WO2015128906A1 - Oil supply component for screw exhaust pump, and screw exhaust pump provided with said component - Google Patents

Oil supply component for screw exhaust pump, and screw exhaust pump provided with said component Download PDF

Info

Publication number
WO2015128906A1
WO2015128906A1 PCT/JP2014/001118 JP2014001118W WO2015128906A1 WO 2015128906 A1 WO2015128906 A1 WO 2015128906A1 JP 2014001118 W JP2014001118 W JP 2014001118W WO 2015128906 A1 WO2015128906 A1 WO 2015128906A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
rotating shaft
oil supply
rotor
screw
Prior art date
Application number
PCT/JP2014/001118
Other languages
French (fr)
Japanese (ja)
Inventor
洋成 川端
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2016504865A priority Critical patent/JPWO2015128906A1/en
Priority to PCT/JP2014/001118 priority patent/WO2015128906A1/en
Publication of WO2015128906A1 publication Critical patent/WO2015128906A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/023Lubricant distribution through a hollow driving shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C18/00Rotary-piston pumps specially adapted for elastic fluids
    • F04C18/08Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing
    • F04C18/12Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type
    • F04C18/14Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons
    • F04C18/16Rotary-piston pumps specially adapted for elastic fluids of intermeshing-engagement type, i.e. with engagement of co-operating members similar to that of toothed gearing of other than internal-axis type with toothed rotary pistons with helical teeth, e.g. chevron-shaped, screw type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C25/00Adaptations of pumps for special use of pumps for elastic fluids
    • F04C25/02Adaptations of pumps for special use of pumps for elastic fluids for producing high vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/025Lubrication; Lubricant separation using a lubricant pump

Definitions

  • the present invention relates to an oil supply component for a screw exhaust pump and a screw exhaust pump equipped with the component.
  • the same type of pump may be used as long as it does not depend on the exhaust speed, and there is no trouble of selecting a pump for each exhaust location. If the pump of the type described above is further reduced in cost and commercialized, its popularity will be significant, and it is easily expected to greatly contribute to industrial development.
  • the lip seal as a shaft seal device for preventing the lubricant oil supplied to the screw rotor bearing and the steam from entering the working chamber side deteriorates early due to heat generated by the drive motor, bearing, etc. Sometimes it is.
  • FIG. 1A is an explanatory view conceptually showing a lubricating oil circulation path of a screw vacuum (exhaust) pump described in Patent Document 1 (corresponding to FIG. 2 of Patent Document 1).
  • the pump shown in FIG. 1 is provided with an oil supply means 1180.
  • the oil supply means 1180 includes an oil storage unit 1181 that stores lubricating oil, a push-up head 1182 that pushes the lubricating oil upward from the oil storage unit 1181 by centrifugal force and a drag effect, and the lubricating oil pushed up by the push-up head 1182. It comprises an oil flow passage 1183 that supplies pump components.
  • the oil reservoir 1181 is a space that is formed below the stator 1130 and stores lubricating oil.
  • a cooling pipe 1191 of the cooling device 1190 is disposed in the oil reservoir 1181.
  • the push-up head 1182 has a through-hole penetrating in the vertical direction, and the inner peripheral surface of the through-hole is formed in a tapered shape that increases in diameter from below to above.
  • the push-up head 1182 is fixed to the lower ends of the rotary shafts 1150A and 1150B, and is configured to rotate together with the rotary shafts 1150A and 1150B when the screw vacuum pump 1100 is driven.
  • the lubricating oil is pushed up along the tapered inner peripheral surface and the inner wall surfaces of the rotary shafts 1150A and 1150B from the oil reservoir 1181 by the centrifugal force and the drag effect using the rotation of the rotary shafts 1150A and 1150B.
  • the oil flow passage 1183 is formed at a position physically separated from the gas working chamber described above, and supplies the lubricating oil pushed up by the push-up head 1182 to each constituent member, and the lubricating oil supplied to each constituent member. This is a circulation path that returns to the oil reservoir 1181 again.
  • the lubricating oil flows along the inner wall that defines the oil circulation passage 1183 and also flows in the hollow oil circulation passage 1183 in the form of a mist. Specifically, as shown in FIG.
  • the lubricating oil is pushed up from the oil reservoir 1181 by the push-up head 1182 and moves upward by centrifugal force through the hollow portions formed in the rotary shafts 1150A and 1150B.
  • the bearings 1160Aa and 1160Ba are discharged to the outside of the rotary shafts 1150A and 1150B near the upper part.
  • the released lubricating oil is supplied to the inside of the bearings 1160Aa and 1160Ba, and flows in a mist shape in the hollow portion formed between the bearings 1160Aa and 1160Ba and the drive motors 1140A and 1140B. It flows along the inner wall that defines the hollow portion, and is supplied into the drive motors 1140A and 1140B.
  • the lubricating oil discharged from the drive motors 1140A, 1140B flows in the form of a mist in the hollow portion formed between the drive motors 1140A, 1140B and the bearings 1160Ab, 11160Bb, and the inner wall that defines the hollow portion. And flows into the bearings 160Ab and 1160Bb.
  • the lubricating oil discharged from the bearings 1160Ab and 1160Bb flows in the form of mist in the hollow portion formed between the bearings 1160Ab and 1160Bb and the synchronous gears 1170A and 1170B, and the inner wall that defines the hollow portion. And flows to the synchronous gears 1170A and 1170B.
  • the lubricating oil supplied to the side of the synchronous gears 1170A and 1170B is supplied to the surface of the synchronous gears 1170A and 1170B including the meshing portion between the synchronous gears 1170A and 1170B.
  • the lubricating oil is supplied into the bearings 1160Ac and 1160Bc, and returned to the oil reservoir 1181 again.
  • the cooling device 1190 cools the lubricating oil stored in the oil reservoir 1181 by a water cooling method, and as shown in FIG. 1A, a cooling pipe 1191 that is disposed in the oil reservoir 1181 and circulates the cooling water, A cooling pump 1192 for supplying cooling water to the cooling pipe 1191 is configured.
  • the oil supply means 1180 configured as described above, sufficient lubricating oil is supplied during high-speed rotation.
  • the amount of lubricating oil discharged is extremely reduced in the low rotation speed region of about several thousand rotations or less. In some cases, sufficient cooling cannot be achieved.
  • the present invention has been made by taking the creative viewpoint from a comprehensive viewpoint in view of the above points.
  • One of the objects of the present invention is to appropriately prevent, as desired, an increase in the temperature in the pump due to the heat generated by the rotation of the rotary shaft in the pump, the rotation of the motor, etc.
  • An oil supply component for a screw exhaust pump capable of stably driving the pump and a screw exhaust pump provided with the component.
  • Another object of the present invention is to appropriately and stably supply a desired amount of oil necessary for cooling in the entire rotational speed range from the low speed range to the high speed range without depending on the lubricating oil discharge position of the rotary shaft.
  • An oil supply component for a screw exhaust pump that can perform the above and a screw exhaust pump including the component.
  • An object is to provide an oil supply component for a screw exhaust pump and a screw exhaust pump including the component.
  • a first aspect of the present invention includes a rotor having at least one screw groove on the outside and having a hollow portion opened at a lower end surface in the rotation axis direction, and a gas intake port and an exhaust port, and houses the rotor.
  • Bearings, and The rotating shaft has a first oil supply passage that extends in the longitudinal direction and opens in a lower end portion and a hollow portion, and the oil supply passage is a second oil supply passage that opens on the outer surface of the rotating shaft.
  • An oil supply component for a screw exhaust pump that communicates with the road,
  • the structure is composed of a drivable spiral structure positioned below the rotating shaft and a fixed spiral structure positioned above the rotatable shaft, and an oil supply component for a screw exhaust pump, There is a screw exhaust pump with its parts.
  • the second aspect of the present invention has a male rotor and a female rotor having screw teeth that mesh with each other, A stator having a gas inlet and an outlet and accommodating the male and female rotors; At least one of the male rotor and the female rotor has a hollow portion that opens at a lower end surface in the rotation axis direction; A rotating shaft coupled to the at least one rotor and at least partially housed in the hollow portion; A bearing housed in the hollow portion and rotatably supporting the rotating shaft; The rotating shaft has an oil supply path that extends in a longitudinal direction and opens in a lower end portion and a hollow portion, An oil reservoir disposed below the stator, storing oil to be supplied to an oil supply path of the rotating shaft, and collecting oil supplied into the hollow portion through the oil supply path; At least a portion is disposed between the rotating shaft and an inner wall surface of the at least one rotor that defines the hollow portion, and is fixed to the stator and supplied to the hollow portion through the oil supply path.
  • An oil supply component for a screw exhaust pump having a flow path member that defines a plurality of oil flow paths for distributing and flowing oil into a plurality of flow paths in the hollow portion,
  • the rotating shaft has a helical structure capable of exhibiting a pumping function in the rotating shaft, and the structure has a drivable helical structure located below the rotating shaft and an upper side thereof.
  • An oil supply component for a screw exhaust pump and a screw exhaust pump having the component are characterized by comprising a fixed helical structure positioned.
  • a third aspect of the present invention has a male rotor and a female rotor having screw teeth that mesh with each other, A stator having a gas inlet and an outlet and accommodating the male and female rotors; At least one of the male rotor and the female rotor has a hollow portion that opens at a lower end surface in the rotation axis direction; A rotating shaft coupled to the at least one rotor and at least partially housed in the hollow portion; A bearing housed in the hollow portion and rotatably supporting the rotating shaft; The rotating shaft has an oil supply path that extends in a longitudinal direction and opens in a lower end portion and a hollow portion, An oil supply component for a screw exhaust pump having an oil amount adjusting mechanism that is provided for the bearing and adjusts the supply amount of oil supplied to the bearing through the oil supply path, The rotating shaft has a helical structure capable of exhibiting a pumping function in the rotating shaft, and the structure has a drivable helical structure located below the rotating shaft and an upper side thereof.
  • a fourth aspect of the present invention has a male rotor and a female rotor having screw teeth that mesh with each other with a predetermined gap,
  • a stator having a gas inlet and an outlet and accommodating the male and female rotors;
  • At least one of the male rotor and the female rotor has a hollow portion that opens at a lower end surface in the rotation axis direction;
  • a rotating shaft coupled to the at least one rotor and at least partially housed in the hollow portion;
  • the rotating shaft has an oil supply path that extends in a longitudinal direction and opens in a lower end portion and a hollow portion,
  • a screw exhaust pump having a guide member for guiding oil supplied through an oil supply path of the rotating shaft that rotates to a gap between a motor rotor and a motor stator of the drive motor and an outer peripheral surface of the motor stator.
  • Oil supply parts The rotating shaft has a helical structure capable of exhibiting a pumping function in the rotating shaft, and the structure has a drivable helical structure located below the rotating shaft and an upper side thereof.
  • An oil supply component for a screw exhaust pump and a screw exhaust pump having the component are characterized by comprising a fixed helical structure positioned.
  • a fifth aspect of the present invention has a male rotor and a female rotor having screw teeth that mesh with each other,
  • a stator having a gas inlet and an outlet and accommodating the male and female rotors;
  • At least one of the male rotor and the female rotor has a hollow portion that opens at a lower end surface in the rotation axis direction;
  • a rotating shaft coupled to the at least one rotor and at least partially housed in the hollow portion and rotatably supported;
  • the rotating shaft has an oil supply path that extends in a longitudinal direction and opens in a lower end surface and a hollow portion, The oil is disposed below the stator and stores oil to be supplied through an oil supply path of the rotary shaft, and collects oil supplied into the hollow portion through the oil supply path of the rotary shaft.
  • a partition that defines a closed space for filling the oil;
  • a change element that defines a part of the closed space and is capable of changing a volume of the closed space;
  • An oil outlet that communicates with the oil supply path of the rotating shaft;
  • An oil inlet into which oil recovered after being supplied into the hollow portion through the exhaust port of the rotating shaft;
  • a pressure mechanism for operating the change element to pressurize the oil in the closed space in order to push up the oil filled in the closed space toward the oil supply path of the rotary shaft through the oil outlet.
  • An oil supply part for a screw exhaust pump having an oil reservoir The rotating shaft has a helical structure capable of exhibiting a pumping function in the rotating shaft, and the structure has a drivable helical structure located below the rotating shaft and an upper side thereof.
  • An oil supply component for a screw exhaust pump and a screw exhaust pump having the component are characterized by comprising a fixed helical structure positioned.
  • produces with rotation of the rotating shaft in a pump, rotation of a motor, etc. can be blocked
  • An oil supply component for a screw exhaust pump that can be driven by a pump and a screw exhaust pump including the component can be provided. Furthermore, according to the present invention, it is possible to appropriately and stably supply a desired amount of oil necessary for cooling in the entire rotational speed range from the low speed range to the high speed range without depending on the lubricating oil discharge position of the rotary shaft.
  • An oil supply component for a screw exhaust pump and a screw exhaust pump including the component can be provided. Furthermore, according to the present invention, there is provided an oil supply component for a screw exhaust pump and its component capable of efficiently releasing heat generated in the pump to the outside of the pump as the pump is operated from low speed to high speed.
  • a screw exhaust pump provided can be provided.
  • An oil supply component for a screw exhaust pump and a screw exhaust pump including the component can be provided.
  • FIG. 6 is a schematic cross-sectional view for explaining a specific example of a push-up head.
  • the typical explanatory view for explaining the principal part of the 1st experimental device concerning the present invention.
  • the typical explanatory view for explaining the principal part of the 2nd experimental device concerning the present invention.
  • the graph which shows an example of an experimental result.
  • the typical partial cross section perspective view for demonstrating the internal structure of the oil supply component 5000.
  • FIG. FIG. 6 is a schematic enlarged view of the vicinity of a drive screw 5005 and a fixed screw 5006a in FIG.
  • the typical perspective view which shows one of the suitable examples of the fixing screw used for the components of this invention.
  • 1 is a schematic cross-sectional view of a gas exhaust pump according to an embodiment of the present invention.
  • produces in the rotor of FIG.
  • the typical external appearance perspective view seen from the lower end side of the male rotor of the gas exhaust pump of FIG. The typical sectional view for explaining the access method to the mass attachment part.
  • the typical sectional view showing the structure around a shaft seal device and a bearing.
  • the typical perspective view which shows the structure of an oil amount adjustment ring.
  • FIG. 6 is a schematic cross-sectional view showing still another embodiment of the oil circulation system.
  • FIG. 2 is a schematic explanatory diagram for explaining the main part of the first experimental apparatus (comparative example apparatus) according to the present invention.
  • the oil supply apparatus 2000 includes a transparent glass tube 2001, an oil reservoir 2002, and a rotation drive device (not shown) for rotating the glass tube 2001 as main components.
  • the hollow part of the glass tube 2001 constitutes an oil flow passage 2001a.
  • the glass tube 2001 corresponds to the rotary shaft of the pump, and a transparent one is selected to facilitate observation of the behavior of the internal oil (in the experiment, trade name: Pyrex (registered trademark) is used).
  • a hollow push-up head 2003 having a tapered inner surface is provided in the lower end portion of the glass tube 2001.
  • An oil inflow port 2007 is provided at the lower end of the push-up head 2003.
  • An outflow portion 2004 is provided in the upper part of the glass tube 2001, and a flow path 2004a is formed therein.
  • an outlet 2005 is provided for oil in the glass tube 2001 to flow out of the glass tube 2001.
  • a discharge port (open end) 2006 for discharging oil to the outside is provided.
  • a predetermined amount of oil 2008 is put into the oil reservoir 2002.
  • the inner diameter of the glass tube 2001 used for the experiment was 15 mm, and the height difference from the oil liquid level 2009 to the central axis along the discharge direction of the outflow portion 2004 was 37 cm.
  • the diameter of the channel 2004a was 9 mm.
  • FIG. 3 is a schematic explanatory view for explaining a main part of a second experimental apparatus (invention example apparatus) according to the present invention having the main configuration of the present invention.
  • the oil supply device 3000 includes a transparent glass tube 2001, an oil reservoir 2002, and a rotation drive device (not shown) for rotating the glass tube 2001 as main components as in FIG.
  • a shaft rod 3001 is disposed at the central axis position of the glass tube 2001.
  • the shaft rod 3001 has an upper end fixed to the bearing 3002 and a shaft rod rotation stop 3003 at the lower end.
  • the bearing 3002 has a function of preventing the rotational shake of the crow pipe 2001 at the same time as fixing the shaft rod 2001. Therefore, the outer surface of the bearing 3002 is smoothed so that it can slide or substantially slide along the inner wall surface of the crow pipe 2001, and its outer diameter is also determined to maintain smoothness. It has been.
  • Four fixed screws, a fixed screw A 3004a, a fixed screw A 3004b, a fixed screw A 3004c, and a fixed screw A 3004d, are fixed to a predetermined position of the shaft rod 3001 in this order from below.
  • the outer diameter of each fixed screw is determined so that the inner wall surface of the glass tube 2001 can slide or substantially slide when the glass tube 2001 rotates.
  • a driving screw 3005 is provided at the lower end of the fixed screw A3004a so that the lower end position thereof coincides or substantially coincides with the lower end position of the glass tube 2001.
  • the drive screw 3005 is fitted to the glass tube 2001 as shown in the figure so that it can be rotated with the rotation of the glass tube 2001, and the rotational force of the glass tube 2001 is directly transmitted.
  • the glass tube 2001 is rotatably attached so that the transmission of the rotational force of the glass tube 2001 is not hindered.
  • the glass tube 2001 and the outflow portion 2004 were the same as those in FIG.
  • the oil level 2009 was the boundary position between the lower end of the fixed screw A3004a and the upper end of the drive screw 3005.
  • Each fixing screw has the same structure as shown in FIG.
  • the driving screw 3005 has the same structure as shown in FIG. 20A.
  • the width (thickness) in the central axis direction of each fixed screw used in the experiment was 10 mm, and the direction of twist was equal inclination opposite to that of the drive screw 3005.
  • a drive screw 3005 having an equal inclination was used.
  • the width (thickness) of the drive screw 3005 in the central axis direction was 25 mm.
  • the inclination pitch of each fixed screw and drive screw 3005 was the same.
  • the fixed screw A3004a, fixed screw A3004b, and fixed screw A3004c were fixed to the shaft 3001 so as to be stacked in order from the upper end position of the drive screw 3005 as shown in FIG.
  • the fixing screw A3004d was fixed to the shaft rod 3001 so that the lower end position thereof was 20 cm from the oil level 209.
  • the oil supply force is four times or more that of the experimental system (1) with a glass tube having the structure shown in FIG. It was also found that around 5000 rpm, the oil supply force was reversed with the experimental system (3) of the external pump alone, and in the higher rotation speed range, the difference widened as the rotation speed increased.
  • FIG. 5 shows one representative example of a preferred embodiment of an oil supply component for a screw exhaust pump according to the present invention.
  • FIG. 5 is a schematic partial cross-sectional perspective view for explaining the internal structure of the oil supply component 5000.
  • the oil supply component 5000 has a shaft bar 5002 disposed in the rotation shaft 5001 (oil flow passage 5008) disposed in the rotor of the pump so that its axis coincides with the central axis.
  • a shaft bar 5002 is supported at its upper end by a bearing 52003 slidably disposed on the inner wall surface of the rotating shaft 5001, and the other end is used to stop the rotation of the shaft bar 5002. Is provided.
  • a drive screw 5005 is slidably and rotatably attached to the shaft rod 5002, and four fixed screws 5006a, 5006b, 5006c, and 5006d are fixed above the shaft rod 5002 at a predetermined interval according to the design.
  • Outflow passages 5007a, 5007b, 5007c, and 5007d for discharging the supplied oil to the outside are provided in the vicinity of the upper end portion of the rotating shaft 5001 and the lower end portion of the bearing 5003.
  • FIG. 5 shows an example in which two outflow passages 5007 are provided above the rotating shaft 5001 and two near the upper end of the fixing screw 5006c, for a total of four.
  • the flow path inner diameter, number, and position are determined according to the design so that a desired oil supply can be performed.
  • the spiral direction of the drive screw 5005 is opposite to the spiral direction of the four fixed screws 5006a, 5006b, 5006c, and 5006d.
  • the spiral direction of the drive screw 5005 is counterclockwise as viewed from above. 5 shows an example in which the four fixed screws 5006a, 5006b, 5006c, and 5006d are provided at substantially equal intervals.
  • the number of fixed screws and the arrangement interval are limited to this example. Rather, it is determined according to the design of the pump so as to obtain the desired oil supply capacity.
  • a plurality of fixed screws may be arranged by sequentially reducing the arrangement interval from the bottom at a predetermined interval, or the spiral winding condition may be varied between the plurality of fixed screws.
  • a schematic enlarged view of the vicinity of the drive screw 5005 and the fixed screw 5006a in FIG. 5 is shown in FIG.
  • the outer surface of the drive screw 5005 (the outer end surface of the spiral portion) is firmly fitted or the like so that it can be reliably driven without sliding along the inner wall surface 6001 when the inner wall surface 6001 of the rotating shaft 5001 rotates. It is fixed.
  • the drive screw 5005 is rotatable about the shaft rod 5002.
  • the fixed screw 5006 a is fixed to the shaft 5002, but is disposed with a slight gap between the fixed screw 5006 a and the inner wall surface 6001 so as not to respond to the rotation of the inner wall surface 6001. ing.
  • the arrangement interval between the fixed screw 5006a and the fixed screw 5000b is considered so that the oil layer thickness rising along the wall surface 6001 between the fixed screw 5006a and the fixed screw 5000b becomes thin and the supply amount does not become less than desired. It is decided appropriately. This is the same between the fixed screw 5006b and the fixed screw 5000c and between the fixed screw 5000c and the fixed screw 5000d.
  • FIG. 7 is a schematic perspective view showing one preferred example of the fixing screw used in the component of the present invention.
  • the fixing screw 7000 shown in FIG. 7 has a spiral direction that is the rotational direction of the hands of the watch as viewed from above. By making the spiral a gentler ascending spiral shape, the oil can be transported more reliably.
  • FIGS. 8A and 8B are schematic perspective views showing one preferred example of the drive screw used for the component of the present invention. 8A and 8B, the spiral directions of the drive screws 8000A and 8000B are opposite to the rotation direction of the watch hands as viewed from above.
  • the drive screw 8000A shown in FIG. 8A shows a case where the spiral has an equal inclination
  • the drive screw 8000B shown in FIG. 8B shows a case where the spiral has an unequal inclination.
  • the screw vacuum pump 100 includes a pair of male rotors 110 and female rotors 120 that are arranged in mesh with each other while maintaining a meshing gap and rotate in the reverse direction, A stator 130 for housing the female rotor 120, rotary shafts 150A and 150B connected to the male and female rotors 110 and 120, a drive motor 140 provided integrally with the rotary shaft 150A, and the rotary shaft 150A are rotatable.
  • Bearing bearings 160, 161, 162 for supporting, a pair of synchronous gears 170A, 170B attached to the lower ends of the rotary shafts 150A, 150B, an oil reservoir 300 provided below the stator 130 and containing oil OL,
  • the oil supply component 5000 and the oil reservoir 30 described above Comprising a cooling device 190 the contained oil OL is cooled by water-cooled, and the shaft seal device 230 disposed above the bearing 160, a support member 200 for supporting the shaft sealing device 230, to.
  • FIG. 9 the details of the structure in the female rotor 120 are omitted, but a bearing is provided on the female rotor 120 side as well as the male rotor 110, and the rotary shaft 150B is rotatably supported.
  • the same shaft seal device and support member as those on the male rotor 110 side are provided, but no drive motor is provided.
  • a drive motor may be integrally provided on the rotating shaft 150B on the female rotor side (in this case, for example, it is rotated so as to be synchronized using an inverter). It is also possible to make the configuration of the female rotor side shaft sealing device, the support member, etc. different from that of the male rotor 110 side.
  • the stator 130 is made of a metal such as stainless steel, and as shown in FIG. 9, a main body 131 that houses the male rotor 110 and the female rotor 120, and a lower end of the main body 131, and an exhaust port 136.
  • the stator 130, the male rotor 110, and the female rotor 120 cooperate to form a gas working chamber that transfers and compresses gas.
  • the male rotor 110 and the female rotor 120 respectively have screw teeth 111 and 121 that mesh with each other while maintaining a meshing gap.
  • the screw teeth 111 and 121 of the male rotor 110 and the female rotor 120 are disposed on the intake port 135 side, and are unequal lead unequal inclination angle screw portions (hereinafter referred to as unequal lead screw portions) 111a for transporting and compressing gas.
  • unequal lead screw portions unequal lead screw portions
  • the equal lead screw portions 111b and 121b are formed with equal lead equal inclination angles and have straight tooth traces.
  • the unequal lead screw portions 111a and 121a are formed such that the lead and the inclination angle (lead angle) gradually decrease from the intake port 135 side to the exhaust port 136 side, and have curved tooth traces. .
  • the lead angle changes according to the rotation angles of the male rotor 110 and the female rotor 120, and between one lead of the gas working chamber formed by the male rotor 110 and the female rotor 120 and the stator 130. Is continuously reduced from the intake port 135 side toward the exhaust port 136 side, whereby gas transfer compression is performed.
  • the rotary shaft 150A is formed of a metal such as stainless steel, and the upper end side is rotatably supported by the support member 200 via the bearing 160 and is coaxially connected to the male rotor 110.
  • the structure of the support member 200 will be described later.
  • Bearings 161 and 162 are provided on the lower end side of the rotating shaft 150 ⁇ / b> A.
  • the bearing 161 is held by a first bearing holder 137 and the bearing 162 is held by a second bearing holder 138.
  • the first bearing holder 137 is fixed to the lower end portion of the support member 200, and the second bearing holder 138 is fixed to the base portion 132.
  • the bearing 160 is an angular ball bearing and supports most of the loads of the male rotor 110 and the rotating shaft 150A.
  • the bearings 161 and 162 are also angular ball bearings, these are mainly provided to suppress the swing of the rotating shaft 150 ⁇ / b> A that may occur during the high-speed rotation of the male rotor 110.
  • the lubrication of the bearings 160 to 162 will be described later.
  • the drive motor 140 includes a motor rotor 141 fixed between the bearings 160 and 161 of the rotary shaft 150A, and a stator 142 disposed around the motor rotor 141 and fixed to the support member 220 so that a predetermined gap 143 is formed. It is driven by receiving AC power from the outside of the pump.
  • FIG. 11 is a schematic diagram showing the relationship between a conventional male rotor and a rotating shaft.
  • the rotor 510 shown in FIG. 11 is the same as the male rotor 110 with respect to the screw teeth on the outer peripheral side, but a hollow 512 is formed at the upper end 510t with a connecting portion 512 to the rotary shaft 550 and opens at the lower end surface in the rotation axis direction.
  • a hollow portion 511 accommodates a part 511 and a bearing 560 that rotatably supports a part of the rotation shaft 550 and the rotation shaft 550.
  • This vibration deformation mode is an axial bending deformation with the bearing 560 as a restraint portion as a base point.
  • the structure shown in FIG. 10 is adopted in order to increase the resonance frequency of the rotor.
  • the male rotor 110 has a lower hollow portion 113A that opens at the lower end surface 110b in the direction of the rotation axis AX, and an upper hollow portion 113B that opens at the upper end surface 110t.
  • the hollow portion 113B communicates with the hollow portion 113B through a through hole 112h formed in the connecting portion 112.
  • the connecting portion 112 is connected to a flange portion 151 formed at the upper end portion of the rotating shaft.
  • the connecting portion 112 is disposed at a position away from the upper end surface 110 t and the lower end surface 110 b of the male rotor 110, and the rotation axis AX direction of the connecting portion 112 is located near the center of gravity GC of the male rotor 110. In this way, the connection position between the rotary shaft 150 and the male rotor 110 is moved to the position of the center of gravity GC of the male rotor 110, and the distance between the bearing 160 serving as the restraint portion and the connection portion between the rotary shaft 150 and the male rotor 110 is set. It was found that the resonance frequency of the male rotor 110 can be increased by shortening the length compared to the conventional one.
  • the primary resonance point of the male rotor 110 could be increased to over 10,000 rpm. Further, by connecting the rotating shaft 150 and the male rotor 110 to the inside of the male rotor 110, the entire length of the rotating shaft 150 can be shortened as compared with the conventional one, and weight reduction, vibration suppression, and the like can be achieved. But it is advantageous. Although only the male rotor 110 has been described, the same structure is adopted for the female rotor 120.
  • a plurality of end surface portions 114 formed at the end of the unequal lead screw portion 111 a on the upper end side of the male rotor 110 are used as masses for adjusting the rotational balance of the male rotor 110.
  • a plurality of mass attaching portions 114h for attaching the screw M are arranged.
  • the mass attaching part 114h is configured by, for example, a screw hole.
  • the end surface portions 114 are arranged at equal intervals in the circumferential direction around the rotation axis AX, and are orthogonal to the rotation axis AX.
  • the plurality of mass attaching portions 114h are arranged along the circumferential direction, and are also arranged at equal intervals in the radial direction.
  • a disk-shaped plate 115 is formed integrally with the male rotor 110 at the lower end of the male rotor 110.
  • the center of the disk-shaped plate 115 coincides with the rotation axis AX, and the outer peripheral surface 115f of the disk-shaped plate 115 is parallel to the rotation axis AX.
  • a plurality of mass attaching portions 115h are formed on the outer peripheral surface 115f at regular intervals along the circumferential direction.
  • the mass attachment portion 115h is configured by, for example, a screw hole formed toward the center of the disk-shaped plate 115.
  • a screw M as a mass for adjusting the rotational balance of the male rotor 110 can be attached to the mass attaching portion 115h.
  • a passage 132 a is formed in the base portion 132 of the stator 130 to allow access to the mass attaching portion 115 h from the outside of the stator 130.
  • the passage 132a is normally sealed and opened only when necessary.
  • the mass attaching portion 114h on the upper end side of the male rotor 110 is accessible from the outside of the stator 130 through the air inlet 135, as shown in FIG.
  • the mass attaching portions are provided at the upper and lower ends of the male rotor 110.
  • the present invention is not limited to this.
  • the mass attaching portions are formed in the intermediate portion in the rotation axis direction of the male rotor 110. It is also possible. Although only the male rotor 110 has been described, the same structure is adopted for the female rotor 120.
  • the oil circulation system will be described. Only the oil circulation system on the male rotor 110 side will be described, but the same structure can be adopted on the female rotor 120 side.
  • the rotary shaft 150 ⁇ / b> A has an oil supply path 152 formed by a through hole extending in the longitudinal direction at the center thereof.
  • the opening at the lower end surface of the through hole formed in the rotating shaft 150A is an inlet 153 into which the oil OL flows, and the opening at the upper end surface of the through hole is a plug fixed to the connecting portion 112 of the male rotor 110. It is sealed with a member 156.
  • a member 156 As shown in an enlarged view in FIG.
  • the oil supply path 152 communicates with an oil supply path 152 a extending in the radial direction of the rotating shaft 150 ⁇ / b> A formed above the bearing 160, and the outer periphery of the rotating shaft 150 ⁇ / b> A.
  • the end of the oil supply path 152a that opens at the surface is an outlet 154 from which the oil OL flows out.
  • the oil supply path 152a is formed at two positions symmetrical with respect to the rotation axis AX, and each oil supply path 152a has a flow path 155h having a flow path area defined so as to adjust the flow rate of the oil OL to a predetermined amount.
  • the flow rate adjusting member 155 formed with is screwed.
  • an oil supply component 5000 that pushes up the oil OL from the oil reservoir 300 is provided in the rotary shaft 150A.
  • the oil OL pushed up through the inflow port 153 moves upward along the inner wall of the oil supply path 152, and is discharged from the outflow port 154 to the outside of the rotary shaft 150A through the oil supply path 152a and the flow rate adjusting member 155. .
  • an annular oil quantity adjusting ring 220 is provided between the bearing 160 of the rotating shaft 150 ⁇ / b> A and the outlet 154.
  • the oil amount adjusting ring 220 is fixed to the rotating shaft 150A.
  • the oil amount adjusting ring 220 includes an annular lower plate portion 221, an annular upper plate portion 222 facing the lower plate portion 221, and a lower plate portion 221 and an upper plate portion 222 on the inner peripheral side.
  • the connecting wall 223 is formed with a flow hole 225 formed at a position corresponding to the outlet 154 of the oil supply passage 152a extending in the radial direction of the rotary shaft 150A.
  • a plurality of oil supply holes 226 that supply oil OL for lubricating the bearing 160 are arranged in the lower plate portion 221 at equal intervals along the circumferential direction.
  • a flange part 24 is formed on the upper part of the outer periphery of the lower plate part 221. The flange 24 serves to prevent the oil OL from falling downward from between a receiving plate 210 (described later) fitted into the outer peripheral surface 228 of the lower plate 221 and the lower plate 221.
  • the oil amount adjustment ring 220 is provided above the bearing 160 to optimize the supply amount of the oil OL.
  • the number and dimensions of the oil supply holes 226 of the oil amount adjustment ring 220 are adjusted in advance so that the supply amount of the oil OL is optimized.
  • the oil amount adjusting ring 220 is not limited to the oil amount adjusting mechanism of the present invention. Further, although the oil amount adjusting ring 220 is fixed to the rotating shaft 150A, an oil amount adjusting mechanism can be realized without being fixed to the rotating shaft 150A.
  • the receiving plate 210 is formed in an annular shape, covers the upper part of the bearing 160 together with the oil amount adjusting ring 220, and is fixed to the support member 200.
  • the receiving plate 210 is provided to guide oil OL discharged from the outlet 154 of the rotary shaft 150A to a plurality of inlets 201a and 202a formed in the support member 200 described later.
  • a circulation hole 210h is formed at a position corresponding to 201a and 202a.
  • the support member 200 is formed of a metal such as stainless steel and is formed in a cylindrical shape as shown in FIGS. 9A and 9B. As shown in FIG. 1, the support member 200 is formed in the cylindrical hollow portion 113A of the male rotor 110. A slight gap is formed between the outer peripheral surface 206 of the support member 200 and the inner wall surface of the hollow portion 113A.
  • the support member 200 has a lower end fixed to the base portion 132 of the stator 130, and extends in the direction of the rotation axis AX so as to reach the middle of the unequal lead screw portion 111a from the base portion 132 through the opening of the hollow portion 113A. It is extended.
  • the support member 200 is transmitted with heat from the male rotor 110 that becomes high temperature due to the compression heat of the gas.
  • the male rotor 110 is expected to have the highest temperature at the end portion of the unequal lead screw portion 111a on the side of the equal lead screw portion 111b.
  • the heat of the male rotor 110 is increased. Can be received effectively.
  • the support member 200 holds the bearing 160 in the bearing holding portion 203, the heat generated by the bearing 160 can be effectively received.
  • a plurality of first flow paths 201 and a plurality of second flow paths 202 are formed on the outer peripheral side of the bearing holding portion 203 through which oil OL extending in the vertical direction flows.
  • the first flow path 201 is formed so as to distribute the oil OL flowing from the inflow port 201 a to the gap 143 formed between the motor rotor 141 and the motor stator 142 of the drive motor 140.
  • the second flow path 202 is formed so as to distribute the oil OL flowing from the inlet 202 a onto the outer peripheral surface 142 a of the motor stator 142. That is, the support member 200 also serves as the flow path member and the guide member of the present invention. Note that the present invention is not limited to this, and the flow path member and the guide member may be separate members.
  • the motor stator 142 has a plurality of grooves 142b formed on the outer peripheral surface 142a and extending in the rotation axis direction.
  • the groove 142b cooperates with the inner wall surface 205 of the support member 200 to form a flow path for circulating the oil OL supplied from the second flow path 202.
  • the oil reservoir 300 is formed at a lower portion of the stator 130 and is provided for storing the oil OL.
  • a cooling pipe 191 of the cooling device 190 is disposed in the oil reservoir 300.
  • the cooling device 190 cools the oil OL stored in the oil reservoir 300 by a water cooling method, and is disposed in the oil reservoir 300 and circulates the cooling water, and supplies the cooling water to the cooling pipe 191.
  • a cooling pump 192 is included.
  • the shaft seal device 230 prevents the oil OL and its vapor supplied from the outlet 154 of the rotary shaft 150A from entering the gas working chamber formed by the stator 130, the male rotor 110, and the female rotor 120 in cooperation.
  • the rotary shaft 150A is sealed.
  • the shaft seal device 230 is formed in an annular shape and fixed to the upper end of the support member 200, and a first seal that holds the first lip seal 233a and the second lip seal 233b.
  • the assembly 232 includes a second seal assembly 234 disposed adjacent to the first seal assembly 232 and holding the lip seal 234a, and a labyrinth seal 235 provided adjacent to the second seal assembly 234.
  • the first and second lip seals 233a, 233b and the lip seal 234a that are in contact with the surface of the rotating shaft 150A are characterized by having heat resistance, chemical stability, low friction properties, and moderate elasticity. It is desirable to be composed of a fluorinated resin.
  • fluorinated resins include (1) perfluorinated resins, such as polytetrafluoroethylene (PTFE), (2) partially fluorinated resins, such as polychlorotrifluoroethylene (PCTFE, CTFE) Polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), etc.
  • Fluorinated resin copolymers such as perfluoroalkoxy fluororesin (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), and the like.
  • PFA perfluoroalkoxy fluororesin
  • FEP tetrafluoroethylene / hexafluoropropylene copolymer
  • Ethylene / tetrafluoroethylene copolymer ETFE
  • ECTFE ethylene / chlorotrifluoroethylene copolymer
  • PFA and PTFE are particularly preferable. Since these resins can be provided on a metal such as nickel (Ni), nickel fluoride (NiF 2 ) and the like, the heat resistance can be drastically improved. It is preferable.
  • the holding member 231 is provided with a seal gas supply path 231a.
  • a seal gas such as nitrogen gas is supplied to the seal gas supply path 231a, and the upper end side from the gas passage 232a formed in the main body of the first seal assembly 232 is provided. And flows toward the lower end side, and is discharged through a gas passage 232b formed in the main body of the first seal assembly 232.
  • the supply path and discharge path (not shown) of the seal gas are formed in the support member 200 and the stator 130, and the seal gas is supplied from the outside of the pump through this supply path and passes through the gas passage 232b. Is discharged to the outside of the pump through a discharge path (not shown) and collected by a collection device (not shown).
  • the rotating shaft 150A is made of stainless steel
  • PTFE may be thermally decomposed by the catalytic effect of stainless steel when the temperature rises to about 180 ° C. or higher. Therefore, in this embodiment, the oil circulation system efficiently releases the heat in the pump to the outside to suppress the temperature rise of the lip seal, but to prevent the lip seal from deteriorating and to obtain a stable sealing performance for a long period of time.
  • a nickel plating film or a nickel fluoride film may be applied to the contact portion of the rotary shaft 150A between the first and second lip seals 233a, 233b and the lip seal 234a. preferable.
  • the space in which the oil circulates is a sealed space and the sealed space is decompressed.
  • a vacuum formed by the screw vacuum pump 100 can be used. It is also possible to provide another pump to reduce the pressure.
  • the pressure reduction may be, for example, a pressure at which the saturation solubility of air is about half of the saturation solubility at atmospheric pressure.
  • the oil circulation of the above oil circulation system will be described with reference to FIG.
  • the oil OL cooled in the oil reservoir 300 passes through the oil supply path 152, the oil supply path 152a, and the outlet 154 of the rotary shaft 150A.
  • a part of the oil OL is supplied to the bearing 160 through the oil supply hole 226 of the lower plate part 221 for lubrication of the bearing 160, and is supplied to the bearing 160 on the lower plate part 221 and the receiving plate 210. Falls from the bearing 160 and is supplied to the gap 143 of the drive motor 140.
  • the oil OL supplied onto the receiving plate 210 is distributed to the first and second flow paths 201 and 202.
  • the heat generated in the bearing 160 is absorbed by the oil OL supplied directly to the bearing 160 and is absorbed by the oil OL flowing through the first and second flow paths 201 and 202 that pass around the bearing 160. .
  • the oil OL flowing through the first and second flow paths 201 and 202 absorbs heat received from the rotary shaft 150A side and the male rotor 110 side, and then grooves are formed in the gap 143 of the drive motor 140 and the outer peripheral surface of the motor stator 142. It flows through the flow path formed by 142b. Thereby, the heat generated from the drive motor 140 is efficiently absorbed.
  • the oil OL that has passed through the drive motor 140 falls into the oil reservoir OL, but a part of the oil OL is supplied to the meshing portions of the bearings 161 and 162 and the synchronous gears 170A and 170B for lubrication and then into the oil reservoir OL. Fall into. Although the temperature of the oil OL falling into the oil reservoir OL has risen, it is cooled to a predetermined temperature by the cooling device 190 in the oil reservoir OL. Although only the male rotor 110 has been described, a similar oil circulation system can be employed for the female rotor 120.
  • the amount of oil OL that can be supplied for lubrication and cooling by the oil supply component 5000 is limited to some extent because it depends on the rotational speed.
  • a limited amount of oil OL can be efficiently used for lubrication and cooling, and temperature rise of the screw vacuum pump 100 can be prevented. As a result, the screw vacuum pump 100 can be operated at high speed.
  • An oil reservoir 300A shown in FIG. 20 is disposed concentrically in a closed space CS, a tank 301 formed of a heat insulating material, a bottom plate 304 provided inside the tank 301 and forming a closed space CS together with the tank 301.
  • the upper portion of the tank 301 has an oil outlet 302 that is inserted into the lower end of the rotary shaft 150 and communicates with the oil supply path of the rotary shaft 150A, and an inlet 303 into which the recovered oil flows.
  • the inflow port 303 is disposed in the outermost peripheral region R 1 of the tank 301, and the oil outflow port 302 is disposed in the central region R 2 of the tank 301.
  • the cooling liquid 320 flows to the bottom of the tank 301, and the cooling liquid 320 of the cooler is in full contact with the bottom plate 304.
  • the oil OL flow by the oil circulation should be designed to be a turbulent flow with about 2000 to 3000 lay nozzles. preferable. Further, it is preferable that the flow passage cross-sectional area of the oil OL is constant so that the number of lay nozzles is constant in the tank 301.
  • a part of the tank 301 is formed of a flexible material, the flexible part is pressed from the outside of the tank 301 to be elastically deformed, and the volume of the closed space CS is reduced, so that the oil OL is contained in the rotary shaft 150. Can be pushed up toward
  • a plunger device 340 is provided in the tank 300 ⁇ / b> A, and an auxiliary tank 330 is connected to the inlet 303 via a backflow prevention mechanism 340.
  • the rear end portion of the plunger rod 342 to which the plunger tip 341 of the plunger device 340 is connected to the tip is connected to the piston rod 361 of the cylinder device 360 so that the plunger tip 341 can reciprocate.
  • the volume of the closed space CS decreases and the oil OL is pushed up into the rotary shaft 150.
  • the oil OL in the tank 301 does not flow back through the inflow port 303 by the backflow prevention mechanism 340.
  • the oil OL recovered in the auxiliary tank 330 is present, so that the oil OL in the rotating shaft 150 can be prevented from returning into the oil tank 301.
  • a lifting head 180 similar to the tapered lifting head 1182 shown in FIG. 1B is provided at the lower end of the oil supply component according to the present invention.
  • the drive screw is fixed to the push-up head 180.
  • the drive screw can be provided above the push-up head 180 and fixed to the rotary shaft 150A.
  • the oil supply amount can be further increased.
  • 1001 is a rotating shaft
  • 1002 is oil
  • 1003 is an oil supply regulating member
  • 1004 is an oil supply path
  • 1005 is a tapered inner wall surface
  • 1006 is a tapered lower end opening
  • 1007 is an oil supply path upper end opening.
  • oil is supplied toward the tapered lower end opening 1006 through the oil supply path 1004.
  • the supplied oil rises on the tapered inner wall surface 1005 by adding the rotational force of the rotary shaft 1001 to the supply driving force.
  • Screw vacuum pump 110 Male rotor 111 ... Screw teeth 111a ... Unequal Lead unequal inclination angle screw part 111b ... Equal lead screw part 111c ... Connection portion 113a ... Hollow portion 113b ... Hollow portion 114 ... Flat plate portion 114h ... Mounting hole 115 ... Disk portion 115h ... Mounting hole 120 ... Female rotor 121 .. Screw teeth 121a ... Unequal lead Unequal inclination angle screw part 121b ... Equal lead screw part 130 ... Stator 135 ... Intake port 136 ... Exhaust port 140 ... Drive motor 141 ... Motor rotor 142 ... Motor stator 142a ...

Abstract

 Provided are: an oil supply component for a screw exhaust pump, which makes it possible to realize a screw exhaust pump that can operate without maintenance over a long period of time and from a low-speed rotation range to a high-speed rotation range; and a screw exhaust pump provided with this component. The pump has a helical structural body disposed inside a rotating shaft of the pump, the helical structural body being capable of exhibiting a liquid-pumping function, and the structural body is configured from a driveable helical structural body positioned below the rotating shaft and a fixed helical structural body positioned thereabove.

Description

スクリュー排気ポンプ用のオイル供給部品及びその部品を備えたスクリュー排気ポンプOil supply part for screw exhaust pump and screw exhaust pump provided with the parts
 本発明は、スクリュー排気ポンプ用のオイル供給部品及びその部品を備えたスクリュー排気ポンプに関する。 The present invention relates to an oil supply component for a screw exhaust pump and a screw exhaust pump equipped with the component.
 一般的には、半導体デバイス、液晶や有機EL等を使用する表示デバイス、太陽電池デバイス等の機能デバイスを製造する製造装置や生産システムにおいては、ポンプ性能による適用範囲の限度から多種多様のポンプが数多く使用される。
 これに対して、例えば、特許文献1~3に開示されたようなタイプのスクリュー排気ポンプは、分子流域から粘性流域まで広範囲での排気が可能で、しかも排気性能が排気ガス種に依存しない。このため、ガス種毎にポンプを替える、圧力条件の変化に対応してポンプを据え代る、複数の排出箇所を有する生産システムにおける排出箇所毎に適したポンプを用意する、といった煩雑さを招くこともない。
 排気速度に依存しなければ同種のポンプを使用すればよく、いちいち排気箇所毎にポンプを選定する煩わしさは生じない。
 仮に、上記タイプのポンプにおいて一段と低コスト化が図れて商業化されれば、その普及度は著しいものになり、産業の発展に大いに貢献することが容易に予想される。
In general, in manufacturing equipment and production systems for manufacturing functional devices such as semiconductor devices, display devices using liquid crystal or organic EL, solar cell devices, and the like, a wide variety of pumps are used due to the limitation of application range due to pump performance. Used a lot.
On the other hand, for example, screw exhaust pumps of the type disclosed in Patent Documents 1 to 3 can exhaust in a wide range from a molecular flow region to a viscous flow region, and the exhaust performance does not depend on the type of exhaust gas. For this reason, it is complicated to change the pump for each gas type, replace the pump in response to changes in pressure conditions, and prepare a pump suitable for each discharge location in a production system having a plurality of discharge locations. There is nothing.
The same type of pump may be used as long as it does not depend on the exhaust speed, and there is no trouble of selecting a pump for each exhaust location.
If the pump of the type described above is further reduced in cost and commercialized, its popularity will be significant, and it is easily expected to greatly contribute to industrial development.
国際公開WO2011/148797International Publication WO2011 / 148797 国際公開WO2012/004181International Publication WO2012 / 004181 特開2004-263629号公報JP 2004-263629 A
 上記タイプのポンプでは、スクリューロータをできるだけ高速に回転させることができれば、ポンプを小型化しつつ高排気速度化を実現できる。
 しかしながら、例えば、数千rpm~一万rpmを超えるような高い回転数でスクリューロータを回転させると、回転速度に従事してポンプに内蔵された駆動モータや軸受で発生する熱が増大しポンプ内の温度上昇を招くが、この熱をポンプ外に効率的に放出することは容易ではない。従って、この熱を効率よく速やかにポンプ外に放出する工夫がないと、ポンプ内の温度が上昇での熱膨張による寸法狂いが精密構成部品に生じその狂いの程度によっては、ポンプの排気性能を低下させ、強いては、スクリューロータの破損を招くこともある。加えて、スクリューロータの軸受へ供給される潤滑オイルやその蒸気の作動室側への侵入を防ぐための軸封装置としてのリップシールが駆動モータ、軸受等で発した熱で早期に劣化してしまこともある。
In the above type of pump, if the screw rotor can be rotated as fast as possible, a high pumping speed can be realized while miniaturizing the pump.
However, for example, when the screw rotor is rotated at a high rotational speed exceeding several thousand rpm to 10,000 rpm, the heat generated by the drive motor and the bearing built into the pump due to the rotational speed increases, and the pump internal However, it is not easy to efficiently release this heat to the outside of the pump. Therefore, if there is no idea to efficiently and quickly release this heat to the outside of the pump, a dimensional error due to thermal expansion due to a rise in the temperature in the pump will occur in the precision component, and depending on the degree of the error, the pump exhaust performance may be reduced. If it is lowered, it may cause damage to the screw rotor. In addition, the lip seal as a shaft seal device for preventing the lubricant oil supplied to the screw rotor bearing and the steam from entering the working chamber side deteriorates early due to heat generated by the drive motor, bearing, etc. Sometimes it is.
 この課題解決の一つが、例えば、特許文献1に記載されてある例がある。図1Aは、特許文献1に記載されてあるスクリュー真空(排気)ポンプの潤滑オイルの循環経路を概念的に示す説明図である(特許文献1の図2に相当)。図1のポンプには、オイル供給手段1180が設けられている。オイル供給手段1180は、潤滑オイルを貯留するオイル貯留部1181と、該オイル貯留部1181から潤滑オイルを遠心力及びドラッグ効果により上方へ押し上げる押し上げヘッド1182と、押し上げヘッド1182により押し上げた潤滑オイルを各ポンプ構成部材に供給するオイル流通路1183とから構成されている。オイル貯留部1181は、ステータ1130の下部に形成され、潤滑オイルを貯留する空間であり、このオイル貯留部1181内には、冷却装置1190の冷却パイプ1191が配置されている。押し上げヘッド1182は、図1Aに示すように、上下方向に貫通する貫通孔を有し、この貫通孔の内周面は、下方から上方に向けて拡径するテーパ状に形成されている。押し上げヘッド1182は、回転シャフト1150A、1150Bの下端に固定され、スクリュー真空ポンプ1100の駆動時には、回転シャフト1150A、1150Bと共に回転する構成が取られている。潤滑オイルは、回転シャフト1150A、1150Bの回転を利用した遠心力とドラッグ効果とにより、オイル貯留部1181から前述したテーパ状の内周面、回転シャフト1150A、1150Bの内壁面に沿って押し上げられる。オイル流通路1183は、前述した気体作動室から物理的に隔てられた位置に形成され、押し上げヘッド1182により押し上げた潤滑オイルを各構成部材に供給するとともに、各構成部材に供給された潤滑オイルを再びオイル貯留部1181に戻す循環路である。潤滑オイルは、オイル流通通路1183を規定する内壁を伝って流動するとともに、中空のオイル流通通路1183内を霧状に流動する。具体的には、図1Aに示すように、潤滑オイルが、押し上げヘッド1182によりオイル貯留部1181から押し上げられ、回転シャフト1150A、1150B内に形成された中空部を通して遠心力により上方に向けて移動し、軸受ベアリング1160Aa、1160Baの上部付近で回転シャフト1150A、1150Bの外部へ放出される。 One example of a solution to this problem is described in Patent Document 1, for example. FIG. 1A is an explanatory view conceptually showing a lubricating oil circulation path of a screw vacuum (exhaust) pump described in Patent Document 1 (corresponding to FIG. 2 of Patent Document 1). The pump shown in FIG. 1 is provided with an oil supply means 1180. The oil supply means 1180 includes an oil storage unit 1181 that stores lubricating oil, a push-up head 1182 that pushes the lubricating oil upward from the oil storage unit 1181 by centrifugal force and a drag effect, and the lubricating oil pushed up by the push-up head 1182. It comprises an oil flow passage 1183 that supplies pump components. The oil reservoir 1181 is a space that is formed below the stator 1130 and stores lubricating oil. In the oil reservoir 1181, a cooling pipe 1191 of the cooling device 1190 is disposed. As shown in FIG. 1A, the push-up head 1182 has a through-hole penetrating in the vertical direction, and the inner peripheral surface of the through-hole is formed in a tapered shape that increases in diameter from below to above. The push-up head 1182 is fixed to the lower ends of the rotary shafts 1150A and 1150B, and is configured to rotate together with the rotary shafts 1150A and 1150B when the screw vacuum pump 1100 is driven. The lubricating oil is pushed up along the tapered inner peripheral surface and the inner wall surfaces of the rotary shafts 1150A and 1150B from the oil reservoir 1181 by the centrifugal force and the drag effect using the rotation of the rotary shafts 1150A and 1150B. The oil flow passage 1183 is formed at a position physically separated from the gas working chamber described above, and supplies the lubricating oil pushed up by the push-up head 1182 to each constituent member, and the lubricating oil supplied to each constituent member. This is a circulation path that returns to the oil reservoir 1181 again. The lubricating oil flows along the inner wall that defines the oil circulation passage 1183 and also flows in the hollow oil circulation passage 1183 in the form of a mist. Specifically, as shown in FIG. 1A, the lubricating oil is pushed up from the oil reservoir 1181 by the push-up head 1182 and moves upward by centrifugal force through the hollow portions formed in the rotary shafts 1150A and 1150B. The bearings 1160Aa and 1160Ba are discharged to the outside of the rotary shafts 1150A and 1150B near the upper part.
 次に、放出された潤滑オイルは、軸受ベアリング1160Aa、1160Baの内部に供給され、軸受ベアリング1160Aa、1160Baと駆動モータ1140A、1140Bとの間に形成された中空部内を霧状に流動するとともに、当該中空部を規定する内壁を伝って流動し、駆動モータ1140A、1140B内に供給される。次に、駆動モータ1140A、1140Bから出た潤滑オイルは、駆動モータ1140A、1140Bと軸受ベアリング1160Ab、11160Bbとの間に形成された中空部内を霧状に流動するとともに、当該中空部を規定する内壁を伝って流動し、軸受ベアリング160Ab、1160Bb内に供給される。次に、軸受ベアリング1160Ab、1160Bbから出た潤滑オイルは、軸受ベアリング1160Ab、1160Bbと同期ギア1170A、1170Bとの間に形成された中空部内を霧状に流動するとともに、当該中空部を規定する内壁を伝って流動し、同期ギア1170A、1170B側に供給される。次に、同期ギア1170A、1170B側に供給された潤滑オイルは、同期ギア1170A、1170B間の噛合部を含む同期ギア1170A、1170Bの表面に供給される。次に、潤滑オイルは、軸受ベアリング1160Ac、1160Bc内に供給され、再びオイル貯留部1181に戻される。冷却装置1190は、オイル貯留部1181に貯留された潤滑オイルを水冷式で冷却するものであり、図1Aに示すように、オイル貯留部1181内に配置され冷却水を循環させる冷却パイプ1191と、冷却パイプ1191に冷却水を供給する冷却ポンプ1192とから構成されている。上記の様な構成のオイル供給手段1180の場合、高速回転時には、潤滑オイルは十分供給される。しかし、潤滑オイルが回転シャフト1150A、1150Bの外部へ放出される位置(放出位置)にもよるが、数千回転程度以下の低回転数領域になると、潤滑オイルの放出量は、極端に減少し十分に冷却できない場合が生ずることがある。この現象は、放出位置が高い程顕著である。
 従って、この現象を解決して、高速回転域での円滑・安定運転は勿論、低速から高速までの回転域でアイドリングを安定して行うことが出来、排気量の調整で回転数を落としての使用やエコモード(省エネモード)での使用が出来るようにすることは、この種のポンプの商業的価値を高めることになる。
Next, the released lubricating oil is supplied to the inside of the bearings 1160Aa and 1160Ba, and flows in a mist shape in the hollow portion formed between the bearings 1160Aa and 1160Ba and the drive motors 1140A and 1140B. It flows along the inner wall that defines the hollow portion, and is supplied into the drive motors 1140A and 1140B. Next, the lubricating oil discharged from the drive motors 1140A, 1140B flows in the form of a mist in the hollow portion formed between the drive motors 1140A, 1140B and the bearings 1160Ab, 11160Bb, and the inner wall that defines the hollow portion. And flows into the bearings 160Ab and 1160Bb. Next, the lubricating oil discharged from the bearings 1160Ab and 1160Bb flows in the form of mist in the hollow portion formed between the bearings 1160Ab and 1160Bb and the synchronous gears 1170A and 1170B, and the inner wall that defines the hollow portion. And flows to the synchronous gears 1170A and 1170B. Next, the lubricating oil supplied to the side of the synchronous gears 1170A and 1170B is supplied to the surface of the synchronous gears 1170A and 1170B including the meshing portion between the synchronous gears 1170A and 1170B. Next, the lubricating oil is supplied into the bearings 1160Ac and 1160Bc, and returned to the oil reservoir 1181 again. The cooling device 1190 cools the lubricating oil stored in the oil reservoir 1181 by a water cooling method, and as shown in FIG. 1A, a cooling pipe 1191 that is disposed in the oil reservoir 1181 and circulates the cooling water, A cooling pump 1192 for supplying cooling water to the cooling pipe 1191 is configured. In the case of the oil supply means 1180 configured as described above, sufficient lubricating oil is supplied during high-speed rotation. However, although depending on the position (release position) at which the lubricating oil is discharged to the outside of the rotating shafts 1150A and 1150B, the amount of lubricating oil discharged is extremely reduced in the low rotation speed region of about several thousand rotations or less. In some cases, sufficient cooling cannot be achieved. This phenomenon becomes more prominent as the discharge position is higher.
Therefore, by solving this phenomenon, it is possible to stably perform idling in the rotation range from low speed to high speed as well as smooth and stable operation in the high speed rotation range, and to reduce the rotation speed by adjusting the exhaust amount Making it possible to use and use in eco mode (energy saving mode) will increase the commercial value of this type of pump.
 本発明は、上記の点に鑑みて総合的視点に立脚して鋭意創意工夫することにより成されたものである。
 本発明の目的の一つは、ポンプ内の回転シャフトの回転やモータの回転等に伴って発生する熱に起因するよるポンプ内温度の上昇を所望に応じて適宜阻止でき、低速域から高速域まで安定してポンプ駆動が出来るスクリュー排気ポンプ用のオイル供給部品及びその部品を備えたスクリュー排気ポンプを提供することである。
 本発明のもう一つの目的は、回転シャフトの潤滑オイル放出位置に依存することなく、低速域から高速域までの全回転速度範囲で冷却に必要な所望量のオイル供給を適宜安定して行うことが出来るスクリュー排気ポンプ用のオイル供給部品及びその部品を備えたスクリュー排気ポンプを提供することである。
 本発明の更に別の目的は、低速から高速までのポンプ運転に伴ってポンプ内で発生する熱をポンプ外に効率よく放出することが可能なスクリュー排気ポンプ用オイル供給部品及びその部品を備えたスクリュー排気ポンプを提供することにある。
 本発明の更にもう一つ別の目的は、超高速運転を実現しながら、比較的長い回転シャフトでもその高位置に潤滑オイル放出口を設けた場合でも比較的低速運転で長時間の連続運転が可能なスクリュー排気ポンプ用オイル供給部品及びその部品を備えたスクリュー排気ポンプを提供することにある。
The present invention has been made by taking the creative viewpoint from a comprehensive viewpoint in view of the above points.
One of the objects of the present invention is to appropriately prevent, as desired, an increase in the temperature in the pump due to the heat generated by the rotation of the rotary shaft in the pump, the rotation of the motor, etc. An oil supply component for a screw exhaust pump capable of stably driving the pump and a screw exhaust pump provided with the component.
Another object of the present invention is to appropriately and stably supply a desired amount of oil necessary for cooling in the entire rotational speed range from the low speed range to the high speed range without depending on the lubricating oil discharge position of the rotary shaft. An oil supply component for a screw exhaust pump that can perform the above and a screw exhaust pump including the component.
Still another object of the present invention is to provide an oil supply component for a screw exhaust pump capable of efficiently releasing heat generated in the pump to the outside of the pump when the pump is operated from low speed to high speed, and the component. It is to provide a screw exhaust pump.
Yet another object of the present invention is to achieve ultra-high speed operation, even if a relatively long rotating shaft is provided with a lubricating oil discharge port at a high position, continuous operation at a relatively low speed for a long time. An object is to provide an oil supply component for a screw exhaust pump and a screw exhaust pump including the component.
 本発明の第一の観点は、少なくとも一つのスクリュー溝を外側に有するとともに回転軸線方向の下端面で開口する中空部を有するロータと、気体の吸気口及び排気口を備えるとともに該ロータを収納するステータと、前記ロータに連結もしくはその一部として形成されているとともに前記中空部に少なくともその一部が収容されている回転シャフトと、前記中空部内に収容され、前記回転シャフトを回転自在に支持する軸受と、を有し、
前記回転シャフトは、長手方向に延びるとともに下端部および中空部内で開口する第一のオイル供給路を有し、該オイル供給路は前記回転シャフトの外表面でその終端が開口する第二のオイル供給路に連通する、スクリュー排気ポンプ用のオイル供給部品であって、
 前記回転シャフトと、該回転シャフト内に揚液機能の発揮が可能な螺旋状構造体を有し、
 該構造体は、前記回転シャフトの下方に位置した駆動可能な螺旋状構造体とその上方に位置した固定螺旋状構造体で構成されていることを特徴とするスクリュー排気ポンプ用のオイル供給部品およびその部品を有するスクリュー排気ポンプにある。
A first aspect of the present invention includes a rotor having at least one screw groove on the outside and having a hollow portion opened at a lower end surface in the rotation axis direction, and a gas intake port and an exhaust port, and houses the rotor. A stator, a rotating shaft that is connected to or formed as a part of the rotor, and at least a part of which is accommodated in the hollow part, and is accommodated in the hollow part and rotatably supports the rotating shaft. Bearings, and
The rotating shaft has a first oil supply passage that extends in the longitudinal direction and opens in a lower end portion and a hollow portion, and the oil supply passage is a second oil supply passage that opens on the outer surface of the rotating shaft. An oil supply component for a screw exhaust pump that communicates with the road,
The rotating shaft and a helical structure capable of exhibiting a pumping function in the rotating shaft,
The structure is composed of a drivable spiral structure positioned below the rotating shaft and a fixed spiral structure positioned above the rotatable shaft, and an oil supply component for a screw exhaust pump, There is a screw exhaust pump with its parts.
 本発明の第二の観点は、互いに噛み合うスクリュー歯を有する雄ロータおよび雌ロータを有し、
 気体の吸気口及び排気口を備えるとともに前記雌雄のロータを収納するステータを有し、
 前記雄ロータおよび雌ロータの少なくとも一方のロータは、回転軸線方向の下端面で開口する中空部を有し、
 前記少なくとも一方のロータに連結されるとともに前記中空部に少なくとも一部が収容された回転シャフトを有し、
 前記中空部内に収容され、前記回転シャフトを回転自在に支持する軸受を有し、
 前記回転シャフトは、長手方向に延びるとともに下端部および中空部内で開口するオイル供給路を有し、
 前記ステータの下方に配置され、前記回転シャフトのオイル供給路に供給するためのオイルを貯留するとともに、前記オイル供給路を通じて前記中空部内に供給されるオイルを回収するためのオイルリザーバを有し、
 前記回転シャフトと前記中空部を画定する前記少なくとも一方のロータの内壁面との間に少なくとも一部が配置されるとともに前記ステータに対して固定され、前記オイル供給路を通じて前記中空部に供給されたオイルを、前記中空部内で複数の流通経路に分配して流すための複数のオイル流路を画定する流路部材を有する、スクリュー排気ポンプ用のオイル供給部品であって、
 前記回転シャフトと、該回転シャフト内に揚液機能の発揮が可能な螺旋状構造体を有し、該構造体は、前記回転シャフトの下方に位置した駆動可能な螺旋状構造体とその上方に位置した固定螺旋状構造体で構成されていることを特徴とするスクリュー排気ポンプ用のオイル供給部品およびその部品を有するスクリュー排気ポンプにある。
The second aspect of the present invention has a male rotor and a female rotor having screw teeth that mesh with each other,
A stator having a gas inlet and an outlet and accommodating the male and female rotors;
At least one of the male rotor and the female rotor has a hollow portion that opens at a lower end surface in the rotation axis direction;
A rotating shaft coupled to the at least one rotor and at least partially housed in the hollow portion;
A bearing housed in the hollow portion and rotatably supporting the rotating shaft;
The rotating shaft has an oil supply path that extends in a longitudinal direction and opens in a lower end portion and a hollow portion,
An oil reservoir disposed below the stator, storing oil to be supplied to an oil supply path of the rotating shaft, and collecting oil supplied into the hollow portion through the oil supply path;
At least a portion is disposed between the rotating shaft and an inner wall surface of the at least one rotor that defines the hollow portion, and is fixed to the stator and supplied to the hollow portion through the oil supply path. An oil supply component for a screw exhaust pump, having a flow path member that defines a plurality of oil flow paths for distributing and flowing oil into a plurality of flow paths in the hollow portion,
The rotating shaft has a helical structure capable of exhibiting a pumping function in the rotating shaft, and the structure has a drivable helical structure located below the rotating shaft and an upper side thereof. An oil supply component for a screw exhaust pump and a screw exhaust pump having the component are characterized by comprising a fixed helical structure positioned.
 本発明の第三の観点は、互いに噛み合うスクリュー歯を有する雄ロータおよび雌ロータを有し、
 気体の吸気口及び排気口を備えるとともに前記雌雄のロータを収納するステータを有し、
 前記雄ロータおよび雌ロータの少なくとも一方のロータは、回転軸線方向の下端面で開口する中空部を有し、
 前記少なくとも一方のロータに連結されるとともに前記中空部に少なくとも一部が収容された回転シャフトを有し、
 前記中空部内に収容され、前記回転シャフトを回転自在に支持する軸受を有し、
 前記回転シャフトは、長手方向に延びるとともに下端部および中空部内で開口するオイル供給路を有し、
 前記軸受に対して設けられ、前記オイル供給路を通じて前記軸受に供給されるオイルの供給量を調整するオイル量調整機構を有する、スクリュー排気ポンプ用のオイル供給部品であって、
 前記回転シャフトと、該回転シャフト内に揚液機能の発揮が可能な螺旋状構造体を有し、該構造体は、前記回転シャフトの下方に位置した駆動可能な螺旋状構造体とその上方に位置した固定螺旋状構造体で構成されていることを特徴とするスクリュー排気ポンプ用のオイル供給部品およびその部品を有するスクリュー排気ポンプにある。
A third aspect of the present invention has a male rotor and a female rotor having screw teeth that mesh with each other,
A stator having a gas inlet and an outlet and accommodating the male and female rotors;
At least one of the male rotor and the female rotor has a hollow portion that opens at a lower end surface in the rotation axis direction;
A rotating shaft coupled to the at least one rotor and at least partially housed in the hollow portion;
A bearing housed in the hollow portion and rotatably supporting the rotating shaft;
The rotating shaft has an oil supply path that extends in a longitudinal direction and opens in a lower end portion and a hollow portion,
An oil supply component for a screw exhaust pump having an oil amount adjusting mechanism that is provided for the bearing and adjusts the supply amount of oil supplied to the bearing through the oil supply path,
The rotating shaft has a helical structure capable of exhibiting a pumping function in the rotating shaft, and the structure has a drivable helical structure located below the rotating shaft and an upper side thereof. An oil supply component for a screw exhaust pump and a screw exhaust pump having the component are characterized by comprising a fixed helical structure positioned.
 本発明の第四の観点は、所定の空隙を設けて互いに噛み合うスクリュー歯を有する雄ロータおよび雌ロータを有し、
 気体の吸気口及び排気口を備えるとともに前記雌雄のロータを収納するステータを有し、
 前記雄ロータおよび雌ロータの少なくとも一方のロータは、回転軸線方向の下端面で開口する中空部を有し、
 前記少なくとも一方のロータに連結されるとともに前記中空部に少なくとも一部が収容された回転シャフトを有し、
 前記回転シャフトは、長手方向に延びるとともに下端部および中空部内で開口するオイル供給路を有し、
 前記回転シャフトに固定されたモータロータと、前記モータロータの周囲に配置されたモータステータを含み、前記中空部に少なくとも一部が配置されるとともに前記回転シャフトに一体的に設けられた駆動モータを有し、
 回転する前記回転シャフトのオイル供給路を通じて供給されるオイルを、前記駆動モータのモータロータとモータステータとの間の空隙および前記モータステータの外周面上に導くためのガイド部材を有する、スクリュー排気ポンプ用のオイル供給部品であって、
 前記回転シャフトと、該回転シャフト内に揚液機能の発揮が可能な螺旋状構造体を有し、該構造体は、前記回転シャフトの下方に位置した駆動可能な螺旋状構造体とその上方に位置した固定螺旋状構造体で構成されていることを特徴とするスクリュー排気ポンプ用のオイル供給部品およびその部品を有するスクリュー排気ポンプにある。
A fourth aspect of the present invention has a male rotor and a female rotor having screw teeth that mesh with each other with a predetermined gap,
A stator having a gas inlet and an outlet and accommodating the male and female rotors;
At least one of the male rotor and the female rotor has a hollow portion that opens at a lower end surface in the rotation axis direction;
A rotating shaft coupled to the at least one rotor and at least partially housed in the hollow portion;
The rotating shaft has an oil supply path that extends in a longitudinal direction and opens in a lower end portion and a hollow portion,
A motor rotor fixed to the rotating shaft; and a motor stator disposed around the motor rotor; and at least a part of the hollow portion being disposed and a driving motor integrally provided on the rotating shaft. ,
A screw exhaust pump having a guide member for guiding oil supplied through an oil supply path of the rotating shaft that rotates to a gap between a motor rotor and a motor stator of the drive motor and an outer peripheral surface of the motor stator. Oil supply parts,
The rotating shaft has a helical structure capable of exhibiting a pumping function in the rotating shaft, and the structure has a drivable helical structure located below the rotating shaft and an upper side thereof. An oil supply component for a screw exhaust pump and a screw exhaust pump having the component are characterized by comprising a fixed helical structure positioned.
 本発明の第五の観点は、互いに噛み合うスクリュー歯を有する雄ロータおよび雌ロータを有し、
 気体の吸気口及び排気口を備えるとともに前記雌雄のロータを収納するステータを有し、
 前記雄ロータおよび雌ロータの少なくとも一方のロータは、回転軸線方向の下端面で開口する中空部を有し、
 前記少なくとも一方のロータに連結されるとともに前記中空部に少なくとも一部が収容され、回転自在に支持された回転シャフトを有し、
前記回転シャフトは、長手方向に延びるとともに下端面および中空部内で開口するオイル供給路を有し、
 前記ステータの下方に配置され、前記回転シャフトのオイル供給路を通じて供給するためのオイルを貯留するとともに、前記回転シャフトのオイル供給路を通じて前記中空部内に供給されたオイルを回収するためのものであって、
 オイルを満たすための閉空間を画定する隔壁と、
前記閉空間の一部を画定するとともに当該閉空間の容積を変更可能な変更要素と、
前記回転シャフトのオイル供給路と連通するオイル流出口と、
前記回転シャフトの排気口を通じて前記中空部内に供給された後に回収されたオイルが流入するオイル流入口と、
前記閉空間に満たされたオイルを、前記オイル流出口を通じて前記回転シャフトのオイル供給路に向けて押し上げるために、前記変更要素を作動させて前記閉空間のオイルを加圧する加圧機構と、を有するオイルリザーバ、と、を有するスクリュー排気ポンプ用のオイル供給部品であって、
 前記回転シャフトと、該回転シャフト内に揚液機能の発揮が可能な螺旋状構造体を有し、該構造体は、前記回転シャフトの下方に位置した駆動可能な螺旋状構造体とその上方に位置した固定螺旋状構造体で構成されていることを特徴とするスクリュー排気ポンプ用のオイル供給部品およびその部品を有するスクリュー排気ポンプにある。
A fifth aspect of the present invention has a male rotor and a female rotor having screw teeth that mesh with each other,
A stator having a gas inlet and an outlet and accommodating the male and female rotors;
At least one of the male rotor and the female rotor has a hollow portion that opens at a lower end surface in the rotation axis direction;
A rotating shaft coupled to the at least one rotor and at least partially housed in the hollow portion and rotatably supported;
The rotating shaft has an oil supply path that extends in a longitudinal direction and opens in a lower end surface and a hollow portion,
The oil is disposed below the stator and stores oil to be supplied through an oil supply path of the rotary shaft, and collects oil supplied into the hollow portion through the oil supply path of the rotary shaft. And
A partition that defines a closed space for filling the oil;
A change element that defines a part of the closed space and is capable of changing a volume of the closed space;
An oil outlet that communicates with the oil supply path of the rotating shaft;
An oil inlet into which oil recovered after being supplied into the hollow portion through the exhaust port of the rotating shaft;
A pressure mechanism for operating the change element to pressurize the oil in the closed space in order to push up the oil filled in the closed space toward the oil supply path of the rotary shaft through the oil outlet. An oil supply part for a screw exhaust pump having an oil reservoir,
The rotating shaft has a helical structure capable of exhibiting a pumping function in the rotating shaft, and the structure has a drivable helical structure located below the rotating shaft and an upper side thereof. An oil supply component for a screw exhaust pump and a screw exhaust pump having the component are characterized by comprising a fixed helical structure positioned.
 本発明によれば、ポンプ内の回転シャフトの回転やモータの回転等に伴って発生する熱に起因するポンプ内温度の上昇を所望に応じて適宜阻止でき、低速域から高速域まで安定してポンプ駆動が出来るスクリュー排気ポンプ用のオイル供給部品及びその部品を備えたスクリュー排気ポンプを提供することが出来る。
 更に、本発明によれば、回転シャフトの潤滑オイル放出位置に依存することなく、低速域から高速域までの全回転速度範囲で冷却に必要な所望量のオイル供給を適宜安定して行うことが出来るスクリュー排気ポンプ用のオイル供給部品及びその部品を備えたスクリュー排気ポンプを提供することが出来る。
 更にもう一つ、本発明によれば、低速から高速までのポンプ運転に伴ってポンプ内で発生する熱をポンプ外に効率よく放出することが可能なスクリュー排気ポンプ用オイル供給部品及びその部品を備えたスクリュー排気ポンプを提供することが出来る。
 又、別には、本発明によれば、超高速運転を実現しながら、比較的長い回転シャフトでもその高位置に潤滑オイル放出口を設けた場合でも比較的低速運転で長時間の連続運転が可能なスクリュー排気ポンプ用オイル供給部品及びその部品を備えたスクリュー排気ポンプを提供することが出来る。
ADVANTAGE OF THE INVENTION According to this invention, the rise in the temperature in a pump resulting from the heat | fever which generate | occur | produces with rotation of the rotating shaft in a pump, rotation of a motor, etc. can be blocked | prevented suitably as desired, and it can stabilize stably from a low speed area to a high speed area. An oil supply component for a screw exhaust pump that can be driven by a pump and a screw exhaust pump including the component can be provided.
Furthermore, according to the present invention, it is possible to appropriately and stably supply a desired amount of oil necessary for cooling in the entire rotational speed range from the low speed range to the high speed range without depending on the lubricating oil discharge position of the rotary shaft. An oil supply component for a screw exhaust pump and a screw exhaust pump including the component can be provided.
Furthermore, according to the present invention, there is provided an oil supply component for a screw exhaust pump and its component capable of efficiently releasing heat generated in the pump to the outside of the pump as the pump is operated from low speed to high speed. A screw exhaust pump provided can be provided.
In addition, according to the present invention, even with a relatively long rotating shaft, even if a lubricating oil discharge port is provided at a high position, continuous operation for a long time can be performed at a relatively low speed while realizing ultra high speed operation. An oil supply component for a screw exhaust pump and a screw exhaust pump including the component can be provided.
従来例のスクリュー排気ポンプを説明するための模式的断面図。Typical sectional drawing for demonstrating the screw exhaust pump of a prior art example. 押し上げヘッドの一具体例を説明するための模式的断面図。FIG. 6 is a schematic cross-sectional view for explaining a specific example of a push-up head. 本発明に係る第一の実験装置の主要部を説明するための模式的説明図。The typical explanatory view for explaining the principal part of the 1st experimental device concerning the present invention. 本発明に係る第二の実験装置の主要部を説明するための模式的説明図。The typical explanatory view for explaining the principal part of the 2nd experimental device concerning the present invention. 実験結果の一例を示すグラフ。The graph which shows an example of an experimental result. オイル供給部品5000の内部構造を説明するための模式的一部断面斜視図。The typical partial cross section perspective view for demonstrating the internal structure of the oil supply component 5000. FIG. 図5の駆動スクリュー5005と固定スクリュー5006a付近の模式的拡大図。FIG. 6 is a schematic enlarged view of the vicinity of a drive screw 5005 and a fixed screw 5006a in FIG. 本発明の部品に使用される固定スクリューの好適な例の一つを示めす模式的斜視図。The typical perspective view which shows one of the suitable examples of the fixing screw used for the components of this invention. 本発明の部品に使用される駆動スクリューの好適な一例を示す模式的斜視図。The typical perspective view which shows a suitable example of the drive screw used for the components of this invention. 本発明の部品に使用される駆動スクリューの好適な他の例を示す模式的斜視図。The typical perspective view which shows the other suitable example of the drive screw used for the components of this invention. 本発明の一実施形態に係るガス排気ポンプの模式的断面図。1 is a schematic cross-sectional view of a gas exhaust pump according to an embodiment of the present invention. 本発明の一実施形態に係る雄ロータと回転シャフトとの連結位置の好適な一例を示す模式図。The schematic diagram which shows a suitable example of the connection position of the male rotor which concerns on one Embodiment of this invention, and a rotating shaft. 本発明の一実施形態に係るロータと回転シャフトとの連結位置の別な例を示す模式図。The schematic diagram which shows another example of the connection position of the rotor which concerns on one Embodiment of this invention, and a rotating shaft. 図11のロータにおいて発生する一次共振を示す模式図。The schematic diagram which shows the primary resonance which generate | occur | produces in the rotor of FIG. 図9のガス排気ポンプの雄ロータの上端側から見た模式的外観斜視図。The typical external appearance perspective view seen from the upper end side of the male rotor of the gas exhaust pump of FIG. 図9のガス排気ポンプの雄ロータの下端側から見た模式的外観斜視図。The typical external appearance perspective view seen from the lower end side of the male rotor of the gas exhaust pump of FIG. マス取付け部へのアクセス方法を説明するための模式的断面図。The typical sectional view for explaining the access method to the mass attachment part. 軸封装置および軸受周辺の構造を示す模式的断面図。The typical sectional view showing the structure around a shaft seal device and a bearing. オイル量調整リングの構造を示す模式的斜視図。The typical perspective view which shows the structure of an oil amount adjustment ring. サポート部材の模式的上面図。The schematic top view of a support member. サポート部材の模式的断面図。The typical sectional view of a support member. モータステータの模式的外観斜視図。The typical external appearance perspective view of a motor stator. オイル循環システムのオイル流通経路を示す模式的断面図。The typical sectional view showing the oil circulation course of an oil circulation system. オイル循環システムの他の実施形態を示す模式的断面図。The typical sectional view showing other embodiments of an oil circulation system. 図20のオイルタンクにおけるオイルの冷却経路の一例を示す模式図。The schematic diagram which shows an example of the cooling path | route of the oil in the oil tank of FIG. オイル循環システムのさらに他の実施形態を示す模式的断面図。FIG. 6 is a schematic cross-sectional view showing still another embodiment of the oil circulation system.
 以下に添付図面を参照しながら、本発明の実施形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially the same function structure, duplication description may be abbreviate | omitted by attaching | subjecting the same code | symbol.
「実験」
(1)実験装置の概要
 図2は、本発明に係る第一の実験装置(比較例装置)の主要部を説明するための模式的説明図である。
 オイル供給装置2000は、透明なガラス管2001、オイルリザーバ2002、ガラス管2001を回転させるための回転駆動装置(不図示)を主要構成部として備えている。
 ガラス管2001の中空部は、オイル流通路2001aを構成する。
 ガラス管2001は、ポンプの回転シャフトの相当し、内部のオイルの挙動を観察し易くするために透明なものが選択される(実験では、商品名:パイレックス(登録商標)を使用)。ガラス管2001の下端部には、テーパ状の内面を有する中空の押し上げヘッド2003が内設されている。押し上げヘッド2003の下端には、オイルの流入口2007が設けられている。
 ガラス管2001の上部には流出部2004が設けられ、その内部には流路2004aが形成されている。
 流路2004aのガラス管2001側には、ガラス管2001内のオイルがガラス管2001外に流出するための流出口2005が設けてある。その反対側には、オイルが外部に吐出されるための吐出口(開放端)2006が設けられている。
 実験に於いては、オイルリザーバ2002にオイル2008を所定量投入する。
 実験に使用されたガラス管2001の内径は15mm、オイル液面2009から流出部2004の吐出方向に沿う中心軸までの高低差は、37cmとした。流路2004aの径は、9mmとした。ガラス管2001の回転数は、8000rpmまで回転できるようにした。
 図3は、本発明の主要構成を備えた、本発明に係る第二の実験装置(本発明例装置)の主要部を説明するための模式的説明図である。
 オイル供給装置3000は、図2の場合と同様の透明なガラス管2001、オイルリザーバ2002、ガラス管2001を回転させるための回転駆動装置(不図示)を主要構成部として備えている。
 ガラス管2001の内部には、ガラス管2001の中心軸位置に軸棒3001が配設されている。軸棒3001は、その上端部を軸受3002に固設され、下端部に軸棒回転止め3003を備えている。
 軸受3002は、軸棒2001を固設すると同時にカラス管2001の回転ブレを防止する機能を有する。そのために、軸受3002の外形面は、カラス管2001の内壁面の沿って円滑に摺動若しくは実質的に摺動できるように円滑化処理が施され、その外径も円滑性を保つように決められている。
 軸棒3001の所定位置には、下方から順に、固定スクリューA3004a、固定スクリューA3004b、固定スクリューA3004c、固定スクリューA3004dの4つの固定スクリューが固設されている。
 各固定スクリューは、ガラス管2001が回転する際には、ガラス管2001の内壁面を摺動若しくは実質的に摺動できるようにその外径が決められている。
 固定スクリューA3004aの下端には、その下端位置がガラス管2001の下端位置に一致若しくは略一致するように、駆動スクリュー3005が設けてある。
 駆動スクリュー3005は、ガラス管2001の回転に伴って回転できるようにガラス管2001に図示のごとく嵌合され、ガラス管2001の回転力が直接伝達される構成とされていると同時に、軸棒3001には、ガラス管2001の回転力の伝達が阻害されないように回転自在に取り付けられている。
 実験に於いては、ガラス管2001、流出部2004は、図2の場合と同じにした。オイル液面2009は、固定スクリューA3004aの下端と駆動スクリュー3005の上端の境界位置とした。
 各固定スクリューには、図19に示すのと同じ構造のものを採用し、駆動スクリュー3005には、図20Aに示すのと同じ構造のものを採用した。
 実験に使用した各固定スクリューの中心軸方向の幅(厚み)は、10mmとし、ねじれの方向は、駆動スクリュー3005とは逆向きの等傾斜とした。
 駆動スクリュー3005も等傾斜のものを使用した。駆動スクリュー3005の中心軸方向の幅(厚み)は、25mmとした。
 各固定スクリュー及び駆動スクリュー3005のスクリューの傾斜ピッチは同じにした。
 固定スクリューA3004a、固定スクリューA3004b、固定スクリューA3004cは、図3に示す様に、駆動スクリュー3005の上端位置から順に積層するように軸棒3001に固設した。
固定スクリューA3004dは、その下端位置が、オイル液面209から20cmの高さになるように軸棒3001に固設した。
"Experiment"
(1) Outline of Experimental Apparatus FIG. 2 is a schematic explanatory diagram for explaining the main part of the first experimental apparatus (comparative example apparatus) according to the present invention.
The oil supply apparatus 2000 includes a transparent glass tube 2001, an oil reservoir 2002, and a rotation drive device (not shown) for rotating the glass tube 2001 as main components.
The hollow part of the glass tube 2001 constitutes an oil flow passage 2001a.
The glass tube 2001 corresponds to the rotary shaft of the pump, and a transparent one is selected to facilitate observation of the behavior of the internal oil (in the experiment, trade name: Pyrex (registered trademark) is used). A hollow push-up head 2003 having a tapered inner surface is provided in the lower end portion of the glass tube 2001. An oil inflow port 2007 is provided at the lower end of the push-up head 2003.
An outflow portion 2004 is provided in the upper part of the glass tube 2001, and a flow path 2004a is formed therein.
On the glass tube 2001 side of the flow path 2004a, an outlet 2005 is provided for oil in the glass tube 2001 to flow out of the glass tube 2001. On the opposite side, a discharge port (open end) 2006 for discharging oil to the outside is provided.
In the experiment, a predetermined amount of oil 2008 is put into the oil reservoir 2002.
The inner diameter of the glass tube 2001 used for the experiment was 15 mm, and the height difference from the oil liquid level 2009 to the central axis along the discharge direction of the outflow portion 2004 was 37 cm. The diameter of the channel 2004a was 9 mm. The rotation speed of the glass tube 2001 was made to be able to rotate up to 8000 rpm.
FIG. 3 is a schematic explanatory view for explaining a main part of a second experimental apparatus (invention example apparatus) according to the present invention having the main configuration of the present invention.
The oil supply device 3000 includes a transparent glass tube 2001, an oil reservoir 2002, and a rotation drive device (not shown) for rotating the glass tube 2001 as main components as in FIG.
Inside the glass tube 2001, a shaft rod 3001 is disposed at the central axis position of the glass tube 2001. The shaft rod 3001 has an upper end fixed to the bearing 3002 and a shaft rod rotation stop 3003 at the lower end.
The bearing 3002 has a function of preventing the rotational shake of the crow pipe 2001 at the same time as fixing the shaft rod 2001. Therefore, the outer surface of the bearing 3002 is smoothed so that it can slide or substantially slide along the inner wall surface of the crow pipe 2001, and its outer diameter is also determined to maintain smoothness. It has been.
Four fixed screws, a fixed screw A 3004a, a fixed screw A 3004b, a fixed screw A 3004c, and a fixed screw A 3004d, are fixed to a predetermined position of the shaft rod 3001 in this order from below.
The outer diameter of each fixed screw is determined so that the inner wall surface of the glass tube 2001 can slide or substantially slide when the glass tube 2001 rotates.
A driving screw 3005 is provided at the lower end of the fixed screw A3004a so that the lower end position thereof coincides or substantially coincides with the lower end position of the glass tube 2001.
The drive screw 3005 is fitted to the glass tube 2001 as shown in the figure so that it can be rotated with the rotation of the glass tube 2001, and the rotational force of the glass tube 2001 is directly transmitted. The glass tube 2001 is rotatably attached so that the transmission of the rotational force of the glass tube 2001 is not hindered.
In the experiment, the glass tube 2001 and the outflow portion 2004 were the same as those in FIG. The oil level 2009 was the boundary position between the lower end of the fixed screw A3004a and the upper end of the drive screw 3005.
Each fixing screw has the same structure as shown in FIG. 19, and the driving screw 3005 has the same structure as shown in FIG. 20A.
The width (thickness) in the central axis direction of each fixed screw used in the experiment was 10 mm, and the direction of twist was equal inclination opposite to that of the drive screw 3005.
A drive screw 3005 having an equal inclination was used. The width (thickness) of the drive screw 3005 in the central axis direction was 25 mm.
The inclination pitch of each fixed screw and drive screw 3005 was the same.
The fixed screw A3004a, fixed screw A3004b, and fixed screw A3004c were fixed to the shaft 3001 so as to be stacked in order from the upper end position of the drive screw 3005 as shown in FIG.
The fixing screw A3004d was fixed to the shaft rod 3001 so that the lower end position thereof was 20 cm from the oil level 209.
(2)実験の手順・条件と実験系
図2,3に示す装置を使用して、以下の手順と条件で実験をした。

*:外付け使用ポンプのポンプ能力・・・・1400cc/min
*:オイル移動のガラス管内観察は目視と動画撮影。
*:オイル吐出量測定・・・・ガラス管の吐出口前方付近の全周囲にオイルキャッチ用の受け皿を設け、一定回転数で一定時間内に受け皿で受けたオイルをメスシリンダーに導いて測定。
*:ガラス管の回転数・・・・1000,2000,3000,4000,6000,7200rpmの6点
(2) Experimental procedure / conditions and experimental system Using the apparatus shown in Figs.

*: Pump capacity of externally used pump ... 1400cc / min
*: Observation of oil movement in the glass tube is visual and video shooting.
*: Oil discharge measurement ·····································································
*: Number of rotations of glass tube: 6 points of 1000, 2000, 3000, 4000, 6000, 7200 rpm
「実験系」
(1)図2の構造のガラス管単独
(2)図2の構造のガラス管と外付けポンプの組み合わせ
(3)外付けポンプ単独
(4)図3の構造のガラス管単独
"Experimental system"
(1) Single glass tube with the structure of Fig. 2
(2) Combination of glass tube and external pump with the structure of Fig. 2
(3) External pump alone
(4) Glass tube with the structure of Fig. 3 alone
 実験結果を図4に示す。
 本実験で以下の点が判明した。
(a)実験系(2)の場合は、実験系(1)では、これまで超高速回転(6500rpm以上)でのオイル供給不足が発生するために外付けポンプを付加し協働作用でそのオイル供給不足を補っていた(4000rpm以上でその効果が観られ、回転数の上昇とともに効果は大二になっていることが分かる)が、低速回転域(4000rpm以下)では、図2の構造のガラス管単独の実験系(1)と大差なく、外付けポンプ単独の実験系(3)とは、極端にオイル供給不足になることが今回初めて分かった。
(b)外付けポンプ単独の実験系(3)の場合、ガラス管を回転させないでガラス管内にオイル供給をすると、吐出口からオイルは殆ど吐出しなかった。そこで、実験系(1)の影響を避けるために、流入口2007の位置をオイル液面2009の上方にセッテングして実験を行った。
この場合は、低速回転域辺り(2000rpm)からオイル供給は十分されるが、回転数が4000rpm辺りを超えると吐出量に飽和傾向がみられることが分かった。
(c)本発明である図3の構造のガラス管単独の実験系(4)では、グラフからも一目瞭然であるように、2000~3000rpmでも実験系(3)の略1/2のオイル供給力があり、4000rpm以上では、図2の構造のガラス管単独の実験系(1)と比べ4倍以上のオイル供給力のあることが判明した。
5000rpm辺りで、外付けポンプ単独の実験系(3)とオイル供給力は逆転し、それ以上の回転数域では、回転数の増加に従って、その差は格段に広がることも分かった。
The experimental results are shown in FIG.
The following points were found in this experiment.
(A) In the case of the experimental system (2), in the experimental system (1), an oil supply shortage has occurred so far at ultra-high speed rotation (6500 rpm or more). The shortage of supply was compensated (the effect was observed at 4000 rpm or higher, and the effect became large as the rotational speed increased). However, in the low speed range (4000 rpm or lower), the glass having the structure of FIG. This is the first time that the oil supply is extremely short compared with the experimental system (3) with an external pump alone, which is not much different from the experimental system with a single pipe (1).
(B) In the experimental system (3) with an external pump alone, when oil was supplied into the glass tube without rotating the glass tube, almost no oil was discharged from the discharge port. Therefore, in order to avoid the influence of the experimental system (1), the experiment was performed by setting the position of the inflow port 2007 above the oil liquid level 2009.
In this case, although the oil supply is sufficient from around the low speed rotation range (2000 rpm), it has been found that when the rotational speed exceeds about 4000 rpm, the discharge amount tends to be saturated.
(C) In the experimental system (4) having only the glass tube having the structure of FIG. 3 according to the present invention, as can be seen from the graph, the oil supply force is about ½ of the experimental system (3) even at 2000 to 3000 rpm. It was found that at 4000 rpm or higher, the oil supply force is four times or more that of the experimental system (1) with a glass tube having the structure shown in FIG.
It was also found that around 5000 rpm, the oil supply force was reversed with the experimental system (3) of the external pump alone, and in the higher rotation speed range, the difference widened as the rotation speed increased.
第1実施形態
 図5に、本発明のスクリュー排気ポンプ用のオイル供給部品の好適な実施形態の代表例の一つが示される。
 図5は、オイル供給部品5000の内部構造を説明するための模式的一部断面斜視図である。
 オイル供給部品5000は、ポンプのロータの中に配される回転シャフト5001の内部(オイル流通路5008)に中心軸にその軸を一致させて配設した軸棒5002を有する。軸棒5002は、上端を、回転シャフト5001の内壁面と摺動自在に配される軸受52003に支持され、他端には、軸棒5002の回転を止めるのに使用される 軸棒回転止め5004が設けられてある。
 軸棒5002には、駆動スクリュー5005が摺動回転自在に取り付けられ、その上方には、設計に従った所定の間隔で、4つの固定スクリュー5006a、5006b,5006c,5006dが固設されている。
 回転シャフト5001の上端部、軸受5003の下端部付近には、供給されるオイルを外部に吐出させるための流出路5007a、5007b、5007c、5007dが設けてある。
 図5に於いては、流出路5007は、回転シャフト5001の上方に2つ、固定スクリュー5006cの上端近くに2つ、計4つ設けた例が示されるが、本発明の場合、この例に限定されることはなく、所望のオイル供給が出来るようにその流路内径と数、位置は設計に従って決められる。
 駆動スクリュー5005の螺旋方向と、4つの固定スクリュー5006a、5006b、5006c、5006dの螺旋方向は、正反対である。図5の場合、駆動スクリュー5005の螺旋方向は、上方から見て反時計まわりである。
 また、図5では、4つの固定スクリュー5006a、5006b,5006c,5006dは略等間隔に設けた例が示されるが、本発明では、固定スクリューの数、配置間隔は、この例に限定されることはなく、所望のオイル供給能力が得られるように、ポンプの設計に従って決められる。
 例えば、下から配置間隔を順次所定の間隔で狭めて複数の固定スクリューを配したり、複数の固定スクリュー間で螺旋の巻具合を異ならせたりしても良い。或いは駆動スクリュー5005の上端から回転シャフト5001の流出部5007a、5007bの下端付近まで一つの長い固定スクリューとしても良い。
 図5の駆動スクリュー5005と固定スクリュー5006a付近の模式的拡大図が図6に示される。
First Embodiment FIG. 5 shows one representative example of a preferred embodiment of an oil supply component for a screw exhaust pump according to the present invention.
FIG. 5 is a schematic partial cross-sectional perspective view for explaining the internal structure of the oil supply component 5000.
The oil supply component 5000 has a shaft bar 5002 disposed in the rotation shaft 5001 (oil flow passage 5008) disposed in the rotor of the pump so that its axis coincides with the central axis. A shaft bar 5002 is supported at its upper end by a bearing 52003 slidably disposed on the inner wall surface of the rotating shaft 5001, and the other end is used to stop the rotation of the shaft bar 5002. Is provided.
A drive screw 5005 is slidably and rotatably attached to the shaft rod 5002, and four fixed screws 5006a, 5006b, 5006c, and 5006d are fixed above the shaft rod 5002 at a predetermined interval according to the design.
Outflow passages 5007a, 5007b, 5007c, and 5007d for discharging the supplied oil to the outside are provided in the vicinity of the upper end portion of the rotating shaft 5001 and the lower end portion of the bearing 5003.
FIG. 5 shows an example in which two outflow passages 5007 are provided above the rotating shaft 5001 and two near the upper end of the fixing screw 5006c, for a total of four. There is no limitation, and the flow path inner diameter, number, and position are determined according to the design so that a desired oil supply can be performed.
The spiral direction of the drive screw 5005 is opposite to the spiral direction of the four fixed screws 5006a, 5006b, 5006c, and 5006d. In the case of FIG. 5, the spiral direction of the drive screw 5005 is counterclockwise as viewed from above.
5 shows an example in which the four fixed screws 5006a, 5006b, 5006c, and 5006d are provided at substantially equal intervals. In the present invention, the number of fixed screws and the arrangement interval are limited to this example. Rather, it is determined according to the design of the pump so as to obtain the desired oil supply capacity.
For example, a plurality of fixed screws may be arranged by sequentially reducing the arrangement interval from the bottom at a predetermined interval, or the spiral winding condition may be varied between the plurality of fixed screws. Or it is good also as one long fixed screw from the upper end of the drive screw 5005 to the lower end vicinity of the outflow part 5007a of the rotation shaft 5001, 5007b.
A schematic enlarged view of the vicinity of the drive screw 5005 and the fixed screw 5006a in FIG. 5 is shown in FIG.
 駆動スクリュー5005の外形面(螺旋部の外端面)は、回転シャフト5001の内壁面6001の回転の際に内壁面6001に沿って摺動しないで確実に従動するように、しっかりした嵌合などによって固設されている。
 駆動スクリュー5005は、軸棒5002には、回転自在とされている。
固定スクリュー5006aは、駆動スクリュー5005とは異なり、軸棒5002に固設される一方、内壁面6001の回転には応じない様に、内壁面6001との間に僅かな隙間を設けて配設されている。
 図6に於いて、回転シャフト5001が上方から見て時計方向に回転すると、駆動スクリューは、回転シャフト5001と一体に回転しオイルを吸い込んで固定スクリュー5006a方向に送り込む。固定スクリュー5006a方向に送り込まれたオイルは、固定スクリュー5006aの下端から上端に向かって回転シャフト5001の内壁6001に沿って旋回しながら上昇する。
 固定スクリュー5006aの上端を過ぎたオイルは、内壁6001に沿って旋回しながら上昇を続け、固定スクリュー5000bの下端に達する。
 固定スクリュー5006aと固定スクリュー5000bの配置間隔は、固定スクリュー5006aと固定スクリュー5000bの間で、壁面6001に沿って上昇するオイルの層厚が薄くなって供給量が所望以下にならない様に考慮されて適宜決められる。
 この点は、固定スクリュー5006bと固定スクリュー5000cとの間、固定スクリュー5000cと固定スクリュー5000dとの間も同様である。
The outer surface of the drive screw 5005 (the outer end surface of the spiral portion) is firmly fitted or the like so that it can be reliably driven without sliding along the inner wall surface 6001 when the inner wall surface 6001 of the rotating shaft 5001 rotates. It is fixed.
The drive screw 5005 is rotatable about the shaft rod 5002.
Unlike the drive screw 5005, the fixed screw 5006 a is fixed to the shaft 5002, but is disposed with a slight gap between the fixed screw 5006 a and the inner wall surface 6001 so as not to respond to the rotation of the inner wall surface 6001. ing.
In FIG. 6, when the rotary shaft 5001 rotates clockwise as viewed from above, the drive screw rotates integrally with the rotary shaft 5001, sucks oil, and feeds it in the direction of the fixed screw 5006a. The oil fed in the direction of the fixed screw 5006a rises while turning along the inner wall 6001 of the rotating shaft 5001 from the lower end of the fixed screw 5006a toward the upper end.
The oil that has passed the upper end of the fixed screw 5006a continues to rise while turning along the inner wall 6001, and reaches the lower end of the fixed screw 5000b.
The arrangement interval between the fixed screw 5006a and the fixed screw 5000b is considered so that the oil layer thickness rising along the wall surface 6001 between the fixed screw 5006a and the fixed screw 5000b becomes thin and the supply amount does not become less than desired. It is decided appropriately.
This is the same between the fixed screw 5006b and the fixed screw 5000c and between the fixed screw 5000c and the fixed screw 5000d.
 図7は、本発明の部品に使用される固定スクリューの好適な例の一つを示めす模式的斜視図である。
 図7に示す固定スクリュー7000は、その螺旋方向が上方から見て時計の針の回転方向になっている。螺旋は、より緩やかな上昇螺旋形状とすることでオイルの上昇移送をより確実に行うことが出来る。
 図8A、8Bは、夫々本発明の部品に使用される駆動スクリューの好適な例の一つを示めす模式的斜視図である。
 図8A、8Bに示す駆動スクリュー8000A,Bは、夫々その螺旋方向が上方から見て時計の針の回転方向とは反対になっている。
 図8Aに示す駆動スクリュー8000Aは、螺旋が等傾斜であり、図8Bに示す駆動スクリュー8000Bは、螺旋が不等傾斜である場合が示される。
FIG. 7 is a schematic perspective view showing one preferred example of the fixing screw used in the component of the present invention.
The fixing screw 7000 shown in FIG. 7 has a spiral direction that is the rotational direction of the hands of the watch as viewed from above. By making the spiral a gentler ascending spiral shape, the oil can be transported more reliably.
FIGS. 8A and 8B are schematic perspective views showing one preferred example of the drive screw used for the component of the present invention.
8A and 8B, the spiral directions of the drive screws 8000A and 8000B are opposite to the rotation direction of the watch hands as viewed from above.
The drive screw 8000A shown in FIG. 8A shows a case where the spiral has an equal inclination, and the drive screw 8000B shown in FIG. 8B shows a case where the spiral has an unequal inclination.
 次に、図9~図19を参照して、本発明に係るスクリュー排気(真空)ポンプの第1の実施形態に係る説明をする。
 先ず、スクリュー真空ポンプの基本構成について説明する。スクリュー真空ポンプ100は、図9に示すように、噛み合い隙間を保ちつつ相互に噛み合った状態で配置されて逆方向に同期して回転する一対の雄ロータ110及び雌ロータ120と、雄ロータ110及び雌ロータ120を収納するステータ130と、雌雄のロータ110,120にそれぞれ連結された回転シャフト150A,150Bと、回転シャフト150Aに一体的に設けられた駆動モータ140と、回転シャフト150Aを回転自在に支持する軸受ベアリング160,161,162と、回転シャフト150A、150Bの下端部に取り付けられた一対の同期ギア170A,170Bと、ステータ130の下方に設けられてオイルOLを収容するオイルリザーバ300と、上記したオイル供給部品5000と、オイルリザーバ300に収容されたオイルOLを水冷式で冷却する冷却装置190と、軸受160の上方に配置された軸封装置230と、軸封装置230を支持するサポート部材200と、を備える。
 図9において、雌ロータ120内の構造の詳細が省略されているが、雌ロータ120側にも、雄ロータ110と同様に軸受が設けられており、回転シャフト150Bは回転自在に支持されており、雄ロータ110側と同様の軸封装置、サポート部材等を備えているが、駆動モータは設けられていない。なお、本発明はこれに限定されるわけではなく、雌ロータ側の回転シャフト150Bに駆動モータを一体的に設けてもよいし(この場合には、例えば、インバータを用いて同期するように回転制御される。)、また、雌ロータ側の軸封装置、サポート部材等の構成を雄ロータ110側と異ならせることも可能である。
Next, a first embodiment of the screw exhaust (vacuum) pump according to the present invention will be described with reference to FIGS.
First, the basic configuration of the screw vacuum pump will be described. As shown in FIG. 9, the screw vacuum pump 100 includes a pair of male rotors 110 and female rotors 120 that are arranged in mesh with each other while maintaining a meshing gap and rotate in the reverse direction, A stator 130 for housing the female rotor 120, rotary shafts 150A and 150B connected to the male and female rotors 110 and 120, a drive motor 140 provided integrally with the rotary shaft 150A, and the rotary shaft 150A are rotatable. Bearing bearings 160, 161, 162 for supporting, a pair of synchronous gears 170A, 170B attached to the lower ends of the rotary shafts 150A, 150B, an oil reservoir 300 provided below the stator 130 and containing oil OL, The oil supply component 5000 and the oil reservoir 30 described above Comprising a cooling device 190 the contained oil OL is cooled by water-cooled, and the shaft seal device 230 disposed above the bearing 160, a support member 200 for supporting the shaft sealing device 230, to.
In FIG. 9, the details of the structure in the female rotor 120 are omitted, but a bearing is provided on the female rotor 120 side as well as the male rotor 110, and the rotary shaft 150B is rotatably supported. The same shaft seal device and support member as those on the male rotor 110 side are provided, but no drive motor is provided. Note that the present invention is not limited to this, and a drive motor may be integrally provided on the rotating shaft 150B on the female rotor side (in this case, for example, it is rotated so as to be synchronized using an inverter). It is also possible to make the configuration of the female rotor side shaft sealing device, the support member, etc. different from that of the male rotor 110 side.
 ステータ130は、ステンレス鋼等の金属で形成され、図9に示すように、雄ロータ110及び雌ロータ120を収納する本体部131と、本体部131の下端部に固定されるとともに排気口136が形成されたベース部132と、本体部131の上端側を覆うエンドプレート133と、エンドプレート133に固定されて吸気口135を画定する吸気口部134とを有する。 The stator 130 is made of a metal such as stainless steel, and as shown in FIG. 9, a main body 131 that houses the male rotor 110 and the female rotor 120, and a lower end of the main body 131, and an exhaust port 136. The formed base portion 132, an end plate 133 that covers the upper end side of the main body portion 131, and an intake port portion 134 that is fixed to the end plate 133 and defines the intake port 135.
 ステータ130と雄ロータ110と雌ロータ120とは、協働して、ガスを移送圧縮する気体作動室を形成する。雄ロータ110及び雌ロータ120は、噛み合い隙間を保ちつつ相互に噛み合うスクリュー歯111、121を外周側にそれぞれ有している。これら雄ロータ110及び雌ロータ120のスクリュー歯111、121は、吸気口135側に配置されて、ガスを移送圧縮する不等リード不等傾斜角スクリュー部(以下、不等リードスクリュー部という)111a、121aと、不等リードスクリュー部111a、121aに連続し、ガスを移送する等リードスクリュー部111b、121bとを有している。等リードスクリュー部111b、121bは、等リード等傾斜角で形成されて、直線の歯筋を有している。不等リードスクリュー部111a、121aは、吸気口135側から排気口136側に向けてリードおよび傾斜角(リード角)が徐々に小さくなるように形成されて、曲線の歯筋を有している。この不等リードスクリュー部111a、121aでは、リード角が雄ロータ110及び雌ロータ120の回転角にしたがって変化し、雄ロータ110及び雌ロータ120とステータ130により形成される気体作動室の1リード間の容積が吸気口135側から排気口136側に向けて連続的に減少することで、ガスの移送圧縮が行われる。 The stator 130, the male rotor 110, and the female rotor 120 cooperate to form a gas working chamber that transfers and compresses gas. The male rotor 110 and the female rotor 120 respectively have screw teeth 111 and 121 that mesh with each other while maintaining a meshing gap. The screw teeth 111 and 121 of the male rotor 110 and the female rotor 120 are disposed on the intake port 135 side, and are unequal lead unequal inclination angle screw portions (hereinafter referred to as unequal lead screw portions) 111a for transporting and compressing gas. , 121a and unequal lead screw portions 111a, 121a, and equal lead screw portions 111b, 121b for transferring gas. The equal lead screw portions 111b and 121b are formed with equal lead equal inclination angles and have straight tooth traces. The unequal lead screw portions 111a and 121a are formed such that the lead and the inclination angle (lead angle) gradually decrease from the intake port 135 side to the exhaust port 136 side, and have curved tooth traces. . In the unequal lead screw portions 111 a and 121 a, the lead angle changes according to the rotation angles of the male rotor 110 and the female rotor 120, and between one lead of the gas working chamber formed by the male rotor 110 and the female rotor 120 and the stator 130. Is continuously reduced from the intake port 135 side toward the exhaust port 136 side, whereby gas transfer compression is performed.
 回転シャフト150Aは、ステンレス鋼等の金属で形成され、上端部側を、軸受160を介してサポート部材200により回転自在に支持され、雄ロータ110と同軸状に連結されている。サポート部材200の構造については後述する。回転シャフト150Aの下端部側には、軸受161および162が設けられており、軸受161は第1軸受ホルダ137、軸受162は第2軸受ホルダ138により保持されている。第1軸受ホルダ137は、サポート部材200の下端部に固定され、第2軸受ホルダ138は、ベース部132に固定されている。 The rotary shaft 150A is formed of a metal such as stainless steel, and the upper end side is rotatably supported by the support member 200 via the bearing 160 and is coaxially connected to the male rotor 110. The structure of the support member 200 will be described later. Bearings 161 and 162 are provided on the lower end side of the rotating shaft 150 </ b> A. The bearing 161 is held by a first bearing holder 137 and the bearing 162 is held by a second bearing holder 138. The first bearing holder 137 is fixed to the lower end portion of the support member 200, and the second bearing holder 138 is fixed to the base portion 132.
 軸受160は、アンギュラー玉軸受であり、雄ロータ110および回転シャフト150Aの荷重の大部分を支持している。軸受161,162もアンギュラー玉軸受であるが、これらは、主に、雄ロータ110の高速回転中に発生する可能性のある回転シャフト150Aの振れを抑制するために設けられている。なお、軸受160~162の潤滑については後述する。 The bearing 160 is an angular ball bearing and supports most of the loads of the male rotor 110 and the rotating shaft 150A. Although the bearings 161 and 162 are also angular ball bearings, these are mainly provided to suppress the swing of the rotating shaft 150 </ b> A that may occur during the high-speed rotation of the male rotor 110. The lubrication of the bearings 160 to 162 will be described later.
 駆動モータ140は、回転シャフト150Aの軸受160と161の間に固定されたモータロータ141と、所定のギャップ143が形成されるようにモータロータ141の周囲に配置されかつサポート部材220に固定されたステータ142を有し、ポンプの外部から交流電力を受けることにより駆動される。 The drive motor 140 includes a motor rotor 141 fixed between the bearings 160 and 161 of the rotary shaft 150A, and a stator 142 disposed around the motor rotor 141 and fixed to the support member 220 so that a predetermined gap 143 is formed. It is driven by receiving AC power from the outside of the pump.
振動抑制構造
 ここで、雌雄のロータの高速回転時に発生する振動の抑制のための構造について説明する。図11は、従来の雄ロータと回転シャフトの関係を示す模式図である。図11に示すロータ510は、外周側のスクリュー歯については雄ロータ110と同じであるが、上端部510tに回転シャフト550との連結部512が形成され、回転軸線方向の下端面で開口する中空部511を有し、回転シャフト550の一部および回転シャフト550を回転自在に支持する軸受560が中空部511に収容されている。
Vibration Suppression Structure Here, a structure for suppressing vibration generated when the male and female rotors rotate at high speed will be described. FIG. 11 is a schematic diagram showing the relationship between a conventional male rotor and a rotating shaft. The rotor 510 shown in FIG. 11 is the same as the male rotor 110 with respect to the screw teeth on the outer peripheral side, but a hollow 512 is formed at the upper end 510t with a connecting portion 512 to the rotary shaft 550 and opens at the lower end surface in the rotation axis direction. A hollow portion 511 accommodates a part 511 and a bearing 560 that rotatably supports a part of the rotation shaft 550 and the rotation shaft 550.
 このロータ510を高速回転させると、7000rpm近辺に1次の共振点が存在し、図4に示すような振動が発生することが判明した。この振動の変形モードは、拘束部である軸受560を基点とする軸曲げ変形である。 It was found that when the rotor 510 was rotated at a high speed, a primary resonance point was present in the vicinity of 7000 rpm, and vibration as shown in FIG. 4 occurred. This vibration deformation mode is an axial bending deformation with the bearing 560 as a restraint portion as a base point.
 本発明では、ロータの共振周波数を高めるために、図10に示す構造を採用している。図2に示すように、雄ロータ110は、回転軸線AX方向の下端面110bで開口する下側中空部113Aと上端面110tで開口する上側中空部113Bを有し、下側中空部113Aと上側中空部113Bとは、連結部112に形成された貫通孔112hを介して連通している。連結部112は、回転シャフトの上端部に形成されたフランジ部151に連結される。この連結部112は、雄ロータ110の上端面110tおよび下端面110bから離れた位置に配置されており、連結部112の回転軸線AX方向は、雄ロータ110の重心GCの付近に位置する。このように、回転シャフト150と雄ロータ110との連結位置を雄ロータ110の重心GCの位置に移動させ、拘束部である軸受160と回転シャフト150および雄ロータ110との連結部との距離を従来と比べて短縮化することで、雄ロータ110の共振周波数を高めることができることがわかった。具体的には、雄ロータ110の1次の共振点を10000rpm超に高めることができた。また、回転シャフト150と雄ロータ110との連結位置を雄ロータ110の内部とすることで、回転シャフト150の全長を従来と比較して短縮化することができ、軽量化、振動抑制等の点でも有利となる。なお、雄ロータ110についてのみ説明したが、雌ロータ120についても同様の構造が採用される。 In the present invention, the structure shown in FIG. 10 is adopted in order to increase the resonance frequency of the rotor. As shown in FIG. 2, the male rotor 110 has a lower hollow portion 113A that opens at the lower end surface 110b in the direction of the rotation axis AX, and an upper hollow portion 113B that opens at the upper end surface 110t. The hollow portion 113B communicates with the hollow portion 113B through a through hole 112h formed in the connecting portion 112. The connecting portion 112 is connected to a flange portion 151 formed at the upper end portion of the rotating shaft. The connecting portion 112 is disposed at a position away from the upper end surface 110 t and the lower end surface 110 b of the male rotor 110, and the rotation axis AX direction of the connecting portion 112 is located near the center of gravity GC of the male rotor 110. In this way, the connection position between the rotary shaft 150 and the male rotor 110 is moved to the position of the center of gravity GC of the male rotor 110, and the distance between the bearing 160 serving as the restraint portion and the connection portion between the rotary shaft 150 and the male rotor 110 is set. It was found that the resonance frequency of the male rotor 110 can be increased by shortening the length compared to the conventional one. Specifically, the primary resonance point of the male rotor 110 could be increased to over 10,000 rpm. Further, by connecting the rotating shaft 150 and the male rotor 110 to the inside of the male rotor 110, the entire length of the rotating shaft 150 can be shortened as compared with the conventional one, and weight reduction, vibration suppression, and the like can be achieved. But it is advantageous. Although only the male rotor 110 has been described, the same structure is adopted for the female rotor 120.
バランス調整機構
 次に、本実施形態に係るスクリュー真空ポンプのバランス調整機構について説明する。図13Aに示すように、雄ロータ110の上端側にある、不等リードスクリュー部111aの終端に形成された複数の端面部114には、雄ロータ110の回転バランスを調整するための質量としてのねじMを取り付けるための複数のマス取付け部114hが配置されている。マス取付け部114hは、例えば、ねじ穴で構成される。端面部114は、回転軸線AXを中心とする円周方向に等間隔に配置され、回転軸線AXに対して直交している。複数のマス取付け部114hは、周方向に沿って配列されているとともに、半径方向にも等間隔に配列されている。雄ロータ110の下端には、図13Bに示すように、円盤状プレート115が雄ロータ110に一体的に形成されている。円盤状プレート115の中心は、回転軸線AXに一致しており、円盤状プレート115の外周面115fは、回転軸線AXに平行である。この外周面115fに、複数のマス取付け部115hが周方向に沿って等間隔に形成されている。マス取付け部115hは、例えば、円盤状プレート115の中心に向けて形成されたねじ穴で構成される。マス取付け部115hには、雄ロータ110の回転バランスを調整するための質量としてのねじMが取り付け可能である。
Balance Adjustment Mechanism Next, the balance adjustment mechanism of the screw vacuum pump according to the present embodiment will be described. As shown in FIG. 13A, a plurality of end surface portions 114 formed at the end of the unequal lead screw portion 111 a on the upper end side of the male rotor 110 are used as masses for adjusting the rotational balance of the male rotor 110. A plurality of mass attaching portions 114h for attaching the screw M are arranged. The mass attaching part 114h is configured by, for example, a screw hole. The end surface portions 114 are arranged at equal intervals in the circumferential direction around the rotation axis AX, and are orthogonal to the rotation axis AX. The plurality of mass attaching portions 114h are arranged along the circumferential direction, and are also arranged at equal intervals in the radial direction. As shown in FIG. 13B, a disk-shaped plate 115 is formed integrally with the male rotor 110 at the lower end of the male rotor 110. The center of the disk-shaped plate 115 coincides with the rotation axis AX, and the outer peripheral surface 115f of the disk-shaped plate 115 is parallel to the rotation axis AX. A plurality of mass attaching portions 115h are formed on the outer peripheral surface 115f at regular intervals along the circumferential direction. The mass attachment portion 115h is configured by, for example, a screw hole formed toward the center of the disk-shaped plate 115. A screw M as a mass for adjusting the rotational balance of the male rotor 110 can be attached to the mass attaching portion 115h.
 マス取付け部114hおよびマス取付け部115hに選択的にねじMを取り付けることで、雄ロータ110単体の回転バランスを調整することはもちろん可能であるが、ここで重要なことは、スクリュー真空ポンプ100を組み立てた後に、これらマス取付け部114hおよびマス取付け部115hにアクセス可能となっていることである。回転に関与する各構成部品のバランスをとったとしても、スクリュー真空ポンプ100を組み立てた後に、回転系が確実にバランスしているとは限らず、回転バランスの調整がさらに必要な場合がある。このため、本発明では、図14に示すように、ステータ130のベース部132に、ステータ130の外部からマス取付け部115hへのアクセスを可能にする通路132aが形成されている。通路132aは、通常は密封され、必要な場合にのみ開放される。雄ロータ110の上端側のマス取付け部114hは、図9に示したように、吸気口135を通じてステータ130の外部からアクセス可能である。なお、本実施形態では、マス取付け部を雄ロータ110の上下端に設けたが、これに限定されるわけではなく、例えば、雄ロータ110の回転軸線方向の中間部にマス取付け部を形成することも可能である。なお、雄ロータ110についてのみ説明したが、雌ロータ120についても同様の構造が採用される。 Of course, it is possible to adjust the rotational balance of the male rotor 110 by selectively attaching the screws M to the mass attaching portion 114h and the mass attaching portion 115h. After the assembly, the mass attaching portion 114h and the mass attaching portion 115h are accessible. Even if each component involved in the rotation is balanced, after the screw vacuum pump 100 is assembled, the rotating system is not always balanced, and the rotation balance may be further adjusted. Therefore, in the present invention, as shown in FIG. 14, a passage 132 a is formed in the base portion 132 of the stator 130 to allow access to the mass attaching portion 115 h from the outside of the stator 130. The passage 132a is normally sealed and opened only when necessary. The mass attaching portion 114h on the upper end side of the male rotor 110 is accessible from the outside of the stator 130 through the air inlet 135, as shown in FIG. In the present embodiment, the mass attaching portions are provided at the upper and lower ends of the male rotor 110. However, the present invention is not limited to this. For example, the mass attaching portions are formed in the intermediate portion in the rotation axis direction of the male rotor 110. It is also possible. Although only the male rotor 110 has been described, the same structure is adopted for the female rotor 120.
オイル循環システム
 次に、オイル循環システムについて説明する。なお、雄ロータ110側のオイル循環システムについてのみ説明するが、雌ロータ120側についても同様の構造が採用可能である。図9に示したように、回転シャフト150Aは、その中心部を長手方向に延在する貫通孔により形成されたオイル供給路152を有する。回転シャフト150Aに形成された貫通孔の下端面の開口が、オイルOLが流入する流入口153となっており、貫通孔の上端面の開口は、雄ロータ110の連結部112に固定された栓部材156で密閉されている。ここで、図15に拡大して示すように、オイル供給路152は、軸受160の上方に形成された回転シャフト150Aの半径方向に延びるオイル供給路152aと連通しており、回転シャフト150Aの外周面で開口するオイル供給路152aの終端が、オイルOLが流出する流出口154となっている。オイル供給路152aは、回転軸線AXに関して対称な位置の2箇所に形成され、各オイル供給路152aには、オイルOLの流量を所定量に調整するように規定された流路面積の流路155hが形成された流量調整部材155がねじ込まれている。
Oil Circulation System Next, the oil circulation system will be described. Only the oil circulation system on the male rotor 110 side will be described, but the same structure can be adopted on the female rotor 120 side. As shown in FIG. 9, the rotary shaft 150 </ b> A has an oil supply path 152 formed by a through hole extending in the longitudinal direction at the center thereof. The opening at the lower end surface of the through hole formed in the rotating shaft 150A is an inlet 153 into which the oil OL flows, and the opening at the upper end surface of the through hole is a plug fixed to the connecting portion 112 of the male rotor 110. It is sealed with a member 156. Here, as shown in an enlarged view in FIG. 15, the oil supply path 152 communicates with an oil supply path 152 a extending in the radial direction of the rotating shaft 150 </ b> A formed above the bearing 160, and the outer periphery of the rotating shaft 150 </ b> A. The end of the oil supply path 152a that opens at the surface is an outlet 154 from which the oil OL flows out. The oil supply path 152a is formed at two positions symmetrical with respect to the rotation axis AX, and each oil supply path 152a has a flow path 155h having a flow path area defined so as to adjust the flow rate of the oil OL to a predetermined amount. The flow rate adjusting member 155 formed with is screwed.
 図9に戻って、回転シャフト150A内には、オイルリザーバ300からオイルOLを上方へ押し上げるオイル供給部品5000が設けられている。流入口153を通じて押し上げられたオイルOLは、オイル供給路152の内壁を伝って上方に向けて移動し、オイル供給路152aおよび流量調整部材155を通じて流出口154から回転シャフト150Aの外部へ吐出される。 Referring back to FIG. 9, an oil supply component 5000 that pushes up the oil OL from the oil reservoir 300 is provided in the rotary shaft 150A. The oil OL pushed up through the inflow port 153 moves upward along the inner wall of the oil supply path 152, and is discharged from the outflow port 154 to the outside of the rotary shaft 150A through the oil supply path 152a and the flow rate adjusting member 155. .
オイル量調整機構
 図15に戻ると、回転シャフト150Aの軸受160と流出口154との間に、環状のオイル量調整リング220が設けられている。オイル量調整リング220は、回転シャフト150Aに固定されている。オイル量調整リング220は、図16に示すように、環状の下板部221、下板部221に対向する環状の上板部222、下板部221と上板部222とを内周側で連結する連結壁部223とを有する。連結壁部223には、回転シャフト150Aの半径方向に延びるオイル供給路152aの流出口154と対応する位置に形成された流通孔225が形成されている。下板部221には、軸受160に潤滑するためのオイルOLを供給する複数のオイル供給孔226が周方向に沿って等間隔に配列されている。下板部221の外周の上部には、鍔部24が形成されている。鍔部24は、下板部221の外周面228に嵌め込まれる後述する受止め板210と下板部221との間からオイルOLが下方へ落下するのを防ぐ役割を果たす。
Oil Quantity Adjusting Mechanism Returning to FIG. 15, an annular oil quantity adjusting ring 220 is provided between the bearing 160 of the rotating shaft 150 </ b> A and the outlet 154. The oil amount adjusting ring 220 is fixed to the rotating shaft 150A. As shown in FIG. 16, the oil amount adjusting ring 220 includes an annular lower plate portion 221, an annular upper plate portion 222 facing the lower plate portion 221, and a lower plate portion 221 and an upper plate portion 222 on the inner peripheral side. And a connecting wall portion 223 to be connected. The connecting wall 223 is formed with a flow hole 225 formed at a position corresponding to the outlet 154 of the oil supply passage 152a extending in the radial direction of the rotary shaft 150A. A plurality of oil supply holes 226 that supply oil OL for lubricating the bearing 160 are arranged in the lower plate portion 221 at equal intervals along the circumferential direction. On the upper part of the outer periphery of the lower plate part 221, a flange part 24 is formed. The flange 24 serves to prevent the oil OL from falling downward from between a receiving plate 210 (described later) fitted into the outer peripheral surface 228 of the lower plate 221 and the lower plate 221.
 ここで、オイル量調整リング220を設けた理由について説明する。雄ロータ110および回転シャフト150Aの荷重を回転自在に支持する軸受160には、高速回転中に潤滑のためのオイルOLを供給する必要があるが、この供給量が過剰であると、軸受160から発生する熱が増大してしまうことが判明した。このため、本発明では、軸受160の上方にオイル量調整リング220を設けて、オイルOLの供給量を最適化している。オイル量調整リング220のオイル供給孔226は、オイルOLの供給量が最適になるように、その数および寸法があらかじめ調整されている。なお、オイルOLの供給量の微調整が必要な場合には、例えば、必要な数のオイル供給孔226だけを残して、不要なオイル供給孔226を金属板等で塞ぐことで対応できる。なお、オイル量調整リング220は、本発明のオイル量調整機構はこれに限定されるわけではない。また、オイル量調整リング220は、回転シャフト150Aに固定されているが、回転シャフト150Aに固定せずにオイル量調整機構を実現することも可能である。 Here, the reason why the oil amount adjustment ring 220 is provided will be described. It is necessary to supply oil OL for lubrication during high-speed rotation to the bearing 160 that rotatably supports the loads of the male rotor 110 and the rotating shaft 150A. If this supply amount is excessive, the bearing 160 It has been found that the heat generated increases. For this reason, in the present invention, the oil amount adjusting ring 220 is provided above the bearing 160 to optimize the supply amount of the oil OL. The number and dimensions of the oil supply holes 226 of the oil amount adjustment ring 220 are adjusted in advance so that the supply amount of the oil OL is optimized. Note that when fine adjustment of the supply amount of the oil OL is necessary, for example, the necessary number of oil supply holes 226 are left and the unnecessary oil supply holes 226 are closed with a metal plate or the like. The oil amount adjusting ring 220 is not limited to the oil amount adjusting mechanism of the present invention. Further, although the oil amount adjusting ring 220 is fixed to the rotating shaft 150A, an oil amount adjusting mechanism can be realized without being fixed to the rotating shaft 150A.
 図15において、受止め板210は、環状に形成され、軸受160の上部をオイル量調整リング220とともに覆うとともに、サポート部材200に固定されている。受止め板210は、回転シャフト150Aの流出口154から吐出されたオイルOLを、後述するサポート部材200に形成された複数の流入口201a,202aに導くために設けられており、複数の流入口201a,202aに対応する位置に流通孔210hが形成されている。 15, the receiving plate 210 is formed in an annular shape, covers the upper part of the bearing 160 together with the oil amount adjusting ring 220, and is fixed to the support member 200. The receiving plate 210 is provided to guide oil OL discharged from the outlet 154 of the rotary shaft 150A to a plurality of inlets 201a and 202a formed in the support member 200 described later. A circulation hole 210h is formed at a position corresponding to 201a and 202a.
 サポート部材200は、ステンレス鋼等の金属で形成され、図9A,9Bに示すように、円筒状に形成されており、図1に示したように、雄ロータ110の円筒状の中空部113A内に配置され、サポート部材200の外周面206と中空部113Aの内壁面との間には、僅かな隙間が形成されるようになっている。また、サポート部材200は、下端部がステータ130のベース部132に固定され、ベース部132から、中空部113Aの開口を通じて、不等リードスクリュー部111aの途中まで達するように回転軸線AXの方向に延在している。このような配置により、サポート部材200は、気体の圧縮熱により高温になる雄ロータ110からの熱が伝達される。特に、雄ロータ110は、不等リードスクリュー部111aの等リードスクリュー部111b側の終端部で最も高温になると予想されるが、この近くにサポート部材200を配置することで、雄ロータ110の熱を効果的に受けることができる。また、サポート部材200は、軸受保持部203に軸受160を保持しているので、軸受160で発生する熱も効果的に受けることができる。軸受保持部203の外周側には、上下方向に延びるオイルOLが流通する、複数の第1流路201および複数の第2流路202が形成されている。第1流路201は、流入口201aから流入するオイルOLを駆動モータ140のモータロータ141とモータステータ142との間に形成される空隙143へ分配するように形成されている。第2流路202は、流入口202aから流入するオイルOLをモータステータ142の外周面142a上に分配するように形成されている。すなわち、サポート部材200は、本発明の流路部材およびガイド部材を兼ねている。なお、本発明は、これに限定されるわけではなく、流路部材およびガイド部材を別部材とすることも可能である。 The support member 200 is formed of a metal such as stainless steel and is formed in a cylindrical shape as shown in FIGS. 9A and 9B. As shown in FIG. 1, the support member 200 is formed in the cylindrical hollow portion 113A of the male rotor 110. A slight gap is formed between the outer peripheral surface 206 of the support member 200 and the inner wall surface of the hollow portion 113A. The support member 200 has a lower end fixed to the base portion 132 of the stator 130, and extends in the direction of the rotation axis AX so as to reach the middle of the unequal lead screw portion 111a from the base portion 132 through the opening of the hollow portion 113A. It is extended. With such an arrangement, the support member 200 is transmitted with heat from the male rotor 110 that becomes high temperature due to the compression heat of the gas. In particular, the male rotor 110 is expected to have the highest temperature at the end portion of the unequal lead screw portion 111a on the side of the equal lead screw portion 111b. However, by disposing the support member 200 in the vicinity thereof, the heat of the male rotor 110 is increased. Can be received effectively. Further, since the support member 200 holds the bearing 160 in the bearing holding portion 203, the heat generated by the bearing 160 can be effectively received. A plurality of first flow paths 201 and a plurality of second flow paths 202 are formed on the outer peripheral side of the bearing holding portion 203 through which oil OL extending in the vertical direction flows. The first flow path 201 is formed so as to distribute the oil OL flowing from the inflow port 201 a to the gap 143 formed between the motor rotor 141 and the motor stator 142 of the drive motor 140. The second flow path 202 is formed so as to distribute the oil OL flowing from the inlet 202 a onto the outer peripheral surface 142 a of the motor stator 142. That is, the support member 200 also serves as the flow path member and the guide member of the present invention. Note that the present invention is not limited to this, and the flow path member and the guide member may be separate members.
 モータステータ142は、図18に示すように、外周面142aに形成された、回転軸線方向に延びる複数の溝部142bを有する。この溝部142bは、サポート部材200の内壁面205と協働して、第2流路202から供給されるオイルOLを流通させるための流路を形成する。 As shown in FIG. 18, the motor stator 142 has a plurality of grooves 142b formed on the outer peripheral surface 142a and extending in the rotation axis direction. The groove 142b cooperates with the inner wall surface 205 of the support member 200 to form a flow path for circulating the oil OL supplied from the second flow path 202.
 オイルリザーバ300は、図9に示すように、ステータ130の下部に形成され、オイルOLを貯留するために設けられ、オイルリザーバ300内には、冷却装置190の冷却パイプ191が配置されている。冷却装置190は、オイルリザーバ300に貯留されたオイルOLを水冷式で冷却するものであり、オイルリザーバ300内に配置され冷却水を循環させる冷却パイプ191と、冷却パイプ191に冷却水を供給する冷却ポンプ192を有する。 As shown in FIG. 9, the oil reservoir 300 is formed at a lower portion of the stator 130 and is provided for storing the oil OL. In the oil reservoir 300, a cooling pipe 191 of the cooling device 190 is disposed. The cooling device 190 cools the oil OL stored in the oil reservoir 300 by a water cooling method, and is disposed in the oil reservoir 300 and circulates the cooling water, and supplies the cooling water to the cooling pipe 191. A cooling pump 192 is included.
 軸封装置230は、回転シャフト150Aの流出口154から供給されるオイルOLおよびその蒸気が、ステータ130と雄ロータ110と雌ロータ120とが協働して形成する気体作動室に侵入しないように回転シャフト150Aをシールしている。軸封装置230は、図7に示すように、環状に形成されてサポート部材200の上端部に固定された保持部材231と、第1リップシール233aおよび第2リップシール233bを保持する第1シールアセンブリ232と、第1シールアセンブリ232に隣接して配置されかつリップシール234aを保持する第2シールアセンブリ234と、第2シールアセンブリ234に隣接して設けられたラビリンスシール235とを有する。回転シャフト150Aの表面に接触する第1および第2リップシール233a,233bと、リップシール234aは、耐熱性,化学的安定性,低摩擦性、適度な弾性を有することを特徴とし、好ましくは、フッ素化樹脂で構成されるのが望ましい。
 その様なフッ素化樹脂の例としては、(1)完全フッ素化樹脂、例えば、ポリテトラフルオロエチレン (PTFE)等、(2)部分フッ素化樹脂、例えば、ポリクロロトリフルオロエチレン(PCTFE,CTFE)、 ポリフッ化ビニリデン(PVDF)、ポリフッ化ビニル(PVF)等、(3)フッ素化樹脂共重合体、例えば、ペルフルオロアルコキシフッ素樹脂(PFA)、四フッ化エチレン・六フッ化プロピレン共重合体(FEP)、エチレン・四フッ化エチレン共重合体(ETFE),エチレン・クロロトリフルオロエチレン共重合体(ECTFE)、等々のフッ素化樹脂が挙げられる。これらの中で、PFA,PTFEが特に好ましい。
 これらの樹脂は、ニッケル(Ni)、フッ化ニッケル(NiF)等の金属上に設けることで耐熱性を飛躍的に向上させることが出来るので、本発明に於いてはこのような態様は特に好ましいものである。
The shaft seal device 230 prevents the oil OL and its vapor supplied from the outlet 154 of the rotary shaft 150A from entering the gas working chamber formed by the stator 130, the male rotor 110, and the female rotor 120 in cooperation. The rotary shaft 150A is sealed. As shown in FIG. 7, the shaft seal device 230 is formed in an annular shape and fixed to the upper end of the support member 200, and a first seal that holds the first lip seal 233a and the second lip seal 233b. The assembly 232 includes a second seal assembly 234 disposed adjacent to the first seal assembly 232 and holding the lip seal 234a, and a labyrinth seal 235 provided adjacent to the second seal assembly 234. The first and second lip seals 233a, 233b and the lip seal 234a that are in contact with the surface of the rotating shaft 150A are characterized by having heat resistance, chemical stability, low friction properties, and moderate elasticity. It is desirable to be composed of a fluorinated resin.
Examples of such fluorinated resins include (1) perfluorinated resins, such as polytetrafluoroethylene (PTFE), (2) partially fluorinated resins, such as polychlorotrifluoroethylene (PCTFE, CTFE) Polyvinylidene fluoride (PVDF), polyvinyl fluoride (PVF), etc. (3) Fluorinated resin copolymers such as perfluoroalkoxy fluororesin (PFA), tetrafluoroethylene / hexafluoropropylene copolymer (FEP) ), Ethylene / tetrafluoroethylene copolymer (ETFE), ethylene / chlorotrifluoroethylene copolymer (ECTFE), and the like. Of these, PFA and PTFE are particularly preferable.
Since these resins can be provided on a metal such as nickel (Ni), nickel fluoride (NiF 2 ) and the like, the heat resistance can be drastically improved. It is preferable.
 保持部材231には、シールガス供給路231aが形成され、このシールガス供給路231aには窒素ガス等のシールガスが供給され、第1シールアセンブリ232の本体に形成されたガス通路232aから上端側および下端側に向けて流れ、第1シールアセンブリ232の本体に形成されたガス通路232bを通じて排出される。なお、シールガスの供給経路および排出経路(図示せず)は、サポート部材200およびステータ130に形成され、この供給経路を通じてポンプ外部からシールガスが供給され、ガス通路232bを通過したからのシールガスは、図示しない排出経路を通じて、ポンプの外部に排出され図示しない回収装置により回収される。ここで回転シャフト150Aがステンレス鋼で形成されていると、温度が180℃程度以上に上昇すると、PTFEはステンレス鋼の触媒効果により熱分解する可能性がある。このため、本実施形態では、オイル循環システムによりポンプ内の熱を効率よく外部に放出してリップシールの温度上昇を抑制するが、リップシールの劣化を防いで安定したシール性能を長期間得るために、Niが最も熱分解抑制効果が高いので、回転シャフト150Aの、第1および第2リップシール233a,233bと、リップシール234aとの接触部分にニッケルメッキ膜或いはフッ化ニッケル膜を施すことが好ましい。 The holding member 231 is provided with a seal gas supply path 231a. A seal gas such as nitrogen gas is supplied to the seal gas supply path 231a, and the upper end side from the gas passage 232a formed in the main body of the first seal assembly 232 is provided. And flows toward the lower end side, and is discharged through a gas passage 232b formed in the main body of the first seal assembly 232. The supply path and discharge path (not shown) of the seal gas are formed in the support member 200 and the stator 130, and the seal gas is supplied from the outside of the pump through this supply path and passes through the gas passage 232b. Is discharged to the outside of the pump through a discharge path (not shown) and collected by a collection device (not shown). Here, if the rotating shaft 150A is made of stainless steel, PTFE may be thermally decomposed by the catalytic effect of stainless steel when the temperature rises to about 180 ° C. or higher. Therefore, in this embodiment, the oil circulation system efficiently releases the heat in the pump to the outside to suppress the temperature rise of the lip seal, but to prevent the lip seal from deteriorating and to obtain a stable sealing performance for a long period of time. In addition, since Ni has the highest thermal decomposition suppression effect, a nickel plating film or a nickel fluoride film may be applied to the contact portion of the rotary shaft 150A between the first and second lip seals 233a, 233b and the lip seal 234a. preferable.
 減圧機構
 ここで、本実施形態のオイル循環システムにより循環するオイルが空気中にあると、オイルに気泡が発生し、オイルの冷却効率が低下してしまう。また、リップシールのPTFEは、温度が上昇した状態で酸素ガスに触れると、酸化分解されて劣化し易い。これを防ぐためには、循環するオイル中の溶存酸素を除去することが極めて重要である。このため、本実施形態では、オイルが循環する空間を密閉空間とするとともに、この密閉空間を減圧することが好ましい。オイルが循環する空間を減圧するには、例えば、スクリュー真空ポンプ100により形成される真空を利用することができる。別のポンプを設けて減圧することも可能である。減圧は、例えば、空気の飽和溶解度が大気圧における飽和溶解度の半分程度になる圧力まですればよい。
Here, when the oil circulated by the oil circulation system of the present embodiment is in the air, bubbles are generated in the oil, and the cooling efficiency of the oil is lowered. Further, when the PTFE of the lip seal is exposed to oxygen gas in a state where the temperature has risen, it is easily oxidized and degraded. In order to prevent this, it is extremely important to remove dissolved oxygen in the circulating oil. For this reason, in the present embodiment, it is preferable that the space in which the oil circulates is a sealed space and the sealed space is decompressed. In order to decompress the space in which the oil circulates, for example, a vacuum formed by the screw vacuum pump 100 can be used. It is also possible to provide another pump to reduce the pressure. The pressure reduction may be, for example, a pressure at which the saturation solubility of air is about half of the saturation solubility at atmospheric pressure.
 次に、上記したオイル循環システムのオイル循環について図19を参照して説明する。スクリュー真空ポンプ100を駆動すると、図11に示すように、オイルリザーバ300内で冷却されたオイルOLは、回転シャフト150Aのオイル供給路152、オイル供給路152aおよび流出口154を通じてオイル量調整リング220の下板部221および受止め板210の上に供給され、一部のオイルOLは、軸受160の潤滑のために、下板部221のオイル供給孔226を通じて軸受160に供給され、このオイルOLは軸受160から落下して駆動モータ140のギャップ143に供給される。受止め板210の上に供給されたオイルOLは、第1および第2の流路201、202に分配される。軸受160で発生する熱は、軸受160に直接供給されたオイルOLによって吸収されるとともに、軸受160の周囲を通過する第1および第2の流路201、202を流通するオイルOLによって吸収される。第1および第2の流路201、202を流通するオイルOLは、回転シャフト150A側および雄ロータ110側から受ける熱を吸収したのち、駆動モータ140のギャップ143とモータステータ142の外周面に溝142bにより形成された流路を流通する。これにより、駆動モータ140から発生する熱は効率良く吸収される。駆動モータ140を通過したオイルOLは、オイルリザーバOL内に落下するが、一部は、潤滑のために、軸受161,162と同期ギア170A,170Bの噛み合い部分に供給された後にオイルリザーバOL内に落下する。オイルリザーバOL内に落下するオイルOLは温度が上昇しているが、オイルリザーバOL内で冷却装置190により所定の温度まで冷却される。なお、雄ロータ110についてのみ説明したが、雌ロータ120についても同様のオイル循環システムを採用できる。 Next, the oil circulation of the above oil circulation system will be described with reference to FIG. When the screw vacuum pump 100 is driven, as shown in FIG. 11, the oil OL cooled in the oil reservoir 300 passes through the oil supply path 152, the oil supply path 152a, and the outlet 154 of the rotary shaft 150A. A part of the oil OL is supplied to the bearing 160 through the oil supply hole 226 of the lower plate part 221 for lubrication of the bearing 160, and is supplied to the bearing 160 on the lower plate part 221 and the receiving plate 210. Falls from the bearing 160 and is supplied to the gap 143 of the drive motor 140. The oil OL supplied onto the receiving plate 210 is distributed to the first and second flow paths 201 and 202. The heat generated in the bearing 160 is absorbed by the oil OL supplied directly to the bearing 160 and is absorbed by the oil OL flowing through the first and second flow paths 201 and 202 that pass around the bearing 160. . The oil OL flowing through the first and second flow paths 201 and 202 absorbs heat received from the rotary shaft 150A side and the male rotor 110 side, and then grooves are formed in the gap 143 of the drive motor 140 and the outer peripheral surface of the motor stator 142. It flows through the flow path formed by 142b. Thereby, the heat generated from the drive motor 140 is efficiently absorbed. The oil OL that has passed through the drive motor 140 falls into the oil reservoir OL, but a part of the oil OL is supplied to the meshing portions of the bearings 161 and 162 and the synchronous gears 170A and 170B for lubrication and then into the oil reservoir OL. Fall into. Although the temperature of the oil OL falling into the oil reservoir OL has risen, it is cooled to a predetermined temperature by the cooling device 190 in the oil reservoir OL. Although only the male rotor 110 has been described, a similar oil circulation system can be employed for the female rotor 120.
 オイル供給部品5000により潤滑および冷却のために供給できるオイルOLの量は、回転速度に依存するのである程度限られている。サポート部材200やオイル量調整リング220を設けることにより、限られた量のオイルOLを効率よく潤滑および冷却に使用し、スクリュー真空ポンプ100の温度上昇を防ぐことができる。この結果、スクリュー真空ポンプ100の高速運転化が可能となる。 The amount of oil OL that can be supplied for lubrication and cooling by the oil supply component 5000 is limited to some extent because it depends on the rotational speed. By providing the support member 200 and the oil amount adjusting ring 220, a limited amount of oil OL can be efficiently used for lubrication and cooling, and temperature rise of the screw vacuum pump 100 can be prevented. As a result, the screw vacuum pump 100 can be operated at high speed.
第2実施形態(オイル循環システム)
 次に、さらに冷却効率の高いオイル循環システムを図20および図21を参照して説明する。なお、第1実施形態と同様の構成部分には、同一の符号を使用している。図20に示すオイルリザーバ300Aは、断熱材で形成されたタンク301と、タンク301の内部に設けられタンク301とともに閉空間CSを形成するための底板304と、閉空間CSに同心状に配置されてオイルOLの流路を形成するための複数の第1の仕切り部材305と、オイルOLの流路を形成するためにタンク301の半径方向に配置された第2の仕切り部材306とを有している。タンク301の上部には、回転シャフト150の下端部が挿入されるとともに回転シャフト150Aのオイル供給路と連通するオイル流出口302と、回収されたオイルが流入する流入口303とを有する。流入口303は、タンク301の最外周領域R1に配置され、オイル流出口302は、タンク301の中心領域R2に配置されている。タンク301内の底部には、冷却液320が流れるようになっており、冷却器の冷却液320は底板304に全面的に接触している。
Second embodiment (oil circulation system)
Next, an oil circulation system with higher cooling efficiency will be described with reference to FIGS. In addition, the same code | symbol is used for the component similar to 1st Embodiment. An oil reservoir 300A shown in FIG. 20 is disposed concentrically in a closed space CS, a tank 301 formed of a heat insulating material, a bottom plate 304 provided inside the tank 301 and forming a closed space CS together with the tank 301. A plurality of first partition members 305 for forming the oil OL flow path, and a second partition member 306 disposed in the radial direction of the tank 301 for forming the oil OL flow path. ing. The upper portion of the tank 301 has an oil outlet 302 that is inserted into the lower end of the rotary shaft 150 and communicates with the oil supply path of the rotary shaft 150A, and an inlet 303 into which the recovered oil flows. The inflow port 303 is disposed in the outermost peripheral region R 1 of the tank 301, and the oil outflow port 302 is disposed in the central region R 2 of the tank 301. The cooling liquid 320 flows to the bottom of the tank 301, and the cooling liquid 320 of the cooler is in full contact with the bottom plate 304.
 閉空間CSを図21に示すように流れるオイルOLの熱交換効率を上げるためには、オイルの循環によるオイルOLの流れは、レイノズル数2000~3000程度の乱流となるように設計することが好ましい。また、タンク301内でレイノズル数が一定になるように、オイルOLの流路断面積は一定にすることが好ましい。 In order to increase the heat exchange efficiency of the oil OL flowing through the closed space CS as shown in FIG. 21, the oil OL flow by the oil circulation should be designed to be a turbulent flow with about 2000 to 3000 lay nozzles. preferable. Further, it is preferable that the flow passage cross-sectional area of the oil OL is constant so that the number of lay nozzles is constant in the tank 301.
 ここで、オイルOLを回転シャフト150A内に向けて押し上げてやると、オイル供給部品5000によるオイル押上げ量が増加することが分かっている。たとえば、タンク301の一部をフレキシブルな材料で形成し、このフレキシブルな部分をタンク301の外部から押圧して弾性変形させ、閉空間CSの容積を減少させることで、オイルOLを回転シャフト150内に向けて押し上げることができる。 Here, it is known that when the oil OL is pushed up into the rotary shaft 150A, the amount of oil pushed up by the oil supply component 5000 increases. For example, a part of the tank 301 is formed of a flexible material, the flexible part is pressed from the outside of the tank 301 to be elastically deformed, and the volume of the closed space CS is reduced, so that the oil OL is contained in the rotary shaft 150. Can be pushed up toward
 代替的には、図22に示すように、タンク300Aにプランジャ装置340を設けるとともに、流入口303に逆流防止機構340を介して補助タンク330を接続する。プランジャ装置340のプランジャチップ341が先端に接続されたプランジャロッド342の後端部は、シリンダ装置360のピストンロッド361に接続され、プランジャチップ341は往復運動可能になっている。プランジャチップ341を前進させていくと、閉空間CSの容積が減少し、回転シャフト150内に向けてオイルOLが押し上げられる。このとき逆流防止機構340により、タンク301内のオイルOLは流入口303を逆流しない。また、プランジャチップ341を後退させる際には、補助タンク330に回収されたオイルOLが存在するため、回転シャフト150内のオイルOLがオイルタンク301内に戻るのを防ぐことができる。 Alternatively, as shown in FIG. 22, a plunger device 340 is provided in the tank 300 </ b> A, and an auxiliary tank 330 is connected to the inlet 303 via a backflow prevention mechanism 340. The rear end portion of the plunger rod 342 to which the plunger tip 341 of the plunger device 340 is connected to the tip is connected to the piston rod 361 of the cylinder device 360 so that the plunger tip 341 can reciprocate. As the plunger tip 341 is advanced, the volume of the closed space CS decreases and the oil OL is pushed up into the rotary shaft 150. At this time, the oil OL in the tank 301 does not flow back through the inflow port 303 by the backflow prevention mechanism 340. Further, when the plunger tip 341 is retracted, the oil OL recovered in the auxiliary tank 330 is present, so that the oil OL in the rotating shaft 150 can be prevented from returning into the oil tank 301.
 また、本発明の関わるオイル供給部品の下端部には、図1Bに示すテーパ状の押し上げヘッド1182と同様の押上げヘッド180を設けている。駆動スクリューは、押し上げヘッド180に対して固定されているが、駆動スクリューを押上げヘッド180よりも上方に設けて回転シャフト150Aに対して固定することも可能である。押し上げヘッド180とオイル供給部品5000とを組み合わせることにより、オイル供給量をさらに増加させることができる。
 図1Bにおいて、1001は回転シャフト、1002はオイル、1003はオイル供給規制部材、1004はオイル供給路、1005はテーパ内壁面、1006はテーパ下端開口、1007はオイル供給路上端開口を示す。
 外付けポンプを併設して使用する際には、オイル供給路1004を通じてテーパ下端開口1006に向けてオイルを供給する。
 供給を受けたオイルは、供給推進力に回転シャフト1001の回転力も加わってテーパ内壁面1005上を上昇する。
Further, a lifting head 180 similar to the tapered lifting head 1182 shown in FIG. 1B is provided at the lower end of the oil supply component according to the present invention. The drive screw is fixed to the push-up head 180. However, the drive screw can be provided above the push-up head 180 and fixed to the rotary shaft 150A. By combining the push-up head 180 and the oil supply component 5000, the oil supply amount can be further increased.
In FIG. 1B, 1001 is a rotating shaft, 1002 is oil, 1003 is an oil supply regulating member, 1004 is an oil supply path, 1005 is a tapered inner wall surface, 1006 is a tapered lower end opening, and 1007 is an oil supply path upper end opening.
When using with an external pump, oil is supplied toward the tapered lower end opening 1006 through the oil supply path 1004.
The supplied oil rises on the tapered inner wall surface 1005 by adding the rotational force of the rotary shaft 1001 to the supply driving force.
 以上、添付図面を参照しながら本発明の実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。 As mentioned above, although embodiment of this invention was described in detail, referring an accompanying drawing, this invention is not limited to this example. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.
 1100・・・ スクリュー真空ポンプ
 1110・・・ 雄ロータ
 1111・・・ ねじ歯車部
 1111a・・・ 不等リード不等傾斜角スクリュー部
 1111b・・・ 等リードスクリュー部
 1112・・・ ロータ中空部
 1120・・・ 雌ロータ
 1121・・・ ねじ歯車部
 1121a・・・不等リード不等傾斜角スクリュー部
 1121b・・・ 等リードスクリュー部
 1122・・・ ロータ中空部
 1130・・・ ステータ
 1131・・・ ステータ本体部
 1132・・・ 第1支持部
 1133・・・ 第2支持部
 1134・・・ 吸気口
 1135・・・ 排気口
 1140A・・・ 駆動モータ
 1140B・・・ 駆動モータ
 1150A・・・ 回転シャフト
 1150B・・・ 回転シャフト
 1151A・・・ フランジ部
 1151B・・・ フランジ部
 1160Aa・・・ 軸受ベアリング
 1160Ab・・・ 軸受ベアリング
 1160Ac・・・ 軸受ベアリング
 1160Ba・・・ 軸受ベアリング
 1160Bb・・・ 軸受ベアリング
 1160Bc・・・ 軸受ベアリング
 1170A ・・・ 歯車
 1180・・・ オイル供給手段
 1181・・・ オイル貯留部
 1182・・・ 押し上げヘッド
 1183・・・ オイル流通路
 1190・・・ 冷却装置
 1191・・・ 冷却パイプ
 1192・・・ 冷却ポンプ
 1001・・・回転シャフト
 1002・・・オイル
1003・・・オイル供給規制部材
1004・・・オイル供給路
1005・・・テーパない壁面
1006・・・テーパ下端開口
1007・・・オイル供給路上端開口
2000、3000・・・オイル供給装置
2001・・・回転シャフト
2001a・・・オイル流通路
2002・・・オイルリザーバ
2003・・・押し上げヘッド
2004・・・流出部
2005・・・流出口
2006・・・吐出口
2007・・・流入口
2008・・・オイル
2009・・・オイル液面
3001・・・軸棒
3002・・・軸受
3003・・・軸棒回転止め
3004a、3004b,3004c,3004d・・・固定スクリュー
3005・・・駆動スクリュー
5000・・・オイル供給部品
5001・・・回転シャフト
5002・・・軸棒
5003・・・軸受
5004・・・軸棒回転止め
5005・・・駆動スクリュー
5006a、5006b、5006c、5006d・・・固定スクリュー
5007a、5007b、5007c、5007d・・・流出路
5008・・・オイル流通路
6001・・・回転シャフト無い壁面
7000・・・・・・固定スクリュー
8000A,8000B・・・駆動スクリュー
100・・・ スクリュー真空ポンプ
110・・・ 雄ロータ
111・・・ スクリュー歯
111a・・・ 不等リード不等傾斜角スクリュー部
111b・・・ 等リードスクリュー部 
111c・・・ 接続部
113a・・・ 中空部
113b・・・ 中空部
114・・・ 平板部
114h・・・ 取付け穴
115・・・ 円盤部
115h・・・ 取付け穴
120・・・ 雌ロータ
121・・・ スクリュー歯
121a・・・ 不等リード不等傾斜角スクリュー部
121b・・・ 等リードスクリュー部 
130・・・ ステータ
135・・・ 吸気口
136・・・ 排気口
140・・・ 駆動モータ
141・・・ モータロータ
142・・・ モータステータ
142a・・・ 外周面
142b・・・ 流路用溝
143・・・ ギャップ
150,150A・・・ 回転シャフト
152,152a・・・ オイル供給路
156・・・ 閉塞部材
160,161,162・・・ 軸受
180・・・ 押上げヘッド
190・・・ 冷却装置
200・・・ サポート部材(流路部材、ガイド部材)
201・・・ 第1流路
201a・・・ 流入口
202・・・ 第2流路
202a・・・ 流入口
210・・・ 受止め板
220・・・ オイル量調整リング
230・・・ 軸封装置
231・・・ 保持部材
232・・・ 第1シールアセンブリ
233a・・・ 第1リップシール
233b・・・ 第2リップシール
234・・・ 第2シールアセンブリ
234a・・・ リップシール
235・・・ ラビリンスシール 
OL・・・ オイル
M・・・ ネジ
DESCRIPTION OF SYMBOLS 1100 ... Screw vacuum pump 1110 ... Male rotor 1111 ... Screw gear part 1111a ... Unequal lead unequal inclination angle screw part 1111b ... Equal lead screw part 1112 ... Rotor hollow part 1120- .. Female rotor 1121... Screw gear portion 1121a... Unequal lead unequal inclination angle screw portion 1121b... Equal lead screw portion 1122... Rotor hollow portion 1130... Stator 1131. Part 1132 ... 1st support part 1133 ... 2nd support part 1134 ... Intake port 1135 ... Exhaust port 1140A ... Drive motor 1140B ... Drive motor 1150A ... Rotating shaft 1150B ...・ Rotating shaft 1151A ... Flange 1151B ... 1160Aa ... Bearing bearing 1160Ab ... Bearing bearing 1160Ac ... Bearing bearing 1160Ba ... Bearing bearing 1160Bb ... Bearing bearing 1160Bc ... Bearing bearing 1170A ... Gear 1180 ... Oil supply means 1181 ... Oil reservoir 1182 ... Push-up head 1183 ... Oil flow path 1190 ... Cooling device 1191 ... Cooling pipe 1192 ... Cooling pump 1001 ... Rotating shaft 1002 ... Oil 1003 ... Oil supply regulating member 1004 ... Oil supply path 1005 ... Non-tapered wall surface 1006 ... Tapered lower end opening 1007 ... Oil supply path upper end opening 2000, 3000 ... Oil supply device 2001 ... Times Shaft 2001a ... Oil flow path 2002 ... Oil reservoir 2003 ... Push-up head 2004 ... Outflow portion 2005 ... Outlet 2006 ... Discharge port 2007 ... Inlet port 2008 ... Oil 2009 ... Oil liquid level 3001 ... shaft rod 3002 ... bearing 3003 ... shaft rod rotation stop 3004a, 3004b, 3004c, 3004d ... fixed screw 3005 ... drive screw 5000 ... oil supply component 5001... Rotating shaft 5002... Shaft rod 5003... Bearing 5004... Shaft rod rotation stop 5005... Drive screw 5006 a, 5006 b, 5006 c, 5006 d ...... Fixed screw 5007 a, 5007 b, 5007 c, 5007 d ... Outflow passage 5008 ... Oil flow passage 6 01 ... Wall surface without rotating shaft 7000 ... Fixed screw 8000A, 8000B ... Drive screw 100 ... Screw vacuum pump 110 ... Male rotor 111 ... Screw teeth 111a ... Unequal Lead unequal inclination angle screw part 111b ... Equal lead screw part
111c ... Connection portion 113a ... Hollow portion 113b ... Hollow portion 114 ... Flat plate portion 114h ... Mounting hole 115 ... Disk portion 115h ... Mounting hole 120 ... Female rotor 121 .. Screw teeth 121a ... Unequal lead Unequal inclination angle screw part 121b ... Equal lead screw part
130 ... Stator 135 ... Intake port 136 ... Exhaust port 140 ... Drive motor 141 ... Motor rotor 142 ... Motor stator 142a ... Outer peripheral surface 142b ... Channel groove 143 ··· Gap 150, 150A · · · Rotating shaft 152, 152a ··· Oil supply path 156 ··· Closing member 160, 161, 162 ··· Bearing 180 ··· Lifting head 190 ··· Cooling device 200 · · .. Support members (channel members, guide members)
201 ... 1st flow path 201a ... Inlet 202 ... 2nd flow path 202a ... Inlet 210 ... Receiving plate 220 ... Oil amount adjustment ring 230 ... Shaft seal device 231 ... Holding member 232 ... First seal assembly 233a ... First lip seal 233b ... Second lip seal 234 ... Second seal assembly 234a ... Lip seal 235 ... Labyrinth seal
OL ... Oil M ... Screw

Claims (6)

  1.  少なくとも一つのスクリュー溝を外側に有するとともに回転軸線方向の下端面で開口する中空部を有するロータと、気体の吸気口及び排気口を備えるとともに該ロータを収納するステータと、前記ロータに連結もしくはその一部として形成されているとともに前記中空部に少なくともその一部が収容されている回転シャフトと、前記中空部内に収容され、前記回転シャフトを回転自在に支持する軸受と、を有し、前記回転シャフトは、長手方向に延びるとともに下端部および中空部内で開口する第一のオイル供給路を有し、該オイル供給路は前記回転シャフトの外表面でその終端が開口する第二のオイル供給路に連通する、スクリュー排気ポンプ用のオイル供給部品であって、
     前記回転シャフトと、該回転シャフト内に揚液機能の発揮が可能な螺旋状構造体とを有し、
     該構造体は、前記回転シャフトの下方に位置した駆動可能な螺旋状構造体とその上方に位置した固定螺旋状構造体とで構成されていることを特徴とするスクリュー排気ポンプ用のオイル供給部品。
    A rotor having at least one screw groove on the outside and having a hollow portion opened at a lower end surface in the rotation axis direction, a stator having a gas intake port and an exhaust port, and housing the rotor; A rotating shaft that is formed as a part and at least a part of which is accommodated in the hollow part; and a bearing that is accommodated in the hollow part and rotatably supports the rotating shaft. The shaft has a first oil supply passage that extends in the longitudinal direction and opens in the lower end portion and the hollow portion, and the oil supply passage is a second oil supply passage that opens on the outer surface of the rotating shaft. An oil supply component for a screw exhaust pump that communicates,
    The rotating shaft, and a helical structure capable of exhibiting a pumping function in the rotating shaft,
    The structure is composed of a drivable spiral structure located below the rotary shaft and a fixed spiral structure located above the structure, and an oil supply component for a screw exhaust pump. .
  2.  互いに噛み合うスクリュー歯を有する雄ロータおよび雌ロータを有し、
     気体の吸気口及び排気口を備えるとともに前記雌雄のロータを収納するステータを有し、
     前記雄ロータおよび雌ロータの少なくとも一方のロータは、回転軸線方向の下端面で開口する中空部を有し、
     前記少なくとも一方のロータに連結されるとともに前記中空部に少なくとも一部が収容された回転シャフトを有し、
     前記中空部内に収容され、前記回転シャフトを回転自在に支持する軸受を有し、
     前記回転シャフトは、長手方向に延びるとともに下端部および中空部内で開口するオイル供給路を有し、
     前記ステータの下方に配置され、前記回転シャフトのオイル供給路に供給するためのオイルを貯留するとともに、前記オイル供給路を通じて前記中空部内に供給されるオイルを回収するためのオイルリザーバを有し、
     前記回転シャフトと前記中空部を画定する前記少なくとも一方のロータの内壁面との間に少なくとも一部が配置されるとともに前記ステータに対して固定され、前記オイル供給路を通じて前記中空部に供給されたオイルを、前記中空部内で複数の流通経路に分配して流すための複数のオイル流路を画定する流路部材を有する、スクリュー排気ポンプ用のオイル供給部品であって、
     前記回転シャフトと、該回転シャフト内に揚液機能の発揮が可能な螺旋状構造体を有し、
     該構造体は、前記回転シャフトの下方に位置した駆動可能な螺旋状構造体とその上方に位置した固定螺旋状構造体で構成されていることを特徴とするスクリュー排気ポンプ用のオイル供給部品。
    A male rotor and a female rotor having screw teeth that mesh with each other;
    A stator having a gas inlet and an outlet and accommodating the male and female rotors;
    At least one of the male rotor and the female rotor has a hollow portion that opens at a lower end surface in the rotation axis direction;
    A rotating shaft coupled to the at least one rotor and at least partially housed in the hollow portion;
    A bearing housed in the hollow portion and rotatably supporting the rotating shaft;
    The rotating shaft has an oil supply path that extends in a longitudinal direction and opens in a lower end portion and a hollow portion,
    An oil reservoir disposed below the stator, storing oil to be supplied to an oil supply path of the rotating shaft, and collecting oil supplied into the hollow portion through the oil supply path;
    At least a portion is disposed between the rotating shaft and an inner wall surface of the at least one rotor that defines the hollow portion, and is fixed to the stator and supplied to the hollow portion through the oil supply path. An oil supply component for a screw exhaust pump, having a flow path member that defines a plurality of oil flow paths for distributing and flowing oil into a plurality of flow paths in the hollow portion,
    The rotating shaft and a helical structure capable of exhibiting a pumping function in the rotating shaft,
    The oil supply component for a screw exhaust pump, wherein the structure is composed of a drivable spiral structure positioned below the rotary shaft and a fixed spiral structure positioned above the structure.
  3.  互いに噛み合うスクリュー歯を有する雄ロータおよび雌ロータを有し、
     気体の吸気口及び排気口を備えるとともに前記雌雄のロータを収納するステータを有し、
     前記雄ロータおよび雌ロータの少なくとも一方のロータは、回転軸線方向の下端面で開口する中空部を有し、
     前記少なくとも一方のロータに連結されるとともに前記中空部に少なくとも一部が収容された回転シャフトを有し、
     前記中空部内に収容され、前記回転シャフトを回転自在に支持する軸受を有し、
     前記回転シャフトは、長手方向に延びるとともに下端部および中空部内で開口するオイル供給路を有し、
     前記軸受に対して設けられ、前記オイル供給路を通じて前記軸受に供給されるオイルの供給量を調整するオイル量調整機構を有する、スクリュー排気ポンプ用のオイル供給部品であって、
     前記回転シャフトと、該回転シャフト内に揚液機能の発揮が可能な螺旋状構造体とを有し、
     該構造体は、前記回転シャフトの下方に位置した駆動可能な螺旋状構造体とその上方に位置した固定螺旋状構造体で構成されていることを特徴とするスクリュー排気ポンプ用のオイル供給部品。
    A male rotor and a female rotor having screw teeth that mesh with each other;
    A stator having a gas inlet and an outlet and accommodating the male and female rotors;
    At least one of the male rotor and the female rotor has a hollow portion that opens at a lower end surface in the rotation axis direction;
    A rotating shaft coupled to the at least one rotor and at least partially housed in the hollow portion;
    A bearing housed in the hollow portion and rotatably supporting the rotating shaft;
    The rotating shaft has an oil supply path that extends in a longitudinal direction and opens in a lower end portion and a hollow portion,
    An oil supply component for a screw exhaust pump having an oil amount adjusting mechanism that is provided for the bearing and adjusts the supply amount of oil supplied to the bearing through the oil supply path,
    The rotating shaft, and a helical structure capable of exhibiting a pumping function in the rotating shaft,
    The oil supply component for a screw exhaust pump, wherein the structure is composed of a drivable spiral structure positioned below the rotary shaft and a fixed spiral structure positioned above the structure.
  4.  所定の空隙を設けて互いに噛み合うスクリュー歯を有する雄ロータおよび雌ロータを有し、
     気体の吸気口及び排気口を備えるとともに前記雌雄のロータを収納するステータを有し、
    前記雄ロータおよび雌ロータの少なくとも一方のロータは、回転軸線方向の下端面で開口する中空部を有し、
     前記少なくとも一方のロータに連結されるとともに前記中空部に少なくとも一部が収容された回転シャフトを有し、
     前記回転シャフトは、長手方向に延びるとともに下端部および中空部内で開口するオイル供給路を有し、
     前記回転シャフトに固定されたモータロータと、前記モータロータの周囲に配置されたモータステータを含み、前記中空部に少なくとも一部が配置されるとともに前記回転シャフトに一体的に設けられた駆動モータを有し、
     回転する前記回転シャフトのオイル供給路を通じて供給されるオイルを、前記駆動モータのモータロータとモータステータとの間の空隙および前記モータステータの外周面上に導くためのガイド部材を有する、スクリュー排気ポンプ用のオイル供給部品であって、
     前記回転シャフトと、該回転シャフト内に揚液機能の発揮が可能な螺旋状構造体とを有し、
     該構造体は、前記回転シャフトの下方に位置した駆動可能な螺旋状構造体とその上方に位置した固定螺旋状構造体で構成されていることを特徴とするスクリュー排気ポンプ用のオイル供給部品。
    A male rotor and a female rotor having screw teeth that mesh with each other with a predetermined gap;
    A stator having a gas inlet and an outlet and accommodating the male and female rotors;
    At least one of the male rotor and the female rotor has a hollow portion that opens at a lower end surface in the rotation axis direction;
    A rotating shaft coupled to the at least one rotor and at least partially housed in the hollow portion;
    The rotating shaft has an oil supply path that extends in a longitudinal direction and opens in a lower end portion and a hollow portion,
    A motor rotor fixed to the rotating shaft; and a motor stator disposed around the motor rotor; and at least a part of the hollow portion being disposed and a driving motor integrally provided on the rotating shaft. ,
    A screw exhaust pump having a guide member for guiding oil supplied through an oil supply path of the rotating shaft that rotates to a gap between a motor rotor and a motor stator of the drive motor and an outer peripheral surface of the motor stator. Oil supply parts,
    The rotating shaft, and a helical structure capable of exhibiting a pumping function in the rotating shaft,
    The oil supply component for a screw exhaust pump, wherein the structure is composed of a drivable spiral structure positioned below the rotary shaft and a fixed spiral structure positioned above the structure.
  5.  互いに噛み合うスクリュー歯を有する雄ロータおよび雌ロータを有し、
     気体の吸気口及び排気口を備えるとともに前記雌雄のロータを収納するステータを有し、
     前記雄ロータおよび雌ロータの少なくとも一方のロータは、回転軸線方向の下端面で開口する中空部を有し、
     前記少なくとも一方のロータに連結されるとともに前記中空部に少なくとも一部が収容され、回転自在に支持された回転シャフトを有し、
     前記回転シャフトは、長手方向に延びるとともに下端面および中空部内で開口するオイル供給路を有し、
     前記ステータの下方に配置され、前記回転シャフトのオイル供給路を通じて供給するためのオイルを貯留するとともに、前記回転シャフトのオイル供給路を通じて前記中空部内に供給されたオイルを回収するためのオイルリザーバであって、
      オイルを満たすための閉空間を画定する隔壁と、
      前記閉空間の一部を画定するとともに当該閉空間の容積を変更可能な変更要素と、
      前記回転シャフトのオイル供給路と連通するオイル流出口と、
      前記回転シャフトの排気口を通じて前記中空部内に供給された後に回収されたオイルが流入するオイル流入口と、
      前記閉空間に満たされたオイルを、前記オイル流出口を通じて前記回転シャフトのオイル供給路に向けて押し上げるために、前記変更要素を作動させて前記閉空間のオイルを加圧する加圧機構と、を有するオイルリザーバと、
     を有するスクリュー排気ポンプ用のオイル供給部品であって、
     前記回転シャフトと、
     該回転シャフト内に揚液機能の発揮が可能な螺旋状構造体と、を有し、 
     該構造体は、前記回転シャフトの下方に位置した駆動可能な螺旋状構造体とその上方に位置した固定螺旋状構造体で構成されていることを特徴とするスクリュー排気ポンプ用のオイル供給部品。
    A male rotor and a female rotor having screw teeth that mesh with each other;
    A stator having a gas inlet and an outlet and accommodating the male and female rotors;
    At least one of the male rotor and the female rotor has a hollow portion that opens at a lower end surface in the rotation axis direction;
    A rotating shaft coupled to the at least one rotor and at least partially housed in the hollow portion and rotatably supported;
    The rotating shaft has an oil supply path that extends in a longitudinal direction and opens in a lower end surface and a hollow portion,
    An oil reservoir disposed below the stator for storing oil to be supplied through an oil supply path of the rotary shaft and for collecting oil supplied into the hollow portion through the oil supply path of the rotary shaft; There,
    A partition that defines a closed space for filling the oil;
    A change element that defines a part of the closed space and is capable of changing a volume of the closed space;
    An oil outlet that communicates with the oil supply path of the rotating shaft;
    An oil inlet into which oil recovered after being supplied into the hollow portion through the exhaust port of the rotating shaft;
    A pressure mechanism for operating the change element to pressurize the oil in the closed space in order to push up the oil filled in the closed space toward the oil supply path of the rotary shaft through the oil outlet. An oil reservoir having,
    An oil supply component for a screw exhaust pump having
    The rotating shaft;
    A helical structure capable of exhibiting a pumping function in the rotating shaft,
    The oil supply component for a screw exhaust pump, wherein the structure is composed of a drivable spiral structure positioned below the rotary shaft and a fixed spiral structure positioned above the structure.
  6.  請求項1乃至5に記載のスクリュー排気ポンプ用のオイル供給部品の何れかを備えているスクリュー排気ポンプ。 A screw exhaust pump comprising any one of the oil supply parts for the screw exhaust pump according to claim 1.
PCT/JP2014/001118 2014-02-28 2014-02-28 Oil supply component for screw exhaust pump, and screw exhaust pump provided with said component WO2015128906A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016504865A JPWO2015128906A1 (en) 2014-02-28 2014-02-28 Oil supply part for screw exhaust pump and screw exhaust pump provided with the parts
PCT/JP2014/001118 WO2015128906A1 (en) 2014-02-28 2014-02-28 Oil supply component for screw exhaust pump, and screw exhaust pump provided with said component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/001118 WO2015128906A1 (en) 2014-02-28 2014-02-28 Oil supply component for screw exhaust pump, and screw exhaust pump provided with said component

Publications (1)

Publication Number Publication Date
WO2015128906A1 true WO2015128906A1 (en) 2015-09-03

Family

ID=54008280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/001118 WO2015128906A1 (en) 2014-02-28 2014-02-28 Oil supply component for screw exhaust pump, and screw exhaust pump provided with said component

Country Status (2)

Country Link
JP (1) JPWO2015128906A1 (en)
WO (1) WO2015128906A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119397A (en) * 1983-11-30 1985-06-26 Ishikawajima Harima Heavy Ind Co Ltd Sealed-type screw compressor
JPS6111492A (en) * 1984-06-25 1986-01-18 Toshiba Corp Rotary compressor
JPS63108584U (en) * 1987-01-07 1988-07-13
JPS63277884A (en) * 1987-05-06 1988-11-15 Kobe Steel Ltd Oil-free screw type vacuum pump
JPH0460193A (en) * 1990-06-29 1992-02-26 Hitachi Ltd Foreign matter capturing device for dry vacuum pump
JPH10281089A (en) * 1997-04-03 1998-10-20 Matsushita Electric Ind Co Ltd Vacuum pump
JP2001003867A (en) * 1999-06-17 2001-01-09 Mitsubishi Heavy Ind Ltd Horizontal type compressor
US20020170778A1 (en) * 2001-05-18 2002-11-21 Lg Electronics Inc. Oil supply apparatus for hermetic compressor
JP2005264738A (en) * 2004-03-16 2005-09-29 Matsushita Electric Ind Co Ltd Compressor
US20110150690A1 (en) * 2009-12-17 2011-06-23 Industrial Technology Research Institute Oil supply structure for refrigerant compressor
WO2011148797A1 (en) * 2010-05-24 2011-12-01 国立大学法人東北大学 Screw vacuum pump
JP2013507575A (en) * 2009-10-21 2013-03-04 コディヴァック リミテッド Screw rotor vacuum pump with built-in motor

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60119397A (en) * 1983-11-30 1985-06-26 Ishikawajima Harima Heavy Ind Co Ltd Sealed-type screw compressor
JPS6111492A (en) * 1984-06-25 1986-01-18 Toshiba Corp Rotary compressor
JPS63108584U (en) * 1987-01-07 1988-07-13
JPS63277884A (en) * 1987-05-06 1988-11-15 Kobe Steel Ltd Oil-free screw type vacuum pump
JPH0460193A (en) * 1990-06-29 1992-02-26 Hitachi Ltd Foreign matter capturing device for dry vacuum pump
JPH10281089A (en) * 1997-04-03 1998-10-20 Matsushita Electric Ind Co Ltd Vacuum pump
JP2001003867A (en) * 1999-06-17 2001-01-09 Mitsubishi Heavy Ind Ltd Horizontal type compressor
US20020170778A1 (en) * 2001-05-18 2002-11-21 Lg Electronics Inc. Oil supply apparatus for hermetic compressor
JP2005264738A (en) * 2004-03-16 2005-09-29 Matsushita Electric Ind Co Ltd Compressor
JP2013507575A (en) * 2009-10-21 2013-03-04 コディヴァック リミテッド Screw rotor vacuum pump with built-in motor
US20110150690A1 (en) * 2009-12-17 2011-06-23 Industrial Technology Research Institute Oil supply structure for refrigerant compressor
WO2011148797A1 (en) * 2010-05-24 2011-12-01 国立大学法人東北大学 Screw vacuum pump

Also Published As

Publication number Publication date
JPWO2015128906A1 (en) 2017-03-30

Similar Documents

Publication Publication Date Title
JP6155423B2 (en) Screw vacuum pump
JP4708221B2 (en) Cylindrical roller bearing for wind power generator
US20110150690A1 (en) Oil supply structure for refrigerant compressor
JP2017141720A (en) Vacuum pump
FR3011592A1 (en)
JP5892569B2 (en) Screw vacuum pump
CN115280643A (en) Motor and method of cooling motor
WO2015128906A1 (en) Oil supply component for screw exhaust pump, and screw exhaust pump provided with said component
KR20130125703A (en) Screw vacuum pump
WO2019166311A1 (en) Mounting and drive for a r718 compressor
CN212672926U (en) Self-lubricating oil pump device for rotating shaft
JP4717048B2 (en) Screw compressor
EP3371046A1 (en) Propeller drive assembly and a screw pump for a water vessel
KR101064152B1 (en) Screw type vacuum pump having direct cooling device
CN211231468U (en) Multifunctional high-rotation-speed air compressor
EP2450529A1 (en) Peripheral pump-turbine
JP2016183751A (en) Speed increasing gear and centrifugal compressor
CN210715794U (en) High-efficient low-loss acceleration mechanism
CN110939565B (en) External gear pump and electric lubricating oil pump
JP6106615B2 (en) Transaxle case
CN208718912U (en) A kind of outer rotor can be reduced abrasion
CN110566425A (en) Radial variable plunger pump
CN215521682U (en) Heat dissipation self-lubricating axle sleeve
CN105508580B (en) A kind of hydrodynamic lubrication method and structure
CN1550676A (en) Refrigerant pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14884037

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016504865

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14884037

Country of ref document: EP

Kind code of ref document: A1