
 基板11の厚みは、取扱性や機械的強度の観点から、5~500μmが好ましく、更に好ましくは25~250μmである。 The thickness of the substrate 11 is preferably 5 to 500 μm, more preferably 25 to 250 μm, from the viewpoints of handleability and mechanical strength.
 基板11は、大気中の酸素、水分を遮断する機能を有していることが好ましい。有機EL素子の場合、酸素、水分が内部に侵入することによって、発光性能の経時的な低下を招くことがある。そのため、有機EL素子をガスバリア層や封止材で密閉することによって、外界から遮断することが好ましい。そのため、基板11の少なくとも片方の表面にガスバリア層が形成されていることが好ましい。ガスバリア層は、有機系であっても無機系であってもよい。無機系のガスバリア層の材料としては、ケイ素、アルミニウム、チタン等の金属の金属酸化物、金属窒化物、金属酸窒化物、等がある。 The substrate 11 preferably has a function of blocking oxygen and moisture in the atmosphere. In the case of an organic EL element, oxygen and moisture may enter the inside, which may cause deterioration in light emission performance over time. Therefore, it is preferable to block the organic EL element from the outside by sealing it with a gas barrier layer or a sealing material. Therefore, it is preferable that a gas barrier layer is formed on at least one surface of the substrate 11. The gas barrier layer may be organic or inorganic. Examples of the material for the inorganic gas barrier layer include metal oxides such as silicon, aluminum, and titanium, metal nitrides, and metal oxynitrides.
 陽極12は、有機発光層に正孔を供給(注入)する電極膜である。陽極12の材料の種類や物性は特に制限されず、任意に設定できる。例えば、陽極12は、仕事関数の大きい(4eV以上)材料、例えば、金属、合金、電気伝導性化合物及びこれらの混合物等の電極材料で形成することが可能である。また、陽極12は、酸化インジウム錫(ITO)や酸化インジウム亜鉛等の光透過性を有する材料(透明電極)によって構成されていてもよい。このとき、有機発光層で発光された光は基板11側から取出されることが可能となる。 The anode 12 is an electrode film that supplies (injects) holes to the organic light emitting layer. The material type and physical properties of the anode 12 are not particularly limited and can be arbitrarily set. For example, the anode 12 can be formed of a material having a high work function (4 eV or more), for example, an electrode material such as a metal, an alloy, an electrically conductive compound, and a mixture thereof. The anode 12 may be made of a light-transmitting material (transparent electrode) such as indium tin oxide (ITO) or indium zinc oxide. At this time, light emitted from the organic light emitting layer can be extracted from the substrate 11 side.
 陽極12を形成する方法としては、ドライ成膜法とウエット成膜法とがある。ドライ(真空)成膜法には、蒸着法、スパッタリング法などがある。ドライ成膜法でパターンを形成する方法としては、メタルマスクによるパターン成膜やフォトレジスト、印刷などによるウエットエッチングやリフトオフなどの方法を用いることができる。
 一方、ウエット成膜法としては、塗布法、インクジェット法などがある。これらの方法では、直接パターンを形成することが可能である。
As a method for forming the anode 12, there are a dry film forming method and a wet film forming method. Dry (vacuum) film forming methods include vapor deposition and sputtering. As a method for forming a pattern by a dry film formation method, a method such as pattern film formation using a metal mask, wet etching using a photoresist or printing, lift-off, or the like can be used.
On the other hand, examples of the wet film forming method include a coating method and an ink jet method. In these methods, it is possible to form a pattern directly.
 ドライ成膜法の場合は、パターン精度や自由度、生産性などを考慮すると、ウエットエッチングやリフトオフを用いることが好ましい。一方、ウエット成膜法として、塗布法やインクジェット法が利用可能な場合は、直接パターンを描画することが可能であるため、さらに好ましい。 In the case of a dry film forming method, it is preferable to use wet etching or lift-off in consideration of pattern accuracy, flexibility, productivity, and the like. On the other hand, when a coating method or an inkjet method can be used as the wet film formation method, it is more preferable because a pattern can be directly drawn.
 陽極12のシート抵抗は数百Ω/□以下が好ましい。更に膜厚は材料にもよるが、通常10~1000nm、好ましくは10~200nmの範囲で選ばれる。 The sheet resistance of the anode 12 is preferably several hundred Ω / □ or less. Further, although the film thickness depends on the material, it is usually selected in the range of 10 to 1000 nm, preferably 10 to 200 nm.
(第2工程)
 第2工程は、基板上にパターン化された陽極取出電極およびパターン化された陰極取出電極を形成する工程である。図2(b)において、基板11上にパターン化された陽極取出電極13およびパターン化された陰極取出電極14が図示されている。
(Second step)
The second step is a step of forming a patterned anode extraction electrode and a patterned cathode extraction electrode on the substrate. In FIG. 2B, a patterned anode extraction electrode 13 and a patterned cathode extraction electrode 14 are shown on the substrate 11.
 陽極取出電極13および陰極取出電極14はそれぞれ、有機EL素子の陽極および陰極を外部電源等に接続して、電圧を印加するときに用いられる。陽極取出電極13および陰極取出電極14の材料としては、Al、Cr、Mo、Ti、Ta、Cu、Ag、Auなどの金属材料とその合金類が一般的に利用される。陽極取出電極13および陰極取出電極14を形成する方法についても、上記陽極12と同様である。蒸着法、スパッタリング法、塗布法、インクジェット法等の公知の方法を適用することが可能である。パターンを形成する方法としては、第1工程に記載した方法と同様の方法を使用することができる。 The anode extraction electrode 13 and the cathode extraction electrode 14 are used when a voltage is applied by connecting the anode and cathode of the organic EL element to an external power source or the like, respectively. As materials for the anode extraction electrode 13 and the cathode extraction electrode 14, metal materials such as Al, Cr, Mo, Ti, Ta, Cu, Ag, Au, and alloys thereof are generally used. The method of forming the anode extraction electrode 13 and the cathode extraction electrode 14 is the same as that of the anode 12. Known methods such as a vapor deposition method, a sputtering method, a coating method, and an ink jet method can be applied. As a method for forming the pattern, a method similar to the method described in the first step can be used.
(第3工程)
 第3工程は、陽極取出電極の一部の上にパターン化された絶縁層を形成する工程である。図2(c)において、陽極取出電極13の一部の上にパターン化された絶縁層15が図示されている。
(Third step)
The third step is a step of forming a patterned insulating layer on a part of the anode extraction electrode. In FIG. 2C, the insulating layer 15 patterned on a part of the anode extraction electrode 13 is shown.
 絶縁層15は、後記する陰極を形成した際に、陽極取出電極13と陰極とが短絡しないように設けられる層である。絶縁層15を構成する材料としては、SiO、Si、Al、TiO、SiOxCy、SiOxNy、などの無機材料や、フォトレジスト等の絶縁性の有機材料、等が挙げられる。絶縁層15を形成する方法については、上記陽極12と同様である。蒸着法、スパッタリング法、塗布法、インクジェット法等の公知の方法を適用することが可能である。パターンを形成する方法としては、第1工程に記載した方法と同様の方法を使用することができる。 The insulating layer 15 is a layer provided so that the anode extraction electrode 13 and the cathode are not short-circuited when the cathode described later is formed. Examples of the material constituting the insulating layer 15 include inorganic materials such as SiO 2 , Si 3 N 4 , Al 2 O 3 , TiO 2 , SiOxCy, and SiOxNy, and insulating organic materials such as a photoresist. . The method for forming the insulating layer 15 is the same as that for the anode 12. Known methods such as a vapor deposition method, a sputtering method, a coating method, and an ink jet method can be applied. As a method for forming the pattern, a method similar to the method described in the first step can be used.
(第4工程)
 第4工程は、基板、陽極、陽極取出電極、陰極取出電極および絶縁層の上に有機発光層を形成する工程である。図2(d)において、基板11、陽極12、陽極取出電極13、陰極取出電極14および絶縁層15の上に有機発光層16が図示されている。
(4th process)
The fourth step is a step of forming an organic light emitting layer on the substrate, the anode, the anode extraction electrode, the cathode extraction electrode, and the insulating layer. In FIG. 2D, the organic light emitting layer 16 is illustrated on the substrate 11, the anode 12, the anode extraction electrode 13, the cathode extraction electrode 14, and the insulating layer 15.
 有機発光層16は、陽極から直接、又は陽極から正孔輸送層等を介して注入される正孔と、陰極から直接、又は陰極から電子輸送層等を介して注入される電子とが、再結合することによって発光する層である。なお、発光する部分は、発光層の内部であってもよいし、発光層とそれに隣接する層との間の界面であってもよい。 The organic light-emitting layer 16 has a structure in which holes injected directly from the anode or from the anode through the hole transport layer and the like and electrons injected directly from the cathode or from the cathode through the electron transport layer and the like are regenerated. It is a layer that emits light when bonded. Note that the portion that emits light may be inside the light emitting layer, or may be an interface between the light emitting layer and a layer adjacent thereto.
 有機発光層16は、ホスト化合物(ホスト材料)と、発光材料(発光ドーパント化合物)とを含む有機発光性材料で形成することが好ましい。有機発光層16をこのように構成すると、含有させる発光材料の種類等を適宜調整することによって任意の発光色を得ることができる。有機発光層16に含まれる発光材料としては、例えば、燐光発光材料(燐光性化合物、燐光発光性化合物)、蛍光発光材料等を用いることができる。なお、有機発光層16には、一種類の発光材料を含有させてもよいし、発光極大波長が互いに異なる複数種の発光材料を含有させてもよい。具体的な発光材料については、公知の材料から適宜選択して使用することができる。 The organic light emitting layer 16 is preferably formed of an organic light emitting material including a host compound (host material) and a light emitting material (light emitting dopant compound). When the organic light emitting layer 16 is configured in this manner, an arbitrary emission color can be obtained by appropriately adjusting the type of the light emitting material to be included. As the light emitting material included in the organic light emitting layer 16, for example, a phosphorescent light emitting material (phosphorescent compound, phosphorescent light emitting compound), a fluorescent light emitting material, or the like can be used. The organic light emitting layer 16 may contain one type of light emitting material, or may contain a plurality of types of light emitting materials having different light emission maximum wavelengths. About a specific luminescent material, it can select from a well-known material suitably and can be used.
 有機発光層16を形成する方法については、上記第1工程の場合と同様であるが、有機発光材料の層を形成する方法としては、蒸着法が一般的に使用される。図1(a)のチャンバ102では、蒸着法によって有機発光層16を形成する装置が記載されている。 The method for forming the organic light emitting layer 16 is the same as that in the first step, but a vapor deposition method is generally used as a method for forming the layer of the organic light emitting material. In the chamber 102 of FIG. 1A, an apparatus for forming the organic light emitting layer 16 by vapor deposition is described.
 有機発光層16に加えて、必要に応じて、電子輸送層、正孔輸送層、正孔阻止層、電子阻止層、電子注入層(陰極バッファー層)、正孔注入層(陽極バッファー層)等の層を適宜形成することができる。このような各層の具体的な内容については、公知の知見から適宜選択して適用することができる。これらの各層を形成する方法としては、蒸着法が一般的に使用される。 In addition to the organic light emitting layer 16, an electron transport layer, a hole transport layer, a hole blocking layer, an electron blocking layer, an electron injection layer (cathode buffer layer), a hole injection layer (anode buffer layer), etc., as necessary. These layers can be formed as appropriate. The specific contents of each layer can be appropriately selected from known knowledge and applied. As a method for forming each of these layers, a vapor deposition method is generally used.
(第5工程)
 第5工程は、陰極取出電極上の一部の有機発光層、絶縁層上の一部の有機発光層および基板上の一部の有機発光層をレーザによって除去して、閉じられた線形状で囲まれた有機発光層を形成する工程である。図2(e)において、陰極取出電極14上の一部の有機発光層16および絶縁層15上の一部の有機発光層16がレーザによって除去されて、それぞれ17bおよび17aと記載された箇所が図示されている。
(5th process)
In the fifth step, a part of the organic light-emitting layer on the cathode extraction electrode, a part of the organic light-emitting layer on the insulating layer, and a part of the organic light-emitting layer on the substrate are removed with a laser to form a closed line shape. This is a step of forming an enclosed organic light emitting layer. In FIG. 2 (e), a part of the organic light emitting layer 16 on the cathode extraction electrode 14 and a part of the organic light emitting layer 16 on the insulating layer 15 are removed by laser, and the portions indicated as 17b and 17a are respectively shown. It is shown in the figure.
 図3(a)は、本発明の第1実施形態に係る有機EL素子の模式的平面図である。図3(b)は、その陽極取出電極部A-Aの模式的断面図である。図3(c)は、その陰極取出電極部B-Bの模式的断面図である。図3において、L3と記載された箇所が、第5工程においてレーザによって除去された箇所である。L3が存在することによって、閉じられた線形状で囲まれた有機発光層16が形成されて、閉じられた線形状で囲まれた有機発光層16を有する発光部Cが形成されることとなる。 FIG. 3A is a schematic plan view of the organic EL element according to the first embodiment of the present invention. FIG. 3B is a schematic cross-sectional view of the anode extraction electrode portion AA. FIG. 3C is a schematic cross-sectional view of the cathode extraction electrode portion BB. In FIG. 3, a portion described as L3 is a portion removed by the laser in the fifth step. Due to the presence of L3, the organic light emitting layer 16 surrounded by the closed line shape is formed, and the light emitting part C having the organic light emitting layer 16 surrounded by the closed line shape is formed. .
 有機発光層16は、基本的に有機化合物を主成分としている。そのため、高温に加熱することによって、有機化合物は熱分解されて、揮発し、飛散させることができる。陰極取出電極14上の一部の有機発光層16、絶縁層15上の一部の有機発光層16および基板上の一部の有機発光層16を高温に加熱して除去することによって、当該陰極取出電極14の一部、当該絶縁層15の一部および当該基板11の一部は外界に露出されることとなる。その後、次工程で陰極をその上に形成することが可能となる。 The organic light emitting layer 16 basically includes an organic compound as a main component. Therefore, by heating to a high temperature, the organic compound can be thermally decomposed, volatilized and scattered. A part of the organic light emitting layer 16 on the cathode extraction electrode 14, a part of the organic light emitting layer 16 on the insulating layer 15 and a part of the organic light emitting layer 16 on the substrate are removed by heating to a high temperature. A part of the extraction electrode 14, a part of the insulating layer 15, and a part of the substrate 11 are exposed to the outside. Thereafter, the cathode can be formed thereon in the next step.
 有機発光層16の一部を高温に加熱して除去する手段として、レーザを用いる。レーザは指向性や収束性に優れており、特定の微細な部分のみに照射して、当該微細部分のみを高温に加熱することが可能である。 A laser is used as means for removing a part of the organic light emitting layer 16 by heating to a high temperature. A laser is excellent in directivity and convergence, and it is possible to irradiate only a specific fine portion and heat only the fine portion to a high temperature.
 レーザによる加工には、熱加工と非熱加工とがある。熱加工は、レーザ光が固体材料の表面で吸収されて熱に変換され、その熱エネルギーで材料を溶融しながら行う加工のことである。熱的な作用を起こしやすい赤外線レーザが使用される。一方、非熱加工は、レーザアブレーション加工とも呼ばれるものであり、大気圧下でかなりの高温でしか溶融しない材料でもレーザ光が吸収された箇所を瞬時に溶融させ、蒸発、飛散させる加工のことである。加工内容に応じて赤外線レーザ、紫外線レーザ、パルスレーザ等が使用される。 Laser processing includes thermal processing and non-thermal processing. Thermal processing is processing performed while laser light is absorbed on the surface of a solid material and converted into heat, and the material is melted with the thermal energy. Infrared lasers that are susceptible to thermal effects are used. On the other hand, non-thermal processing is also called laser ablation processing, which is a processing that instantly melts, absorbs, and scatters the portion where the laser beam is absorbed, even if the material melts at a fairly high temperature under atmospheric pressure. is there. An infrared laser, an ultraviolet laser, a pulse laser, or the like is used depending on the processing content.
 本実施形態においては、加工部周辺への熱損傷が少なく、真空下でも大気圧下でも蒸発、飛散させて、有機化合物を除去することが可能であることから、レーザアブレーション加工が好ましい。 In this embodiment, laser ablation processing is preferable because there is little thermal damage to the periphery of the processing portion, and it is possible to remove organic compounds by evaporation and scattering under vacuum and atmospheric pressure.
 本実施形態において用いるレーザの波長は、有機層に対しエネルギー吸収される観点から、300~700nmのものが好ましいが、これに限定されるものではない。 The wavelength of the laser used in this embodiment is preferably 300 to 700 nm from the viewpoint of energy absorption in the organic layer, but is not limited thereto.
 また、本実施形態において用いるレーザとしては、出力、周波数、デューティー比等で加工条件が広範囲にとれるパルスレーザが好ましく用いられる。 Further, as the laser used in the present embodiment, a pulse laser that can take a wide range of processing conditions such as output, frequency, duty ratio, etc. is preferably used.
 レーザの媒体による分類としては、固体レーザ、液体レーザ、ガスレーザ、半導体レーザ等があるが、高速かつ低熱ダメージとの観点から、固体レーザーまたはガスレーザーが好ましい。固体レーザとしては、ルビーレーザ、YAGレーザ、サファイアレーザ、チタンサファイアレーザ等を使用することが可能であり、特にYVOレーザが好ましい。またガスレーザとしては、COレーザ、ヘリウムネオンレーザ、アルゴンイオンレーザ、エキシマレーザ等を使用することが可能であり、特にエキシマレーザが好ましい。 The laser medium classification includes solid laser, liquid laser, gas laser, semiconductor laser, and the like. From the viewpoint of high speed and low thermal damage, solid laser or gas laser is preferable. As the solid-state laser, a ruby laser, a YAG laser, a sapphire laser, a titanium sapphire laser or the like can be used, and a YVO 4 laser is particularly preferable. As the gas laser, a CO 2 laser, a helium neon laser, an argon ion laser, an excimer laser or the like can be used, and an excimer laser is particularly preferable.
 このようなレーザによって除去する方法では、有機発光層16は瞬時に溶融し、蒸発、飛散される。熱分解されたものは低分子物質となるため、遠方まで飛散させることができ、真空ポンプ等を用いて、系内から除去・廃棄することが容易である。
 図1(a)のチャンバ103には、真空下で有機発光層の一部をレーザによって除去する装置が記載されている。
In such a method of removing with a laser, the organic light emitting layer 16 is instantaneously melted, evaporated and scattered. Since the pyrolyzed material becomes a low-molecular substance, it can be scattered far away and can be easily removed and discarded from the system using a vacuum pump or the like.
The chamber 103 in FIG. 1A describes an apparatus for removing a part of the organic light emitting layer with a laser under vacuum.
 本実施形態においては、レーザによって除去する位置を位置情報による調整機構によって調整することによって、レーザによって除去する有機発光層のパターン(形状、位置)を高い自由度と精度で形成することができる。第5工程において、除去の対象となる、陰極取出電極上の一部の有機発光層、絶縁層上の一部の有機発光層および基板上の一部の有機発光層の形状・位置を、レーザの照射条件を適宜調整することによって、種々変えることが可能である。その結果、閉じられた有機発光層のパターンを高い自由度と精度で形成することができる。 In this embodiment, the pattern (shape, position) of the organic light emitting layer to be removed by the laser can be formed with high flexibility and accuracy by adjusting the position to be removed by the laser by the adjusting mechanism based on the position information. In the fifth step, the shape and position of part of the organic light emitting layer on the cathode extraction electrode, part of the organic light emitting layer on the insulating layer, and part of the organic light emitting layer on the substrate to be removed Various adjustments can be made by appropriately adjusting the irradiation conditions. As a result, the pattern of the closed organic light emitting layer can be formed with a high degree of freedom and accuracy.
(第6工程)
 第6工程は、有機発光層、レーザによって有機発光層が除去された陰極取出電極、レーザによって有機発光層が除去された絶縁層および前記レーザによって有機発光層が除去された基板の上に陰極を形成する工程である。図2(f)において、有機発光層16、レーザによって有機発光層16が除去された陰極取出電極14、レーザによって有機発光層16が除去された絶縁層15および前記レーザによって有機発光層が除去された基板11の上に陰極18が図示されている。
(6th process)
The sixth step includes an organic light emitting layer, a cathode extraction electrode from which the organic light emitting layer has been removed by a laser, an insulating layer from which the organic light emitting layer has been removed by a laser, and a substrate on which the organic light emitting layer has been removed by the laser. It is a process of forming. 2F, the organic light emitting layer 16, the cathode extraction electrode 14 from which the organic light emitting layer 16 has been removed by the laser, the insulating layer 15 from which the organic light emitting layer 16 has been removed by the laser, and the organic light emitting layer have been removed by the laser. A cathode 18 is shown on the substrate 11.
 第6工程において、第5工程において形成された、閉じられた線形状で囲まれた有機発光層16の上面と周囲は陰極18で封止されることとなる。その結果、有機発光層16は、下面が基板11、それ以外の周囲と上面が陰極18で封止された構造となる。陰極18に通常用いられる金属系材料はガスバリア性に優れている。そのため、簡便な構造でありながら、有機発光層16は、外界の酸素等のガスの影響を受けにくいものとなり、有機EL素子としての発光性能の耐久性を向上させることが可能となる。 In the sixth step, the upper surface and the periphery of the organic light emitting layer 16 surrounded by the closed line shape formed in the fifth step are sealed with the cathode 18. As a result, the organic light emitting layer 16 has a structure in which the lower surface is sealed with the substrate 11 and the other periphery and the upper surface are sealed with the cathode 18. The metal material usually used for the cathode 18 is excellent in gas barrier properties. Therefore, while having a simple structure, the organic light emitting layer 16 is not easily affected by a gas such as oxygen in the outside world, and the durability of the light emitting performance as the organic EL element can be improved.
 陰極18は、発光層に電子を供給(注入)する電極である。陰極を構成する材料は特に制限されないが、通常は、仕事関数の小さい(4eV以下)材料、例えば、金属(電子注入性金属)、合金、電気伝導性化合物、及びこれらの混合物等の電極材料で形成される。 The cathode 18 is an electrode that supplies (injects) electrons to the light emitting layer. The material constituting the cathode is not particularly limited, but is usually an electrode material such as a material having a low work function (4 eV or less), for example, a metal (electron injecting metal), an alloy, an electrically conductive compound, and a mixture thereof. It is formed.
 陰極18を形成する方法については、蒸着法が一般的に使用される。図1(a)のチャンバ104では、蒸着法によって陰極14を形成する装置が記載されている。 As a method for forming the cathode 18, a vapor deposition method is generally used. In the chamber 104 of FIG. 1A, an apparatus for forming the cathode 14 by vapor deposition is described.
 陰極18は、陽極と同様に、光透過性を有する電極材料で形成することが可能である。この場合、例えば1nm以上20nm以下の膜厚になるように陰極形成用電極材料からなる金属膜を形成した後、この金属膜上に、陽極12で説明した導電性透明材料からなる膜を形成することにより、透明又は半透明の陰極を形成することができる。このとき、有機発光層16で発光された光は基板11の反対側から取出されることが可能となる。 The cathode 18 can be formed of a light-transmitting electrode material like the anode. In this case, for example, after forming a metal film made of an electrode material for forming a cathode so as to have a film thickness of 1 nm or more and 20 nm or less, a film made of a conductive transparent material described in the anode 12 is formed on this metal film. Thus, a transparent or translucent cathode can be formed. At this time, the light emitted from the organic light emitting layer 16 can be extracted from the opposite side of the substrate 11.
(第7工程)
 第7工程は、陰極の上に封止層および保護層の少なくとも一方を形成する工程である。第7工程では、陰極の上に、封止層のみを形成する方法、保護層のみを形成する方法、封止層と保護層の両者を形成する方法の3つの方法のうち、いずれの方法を適用してもよい。
(Seventh step)
The seventh step is a step of forming at least one of a sealing layer and a protective layer on the cathode. In the seventh step, any one of the three methods of forming only the sealing layer on the cathode, forming only the protective layer, and forming both the sealing layer and the protective layer is performed. You may apply.
 図2(g)において、陰極18の上に封止層19を形成することが図示されている。図2(h)において、封止層19の上に保護層20を形成することが図示されている。第7工程において、封止層および保護層の両者を形成するときは通常、まず封止層19を形成してから、その上に保護層20を形成することが好ましい。 In FIG. 2G, the formation of the sealing layer 19 on the cathode 18 is illustrated. FIG. 2 (h) shows that the protective layer 20 is formed on the sealing layer 19. In the seventh step, when forming both the sealing layer and the protective layer, it is usually preferable to first form the sealing layer 19 and then form the protective layer 20 thereon.
 封止層19は、外部環境から有機発光層16を遮断・保護するためのものである。封止層19は、水蒸気や酸素に対するガスバリア性を有している。 The sealing layer 19 is for shielding and protecting the organic light emitting layer 16 from the external environment. The sealing layer 19 has a gas barrier property against water vapor and oxygen.
 封止層19を構成する材料としては、例えば、例えば、SiO、Si、Al、TiO、SiOxCy、SiOxNy、などの無機材料が使用される。 As a material constituting the sealing layer 19, for example, an inorganic material such as SiO 2 , Si 3 N 4 , Al 2 O 3 , TiO 2 , SiOxCy, or SiOxNy is used.
 封止層19を形成する方法についても、蒸着法、スパッタリング法、CVD法、イオンプレーティング法等の公知の方法を適用することが可能である。図1(a)のチャンバ105では、スパッタリング法によって封止層19を形成する装置が記載されている。 Also for the method of forming the sealing layer 19, a known method such as a vapor deposition method, a sputtering method, a CVD method, or an ion plating method can be applied. In the chamber 105 of FIG. 1A, an apparatus for forming the sealing layer 19 by a sputtering method is described.
 保護層20は、封止層19上に設置し、内部の有機EL素子を外部の物理的な外力から保護する層である。
 保護層20を構成する材料としては、例えば、例えば、エチレンテトラフルオロエチレン共重合体、ポリエチレン、ポリプロピレン、ポリスチレン、ポリメチルメタクリレート、ナイロン、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリカーボネート、ポリイミド、ポリエーテルスルホン等の熱可塑性樹脂、ユリア樹脂、メラミン樹脂、フェノール樹脂、レゾルシノール樹脂、エポキシ樹脂、不飽和ポリエステル樹脂、ポリウレタン樹脂、アクリル樹脂等の硬化性樹脂が挙げられる。さらに、保護層20は、大気中の酸素、水分を遮断する機能を有していることが好ましい。すなわち、保護層20の少なくとも片方の表面にガスバリア層が形成されていることが好ましい。ガスバリア層は、有機系であっても無機系であってもよい。無機系のガスバリア層の材料としては、ケイ素、アルミニウム、チタン等の金属の金属酸化物、金属窒化物、金属酸窒化物、等がある。こうしたガスバリア層を備えた保護層20であれば、封止層19がない構成を取ることも可能である。
The protective layer 20 is a layer that is installed on the sealing layer 19 and protects the internal organic EL element from an external physical external force.
Examples of the material constituting the protective layer 20 include, for example, ethylene tetrafluoroethylene copolymer, polyethylene, polypropylene, polystyrene, polymethyl methacrylate, nylon, polyethylene terephthalate, polyethylene naphthalate, polycarbonate, polyimide, and polyethersulfone. Examples thereof include curable resins such as thermoplastic resins, urea resins, melamine resins, phenol resins, resorcinol resins, epoxy resins, unsaturated polyester resins, polyurethane resins, and acrylic resins. Furthermore, the protective layer 20 preferably has a function of blocking oxygen and moisture in the atmosphere. That is, it is preferable that a gas barrier layer is formed on at least one surface of the protective layer 20. The gas barrier layer may be organic or inorganic. Examples of the material for the inorganic gas barrier layer include metal oxides such as silicon, aluminum, and titanium, metal nitrides, and metal oxynitrides. If it is the protective layer 20 provided with such a gas barrier layer, the structure without the sealing layer 19 is also possible.
 さらに、これらの樹脂からなる層を封止層等に密着させるために、接着層を設けて、ラミネートする方法を取ることもできる。接着層を構成する材料としては、熱硬化性樹脂、光硬化性樹脂、熱可塑性樹脂のいずれも使用することができる。熱硬化性樹脂としては、例えば、エポキシ樹脂系、アクリル樹脂系、シリコーン樹脂系、ユリア樹脂系、メラミン樹脂系、フェノール樹脂系、レゾルシノール樹脂系、不飽和ポリエステル樹脂系、ポリウレタン樹脂系等の熱硬化性樹脂が挙げられる。光硬化性樹脂としては、例えば、エステルアクリレート、ウレタンアクリレート、エポキシアクリレート、メラミンアクリレート、アクリル樹脂アクリレート等の各種アクリレート、又はウレタンポリエステル等の樹脂を用いたラジカル系光硬化性樹脂、エポキシ、ビニルエーテル等の樹脂を用いたカチオン系光硬化性樹脂、等が挙げられる。熱可塑性樹脂としては、例えば、ポリエチレン、ポリプロピレン、ポリアミド、ポリエチレンテレフタレート(PET)、ポリビニルアルコール(PVA)、エチレン-酢酸ビニル共重合体(EVA)、エチレン-プロピレン共重合体、エチレン-アクリル酸共重合体、エチレン-メタクリル酸共重合体、ポリ塩化ビニリデン(PVDC)、アイオノマー等の使用が可能である。 Furthermore, in order to adhere a layer made of these resins to the sealing layer or the like, an adhesive layer may be provided and laminated. As a material constituting the adhesive layer, any of a thermosetting resin, a photocurable resin, and a thermoplastic resin can be used. As the thermosetting resin, for example, epoxy resin, acrylic resin, silicone resin, urea resin, melamine resin, phenol resin, resorcinol resin, unsaturated polyester resin, polyurethane resin, etc. Resin. Examples of the photocurable resin include radical curable resins such as ester acrylates, urethane acrylates, epoxy acrylates, melamine acrylates, acrylic resin acrylates, etc., or radical photocurable resins using resins such as urethane polyesters, epoxies, vinyl ethers, and the like. Examples thereof include a cationic photocurable resin using a resin. Examples of the thermoplastic resin include polyethylene, polypropylene, polyamide, polyethylene terephthalate (PET), polyvinyl alcohol (PVA), ethylene-vinyl acetate copolymer (EVA), ethylene-propylene copolymer, ethylene-acrylic acid copolymer. Polymers, ethylene-methacrylic acid copolymers, polyvinylidene chloride (PVDC), ionomers and the like can be used.
 保護層20を形成する方法については、ラミネート法等の公知の方法を適用することが可能である。図1(a)のチャンバ106では、ラミネート法によって保護層20を形成する装置が記載されている。 As a method of forming the protective layer 20, a known method such as a laminating method can be applied. In the chamber 106 of FIG. 1A, an apparatus for forming the protective layer 20 by a laminating method is described.
 第4工程から第7工程までは、長尺の基板を用いることによって、連続して加工することが可能である。そのため、各工程を行う装置を備えたチャンバを連結させて、ロールツーロール方式で生産性よく、有機EL素子を製造することができる。また、蒸着法やスパッタリング法等の気相法を用いることが好ましいため、第4工程から第7工程までは、真空下で行うことが好ましい。 From the fourth step to the seventh step, it is possible to process continuously by using a long substrate. Therefore, the chamber provided with the apparatus which performs each process can be connected, and an organic EL element can be manufactured with high productivity by a roll-to-roll system. Further, since it is preferable to use a vapor phase method such as a vapor deposition method or a sputtering method, the fourth to seventh steps are preferably performed under vacuum.
(第8工程)
 第8工程は、基板、陽極取出電極、絶縁層および陰極取出電極の各一部の上の、有機発光層、陰極、封止層および保護層の少なくとも一方を除去して、陽極取出電極および陰極取出電極を基板上に露出させる工程である。図2(i)において、基板11、陽極取出電極13、絶縁層15および陰極取出電極14の各一部の上の、有機発光層16、陰極18、封止層19および保護層20が除去されて、陽極取出電極13および陰極取出電極14が基板上に露出し、それぞれ21aおよび21bと記載された箇所が図示されている。
(8th step)
In the eighth step, at least one of the organic light-emitting layer, the cathode, the sealing layer, and the protective layer on each of the substrate, the anode extraction electrode, the insulating layer, and the cathode extraction electrode is removed, and the anode extraction electrode and the cathode are removed. In this step, the extraction electrode is exposed on the substrate. In FIG. 2 (i), the organic light emitting layer 16, the cathode 18, the sealing layer 19 and the protective layer 20 on each part of the substrate 11, the anode extraction electrode 13, the insulating layer 15 and the cathode extraction electrode 14 are removed. Thus, the anode extraction electrode 13 and the cathode extraction electrode 14 are exposed on the substrate, and the portions indicated as 21a and 21b are illustrated.
 基板11、陽極取出電極13、絶縁層15および陰極取出電極14の各一部の上の、有機発光層16、陰極18、封止層19および保護層20を除去する方法には、レーザを用いる方法、電子ビームを用いる方法、イオンビームを用いる方法、等がある。これらの中では、比較的簡便な装置で加工することが可能であるとの理由で、レーザを用いる方法が好ましい。 A laser is used as a method for removing the organic light emitting layer 16, the cathode 18, the sealing layer 19 and the protective layer 20 on each of the substrate 11, the anode extraction electrode 13, the insulating layer 15 and the cathode extraction electrode 14. A method using an electron beam, a method using an ion beam, and the like. Among these, a method using a laser is preferable because it can be processed with a relatively simple apparatus.
 第8工程において、陽極取出電極13の一部および陰極取出電極14の一部の周辺付近の有機発光層16、陰極18、封止層19および保護層20の一部をレーザによって高温に加熱して除去することによって、当該陽極取出電極13の一部および陰極取出電極14の一部は外界に露出されることとなる。そのため、次の第9工程で有機EL素子を断裁した後、個々の有機EL素子を実際に発光させる場合に、外部の電源等と有機EL素子の各電極とを接続することが容易となる。 In the eighth step, part of the organic light emitting layer 16, the cathode 18, the sealing layer 19 and the protective layer 20 in the vicinity of a part of the anode extraction electrode 13 and the part of the cathode extraction electrode 14 are heated to a high temperature by a laser. As a result, a part of the anode extraction electrode 13 and a part of the cathode extraction electrode 14 are exposed to the outside. Therefore, after cutting the organic EL element in the next ninth step, it is easy to connect an external power source or the like to each electrode of the organic EL element when the individual organic EL element is actually caused to emit light.
 レーザによって除去する方法の具体的な内容については、前記第5工程において説明した内容と同様であるので、その説明を省略する。
 一般に、有機発光層はレーザによって飛散させ易い。そのため、当該有機発光層の上に存在する封止層および保護層も同時に飛散させることができる。但し、レーザによって除去されるものには、高分子量の保護層が含まれる場合があるため、レーザの照射の条件は除去させる対象物に応じて適宜調整することが好ましい。
The specific content of the method of removing with a laser is the same as the content described in the fifth step, and the description thereof is omitted.
In general, the organic light emitting layer is easily scattered by a laser. Therefore, the sealing layer and the protective layer existing on the organic light emitting layer can be simultaneously scattered. However, since what is removed by the laser may include a high molecular weight protective layer, it is preferable to appropriately adjust the laser irradiation conditions depending on the object to be removed.
 また、レーザによって熱分解されるものは、第5工程の場合と比べて比較的分子量が高いものとなるため、飛散させて、系内から除去・廃棄することを容易とするために、大気圧下で行うことが好ましい。 Also, what is thermally decomposed by the laser has a relatively high molecular weight compared to the case of the fifth step, so that it can be scattered and easily removed and discarded from the system at atmospheric pressure. It is preferable to carry out below.
 第8工程において、除去する有機発光層16、陰極18、封止層19および保護層20の形状・位置を、レーザ等の照射条件を適宜調整することによって、種々変えることが可能である。その結果、パターン化された陽極取出電極13およびパターン化された陰極取出電極14のパターン(形状、位置)にかかわらず、露出させる陽極取出電極および陰極取出電極のパターンを高い自由度と精度で形成することができる。 In the eighth step, the shapes and positions of the organic light emitting layer 16, the cathode 18, the sealing layer 19 and the protective layer 20 to be removed can be variously changed by appropriately adjusting the irradiation conditions such as laser. As a result, regardless of the pattern (shape and position) of the patterned anode extraction electrode 13 and the patterned cathode extraction electrode 14, the exposed anode extraction electrode and cathode extraction electrode patterns can be formed with high flexibility and accuracy. can do.
 また、本実施形態においては、レーザ等によって除去する位置を位置情報による調整機構によって調整することによって、有機発光層16、露出させる陽極取出電極13および陰極取出電極14のパターンの自由度と精度を高めることができる。 In this embodiment, the degree of freedom and accuracy of the pattern of the organic light emitting layer 16, the anode extraction electrode 13 to be exposed, and the cathode extraction electrode 14 are adjusted by adjusting the position to be removed by a laser or the like by an adjustment mechanism based on position information. Can be increased.
(第9工程)
 第9工程は、第8工程で、有機発光層、陰極、封止層および保護層が除去された基板の一部で基板を断裁して、閉じられた線形状で囲まれた有機発光層を有する有機EL素子を形成する工程である。図2(j)において、有機発光層16、陰極18、封止層19および保護層20が除去された基板11の一部で基板11を断裁して、閉じられた線形状で囲まれた有機発光層を有する有機EL素子が図示されている。得られた有機EL素子は、発光部Eと陽極取出電極部T1と陰極取出電極部T2とを有している。
(9th step)
The ninth step is the eighth step, in which the organic light emitting layer surrounded by a closed line shape is cut by cutting a part of the substrate from which the organic light emitting layer, the cathode, the sealing layer and the protective layer have been removed. This is a step of forming an organic EL element. In FIG. 2 (j), the substrate 11 is cut by a part of the substrate 11 from which the organic light emitting layer 16, the cathode 18, the sealing layer 19 and the protective layer 20 have been removed, and is surrounded by a closed line shape. An organic EL element having a light emitting layer is illustrated. The obtained organic EL element has the light emission part E, the anode extraction electrode part T1, and the cathode extraction electrode part T2.
 基板を断裁する方法は、公知の方法を適宜選択して適用することができる。その際、断裁する位置を位置情報による調整機構によって調整することが好ましい。図1(c)のチャンバ108には、大気圧下で、上下のカッターによって基板を断裁する装置が記載されている。 The method for cutting the substrate can be applied by appropriately selecting a known method. At that time, it is preferable to adjust the cutting position by an adjustment mechanism based on position information. In the chamber 108 of FIG. 1C, there is described an apparatus for cutting a substrate by an upper and lower cutter under atmospheric pressure.
 図3(a)は、本発明の第1実施形態に係る有機EL素子の模式的平面図である。図3(b)は、その陽極取出電極部A-Aの模式的断面図である。図3(c)は、その陰極取出電極部B-Bの模式的断面図である。L1とL2は、第8工程において、除去された箇所を示している。 FIG. 3A is a schematic plan view of the organic EL element according to the first embodiment of the present invention. FIG. 3B is a schematic cross-sectional view of the anode extraction electrode portion AA. FIG. 3C is a schematic cross-sectional view of the cathode extraction electrode portion BB. L1 and L2 indicate locations removed in the eighth step.
 有機EL素子の陽極取出電極部L1と陰極取出電極部L2において、それぞれ露出している陽極取出電極13と陰極取出電極14に電圧を掛けることによって、閉じられた線形状で囲まれた有機発光層を有する発光部Cが発光することとなる。 An organic light emitting layer surrounded by a closed line shape by applying a voltage to the exposed anode extraction electrode 13 and cathode extraction electrode 14 in the anode extraction electrode portion L1 and the cathode extraction electrode portion L2 of the organic EL element, respectively. The light emitting part C having the light emits light.
[第1実施形態の変形例]
 第1実施形態は、長尺の基板を使用している。第1実施形態の変形例として、基板として枚葉式の基板を使用することができる。その場合には、第1実施形態の製造方法における第9工程はない。図1に示された各工程に相当するチャンバ102~107を個々に切り離して、第1工程から第8工程の各工程を順に行うことによって、枚葉形態の有機EL素子を製造することができる。
[Modification of First Embodiment]
The first embodiment uses a long substrate. As a modification of the first embodiment, a single-wafer substrate can be used as the substrate. In that case, there is no ninth step in the manufacturing method of the first embodiment. By separating the chambers 102 to 107 corresponding to the respective steps shown in FIG. 1 and performing the steps from the first step to the eighth step in order, a single wafer type organic EL element can be manufactured. .
(第1実施形態の効果)
 第1実施形態の製造方法によると、第5工程で、レーザによって除去を行うことによって、レーザによる除去を行わない場合に比べて、より広い自由度で閉じられた線形状で囲まれた有機発光層のパターンを形成することが可能となる。
 また、長尺の基板を使用すると、ロールツーロール方式で連続的に、簡便で自由度の高いパターンを形成することが可能となり、生産性が高くなり、低コスト化が可能となる。
(Effect of 1st Embodiment)
According to the manufacturing method of the first embodiment, in the fifth step, the organic light emission surrounded by the closed line shape with a wider degree of freedom is obtained by removing with the laser in the fifth step than when not removing with the laser. A layer pattern can be formed.
In addition, when a long substrate is used, it is possible to form a simple and highly flexible pattern continuously in a roll-to-roll manner, increasing the productivity and reducing the cost.
 閉じられた線形状で囲まれた有機発光層の上面と周囲は陰極によって封止されており、外界からの影響を排除して、耐久性の高い有機EL素子とすることができる。
 さらに比較的簡便な方法で製造することが可能であるため、製造コストを少ないものとすることができる。
 また、レーザによる除去加工の精度を高めることによって、有機発光層の形状や位置を微細で複雑に設置した有機EL素子を製造することが可能となる。
The upper surface and the periphery of the organic light-emitting layer surrounded by the closed line shape are sealed with a cathode, so that the influence from the outside can be eliminated and a highly durable organic EL element can be obtained.
Furthermore, since it can be manufactured by a relatively simple method, the manufacturing cost can be reduced.
Further, by increasing the accuracy of removal processing by laser, it becomes possible to manufacture an organic EL element in which the shape and position of the organic light emitting layer are finely and complicatedly installed.
 さらに、第5工程におけるレーザによる除去では、陰極形成前に有機発光層のみを除去するものであり、比較的分解し易い有機発光層だけの飛散であり、他の層への汚染が少なく、有機EL素子としての欠陥が起こりにくいものである。 Further, the removal by the laser in the fifth step is to remove only the organic light emitting layer before forming the cathode, it is a scattering of only the organic light emitting layer that is relatively easily decomposed, there is little contamination to other layers, and the organic Defects as EL elements are unlikely to occur.
[有機EL素子]
 前記第1実施形態の製造方法と製造装置を用いることによって、基板上に陽極、陽極取出電極、陰極取出電極、絶縁層、有機発光層、陰極が積層されて構成された有機EL素子であって、有機発光層は閉じられた線形状を有し、有機発光層の上面と周囲は陰極で封止され、陰極の上面に封止層および保護層の少なくとも一方が形成されている有機EL素子を形成することができる。
[Organic EL device]
An organic EL device comprising an anode, an anode extraction electrode, a cathode extraction electrode, an insulating layer, an organic light emitting layer, and a cathode stacked on a substrate by using the manufacturing method and the manufacturing apparatus of the first embodiment. The organic light emitting layer has a closed linear shape, the organic light emitting layer has an upper surface and a periphery sealed with a cathode, and at least one of a sealing layer and a protective layer is formed on the upper surface of the cathode. Can be formed.
 このような有機EL素子は、有機発光層が閉じられた線形状を有している。当該有機発光層の下面には、基板が存在している。一方、当該有機発光層の上面と周囲には、陰極が存在しており、当該有機発光層は陰極で封止されている。陰極の上面にはさらに、封止層および保護層の少なくとも一方が存在している。 Such an organic EL element has a linear shape in which the organic light emitting layer is closed. A substrate is present on the lower surface of the organic light emitting layer. On the other hand, a cathode exists on the upper surface and the periphery of the organic light emitting layer, and the organic light emitting layer is sealed with the cathode. Further, at least one of a sealing layer and a protective layer is present on the upper surface of the cathode.
 当該有機発光層の周囲の端面方向には、陰極の厚さが厚くなるため、陰極のみであっても有機発光層の端面方向のガスバリア性は良好である。
 また、当該有機発光層の上面方向には、陰極のみならず、封止層および保護層の少なくとも一方が存在している。そのため、有機発光層の上面方向のガスバリア性も良好である。
 このような理由から、当該有機EL素子は、簡便な構造を有し、簡便な製造方法で製造できるものでありながら、有機発光層が外界から遮断されて、外界の影響を受けにくくなっており、耐久性に優れた発光性能を有したものとなる。
Since the thickness of the cathode increases in the end face direction around the organic light emitting layer, the gas barrier property in the end face direction of the organic light emitting layer is good even with only the cathode.
Further, not only the cathode but also at least one of a sealing layer and a protective layer is present in the upper surface direction of the organic light emitting layer. Therefore, the gas barrier property in the upper surface direction of the organic light emitting layer is also good.
For these reasons, the organic EL element has a simple structure and can be manufactured by a simple manufacturing method, but the organic light emitting layer is blocked from the outside world and is not easily affected by the outside world. The light-emitting performance is excellent in durability.
 11  基板
 12  陽極
 13  陽極取出電極
 14  陰極取出電極
 15  絶縁層
 16  有機発光層
 18  陰極
 19  封止層
 20  保護層
 100 有機EL素子の製造装置
DESCRIPTION OF SYMBOLS 11 Substrate 12 Anode 13 Anode extraction electrode 14 Cathode extraction electrode 15 Insulating layer 16 Organic light emitting layer 18 Cathode 19 Sealing layer 20 Protective layer 100 Organic EL device manufacturing apparatus

Claims (7)

  1.  基板上にパターン化された陽極を形成する第1工程と、
     前記基板上にパターン化された陽極取出電極およびパターン化された陰極取出電極を形成する第2工程と、
     前記陽極取出電極の一部の上にパターン化された絶縁層を形成する第3工程と、
     前記基板、前記陽極、前記陽極取出電極、前記陰極取出電極および前記絶縁層の上に有機発光層を形成する第4工程と、
     前記陰極取出電極上の一部の有機発光層、前記絶縁層上の一部の有機発光層および前記基板上の一部の有機発光層をレーザによって除去して、閉じられた線形状で囲まれた有機発光層を形成する第5工程と、
     前記有機発光層、前記レーザによって有機発光層が除去された陰極取出電極、前記レーザによって有機発光層が除去された絶縁層および前記レーザによって有機発光層が除去された基板の上に陰極を形成して、前記閉じられた線形状で囲まれた有機発光層の上面と周囲を前記陰極で封止する第6工程と、
     前記陰極の上に封止層および保護層の少なくとも一方を形成する第7工程と、
     前記基板、前記陽極取出電極、前記絶縁層および前記陰極取出電極の各一部の上の、前記有機発光層、前記陰極、前記封止層および前記保護層の少なくとも一方を除去して、前記陽極取出電極および前記陰極取出電極を前記基板表面上に露出させる第8工程と
     を有する有機エレクトロルミネッセンス素子の製造方法。
    A first step of forming a patterned anode on a substrate;
    A second step of forming a patterned anode extraction electrode and a patterned cathode extraction electrode on the substrate;
    A third step of forming a patterned insulating layer on a portion of the anode extraction electrode;
    A fourth step of forming an organic light emitting layer on the substrate, the anode, the anode extraction electrode, the cathode extraction electrode and the insulating layer;
    A part of the organic light-emitting layer on the cathode extraction electrode, a part of the organic light-emitting layer on the insulating layer, and a part of the organic light-emitting layer on the substrate are removed by a laser and surrounded by a closed line shape. A fifth step of forming the organic light emitting layer;
    Forming a cathode on the organic light emitting layer, a cathode extraction electrode from which the organic light emitting layer has been removed by the laser, an insulating layer from which the organic light emitting layer has been removed by the laser, and a substrate from which the organic light emitting layer has been removed by the laser; A sixth step of sealing the upper surface and the periphery of the organic light emitting layer surrounded by the closed line shape with the cathode;
    A seventh step of forming at least one of a sealing layer and a protective layer on the cathode;
    Removing at least one of the organic light emitting layer, the cathode, the sealing layer, and the protective layer on each of the substrate, the anode extraction electrode, the insulating layer, and the cathode extraction electrode; And an eighth step of exposing the extraction electrode and the cathode extraction electrode on the surface of the substrate.
  2.  前記第4工程から前記第7工程までを真空下で行い、前記第8工程を大気圧下で行うことを特徴とする請求項1に記載の有機エレクトロルミネッセンス素子の製造方法。 The method for producing an organic electroluminescent element according to claim 1, wherein the fourth step to the seventh step are performed under vacuum and the eighth step is performed under atmospheric pressure.
  3.  前記第8工程において、前記基板、前記陽極取出電極、前記絶縁層および前記陰極取出電極の各一部の上の、前記有機発光層、前記陰極、前記封止層および前記保護層の少なくとも一方の除去を、レーザによって行うことを特徴とする請求項1または請求項2に記載の有機エレクトロルミネッセンス素子の製造方法。 In the eighth step, at least one of the organic light emitting layer, the cathode, the sealing layer, and the protective layer on each part of the substrate, the anode extraction electrode, the insulating layer, and the cathode extraction electrode. 3. The method for manufacturing an organic electroluminescence element according to claim 1, wherein the removal is performed by a laser.
  4.  前記レーザによって除去する位置を位置情報による調整機構によって調整することを特徴とする請求項1~請求項3のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。 The method for manufacturing an organic electroluminescence element according to any one of claims 1 to 3, wherein a position to be removed by the laser is adjusted by an adjustment mechanism based on position information.
  5.  前記基板として長尺の基板を用いることを特徴とする請求項1~請求項4のいずれか1項に記載の有機エレクトロルミネッセンス素子の製造方法。 5. The method of manufacturing an organic electroluminescence element according to claim 1, wherein a long substrate is used as the substrate.
  6.  基板上にパターン化された陽極を形成する装置と、
     前記基板上にパターン化された陽極取出電極およびパターン化された陰極取出電極を形成する装置と、
     前記基板上にパターン化された絶縁層を形成する装置と、
     前記基板上に有機発光層を形成する装置と、
     前記有機発光層の一部をレーザによって除去する装置と、
     前記有機発光層の上に陰極を形成する装置と、
     前記基板上に封止層を形成する装置および前記基板上に保護層を形成する装置の少なくとも一方と、
     前記基板上の、前記有機発光層、前記陰極、前記封止層および前記保護層の少なくとも一方の一部を除去する装置と
     を有する有機エレクトロルミネッセンス素子の製造装置。
    An apparatus for forming a patterned anode on a substrate;
    An apparatus for forming a patterned anode extraction electrode and a patterned cathode extraction electrode on the substrate;
    An apparatus for forming a patterned insulating layer on the substrate;
    An apparatus for forming an organic light emitting layer on the substrate;
    An apparatus for removing a part of the organic light emitting layer with a laser;
    An apparatus for forming a cathode on the organic light emitting layer;
    At least one of an apparatus for forming a sealing layer on the substrate and an apparatus for forming a protective layer on the substrate;
    An apparatus for producing an organic electroluminescence element, comprising: an apparatus for removing at least one of the organic light emitting layer, the cathode, the sealing layer, and the protective layer on the substrate.
  7.  基板上に陽極、陽極取出電極、陰極取出電極、絶縁層、有機発光層、陰極が積層されて構成された有機エレクトロルミネッセンス素子であって、
     前記有機発光層は閉じられた線形状を有し、
     前記有機発光層の上面と周囲は前記陰極で封止され、
     前記陰極の上面に封止層および保護層の少なくとも一方が形成されていることを特徴とする有機エレクトロルミネッセンス素子。
    An organic electroluminescence device configured by laminating an anode, an anode extraction electrode, a cathode extraction electrode, an insulating layer, an organic light emitting layer, and a cathode on a substrate,
    The organic light emitting layer has a closed line shape;
    The upper surface and the periphery of the organic light emitting layer are sealed with the cathode,
    An organic electroluminescent element, wherein at least one of a sealing layer and a protective layer is formed on an upper surface of the cathode.
PCT/JP2015/055971 2014-02-28 2015-02-27 Organic electroluminescent element and method and device for manufacturing same WO2015129891A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016505341A JPWO2015129891A1 (en) 2014-02-28 2015-02-27 Organic electroluminescence element, manufacturing method and manufacturing apparatus thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-037903 2014-02-28
JP2014037903 2014-02-28

Publications (1)

Publication Number Publication Date
WO2015129891A1 true WO2015129891A1 (en) 2015-09-03

Family

ID=54009203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/055971 WO2015129891A1 (en) 2014-02-28 2015-02-27 Organic electroluminescent element and method and device for manufacturing same

Country Status (2)

Country Link
JP (1) JPWO2015129891A1 (en)
WO (1) WO2015129891A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216501A (en) * 2011-03-30 2012-11-08 Canon Inc Method of manufacturing organic el display device
JP2013138002A (en) * 2011-11-28 2013-07-11 Semiconductor Energy Lab Co Ltd Sealing body, light-emitting module, and manufacture method of sealing body
JP2013137997A (en) * 2011-11-28 2013-07-11 Semiconductor Energy Lab Co Ltd Glass pattern and method for forming the same, sealed body and method for manufacturing the same, and light-emitting device
JP2013191453A (en) * 2012-03-14 2013-09-26 Kaneka Corp Light-emitting device and method for manufacturing light-emitting device
JP2013251255A (en) * 2012-05-04 2013-12-12 Semiconductor Energy Lab Co Ltd Method for manufacturing light-emitting device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012216501A (en) * 2011-03-30 2012-11-08 Canon Inc Method of manufacturing organic el display device
JP2013138002A (en) * 2011-11-28 2013-07-11 Semiconductor Energy Lab Co Ltd Sealing body, light-emitting module, and manufacture method of sealing body
JP2013137997A (en) * 2011-11-28 2013-07-11 Semiconductor Energy Lab Co Ltd Glass pattern and method for forming the same, sealed body and method for manufacturing the same, and light-emitting device
JP2013191453A (en) * 2012-03-14 2013-09-26 Kaneka Corp Light-emitting device and method for manufacturing light-emitting device
JP2013251255A (en) * 2012-05-04 2013-12-12 Semiconductor Energy Lab Co Ltd Method for manufacturing light-emitting device

Also Published As

Publication number Publication date
JPWO2015129891A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
EP3095145B1 (en) Encapsulated semiconductor device and encapsulation method
JP6163483B2 (en) Organic EL device and manufacturing method thereof
JP5980343B2 (en) Method for manufacturing optoelectronic device
JP6387209B1 (en) Method and apparatus for manufacturing flexible OLED device
US9698387B2 (en) Method for producing an optoelectronic component and method for patterning an organic, optoelectronic component
KR102152743B1 (en) Method for producing top-emission organic electroluminescence display device, and cover material for formation of top-emission organic electroluminescence display device
US9741965B2 (en) Method for processing an electronic component and electronic component arrangement
JP6053221B1 (en) Organic EL device and manufacturing method thereof
KR101671304B1 (en) Method for producing an optoelectronic assembly, and optoelectronic assembly
WO2015129892A1 (en) Organic electroluminescent element manufacturing method and manufacturing device
JP6213254B2 (en) Method for manufacturing organic electroluminescence device
WO2017130625A1 (en) Organic el element production method and organic el element
WO2015129891A1 (en) Organic electroluminescent element and method and device for manufacturing same
JP4696832B2 (en) Method for manufacturing organic electroluminescence panel
JP6559758B2 (en) Manufacturing method of electronic device
JP6488062B1 (en) Method for manufacturing organic electronic device
US20140295085A1 (en) Method for manufacturing donor substrate
JP2011071023A (en) Method for manufacturing organic el element
JP6723149B2 (en) Encapsulating member with protective film, method for producing encapsulating member with protective film, and method for producing organic electronic device
KR20180066121A (en) Method of manufacturing organic electronic device and organic electronic device
JP2017002334A (en) Holding substrate and deposition method using the same
WO2017217160A1 (en) Planar light-emitting device
JP2015111508A (en) Sealing film for organic electroluminescence, manufacturing method thereof, and manufacturing method of organic electroluminescent device by use thereof
JP2018133137A (en) Organic el display device and method for manufacturing the same
JP2009252455A (en) Organic electroluminescent device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15756040

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016505341

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15756040

Country of ref document: EP

Kind code of ref document: A1