WO2015128592A1 - Capteur magnetique pour determiner la position relative entre une cible aimantee et un systeme de mesure - Google Patents

Capteur magnetique pour determiner la position relative entre une cible aimantee et un systeme de mesure Download PDF

Info

Publication number
WO2015128592A1
WO2015128592A1 PCT/FR2015/050474 FR2015050474W WO2015128592A1 WO 2015128592 A1 WO2015128592 A1 WO 2015128592A1 FR 2015050474 W FR2015050474 W FR 2015050474W WO 2015128592 A1 WO2015128592 A1 WO 2015128592A1
Authority
WO
WIPO (PCT)
Prior art keywords
target
magnetic field
parabolic
measuring
magnetic sensor
Prior art date
Application number
PCT/FR2015/050474
Other languages
English (en)
Inventor
Sébastien Guerin
Harijaona RAKOTOARISON
Mathieu LE NY
Original Assignee
Electricfil Automotive
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electricfil Automotive filed Critical Electricfil Automotive
Priority to US15/117,547 priority Critical patent/US20160349080A1/en
Priority to CN201580011063.XA priority patent/CN106062518A/zh
Priority to EP15713542.7A priority patent/EP3111173A1/fr
Priority to MX2016011178A priority patent/MX2016011178A/es
Publication of WO2015128592A1 publication Critical patent/WO2015128592A1/fr

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage

Definitions

  • the present invention relates to the technical field of magnetic non-contact sensors, adapted to determine the position of a moving part moving along a determined path.
  • the present invention finds applications that are particularly advantageous, but not exclusively, in the field of motor vehicles with a view to equipping various mobile parts whose position must be known and forming part of, for example, a gearbox, the engine or a clutch. piloted, a power steering, a trim system, etc.
  • a magnetic sensor makes it possible to determine, without contact, the relative position, along an angular displacement trajectory, linear or curvilinear, between a target and a system for measuring the magnetic field created or modified by the target.
  • the target or the measuring system is mounted integral with the mobile whose position is to be determined.
  • the target is part of a system for creating a magnetic field along the path of travel.
  • the measuring system is connected to a processing circuit of the signals delivered by the measurement system for delivering a signal depending on the relative position between the target and the measurement system.
  • the measurement system comprises a single-element sensitive cell adapted to measure the amplitude of the magnetic field.
  • the advantages of such sensors are the simplicity of realization and the insensitivity to the temperature whereas the main disadvantage concerns its sensitivity to variations of airgap and disturbing magnetic fields inducing a significant error of nonlinearity.
  • the measuring system detects the orientation of the magnetic field by measuring the different components of the magnetic field.
  • the advantage of such sensors is insensitivity to temperature and air gap variations. However, this sensor is sensitive to disturbing magnetic fields and has difficulty in achieving the correct orientation of the magnetic field.
  • this magnet is magnetized in a direction perpendicular to the plane formed by the stroke and the direction of the hall effect sensor.
  • Such an arrangement implies a low value of the magnetic field seen by the sensor, which requires working with a very low air gap.
  • the magnetization is obtained by the deformation of the magnet, which induces mechanical stresses in the material, disturbing the magnetization.
  • the use of pads to deform the magnet and the making of holes in the magnet to fix it induce a disturbance of the magnetic field provided by the magnet so that it is not possible to obtain a distribution. controlled spatial magnetic field.
  • US Pat. No. 6,323,643 describes a position sensor comprising a magnet fixed to a rotor rotating about an axis of rotation.
  • the magnet has a polarized surface of semi-parabolic shape and located opposite a fixed Hall effect sensor.
  • Such a position sensor is sensitive to external magnetic fields since it comprises a single Hall effect sensor.
  • the present invention aims to remedy the disadvantages of the state of the art by proposing a magnetic position sensor insensitive to the temperature, air gap variations and magnetic disturbance fields.
  • the invention aims to use a magnetic signature whose intensity varies according to a parabolic law and to ensure the difference between the magnetic field amplitude measurements considered in at least two points of space.
  • the sensor according to the invention relates to a magnetic sensor for determining the relative angular or linear position, along a path of movement, between a target and a system for measuring the amplitude of the magnetic field created or modified by the target having an external shape.
  • the target forming part of a system for creating a variable magnetic field according to at least the displacement trajectory, the measurement system comprising at least two measuring elements spatially offset from one another and sensitive to the amplitude of the magnetic field according to a given direction, this measuring system being connected to a processing circuit of the signals delivered by the measuring system.
  • the creation system creates a magnetic field with an intensity varying according to a parabolic law, in a direction perpendicular to the trajectory of displacement and traversing the external shape of the target and the gap delimited between the external shape of the target and the system measuring,
  • the processing circuit is adapted to perform a differential treatment of the signals delivered by the measuring elements to obtain a linear variation signal giving the position of the target along the path of movement.
  • the sensor according to the invention further comprises, in combination, one and / or the other of the following additional characteristics:
  • the creation system creates a magnetic field with an intensity varying according to a parabolic law according to the trajectory of displacement
  • the processing circuit is able to perform a metric ratio processing of said signals delivered by the measuring elements
  • the creation system creates a magnetic field whose direction is perpendicular to a trajectory of linear displacement or rotation, the creation system creates a magnetic field whose direction is perpendicular to a trajectory of displacement carried out according to a surface and in that the measuring system has at least three non-aligned measuring elements,
  • the creation system creates a magnetic field whose direction is perpendicular to a displacement trajectory combining a rotation and a translation and that the measurement system comprises at least three non-aligned measuring elements,
  • the creation system creates a magnetic field whose direction is perpendicular to a displacement trajectory combining two rotations and the measurement system comprises at least three non-aligned measuring elements,
  • the creation system comprises a magnetized target with a constant magnetization intensity and with at least one external shape according to a parabolic law
  • the creation system comprises a magnet having a constant magnetization intensity and a ferromagnetic target delimiting with the magnet, an air gap in which the measurement system is placed, the magnet having a direction of magnetization oriented perpendicular to the shape external of the ferromagnetic target which follows a parabolic law, - the creation system comprises a magnetized target having a magnetic field of intensity distributed according to a parabolic law,
  • the creation system comprises at least one coil and a target making it possible to create a parabolic variation of the intensity of the magnetic field at the level of the measurement system.
  • Figure 1A illustrates a first embodiment of a position sensor according to the invention.
  • Figure 1B illustrates a second embodiment of a position sensor according to the invention.
  • Figure 1C illustrates a third embodiment of a position sensor according to the invention.
  • Figure 1D illustrates a fourth embodiment of a position sensor according to the invention.
  • Figures 2A and 2B are schematic views of two equivalent mounting examples of a measuring system forming part of the position sensor according to the invention.
  • Figure 2C illustrates different mounting variants of measuring elements of a measuring system adapted to determine the trajectory of a mobile being established according to a surface.
  • Figure 3A is a diagram illustrating the parabolic variation of the magnetic field as a function of the stroke of a moving body.
  • Figure 3B is a diagram illustrating the difference between parabolic shaped signals as a function of the stroke of the mobile.
  • Figures 4A and 4B are respectively perspective and front views, of an exemplary embodiment of a linear position sensor which comprises a convex shaped target.
  • Figures 4C and 4D show an embodiment of a linear position sensor implementing a concave target.
  • Figures 5A and 5B are respectively perspective and top views of an exemplary embodiment of a radial position sensor.
  • Figures 6A and 6B respectively illustrate views in perspective and from above, of an exemplary embodiment of a radial position sensor.
  • FIGS. 7A to 7D are respectively perspective views, side, front and top, of a position sensor for a mobile moving in a plane.
  • FIGS. 8A to 8D are respectively perspective views, side views in a linear displacement, of face along the axis of rotation and from above, of an exemplary embodiment of a position sensor for a mobile having a trajectory of linear and rotational movement.
  • Figures 9A to 9D are respectively perspective views, front, side and top, a position sensor for a mobile having a linear trajectory and rotation about an axis.
  • FIGS. 10A to 10D are respectively perspective, side, front and top views of an exemplary embodiment of a sensor for terminating the path of movement in two rotations.
  • the subject of the invention relates to a magnetic sensor 1 making it possible to determine, without contact, the position of a mobile moving along a trajectory T which can be angular, linear or curvilinear, as shown in the various embodiments illustrated in the drawings.
  • the magnetic sensor 1 comprises a target 2 and a system 3 for measuring a magnetic field created or modified by the target.
  • the target 2 is part or is integral with the mobile whose position is to be determined while the measurement system 3 is fixed relative to the target which is movable.
  • the measuring system 3 is part or is mounted integral with the mobile whose position is to be determined while the target 2 is fixed relative to the measuring system 3 which is movable.
  • the sensor 1 according to the invention thus makes it possible to determine the relative position between the target 2 and the system 3 for measuring the magnetic field.
  • the sensor is adapted to determine the position of the mobile corresponding either to the mobile target 2 with respect to the measurement system 3 which remains fixed or to the system. measurement 3 mobile relative to the target 2 fixed.
  • the target 2 and measurement system 3 are positioned to delimit an air gap E traversed by the magnetic field.
  • the target 2 comprises a shape or an outer surface 2a delimiting a portion of the gap and directed towards the measuring system 3.
  • the target 2 is part of a system for creating a magnetic field 4.
  • the creation system 4 creates a magnetic field in a direction M perpendicular to the trajectory of displacement T and with an intensity varying according to a parabolic law.
  • the direction M of the magnetic field passes through the outer shape 2a of the target 2 and also passes through the gap E defined between the target 2 and the measurement system 3.
  • This creation system 4 can be realized in different ways.
  • the creation system 4 comprises a magnetized target 2 made by a magnet delivering a magnetic field having a magnetization direction M and an amplitude or intensity varying according to a parabolic law in at least one direction M crossing the outer shape 2a of the target and the gap E.
  • the target 2 thus delivers a magnetic field of intensity distributed according to a parabolic law in at least one direction. This parabolic variation of the intensity of the magnetic field is created to be detected or measured by the measurement system 3.
  • the creation system 4 comprises a magnetized target 2 made by a magnet having an outer shape 2a according to a parabolic law.
  • This magnet has a constant magnetization intensity with a magnetization direction M passing through the external shape 2a of the target and the gap E.
  • the target 2 thus delivers a magnetic field of intensity distributed according to a parabolic law according to at least one direction. This parabolic variation of the intensity of the magnetic field is created to be detected or measured by the measurement system 3.
  • the creation system 4 comprises a magnet 4a and a ferromagnetic target 2.
  • the ferromagnetic target 2 has for example an outer shape 2a according to a parabolic law.
  • the magnet 4a has a constant magnetization intensity with a direction of magnetization M passing through the external shape 2a of the ferromagnetic part and the gap E.
  • the target 2 thus delivers a magnetic field of intensity distributed according to a parabolic law according to at least one direction. This parabolic variation of the intensity of the magnetic field is created to be detected or measured by the measurement system 3.
  • the creation system 4 comprises at least one coil 4b and a ferromagnetic or conductive target 2.
  • the coil 4b is considered to be part of the measurement system 3.
  • the target 2 has for example an outer shape 2a following a parabolic law.
  • the coil 4b generates a constant or time-varying magnetic field in a direction M crossing the outer shape 2a of the ferromagnetic part and the gap E.
  • the target 2 thus delivers a magnetic field of intensity distributed according to a parabolic law according to least one direction. This parabolic variation of the intensity of the magnetic field is created to be detected or measured by the measurement system 3.
  • the parabolic variation of the intensity of the magnetic field according to the stroke of the mobile is obtained by the parabolic form of the target 2.
  • this parabolic variation can be obtained differently and depends on the nature of the different materials used by the target 2.
  • the creation system 4 makes it possible to obtain, according to a measurement direction x, a parabolic distribution of the magnetic field B such that:
  • the creation system 4 creates a magnetic field with an intensity varying according to a parabolic law along the path of displacement T.
  • the measurement direction x corresponds to the trajectory of displacement T.
  • the measurement direction x can be shifted with respect to the displacement path T.
  • the measurement system 3 performs the calculations to determine the position of the mobile relative to the path of movement.
  • the distribution of the magnetic field created by the system 4 depends on the nature of the trajectory of the mobile.
  • the parabolic magnetic field varies along a direction making it possible to determine the trajectory of the mobile moving in a linear or curved trajectory.
  • the creation system 4 creates a parabolic magnetic field distributed according to the moving surface T of the mobile.
  • the creation system 4 makes it possible to obtain a parabolic distribution of the induction B on the displacement surface x, y such that:
  • the amplitude of the magnetic field whose intensity varies according to a parabolic law is measured by the measuring system 3.
  • This measurement system 3 comprises at least two measuring elements 3a, 3b, 3c ... spatially offset between them.
  • Each measuring element 3a, 3b, 3c ... is sensitive to the amplitude of the magnetic field in a given direction.
  • these measurement elements are Hall effect cells, magnetoresistive effect cells (AMR, GMR, TMR) or detection coils.
  • the measuring elements 3a, 3b, 3c, ... are spatially offset from each other in the direction of displacement T as illustrated in FIG. 2A.
  • the measuring elements 3a, 3b, 3c, ... are spatially offset in a direction perpendicular to the direction of magnetization M.
  • the measuring elements 3a, 3b, 3c,. .. are spatially offset from each other in a direction perpendicular to the direction of travel T as shown in FIG. 2B.
  • the measuring elements 3a, 3b, 3c, ... are spatially offset in a direction parallel to the direction of magnetization M.
  • the mounting of the measuring elements 3a, 3b, 3c, ... makes it possible to obtain equivalent measurements of the amplitude of the magnetic field.
  • the measuring system 3 comprises at least two measuring elements 3a, 3b, 3c, ... for determining the position of the moving body having a displacement path T in one direction.
  • the measuring system 3 comprises at least three measuring elements and for example four or five measuring elements 3a, 3b, 3c, 3d, 3e (FIG 2C). spatially shifted to determine the position of the mobile.
  • the number and the positioning of the measuring elements 3a, 3b, 3c, 3d, 3e are chosen and adapted as a function of the trajectory of the mobile.
  • each measuring element 3a, 3b, 3c, ... thus delivers an output signal Sa, Sb, Se, ... having a parabolic shape which is a function of the relative position of the measuring system 3 with respect to mobile, along the path of travel T.
  • the measurement system 3 is connected to a processing circuit, not shown, of the signals delivered by the measuring elements 3a, 3b, 3c, ....
  • the processing circuit is adapted to perform a differential treatment of the signals delivered by the measuring elements in order to obtain a signal S of linear variation giving the position x of the moving body along the path of displacement.
  • the difference S between parabolic shaped signals gives a linear function as a function of the stroke of the mobile.
  • the sensor 1 according to the invention thus makes it possible to obtain a linearity of the output signal giving the position of the mobile over the entire path of travel, with the advantage that such an output signal is insensitive to magnetic disturbing fields.
  • the processing circuit is able to perform a metric ratio processing of the signals Sa, Sb, Se, ... delivered by the measuring elements.
  • the circuit of processing is intended to ensure the difference of two measurement signals divided by the sum of these two measurement signals or by another measurement signal.
  • the output signal S is no longer a simple differential signal but a ratio between a difference of two measurements and their sum or another measurement.
  • the output signal S can be expressed as follows:
  • the proportional variation of the magnetic field due to the variation of temperature or gap is thus compensated for by the use of such a metric ratio output signal.
  • the displacement trajectory T is linear so that the creation system 4 creates a parabolic magnetic field whose magnetization direction M is perpendicular to a linear trajectory T.
  • the creation system 4 comprises a target 2 having in the direction T and depending on the stroke of the mobile, a parabolic outer shape 2a in front of which is positioned the measuring system 3.
  • an exterior parabolic form 2a of the target 2 is convex whereas in the example illustrated in FIGS. 4C-4D, the parabolic outer shape of the target 2 is concave.
  • the displacement path T is curved and in particular along a circular segment around an axis O of so that the creation system 4 creates a magnetic field of parabolic shape whose magnetization direction M is perpendicular to a circular or rotational trajectory T.
  • the creation system 4 comprises a target 2 having in the direction T and as a function of the race of the mobile, a parabolic external form 2a in front of which is positioned the measuring system 3
  • the parabolic outer shape 2a of the target 2 is made axially, that is to say along the axis O, while in the example illustrated in FIGS. 6A-6B, the parabolic outer shape 2a of the target 2 is made radially. According to this example, the parabolic external shape 2a is located between the axis of rotation O and the measuring system 3.
  • the target 2 has a convex parabolic outer shape 2a but it is clear that the parabolic outer shape 2a can be concave.
  • the displacement path T is performed along a surface that is an x, y plane.
  • the creation system 4 creates a parabolic magnetic field whose magnetization direction M is perpendicular to the displacement path T, that is to say on the x, y plane.
  • Such a creation system 4 makes it possible to obtain a parabolic distribution of the magnetic field on a measurement plane x, y.
  • the creation system 4 comprises a target 2 having in the plane x, y and as a function of the stroke of the mobile, an outer parabolic form 2a in front of which is positioned the measuring system 3.
  • the parabolic external form 2a of the target 2 results from the combination of parabolic forms established along the x and y directions.
  • the parabolic outer shape 2a of the target 2 is convex but it is clear that the parabolic outer shape 2a of the target 2 can be concave.
  • the measurement system comprises at least three non-aligned measuring elements, as described in FIG. 2C.
  • the displacement trajectory T is performed according to a surface defined by a rotation at an angulation ⁇ of center O and by a linear displacement x radial with respect to the angular displacement ⁇ .
  • the creation system 4 creates a parabolic magnetic field whose magnetization direction M is perpendicular to the displacement trajectory T, that is to say to the surface x, ⁇ .
  • the creation system 4 comprises a target 2 having, according to the surface x, ⁇ and as a function of the stroke of the mobile, an outer parabolic form 2a in front of which the measurement system 3 is positioned.
  • the parabolic external form 2a of the target 2 which is realized axially results from the combination of the parabolic forms being established according to the directions x and ⁇ .
  • the parabolic outer shape 2a of the target 2 is convex, but it is clear that the parabolic outer shape 2a of the target 2 can be concave.
  • the measurement system comprises at least three non-aligned measuring elements, as described in FIG. 2C.
  • Figs. 9A to 9D illustrate another exemplary embodiment in which the displacement trajectory T is carried out according to a surface defined by a rotation ⁇ around a center O and by a linear direction x which is axial, that is to say parallel to the axis O.
  • the creation system 4 creates a parabolic magnetic field whose magnetization direction M is perpendicular to the displacement path T, ie to the surface x, ⁇ .
  • the creation system 4 comprises a target 2 having, according to the surface x ⁇ , and according to the stroke of the mobile, an outer parabolic form 2a in front of which the measurement system 3 is positioned.
  • the parabolic external form 2a of the target 2 results from the combination of parabolic forms established in the directions x and ⁇ .
  • the parabolic outer shape 2a of the target 2 is convex but it is clear that the parabolic outer shape 2a of the target 2 can be concave.
  • the measuring system has at least three non-aligned measuring elements, as described in FIG. 2C.
  • Figs. 10A to 10D illustrate another exemplary embodiment in which the displacement trajectory T is performed according to a surface defined by the combination of a first rotation ⁇ 1 and a second rotation ⁇ 2.
  • the creation system 4 creates a parabolic magnetic field whose magnetization direction M is perpendicular to the displacement trajectory T, ie to the spherical surface ⁇ 1, ⁇ 2.
  • the creation system 4 comprises a target 2 having, according to the surface ⁇ 1, ⁇ 2 and as a function of the stroke of the mobile, an outer parabolic form 2a in front of which the measuring system 3 is positioned.
  • the parabolic external form 2a of the target 2 results from the combination of parabolic forms established in directions ⁇ 1 and ⁇ 2.
  • the parabolic outer shape 2a of the target 2 is convex but it is clear that the parabolic outer shape 2a of the target 2 can be concave.
  • the measurement system comprises at least three non-aligned measuring elements, as described in FIG. 2C.

Abstract

L'invention concerne un capteur magnétique pour déterminer la position selon une trajectoire de déplacement (T), entre une cible (2) et un système de mesure (3) de l'amplitude du champ magnétique crée ou modifié par la cible. Le capteur comporte : - un système de création d'un champ magnétique selon une direction (M) perpendiculaire à la trajectoire de déplacement (T) et avec une intensité variant suivant une loi parabolique, - un système de mesure (3) comportant au moins deux éléments de mesure (3a), (3b) spatialement décalés entre eux et sensibles à l'amplitude du champ magnétique selon une direction donnée, - un circuit de traitement apte à réaliser un traitement différentiel des signaux délivrés par les éléments de mesure afin d'obtenir un signal de variation linéaire donnant la position de la cible le long de la trajectoire de déplacement.

Description

CAPTEUR MAGNETIQUE
POUR DETERMINER LA POSITION RELATIVE ENTRE UNE CIBLE AIMANTEE ET UN SYSTEME DE MESURE
La présente invention concerne le domaine technique des capteurs magnétiques sans contact, adaptés pour déterminer la position d'une pièce mobile évoluant selon une trajectoire déterminée.
La présente invention trouve des applications particulièrement avantageuses mais non exclusivement dans le domaine des véhicules automobiles en vue d'équiper différents organes mobiles dont la position doit être connue et faisant partie par exemple d'une boîte de vitesses, du moteur, d'un embrayage piloté, d'une direction assistée, d'un système de réglage d'assiette, etc.
L'état de la technique a proposé de nombreuses variantes de réalisation de tels capteurs magnétiques sans contact. D'une manière générale, un capteur magnétique permet de déterminer, sans contact, la position relative, selon une trajectoire de déplacement angulaire, linéaire ou curviligne, entre une cible et un système de mesure du champ magnétique créé ou modifié par la cible. La cible ou le système de mesure est monté solidaire du mobile dont la position est à déterminer. La cible fait partie d'un système de création d'un champ magnétique selon la trajectoire de déplacement. Le système de mesure est relié à un circuit de traitement des signaux délivrés par le système de mesure permettant de délivrer un signal fonction de la position relative entre la cible et le système de mesure.
Selon une première catégorie de solutions décrites par exemple dans les documents US 2001/0038281, US 2004/0164727, le système de mesure comporte une cellule mono élément sensible adapté pour mesurer l'amplitude du champ magnétique. Les avantages de tels capteurs sont la simplicité de réalisation et l'insensibilité à la température alors que l'inconvénient principal concerne sa sensibilité aux variations d'entrefer et aux champs magnétiques perturbateurs induisant une erreur importante de non linéarité. Selon une deuxième catégorie de solutions décrites par exemple dans les documents EP 0 979 988 et FR 2 953 286, le système de mesure détecte l'orientation du champ magnétique en mesurant les différentes composantes du champ magnétique. L'avantage de tels capteurs est l'insensibilité à la température et aux variations d'entrefer. Cependant, ce capteur est sensible aux champs magnétiques perturbateurs et présente une difficulté pour réaliser l'orientation correcte du champ magnétique.
Il est également connu par le brevet US 3 419 798, un système magnétique pour détecter le déplacement linéaire entre une cible magnétique et un système de mesure de l'amplitude de champ magnétique comportant deux capteurs à effet Hall. La cible magnétique est réalisée sous la forme d'une lame aimantée s'étendant selon une forme de parabole ou d'hyperbole. La direction du champ magnétique est parallèle à la largeur de la cible considérée entre ses deux bords opposés longitudinaux.
Ainsi, cet aimant est aimanté selon une direction perpendiculaire au plan formé par la course et la direction du capteur à effet hall. Une telle disposition implique une faible valeur du champ magnétique vu par le capteur, ce qui impose de travailler avec un entrefer très faible. Par ailleurs, l'aimantation est obtenue par la déformation de l'aimant, ce qui induit des contraintes mécaniques dans le matériau, perturbant l'aimantation. Enfin, l'utilisation de plots pour déformer l'aimant et la réalisation de trous dans l'aimant pour le fixer induisent une perturbation du champ magnétique fourni par l'aimant de sorte qu'il n'est pas possible d'obtenir une répartition spatiale contrôlée du champ magnétique.
Le brevet US 6 323 643 décrit un capteur de position comportant un aimant fixé à un rotor tournant autour d'un axe de rotation. L'aimant possède une surface polarisée de forme semi-parabolique et située en regard d'un capteur à effet Hall fixe. Un tel capteur de position est sensible aux champs magnétiques extérieurs puisqu'il comporte un unique capteur à effet Hall.
La présente invention vise à remédier aux inconvénients de l'état de la technique en proposant un capteur de position magnétique insensible à la température, aux variations d'entrefer et aux champs magnétiques perturbateurs.
Pour atteindre un tel objectif, l'invention vise à utiliser une signature magnétique dont l'intensité varie selon une loi parabolique et à assurer la différence entre les mesures d'amplitude du champ magnétique considérées en au moins deux points de l'espace.
Le capteur selon l'invention concerne un capteur magnétique pour déterminer la position angulaire ou linéaire relative, selon une trajectoire de déplacement, entre une cible et un système de mesure de l'amplitude du champ magnétique crée ou modifié par la cible présentant une forme extérieure, la cible faisant partie d'un système de création d'un champ magnétique variable selon au moins la trajectoire de déplacement, le système de mesure comportant au moins deux éléments de mesure spatialement décalés entre eux et sensibles à l'amplitude du champ magnétique selon une direction donnée, ce système de mesure étant relié à un circuit de traitement des signaux délivrés par le système de mesure. Selon l'invention :
- le système de création crée un champ magnétique avec une intensité variant suivant une loi parabolique, selon une direction perpendiculaire à la trajectoire de déplacement et traversant la forme extérieure de la cible et l'entrefer délimité entre la forme extérieure de la cible et le système de mesure,
- le circuit de traitement est apte à réaliser un traitement différentiel des signaux délivrés par les éléments de mesure afin d'obtenir un signal de variation linéaire donnant la position de la cible le long de la trajectoire de déplacement.
Le capteur selon l'invention comporte en outre, en combinaison, l'une et/ou l'autre des caractéristiques additionnelles suivantes :
- le système de création crée un champ magnétique avec une intensité variant suivant une loi parabolique selon la trajectoire de déplacement, - le circuit de traitement est apte à réaliser un traitement ratio métrique desdits signaux délivrés par les éléments de mesure,
- le système de création crée un champ magnétique dont la direction est perpendiculaire à une trajectoire de déplacement linéaire ou de rotation, - le système de création crée un champ magnétique dont la direction est perpendiculaire à une trajectoire de déplacement effectuée selon une surface et en ce que le système de mesure comporte au moins trois éléments de mesure non alignés,
- le système de création crée un champ magnétique dont la direction est perpendiculaire à une trajectoire de déplacement combinant une rotation et une translation et en ce que le système de mesure comporte au moins trois éléments de mesure non alignés,
- le système de création crée un champ magnétique dont la direction est perpendiculaire à une trajectoire de déplacement combinant deux rotations et le système de mesure comporte au moins trois éléments de mesure non alignés,
- le système de création comporte une cible aimantée avec une intensité d'aimantation constante et avec au moins une forme extérieure suivant une loi parabolique,
- le système de création comporte un aimant possédant une intensité d'aimantation constante et une cible ferromagnétique délimitant avec l'aimant, un entrefer dans lequel le système de mesure est placé, l'aimant présentant une direction d'aimantation orientée perpendiculairement à la forme extérieure de la cible ferromagnétique qui suit une loi parabolique, - le système de création comporte une cible aimantée présentant un champ magnétique d'intensité distribué selon une loi parabolique,
- le système de création comporte au moins une bobine et une cible permettant de créer une variation parabolique de l'intensité du champ magnétique au niveau du système de mesure.
Diverses autres caractéristiques ressortent de la description faite ci-dessous en référence aux dessins annexés qui montrent, à titre d'exemples non limitatifs, des formes de réalisation de l'objet de l'invention. La Figure 1A illustre un premier exemple de réalisation d'un capteur de position conforme à l'invention.
La Figure 1B illustre une deuxième variante de réalisation d'un capteur de position conforme à l'invention.
La Figure 1C illustre une troisième variante de réalisation d'un capteur de position conforme à l'invention.
La Figure 1D illustre une quatrième variante de réalisation d'un capteur de position conforme à l'invention.
Les Figures 2A et 2B sont des vues schématiques de deux exemples de montage équivalents d'un système de mesure faisant partie du capteur de position conforme à l'invention.
La Figure 2C illustre différentes variantes de montage d'éléments de mesure d'un système de mesure adapté pour déterminer la trajectoire d'un mobile s'établissant selon une surface.
La Figure 3A est un schéma illustrant la variation parabolique du champ magnétique en fonction de la course d'un mobile.
La Figure 3B est un schéma illustrant la différence entre des signaux de forme parabolique en fonction de la course du mobile.
Les Figures 4A et 4B sont des vues respectivement en perspective et de face, d'un exemple de réalisation d'un capteur de position linéaire qui comprend une cible de forme convexe.
Les Figures 4C et 4D montrent un exemple de réalisation d'un capteur de position linéaire mettant en œuvre une cible de forme concave.
Les Figures 5A et 5B sont des vues respectivement en perspective et de dessus d'un exemple de réalisation d'un capteur de position radiale.
Les Figures 6A et 6B illustrent respectivement des vues en perspective et de dessus, d'un exemple de réalisation d'un capteur de position radiale.
Les Figures 7A à 7D sont des vues respectivement en perspective, de côté, de face et de dessus, d'un capteur de position pour un mobile se déplaçant dans un plan. Les Figures 8A à 8D sont des vues respectivement en perspective, de côté selon un déplacement linéaire, de face selon l'axe de rotation et de dessus, d'un exemple de réalisation d'un capteur de position pour un mobile possédant une trajectoire de déplacement linéaire et en rotation.
Les Figures 9A à 9D sont des vues respectivement en perspective, de face, de côté et de dessus, d'un capteur de position pour un mobile présentant une trajectoire linéaire et de rotation autour d'un axe.
Les Figures 10A à 10D sont des vues respectivement en perspective, de côté, de face et de dessus, d'un exemple de réalisation d'un capteur permettant de terminer la trajectoire de déplacement selon deux rotations.
Tel que cela ressort des dessins, l'objet de l'invention concerne un capteur magnétique 1 permettant de déterminer, sans contact, la position d'un mobile évoluant selon une trajectoire T qui peut être angulaire, linéaire ou curviligne, comme cela est montré dans les différentes variantes de réalisation illustrées sur les dessins. Le capteur magnétique 1 comporte une cible 2 et un système 3 de mesure d'un champ magnétique crée ou modifié par la cible.
Selon un premier mode de réalisation, la cible 2 fait partie ou est montée solidaire du mobile dont la position est à déterminer tandis que le système de mesure 3 est fixe par rapport à la cible qui est mobile. Selon un deuxième mode de réalisation, le système de mesure 3 fait partie ou est monté solidaire du mobile dont la position est à déterminer tandis que la cible 2 est fixe par rapport au système de mesure 3 qui est mobile. Le capteur 1 selon l'invention permet ainsi de déterminer la position relative entre la cible 2 et le système 3 de mesure du champ magnétique. Pour des raisons de simplification et de clarté, il est considéré dans la suite de la description que le capteur est adapté pour déterminer la position du mobile correspondant soit à la cible 2 mobile par rapport au système de mesure 3 qui reste fixe ou soit au système de mesure 3 mobile par rapport à la cible 2 fixe.
De manière classique, la cible 2 et système de mesure 3 sont positionnés pour délimiter un entrefer E traversé par le champ magnétique. A cet effet, la cible 2 comporte une forme ou une surface extérieure 2a délimitant une partie de l'entrefer et dirigée vers le système de mesure 3.
La cible 2 fait partie d'un système de création d'un champ magnétique 4. Selon une caractéristique de l'invention, le système de création 4 crée un champ magnétique selon une direction M perpendiculaire à la trajectoire de déplacement T et avec une intensité variant suivant une loi parabolique. La direction M du champ magnétique traverse la forme extérieure 2a de la cible 2 et traverse également l'entrefer E défini entre la cible 2 et le système de mesure 3. Ce système de création 4 peut être réalisé de différentes manières.
Dans l'exemple illustré à la Fig. 1A, le système de création 4 comporte une cible aimantée 2 réalisée par un aimant délivrant un champ magnétique présentant une direction d'aimantation M et une amplitude ou une intensité variant suivant une loi parabolique selon au moins une direction M traversant la forme extérieure 2a de la cible et l'entrefer E. La cible 2 délivre ainsi un champ magnétique d'intensité distribué suivant une loi parabolique selon au moins une direction. Cette variation parabolique de l'intensité du champ magnétique est créée pour être détectée ou mesurée par le système de mesure 3.
Dans l'exemple illustré à la Fig. 1B, le système de création 4 comporte une cible aimantée 2 réalisée par un aimant présentant une forme extérieure 2a suivant une loi parabolique. Cet aimant possède une intensité d'aimantation constante avec une direction d'aimantation M traversant la forme extérieure 2a de la cible et l'entrefer E. La cible 2 délivre ainsi un champ magnétique d'intensité distribué suivant une loi parabolique selon au moins une direction. Cette variation parabolique de l'intensité du champ magnétique est créée pour être détectée ou mesurée par le système de mesure 3.
Dans l'exemple illustré à la Fig. 1C, le système de création 4 comporte un aimant 4a et une cible ferromagnétique 2. Il est à noter que l'aimant 4a est considéré comme faisant partie du système de mesure 3. La cible ferromagnétique 2 présente par exemple une forme extérieure 2a suivant une loi parabolique. L'aimant 4a possède une intensité d'aimantation constante avec une direction d'aimantation M traversant la forme extérieure 2a de la pièce ferromagnétique et l'entrefer E. La cible 2 délivre ainsi un champ magnétique d'intensité distribué suivant une loi parabolique selon au moins une direction. Cette variation parabolique de l'intensité du champ magnétique est créée pour être détectée ou mesurée par le système de mesure 3.
Dans l'exemple illustré à la Fig. 1D, le système de création 4 comporte au moins une bobine 4b et une cible ferromagnétique ou conductrice 2. Il est à noter que la bobine 4b est considérée comme faisant partie du système de mesure 3. La cible 2 présente par exemple une forme extérieure 2a suivant une loi parabolique. La bobine 4b génère un champ magnétique constant ou variant dans le temps selon une direction M traversant la forme extérieure 2a de la pièce ferromagnétique et l'entrefer E. La cible 2 délivre ainsi un champ magnétique d'intensité distribué suivant une loi parabolique selon au moins une direction. Cette variation parabolique de l'intensité du champ magnétique est créée pour être détectée ou mesurée par le système de mesure 3.
Dans les exemples illustrés aux Fig. 1C et 1D, la variation parabolique de l'intensité du champ magnétique selon la course du mobile est obtenue par la forme parabolique de la cible 2. Bien entendu, cette variation parabolique peut être obtenue de manière différente et dépend de la nature des différents matériaux utilisés par la cible 2.
Ainsi, le système de création 4 permet d'obtenir selon une direction de mesure x, une distribution parabolique du champ magnétique B tel que :
B(x) = ax2 + bx + c.
Selon une variante avantageuse de réalisation, le système de création 4 crée un champ magnétique avec une intensité variant suivant une loi parabolique selon la trajectoire de déplacement T. Ainsi, la direction de mesure x correspond à la trajectoire de déplacement T. Bien entendu, comme cela sera compris dans la suite de la description, la direction de mesure x peut être décalée par rapport à la trajectoire de déplacement T. Dans ce cas, le système de mesure 3 effectue les calculs pour déterminer la position du mobile par rapport à la trajectoire de déplacement.
Bien entendu, la distribution du champ magnétique créé par le système 4 dépend de la nature de la trajectoire du mobile. Dans l'exemple ci-dessus illustré aux Fig. 1A à 1D, le champ magnétique parabolique varie selon une direction permettant de déterminer la trajectoire du mobile se déplaçant selon une trajectoire à savoir linéaire ou courbe.
Dans le cas où la trajectoire du mobile s'établit selon une surface telle que plane, cylindrique ou sphérique par exemple alors le système de création 4 crée un champ magnétique de forme parabolique distribué selon la surface de déplacement T du mobile. Ainsi, le système de création 4 permet d'obtenir une distribution parabolique de l'induction B sur la surface de déplacement x, y telle que :
B(xy) = ax2+ by2+ cxy + dy + ex + f.
L'amplitude du champ magnétique dont l'intensité varie selon une loi parabolique est mesurée par le système de mesure 3. Ce système de mesure 3 comporte au moins deux éléments de mesure 3a, 3b, 3c... spatialement décalés entre eux. Chaque élément de mesure 3a, 3b, 3c... est sensible à l'amplitude du champ magnétique selon une direction donnée. Par exemple, ces éléments de mesure sont des cellules à effet Hall, des cellules à effet magnétorésistif (AMR, GMR, TMR) ou des bobines de détection.
Selon un premier mode de réalisation, les éléments de mesure 3a, 3b, 3c, ... sont spatialement décalés entre eux selon la direction de déplacement T comme illustré à la Fig. 2A. Selon cet exemple, les éléments de mesure 3a, 3b, 3c, ... sont spatialement décalés selon une direction perpendiculaire à la direction d'aimantation M. Selon un deuxième mode de réalisation, les éléments de mesure 3a, 3b, 3c, ... sont spatialement décalés entre eux selon une direction perpendiculaire à la direction de déplacement T comme illustré à la Fig. 2B. Selon cet exemple, les éléments de mesure 3a, 3b, 3c, ... sont spatialement décalés selon une direction parallèle à la direction d'aimantation M. Le montage des éléments de mesure 3a, 3b, 3c, ... selon ces deux modes de réalisation permet d'obtenir des mesures équivalentes de l'amplitude du champ magnétique.
Le système de mesure 3 comporte au moins deux éléments de mesure 3a, 3b, 3c, ... pour déterminer la position du mobile présentant une trajectoire de déplacement T selon une direction. Dans le cas où la trajectoire du mobile s'établit selon une surface alors le système de mesure 3 comporte au moins trois éléments de mesure et par exemple quatre ou cinq éléments de mesure 3a, 3b, 3c, 3d, 3e (Fig. 2C) décalés spatialement pour déterminer la position du mobile. Le nombre et le positionnement des éléments de mesure 3a, 3b, 3c, 3d, 3e sont choisis et adaptés en fonction de la trajectoire du mobile. Ainsi, dans le cas où la trajectoire du mobile s'établit selon deux directions x, y d'un plan alors il est avantageux de positionner au moins 2 éléments de mesure selon chaque direction.
Tel que cela ressort de la Fig. 3A, chaque élément de mesure 3a, 3b, 3c, ... délivre ainsi un signal de sortie Sa, Sb, Se, ... ayant une forme de parabole qui est fonction de la position relative du système de mesure 3 par rapport au mobile, le long de la trajectoire de déplacement T.
Le système de mesure 3 est relié à un circuit de traitement, non représenté, des signaux délivrés par les éléments de mesure 3a, 3b, 3c, ... . Conformément à l'invention, le circuit de traitement est apte à réaliser un traitement différentiel des signaux délivrés par les éléments de mesure afin d'obtenir un signal S de variation linéaire donnant la position x du mobile le long de la trajectoire de déplacement. Tel que cela ressort clairement de la Fig. 3B, la différence S entre des signaux de forme parabolique donne une fonction linéaire en fonction de la course du mobile.
Le capteur 1 selon l'invention permet ainsi d'obtenir une linéarité du signal de sortie donnant la position du mobile, sur toute la trajectoire de déplacement, avec l'avantage qu'un tel signal de sortie est insensible aux champs magnétiques perturbateurs.
Selon une variante avantageuse de réalisation, le circuit de traitement est apte à réaliser un traitement ratio métrique des signaux Sa, Sb, Se, ... délivrés par les éléments de mesure. En d'autres termes, le circuit de traitement vise à assurer la différence de deux signaux de mesure divisée par la somme de ces deux signaux de mesure ou par un autre signal de mesure. Ainsi, le signal de sortie S n'est plus un simple signal différentiel mais un rapport entre une différence de deux mesures et leur somme ou une autre mesure. Ainsi, le signal de sortie S peut s'exprimer de la manière suivante :
S = (a.Sa - b.Sb) / (c.Sa + d.Sb) ou S = (a.Sa - b.Sb) / c.Sc, avec a, b, c et d étant des constantes.
Selon cette variante, la variation proportionnelle du champ magnétique due à la variation de température ou d'entrefer est ainsi compensée par l'utilisation d'un tel signal de sortie ratio métrique.
Les exemples qui suivent décrivent différentes variantes de réalisation du capteur conforme à l'invention en fonction de diverses trajectoires de déplacement du mobile. Dans les dessins qui suivent, la distribution parabolique du champ magnétique est obtenue par la forme extérieure 2a d'une cible magnétique 2 présentant une direction d'aimantation M, comme décrit en relation de la Fig. 1B. Un tel choix permet de visualiser la forme de la distribution du champ magnétique à travers la forme extérieure 2a de la cible magnétique. Bien entendu, ces différentes variantes de réalisations du capteur selon l'invention peuvent comporter un système de création 4 conforme aux Fig. 1A, 1C ou 1D.
Dans l'exemple illustré aux Fig. 4A-4B et 4C-4D, la trajectoire de déplacement T est linéaire de sorte que le système de création 4 crée un champ magnétique de forme parabolique dont la direction d'aimantation M est perpendiculaire à une trajectoire linéaire T. Le système de création 4 comporte une cible 2 présentant selon la direction T et en fonction de la course du mobile, une forme extérieure 2a parabolique en face de laquelle est positionné le système de mesure 3. Dans l'exemple illustré aux Fig. 4A- 4B, une forme extérieure 2a parabolique de la cible 2 est convexe alors que dans l'exemple illustré aux Fig. 4C-4D, la forme extérieure parabolique de la cible 2 est concave.
Dans l'exemple illustré aux Fig. 5A-5B, la trajectoire de déplacement T est courbe et en particulier selon un segment circulaire autour d'un axe O de sorte que le système de création 4 crée un champ magnétique de forme parabolique dont la direction d'aimantation M est perpendiculaire à une trajectoire circulaire ou de rotation T. Le système de création 4 comporte une cible 2 présentant selon la direction T et en fonction de la course du mobile, une forme extérieure 2a parabolique en face de laquelle est positionné le système de mesure 3
Il est à noter que dans l'exemple illustré aux Fig. 5A-5B, la forme extérieure 2a parabolique de la cible 2 est réalisée axialement c'est-à-dire selon l'axe O alors que dans l'exemple illustré aux Fig. 6A-6B, la forme extérieure 2a parabolique de la cible 2 est réalisée radialement. Selon cet exemple, la forme extérieure parabolique 2a est située entre l'axe de rotation O et le système de mesure 3.
Dans les exemples illustrés aux Fig. 5A-5B et 6a-6B, la cible 2 présente une forme extérieure 2a parabolique convexe mais il est clair que la forme extérieure 2a parabolique peut être concave.
Dans l'exemple illustré aux Fig. 7A à 7D, la trajectoire de déplacement T est effectuée selon une surface qui est un plan x, y. Selon cet exemple, le système de création 4 crée un champ magnétique de forme parabolique dont la direction d'aimantation M est perpendiculaire à trajectoire de déplacement T c'est à dire au plan x, y. Un tel système de création 4 permet d'obtenir une distribution parabolique du champ magnétique sur un plan de mesure x, y. Le système de création 4 comporte une cible 2 présentant dans le plan x, y et en fonction de la course du mobile, une forme extérieure 2a parabolique en face de laquelle est positionné le système de mesure 3. La forme extérieure 2a parabolique de la cible 2 résulte de la combinaison des formes paraboliques s'établissant selon les directions x et y. Dans l'exemple illustré aux Fig. 7A à 7D, la forme extérieure 2a parabolique de la cible 2 est convexe mais il est clair que la forme extérieure 2a parabolique de la cible 2 peut être concave. Selon cet exemple de réalisation illustré aux Fig. 7A à 7D, le système de mesure comporte au moins trois éléments de mesure non alignés, comme décrit à la Fig. 2C. Dans l'exemple illustré aux Fig. 8A à 8D, la trajectoire de déplacement T est effectuée selon une surface définie par une rotation selon une angulation Θ de centre O et par un déplacement linéaire x radial par rapport au déplacement angulaire Θ. Selon cet exemple, le système de création 4 crée un champ magnétique de forme parabolique dont la direction d'aimantation M est perpendiculaire à trajectoire de déplacement T c'est-à-dire à la surface x, Θ. Le système de création 4 comporte une cible 2 présentant selon la surface x, Θ et en fonction de la course du mobile, une forme extérieure 2a parabolique en face de laquelle est positionné le système de mesure 3. La forme extérieure 2a parabolique de la cible 2 qui est réalisée axialement résulte de la combinaison des formes paraboliques s'établissant selon les directions x et Θ. Dans l'exemple illustré aux Fig. 8A à 8D, la forme extérieure 2a parabolique de la cible 2 est convexe mais il est clair que la forme extérieure 2a parabolique de la cible 2 peut être concave. Selon cet exemple de réalisation illustré aux Fig. 8A à 8D, le système de mesure comporte au moins trois éléments de mesure non alignés, comme décrit à la Fig. 2C.
Les Fig. 9A à 9D illustrent un autre exemple de réalisation dans lequel la trajectoire de déplacement T est effectuée selon une surface définie par une rotation Θ autour d'un centre O et par une direction linéaire x qui est axial c'est-à-dire parallèle à l'axe O. Selon cet exemple, le système de création 4 crée un champ magnétique de forme parabolique dont la direction d'aimantation M est perpendiculaire à trajectoire de déplacement T c'est à dire à la surface x, Θ. Le système de création 4 comporte une cible 2 présentant selon la surface x Θ, et en fonction de la course du mobile, une forme extérieure 2a parabolique en face de laquelle est positionné le système de mesure 3. La forme extérieure 2a parabolique de la cible 2 résulte de la combinaison des formes paraboliques s'établissant selon les directions x et Θ. Dans l'exemple illustré aux Fig. 9A à 9D, la forme extérieure 2a parabolique de la cible 2 est convexe mais il est clair que la forme extérieure 2a parabolique de la cible 2 peut être concave. Selon cet exemple de réalisation illustré aux Fig. 9A à 9D, le système de mesure comporte au moins trois éléments de mesure non alignés, comme décrit à la Fig. 2C.
Les Fig. 10A à 10D illustrent un autre exemple de réalisation dans lequel la trajectoire de déplacement T est effectuée selon une surface définie par la combinaison d'une première rotation Θ1 et d'une deuxième rotation Θ2. Selon cet exemple, le système de création 4 crée un champ magnétique de forme parabolique dont la direction d'aimantation M est perpendiculaire à trajectoire de déplacement T c'est à dire à la surface sphérique Θ1, Θ2. Le système de création 4 comporte une cible 2 présentant selon la surface Θ1, Θ2 et en fonction de la course du mobile, une forme extérieure 2a parabolique en face de laquelle est positionné le système de mesure 3. La forme extérieure 2a parabolique de la cible 2 résulte de la combinaison des formes paraboliques s'établissant selon les directions Θ1 et Θ2. Dans l'exemple illustré aux Fig. 10A à 10D, la forme extérieure 2a parabolique de la cible 2 est convexe mais il est clair que la forme extérieure 2a parabolique de la cible 2 peut être concave. Selon cet exemple de réalisation illustré aux Fig. 10A à 10D, le système de mesure comporte au moins trois éléments de mesure non alignés, comme décrit à la Fig. 2C.
L'invention n'est pas limitée aux exemples décrits et représentés car diverses modifications peuvent y être apportées sans sortir de son cadre.

Claims

REVENDICATIONS
1 - Capteur magnétique pour déterminer la position angulaire ou linéaire relative, selon une trajectoire de déplacement (T), entre une cible (2) et un système de mesure (3) de l'amplitude du champ magnétique crée ou modifié par la cible (2) présentant une forme extérieure (2a), la cible (2) faisant partie d'un système (4) de création d'un champ magnétique variable selon au moins la trajectoire de déplacement, le système de mesure comportant au moins deux éléments de mesure (3a, (3b, 3c, ...) spatialement décalés entre eux et sensibles à l'amplitude du champ magnétique selon une direction donnée, ce système de mesure étant relié à un circuit de traitement des signaux délivrés par le système de mesure, caractérisé en ce que :
- le système de création (4) crée un champ magnétique avec une intensité variant suivant une loi parabolique, selon une direction (M) perpendiculaire à la trajectoire de déplacement (T) et traversant la forme extérieure (2a) de la cible et l'entrefer (E) délimité entre la forme extérieure de la cible et le système de mesure (3),
- le circuit de traitement est apte à réaliser un traitement différentiel des signaux délivrés par les éléments de mesure afin d'obtenir un signal de variation linéaire donnant la position de la cible le long de la trajectoire de déplacement.
2 - Capteur magnétique selon la revendication 1, caractérisé en ce que le système de création (4) crée un champ magnétique avec une intensité variant suivant une loi parabolique selon la trajectoire de déplacement (T).
3 - Capteur magnétique selon la revendication 1, caractérisé en ce que le circuit de traitement est apte à réaliser un traitement ratio métrique desdits signaux délivrés par les éléments de mesure (3a, 3b, 3c, ...)·
4 - Capteur magnétique selon l'une des revendications 1 à 3, caractérisé en ce que le système de création (4) crée un champ magnétique dont la direction (M) est perpendiculaire à une trajectoire de déplacement (T) linéaire ou de rotation.
5 - Capteur magnétique selon l'une des revendications 1 à 3, caractérisé en que le système de création (4) crée un champ magnétique dont la direction (M) est perpendiculaire à une trajectoire de déplacement (T) effectuée selon une surface et en ce que le système de mesure (3) comporte au moins trois éléments de mesure (3a, 3b, 3c, ...) non alignés.
6 - Capteur magnétique selon l'une des revendications 1 à 3, caractérisé en que le système de création (4) crée un champ magnétique dont la direction est perpendiculaire à une trajectoire de déplacement (T) combinant une rotation et une translation et en ce que le système de mesure (3) comporte au moins trois éléments de mesure (3a, 3b, 3c, ...) non alignés.
7 - Capteur magnétique selon les revendications 1 ou 2, caractérisé en ce que le système de création (4) crée un champ magnétique dont la direction (M) est perpendiculaire à une trajectoire de déplacement (T) combinant deux rotations et en ce que le système de mesure (3) comporte au moins trois éléments de mesure non alignés.
8 - Capteur magnétique selon l'une des revendications 1 à 7, caractérisé en ce que le système de création (4) comporte une cible aimantée (2) avec une intensité d'aimantation constante et avec au moins une forme extérieure suivant une loi parabolique.
9 - Capteur magnétique selon l'une des revendications 1 à 7, caractérisé en que le système de création (4) comporte un aimant (4a) possédant une intensité d'aimantation constante et une cible ferromagnétique (2) délimitant avec l'aimant, un entrefer dans lequel le système de mesure est placé, l'aimant (4a) présentant une direction d'aimantation (M) orientée perpendiculairement à la forme extérieure de la cible ferromagnétique qui suit une loi parabolique.
10 - Capteur magnétique selon l'une des revendications 1 à 7, caractérisé en ce que le système de création (4) comporte une cible aimantée (2) présentant un champ magnétique d'intensité distribué selon une loi parabolique.
11 - Capteur magnétique selon l'une des revendications 1 à 7, caractérisé en ce que le système de création (4) comporte au moins une bobine (4b) et une cible (2) permettant de créer une variation parabolique de l'intensité du champ magnétique au niveau du système de mesure (3).
PCT/FR2015/050474 2014-02-28 2015-02-27 Capteur magnetique pour determiner la position relative entre une cible aimantee et un systeme de mesure WO2015128592A1 (fr)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/117,547 US20160349080A1 (en) 2014-02-28 2015-02-27 Magnetic sensor for determining the relative position between a magnetized target and a measurement system
CN201580011063.XA CN106062518A (zh) 2014-02-28 2015-02-27 确定被磁化的目标与测量系统之间的相对位置的磁传感器
EP15713542.7A EP3111173A1 (fr) 2014-02-28 2015-02-27 Capteur magnetique pour determiner la position relative entre une cible aimantee et un systeme de mesure
MX2016011178A MX2016011178A (es) 2014-02-28 2015-02-27 Sensor magnetico para determinar la posicion relativa entre un objetivo magnetizado y un sistema de medicion.

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1451622 2014-02-28
FR1451622A FR3018113B1 (fr) 2014-02-28 2014-02-28 Capteur magnetique pour determiner la position relative entre une cible aimantee et un systeme de mesure

Publications (1)

Publication Number Publication Date
WO2015128592A1 true WO2015128592A1 (fr) 2015-09-03

Family

ID=50473673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/050474 WO2015128592A1 (fr) 2014-02-28 2015-02-27 Capteur magnetique pour determiner la position relative entre une cible aimantee et un systeme de mesure

Country Status (6)

Country Link
US (1) US20160349080A1 (fr)
EP (1) EP3111173A1 (fr)
CN (1) CN106062518A (fr)
FR (1) FR3018113B1 (fr)
MX (1) MX2016011178A (fr)
WO (1) WO2015128592A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111816403B (zh) * 2020-07-09 2021-02-19 北京中超伟业信息安全技术股份有限公司 一种用于消磁的目标位置确定方法及系统
CN112013754B (zh) * 2020-09-01 2022-03-15 瑞立集团瑞安汽车零部件有限公司 一种无接触离合器助力器主轴位移检测系统及检测方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3419798A (en) 1965-12-17 1968-12-31 Clark Equipment Co Displacement sensing transducer using hall effect devices
EP0979988A1 (fr) 1998-08-13 2000-02-16 FESTO AG & Co Procédé de mesure des mouvements linéaires entre des aimants et des capteurs
US20010038281A1 (en) 2000-03-08 2001-11-08 Nyce David S. Linear and rotary magnetic sensor
US6323643B1 (en) 2000-03-08 2001-11-27 Cts Corporation Rotary position sensor having a semi-parabolic magnet
US20040164727A1 (en) 2003-02-25 2004-08-26 Yingjie Lin Single magnet linear position sensor
FR2953286A1 (fr) 2009-11-27 2011-06-03 Electricfil Automotive Procede et capteur magnetique de mesure pour la detection sans contact de mouvements
US8026715B2 (en) * 2008-10-03 2011-09-27 International Business Machines Corporation Magneto-resistance based nano-scale position sensor
US20120007589A1 (en) * 2010-07-07 2012-01-12 Asahi Kasei Microdevices Corporation Position detecting apparatus

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007038395A1 (de) * 2007-08-14 2009-02-19 Robert Bosch Gmbh Wegsensor
FR2951265B1 (fr) * 2009-10-14 2013-02-08 Electricfil Automotive Capteur magnetique pour determiner la position et l'orientation d'une cible

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3419798A (en) 1965-12-17 1968-12-31 Clark Equipment Co Displacement sensing transducer using hall effect devices
EP0979988A1 (fr) 1998-08-13 2000-02-16 FESTO AG & Co Procédé de mesure des mouvements linéaires entre des aimants et des capteurs
US20010038281A1 (en) 2000-03-08 2001-11-08 Nyce David S. Linear and rotary magnetic sensor
US6323643B1 (en) 2000-03-08 2001-11-27 Cts Corporation Rotary position sensor having a semi-parabolic magnet
US20040164727A1 (en) 2003-02-25 2004-08-26 Yingjie Lin Single magnet linear position sensor
US8026715B2 (en) * 2008-10-03 2011-09-27 International Business Machines Corporation Magneto-resistance based nano-scale position sensor
FR2953286A1 (fr) 2009-11-27 2011-06-03 Electricfil Automotive Procede et capteur magnetique de mesure pour la detection sans contact de mouvements
US20120007589A1 (en) * 2010-07-07 2012-01-12 Asahi Kasei Microdevices Corporation Position detecting apparatus

Also Published As

Publication number Publication date
FR3018113A1 (fr) 2015-09-04
CN106062518A (zh) 2016-10-26
FR3018113B1 (fr) 2017-09-01
US20160349080A1 (en) 2016-12-01
MX2016011178A (es) 2016-12-16
EP3111173A1 (fr) 2017-01-04

Similar Documents

Publication Publication Date Title
EP0514530B1 (fr) Capteur magnetique de position et de vitesse a sonde de hall
EP1949036B1 (fr) Capteur de position angulaire magnetique pour une course allant jusqu'a 360°
EP2338030B1 (fr) Capteur de position magnetique a mesure de direction de champ et a collecteur de flux
EP1269133B1 (fr) Capteur de position, notamment destine a la detection de la torsion d'une colonne de direction
FR3019892B1 (fr) Dispositif de mesure pour une saisie sans contact d'un angle de rotation
FR2936307A1 (fr) Capteur de position lineaire ou rotatifa aimant permanent pour la detection d'une cible ferromagnetique
EP2488830B1 (fr) Capteur magnetique pour determiner la position et l'orientation d'une cible
FR2845469A1 (fr) Capteur de position analogique a reluctance variable
EP0558364B1 (fr) Structure à aimants pour capteur de déplacement
EP2084496A2 (fr) Capteur de position lineaire ou rotatif a profil d'aimant variable
FR2987112A1 (fr) Dispositif de capteur pour detecter les angles de rotation d'un composant rotatif d'un vehicule
FR2724723A1 (fr) Capteur incremental de vitesse et/ou de position.
EP1790950A1 (fr) Capteur magnetique de position pour un mobile ayant une course lineaire limitee
EP1330630B1 (fr) Palier a roulement instrumente pour volant de commande
EP1857783B1 (fr) Codeur pour capteur de position, à effet stabilisateur pour le passage à zéro de l'induction magnétique
EP2504665B1 (fr) Procede et capteur magnetique de mesure pour la detection sans contact de mouvements
WO2015128592A1 (fr) Capteur magnetique pour determiner la position relative entre une cible aimantee et un systeme de mesure
WO2005021298A1 (fr) Articulation elastique d'assemblage et son utilisation pour mesurer un deplacement ou un effort
FR2748805A1 (fr) Capteur de position sans contact, a effet hall
FR2776064A1 (fr) Dispositif de mesure de position angulaire utilisant un capteur magnetique
FR2860867A1 (fr) Disposituf pour corriger les erreurs d'interferences entre des capteurs magnetiques de mesure de la position de mobiles
FR2911955A1 (fr) Capteur magnetique de position a variation trigonometrique.
FR2829574A1 (fr) Capteur de la position d'un objet mobile, sur une trajectoire rectiligne
WO2022189750A1 (fr) Capteur à aimant et pôles ferromagnétiques
WO2019092344A1 (fr) Procédé de fabrication de pièce tournante magnétisée, pièce tournante et système de mesure de rotation d'une pièce tournante

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15713542

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15117547

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015713542

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015713542

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/011178

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE